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ABSTRACT 
As embedded systems increase in complexity and begin to partic- 
ipate in distributed systems, the need for middleware in building 
such systems becomes imperative. However, the use of middle- 
ware that fully implements such standards can impose a significant 
increase in footprint for an application, making it unsuitable for use 
in embedded systems. We consider the use of a standard CORBA 
event channel in a setting where distribution and inter-language 
support are unnecessary. We report our experience in applying as- 
pects to abstract the transport layer (CORBA) of the event channel 
into a selectable feature. Thus, enabling or disabling CORBA for a 
specific application can be decided at build-time, by merely select- 
ing CORBA as a feature. We describe the patterns used to achieve 
this abstraction and present footprint and throughput results show- 
ing the effect of CORBA on automatically derived subsets of the 
event channel. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed Sys- 
tems; C.3 [Computer Systems Organization]: Special-Purpose 
and Application-Based Systems—Real-time and embedded systems; 
D.l.m [ProgrammingTecliniques]: Miscellaneous 

*This work was sponsored by the DARPA Information Exploitation 
Office Program Composition for Embedded Software program un- 
der contracts F33615-00-C-1697 and F33615-00-C-3048, admin- 
istered by the Air Force Research Laboratory (AFRL) Real-Time 
Java for Embedded Systems program, Wright-Patterson Air Force 
Base (WPAFB), Information Directorate, under contract F336I5- 
97-D-1I55. 

General Terms 
Algorithms, Design, Experimentation, Performance 

Keywords 
AOP, CORBA, middleware, embedded systems, subsetting, event 
service, software composition, transport abstraction 

1.    INTRODUCTION 
Distributed systems have relied on common interfaces to achieve 

a high-degree of inter-operability, reliability and reusability. The 
emergence of standards such as the Common Object Request Bro- 
ker Architecture (CORBA) [20] and DOOM [18] and their wide 
spread use in building applications continues to underscore the im- 
portance of relying on such interfaces. As embedded systems are 
deployed in new scenarios such as distributed systems, the need to 
interact with and make use of existing standards is imperative. By 
using established communication standards between systems, it is 
possible to build effective and reusable embedded system compo- 
nents. 

An Event Channel is a well-established, standard interface for 
decoupling the supplier and consumer of events in a distributed 
system [22] [29]. Event Channels can be made customizable us- 
ing compositional approaches, such as feature specification using 
Aspect-Oriented Programming (AOP) [15] [16]. The footprint 
in such cases can be half of that required for a ftill-featured event 
channel when measurements exclude the size of the supporting Ob- 
ject Request Broker (ORB). However, what is of importance to an 
embedded application is the combined footprint of the event chan- 
nel as well as the ORB. The footprint of a high-quality Event Ser- 
vice implementation such as the ADAPTIVE Communication En- 
vironment (ACE) ORB (TAO) Event Service in certain configura- 
tions can be quite high mostly due to the size of the ORB [14]. 
Cleariy, The ACE ORB (TAO)'s footprint is the key concern for 
small-footprint event channels which need to be deployed in em- 
bedded systems with tight constraints and limited resources. While 
efforts are underway to create reduced-feature, small-footprint ORBs 
[9], there are compelling applications that do not need one or more 
of the following: distribution, inter-language support and real-time 
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guarantees. 
This paper describes an application of aspect and component ori- 

ented programming techniques to an Event Service to concretely 
demonstrate and measure its benefits in one particular application. 
As such, however, it also provides evidence for the efficacy of ap- 
plying these techniques to middleware for the more general class 
of distributed Real-Time Embedded Systems (RTES). We report 
on the experience of deploying an AOP-customized Event Chan- 
nel, where the aspects also govern the use of CORBA and conse- 
quently, the inclusion or exclusion of an ORB. The resulting Event 
Channel has been used in a Real-Time Specification for Java''*^ 
(RTSJ) setting for prototyping avionics middleware [26]. 

Our paper is organized as follows: Section 2 provides a brief 
overview of CORBA. Section 3 describes some of the motivation 
behind the need for developing flexible middleware. Section 4 de- 
scribes current approaches to subsetting middleware such as event 
channels. Section 5 describes the architecture of the Framework 
for Aspect Composition for an EvenT channel (FACET) that we 
have built using AOP techniques and describes the challenges in 
abstracting the transport layer and the patterns used to solve them. 
Section 6 quantifies the benefits of our approach. Finally, Section 7 
describes our planned fijture work applying aspects to flexible mid- 
dleware components and services. 

2.   BACKGROUND 
In this section, we give a brief overview of the CORBA refer- 

ence model so as to provide a context for the work presented in 
subsequent sections. 

2.1    Overview of the CORBA ORB Reference 
Model 

CORBA Object Request Brokers (ORBs) allow clients to invoke 
operations on distributed objects without concern for object loca- 
tion, programming language, OS platform, communication proto- 
cols and interconnects, and hardware [13]. Figure 1 illustrates the 
key components in the CORBA reference model [21] that collabo- 
rate to provide this degree of portability, interoperability, and trans- 
parency. ' 

CORBA ORBs [20] allow clients to invoke operations on dis- 
tributed objects without concern for the following issues: 

• Object location: CORBA objects either can be collocated 
with the client or distributed on a remote server, without af- 
fecting their implementation or use. 

• Programming language: The languages supported by CORBA 
include 0, C++, Java ^, COBOL, and Smalltalk, among oth- 

OS platform: CORBA runs on many OS platforms, including 
Win32, UNIX, MVS, and real-time embedded systems like 
VxWorks, Chorus, and LynxOS. 

Communication protocols and interconnects: The communi- 
cation protocols and interconnects that CORBA run on in- 
clude TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Ether- 
net, embedded system backplanes, and shared memory. 

Hardware: CORBA shields applications from side effects 
stemming from differences in hardware, such as storage lay- 
out and data type sizes/ranges. 

'This overview only focuses on the CORBA components relevant 
to this paper. For a complete synopsis of CORBA's components 
see [20]. 
^Java is a trademark of Sun Microsystems, Inc. 

Figure 1 illustrates the components in the CORBA 2.x reference 
model, all of which collaborate to provide the portability, interop- 
erability and transparency outlined above. 
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Figure 1: Components in tlie CORBA 2.x Reference Model 

Each component in the CORBA reference model is outlined be- 
low: 

• Client: A client is a role that obtains references to objects 
and invokes operations on them to perform application tasks. 
A client has no knowledge of the implementation of the ob- 
ject but does know its logical structure according to its inter- 
face. It also doesn't know of the object's location - objects 
can be remote or collocated relative to the client. Ideally, a 
client can access a remote object just like a local object. Fig- 
ure 1 shows how the underlying ORB components described 
below transmit remote operation requests transparently from 
client to object. 

• Object: In CORBA, an object is an instance of an Object 
Management Group (OMG) Interface Definition Language 
(IDL) interface. Each object is identified by an object ref- 
erence, which associates one or more paths through which 
a client can access an object on a server. An object ID as- 
sociates an object with its implementation, called a servant, 
and is unique within the scope of an Object Adapter. Over its 
lifetime, an object has one or more servants associated with 
it that implement its interface. 

• Servant: This component implements the operations defined 
by an OMG IDL interface. In object-oriented (OO) lan- 
guages, such as C++ and Java, servants are implemented us- 
ing one or more class instances. In non-OO languages, such 
as C, servants are typically implemented using functions and 
structs. A client never interacts with servants directly, but 
always through objects identified by object references. 

• ORB Core: When a client invokes an operation on an ob- 
ject, the ORB Core is responsible for delivering the request 
to the object and returning a response, if any, to the client. 
An ORB Core is implemented as a run-time library linked 
into client and server applications. For objects executing re- 
motely, a CORBA-compliant ORB Core communicates via 
a version of the General Inter-ORB Protocol (GIOP), such 
as the Internet Inter-ORB Protocol (HOP) that runs atop the 
TCP transport protocol. 



• ORB Interface: An ORB is an abstraction that can be im- 
plemented various ways, e.g., one or more processes or a set 
of libraries. To decouple applications from implementation 
details, the CORBA specification defines an interface to an 
ORB. This ORB interface provides standard operations to 
initialize and shut down the ORB, convert object references 
to strings and back, and so on. 

• IDL Stubs and Skeletons: IDL stubs and skeletons serve as 
a "glue" between the client and servants, respectively, and 

. the ORB. Stubs implement the Proxy pattern [8] and marshal 
application parameters into a common message-level repre- 
sentation. Conversely, skeletons implement the Adapter pat- 
tern [8] and demarshal the message-level representation back 
into typed parameters that are meaningful to an application. 

• IDL Compiler: An IDL compiler transforms OMG IDL def- 
initions into stubs and skeletons that are generated automati- 
cally in an application programming language, such as C++ 
or Java. In addition to providing programming language trans- 
parency, IDL compilers eliminate common sources of net- 
work programming errors and provide opportunities for au- 
tomated compiler optimizations [6]. 

• Object Adapter: An Object Adapter is a composite com- 
ponent that associates servants with objects, creates object 
references, demultiplexes incoming requests to servants, and 
collaborates with the IDL skeleton to dispatch the appropri- 
ate operation upcall on a servant. Even though different types 
of Olyect Adapters may be used by an ORB, the only Object 
Adapter defined in the CORBA specification is the Portable 
Object Adapter (POA). 

3.    MOTIVATION 
One of the special challenges associated with embedded systems 

is supporting their great diversity. Even within the very closely 
related set of avionics systems associated with the Boeing Bold 
Stroke product line software initiative, systems may have anywhere 
from one to ten processors, may run on Versa Module Europe (VME) 
and/or fiber channel based interconnects, may have one or more 
languages, and may run on a range of different operating systems. 
When these characteristics are taken together, the simplest deployed 
systems are single processor applications written completely in C++ 
without any interprocess communication, and the most complex 
ones are multiple VME backplanes connected by fiber channel, 
each with multiple processors, also written entirely in C++. There 
are also mixed C++ and Ada-based distributed systems. All of 
these are real-world systems, deployed in practice. 

Even within a single product, embedded systems often impose 
significant resource constraints. Resource constraints may stem 
from limitations on size, weight, power, cost, aging hardware or 
other factors. Small consumer-devices such as cell phones and 
hearing aids emphasize size, weight, power, and cost factors. Larger, 
mass-produced systems such as automotive electronics are more fo- 
cused on cost. More complex systems such as avionics are expected 
to be operational for a long life due to their expense. 

Developing a single framework and implementation software that 
can be reused across a range of products as in Bold Stroke how- 
ever, poses significant additional challenges. A component-based 
application architecture was created to provide a configurable and 
composable application capability [26]. ACE [24], TAO [4] and 
other architecture-specific services were created to provide a stable 
foundation for these applications [5]. This middleware foundation 
is also highly configurable, but does not provide the same level of 

component-based granularity provided in the application. Further- 
more, while the extensive use of compiler directives and macros, 
for instance, does provide a single code base for reuse across a 
wide range of platforms, the necessary scattering and tangling of 
the code needed for all of the variants can significantly obscure 
the code associated with one particular use. The limitations of this 
approach in providing middleware implementations that scale to 
meet the required feature set for a particular system without incur- 
ring overhead associated with unused features has led to substantial 
interest in production programs in component-oriented and aspect- 
oriented approaches to middleware. 

Colleagues at the University of British Columbia on the Program 
Composition for Embedded Software (PCES) program have also 
shown how AOP approaches can alleviate some of the configurabil- 
ity limitations in the component based application for cases where 
customizations are inherently scattered and tangled with the base- 
line code. 

Real-time developers are typically reluctant to adopt new tech- 
nologies — including C, C++, and CORBA — because those tech- 
nologies often ignore the needs of real-time systems. The use of 
Java in real-time applications is thus relatively new. While the use 
of Java as the sole language in large-scale real-time applications is 
unlikely in the near-term, efforts such as ours are focused on laying 
the foundation for such applications in the future. 

4.   RELATED WORK 
The need to subset (or extend) middleware selectively has ex- 

isted for some time. Before the emergence of AOP techniques 
to separate concerns, subsetting techniques made use of object- 
oriented patterns. In previous work, AOP techniques haVe been 
used to demonstrate a high degree of feature control and conse- 
quently, footprint management [15] [16] [14]. However, such work 
has not concentrated on abstracting the transport layer as a feature 
so as to allow an even greater level of customizability for a specific 
application. In the following, we provide some background to our 
use of AOP in doing transport layer abstraction in FACET. 

4.1   Object-Oriented Subsetting Tecliniques 
Developing middleware to be flexible in diverse environments 

often involves the following process [16]: 

1. Building flexibility and extensibility around known variation 
points at the beginning. 

2. Refactoring functionality out of the core middleware to ex- 
tensions and adding flexibility as new features are added and 
as the footprint becomes too large. 

Unfortunately, the first relies on a designer's ability to precon- 
ceive feature extension points. As this is impractical with all but 
the smallest frameworks, fimctionality inevitably gets added that 
will need to be refactored to extensions later. Quite a few object- 
oriented design patterns have been identified that document suc- 
cessflil strategies to subsetting middleware. These include pat- 
terns such as Strategy [8], Interceptors, Extension Interface, Ser- 
vice Configurator and others [25]. Although such patterns have 
been used extensively in middleware such as ACE [24] and TAO [4], 
these come with some limitations: 

1. They require additional infrastructure within the framework 
to support their presence. For example. Strategy and Inter- 
ceptors require method invocation hooks to be placed at key 
locations throughout the code. From a programmer stand- 
point, these hooks and the additional infrastructure lessen the 
readability and maintainability of the code. 
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2. If the locations where subsetting should have occurred are 
not preconceived, time consuming refactoring may be needed 
to extract functionality into separate libraries. 

3. The hooks and infrastructure themselves can lead to degra- 
dations in performance and increase in footprint size if some 
or all of them are not used. 

4.2   Separation of Concerns using Aspect! 
AOP [17] is a software development paradigm that enables one 

to separate concerns that crosscut sets of classes and encapsulate 
those concerns in self-contained modules called aspects. The As- 
pect! [28] programming language adds AOP constructs to Java [2] 
and uses the following terminology. Within an aspect, the loca- 
tions at which code should be applied are defined wsmg pointcuts. 
Each pointcut is made up of one or moKjoinpoints, which are well- 
defined points in the execJution of a program. The code applied at a 
pointcut is called advice. In addition to applying advice, languages 
supporting AOP often allow new methods or other language fea- 
tures to be introduced into existing classes. It is also possible to 
change the inheritance hierarchy of a class by changing the list of 
interfaces it implements or the classes it derives from. 

In previous work [15] [16], this powerful, new programming 
paradigm has been applied to build software using the composi- 
tional approach by building a core of basic fiinctionality and then 
codifying all additional features into separate aspects. Since the 
transport layer used in the event delivery mechanism is a cross- 
cutting concern for the set of classes implementing the fiinctional- 
ity of the event channel, it would be possible to abstract this into 
a separate aspect such that the inclusion or exclusion of the same 
produces an event channel with the desired functionality. 

5.    IMPLEMENTATION 
In this section, we describe our AOP approach for compositional 

construction of an event channel. We focus only on the particulars 
of our implementation that are relevant to the transport layer and 
its abstraction. We omit details concerning other features, perfor- 
manceofthosefeatures,andourtestingframework[15] [16] [14]. 

5.1   Architecture of FACET 
FACET is an implementation of a CORBA [20] event channel 

that uses AOP to achieve a high level of customizability. Its fiinc- 
tionality is based on features found in the OMG Event Service [22], 
the OMG Notification Service [19] [11], and the TAO Real-time 
Event Service [23] [12]. 

An event channel is a common middleware framework that de- 
couples event suppliers and consumers. The event channel acts as a 
mediator through which all events are transported. Figure 2 shows 
the main participants in an event-channel framework. At its sim- 
plest, 

• Suppliers push events to the event channel 

• The event channel applies any filtering, correlation or other 
specified features to the events 

• The event channel pushes appropriate events to consumers. 

Event channel implementations differ in the types of events that 
they handle and in the processing and forwarding that occurs within 
the channel. 

FACET is separated into a base and a set of selectable features. 
The base represents a fundamental and indivisible level of function- 
ality. Each feature adds a structural and/or functional enhancement 
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Figure 2: Main participants in an event cliannel. 

to the base. Moreover, a feature can affect the structure and func- 
tion of other features. AOP language constructs are then used to 
integrate or to weave feature code into the appropriate places in the 
base and selected features. 

The construction of FACET follows a bottom-up approach in 
which features are implemented as needed. As new requirements 
are presented, they are decomposed into one or more features. In 
the case of FACET, the features of several existing event services 
were selected one-by-one for incorporation. By using AOP tech- 
niques, the code for each of these features can then be weaved into 
the base at the appropriate points. 

5.1.0.1    Lackof Transport Abstraction. 
FACET was originally designed to use CORBA so that events 

can be sent to and received from remote consumers and suppliers. 
The advantages of CORBA include the ability to distribute the con- 
sumers and suppliers as well as to fashion their implementation for 
any language that maps to CORBA (e.g., Java and C++). The lan- 
guage independence is obtained by specifying interface definitions 
via CORBA's IDL. 

However, in certain usage scenarios where distribution and multi- 
language support is unnecessary, the use of CORBA becomes un- 
necessary. As described in Section 3, there are important examples 
of this case. In this situation, the underiying transport mechanism 
can be a simple method call, doing away with the need to make use 
of an ORB. Indeed, one form of this optimization is routinely used 
in the Bold Stroke event service, in the form of the Subscription 
and Filtering configuration [12] 

Following our compositional approach [15], we sought to pro- 
vide a standard interface for the event channel while making the 
use of CORBA optional as well. In other words, merely by se- 
lecting an EnableCorba or DisableCorba feature (which are mu- 
tually exclusive since it would make no sense to enable both) at 
build-time, it should be possible to obtain an event channel with 
the desired configuration. 

In what follows, we describe the challenges in abstracting the 
use of CORBA in the event channel and how these were addressed 
by the use of AOP. 

5.2    CORBA vs No-CORBA 
Since FACET was originally designed to use CORBA, its inter- 

faces were specified in CORBA IDL and the implementation code 
was written in terms of CORBA Stub and Skeleton classes [20]. 
For instance, the implementation of one method of the Suppli- 
erAdmin interface [22] looked like this: 

A 



public class SupplierAdminlmpl 
extends SupplierAdminPOA { 

// Field and other method definitions 

public ProxyPushConsumer obtain__push_consuiner() 

( 
ProxyPushConsumerlmpl ppclmpl = 

new ProxyPushConsumerlmpl (eventChannel_); 

try { 

org.omg.CORBA.Object obj = 
poa_.servant_to_reference (ppclmpl); 

ProxyPushConsumer ppc = 
ProxyPushConsumerHelper.narrow(obj); 

return ppc; 

} catch (Exception se) { 
// Appropriate code 

return null; 

) 
} 

It is clear from the above that the challenge lies in separating the 
concerns related to CORBA"from the actual event channel imple- 
mentation code for implementing the various features offered by 
an event service (present in various other classes). In the follow- 
ing, we present how we solved this problem using what we call the 
"Placeholder" pattern. 

5.3   Use of the Placeholder pattern 
Consider the ProxyPushConsumer interface [22] of the event 

channel, when configured to push structured event data. In the case 
CORBA is in use, the IDL describing this interface would be : 

interface PushConsumer { 
void push (in Event data); 
void disconnect_push_consumer 0; 

}; 

interface ProxyPushConsumer : PushConsumer { 
void 
connect_push_supplier (in PushSupplier supplier); 

); 

The IDL compiler when given the above would generate the 
necessary Stub and Skeleton classes [20]. Now to implement the 
ProxyPushConsumer interface, the event channel's implemen- 
tation would include a ProxyPushConsumerlmpl class with 
the following definition: 

public class ProxyPushConsumerlmpl 
extends ProxyPushConsumerPOA { 

// Appropriate implementation 

) 

However, in the case CORBA is not needed, the interfaces can 
directly be specified in Java: 

public interface PushConsumer { 
public void push (Event data); 
public void disconnect_push_consumer 0 ; 

} 

public interface ProxyPushConsumer 
implements PushConsumer { 

public void 
connect_push_supplier (PushSupplier supplier); 

And the corresponding implementation of the ProxyPushCon- 
sumer interface would be: 

public class ProxyPushConsumerlmpl 
implements ProxyPushConsumer  { 

// Appropriate  implementation 

} 

This idea recurs for all interfaces exposed by the event chan- 
nel and is a concern which is independent of the manner of im- 
plementation. To address this issue, we make use of what we 
call the "Placeholder Class" pattern. This pattern makes use of a 
single, empty base class which the implementation class derives 
from regardless of whether the event channel is in a CORBA or 
no-CORBA configuration. Aspects then modify the placeholder 
class definition to derive from the appropriate base class. This is 
demonstrated in the following: 

public class ProxyPushConsumerlmpl 
extends ProxyPushConsumerBase { 

// Appropriate implementation 

) 

aspect EnableCorba { 

declare parents : 
ProxyPushConsumerBase 

extends ProxyPushConsumerPOA; 

// other advice 

} 

aspect DisableCorba { 

declare parents : 
ProxyPushConsumerBase 

implements ProxyPushConsumer; 

} 
// other advice 

In the above, the ProxyPushConsumerBase class is the place- 
holder class that the aspects modify as necessary, to either extend 
the ProxyPushConsumerPOA class, or implement the Push- 
Consumer interface. 

With CORBA enabled, it is also necessary to invoke methods on 
the POA [20] object to obtain a reference from a Servant [20] ob- 
ject. For example, to obtain the ProxyPushConsumer interface 
reference from the servant ProxyPushConsumerlmpl object, 
the following is necessary: 

ProxyPushConsumer ppc = 
ProxyPushConsumerHelper.narrow ( 
poa.servant_to_reference (impl)); 

However, in the no-CORBA case, to obtain the interface type ref- 
erence, the following is sufficient since there are no Servant objects 
and the implementation class actually implements the PushCon- 
sumer interface directly: 

ProxyPushConsumer ppc = 
(ProxyPushConsumer) impl ; 

To transparently provide the correct implementation based on the 
configuration of the event channel {i.e CORBA or no-CORBA) we 
make use of what we call the "Placeholder Method" pattern. This 
pattern makes use of a single, empty method for each such opera- 
tion which is then advised as necessary by aspects. For instance, 
the placeholder method in this case would be: 



public ProxyPushConsumer 
GetProxyPushConsumerReference <ProxyPushConsumerBase impl) 

{ 
// Nothing needs to be done here 
return null; 

) 
with the appropriate code weaved in via around advice (which 

is basically an alternate method implementation for the method 
that we are wrapping around) from the EnableCorba and DIs- 
ableCorba aspects: 

aspect EnableCorba { 

ProxyPushConsumer around (...) : 
GetProxyPushConsumerRef (...) 

{ 
ProxyPushConsumer ppc » 

ProxyPushConsumerHelper.narrow ( 
poa.servant_to_reference (impl)); 

return ppc; 

) 
) 

aspect DisableCorba { 

ProxyPushConsumer around (...) : 
GetProxyPushConsumerRef (...) 

{ 
ProxyPushConsumer ppc = 

(ProxyPushConsumer) impl; 

} 
return ppc; 

) 

The advantage of such an approach is that there are only a small 
number of public interfaces for which this has to be done making 
it suitable for any application which needs to abstract its use of 
CORBA this way. 

5.4   IDL Generator and Build Process 
When different features are enabled in FACET, the IDL of the 

event channel needs to change accordingly to reflect the presence 
of those new features, in the case CORBA is enabled (there is no 
need to generate IDL when CORBA is disabled). In previous work, 
the changes to the IDL of the event channel were conducted by 
the use of scripts which makes the changes using primitive text 
processing and search-and-replace style techniques [15]. However, 
for our purposes, using such a script would entail having to use 
different aspects for the cases when CORBA is enabled and when 
it is not. From a software engineering standpoint, this would be 
very inefficient and greatly reduce the maintainability of the code. 

To address this, we chose to investigate a new technique which 
involves the generation of the IDL for a given configuration by 
reflection on the classes comprising the event channel's interface. 
With this, it is only necessary to specify the aspect introductions in 
the Java code - the corresponding changes to the IDL happen auto- 
matically since the mapping from CORBA to Java is well-known. 

The generator is ruri as part of the three-stage build process: 

• Aspects that perform introductions are applied to the classes 
which form the public interface of the event channel 

• The IDL Generator reflects on these classes and generates the 
IDL. The IDL compiler is then run to generate the stub and 
skeleton classes. In the case CORBA is disabled, this step is 
automatically skipped. 

• All classes comprising the event channel along with the rel- 
evant aspects for the particular feature set are compiled and 
the relevant jUnit [7] tests are run [15]. 

The IDL Generator we have developed is generic in its imple- 
mentation and can be used to generate the IDL interfaces corre- 
sponding to any set of Java classes. Conceivably, this technique 
can be extended to any language which has a strong runtime type 
system and allows reflection. 

6.   EXPERIMENTAL RESULTS 
In this section, we present results that we obtained in estimating 

the effect that CORBA had on the footprint and throughput perfor- 
mance of FACET. To collect such data, a set of popular configura- 
tions was identified based on feedback from several developers of 
the TAO users community who are using event channels in their ap- 
plication development. In addition, to gauge the effect of individual 
features on the overall size and performance of the FACET event 
channel, each feature was studied by measuring its effect across all 
configurations that included or omitted the given feature. 

One method to measure the footprint of a Java application is to 
sum the size of all the .class files that are loaded. Embedded 
systems that use Java interpreters or just-in-time compilers could 
use this metric to estimate the amount of RAM needed. Another 
method consists of generating native code using a compiler (such as 
GCJ [10]) and then measuring the size of the resulting executable. 
The compiled code is more suitable for comparisons with C and 
C++ code. Moreover, embedded real-time applications are likely 
to precompile to native code for execution predictability. An over- 
all observation has been that the size of the GCJ produced object 
files are generally larger than the corresponding . class files [16]. 
This is commensurate with the design of . class files to be small 
so as to reduce transmission time over networks. 

Here, we report results based on .class files that are inter- 
preted and executed using the Sun Java Virtual Machine (JVM) 
1.4.0 with Just-In-Time compilation enabled. The experiments were 
performed on a dual-Xeon processor machine running at 2.40 GHz, 
with 512 MB of RAM. 

With Java and . class files, the footprint of the running pro- 
gram increases as classes are loaded. We report the maximum foot- 
print, achieved when all code has been loaded; such measurements 
are most appropriate for an embedded system. For a native-code 
compiled version, both the footprint and the resulting throughput 
are expected to increase. 

6.1    Common Configurations 
The following are the 10 event channel configurations used in 

collecting experimental data: 

1. Configuration 1 (Base): Although the applications requested 
by developers all required more functionality than the base, 
it is useful in that it is a lower bound on the footprint. Note 
that all subsequent tests use the full functionality provided 
by the base. 

2. Configuration 2: Several developers only needed configu- 
rations similar to the standard CORBA COS Event Service 
specification. This configuration has CORBA Any payloads 
and does not support fihering. The pull interfaces were not 
included in this configuration since they were not used. 

3. Configuration 3: This configuration is the same as the previ- 
ous except that the tracing feature is enabled. 

4. Configuration 4: Structured events and event sets are en- 
abled. This configuration also adds the time to live (TTL) 
field processing to eliminate loops created by federating event 
channels. This configuration is still minimal, however, and 
does not support any kind of event filtering. 
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5. Configuration 5: This configuration has support for dispatch- 
ing events based on event type. It uses a CORBA octet se- 
quence as the payload type and is a common optimization 
over using a CORBA Any. This configuration is similar to 
that used in the TAO Real-Time Event Channel (RTEC). 

6. Configuration 6: This configuration adds support for the event 
pull interfaces to configuration 5 and uses a CORBA Any as 
the payload. 

7. Configuration 7: This configuration enhances configuration 
5 by replacing the simple event type dispatch feature with the 
event correlation feature. In the corresponding application, 
event timestamp information was also needed, but the event 
pull feature was not. 

8. Configuration 8: This configuration represents one of the 
largest realistic configurations of FACET. It supports the pull 
interfaces, uses event correlation, and adds support for statis- 
tics collection and reporting. It uses structured events car- 
rying CORBA Any payloads and headers with all possible 
fields enabled. 

9. Configuration 9: This configuration adds the tracing feature 
to configuration 8. 

10. Configuration 10: This configuration is representative of that 
used in the Boeing Bold Stroke architecture. It includes a 
number of features like type filtering, event correlation, event 
timestamps and the real time dispatcher feature, a feature that 
allows consumers and suppliers to set real-time priorities on 
event delivery. 

6.2 Footprint Measurements 
As shown in Figure 3, the base FACET configuration (config 

1) is 3 times larger when CORBA is present: 166,921 bytes with 
CORBA and 55,250 without. 

At the other extreme, one of the fuller-featured FACET configu- 
rations (config 9) has a size of 475,100 bytes with CORBA and a 
size of 342,226 bytes without — approximately 1.4 times larger for 
CORBA. This is expected since there are a significant number of 
Stub and Skeleton classes that are generated by the IDL compiler, 
which are absent in the no-CORBA case. 

It must be noted that the size of the ORB has not been included 
in this study. It follows that if it were indeed included in these mea- 
surements, there would be an even bigger difference in the footprint 
observed. Generally, in fijll-featured ORBs such as JacORB [3] 
that are not subsettable, the most casual reference to the ORB causes 
the entire ORB to be included in the resulting executable code. 
While ORBs vary in size [9], and some ORBs do offer reduced- 
feature versions, the choice of which features to include or omit is 
not made on an application-specific basis. Conceivably, our AOP 
approach for including features in an event channel could be ex- 
tended to include only those ORB features needed to support a 
given event-channel configuration. 

Figure 3 shows that the disabling of CORBA for the configu- 
rations we considered mostly reduced footprint by about half ^ 
appreciable savings for small embedded systems. 

6.3 Throughput Measurements 
Figure 4 shows the difference in throughput performance with 

and without CORBA. When configured as the standard CORBA 
COS Event Service [22], the throughput with CORBA enabled was 
1651 events/sec as compared with 131,758 events/sec without — 
a difference of 2 orders of magnitude! This can be explained by 
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the fact that the Java ORB, JacORB, does not include optimiza- 
tions for collocated objects which means that the Stubs and Skele- 
tons perform marshalling and communication over network sock- 
ets assuming a truly distributed system. With an ORB such as TAO 
that does include such optimizations, the performance difference is 
likely to be less dramatic but still substantial. 

This level of improvement without CORBA held for all config- 
urations of the event channel that we studied with the exception 
of configurations which included the tracing feature (configs 3 and 
9). The reason for this can be attributed to the enormous amount of 
code weaved in by the AspecU compiler onto all the methods of ev- 
ery class in the event channel, when the tracing feature is enabled. 
The overhead of these extraneous method calls to the log4j [1] 
logging library contribute significantly to performance degradation 
and to the size of the footprint. This observation is consistent with 
findings in a previous study [16]. 

6.4   By-Feature Study 
We next measured footprint and throughput for various configu- 

rations in which only a single feature (and features upon which it 
depends) was enabled at a time. This experiment quantifies the the 
size contribution and throughput degradation of a given feature. 

Figure 5 shows footprint reduction by-feature, with and without 
CORBA. For an embedded system, even modest savings can be 
crucial to a component's cost. 

A much greater impact can be seen as we study performance. As 
shown in Figure 6, the difference for each feature with and without 

n 



soon 

BOOOO 

70000 

1   60000 

£   soooo 

j    40000 

30000 

20000 

10000 

jjH ■ EMMCORBA 

■ OwUcCOFeA 

Figure 5: Impact of different features on footprint 
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CORBA is dramatic. The interesting observation is that no differ- 
ence is observed among the features when CORBA is disabled. An 
explanation for this is that the aggregation of features on the base 
and the overhead associated with die code weaved in by the As- 
pect! compiler is negligible.so that the throughput at this point is 
limited by the operating system and/or hardware. This indicates 
that the throughput performance of the event channel with CORBA 
disabled is at a maximum and is quite unaffected by the feature set 
(again with the exception of the tracing feature). 

It can be argued that a true measure of the average effect of a 
feature on the footprint and throughput of the event channel can 
be obtained by measuring the overhead over the set of all possible 
valid combinations that differ by that one feature [16]. We plan to 
investigate this line of experimentation in future work. However, 
when the number of features is large as is the case iii FACET'S 
current code base, the number of valid combinations make it quite 
impractical to run through each one of them. In such cases, a more 
intelligent method of grouping features is necessary. 

7.    FUTURE WORK AND CONCLUDING RE- 
MARKS 

As embedded software continues to grow more complex and par- 
ticipate even more in distributed systems, the need to use standard 
middleware becomes even more imperative. While frameworks 
such as ACE and TAO do reasonably given the constraints of em- 
bedded systems and meet the needs of existing large-scale embed- 

ded systems, small-scale embedded systems need more and the use 
of AOP does seem promising. 

While significant advances have been made in subsetting middle- 
ware, with a precise control over footprint and feature set, the use 
of transport mechanisms such as CORBA is redundant in scenar- 
ios where objects are collocated and written in the same language. 
Building on known AOP techniques, we have abstracted the trans- 
port layer of the FACET event channel such that use of CORBA 
can be specified at build-time thus providing full-customization of 
an event channel for a particular application. In this paper, we have 
presented the results of the measurement of the impact of CORBA 
on the footprint and throughput of the event channel for popular 
event service configurations presently in use by members of the 
TAO user community. 

As future work, we intend to take the transport layer abstrac- 
tion further and to support other transport mechanisms such as Java 
RMI [27] through encapsulation in a feature. We are also investi- 
gating extending FACET to make real-time guarantees about event 
delivery. And finally, we are studying the design patterns involved 
in building such customizable middleware embedded systems. 
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