
AFRL-VA-WP-TP-2003-312

TRANSPORT LAYER ABSTRACTION
IN EVENT CHANNELS FOR
EMBEDDED SYSTEMS

David Sharp
Edward Pla
Ravi Pratap M
Ron K. Cytron

MAY 2003

I Approved for public release; distribution is unlimited.

©2003 The Boeing Company

This worlc is copyrighted. The United States has for itself and others acting on its
behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other
form of use is subject to copyright restrictions.

AIR VEHICLES DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

20030624 034

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden forlhis collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)

May 2003

2. REPORT TYPE

Conference Paper Preprint

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

TRANSPORT LAYER ABSTRACTION IN EVENT CHANNELS FOR
EMBEDDED SYSTEMS

5a. CONTRACT NUMBER

F33615-00-C-3048
(See block 13)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

69199F

6. AUTHOR(S)

David Sharp and Edward Pla (The Boeing Company)
Ravi Pratap M and Ron K. Cytron (Washington University)

5d. PROJECT NUMBER

ARPF
5e. TASK NUMBER

04
5f. WORK UNIT NUMBER

23
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

The Boeing Company
P.O. Box 516
St. Louis, MO 63166

Washington University
Department of Computer Science and Engineering
St. Louis, MO 63130

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRLA^ACC

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-VA-WP-TP-2003-312

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
© 2003 The Boeing Company. This work is copyrighted. The United States has for itself and others acting on its behalf an
unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions.
To be presented at the Languages, Compilers, and Tools for Embedded Systems Conference, San Diego, CA June 11-13, 2003.
The other two contract numbers on this report are: F33615-00-C-1697 and F33615-97-D-1155.
Although originally created in color, this report was submitted to DTIC in black and white.
U. SSSIRKCT (Maximum 200 Words)
As embedded systems increase in complexity and begin to participate in distributed systems, the need for middleware in the building
such systems becomes imperative. However, the use of middleware that fully implements such standards can impose a significant
increase in footprint for an application, making it unsuitable for use in embedded systems. We consider the use of a standard
CORBA event channel in a setting where distribution and inter-language support are unnecessary. We report our experience in
applying aspects to abstract the transport layer (CORBA) of the event channel into a selectable feature. Thus, enabling or disabling
CORBA for a specific application can be decided at build-time, by merely selecting CORBA as a feature. We describe the patterns
used to achieve this abstraction and present footprint and throughput resuhs showing the effect CORBA on automatically derived
subsets of the event channel.

15. SUBJECT TERMS

Algorithms, Design, Experimentation, Performance, AOP, CORBA, middleware, embedded systems, subsetting, event service,
software composition, transport abstraction

16. SECURITY CLASSIFICATION OF:

a. REPORT

Unclassified
b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

16

19a. NAME OF RESPONSIBLE PERSON (Monitor)

Daniel Schreiter
19b. TELEPHONE NUMBER (Include Area Code)

(937)255-8291
standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Transport Layer Abstraction in Event Channels for
Embedded Systems'

Ravi Pratap M
Department of Computer Science and

Engineering
Washington University
St. Louis, MO 63130

ravip@cse.wustl.edu

Ron K. Cytron
Department of Computer Science and

Engineering
Washington University
St. Louis, 1^0 63130
cytron@acm.org

David Sharp
The Boeing Company

P.O. Box 516
St. Louis, MO 63166

david.sliarp@boeing.com

Edvi^ard Pla
The Boeing Company

P.O. Box 516
St. Louis, MO 63166

edward.pla@boeing.com

ABSTRACT
As embedded systems increase in complexity and begin to partic-
ipate in distributed systems, the need for middleware in building
such systems becomes imperative. However, the use of middle-
ware that fully implements such standards can impose a significant
increase in footprint for an application, making it unsuitable for use
in embedded systems. We consider the use of a standard CORBA
event channel in a setting where distribution and inter-language
support are unnecessary. We report our experience in applying as-
pects to abstract the transport layer (CORBA) of the event channel
into a selectable feature. Thus, enabling or disabling CORBA for a
specific application can be decided at build-time, by merely select-
ing CORBA as a feature. We describe the patterns used to achieve
this abstraction and present footprint and throughput results show-
ing the effect of CORBA on automatically derived subsets of the
event channel.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded systems;
D.l.m [ProgrammingTecliniques]: Miscellaneous

*This work was sponsored by the DARPA Information Exploitation
Office Program Composition for Embedded Software program un-
der contracts F33615-00-C-1697 and F33615-00-C-3048, admin-
istered by the Air Force Research Laboratory (AFRL) Real-Time
Java for Embedded Systems program, Wright-Patterson Air Force
Base (WPAFB), Information Directorate, under contract F336I5-
97-D-1I55.

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
AOP, CORBA, middleware, embedded systems, subsetting, event
service, software composition, transport abstraction

1. INTRODUCTION
Distributed systems have relied on common interfaces to achieve

a high-degree of inter-operability, reliability and reusability. The
emergence of standards such as the Common Object Request Bro-
ker Architecture (CORBA) [20] and DOOM [18] and their wide
spread use in building applications continues to underscore the im-
portance of relying on such interfaces. As embedded systems are
deployed in new scenarios such as distributed systems, the need to
interact with and make use of existing standards is imperative. By
using established communication standards between systems, it is
possible to build effective and reusable embedded system compo-
nents.

An Event Channel is a well-established, standard interface for
decoupling the supplier and consumer of events in a distributed
system [22] [29]. Event Channels can be made customizable us-
ing compositional approaches, such as feature specification using
Aspect-Oriented Programming (AOP) [15] [16]. The footprint
in such cases can be half of that required for a ftill-featured event
channel when measurements exclude the size of the supporting Ob-
ject Request Broker (ORB). However, what is of importance to an
embedded application is the combined footprint of the event chan-
nel as well as the ORB. The footprint of a high-quality Event Ser-
vice implementation such as the ADAPTIVE Communication En-
vironment (ACE) ORB (TAO) Event Service in certain configura-
tions can be quite high mostly due to the size of the ORB [14].
Cleariy, The ACE ORB (TAO)'s footprint is the key concern for
small-footprint event channels which need to be deployed in em-
bedded systems with tight constraints and limited resources. While
efforts are underway to create reduced-feature, small-footprint ORBs
[9], there are compelling applications that do not need one or more
of the following: distribution, inter-language support and real-time

ASC- 03-1194

guarantees.
This paper describes an application of aspect and component ori-

ented programming techniques to an Event Service to concretely
demonstrate and measure its benefits in one particular application.
As such, however, it also provides evidence for the efficacy of ap-
plying these techniques to middleware for the more general class
of distributed Real-Time Embedded Systems (RTES). We report
on the experience of deploying an AOP-customized Event Chan-
nel, where the aspects also govern the use of CORBA and conse-
quently, the inclusion or exclusion of an ORB. The resulting Event
Channel has been used in a Real-Time Specification for Java''*^
(RTSJ) setting for prototyping avionics middleware [26].

Our paper is organized as follows: Section 2 provides a brief
overview of CORBA. Section 3 describes some of the motivation
behind the need for developing flexible middleware. Section 4 de-
scribes current approaches to subsetting middleware such as event
channels. Section 5 describes the architecture of the Framework
for Aspect Composition for an EvenT channel (FACET) that we
have built using AOP techniques and describes the challenges in
abstracting the transport layer and the patterns used to solve them.
Section 6 quantifies the benefits of our approach. Finally, Section 7
describes our planned fijture work applying aspects to flexible mid-
dleware components and services.

2. BACKGROUND
In this section, we give a brief overview of the CORBA refer-

ence model so as to provide a context for the work presented in
subsequent sections.

2.1 Overview of the CORBA ORB Reference
Model

CORBA Object Request Brokers (ORBs) allow clients to invoke
operations on distributed objects without concern for object loca-
tion, programming language, OS platform, communication proto-
cols and interconnects, and hardware [13]. Figure 1 illustrates the
key components in the CORBA reference model [21] that collabo-
rate to provide this degree of portability, interoperability, and trans-
parency. '

CORBA ORBs [20] allow clients to invoke operations on dis-
tributed objects without concern for the following issues:

• Object location: CORBA objects either can be collocated
with the client or distributed on a remote server, without af-
fecting their implementation or use.

• Programming language: The languages supported by CORBA
include 0, C++, Java ^, COBOL, and Smalltalk, among oth-

OS platform: CORBA runs on many OS platforms, including
Win32, UNIX, MVS, and real-time embedded systems like
VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The communi-
cation protocols and interconnects that CORBA run on in-
clude TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Ether-
net, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side effects
stemming from differences in hardware, such as storage lay-
out and data type sizes/ranges.

'This overview only focuses on the CORBA components relevant
to this paper. For a complete synopsis of CORBA's components
see [20].
^Java is a trademark of Sun Microsystems, Inc.

Figure 1 illustrates the components in the CORBA 2.x reference
model, all of which collaborate to provide the portability, interop-
erability and transparency outlined above.

INTERFACE
REPOSITORY

IDL
COMPILER

IMPLEMEKTAnON
REPOSTTORV

CLIENT

In args

operationO
EfJ out args + return value

O

OBJECT
(SERVANT)

'ilNTtRfAfcfe,v

DSI
-iOBjEirr
ACApreR

^P STANDARD INTERFACE \\ ^P STANDARD LANGUAGE MAPPING

^P ORB-SPECIFIC INTERFACE () STANDARD PROTOCOL

Figure 1: Components in tlie CORBA 2.x Reference Model

Each component in the CORBA reference model is outlined be-
low:

• Client: A client is a role that obtains references to objects
and invokes operations on them to perform application tasks.
A client has no knowledge of the implementation of the ob-
ject but does know its logical structure according to its inter-
face. It also doesn't know of the object's location - objects
can be remote or collocated relative to the client. Ideally, a
client can access a remote object just like a local object. Fig-
ure 1 shows how the underlying ORB components described
below transmit remote operation requests transparently from
client to object.

• Object: In CORBA, an object is an instance of an Object
Management Group (OMG) Interface Definition Language
(IDL) interface. Each object is identified by an object ref-
erence, which associates one or more paths through which
a client can access an object on a server. An object ID as-
sociates an object with its implementation, called a servant,
and is unique within the scope of an Object Adapter. Over its
lifetime, an object has one or more servants associated with
it that implement its interface.

• Servant: This component implements the operations defined
by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
structs. A client never interacts with servants directly, but
always through objects identified by object references.

• ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is implemented as a run-time library linked
into client and server applications. For objects executing re-
motely, a CORBA-compliant ORB Core communicates via
a version of the General Inter-ORB Protocol (GIOP), such
as the Internet Inter-ORB Protocol (HOP) that runs atop the
TCP transport protocol.

• ORB Interface: An ORB is an abstraction that can be im-
plemented various ways, e.g., one or more processes or a set
of libraries. To decouple applications from implementation
details, the CORBA specification defines an interface to an
ORB. This ORB interface provides standard operations to
initialize and shut down the ORB, convert object references
to strings and back, and so on.

• IDL Stubs and Skeletons: IDL stubs and skeletons serve as
a "glue" between the client and servants, respectively, and

. the ORB. Stubs implement the Proxy pattern [8] and marshal
application parameters into a common message-level repre-
sentation. Conversely, skeletons implement the Adapter pat-
tern [8] and demarshal the message-level representation back
into typed parameters that are meaningful to an application.

• IDL Compiler: An IDL compiler transforms OMG IDL def-
initions into stubs and skeletons that are generated automati-
cally in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of net-
work programming errors and provide opportunities for au-
tomated compiler optimizations [6].

• Object Adapter: An Object Adapter is a composite com-
ponent that associates servants with objects, creates object
references, demultiplexes incoming requests to servants, and
collaborates with the IDL skeleton to dispatch the appropri-
ate operation upcall on a servant. Even though different types
of Olyect Adapters may be used by an ORB, the only Object
Adapter defined in the CORBA specification is the Portable
Object Adapter (POA).

3. MOTIVATION
One of the special challenges associated with embedded systems

is supporting their great diversity. Even within the very closely
related set of avionics systems associated with the Boeing Bold
Stroke product line software initiative, systems may have anywhere
from one to ten processors, may run on Versa Module Europe (VME)
and/or fiber channel based interconnects, may have one or more
languages, and may run on a range of different operating systems.
When these characteristics are taken together, the simplest deployed
systems are single processor applications written completely in C++
without any interprocess communication, and the most complex
ones are multiple VME backplanes connected by fiber channel,
each with multiple processors, also written entirely in C++. There
are also mixed C++ and Ada-based distributed systems. All of
these are real-world systems, deployed in practice.

Even within a single product, embedded systems often impose
significant resource constraints. Resource constraints may stem
from limitations on size, weight, power, cost, aging hardware or
other factors. Small consumer-devices such as cell phones and
hearing aids emphasize size, weight, power, and cost factors. Larger,
mass-produced systems such as automotive electronics are more fo-
cused on cost. More complex systems such as avionics are expected
to be operational for a long life due to their expense.

Developing a single framework and implementation software that
can be reused across a range of products as in Bold Stroke how-
ever, poses significant additional challenges. A component-based
application architecture was created to provide a configurable and
composable application capability [26]. ACE [24], TAO [4] and
other architecture-specific services were created to provide a stable
foundation for these applications [5]. This middleware foundation
is also highly configurable, but does not provide the same level of

component-based granularity provided in the application. Further-
more, while the extensive use of compiler directives and macros,
for instance, does provide a single code base for reuse across a
wide range of platforms, the necessary scattering and tangling of
the code needed for all of the variants can significantly obscure
the code associated with one particular use. The limitations of this
approach in providing middleware implementations that scale to
meet the required feature set for a particular system without incur-
ring overhead associated with unused features has led to substantial
interest in production programs in component-oriented and aspect-
oriented approaches to middleware.

Colleagues at the University of British Columbia on the Program
Composition for Embedded Software (PCES) program have also
shown how AOP approaches can alleviate some of the configurabil-
ity limitations in the component based application for cases where
customizations are inherently scattered and tangled with the base-
line code.

Real-time developers are typically reluctant to adopt new tech-
nologies — including C, C++, and CORBA — because those tech-
nologies often ignore the needs of real-time systems. The use of
Java in real-time applications is thus relatively new. While the use
of Java as the sole language in large-scale real-time applications is
unlikely in the near-term, efforts such as ours are focused on laying
the foundation for such applications in the future.

4. RELATED WORK
The need to subset (or extend) middleware selectively has ex-

isted for some time. Before the emergence of AOP techniques
to separate concerns, subsetting techniques made use of object-
oriented patterns. In previous work, AOP techniques haVe been
used to demonstrate a high degree of feature control and conse-
quently, footprint management [15] [16] [14]. However, such work
has not concentrated on abstracting the transport layer as a feature
so as to allow an even greater level of customizability for a specific
application. In the following, we provide some background to our
use of AOP in doing transport layer abstraction in FACET.

4.1 Object-Oriented Subsetting Tecliniques
Developing middleware to be flexible in diverse environments

often involves the following process [16]:

1. Building flexibility and extensibility around known variation
points at the beginning.

2. Refactoring functionality out of the core middleware to ex-
tensions and adding flexibility as new features are added and
as the footprint becomes too large.

Unfortunately, the first relies on a designer's ability to precon-
ceive feature extension points. As this is impractical with all but
the smallest frameworks, fimctionality inevitably gets added that
will need to be refactored to extensions later. Quite a few object-
oriented design patterns have been identified that document suc-
cessflil strategies to subsetting middleware. These include pat-
terns such as Strategy [8], Interceptors, Extension Interface, Ser-
vice Configurator and others [25]. Although such patterns have
been used extensively in middleware such as ACE [24] and TAO [4],
these come with some limitations:

1. They require additional infrastructure within the framework
to support their presence. For example. Strategy and Inter-
ceptors require method invocation hooks to be placed at key
locations throughout the code. From a programmer stand-
point, these hooks and the additional infrastructure lessen the
readability and maintainability of the code.

3

2. If the locations where subsetting should have occurred are
not preconceived, time consuming refactoring may be needed
to extract functionality into separate libraries.

3. The hooks and infrastructure themselves can lead to degra-
dations in performance and increase in footprint size if some
or all of them are not used.

4.2 Separation of Concerns using Aspect!
AOP [17] is a software development paradigm that enables one

to separate concerns that crosscut sets of classes and encapsulate
those concerns in self-contained modules called aspects. The As-
pect! [28] programming language adds AOP constructs to Java [2]
and uses the following terminology. Within an aspect, the loca-
tions at which code should be applied are defined wsmg pointcuts.
Each pointcut is made up of one or moKjoinpoints, which are well-
defined points in the execJution of a program. The code applied at a
pointcut is called advice. In addition to applying advice, languages
supporting AOP often allow new methods or other language fea-
tures to be introduced into existing classes. It is also possible to
change the inheritance hierarchy of a class by changing the list of
interfaces it implements or the classes it derives from.

In previous work [15] [16], this powerful, new programming
paradigm has been applied to build software using the composi-
tional approach by building a core of basic fiinctionality and then
codifying all additional features into separate aspects. Since the
transport layer used in the event delivery mechanism is a cross-
cutting concern for the set of classes implementing the fiinctional-
ity of the event channel, it would be possible to abstract this into
a separate aspect such that the inclusion or exclusion of the same
produces an event channel with the desired functionality.

5. IMPLEMENTATION
In this section, we describe our AOP approach for compositional

construction of an event channel. We focus only on the particulars
of our implementation that are relevant to the transport layer and
its abstraction. We omit details concerning other features, perfor-
manceofthosefeatures,andourtestingframework[15] [16] [14].

5.1 Architecture of FACET
FACET is an implementation of a CORBA [20] event channel

that uses AOP to achieve a high level of customizability. Its fiinc-
tionality is based on features found in the OMG Event Service [22],
the OMG Notification Service [19] [11], and the TAO Real-time
Event Service [23] [12].

An event channel is a common middleware framework that de-
couples event suppliers and consumers. The event channel acts as a
mediator through which all events are transported. Figure 2 shows
the main participants in an event-channel framework. At its sim-
plest,

• Suppliers push events to the event channel

• The event channel applies any filtering, correlation or other
specified features to the events

• The event channel pushes appropriate events to consumers.

Event channel implementations differ in the types of events that
they handle and in the processing and forwarding that occurs within
the channel.

FACET is separated into a base and a set of selectable features.
The base represents a fundamental and indivisible level of function-
ality. Each feature adds a structural and/or functional enhancement

Comumir 1 (Conaumar

PrmyPiNhSuppMr ProxyPuahSupplar Pre)ryf*uahSup(>lM

EvmtCharvHri ConawTMrAdmkt

noxyPlMhCofNwrwt PravyPiMhConaunMr

Evyt Ch»nn»l BM« Abtrtitonf/

Figure 2: Main participants in an event cliannel.

to the base. Moreover, a feature can affect the structure and func-
tion of other features. AOP language constructs are then used to
integrate or to weave feature code into the appropriate places in the
base and selected features.

The construction of FACET follows a bottom-up approach in
which features are implemented as needed. As new requirements
are presented, they are decomposed into one or more features. In
the case of FACET, the features of several existing event services
were selected one-by-one for incorporation. By using AOP tech-
niques, the code for each of these features can then be weaved into
the base at the appropriate points.

5.1.0.1 Lackof Transport Abstraction.
FACET was originally designed to use CORBA so that events

can be sent to and received from remote consumers and suppliers.
The advantages of CORBA include the ability to distribute the con-
sumers and suppliers as well as to fashion their implementation for
any language that maps to CORBA (e.g., Java and C++). The lan-
guage independence is obtained by specifying interface definitions
via CORBA's IDL.

However, in certain usage scenarios where distribution and multi-
language support is unnecessary, the use of CORBA becomes un-
necessary. As described in Section 3, there are important examples
of this case. In this situation, the underiying transport mechanism
can be a simple method call, doing away with the need to make use
of an ORB. Indeed, one form of this optimization is routinely used
in the Bold Stroke event service, in the form of the Subscription
and Filtering configuration [12]

Following our compositional approach [15], we sought to pro-
vide a standard interface for the event channel while making the
use of CORBA optional as well. In other words, merely by se-
lecting an EnableCorba or DisableCorba feature (which are mu-
tually exclusive since it would make no sense to enable both) at
build-time, it should be possible to obtain an event channel with
the desired configuration.

In what follows, we describe the challenges in abstracting the
use of CORBA in the event channel and how these were addressed
by the use of AOP.

5.2 CORBA vs No-CORBA
Since FACET was originally designed to use CORBA, its inter-

faces were specified in CORBA IDL and the implementation code
was written in terms of CORBA Stub and Skeleton classes [20].
For instance, the implementation of one method of the Suppli-
erAdmin interface [22] looked like this:

A

public class SupplierAdminlmpl
extends SupplierAdminPOA {

// Field and other method definitions

public ProxyPushConsumer obtain__push_consuiner()

(
ProxyPushConsumerlmpl ppclmpl =

new ProxyPushConsumerlmpl (eventChannel_);

try {

org.omg.CORBA.Object obj =
poa_.servant_to_reference (ppclmpl);

ProxyPushConsumer ppc =
ProxyPushConsumerHelper.narrow(obj);

return ppc;

} catch (Exception se) {
// Appropriate code

return null;

)
}

It is clear from the above that the challenge lies in separating the
concerns related to CORBA"from the actual event channel imple-
mentation code for implementing the various features offered by
an event service (present in various other classes). In the follow-
ing, we present how we solved this problem using what we call the
"Placeholder" pattern.

5.3 Use of the Placeholder pattern
Consider the ProxyPushConsumer interface [22] of the event

channel, when configured to push structured event data. In the case
CORBA is in use, the IDL describing this interface would be :

interface PushConsumer {
void push (in Event data);
void disconnect_push_consumer 0;

};

interface ProxyPushConsumer : PushConsumer {
void
connect_push_supplier (in PushSupplier supplier);

);

The IDL compiler when given the above would generate the
necessary Stub and Skeleton classes [20]. Now to implement the
ProxyPushConsumer interface, the event channel's implemen-
tation would include a ProxyPushConsumerlmpl class with
the following definition:

public class ProxyPushConsumerlmpl
extends ProxyPushConsumerPOA {

// Appropriate implementation

)

However, in the case CORBA is not needed, the interfaces can
directly be specified in Java:

public interface PushConsumer {
public void push (Event data);
public void disconnect_push_consumer 0 ;

}

public interface ProxyPushConsumer
implements PushConsumer {

public void
connect_push_supplier (PushSupplier supplier);

And the corresponding implementation of the ProxyPushCon-
sumer interface would be:

public class ProxyPushConsumerlmpl
implements ProxyPushConsumer {

// Appropriate implementation

}

This idea recurs for all interfaces exposed by the event chan-
nel and is a concern which is independent of the manner of im-
plementation. To address this issue, we make use of what we
call the "Placeholder Class" pattern. This pattern makes use of a
single, empty base class which the implementation class derives
from regardless of whether the event channel is in a CORBA or
no-CORBA configuration. Aspects then modify the placeholder
class definition to derive from the appropriate base class. This is
demonstrated in the following:

public class ProxyPushConsumerlmpl
extends ProxyPushConsumerBase {

// Appropriate implementation

)

aspect EnableCorba {

declare parents :
ProxyPushConsumerBase

extends ProxyPushConsumerPOA;

// other advice

}

aspect DisableCorba {

declare parents :
ProxyPushConsumerBase

implements ProxyPushConsumer;

}
// other advice

In the above, the ProxyPushConsumerBase class is the place-
holder class that the aspects modify as necessary, to either extend
the ProxyPushConsumerPOA class, or implement the Push-
Consumer interface.

With CORBA enabled, it is also necessary to invoke methods on
the POA [20] object to obtain a reference from a Servant [20] ob-
ject. For example, to obtain the ProxyPushConsumer interface
reference from the servant ProxyPushConsumerlmpl object,
the following is necessary:

ProxyPushConsumer ppc =
ProxyPushConsumerHelper.narrow (
poa.servant_to_reference (impl));

However, in the no-CORBA case, to obtain the interface type ref-
erence, the following is sufficient since there are no Servant objects
and the implementation class actually implements the PushCon-
sumer interface directly:

ProxyPushConsumer ppc =
(ProxyPushConsumer) impl ;

To transparently provide the correct implementation based on the
configuration of the event channel {i.e CORBA or no-CORBA) we
make use of what we call the "Placeholder Method" pattern. This
pattern makes use of a single, empty method for each such opera-
tion which is then advised as necessary by aspects. For instance,
the placeholder method in this case would be:

public ProxyPushConsumer
GetProxyPushConsumerReference <ProxyPushConsumerBase impl)

{
// Nothing needs to be done here
return null;

)
with the appropriate code weaved in via around advice (which

is basically an alternate method implementation for the method
that we are wrapping around) from the EnableCorba and DIs-
ableCorba aspects:

aspect EnableCorba {

ProxyPushConsumer around (...) :
GetProxyPushConsumerRef (...)

{
ProxyPushConsumer ppc »

ProxyPushConsumerHelper.narrow (
poa.servant_to_reference (impl));

return ppc;

)
)

aspect DisableCorba {

ProxyPushConsumer around (...) :
GetProxyPushConsumerRef (...)

{
ProxyPushConsumer ppc =

(ProxyPushConsumer) impl;

}
return ppc;

)

The advantage of such an approach is that there are only a small
number of public interfaces for which this has to be done making
it suitable for any application which needs to abstract its use of
CORBA this way.

5.4 IDL Generator and Build Process
When different features are enabled in FACET, the IDL of the

event channel needs to change accordingly to reflect the presence
of those new features, in the case CORBA is enabled (there is no
need to generate IDL when CORBA is disabled). In previous work,
the changes to the IDL of the event channel were conducted by
the use of scripts which makes the changes using primitive text
processing and search-and-replace style techniques [15]. However,
for our purposes, using such a script would entail having to use
different aspects for the cases when CORBA is enabled and when
it is not. From a software engineering standpoint, this would be
very inefficient and greatly reduce the maintainability of the code.

To address this, we chose to investigate a new technique which
involves the generation of the IDL for a given configuration by
reflection on the classes comprising the event channel's interface.
With this, it is only necessary to specify the aspect introductions in
the Java code - the corresponding changes to the IDL happen auto-
matically since the mapping from CORBA to Java is well-known.

The generator is ruri as part of the three-stage build process:

• Aspects that perform introductions are applied to the classes
which form the public interface of the event channel

• The IDL Generator reflects on these classes and generates the
IDL. The IDL compiler is then run to generate the stub and
skeleton classes. In the case CORBA is disabled, this step is
automatically skipped.

• All classes comprising the event channel along with the rel-
evant aspects for the particular feature set are compiled and
the relevant jUnit [7] tests are run [15].

The IDL Generator we have developed is generic in its imple-
mentation and can be used to generate the IDL interfaces corre-
sponding to any set of Java classes. Conceivably, this technique
can be extended to any language which has a strong runtime type
system and allows reflection.

6. EXPERIMENTAL RESULTS
In this section, we present results that we obtained in estimating

the effect that CORBA had on the footprint and throughput perfor-
mance of FACET. To collect such data, a set of popular configura-
tions was identified based on feedback from several developers of
the TAO users community who are using event channels in their ap-
plication development. In addition, to gauge the effect of individual
features on the overall size and performance of the FACET event
channel, each feature was studied by measuring its effect across all
configurations that included or omitted the given feature.

One method to measure the footprint of a Java application is to
sum the size of all the .class files that are loaded. Embedded
systems that use Java interpreters or just-in-time compilers could
use this metric to estimate the amount of RAM needed. Another
method consists of generating native code using a compiler (such as
GCJ [10]) and then measuring the size of the resulting executable.
The compiled code is more suitable for comparisons with C and
C++ code. Moreover, embedded real-time applications are likely
to precompile to native code for execution predictability. An over-
all observation has been that the size of the GCJ produced object
files are generally larger than the corresponding . class files [16].
This is commensurate with the design of . class files to be small
so as to reduce transmission time over networks.

Here, we report results based on .class files that are inter-
preted and executed using the Sun Java Virtual Machine (JVM)
1.4.0 with Just-In-Time compilation enabled. The experiments were
performed on a dual-Xeon processor machine running at 2.40 GHz,
with 512 MB of RAM.

With Java and . class files, the footprint of the running pro-
gram increases as classes are loaded. We report the maximum foot-
print, achieved when all code has been loaded; such measurements
are most appropriate for an embedded system. For a native-code
compiled version, both the footprint and the resulting throughput
are expected to increase.

6.1 Common Configurations
The following are the 10 event channel configurations used in

collecting experimental data:

1. Configuration 1 (Base): Although the applications requested
by developers all required more functionality than the base,
it is useful in that it is a lower bound on the footprint. Note
that all subsequent tests use the full functionality provided
by the base.

2. Configuration 2: Several developers only needed configu-
rations similar to the standard CORBA COS Event Service
specification. This configuration has CORBA Any payloads
and does not support fihering. The pull interfaces were not
included in this configuration since they were not used.

3. Configuration 3: This configuration is the same as the previ-
ous except that the tracing feature is enabled.

4. Configuration 4: Structured events and event sets are en-
abled. This configuration also adds the time to live (TTL)
field processing to eliminate loops created by federating event
channels. This configuration is still minimal, however, and
does not support any kind of event filtering.

(P

5. Configuration 5: This configuration has support for dispatch-
ing events based on event type. It uses a CORBA octet se-
quence as the payload type and is a common optimization
over using a CORBA Any. This configuration is similar to
that used in the TAO Real-Time Event Channel (RTEC).

6. Configuration 6: This configuration adds support for the event
pull interfaces to configuration 5 and uses a CORBA Any as
the payload.

7. Configuration 7: This configuration enhances configuration
5 by replacing the simple event type dispatch feature with the
event correlation feature. In the corresponding application,
event timestamp information was also needed, but the event
pull feature was not.

8. Configuration 8: This configuration represents one of the
largest realistic configurations of FACET. It supports the pull
interfaces, uses event correlation, and adds support for statis-
tics collection and reporting. It uses structured events car-
rying CORBA Any payloads and headers with all possible
fields enabled.

9. Configuration 9: This configuration adds the tracing feature
to configuration 8.

10. Configuration 10: This configuration is representative of that
used in the Boeing Bold Stroke architecture. It includes a
number of features like type filtering, event correlation, event
timestamps and the real time dispatcher feature, a feature that
allows consumers and suppliers to set real-time priorities on
event delivery.

6.2 Footprint Measurements
As shown in Figure 3, the base FACET configuration (config

1) is 3 times larger when CORBA is present: 166,921 bytes with
CORBA and 55,250 without.

At the other extreme, one of the fuller-featured FACET configu-
rations (config 9) has a size of 475,100 bytes with CORBA and a
size of 342,226 bytes without — approximately 1.4 times larger for
CORBA. This is expected since there are a significant number of
Stub and Skeleton classes that are generated by the IDL compiler,
which are absent in the no-CORBA case.

It must be noted that the size of the ORB has not been included
in this study. It follows that if it were indeed included in these mea-
surements, there would be an even bigger difference in the footprint
observed. Generally, in fijll-featured ORBs such as JacORB [3]
that are not subsettable, the most casual reference to the ORB causes
the entire ORB to be included in the resulting executable code.
While ORBs vary in size [9], and some ORBs do offer reduced-
feature versions, the choice of which features to include or omit is
not made on an application-specific basis. Conceivably, our AOP
approach for including features in an event channel could be ex-
tended to include only those ORB features needed to support a
given event-channel configuration.

Figure 3 shows that the disabling of CORBA for the configu-
rations we considered mostly reduced footprint by about half ^
appreciable savings for small embedded systems.

6.3 Throughput Measurements
Figure 4 shows the difference in throughput performance with

and without CORBA. When configured as the standard CORBA
COS Event Service [22], the throughput with CORBA enabled was
1651 events/sec as compared with 131,758 events/sec without —
a difference of 2 orders of magnitude! This can be explained by

500000

450000

400000

3SOO00

! 300000

\ 250000

I 200000

150000

100000

soooo

0
Config Config Config Config Config Config Config Config Config Config
t234S67S9IO

Figure 3: FACET footprint under different configurations

1000

100

10

-^wi:TiSrTKS3*^niterssl

^u-^
'« "i

j|i lEnablaCORBA

IDIs^JeCOBBA

Config Config Config Config Config Config Config Config Config
t234567S9

Figure 4: Throughput under different configurations

the fact that the Java ORB, JacORB, does not include optimiza-
tions for collocated objects which means that the Stubs and Skele-
tons perform marshalling and communication over network sock-
ets assuming a truly distributed system. With an ORB such as TAO
that does include such optimizations, the performance difference is
likely to be less dramatic but still substantial.

This level of improvement without CORBA held for all config-
urations of the event channel that we studied with the exception
of configurations which included the tracing feature (configs 3 and
9). The reason for this can be attributed to the enormous amount of
code weaved in by the AspecU compiler onto all the methods of ev-
ery class in the event channel, when the tracing feature is enabled.
The overhead of these extraneous method calls to the log4j [1]
logging library contribute significantly to performance degradation
and to the size of the footprint. This observation is consistent with
findings in a previous study [16].

6.4 By-Feature Study
We next measured footprint and throughput for various configu-

rations in which only a single feature (and features upon which it
depends) was enabled at a time. This experiment quantifies the the
size contribution and throughput degradation of a given feature.

Figure 5 shows footprint reduction by-feature, with and without
CORBA. For an embedded system, even modest savings can be
crucial to a component's cost.

A much greater impact can be seen as we study performance. As
shown in Figure 6, the difference for each feature with and without

n

soon

BOOOO

70000

1 60000

£ soooo

j 40000

30000

20000

10000

jjH ■ EMMCORBA

■ OwUcCOFeA

Figure 5: Impact of different features on footprint

Figure 6: Impact of different features on tfiroughput

CORBA is dramatic. The interesting observation is that no differ-
ence is observed among the features when CORBA is disabled. An
explanation for this is that the aggregation of features on the base
and the overhead associated with die code weaved in by the As-
pect! compiler is negligible.so that the throughput at this point is
limited by the operating system and/or hardware. This indicates
that the throughput performance of the event channel with CORBA
disabled is at a maximum and is quite unaffected by the feature set
(again with the exception of the tracing feature).

It can be argued that a true measure of the average effect of a
feature on the footprint and throughput of the event channel can
be obtained by measuring the overhead over the set of all possible
valid combinations that differ by that one feature [16]. We plan to
investigate this line of experimentation in future work. However,
when the number of features is large as is the case iii FACET'S
current code base, the number of valid combinations make it quite
impractical to run through each one of them. In such cases, a more
intelligent method of grouping features is necessary.

7. FUTURE WORK AND CONCLUDING RE-
MARKS

As embedded software continues to grow more complex and par-
ticipate even more in distributed systems, the need to use standard
middleware becomes even more imperative. While frameworks
such as ACE and TAO do reasonably given the constraints of em-
bedded systems and meet the needs of existing large-scale embed-

ded systems, small-scale embedded systems need more and the use
of AOP does seem promising.

While significant advances have been made in subsetting middle-
ware, with a precise control over footprint and feature set, the use
of transport mechanisms such as CORBA is redundant in scenar-
ios where objects are collocated and written in the same language.
Building on known AOP techniques, we have abstracted the trans-
port layer of the FACET event channel such that use of CORBA
can be specified at build-time thus providing full-customization of
an event channel for a particular application. In this paper, we have
presented the results of the measurement of the impact of CORBA
on the footprint and throughput of the event channel for popular
event service configurations presently in use by members of the
TAO user community.

As future work, we intend to take the transport layer abstrac-
tion further and to support other transport mechanisms such as Java
RMI [27] through encapsulation in a feature. We are also investi-
gating extending FACET to make real-time guarantees about event
delivery. And finally, we are studying the design patterns involved
in building such customizable middleware embedded systems.

8. ACKNOWLEDGEMENTS
We thank Frank Hunleth for answering a number of questions re-

lated to his original implementation of FACET, Morgan Deters for
providing interesting ideas on the use of aspects and for answer-
ing many questions in that connection, Krishnakumar Balasubra-
manian for general ideas on transport layer abstraction and help
with CORBA, and Anand Krishnan for help with various things
including proofreading draft versions of this paper

9. REFERENCES
[1] Apache Software Foundation. log4j.

http://j akarta.apache.org/log4j/.
[2] Ken Arnold, James Gosling, and David Holmes. The Java

Programming Language. Addison-Wesley, Boston, 2000.
[3] Gerald Brose. JacORB: Implementation and Design of a Java

ORB. In Prvc. DAIS'97, IFIP WG 6.1 International Working
Conference on Distributed Aplications and Interoperable
Systems, pages 143-154, September 1997.

[4] Center for Distributed Object Computing. The ACE ORB
(TAO). www.cs.wustI.edu/~schmidt/TAO.html, Washington
University.

[5] Bryan S. Doerr and David C. Sharp. Freeing Product Line
Architectures from Execution Dependencies. In Proceedings
of the Uth Annual Software Technology Conference, April
1999.

[6] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary
Lindstrom. Flick: A Flexible, Optimizing IDL Compiler. In
Proceedings ofACMSIGPLAN '97 Conference on
Programming Language Design and Implementation (PLDI),
Las Vegas, NV, June 1997. ACM.

[7] Erich Gamma and Kent Beck. JUnit.
www.xProgramming.com/software.htm, 1999.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

[9] Christopher Gill, Venkita Subramonian, Jeff Parsons,
Huang-Ming Huang, Stephen Torn, Doug Niehaus, and
Douglas Stuart. ORB Middleware Evolution for Networked
Embedded Systems. In Proceedings of the 8th International

0

Workshop on Object Oriented Real-time Dependable
Systems (WORDS'03), Guadalajara, Mexico, January 2003.

[10] GNU is Not Unix. GCJ: The GNU Complier for Java.
http://gcc.gnu.org/java, 2002.

[11] Pradeep Gore, Ron K. Cytron, Douglas C. Schmidt, and
Carlos O'Ryan. Designing and Optimizing a Scalable
CORBA Notification Service. In Proceedings of the
Workshop on Optimization of Middleware and Distributed
Systems, pages 196-204, Snowbird, Utah, June 2001. ACM
SIGPLAN.

[12] Timothy H. Harrison, David L. Levine, and Douglas C.
Schmidt. The Design and Performance of a Real-time
CORBA Event Service. In Proceedings ofOOPSLA '97,
pages 184-199, Atlanta, GA, October 1997. ACM.

[13] Michi Henning and Steve Vinoski. Advanced CORBA
Programming with C++. Addison-Wesley, Reading, MA,
1999.

[14] Frank Hunleth. Building customizable middleware using
aspect-oriented programming. Master's thesis, Washington
University in Saint Louis, 2002.

[15] Frank Hunleth, Ron Cytron, and Chris Gill. Building
Customizable Middleware using Aspect Oriented
Programming. In The OOPSLA 2001 Workshop on Advanced
Separation of Concerns in Object-Oriented Systems, Tampa
Bay, FL, October 2001. ACM.
http://www.cs.ubc.ca/~kdvolder/
Workshops/OOPSLA2001/ASoC.htinl.

[16] Frank Hunleth and Ron K. Cytron. Footprint and feature
management using aspect-oriented programming techniques.
In Proceedings of the joint conference on Languages,
compilers and tools for embedded systems, pages 38-45.
ACM Press, 2002.

[17] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-Oriented Programming. In Proceedings
of the 11th European Conference on Object-Oriented
Programming, iunc 1997.

[18] Microsoft Corporation. Distributed Component Object
Model Protocol (DCOM), 1.0 edition, January 1998.

[19] Object Management Group. Notification Service
Specification. Object Management Group, OMG Document
telecom/99-07-01 edition, July 1999.

[20] Object Management Group. The Common Object Request
Broker: Architecture and Specification, 2.4 edition, October
2000.

[21] Object Management Group. The Common Object Request
Broker: Architecture and Specification, Revision 2.6,
December 2001.

[22] OMG. CORBAServices: Common Object Services
Specification, Revised Edition. Object Management Group,
97-12-02 edition, December 1997.

[23] Carlos O'Ryan, Douglas C. Schmidt, and J. Russell
Noseworthy. Patterns and Performance of a CORBA Event
Service for Large-scale Distributed Interactive Simulations.
International Journal of Computer Systems Science and
Engineering, 17(2), March 2002.

[24] Douglas C. Schmidt. The ADAPTIVE Communication
Environment (ACE).
www.cs.wustl.edu/~schmidt/ACE.html, 1997.

[25] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture:

Patterns for Concurrent and Networked Objects, Volume 2.
Wiley & Sons, New York, 2000.

[26] David C. Sharp. Reducing Avionics Software Cost Through
Component Based Product Line Development. In
Proceedings of the 10th Annual Software Technology
Conference, April 1998.

[27] SUN. Java Remote Method Invocation (RMI) Specification.
java.sun.eom/products/jdk/I.2/docs/guide/rmi/spec/
rmiTOC.doc.html, 2002.

[28] The Aspect! Organization. Aspect-Oriented Programming
for Java, www. aspect j . org, 2001.

[29] The Object Management Group. OMG's site for CORBA
and UML Success Stories, www.corba.org/, 1999.

^

