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ABSTRACT 

During the past two years (12/00-3/03), we have developed a very efficient and reliable 
direct numerical simulation (DNS) and large eddy simulation (LES) software (DNSUTA) 
for compressible flow in a curvilinear coordinates which is a continuation of our previous 
effort supported by AFOSR. The software includes a high-quality grid generation code 
which can generate smooth and near-orthogonal, body-fitted grids and a parallel efficient 
flow solver which applies sixth-order compact scheme, eighth-order filter, LU-SGS flow 
solver, non-reflecting boundary condition, high-order weighted compact scheme for 
shock capturing, structure function sub-grid model, and MPI parallel computation. The 
code has been successfully used for prediction of flow transition around flat plate and 
airfoils with various attack angles. The code has also been used for flow separation 
control for low Reynolds airfoils with steady and pulsed blowing jets. All of these 
simulations are real time dependent, 3-D, with general geometry and have demonstrated 
qualitative or quantitative agreement with experiment or theoretical work. We believe the 
topics described above are very challenging and our accomplishment is very significant 
for both basic science and Air Force mission. The high-order weighted compact scheme 
and non-reflecting boundary conditions in a curvilinear coordinate are the original work 
conducted by us which is a significant contribution to the CFD community. 

The code is currently used by NASA Langley for prediction of flow transition and 
turbulence through a technology transfer contract. The code has passed all NASA test 
cases and demonstrated its high accuracy and high reliability. The code and related work 
have been recognized by NASA Langley Researchers as unique in the United States. The 
code also attracts significant interests from US Navy for study of wakes and propeller 
flows. 

Because of the unexpected notice issued by AFOSR that the Optional 2 of our grant will 
not be exercised due to funding restrictions, we lost the optional fund for the third year 
and, therefore, we did not have enough time to complete all of work we proposed. 



Chapter 1 

Introduction 
Turbulent flow prediction and analysis are very important to Air Force missions. There 
are, in general, three ways to conduct turbulent flow prediction - direct numerical 
simulation (DNS), large eddy simulation (LES), and Reynolds averaged Navier-Stokes 
solver (RANS), while the time-dependent Navier-Stokes equations are still widely 
accepted as a governing system for both laminar and turbulent flows. 

The classical averaging method is so-called Reynolds averaging which appeared around 
one hundred years ago and is still widely used by industry. RANS is an economic way to 
simulate turbulent flow assuming a mean flow followed by a perturbation. RANS only 
studies the flow mean value. However, in many important flow-related topics including 
boundary layer receptivity, flow transition, flow separation, wakes, interaction of flow 
separation and wakes, noise generation, vortex dynamics, flow-structure interaction, 
unsteady turbulence, turbulent heat transfer, hypersonic chemically reacting flow, shock- 
turbulent boundary layer interaction, suppression of turbulence, etc., which Air Force is 
highly interested in, only the instantaneous quantities are critical. For these Air Force 
interests, DNS or, at least, LES must be used. Although DNS is very expensive, there is 
still a large demand for developing efficient DNS technology. 

The RANS system is not self-closed and many correlation terms need to be modeled. 
Most popular eddy viscosity models assume Reynolds stress is proportional to strain of 
the mean flow. Unfortunately, modem fluid mechanics study has found there is no such a 
correlation. The interaction between large length scales and small length scales is very 
complicated. Most early turbulence models assume the turbulence is isotropic, an 
assumption that is now understood to be unrealistic especially for wall-bounded flow. 
Some new turbulence models, like Reynolds stress models, have been offered in attempts 
to remove the assumption, but these models introduce higher-order closure problems. 
RANS is currently used widely by industry and is expected to be relied upon until we 
have new reliable and feasible approaches. However, RANS has fundamental limitations 
and deficiencies. Turbulence models are usually empirical and case-related. In general, 
they are good for some cases largely because of adjustment of coefficients, but not 
accurate for other cases. It is really hard or almost impossible to find a universal model 
which can predict well for all flow cases. As pointed out by AGARD-CP-551 at its 
Foreword, "one of the main conclusions was that no one model, or type of model, could 
predict all the test cases to good engineering accuracy. The implication of this result is 
that for certain cases Large Eddy Simulation or Direct Numerical Simulation may be the 
only recourse for obtaining an accurate prediction" (AGARD, 1994). 

Then, we have to look back to the original time-dependent Navier-Stokes equations in 
our search for solutions. This leads us to direct numerical simulation (DNS). DNS is the 
only numerical approach dealing with the exact solution of 3-D time-dependent N-S 
equations without any ad hoc assumption and in which leads all cases to good 
engineering accuracy. However, it is still too expensive if we want to resolve all length 
scales including the Kolmogorov scale especially for high Reynolds number and general 



geometries. We need to refine the grids in certain areas where the small length scale is 
important. More realistic at present time is to look for some compromise which resolves 
most significant large vortex and leave small length scales (smaller than the grid size) for 
modeUng. This will lead to large eddy simulation (LES). In LES, the time- and space- 
dependent large scales will be simulated and models are only needed for scales smaller 
than the grid size. Although the small length scales are more dissipative and easier to 
model, the grid size must be relatively small until the subgird scale is less important in 
LES in order to achieve accurate results. 

DNS for flows with low Reynolds number and simple geometry has been successfully 
performed and it is widely recognized that DNS can help understand flow physics and 
can check and improve turbulence models. The question is whether or not, in any sense, 
DNS can work for real world. The fundamental problem with DNS/LES seems to be 
solved and our experience shows DNS can be used for flow transition and LES can be 
used for fully developed turbulent flow for a spectrum of engineering applications. 

The recent developments in computer performance and numerical algorithms seem to 
bring hope to the DNS/LES community that DNS/LES can in the near future be modified 
for high Reynolds numbers and complex geometries. There are several hopeful signs: 
First, computer capability has increased dramatically every year. The new generation of 
parallel machines with 1000 processors and distributed memory can have Terra-bytes of 
memory. The price of memory has dropped sharply. The problem with computer memory 
requirements seems to be gradually disappearing. The CPU capacity remains a challenge. 
The fastest parallel machine with 1000 processors nowadays can perform over two Terra- 
flop, raising by one order the Reynolds numbers that can be covered. Nowadays, at least 
200 millions of grids can be used for flow simulation on currently available 
supercomputers. More recently, Linux PC-Cluster has been well developed and widely 
used which reduces the computer cost by one order to the range of $20-30k for 16 CPUs, 
which is affordable to most aerospace companies and encourages more scientists and 
engineers to use DNS/LES for flow simulations. Second, DNS for complex geometry is 
feasible. It requires a high-order grid generation, high grid quality and, moreover, high 
order discretization and high order filter for general curvilinear coordinates. A typical 
turbulent flow has a transition process which includes receptivity of environmental 
disturbances, linear growth, nonlinear instability, breakdowns, and transition, eventually, 
to a fully developed turbulent flow. The length scale changes at every stage. In the main 
flow, the length scale can be thought of as 0(1). In general, the receptivity and early 

transition processes are dominated by large scales of the order of 0(Re)~2. At these 
stages the grid size need not to be very small. Probably it is small enough if it can resolve 
the Tollmien-Schlichting waves. Therefore, DNS can be used for main flow and early 
transition stages for some realistic Reynolds numbers and realistic geometries. When the 
flow enters the non-linear transition zone and finally becomes fully developed turbulent 
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flow, the smallest length scale may reach 0(Re)"4. When the Reynolds number is very 
high, we still do not have enough grids to resolve them. We can only resolve those scales 
greater than or equal to the grid size and have to model other flows with high Reynolds 
number and general geometries, DNS/I£S for complex geometry was criticized, but now 
an increasing number of researchers (e.g. Liu, et al, 1994, 1998a, 1998b; Jiang, 1999a, 



2001b; Shan 2000a, 2000b; Visbal et al., 1998; Adams, 2000; Rizzettz et al, 2001; etc.) 
are working on this direction. Nowadays, DNS/LES can capture the major feature of 
transitional and turbulent flow around a 3-D airfoil based on the currently available 
parallel computers. 

Looking around for the trend of CFD, we can find more and more scientists have realized 
the problem with the Reynolds averaging and focused their research on DNS or LES, The 
time has come to orient numerical simulation to the real world. The "real world" for 
flows around flight vehicles has the following features: 

(1) The flow is real-time dependent, 

(2) The vehicles are geometrically very complex, 

(3) The vehicles operate at Mach numbers which range from high subsonic through high 
supersonic, or even hypersonic in the near future, where finite-rate chemical reactions 
must be considered, 

(4) The flow field is a combination of laminar flow, transitional flow, and fully developed 
turbulent flow. 

It is understood that the following challenges for DNS/LES of turbulent flows should be 
met: 

(1) High-order accuracy discretization in both time and space in a curvilinear coordinate. 

(2) High-order shock-capturing for transonic and supersonic flows. 

(3) High-order grid generation and grid mapping for general configurations. 

(4) Very fine resolution for boundary layers, especially the near-wall region, to resolve 
small-scale eddies involved in the transition process and turbulence. 

(5) High-order filters and reliable subgrid scale models. 

(6) High code efficiency to reduce CPU cost to a reasonable level. 

These are very challenging requirements. However, our approach has, in principle, 
provided a solid base to meet the above requirements and is therefore a feasible approach 
to DNS/LES for engineering applications. 

The serious problem is that the small length scales will become important when the flow 
enters the late transition stage (non-linear and breakdown stages). In the case that the 
Reynolds number is high and geometry is complicated where our grid resource still 
cannot provide enough resolution, we can then use LES. Therefore, we can say that 
based on the capability of current available supercomputers, we can use DNS/LES to 

solve turbulent flow in turbomachinery which has a Reynolds number of around 10' . 
The DNS can be also used for 3-D airfoil flow transition for a Reynolds number of 

around 10' -10*. The Reynolds number can be near one order higher if we use subgrid 
models (LES). 

Our work has considered both the basic science advances and the Air Force needs. It is 
therefore anticipated that the success of our NDS/LES code will provide the following 
potential to AFOSR and other federal agencies (NASA, ONR, etc): 



(1) Provide a detailed description of the whole process of boundary layer receptivity, 
flow separation, wakes, interaction of flow separation and wakes, noise generation, 
vortex dynamics, shock-turbulent boundary interaction, suppression of turbulence, flow 
transition and turbulence structure. This will have a notable impact on fundamental fluid 
mechanics. 

(2) Help understand the origin of turbulence such as how the environmental disturbance 
in free stream induces unstable wave modes in boundary layers and what causes the non- 
linear instability and flow breakdown and how the unstable wakes induce the original 
inviscid shear layer instability for airfoils with attack angle (see Jiang et al, 2003). 

(3) Provide a "Computational Wind Tunnel" which can give a full simulation of turbulent 
flow around airfoils for flow transition, separation, and flow control. 

(4) Provide assistance to transition control, drag reduction, noise reduction, and 
improvement of aircraft design. As advances are made in supercomputer performance 
DNS/LES for engineering design will become feasible with more complex geometry and 
high-Reynolds number. It will provide a right answer to flow prediction on drag and heat 
transfer. 

During the past two years, 12/00-3/03, we have successfully developed a very accurate 
and reliable DNS/LES code (DBNSUTA). The code has been successfully used to 
simulate the whole process of flow transition for flat plate and airfoils at both low speed 
(M„ =0.2 for flat plate and airfoils) and high speed (flat plate atM„ =4.5). The DNS 
and LES results have been well documented and validated (see Liu et al, 1991a, 1991b, 
1993, 1994a, 1994b, 1995, 1998a, 1998b; Shan et al, 1999a, 1999b, 1999c, 2000a, 200b; 
Jiang et al, 199a, 199b, 2001a, 2001b, 2003;). 

The code has been validated by the authors in a number of publications and by NASA 
users. NASA Langley personnel (Choudahari et al, 2003a and 2003b) used DNSUTA for 
a number of cases of flow transition including flat plate, swept wing and straight cone 
and found the validation is very satisfactory. The code also attracts significant interests to 
US Navy for study of wakes and propeller flows. As a Navy David Taylor researcher 
points out (personal communication), we have no sense to wait for 5 years for developing 
LES code for general geometry, but not to use 'DNSUTA' to simulate wakes now. 

Recently, Dr. Liu and his colleague have use DNSUTA to successfully simulate the flow 
separation and transition around airfoil NACA0012 with four degree of attack angle and 
Reynolds number of 100,000. They also use DNSUTA for flow control with pulsed and 
screwed blowing jets. These achievements clearly show the purpose of this project has 
been achieved successfully. Unfortunately, we cannot complete all tasks we proposed due 
to the sudden stop of Option 2 fund noticed by AFOSR contracting office. We lost 
Optional 2 fund for the third year and then do not have enough time to complete all work 
we proposed. 



Chapter 2 

Our Technical Approaches 

Our DNS/LES_code adopts state of art approaches including orthogonal grid generation, 
high-order Jacobien in curvilinear coordinates, high-order compact scheme, high-order 
filter (filtering the LES solution at each time step), high-order weighted compact scheme, 
non-reflecting boundary condition, efficient Navier-Stokes solver, effective dynamic sub- 
grid model, and parallel computation. The high-order weighted compact scheme is 
particularly critical, which can capture the shock very accurately and keep high-order for 
smooth areas. The effectiveness of the subgrid model is another critical factor that would 
ensure the accuracy of LES with rather coarse grids. Our work on weighted compact 
scheme and non-reflecting boundary condition in a curvilinear coordinate are original and 
are a significant contribution to the CFD community. 

2.1 Contravariant velocity-based governing equations: 

The   three-dimensional    time-dependent   Navier-Stokes    equations   in   generalized 
curvilinear coordinates (^, rj, ^) can be written in conservative forms: 

1 dQ . a(£-£j,8(F-Fj.8(F-Fj 
- + ■ ■ + ■ ■ + ■ = 0 (2.1) 

J dt 9^ drj 
The vector of conserved quantities 2, inviscid flux vector (E, F,G), and viscous flux 

vector (F^ , F^ , G^ ) are defined via 
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where / =   y"      '.  is Jacobian of the coordinate transformation between the curvilinear 

(I, r], C) and Cartesian {x,y,z) frames, and ^^,^y4zri1x'Vy'Vz^Cx'Cy'C ^^ coordinate 

transformation metrics. The contravariant velocity components C/,F,W are defined as 

1 

f-1    2 
The components of the viscous stress tensor are denoted by T^, T^^ . ^Z^ > ^^Q, . ^«. ^yz • The 

density, velocity components and pressure are defined by /?, u, v, w and p. 

2.2 Orthogonal grid generation and high order Jacobian 

In order to achieve high-order accuracy, say fourth-order or higher, first, a high-order 
description of Jacobian metrics, e.g., ^^, ly^etc. is required. Second, the high quahty of 

grids, i.e. continuity in curvature must be guaranteed. Note that there are several Jacobian 
grid mapping terms, J, ^^,^y ... in our governing equations which need to be evaluated 

by a high-order finite difference scheme to guarantee the accuracy of our high-order 
discretization. As shown by numerical experiment, any discontinuity or disturbance in 
surface curvature will result in a totally different output with same inflow disturbance. 
Accurate LES requires a very smooth gird generation where the second-order derivative 
is continuous and the third-order derivative exists everywhere. Also an orthogonal grid 
especially near the solid surface is preferred. A high-quality elliptic grid generation has 
been carried out for 2-D airfoil and 3-D Delta wing (Shan et al, 2000, Figure 1 and 2). An 
elliptic grid generation method, firet proposed by Spekreijse (1995), is used to construct 
the three-dimensional grids. This method is based on a composite mapping, which 
consists of a nonlinear transfinite algebraic transformation and an elliptic transformation. 
The grids are orthogonal on the delta wing surface. The three-dimensional grid sketch can 
be found in Figure 2 which shows we have generated smooth and near orthogonal high- 
quality grids. 



Figurel. High-quality grids for 2-D airfoil   Figure 2. High-quality grids for 3-D Delta 
wing 

2.3 High-order compact scheme and high-order filter 

The governing equations are discretized in time by implicit method based on second 
order Euler Backward scheme. The sixth-order centered compact difference scheme is 
used for spatial derivatives. High-order compact filter is employed to reduce numerical 
oscillation. 

= 0. (2.2) 

In Eq. (2.1), a second order Euler Backward scheme is used for time derivatives, and the 
fully implicit form of the discretized equations is given by 

36"^'-4Q"+Q"-'     8(£"^'-£f')    8(F''"'-F;^')    a(G""'-Gf')_ 

IJM ^ di ^ dr] ^ V ~^ 

Q"^' is estimated iteratively as: 

2"+' =Q''+SQP 
where. 

At step p = 0,g'' = g"; as SQ''is driven to zero, C approaches <2"*'. The flux vectors 
are linearized as follows: 

F"^' -^F" +B''SQ'' 

So that Eq. (2.2) can be written as: 
"3 
- / + Atj(D^A + D^B + D^c) SQ' R (2.3) 

where R is the residual: 

/? = -^|0''-2Q"+|Q'-'l-Arj[D,{E-£j+D,(F-Fj+Df(G-Gjh2.4) 

D^,D^,D^ represent partial differential operators, and A, B, C are the Jacobian matrices 

of flux vectors: 
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32 36 3e 

The right hand side of Eq. (2.3) is discretized using sixth-order compact scheme (Ixle, 
1992) for spatial derivatives, and the left hand side of the equation will be solved by LU- 
SGS method (Yoon et al, 1992). 

The general form for compact finite difference schemes (Lele, 1992) is given by 

h 

For sixth-order compact scheme: 
(2.5) 

b_ ,a_ =—,a, =—,6, = — 
36 9    *    9^     36 

Because of the use of the central difference scheme, two-point '"saw-tooth" oscillations 
will generally be generated, especially in the low viscous region. Those oscillations can 
induce some spurious non-physical waves. To avoid this phenomenon, we need to use 
high-order (8* or 10* order) filter for the solution, which is a different concept from 
filtering the equation in LES but filtering the solution, at each time step. A compact sixth- 
order filter can be written as follows: 

fi fj-2 + oc fj_, +fj+a }.,, + fi fj,^ = 

deb (2.6) 

where / is filtered, f is the original, and 
5     „    3-2a 2 + 3a     ^    6 + la 6 + a     ^    2-3a ,^^, 

a = —   p = —-—,   a=    ,b = ,   c = ,   d = . (2.7) 
8, 10 4 4 20 40 

2.4 Efflcient Navier-Stok^ Solver 

We use LU-SGS method (Yoon et al, 1992) to solve the Navier-Stokes equations. 
The equation can be written as 

^I + LtJ{D^A + D^B + D^C)]dQ''^R (2.8) 

The right-hand-side of Eq.(2.8) is discretized using the fourth-order compact scheme for 
spatial derivatives. The left-hand-side of Eq.(2.8) is discretized using the LU-SGS 
method. The Jacobian matrices of flux vectors given by Eq.(2.8) are split as: 

A=A^ + A-,    B = B++B-,    C = C++C- 
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where 

A^   =   \{A±rAl\ 

C±   =   \[C±roI\ 

and 
TA = «maa;[|A(A)|] + v 

TB = /£TOaa;[|A(B)|] + v 

re = Kmax[\k{Cf)\] + v 

X(A), XiB), X(C) are eigenvalues of A, B, C. The effects of viscous terms are taken into 
account by adding a constant given by 

V = max\- r—-;i ,—^—■ 
^(7-l)M|J2eFr    3iEe 

The first-order upwind finite difference scheme is used for the split flux terms in the left- 
hand-side of the Eq.(2.8) 

(2.9) 

[-J   +   £^tJ{rA-¥rB + roWQ%,k=in,i,k 

-MJ     [    A-6Qn^^.^,-A^SQU^^, 

Eq.(2.10) is divided into the following three steps and solved by iteration. 

Step 1: 

iQUk = [p + ^tJi^A + TB + ro)I]-^Rlj^k 

step 2: 

step 3: 
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2.5 High-order weighted compact scheme 

In order to capture the shock without eHmination of small vortex which is particularly 
important to DNS for shock-boundary layer interaction, we developed a so-called 'high- 
order weighted compact scheme'. The details will be described in Chapter 3. 

2.6 Non reflecting boundary conditions 

In DNS/LES for compressible flow, especially for complex geometry, the properly 
imposed boundary condition is required to prevent the wave from reflecting at the 
boundary and contaminating the inner region of a computational domain. The 
specification of the outflow boundary conditions becomes one of the major difficulties. 
To avoid reflection of outgoing waves, a buffer domain (Street & Macaraeg, 1989) was 
introduced adding to the original computational domain at the outflow boundary. The 
goveming equations in the buffer domain have been modified by increasing diffusion in 
certain direction. Alternatively, a sponge layer approach has been used by a number of 
authora. Both buffer and sponge zones are capable of absorbing the outward moving 
waves, and have been used in many DNS/LES computations. But these methods have 
some shortages. First, extra sponge or buffer areas have to be added to the original 
domain, which will increase the number of grid points and computational cost. Second, 
the sponge approach can only be applied when the equations of perturbation are 
considered, which may not be applicable when the so-called "base flow" does not exist or 
can hardly be defined. An alternative approach to buffer or sponge method is the non- 
reflecting boundary condition based on the characteristic analysis. The characteristic 
boundary conditions for Euler system can be found in a number of literatures. The 
concept of non-reflecting boundary conditions was proposed by Thompson (1987, 1990), 
where the idea of specifying the boundary conditions according to the inward and 
outward propagating waves has been introduced. Usually the outgoing waves have their 
behavior defined entirely by the solution at and within the boundary, and no boundary 
conditions are needed. Therefore, the number of boundary conditions is equal to the 
number of incoming waves. In Thompson's paper, boundary conditions of Euler 
equations are given for different situations without considering the viscosity effect. The 
characteristic boundary conditions for Euler system cannot be directly used for Navier- 
Stokes equations. Actually, there is no characteristic relation in Navier-Stokes system. 
However, in some circumstances, such as free stream, far field, etc. where the viscosity is 
less important, the characteristic relation can still be used. Poinsot and l^le (1992) have 
extended Thompson's method to specify the boundary conditions for the Navier-Stokes 
equations, where the effect of viscous has been taken into account. However, they only 
give the expression of boundary conditions in the Cartesian coordinates. Based on the 
previous work by the above authors, we have developed non-reflecting boundary 
conditions for compressible flow in curvilinear coordinates (Jiang et al, 1999b). The 
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computation shows our work is completely successful for eliminating non-physical wave 
reflection. Apparently, it is an original work and important to DNS for curvilinear 
coordinates. Based on the characteristic analysis, the hyperbolic terms in ^ direction can 
be modified as: 

dp     ,    ..dp ^    .    du 3v        dw.    „,dp      ,^ du     ^  dv     „ 8w. 

dt drj djj      "^ dTj        drj dg d^      ' d^        B^ 

,     ., du     1      dp    „, du     I ^ dp 

'       BT]    p'^drj       dC    P     dC 

(2.11) 

du 

¥ 
3v ,    ^dv 1      dp ^„ 9v 1 „ 8p 

dt drj p   ^ dtj        dC P     dC 

dw ,     ^dw 1      dp „, 3w 1 „ 9p 

dt BT] p     BT]        d^ P     dC 

OT d?7 d^      ' dr}        drj         dQ              dQ         dC        dC 

where vis, - vi'Sj represent viscous terms in curvilinear coordinates, and 

J-(L,+L,) + L,] 

(^5-A) 

20pc 

iPpc 
1 

^^1. -[I/A-C+IPI-J 

(2.12) 

In (2.12) c is the sound wave speed and P - -Mf+^f+if. 

Lj represent the amplitude variations of the characteristic wanes corresponding to the 
characteristic velocities, which are given by 

where C^ = cfi and 
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pc   e   du dw     dp. A=(f/-c,)[-^(f.^.f,5j.f.||).||] 
2 dp    dp. 

h=Ui-^yj^ + i.^) (2.13) 

These equations will be used for neighbore of boundary points in | direction. The 
equations for 7] and ^ directions are similar. In this way, the non-physical wave 
reflection can be effectively eliminated. 

2.7 Effective sub-grid models (Structure-function subgrid model) 

Since LES only resolved the large length scales but filtered small length scales, to adopt a 
right sub-grid model to represent these filtered small length scales becomes particularly 
important. 

The filtered structure-function model is developed by Ducros et al.(1996). The subgrid 
scale shear stress and heat flux can be modeled as 

'     ' ' " ^ (2.14) T„=/7V^, •+- 
dx^     dx 3 dx„ 

VPV, df 

Pr, ax, 

Here Pr,is the turbulent Prandtl number taken equal to 0.6 as in isotropic turbulence, v,is 
the turbulent kinetic viscosity defined as 

v,ix,t) - 0.0014C;'''A[Ff >(x,0] ll/2 
(2.15) 

where F^'' is the filtered structure function. In the case of flat-plate boundary layer flows 

with meshes  flattened in  the wall-normal  direction,  F^^^ takes  the four-neighbor 
formulation proposed by Normand and Lesieur (1992). 

'(3) 
r-M,J      '*i,J       + f*i-l,j m 

I.J I ^ ||"../+1      "i.J      ^ \f*i,J-l      "-i.j 

where 
uS=HP^'\u,.) 
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A = (A^Ay)"^ is used to characterize the grid size, where Ax and Ay denote the grid size 

in the streamwise direction and spanwise direction, respectively. Cjt is the Kolmogorov 
constant taking the value of 1.4. Hl^^^ is a discrete Laplacian filter iterated 3 times, which 
is served as a high-pass filter before computing the structure function. The firet iteration 
of the Laplacian filter HI^^^ is defined by 

",!? = HP''' (u^) = «,„,,. - 2U.J + M,_,^. + ff,^.„ - 2ff, . + M,,_ 

2.8 MPI parallel computation 

(2.16) 

Message Passing Interface (MPI, e.g., Pacheco, 1994), which is a standard message- 
passing library for writing message-passing style parallel programs, provides us a better 
route to write parallel programs. MPI consists of a small group of functions that are used 
to support communication among processors. A message-passing function is simply a 
function that explicitly controls data transmitting from one processor to the other. 
Because MPI has become a standard library, most existing parallel computers support it. 
Therefore, an MPI programmer has no need to worry about portability. These computers 
for MPI include not only distributed-memory parallel computers but also shared-memory 
parallel computere. Even on workstations, MPI can also be used. This greatly reduces the 
limitation of parallel application in DNS. 

In our previous effort, an MPI parallel code was developed based on our serial code. The 
parallelism of the DNS code is examined. The performance of the parallel program is 
examined for our compressible DNS code on an SGI Origin 2000 computer and the 
results show great computing efficiency of parallel machines with MPI (see Figure 3) 

Total Sme 
Dertvaeh* in ^ direcoon 
Dertvstr^ in n mrecsm 
Dertvahein % direcoofi 

6        8        10      12 
Number o? processors 

£10 

T<Sei time 

Oeriyalyein t direction 
Derivstivein ^ dirsdion 
Dsri¥ffii¥9 in t direction 

6        8       10      12 
Number ol processors 

14      16 

(a) Wall-clock time vs number of processors   (b) Speedup vs number of processors 
Figure 3. Linearly Speed up of MPI Computation 

In order to maintain good balance data must be uniformly distributed among multiple 
processors. Here, because the computation is related to each grid point, how to distribute 
these points among processors, or how to partition the computational domain is very 
important to improve parallelism. Since MPI code is very portable, our LES code can be 
used for any parallel machine including our own machine and DOD supercomputers. 
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Chapter 3 

High-Order Weighted Compact Scheme 

3.1 High-order Compact Scheme 

Recently compact schemes have been widely used in CFD. Standard finite difference 
schemes need to be at least one point wider than the desired approximation order. It is 
difficult to find suitable and stable boundary closure for high order schemes. However, 
the compact scheme can achieve higher order without increasing the stencil width. As 
the compact scheme has an implicit form and involves neighboring grid point derivative 
values, additional free parameters can be used not only to improve the accuracy but also 
to optimize the other properties such as resolution, stability, and conservation, A family 
of centered compact schemes proposed by LeLe(Lele, 1992) have been proved to have 
spectral-like resolution. The conservation property is also important, especially for flow 
with shocks. 

Though the advantages of compact schemes are obvious, there are still difficulties in 
using them to solve problems involving shock waves or discontinuities. When they are 
used to differentiate a discontinuous function, the computed derivative has grid to grid 
oscillation. Recently the ENO (Harten, 1987; Shu, 1988, 1989) and WENO (Liu, 1994; 
Jiang, 1996) schemes have been widely used for shock wave capturing and have been 
proved very successful. These schemes check the smoothness of the candidate stencils. 
The ENO scheme selects the smoothest stencil, while the WENO scheme uses all the 
candidate stencils but with assigned weights. Inspired by the success of the WENO 
scheme, we have developed a new compact scheme (liang et al, 2001a) so that the new 
compact scheme not only preserves the properties of compact schemes but also can be 
used for shock wave capturing. This new scheme preserves the characteristic of standard 
compact schemes achieving high order accuracy and high resolution by a compact stencil. 
The improvement of this new scheme over the standard compact scheme is that it can 
accurately capture shock waves without oscillation. The idea of the Weighted Compact 
Scheme is similar to the WENO scheme (Jiang and Shu 1996). In the WENO scheme, 
each of the candidate stencils is assigned a weight that determines the contribution of this 
stencil to the final approximation of the numerical flux. The weights are defined in such 
a way that in smooth regions it approaches certain optimal weights to achieve a higher 
order of accuracy, while in regions close to discontinuity, the stencils that contain the 
discontinuities are assigned a nearly zero weight. Similarly to this idea, the Weighted 
Compact Scheme is constructed by the combination of the approximations of derivatives 
on candidate stencils. The stencil that contains the discontinuity has less contribution. In 
this way, the oscillation near the discontinuity can be reduced, while the characteristics of 
the compact scheme can still be preserved. The building blocks of the Weighted Compact 
Scheme are the standard compact schemes. The Weighted Compact Scheme is a hybrid 
of different forms of standard schemes. Compared to the WENO scheme, this Weighted 
Compact Scheme can achieve higher order accuracy and higher resolution with the same 
stencil. 
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3.2 High-order Weighted compact scheme 

For simplicity, we consider a uniformly spaced grid where the nodes are indexed by j. 
The independent variable at the nodes is x^ = h{j-1) for \< j<N and the function 

values at the nodes fj = f[xj) are given. The finite difference approximation /' to the 

first derivative of the function / on the nodes can be written in the following general 
form while the standard compact scheme (Lele, 1992) is used. 

p_/;_a+«./;,+/;+a,/;. +p,/;, =| (&_/,.,+«_/,_, +c/,+«,/,„ +&,/,,,) 

(3.1) 
For the point j, we define three candidate stencils containing the point j: 

On each of them we can get a compact scheme. By matching the Taylor series 
coefficients to various orders, the third and fourth order compact schemes corresponding 
to each stencil can be derived. The coefficients are given as follows: 

So:P_=P,   a_=2P + 2,   d_--|p-i,   a_=2p-2,   c = h + -, 

11 3 3 
S, :a_=-,   a^=-,   a_=—    a+=-,   c = 0, 

4 4 4 4 

S^:^,=%   a, =2j3 + 2,   i^ =|p + i     a, =-2P + 2,   c = --P--, 

where P is a free parameter. The coefficients that are not listed are set to zero. The 
schemes corresponding to stencils S^ and S^ are third order one-sided schemes, and the 

scheme coixesponding toS, is a fourth order centered scheme. With these three sets of 
coefficients, we get three different equations from Eq. (3.1). These equations are 
represented by FQ, FJ, F2. When these equations are assigned specific weights and 
combined, a new scheme is obtained: 

F = C,F,+C,F,+C,F, 

where, Q + Q + Q = 1. If the weights are properly chosen, the new scheme can achieve 
a higher order because the additional free parameters are introduced. If we set 

Co = c,=^^, c,=^::^, (3.2) 
°       '     18-24P        '     9-12P ^     ^ 

the new scheme is at least a sixth order centered compact scheme. This process implies 
that this sixth order centered compact scheme can be represented by a combination of 
three lower order schemes. Obviously, the scheme F is a standard compact scheme and 



cannot avoid the oscillation near the discontinuity. Can we define the weights in such a 
way that the scheme has the non-oscillatory property? Then the idea of the WENO 
scheme is introduced to determine the new weight for each stencil. The weights are 
determined according to the smoothness of the function on each stencil. According to the 
WENO method, the new weight % is defined as (Jiang and Shu, 1996): 

%=    2 

h:    ("«')' 
(3.3) 

t=o 

where, e is a positive small number that is used to avoid the denominator becoming zero. 
The smoothness measurement IS^ is defined as following: 

ISo =f (/,-a -2/,.. +/,)^ +^(/,., -4fj_, +3fjf 

^5. =f (/,-. -2fj+U,f+\{fj-r -fjj (3.4) 

IS2 =f (/, -2/,,, + fj,,f +^(/,,, -4/^.,. +3fjf 

In smooth regions, the following forms can be obtained by a Taylor expansion of (4) 

is,=—irh')+-(2fh--rh'] +oih') 0     ^^Kj      ^    4^ ^        3 ) 

/S.=l|(/V) + if2/'^ + ir^0 +Oih') (3.5) 

2     ^^KJ        '    4I    -^ 3-' 

\2 

+ 0(^*) 

If/'9^0, then 

't.\2 

IS,={f'hf 

f % 1 i-'Z fii''\ 

1+ 

1+ 

I3f'^    f 

12/'       3 

^13/'^     f^ 

nf 

'J.\2 IS^=if'h) 
#2 ^""^ 

1 + 13/'^    / 

12/' 

+o(r) 

+ 0(A*) 

+ 0(ft*) 

Through a Taylor expansion, it can be easily proved that the new weight (O^ satisfies 
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tOo=C, 

(0, =C2 

©2 =€3 

1,12/'    3 ) j 
2      ''I'l^'Z /""'^       ^ 

12/' "^"i 
2    z' 

A^ 
/    / 

1- ¥^um 
*2 ^'"'X 

nf 
\ 

J   J 

Obviously, (a^-m^= 0{h^); this ensures that the new scheme 

F = (OQFQ + (0,F, + m^^F^ (3.6) 

still can be of sixth order . If /' = 0, it can also be proved that the new scheme (3.6) is 
of sixth order. The conclusion is that the Weighted Compact Scheme (3.6) can preserve 
the higher order accuracy in the smooth region when the WENO weights are used. 
According to these definitions, in the smooth region the new scheme is nearly a standard 
sixth order centered compact scheme. The non-smooth stencil is assigned a small weight 
so that the non-oscillatory property is achieved. The coefficients of the final Weighted 
Compact Scheme are given as follows: 

3_=P(Oo,   a_ =(23 + 2)0)0+4(0,,   a^=(2P + 2)a)2+4o),,   3^=30)^, 

b = ~¥~W'^   a_=(2P-2K-|o),.   c = ^ip + |jco„-fip + |V,        (3.7) 

a,=(-2P + 2)(0,+^(0„   b,Jh + \ CO, 

If P = 0, the scheme is tridiagonal; otherwise, it is pentadiagonal. The free parameter P 
can be used to optimize the scheme when the properties of high resolution, conservation, 
and stability are concerned. From the above, we can find that the weights play a very 
important role in the Weighted Compact Scheme. They can be used to optimize the 
accuracy. In addition, these weights can make the new scheme non-oscillatory. In this 
proposed project. 

3.3 Computational Results for rectangular grids 

1) Convection Equation 
We first solve the following model equation with different initial functions 

u{xSi) = UQ\X)   periodic with a period of 2 
The initial functions are 

(3.8) 
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(1) u^{x) = sm{mc),        (2) MJ(JC) = sin"(jtx). 

(4)«oW = 
1- 

0- 

10 

13 

1>^ 3 3 
 <;c< — 

10 10. 

otherwise 

(3) Uo{x) = 

(5) uJx) = e 

0 

-300x^ 

— <x< — 
5 5, 

N Li  error       Li order N Li  error       Li order 

Table 1 

20 2.03D-4 20 1.29D-2 
40 3.01D-6 6.07 40 2.11D-4 5.93 
80 4.59D-8 6.04 80 3.15D-6 6.06 
160 6.17D-10 6.23 160 4.32D-8 6.19 

Table 2 

Tables 1 and 2 list the errors and orders of accuracy in the L/ norm between the 
numerical result and the exact solution at time f = 1 for initial functions (1) and (2), 
respectively. N is the number of grid points. High order accuracy for these two smooth 
initial functions has been achieved. 

Figures4-6 illustrate the results at t = 0.5 for initial functions (3), (4), and (5).  Clearly, 
there is no numerical oscillation observed in the region near the discontinuity. 
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Figure 4. The solution at f = 0.5      FigureS.The solution at f = 0.5    Figure 6. The solution at t = 0.5 
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2) Burgers' Equation 

The Weighted Compact Scheme is applied to the nonHnear Burgers' equation. With the 
given initial condition, the exact solution will develop a moving shock wave. 

H,+ 
a     ^ 

0 l<x<l 

u{x,0) = — + sin(roc)   periodic with a period of 2 

Fig.7 (a) and (b) show the wave at different times. The shock appears at r = 0.55 and is 
accurately captured by the scheme. No obvious oscillation is observed. 
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Figure 7. The solution of Burgers' equation at (a)r = 0,3183 and (b)f = 0.55 

3) Euler Equation 

We have applied the scheme to the Euler equation. The equations are: 

U = (p,pu,Ef,   F = \pu,pu  +P,U{E+P)J 

The initial conditions are: 
f(l,0,l) x<0 

"    \(0.125,0,0.1)       x>0 

(3.9) 

The results are shown in Fig. 8. 
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(a) (b) 
Figure 8. The shock wave solutions of Euler equation at r = 2. Number of points = 100, 
From these preliminary applications of the new Weighted Compact Scheme, we can see 
the prospects of this new scheme. When the scheme is optimized for optimal resolution 
and conservation, the shock-capturing property should be much better. 

3.4 Computational results for 2-d curvilinear grids 

For 2-d curvilinear coordinates, several testing cases have been conducted. The results 
show that the Weighted Compacted Scheme we developed (Jiang et al, 2001a) can be 
used for curvilinear coordinate system. The medium distortion of the grid doesn't have 
much effect on the solutions. 

1) Shock-fluctuation interaction problem 
2D Euler equations are solved with the following initial conditions: 
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pre - shock •.x>l M, = -c, sin ^ co%{xk cos 9 + yk sin 0) 

V, = -Cj cos 0cos{xk cos 0 + yk sin 0 

A=l 

2(M^-1) 
posf - sAocA:: jc < 1   «, = 

(r+l)M' 
v,=0 

f+1 

where M=8, which indicates a very strong shock wave. The following Figure 9 show the 
results obtained on different grids. It can be seen that the sharpness of the shock is kept 
very well even the grid is distorted. 
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Figure 9. Comparison between rectangular and curvilinear grids for shock fluctuation 

2) Vortex pairing in a mixing layer 
Vortex pairing process is forced by adding velocity disturbances to the initial mean 

velocity profile with opposite free-stream. 
Mean flow and temperature fields are given by 
u = tanh(2y) 

Disturbances are added as 

u = -A, —4-cos   exp -^ A, -^-^cos   

v' = J4, sin 
ATDC 

\^x J 
exp -y 

B 
+ AjSin 

m exp 
.2^ 

V  5 , 

v4^ 
exp 

f    2^ -y 

I B J 
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where A, = 0.05,   A, = 0.025,   B = 10.   L, = 20,   L^ = 40, Re = 2(X)0,   M = 0.8. 

The following Figure 10 show the appearance of the shock waves and their 
interactions with the vortices. The results show that the position and the shapes of the 
shock waves are not affect by the distortion of the grid. 

h    +    + Grid   +    +    +    +    +    +Voiitici(y    +    +     +    +    ^Pressure    H 

Figure 10. Comparison between rectangular and curvilinear grids for vortex pairing 

Conclusion 

The weighted compact scheme can preserve the high order accuracy in the smooth area 
while has no oscillation for discontinuity (shocks). The scheme works well for both 
rectangular and curvilinear grids. 
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Chapter 4 

DNS for Flow Separation and Transition around Airfoils with Attaclc 
Angles 

Flow transition in separation bubbles is a classic topic and has been studied for many 
yeare (Boiko et al, 2002). However, most of work was focused on flow around a hump 
placed on a flat plate (Musad et al, 1994) or for a blunt leading edge (Yang & Voke, 
2001). Flow separation and transition around an airfoil with attacked angle is rarely found 
in literature due to its complexity. The linear stability theory (LST; see Drazin & Reid, 
1981) is mainly a local analysis with assumption of parallel base flow. The parabolized 
stability equations (PSE; see Bertolotti, 1992) assume a steady base flow with no elliptic 
part. These assumptions do not apply for the case of flow separation and transition 
around airfoil with attack angle where no steady base flow exists and the transition 
process is dominated by an elliptic process especially in the late stages. Though it is true 
that the LST and PSE cannot provide a correct prediction for the case, the Kelvin- 
Helmoholtz instability mechanism in a separated shear layer, which is obtained by 
inviscid stabiUty theory, still dominates in the early transition stage. 

Boundary layer separation and transition exist in many engineering flows around 
wings and blades. When an adverse pressure on a laminar boundary layer over a surface 
is strong enough, the laminar boundary layer separates from the surface. Separation and 
transition in these types of flows are strongly coupled. The instability at the separation 
zone is widely accepted as dedicated by the Kelvin-Helmholtz mechanism. Transition 
takes place owing to nonlinear breakdown of spatially growing traveling waves in the 
separated free shear layer (Yang & Voke, 2001). When the shear layer becomes turbulent, 
the detached shear layer may reattach to the surface, creating a separation bubble and 
forming attached turbulent boundary layer. Obviously, the length of the bubble is closely 
related to when and where the transition takes place. On the other hand, the size of the 
bubble could directly affect the flight characteristics of the airfoil and the efficiency of 
the turbine machine. The flow separation over a wing in flight will cause loss of the lift 
and increase of the drag which threatens the stability and efficiency of the aircraft. 
Understanding the mechanism of the separation and transition is of great importance in 
improving design in aircraft and turbo-machinery. 

With the development of computer resources and efficient numerical methods, high 
resolution and high accuracy direct numerical simulation has been becoming feasible on 
flow separation and transition around airfoil with low Reynolds number. In this work, 
high-accuracy and high-resolution numerical simulations are conducted to investigate the 
details of separation and transition processes on a NACA 0012 airfoil The organization of 
the paper is described as follows. In section 1 and 2, the governing equations and 
numerical methods will be introduced briefly. In section 3, the definition of tiie study 
case and the computational set up will be given. In section 4, the computational results 
will be presented and analyzed. 
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4.1 Governing Equations 

The  three-dimensional   compressible  Navier-Stokes   equations   in   generalized 
curvilinear coordinates (^, rj, ^) are written in conservative forms: 

IdQ JJE-Ej) jiF-Fj) J{F-F,) + - ■ + - + ■ = 0 (4.1) 
J dt di dtj d^ 

The vector of conserved quantities Q, inviscid flux vector (£, F,G), and viscous flux 
vector {E^, F^,GJ) are defined via 

Q = 

fp^ 
pu 

pv 

pw 

KE.J 

,E = 
J 

u         1 / 

Uu + p^^ 

Uv+p^y 

Uw+ p^^ 

,F = 
1 

J 

'{E. + p) J \ 

pv         ) 
( 

pVu + pTJ^ 

pVv + prjy ,G-- 
1 

pVw+prj^ 

V{E, + p) J \ 

pW 

pWu + p^^ 

pWv + p^^ 

pWw + PC^ 

W{E,+p) 

'^-1 

T  B  +T  t   +T  E xx^x yx^y ix^z 

t    E   +T    B    +T   E xy^x yy^y zy^z 

^Jx+^yz^y+'^J, 

{Qx^x+Qyiy+Qj. 

'^- 

0 

T^xxJJx+^yx%+T^z^f?, 

'^xyllx+T^yytly+T^zy^z 

T^xz^lx+'^y^riy+'^Jlz 

Qx^+QyJly+QzTJzJ 

^xxCx+'^yxCy+7^Cz 

^xyCx+'^yyCy+'^zyCz 

^xzCx+^yzCy+r^Cz 

QxCx+QyCy+QzCz^ 

where / =   \ '  '  ^ is Jacobian of the coordinate transformation between the curvilinear 

{i, Tj, C) and Cartesian {x,y,z) frames, and ^^,iy,i^,r}^,Tjy,r}^,C^,Cy,Cz are coordinate 
transformation metrics. The contravariant velocity components U,V,W are defined as 

Qx'Qy^Qz ^^ energy equation are defined as 

Qx^-lx+UT^+VT^+WT^z 

Qy = -Qy + UT^ + VTyy + WT^ n 

Qz -a   +UT    +VT    +WT "z xz yz Zi 

El is the total energy. The components of the viscous stress tensor and heat flux are 

denoted by T^,T^,T^,T^,T^^,T^, and q„q.,q,, respectively. 
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In the dimensionless form, the reference values for length, density, velocities, 
temperature, pressure and time M& L,p^,U^,T^, PrU^, and L/C/, respectively. In this 
study, the free stream parameters are chosen as reference values. The chord length of the 
airfoil is used as the reference length. The dimensionless parameters arise from non- 
dimensional Mach number M,, Reynolds number R^, Prandtl number P^, and the ratio of 

specific heats y, are defined respectively as follows 

U,      _       oM.L   _      C„ju^ C, 
'M-.= -^^=, Re= Pr = -^—, r = 7f > 

where R is the ideal gas constant, C^ and C^ are specific heats at constant pressure and 

constant volume, respectively. Through out this work, Pr = 0.7 andf = 1.4. Viscosity is 
determined according to the Sutherland's law in dimensionless form 

-3/2 

/^ 
(l + S) 110.3^ 

The governing system is closed by the equation of state. 
^^^p = pT 

'     r-1    2^ ' 
The components of the viscous stress tensor and heat flux in non-dimensional form are as 
follows: 

(r-l)M,^ReP, dxi 

4.2 Numerical Methods 

The numerical method used in this study has high order accuracy and high 
resolution. The governing equations are solved using LU-SGS implicit method based on 
second order Euler Backward scheme. The sixth-order centered compact difference 
scheme is used for spatial derivatives. The eighth-order compact filter is employed to 
reduce numerical oscillation. 

In Eq. (1), a second order Euler Backward scheme is used for time derivatives, and 
the fully implicit form of the discretized equations is given by 

3Q"^'-46"+Q"-'     dJE"*'-E^'')    3(F"^'-F;"')    a(G"^'-Gf')_ 

2JAt ^ d§ ^ drj "^ dC       '~^' 
Q"*^ is estimated iteratively as: 

Q"*' =QP+SQ'' 

(4.2) 

where. 

SQ''=Q'''-Q' 
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At step p = 0,Q' = Q"; as <©'' is driven to zero, C approaches 0"**, The flux vectors 
are Unearized as follows: 

So that Eq, (4.2) can be written as: 
3 

• / + Atj(DfA + D^B + DfC) 5Q^=R (4.3) 

where R is the residual 
^3 

R = Q"-IQ"+^Q"-'^ 
\' 

■Afj[D^(F-Fj+D,(F-Fj+Df(G-Gjh4.4) 2~        ^      2 
D^,D^,Dg represent partial differential operators, and A, B, C are the Jacobian matrices 
of flux vectors: 

A.M,   B^iL,   G=^ 
as       ae       BQ 

The right hand side of Eq, (4.3) is discretized using sixth-order compact scheme (Lde, 
1992) for spatial derivatives, and the left hand side of the equation is discretized 
following LU-SGS method (Yoon, et al., 1992) In this method, the Jacobian matrices of 
flux vectora are split as: 

A--A*+A-,    B = B*+B-,    C = C*+C- 
where 

= kA±rjl  B'-=UB±r,ll  C'=^[c±r,l] 

and, 

r^ = K-max|/l(A)|]+ v,   r^ = irmaxj/l(B)|]+ v,   r^ = KmmlA(c}]+ v 

where A.{A), A,{B), A{C) axe eigenvalues of A, B, C respectively, ^is a constant greater 
than 1. F is taken into account for the effects of viscous terms, and the following 
expression is used: 

4M 
V =max /« 

The first-order upwind finite difference scheme is used for the split flux terms on the left 
hand side of Eq. (4.3). This does not affect the accuracy of the scheme when solutions are 
converged. As the left hand side is driven to zero, the discretization error will also be 
driven to zero. The finite difference representation of Eq. (4.3) can be written as: 

+ Mj[A-m.,u -^*«f-u,* +A-mil,j,, -A^m-uj^+A-SQH,^., -A*<©f_,,,J 
= Rt,jj. (4.5) 

In LU-SGS method, Eq. (4.5) is solved with three steps. Firet initialize SQ^ using 
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mj, = -I + Atj{r^+r,+rc)l 
^-l 

Kj,k 

In the second step, the following relation is used: 

^:M=^5,*+ -I + Atj{r^+r^+rc)l 

For the last step, ^'' is obtained by 

■3 
m,>^-^.j. ■/ + ArJ( rA+rB+rc)l 

MA*^-^,J,,+B'SQlJ-u +C-mUJ 

-1 

The sweeping of the computational domain is performed along the planes of 
i + j + k = const, i.e. in the second step, sweeping is from the low-left comer of the grid 
to the upper-right comer, and then vice versa in the third. 

Parallel computation based on Message Passing Interface has been utilized to 
improve the performance of the code. The parallel computation is combined with the 
domain decomposition method. The computational domain is divided into n equal-sized 
sub-domains along | direction which is usually the streamwise direction. The details of 
the numerical methods and parallel computation can be referred to our previous work 
(Jiang, et al, 1999a; Shan, et al, 2001). 

4.3 Problem Definitions and Boundary Conditions 

Numerical simulations are performed on a NACA0012 airfoil at attack angle of 4". 
Free stream velocity !/„, pressure p„, temperature r„ and chord length of the airfoil C 
are selected as reference velocity, pressure, temperature and length respectively, which 
are used to non-dimensional governing equations. The computational domain is plotted in 
Figure 11. The upstream boundary is 3 chord lengths away from the leading edge of the 
airfoil. The upper and lower boundaries are about 4 chord length from the solid surface. 
The outflow boundary is 2 chord lengths downstream of the trailing edge. The airfoil is 
regarded as infinitely long in the spanwise direction. In our simulations, spanwise length 
is set as Ly=0.1C and periodic boundary condition is imposed at the spanwise 
boundaries. 
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Figure 11. Computational domain 

The flow and computational conditions are listed in Table 3. The Reynolds 
Number based on free stream velocity and chord length is^^ =10^ Free stream Mach 

Number is M„ =0.2. The numbers of grid point in ^,;;, f directions are N^ =1200, 

Ny = 32, N^ = 180 respectively. Grid distributions in the (x, z) plane and on the airfoil 

surface are shown in Figure 12. Grids are uniform in the spanwise direction and stretched 
in the wall-normal direction. C-grid is used in the (x, z) plane. The grid sizes in wall unit 
are also listed in Table 3. Parallel computing is based on domain decomposition. The 
computational domain is divided evenly into N sub-domains along ^ direction when N 
processors are used. In this work, 24 processors are used. 

Re=UC/v 

10= 

M„ AOA NxNxN^ 
A y z 

0.2 1200x32x180 

Ax* 

<13 
Ay*        Az* 

<15 <1 

Table 3. Flow and computational conditions 

•   ■      i' ■''■'i"'i' .   I 

\^' 

(a) Grid in (x, z) plane (b) Grid on the airfoil surface 
Figure 12. Grid distribution (one out of three grid point is shown) 
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As the flow is subsonic in free stream, the uniform free stream velocities and 
temperature are prescribed at upstream and far field boundaries. Then density is decided 
by non-reflecting boundary condition developed in our previous work (Jiang, et al, 
1999a). Non-slip, adiabatic boundary condition is used on the surface of the airfoil. Non- 
reflecting boundary condition is applied to the outflow boundary. 

4.4 Results and Analysis 

In this study, simulation is carried out with a time step equal to8.35xlO"^C/£/„. 
The corresponding CFL number is around 400. 2D solutions are used as the initial field. 
The time integration has reached r = 3.474C/£/„ . Mean values are obtained by 

performing averaging in the spanwise direction and in time over a period of 3C/t/„. 

4.4.1 2D instability waves and vortex shedding 

2D instability waves and vortex shedding appear in both 2D and 3D simulations. 
The generation and growing of 2D instability waves is the initial stage of the transition. 
In 2D simulation, because of the lack of 3D motions, we can not see the late stage of 
transition and breakdown. But the 2D simulation can provide us important information on 
how the instability waves develop and grow. 2D simulation starts from a uniform flow 
field. This initial field is not the solution of the governing equations and may bring in 
some disturbances (initial disturbance brought by numerical initial condition). When 
perturbations introduced by the initial field can not dissipate through the time integration, 
they may trigger the most unstable instability waves. This is the reason why we see 
unsteady behaviors in the simulation although all boundary conditions are steady and no 
external disturbances are enforced. Flow separation and vortex shedding appear on the 
suction surface of the airfoil (Figure 13), where a separated mixing layer and vortex 
shedding are clearly demonstrated by plotting contours of instantaneous spanwise 
vorticity. The separation zone can be seen clearly from the time averaged velocity vectors 
shown in Figure 14, but no re-attachment is observed for 2-D simulation (2-D simulation 
cannot represent the real physics). The 2D solutions are well developed and quasi- 
periodic behavior is built up. It can be seen clearly that the boundary layer separates from 
the airfoil surface and develops to unstable shear layer which leads to vortex shedding. 
These large vortex structures travel downstream along the airfoil surface. There is no 
vortex breakdown observed in 2D simulation since breakdown is a 3-D and non-linear 
interaction. This shows 2D direct simulation can only predict the early instability stage, 
but cannot reveal the 3D mechanism of flow transition. 

Figure 13 Contours of spanwise vorticity from 2D solution 
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Figure 14 Time averaged velocity field 

Note that we did not add any disturbance at inflow, there is a question raised what 
kind of disturbance triggers the instability wave inside the separated free shear layer? 
Figure 15 shows time history of fluctuation pressure at different locations. We can see 
that the pressure fluctuating appears first at x/c = 1.048 which is located in the wake 
very close to the traihng edge (we call it 'wake instability'). As we mentioned above that 
the disturbances introduced by initial field may excite the most unstable instability wave. 
However, from the simulation results, we find that large pressure oscillations appear first 
in the wake very close to the trailing edge. It is because wake is generated by a free shear 
layer with inflection points but without solid wall even nearby unlike the boundary layer 
or separated mixing layer, which makes the wake most unstable. The time dependent 
behaviors of streamwise velocity at different streamwise locations are given in Figure 16, 
which also confirms that the wake becomes unstable first. 
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Figure 15. Time history of pressure fluctuation at different locations 
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Figure 16. Time history of streamwise velocity at different locations 

Then disturbances generated in wake near the trailing edge propagate upstream 
through acoustic waves. These upward traveling disturbances could change the pressure 
distribution on the surface. Then, the separation point and the stagnation point become 
unstable (we call it 'stagnation instability*). The disturbances generated at these locations 
convected downstream inside the separated shear layer as vortical disturbances.   The 
shear layer has inflected profile with strong reverse flow which subjects to inviscid shear 
layer instability with much larger growth rate than the viscous counterpart. Figure 17 
shows the profiles for the mean streamwise velocity at different locations.  Some DNS 
results shows that the shear layer has absolute instability when backflows are as high as 
15-20% of external velocity (Yang & Yoke, 2001). From Figure 17 we can see that the 
reverse velocity reaches 8% of freestream velocity at x/C = 0.4, which is a way below 
the absolute instabiHty range, but at this point we still can s^ obvious unsteadiness. The 
disturbances are rapidly amplified in the shear layer and develop to shed vortex structures. 
Many authors  have related this instability mechanism to the Kelvin-Helmoholtz 
instability.   The   condition   for   the   Kelvin-Helmoholtz   instability   to   occur   is 
0<Kh< 1.2785 (Yang & Yoke, 2001) where K is the wave number and h is the shear 
layer thickness. In the present simulation, unsteadiness becomes obvious at about 
x/C = OA, where the shear layer thickness is about h ~ 0,0202C and the wavelength is 

In 
X ~ 0.115C. Then we get Kh = -—h ~ 1.104, which satisfies the criteria for the Kelvin- 

Helmoholtz instability to develop. 
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Figure 17. Mean velocity profiles at different locations 

Figure 18 shows the spectrum of pressure waves at the location close to the wall. 
The spectrum at different streamwise locations from the leading edge to the trailing edge 
shows the strong peak at the frequency around F* =1.4, which is about the vortex 
shedding frequency (vortex shedding frequency is changing from time to time). There is 
a peak at F* = 0.3 which may correspond to so-called low-frequency flapping. As flow 
is subsonic, acoustic waves travel in both upstream and downstream directions. The 
pressure field is dominated by the vortex shedding frequency, which is also the frequency 
of Kelvin-Helmoholtz instability wave. This may provide a clue for flow control that the 
blowing jet for separation control should have same or similar frequency with very little 
mass flow (sharp shape in both time and space). When disturbances grow large, nonlinear 
interactions take place. We can see more high frequencies appear in the spectrum. 
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Figure 18. Power spectral density of pressure at the mid-boundary layer 

4.4.2 Mean flow 

3D solutions are highly unsteady. Mean flow characteristics are analyzed first. 
Figure 19 shows the maximum reverse flow in the wall normal direction along the 
suction surface. The separated zone appears form x/C = 0.19 tox/C = 0.68, where the 
separated laminar boundary evolves into reattached turbulent boundary layer. The reverse 
flow reaches 8% of free stream velocity at about x/C = 0.5. After that the reverse flow 
appears to be much stronger. From velocity vectors, which are plotted in Figure 20, the 
separation zone can be identified clearly, which is mush shorter that the 2D sumulation. 
Reverse flow is very strong near the end of the separation zone. 
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Figure 19. Mean reverse flow distribution on the suction side, U  , = min(H) 
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Figure 20. Mean velocity vector 

Figure 21 shows the mean pressure coefficient. The flattened region indicates the 
separation of the boundary layer. The strong adverse pressure gradient at the fore part of 
the suction surface causes the boundary layer to separate from the surface. In the 
separation zone, adverse pressure gradient is reduced dramatically. Near the end of the 
separation zone, large adverse pressure gradient forms again and leads to a rapid increase 
of reverse flow which is clearly demonstrated in Figure 19. Figure 22 shows the skin 
friction coefficient of the suction surface. The skin friction increases when transition 
happens. The separated shear layer becomes turbulent and reattaches to the airfoil surface, 
forming a closed bubble. As the flow is very unsteady, the shape and the length of the 
bubble are changing in a large scale. The time averaged length of bubble is about 
l^/C = OAS which can be estimated from Figure 19,   After the reattachment, the skin 
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friction coefficient grows rapidly to a high value within a short distance, then stay close 
to that level with some oscillations which are caused by large vortex structures. 
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Figure 21. Mean pressure coefficient       Figure 22. Mean skin friction coefficient 

In this simulation, no external disturbance is introduced, yet we observed growth of 
the disturbance, instability waves and transition. We have discussed in 2D section that 
according to our observation, the acoustic waves generated near the trailing edge travel 
upstream, which could change the pressure distribution on the airfoil surface. The 
stagnation point and the separation point are closely related to pressure distribution and 
can be unsteady if the pressure distribution changes. The disturbances generated at these 
points are convected downstream. The separated shear layer is very unstable. The 
disturbances convected in the shear layer are amplified rapidly. The detached shear layer 
becomes unstable via the Kelvin-Helmholtz mechanism. Figure 23 shows the maximum 
the r.m.s. values of fluctuation velocities across the boundary layer along the surface. The 
growth of disturbances can be seen clearly. Before the separation point Jc/C = 0.19, 
w'and w' are small but not zero, which indicates that small 2D disturbances exist. The 
disturbances inside the boundary layer start to growth before the separation point (viscous 
instability) at around x/C = 0.2. Then the disturbance grows in a much faster rate in the 
separated shear layer corresponding to the inviscid instability at x/C = 0.2-0.4. u' 
increases rapidly at about x/C = 0.4, where the reverse flow reaches 8% of the free 
stream velocity. This strong reverse flow makes the shear layer very unstable and leads to 
the sudden rapid growth of disturbances. Following the sudden growth of u',w', 
spanwise velocity also starts to grow. The velocity fluctuations reach a maximum value 
before the mean reattachment point. The rapid growth of velocity fluctuations indicates 
the appearance of three dimensional motion and nonlinear interaction which leads to 
breakdown to turbulence. After the breakdown, the separated shear layer reattaches on to 
the surface and becomes an attached turbulent boundary layer. 
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Figure 23. Peak r,m.s across the boundary layer 

The mean velocity profiles, the r.m.s fluctuation velocity profiles, and the Reynolds 
stress are depicted in Figure 24 (a) (b) (c) respectively. In the separation zone, mean 
velocity profiles demonstrate inflected shapes. After the reattachment, the boundary layer 
develops to the turbulent velocity profile. The r.m.s fluctuation streamwise velocity 
profiles at different locations are displayed in (b) which clearly shows the maximum 
fluctuation happened in the separated shear layer away from the sohd surface in normal 
direction corresponding to the invisid instability much larger than the viscous instability 
near the solid surface. The firet location (jc/C = 0.2) is very close to the separation point. 
The peak appears at about the center of the boundary layer. At the following two 
locations, the fluctuations grow and two peaks show up. Fromjc/C = 0.5, the fluctuations 
grow rapidly and three peaks are found at some locations. This evolution is related to the 
amplification of the upstream perturbations due to the existence of the inflected velocity 
profile (invisid instability), vortex shedding and prime vortex breakdown. Profiles of 
Reynolds stress are shown in (c). Peak values appear inside the boundary layer. 
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Figure 24 Statistic profiles 

4.4.3 Instantaneous characteristics 

Figure 25 shows contours of the instantaneous spanwise vorticity in the middle (x, z) 
plane. As 3D simulation is started from 2D solutions, the vortex evolution and 
breakdown can be clearly seen from these time sequent pictures. Before 3D flow is fully 
built up, instability waves growing in the shear layer and corresponding to vortex 
shedding can be clearly identified. When run time for 3D simulation is long enough, real 
3D motion is fully developed. Nonlinear interactions of velocity fluctuations become 
very strong and lead to rapid fluctuation growth. Compared with 2D solution in Figure 13, 
organized vortex shedding disappears and vortex breakdown in very short distance in 3D 
simulations. It is also shown that 2-D simulation cannot catch the physics for either the 
flow separation and transition or flow control. The 2-D mechanism is different from the 
3-D mechanism and 3-D simulation has to be conducted for flow separation, transition, 
and control. 
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Figure 25. Instantaneous spanwise vorticity at different time 

The iso-surfaces of instantaneous vorticity in three directions are plotted in Figure 
26. The transition process and breakdown of the rolling-up shear layer are clearly 
demonstrated in (b). The vortex shed from the separated shear layer are distorted while 
traveling downstream. The spanwise vorticity iso-surface becomes rippled when 3D 
vortex appears. Streamwise vortice and wall-normal vortices are shown in (a) and (c) 
respectively. The interactions of 3D structures cause spanwise vorticity iso-surface to 
break into small pieces, indicating the breakdown of vortices. The boundary layer 
becomes fully turbulent after reattaches. During the transition process, the instability 
wave grows rapidly and is companied by the appearance of the three-dimensional 
motions which leads to the breakdown of the boundary layer. 
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(a) streamwise vorticity 
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Figure 26. Iso-surface of instantaneous vorticity 

From the graphic (Figure 26) and movie made with DNS data, we can find the shed 
vortex is quickly deformed and stretched. The core of the prime vortex is faded due to 
dissipation and a negative vortex beside the prime vortex is induced by the prime vortex 
and, eventually, the prime vortex breaks down to small pieced corresponding to transition 
to turbulence. From the 3-D graphic (Figure 26), the vortex structure clearly shows the 
stremwise and spanwise wortex interact and a A- shape vortex develops, rolls up, and 
breaks down. From Figure 26, we can find the streamwise vortex plays a key role in the 
transition process. Whenever the streamwise vortex appears, the vortex rolls up and 
breaks down quickly. There is a remaining question, where is the stremwise vortex from 
since there is no 3-D external perturbation added? The possible way could be 3-D 
acoustic wave from wake (wake instability is 3-D dimensional) or 3-D motion of the shed 
prime vortex. 

Figure 27 shows streamwise evolutions of the vorticity extreme. 0)^,0) ,0)^ denote 

vorticity component in streamwise, spanwise and wall-normal directions respectively. 
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The solid lines correspond to maximum values, the dashed lines to minimum values. 
The streamwise and wall-normal vorticity components remain almost zero up to 
transition. Downstream, the minimum and maximum vorticity oscillates seriously, 
showing a symmetrical pattern. The spanwise vorticity component has large value 
close to the leading edge and remains at a lower level after the separation. Oscillation 
appears when transition starts. 

a 0.0 

Figure 27 Instantaneous extrema of vorticity 

Power spectral density of streamwise velocity at mid-boundary layer is given in 
Figure 28. Peaks at low frequencies located atF* = 1 ~ 2, as we discussed in 2D section, 
correspond to the Kelvin-Helmoltz instability wave and vortex shedding. Stronger peaks 
at higher frequencies appear gradually further downstream as a result of nonlinear 
interactions. During and after the transition, energy peaks appear over a" wide band of 
frequency. 
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Figure 28. Power spectral density of streamwise velocity 

4.5 Conclusion 

Separation and transition process on a NACA 0012 airfoil has been investigated by 
DNS. The following conclusions are drawn based on our observations and results 
analysis. 
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The transition to turbulence on an airfoil with attack angle will reattach the 
separated boundary layer. Though no external disturbances are introduced, the initial 
perturbations may come from the up-ward traveling acoustic waves generated in the wake. 
The wake, which is a free shear layer with invicid instability, is most unstable and 
becomes unstable first. The separation points and the stagnation point are closely related 
to the pressure distribution on the airfoil surface. The upward traveling acoustic waves 
may effect the pressure distribution which further changes the location of separation 
points and stagnation points. This oscillation introduces perturbations inside the boundary 
layer. The perturbations are convected downstream as vortical disturbances. The 
separated shear layer has an inviscid instability and the perturbation will be quickly 
amplified in a rate much higher than the viscous instability. The traveling disturbances 
trigger the instability waves which are identified as Kelvin-Helmholtz instability. The 
appearance of 3D motions of the shed prime vortex, where the stremwise vortex appears, 
and nonlinear interactions of disturbances lead to the sudden growth of disturbances and 
the generation of high frequencies. The breakdown then happens due to the interaction of 
spanwise and streamwise vortices. The shed prime vortex is stretched and deformed, the 
core of the prime vortex is faded, a companion negative vortex is formed, and, eventually, 
the prime vortex breaks down to small pieces. The shear layer becomes turbulence and 
reattaches to the surface. This process is then further sustained by the global feed back 
mechanisms. This analysis leads to the conclusion that reattachment takes place right 
after the transition, which provides a clue for flow separation control. In order to prevent 
separation or reduce separation zone, we can use external disturbance to trigger the early 
transition. When unsteady blowing is used in separation control, the disturbance 
introduced by unsteady blowing will excite the inherent local instability wave and lead to 
early transition to turbulence which will reduce the separation zone by early reattachment 
of the separated shear layer or late separation of the boundary layer. The frequency of the 
unsteady blowing and the length of the blowing hole provide the frequency and wave 
length scale for picking up the instability waves. Therefore, the frequency of the pulsed 
jets should coincide with the frequency of the vortex shedding. 
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Chapter 5 

DNS for Flow Separation Control with Pulsed Jets 

The problem set up is same as in Chapter 4, but blowing jets have been added in the 
forehead of airfoil before the flow separation. 

5.1 Results and Analysis 

To study the separation and transition processes on the airfoil and the effects of 
different types of blowing on separation and transition, we set up four cases: I. Baseline 
case without blowing; II. Pulsed blowing; III. Blowing velocity with 30° pitch angle and 
90° screw angles. 

All simulations are carried out with a time step equal to 8.35xlO"^C/C/„. The 
corresponding CFL number is around 400. 

5.1.1 Flow around the airfoil without blowing (Baseline Case) 

Case I is the baseline case without blowing. 2D solutions are used as the initial field. 
For this case, the time integration has reached t = 3.474C/l/„. Mean values are obtained 

by performing averaging in the spanwise direction and in time over a period of 3CIU„. 
The details of the results have been give in Chapter 4 

5.1.2 Flow around the airfoil with a pulsed blowing jet 

Based on above observations and analysis for baseline case, we set up two cases 
(actually three cases, but the steady blowing has similar results as the pulsed jet with 
more mass flow and, therefore, is not reported here) to investigate how the blowing jet 
(vortex generation jet or VGJ) effects the transition process. All flow parameters and 
geometry are the same as in baseline case except for that blowing is introduced on 
suction side of the airfoil. The unsteady blowing is enforced from x^ =0.153 to 

Xj =0.175, which is before the separation point x^=0.19. The non-dimensional 

frequency of blowing F* =FCIU^ is set to be 2 (we now believe 1.4 is a better choice), 
where C is the chord length and F is the frequency. The blowing velocity has 90° pitch 
angle and 0 screw angle. Fitch angle is defined as the angle the jet makes with the local 
surface and skew angle is defined as the angle of the projection of the jet on the surface 
relative to the local free-stream. With this configuration, the blowing velocity is set in the 
wall-normal direction. The blowing velocity is given as follows, 

w{x,y,t) = A/(x,y)exp[-^(^-l)^] 

where, 
f{x,y) = [0.5-0.5cos(^J]l0.5-0.5cos(^J 
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e. iit^^^ 6^=2. f t-tiT,   T = IIF\   A = 0.4,   k = n 

Shape functions in space and time which are used to define spatial distribution and 
temporal variation of blowing velocity are depicted in Figure 29. k = l2 is used in this 
case. This parameter can be used to control blowing mass. 
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Figure 29. Shape functions in time and space 

The time integration for unsteady blowing case has reached r = 3.73C/£/„. Time 
averaging is performed over four periods of blowing. Mean velocity vectors are shown in 
Figure 31a. It is obvious that large separation zone which is clearly seen in the baseline 
case shown in Figure 17 is dramatically reduced (almost removed). When we look at 
streamwise mean velocity profiles of baseline case (Figure 17 and Figure 31a) and 
blowing case which are shown in Figure 31b, we can find that reverse flow completely 
disappear after x/c = 0.4 and boundary layer becomes attached to the surface afterwards. 

Figure 30. Mean velocity vectors 
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(b) blowing case 
Figure 31 Streamwise mean velocity profiles 

The reduced separation zone can also been seen from Figure 32 in which the 
maximum reverse velocity is depicted against streamwise location. Under the effect of 
blowing, reverse flow happens in very short distance from xlc = 0.2 ~ 0.3 . Compared 
with Figure 19, the reverse flow quickly reaches maximum value which is about 7% of 
free stream velocity. While in the baseline case, the reveree flow velocity gradually 
increases and reach maximum of about 8% free stream velocity. This difference effects 
the growth of disturbances which will be discussed later. The distribution of mean 
pressure coefficient is plotted in Figure 33. As the separation zone is reduced, the 
flattened area no longer exists. Obviously, this pressure coefficient distribution will not 
improve the lift force. Temporal variations of hft and drag coefficients which are 
averaged over spanwise direction are shown in Figure 34. For our case, the reduction of 
the separation zone decreases both drag and lift forces. 
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Figure 33, Mean pressure coefficient 
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Figure 34. Temporal variations of lift and drag coefficients 

The skin friction coefficient distribution on the suction side is shown in Figure 35, 
Figure 36 shows peak r.m.s of velocity fluctuations. In the separation zone, skin friction 
coefficient is negative. At around x/c = 0.4, there is a rapid growth of skin friction, 
indicating the transition to turbulence. As discussed before, there are disturbances coming 
from the leading edge. The rapid growth of streamwise and wall normal velocity 
fluctuations starts after blowing injection point. After a very short distance, they reach a 
steady level. The growth rate of spanwise velocity is more rapid than in baseline case. 
The spanwise velocity fluctuation reaches a stable level around the reattachment point 
x/c = 0.4. In this case, transition takes place in very short distance and disturbance level 
is much lower than in the baseline case. Figure 37 shows the r.m.s streamwise 
fluctuation velocity profiles at different x locations. Inside the separation zone, from 
x/c-0.2~0.4 , peak values can be seen inside the boundary layer, indicating the 
development of the instability waves. After reattachment, this multi-peak profiles no 
longer exist. 
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Figure 35, Skin friction coefficient distribution 
on the suction side 

Figure 36. Peak r.m.s across the 
boundary layer 

Figure 37. r.m.s streamwise fluctuation velocity profiles 

The instantaneous vorticity in span wise directions at different time are plotted in 
Figure 38. The simulation is started from 2D solution as the baseline case. At the early 
stage of simulation, we can see large vortex shedding. The unsteady blowing enforced 
before the separation point triggers the early transition of the boundary layer. The 
boundary layer reattaches shortly after separation and form a short separation zone, 
Reattached boundary layer further becomes fully turbulent. By comparing Figure 25 and 
Figure 37, the separated shear layer can be clearly seen in Figure 24. In Figure 38 the 
boundary layer is disturbed by the blowing and transition takes place much earlier than in 
the non-blowing (baseline) case and the separation zone is significantly reduced. 
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Figure 38. Instanteneous spanwise vorticity at different time 

The iso-surfaces of vorticity components are plotted in Figure 39. The breakdown 
of the separated shear layer and the development of vortex structure can be clearly seen. 
Instantaneous extrema of vorticity components are depicted in Figure 40. Compared to 
Figure 26, in this blowing case, large oscillations of the vorticity components appear 
much earlier than in the base line case, which indicates the early transition. 
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Figure 39. Iso-surfaces of vorticity components 
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Figure 41 shows the spectnim of the streamwise velocity. Strong peaks at the pulsing 
frequency [F* =2) and harmonic multiples can be clearly seen at all locations, which 
mean that the spectrum is dominated by the forcing frequency and its harmonics. 
Comparing with spectrum in baseline case (Figure 18), high frequency peaks appear 
earlier than in baseline case, indicating the early transition. 
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From the simulation results and analysis of this pulsed blowing case, we conclude that 
properly selected unsteady blowing can trigger the early transition through exciting most 
unstable waves and non-linear interactions. In this case, we didn't observe the unstable 
mode picking up mechanism, because transition takes place in very short distance. This 
may be due to the large blowing mass flow which introduces a very large disturbance and 
leads to bypass transition. To discover the unstable mode pick up mechanism, future 
selection of blowing jets should be with small blowing mass flow (very sharp shape in 
time with large k) and with a near vortex shedding frequency. Though the separation zone 
is reduced, both lift and drag are decreased. This shows that the increase of the ratio of lift 
over drag can happen for large attack angle, but not for small attack angles (4° for example 
in our case) although the separation is almost completely removed. Large attack angles for 
low Reynolds number flow may be selected as a target for future study of flow separation 
control where the ratio of lift over drag should be significantly improved. 

5.1.3 The effect of blowing angle 
To study the effect of blowing angle, we setup another case to simulate flow around 

the airfoil with pulsed blowing of 30° pitch angle and 90°screw angle. The flow 
parameters and geometry are the same as the second case, except the blowing velocity 
has a pitch angle of 30°. The vectors of blowing velocity are shown in Figure 42. The 
profile of the blowing velocity in streamwise and spanwise directions are also shown in 
Figure 42. One injection hole is centered at y/c = 0.05 

*e: 
0.6 

n i 

Figure 42. Distribution of blowing velocity 

As the time integration is not long enough for statistic analysis, we only present 
some instantaneous results here. More detailed analysis and comparison with the normal 
blowing case will be given in the future paper or reports. 
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This simulation was started from the solution of the baseline case at t = 2.33C/£/„. 
Figure 43 shows the evolution of instantaneous spanwise vorticity. At the initial stage, 
the separation zone can be clearly identified. When disturbances introduced by the 
blowing enter the separated shear layer, disturbances are amplified when traveling 
downstream. At t = 0.6253C/U„, we can see the rippling of the shear layer and the 
vortex shedding after the rippling. At later stage, the separation zone totally disappeared. 

t=0.2084 t=0.4196 

t=0.6253 «J338 

t=1.0922 t=12506 

t=1.4591 t=1.6675 

Figure 43 Instantaneous spanwise vorticity at different time 

Figure 44 shows the iso-surface of instantaneous vorticity components at 
t = 1.776C/I/„. Although the experiment (Bons et al, 2001) shows the pitched jet will 
obtain a better efficiency due to the un-symmetric vortex structure, no much difference 
from the normal blowing case was found at this simulation stage. This may be caused by 
the large blowing mass flow in both cases where the unstable mode pick up mechanism is 
not found, but bypass transition occurs. The other reason is the length of integration in 
time is not long enough for the statistic analysis. More time integration is needed for the 
pitched jet case. 
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Figure 44, Iso-surface of vorticity components 

5.2 Conclusion 

Separation and transition processes on a NACA 0012 airfoil with or without jet 
blowing on the surface have been investigated. The following conclusions mt drawn 
based on our observations and results analysis. 
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Properly selected unsteady blowing can trigger the early transition through exciting most 
unstable waves and non-linear interactions. In our cases, we didn't observe the unstable 
mode picking up mechanism, because transition takes place in very short distance. This 
may be caused by the large mass flow of the blowing jets which cause the bypass 
transition. Though the separation zone is reduced, both lift and drag are decreased. Future 
work should select the large attack angle, small mass flow with large k in blowing jets, 
and appropriate blowing frequencies corresponding to vortex shedding frequency which 

is around F* = 1.4 in our case. 

The DNS data have been post-processed as a movie which can be obtained by 
sending a request to Dr. Chaoqun Liu at cliu@uta.edu. 
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