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ABSTRACT 
 
 
 

This thesis derives design tools for determining and improving performances of 

communication links that use M-QAM coherent demodulators associated with Viterbi 

soft-decision decoding (SDD) in Additive White Gaussian Noise (AWGN) and 

Nakagami-m channels. Performance analyses for 16-QAM, 64-QAM, QPSK and BPSK 

associated with up to three convolutional codes, includ ing the one used by the IEEE 

802.11a standard and the dual-k code, are presented as practical applications. The main 

tools relate to the analytical derivation of upper bounds of the probability of bit error (Pb) 

for any M-ary coherent demodulator followed by SDD, a methodology for improving an 

upper bound of Pb tightening it to realistic data, and the obtaining of the 

specific ( )dβ spectrum for any convolutional code intended to operate with a certain M-

symbol modulation. All derivations involve statistical considerations over the AWGN 

and Nakagami-m channels, as well as in-depth analyses of modulator constellations. The 

tools and models developed can provide great optimization to bandwidth- limited system 

designs that require high data rates, especially the wireless ones. Consequently, they have 

great application to many fields of digital communications, such as cellular telephony, 

wireless networking, satellite links, ship-to-shore and ship-to-ship communications. 
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EXECUTIVE SUMMARY 
 
 
 

The increasing demand for high data rates in communication systems is forcing 

manufacturers and engineers to design links that will work close to the limit of the 

channel capacity. In other words, links that should operate at the highest data rate 

possible within the expected level of reliability. Within the military context, one possible 

application for these links would be the usage of the high-frequency (HF) spectrum to 

obtain over horizon communications that could reach more than 10 Mbps without 

satellite intermediation. Ships and troops could keep an intranet link operating in HF. On 

the other hand, commercial applications like cellular telephony and wireless networking 

have enormous interest in broadening their data rates consuming the minimum bandwidth 

possible. 

In this scenario, the M-quadrature amplitude modulation (M-QAM), a non-binary 

technique, performs a great role. It demonstrates high efficiency in bandwidth- limited 

systems, but demands high power in order to obtain the required reliability. Due to this 

later characteristic, M-QAM should be always associated with an efficient forward-error 

correcting (FEC) code to operate in an acceptable signal-to-noise ratio (SNR). At this 

point, one class of FEC that demonstrates excellent performance is the convolutional 

codes, especially when the receiver employs the most efficient decoding algorithm 

designed specifically for them, the Viterbi soft-decision decoding (SDD). Certainly, the 

association of M-QAM with SDD will be very important to meet the highest possible 

data rate requirements. 

The presence of M-QAM is more noticeable in wire communications than in 

wireless due to the non-existence of the propagation obstacles, and the possibility of 

placing regenerators in the midway. Those propagation obstacles, such as multipath, 

shadowing and Doppler effect, end up producing fading in the receiver process, which 

decays considerably the SNR for wireless applications. However, the “big boom” of the 

cellular telephony and wireless networking are changing this scenario by forcing high 

data rates and, consequently, pulling M-QAM into the wireless world. As an example, 



 xvi 

most standards for the third-generation cellular system (3G) are being experimentally 

deployed based on M-QAM nowadays. 

Probably, due to being relative new into the wireless environment, the literature 

does not provide analytical models to determine performances of M-QAM with SDD up 

to this point. All analytical analyses involving SDD are done for binary modulation 

techniques, such as binary phase shift keying (BPSK). 

This thesis provides a deeper study in the major concepts involving M-QAM with 

SDD and derives tools for determining and improving performances of such systems. It 

considers the classical process of upper-bounding the probability of bit error for BPSK 

with SDD systems, and extends it, by means of a vector approach, to a generic model of 

non-binary coherent demodulators followed by SDD. Consequently, the model for M-

QAM becomes a trivial special case of the previous generic model. Regarding the 

channel corruption, the models are obtained for the additive white Gaussian noise 

(AWGN) scenario in a first consideration. As a second phase, in order to account for 

fading, the generic and M-QAM models are updated to consider the effects of frequency-

nonselective small fading Nakagami-m channels. 

The models’ derivation resides on considering the worst case sequence of 

symbols being transmitted. However, the probability that all wrong decoded symbols in a 

sequence form a worst case is very small for large M’s. The thesis takes advantage of this 

fact and develops a technique to realistically improve performances for large M’s. As a 

result of such improvements, many upper bounds can be tightened to realistic views of 

the coding potential. 

Another interesting aspect arises when trying to utilize a convolutional code that 

is considered good for BPSK, into a M-QAM channel. Does it obtain good performance 

as well? Can a code perform well for every M-QAM, regardless of M? In order to answer 

those questions, a more intense attention is devoted to the ( )dβ spectrum and the code 

free distance, which are the most important convolutional code parameters responsible 

for determining the code performance. As a result, a numerical method for 

adapting ( )dβ spectrum to be used in a certain M-QAM channel is developed. Actually, 



 xvii 

the method generates different ( )dβ spectra depending on M and based on the code’s 

transfer function matrix. 

As a practical application for all tools and models previously discussed, the thesis 

analyzes and plots the performances of four modulations: 16-QAM, 64-QAM, BPSK and 

QPSK operating in both AWGN and Nakagami fading channels. Each of the modulations 

is associated with the (2, 1) convolutional code used by IEEE 802.11a standard and the 

(2k, k) dual-k code. For the 16-QAM case, an extra code is also used due to 

demonstrating excellent performance with relative low data rate loss. 

Finally, the thesis summarizes some interesting results such as the range of good 

performances for the IEEE 802.11a code as well as its different ( )dβ spectra, validity of 

the improvement technique, formulas for upper bounds of M-QAM with SDD operating 

in either AWGN or Nakagami fading channels, and relative differences in performances 

between fading and non-fading environments. 

The tools here developed can provide great optimization on designs of any M-

QAM link and increase the efficiency of bandwidth- limited systems. Consequently, they 

could be considered extremely worthy for obtaining high data rates in many fields of 

digital communications, especially the wireless ones, such as cellular telephony, wireless 

networking, satellite links, ship-to-shore and ship-to-ship communications, etc. 
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I. INTRODUCTION  

A. BACKGROUND  

As the internet era imposes itself as being an absolute necessity in the modern 

world, it increases the demand on high data rate exchange for all existent digital 

communication systems in order to allow all colors, pictures, audio and video information 

to be transmitted. 

In the wireless world, many systems and standards, originally designed to carry 

just voice channels, which demand a meager 3.3 kHz of bandwidth, are being modified to 

meet the high data rate requirements. New standards are just being created and 

experimentally deployed, such as the third-generation cellular system (3G). This trend 

also reaches the military environment, which seeks the many options to provide high data 

links to mobile units such as ships, aircrafts and troops. Intranet services could be 

provided to an operating unit in a long distance communication by exploiting traditional 

channels formerly used to transmit just voice, such the high-frequency (HF) links. 

In the world of wire communication, the trend for higher data rates is much easier 

to resolve due to the non-existence of fading, i.e., propagation obstacles that 

tremendously affect the wireless performance, such as multipath, shadowing and Doppler 

effect. As an example, a simple wire telephone line can be interfaced by a very affordable 

dial-up V.90 modem and be able to carry around 50 kbps with no changes to the carrier 

company systems [1]. If more bandwidth is needed, a very-high-digital subscriber line 

(VDSL) can provide a pair of wires with up to 51 Mbps downstream. Offices around the 

world are creating a shared information work environment by simply interconnecting 

their computers with local area network (LAN) cables and obtaining 100 Mbps of data 

rate.  

In this meantime, wireless communications was greatly expanded during the last 

decade due to great improvements in quality and affordability of the second-generation 

cellular systems (2G). The code division multiple-access (CDMA) technique was 

developed for 2G and is now regulated by the IS-95 standard, opening a new paradigm on 
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sharing the electromagnetic medium among various users. Nothing would be more 

natural than to expect wireless to provide most of the useful services yet available by 

wire. For that purpose, the communication engineer community is devoting considerable 

efforts to overcome the propagation matters, especially within urban areas. The 

establishment of the IEEE 802.11a standard is a solid result of those efforts. It regulates 

wireless networking and provides data rates up to 54 Mbps when employing 64-QAM 

modulation and the orthogonal frequency-division multiplexing (OFDM) technique [2]. 

The new wireless standards previously cited are based on certain principles for 

maximizing the data rate in restricted bandwidth. One of them concerns the importance of 

utilizing a non-binary modulation technique, called M-QAM, to increase the channel 

capacity. Another concept highlights employing a forward error correction (FEC) coding 

scheme to compensate for the increase of the probability of bit error due to channel 

fading and M-QAM power inefficiency. 

The use of convolutional codes as FEC is known to provide excellent results. 

Additionally, their optimizations occur in the presence of Viterbi soft-decision decoding 

(SDD) [3]. However, the literature does not provide analytical models to determine 

performances of non-binary M-QAM modulations associated with SDD up to this point. 

All analytical analyses involving SDD are done for binary modulation techniques, such 

as binary phase shift keying (BPSK), and at most extended the results to quadrature phase 

shift keying (QPSK), considered as two orthogonal BPSK modulations occur ring at the 

same time. Models to analyze performances of M-QAM with SDD would be very useful 

in the process of providing high data rates for wireless communications, especially for 

systems subjected to severe fading conditions. 

 

B. OBJECTIVE  

The objective of this thesis is to provide design tools and analytical models to 

analyze performances of M-QAM modulations using SDD either in the absence or 

presence of fading conditions. 
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The main developed tools relate to: 

• the analytical derivation of upper bounds for the probability of bit error 
(Pb) when modeling any M-ary coherent demodulator followed by SDD in 
pure AWGN and in Nakagami fading channels, 

• the application of the previous models to obtain formulas for the special 
case of M-QAM modulations, 

• the obtainment of the ( )dβ spectrum for any convolutional code, 

• the necessary adaptation on the ( )dβ spectrum of a certain convolutional 
code originally designed for binary channels,  to be used in non-binary 
channels, 

• a technique that improves the performance analyses of M-QAM channels 
by realistically tightening the upper bounds of Pb, 

• the application of the previous tools for determining performance analyses 
of QPSK, 16-QAM and 64-QAM, as well as BPSK, when using dual-k 
and IEEE 802.11a convolutional codes in AWGN and Nakagami fading 
channels, and 

• an interesting option of convolutional code to associate with 16-QAM. 

 

C. THESIS OUTLINE 

Chapter II can be divided into two parts depending on the levels of information 

provided. The first part, compounded by Sections A, B and C, reviews the fundamentals 

on M-QAM modulation and convolutional codes. Most of the symbology utilized 

throughout the thesis is established there. The general formula for determining the 

probability of bit error associated with the use of FEC is explained together with the 

splitting of this process in two phases. The first looks for the ( )dβ spectrum that is a 

characteristic of the convolutional code, while the second searches for an upper bound for 

the probability of error in the SDD algorithm, 2 ( )P d , applied to a certain modulation 

constellation. The second part of Chapter II includes Section D and is devoted to 

explaining methods for determining the ( )dβ spectrum of any convolutional code. 

Accordingly, an analytical and a numerical methodology are shown together with a 

procedure for adapting ( )dβ spectra of convolutional codes originally designed to operate 

in binary channels, to be used in non-binary channels. At the end of the chapter 
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the ( )dβ spectra of the code employed by the IEEE 802.11a standard are obtained for 

BPSK, QPSK, 16-QAM and 64-QAM as an exemplification of the exposed numerical 

methodology. The correspondent spectra are summarized in a table for quick access. 

In Chapter III, the upper bound of 2 ( )P d for any M-ary coherent demodulator 

followed by a SDD is analytically derived for a pure AWGN scenario. This upper bound 

is further associated with the ( )dβ spectra previously obtained in Chapter II and applied 

in the special case of M-QAM rectangular constellations. The final result is a model for 

determining probabilities of bit error for any M-QAM modulation with SDD subjected 

only to AWGN. Furthermore, a technique that improves the upper bound of 2 ( )P d trying 

to tighten it to realistic data is developed. As a practical application, the performance 

analyses of 16-QAM, 64-QAM, BPSK and QPSK, associated with up to three different 

convolutional codes are shown, in which the dual-k and the IEEE 802.11a code are 

included. The results of an excellent convolutional code to be used only with 16-QAM 

comes out of these analyses, which also take into account the technique of upper bound 

improvements discussed previously. 

Chapter IV discusses the basic concepts of Nakagami fading models and derives 

formulas for uncoded M-QAM in this particular environment. Following the same 

principles applied to the uncoded channels, the model for determining probabilities of bit 

error of non-binary modulations with SDD in AWGN obtained in Chapter III is expanded 

for Nakagami fading channels. The performance analyses of the four modulations in 

Chapter III are now repeated for the new model utilizing four fading figures m : 3, 2, 1 

and 0.5. The codes are the same as before and the technique of upper bound 

improvements is also applied. 

In Chapter V, a summary of the obtained design tools and models is presented 

together with the main results from their application to the specific cases of 16-QAM, 64-

QAM, BPSK and QPSK operating with dual-k and the IEEE 802.11a convolutional 

codes. Also, it suggests the application of the results of this thesis in future work. 

The appendix finally provides an instance of how to apply the analytical method 

to derive a general formula for the ( )dβ spectra of dual-k convolutional codes. 
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II. M-QAM WITH CONVOLUTIONAL CODES  

Convolutional codes are not easy to study unless all the basic concepts involving 

them, as well as the systems that surround them, are very well understood. This chapter 

recalls the fundamentals on M-QAM modulation, convolutional codes, and probability of 

bit errors.  All these concepts will be extensively used throughout the thesis. The chapter 

also discusses in greater detail an important parameter of convolutional codes for 

determining performances: the ( )dβ spectrum. It demonstrates how to overcome some 

practical problems involving ( )dβ spectra, such as how to determine and adapt them to 

different modulations. 

 

A. M-QAM  

M-ary Quadrature Amplitude Modulation (M-QAM) is a non-binary memoryless 

modulation technique in which one of M different symbols is transmitted per time using 

two orthogonal carriers (in quadrature). Each symbol is composed of q bits. The 

following formulas apply: 

 1 1 2 2( ) ( ) ( )s t A t A t= Ψ + Ψ , (2.1) 

 2logq M= , (2.2) 

where 

1

2 / cos(2 ) , for 0 t
( )

0, otherwise
S c ST f t T

t
π ≤ ≤

Ψ = 


  

2

2 / sin(2 ) , for 0 t
( )

0, otherwise,
S c ST f t T

t
π− ≤ ≤

Ψ = 


 

in which Ts represents one symbol’s transmission time interval, fc is the carrier frequency, 

and A1, as well as A2, are the orthogonal carrier coefficients. 

The main advantage to using M-QAM is the gain in bit rate it provides. Notice 

that in the interval Ts, q bits are transmitted simultaneously and are embedded in only one 
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analog carrier. The final effect is an increasing of q times in the bit rate for M-QAM 

when compared with a binary modulation technique such as binary phase shift keying 

(BPSK). In other words, it increases the digital bit rate that can be transmitted within a 

limited bandwidth channel. One popular application of M-QAM is computer modems 

used for dial-up connections when the user wants to maximize the communication bit rate 

over a restricted 3.3 kHz voice channel. 

This advantage does not come without a price, which is the increasing of the 

probability of bit error (Pb) at a certain signal- to-noise-ratio (SNR) in the channel when 

using M-QAM instead of a binary modulation. The larger the M, the worse the Pb will be 

for the same SNR. In the end, the simplest way to keep Pb at an adequate level required 

by the communication link is to add more power to the transmitted signal. The final result 

will be the enhancement of the SNR. Another factor to consider is the relative complexity 

of the transceivers that also grow proportionally with M. 

The M-QAM is completely defined by its constellation, which graphically 

represents the M possible symbols as dots on a Cartesian plot. The coordinates (x, y) of 

each constellation dot are the coefficients A1 and A2 of the correspondent symbol and are 

addressed by Equation (2.1). A popular constellation is one that is rectangular in shape, 

shown in Figure 2.1 for M equal to 16. This type is used by 2,400-bits/s V.22 bis 

computer modems [1]. 

 

 

 

 

 

 

 

 

Figure 2.1. The 16-QAM Rectangular Constellation [After Ref. 1]  

Ψ1(t) 

Ψ2(t) 
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Even though all the concepts developed in this thesis are generic and could be 

applied to any M-QAM, a numerical focus will be given to four particular M's: 2, 4, 16 

and 64. These values have vast applications in numerous communication systems and 

define the BPSK, QPSK, 16-QAM and 64-QAM modulations, respectively. 

 

B. CONVOLUTIONAL CODES  

Another way to overcome the increasing of Pb for a certain SNR when using M-

QAM is to codify the information bits to be transmitted (channel coding) in such a way 

that only a small set of all possible received bit sequences are considered valid.  The 

receipt of one invalid sequence indicates that an error has occurred in the channel. The 

decoder will then determine the closest valid sequence matching the received sequence 

and declare this valid sequence as the original sent instead of the one received. This 

process of encoding and decoding the information bits is called forward error correction 

(FEC) technique [1]. 

A special type of FEC commonly associated with M-QAM is one that combines 

previous input bits, stored in a memory, with the actual bits at the encoder input to 

generate the coded output bit sequence. Since new input bits constantly replace 

previously stored bits in a linear shift-register manner, the final result is a convolution 

operation between the input bit stream and a certain built- in function. This type of FEC is 

known as convolutional code. 

A convolutional code can be precisely described by some parameters. The main 

parameters are briefly depicted below but only in order to review basic concepts on the 

subject to be used throughout this thesis. Extensive detailed explanations are found in the 

reference literature. 
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1. Code Rate (Rc) and Constraint Length (K) 

 

A (n, k) convolutional code causes the input bits to the encoder to be shifted into 

and along the shift register k bits at a time. The number of output bits for each k-bit input 

sequence is n bits [3]. Consequently, the code rate is defined by the formula 

 /CR k n= . (2.3) 

Notice that n is always greater than k causing Rc to be less than 1. Typical values for Rc 

are between 1/4 and 7/8. Since Rc is less than 1, it can be seen that the use of 

convolutional code reduces the final maximum bit rate capable of being transmitted in a 

bandpass communication channel. Also, notice that a small value for the code rate Rc 

indicates a high degree of redundancy, which should provide more effective error control 

at the expense of increasing the bandwidth of the encoded signal [1]. 

The convolutional encoder memory consists of a shift register with K (k-bit) 

stages and n linear algebraic function generators (modulo-2 adders). The parameter K is 

called the constraint length of the convolution code [3]. Therefore, each one of the n 

output bits is affected by K sets of k input bits. 

 

2. Generator Polynomials and Transfer-Function Matrix 

 

A convenient way to represent the k-bit inputs and n-bit outputs along time is 

through polynomials in D, where the indeterminate D is interpreted as a delay operator. 

Each of the n modulo-2 adders is connected to the various shift register stages and is 

responsible for the generation of one of the n output bits. Consequently, it is possible to 

imagine a certain set of generator polynomials ( ) ( )j
iG D , organized in a matrix template, 

when multiplied by a polynomial representing the k-bit input, X(D), will lead to another 

polynomial representing the n-bit output, Y(D). The mathematical representation follows. 

 ( ) ( ) ( )Y D X D G D= , (2.4) 
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where 

(0) (1) ( 1)( ) ( ) ... ( )nY(D) Y D Y D Y D− =   , 

(0) (1) ( 1)( ) ( ) ... ( )kX(D) X D X D X D− =   , 

and 

(0) (1) ( 1)
0 0 0

(0) (1) ( 1)
1 1 1

(0) (1) ( 1)
1 1 1

( ) ( ) ... ( )

( ) ( ) ... ( )
... ... ... ...

( ) ( ) ... ( )

n

n

n
k k k

G D G D G D

G D G D G D
G(D)

G D G D G D

−

−

−
− − −

 
 
 =  
 
  

. 

The matrix G(D) is called the transfer-function matrix for the encoder [4].  The 

various generator polynomials ( ) ( )j
iG D  that compound G(D) are usually represented by 

their coefficients expressed in octal base. For example, (14)8 means (001 100)2 and would 

represent ( )( ) 3 2j
iG D D D= + . 

 

3. Trellis Diagram, Coded Symbols and Hamming Distance 

 

A very compact and convenient way to represent graphically all possible 

convolutional code outputs as a function of their inputs is by means of a trellis diagram.  

Each branch in the trellis expresses not only the n-bit output associated with the k-bit 

input, but also graphically indicates the correspondent encoder's internal state change. 

The set of successive branches defines a sequence of outputs also known as a path of 

code words. 

Figure 2.2 shows the n-bit output of the convolutional encoder feeding an M-

QAM modulator that accepts q bits per time. Considering n > q, those n-bits in N sets of 

q-bits can be grouped, where q is given by Equation (2.2) and N is essentially an integer 

number. On the other hand, if n ≤  q, N sets of n bits will be necessary to make a group of 

q bits. In both cases, the q bits are the ones that travel simultaneously through the channel 
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in the form of a symbol, which is called a coded symbol. Therefore, each branch in the 

trellis can either represent N coded symbols (n > q) or only 1 coded symbol (n ≤ q), 

depending on the situation. Furthermore, any path in the trellis, since it is composed of 

various branches, embraces many coded symbols. 

 

 

 

 

 

 

 

Figure 2.2. Block Diagram of a M-QAM Modulator Using a Convolutional Encoder 

 

The Hamming distance or simply distance between two paths y' and y'' in the 

trellis, represented by d(y',y''), is the number of coded symbols in which the two paths 

differ [4]. 

 

4. All-Zero Path, Minimum Free Distance (dfree) and Transfer Function 

 

A convolutional encoder usually starts operating with its internal shift register 

completely cleared, i.e., in the all-zero state. In this state, its response to an all-zero input 

will always be an all-zero output. In other words, the encoder will remain in the all-zero 

state forever until a non-zero input occurs. The all-zero path is the horizontal line 

connecting all zero-state-dots (S0) in the trellis diagram. It expresses the correct decision 

that a decoder should make when the transmission consists of a zero- information 

sequence. This is very useful in determining convolutional code performances. The 

method consists of constantly sending a zero- information sequence. In case a channel 

M-QAM 

Conv. 
Encoder 

Coded 
Symbol 
(q bits) 

Coded Bit 
Sequence 

(n-bit stream) 

q-bit Shift 
Register 

Information 
Symbol 

(k-bit stream) 

... 
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error occurs, the probabilities and possibilities on the behavior of the decoder algorithm 

can be estimated by studying the paths that could leave and merge at the all-zero path. 

The minimum free distance, denoted dfree, is the minimum Hamming distance 

between all pairs of paths that start and stop at S0 [4]. The larger dfree, the greater the 

possibility of correcting eventual channel errors. Usually the increase of dfree is 

accompanied by an increase in the constraint length for the same code rate, which will 

result in enhancing the encoder complexity. One of the goals of achieving a good 

convolutional code is to obtain the largest dfree for a same constraint length and same code 

rate. 

Another useful resource for studying convolutional codes that will be referenced 

later in this thesis is the transfer function. Basically, it shows a mathematical expression 

that reports to the contribution of all paths that necessarily leave and arrive at the state 

S0. The expression below is an example [3] of a transfer function for a convolutional code 

with 1 / 3CR = and 3K = , 

 
6

2( , )
1 2

N D
T D N

N D
=

−
. 

The meaning of the factors D and N can be better understood by expanding ( , )T D N in an 

infinite series as follows: 

 
6

6 2 8 3 10 ( 4 ) / 2
2

6

( , ) 2 4 ...
1 2

d d
d

d

N D
T D N ND N D N D a N D

N D

∞
−

=

= = + + + =
− ∑ , (2.5) 

where 

 
( 6 ) / 22 (even )

0 (odd ).

d

d

d
a

d

−
= 


 

Looking at the series in Equation (2.5), the first term 6ND  informs that there is only one 

possible decoding path presenting one (exponent of N) information symbol different than 

the zero- information-symbol that corresponds to six (exponent of D) coded symbols 

different than the zero-coded-symbol. The second term in Equation (2.5), 2 82 N D , means 
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that there are two possible decoding paths presenting two (exponent of N) information 

symbols different than the zero- information-symbol that correspond to eight (exponent of 

D) coded symbols different than the zero-coded-symbol. The interpretation of the other 

terms follows this same rule. 

The transfer function is obtained by building and solving a system of state 

equations based on the state diagram of the convolutional code circuit. Each possible 

state transition corresponds to one branch. For this reason, the definitions of D and N are 

related to branches. 

 

C. PROBABILITY OF BIT ERROR 

The most important figure of merit in a communication link is the probability of 

bit error for the information bits (Pb) as a function of the SNR. Every digital 

communication link has to comply with a certain maximum Pb associated with a realistic 

SNR that could be present in the channel. The level of this threshold depends on how 

tolerant the receiving digital system is to errors . 

The formulas for determining Pb versus SNR vary accordingly to the 

convolutional code, interference noise, demodulator and decoder algorithm employed.  

For convolutional codes, the optimum decoding involves a search through the trellis for 

the most probable sequence, what is achieved by means of the Viterbi algorithm [3]. 

Notice in Figure 2.2 that even though the convolutional encoder generates n bits 

at the output, the considered coded symbols are q bits long. Those q bits are those that 

really travel through the channel and are subjected to errors. 

A general formula for determining an upper bound on Pb for M-QAM with a 

convolutional code can be derived as follows. Consider first:  

 
1

b MP P
k

= , (2.6) 

where PM is the average probability of an information symbol (k-bit long), which feeds 

the convolutional encoder during the transmission, is retrieved in error at the end of the 
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reception process, and k is the number of information bits that compound an information 

symbol, i.e., the number of bits shifted into the encoder per time. 

The application of the concepts of union bound, first-event error and transfer 

function make it possible to study error probabilities for the Viterbi decoding of a 

convolutional code [3, 4]. One of the well known results of such studies is the general 

formula below that depicts an upper bound for PM . 

 2( ) ( )
free

M
d d

P d P dβ
∞

=

≤ ∑ , (2.7) 

where ( )dβ is the total number of information symbols (k-bit long) different from the 

zero-symbol associated with all paths with distance d from the all-zero path, and ( )2P d is 

the probability of choosing a wrong path in the trellis in a pairwise comparison of the all-

zero path (correct path) with another path else (wrong path) with distance d from the all-

zero path. 

Substituting Inequality (2.7) in Equation (2.6), the general formula for an upper 

bound of Pb is obtained, 

 2

1
( ) ( )

free

b
d d

P d P d
k

β
∞

=

≤ ∑ . (2.8) 

Notice by the definitions of Equation (2.7) that ( )dβ depends only on the 

convolutional code employed. It relates the number of information symbols in error with 

the number of coded symbols detected in error. Since ( )dβ is created by a convolution 

operation, its expression is mathematically feasible either by employing an analytical 

method or a numerical method as will be seen later in this chapter. 

On the other hand, ( )2P d is completely independent on the convolutional code, 

being a result solely of the type of noise existent in the channel, the demodulation and the 

decoder algorithm. Its calculation is complex and usually done by upper bounding 

considerations over a pattern of an all-zero sequence transmission as explained earlier. 
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The independence between ( )dβ and ( )2P d makes it possible to split the problem 

of determining Pb in two completely isolated phases that will be put together by Equation 

(2.8). The first phase consists of the analysis of the convoulutional code in order to 

determine ( )dβ , whereas the second issue concerns the channel model as well as the 

receiving process in order to estimate a reliable upper bound for ( )2P d . 

 

D. DETERMINING THE PARAMETER ( )dβ  

There are two efficient methods for determining ( )dβ . The first is analytically 

from the convolutional code transfer function, and the second is numerically from the 

generator polynomials. Both can become difficult for some codes, especially those that 

are good, requiring some simplification arguments or some knowledge on where to stop. 

 

1. Obtaining ( )dβ  from the Transfer Function 

 

This is an analytical process involving two steps [3]. The first is to expand the 

transfer function ( , )T D N of the convolutional code into an infinite series in powers of D 

and N. The second step consists of taking the partial derivative of this series with respect 

to N, and making N equal to 1 afterwards in order to obtain another series in powers of D 

only. The expression for ( )dβ becomes the equation that defines the coefficients of this 

last series as a function of d. 

The Appendix shows an application of this method for obtaining a useful formula 

for ( )dβ of the dual-k convolutional code. 
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2. Obtaining ( )dβ  from the Generator Polynomials 

 

The process of obtaining the transfer function for a convolutional code is not 

trivial. For large constraint lengths, the complexity of the process most of the times avoid 

reaching a final formula. Hopefully, by observing the abrupt tapering form of ( )2P d as d 

increases, and that ( )dβ will be employed in Equation (2.8), it can usually be seen that 

only the first five terms of ( )dβ are significant for determining Pb. Under these 

circumstances, a numerical method can be applied to the convolutional code core in order 

to precisely compute just the first few ( )dβ ’s. 

The method uses the code generator polynomials for forcefully generating a large 

number of paths in the trellis  beginning and ending at the zero state. These paths contain 

a relatively large number of branches, usually more than 3 times the constraint length, to 

cover a sufficient range of d’s. The process of path generating must follow a trend in an 

ascending order of d. The computation of the number of coded symbols different than the 

zero-symbol contained in each of those paths gives d. The number of information 

symbols different than the zero- information-symbol embedded in the information 

sequence related to the considered path provides the contribution for ( )dβ made by this 

specific path. If all those contributions for ( )dβ are continuously accumulated (summed) 

in a multi-dimensional vector, where each coordinate represents one d, after computing a 

large number of paths, the vector coordinates will express the ( )dβ spectrum. Since the 

path generation overall behavior follows an ascending order, it can be easily concluded 

that the accuracy of the first terms of ( )dβ increases as the number of generated paths 

becomes larger. Furthermore, those terms will freeze as soon as all paths that could 

contribute to their correspondent ( )dβ ’s have been generated. The process should stop 

when all terms of interest, usually the first three or five, are obtained. 
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The flowchart in Figure 2.3 shows the basic algorithm for computing the ( )dβ as 

described above. It can be seen that the process first generates the information-bit 

sequence at block 2 and later the coded-bit sequence at block 5. Considering that the 

information sequence generation obeys an ascending order of numbers of information 

symbols in error, the correspondent coded sequences will present an overall behavior of 

ascending order of d. The overall word stands since among some successive paths, one 

path could have d less than its previous path due to the characteristics of convolutional 

codes. 

Notice the presence of a filter in block 4 in Figure 2.3 to avoid the codification of 

invalid information sequences. Recall that the Viterbi decoding process applied to an all-

zero coded sequence is always trying to compare the metric of paths that could leave and 

merge with the all-zero path against the metric of the all-zero path itself. Thus, a path 

with a large number of branches that leaves and bounces off the all-zero path instead of 

merging with it should be rejected. In fact, this path, at the moment it bounces off the all-

zero path, can be split into two distinct paths with smaller d, which was probably already 

computed earlier in the process. 
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Figure 2.3. Algorithm for Obtaining ( )dβ from the Generator Polynomials of a 

Convolutional Code 
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Figure 2.4 illustrates an example of an allowed path with six branches. Notice that 

when it merges with the all-zero path; it remains there to the end. 

 

 

 

 

 

 

 

 

Figure 2.4. Example of a Valid Path in the Trellis That Must Be Considered When 
Computing ( )dβ  

 

Conversely, Figure 2.5 shows a path that bounces off of the all-zero path and must 

be rejected. 

 

 

 

 

 

 

 

Figure 2.5. Example of an Invalid Path in the Trellis That Must Be Rejected When 
Computing ( )dβ  
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Of course, the same computation principle leading to ( )dβ could be used to 

achieve other useful parameters such as α (d), the total number of paths (code words) 

with distance d from the all-zero path. For this purpose, some extra computations should 

be added to block 7 in Figure 2.3. 

As can be seen, this forceful process of determining ( )dβ is based on a relatively 

large number of loops, dependent on the total length established for the information 

sequence. For instance, if someone works with a code that has 1k = (binary input) and 

constraint length 7K = , considering that the number of constraint lengths for determining 

information sequence length is fixed in 3, the algorithm would have to generate and 

check 3 * 7 212 2 2,097,152= =  information sequences. It is easy to realize that this 

number grows exponentially with K and can lead to an expensive computation cost. 

Therefore, a large effort should be allocated to stop the process at block 8 in Figure 2.3.  

Some optimizations could be inserted in the process to avoid the generation of 

information sequences that a priori is known to yield to an invalid path. For example, if 

there were 12 branches instead of six in Figure 2.5, all combinations of paths beginning 

with their first six branches following the pattern indicated in the figure would be 

considered invalid. These combinations can be called a “family” and since the first 

member of this family, the path indicated in Figure 2.5, is considered discarded, the entire 

family can be a priori also discarded, and a considerable amount of computation 

resources can be saved.  

As a final observation, the minimum free distance (dfree) of the code is also 

achievable at the end of the process. The ( )dβ spectrum (computed vector) will present 

zeros as the first terms, indicating that there are no paths with 1, 2 , 3 , . . . , ( 1)freed d= −  

that could leave and merge with the all-zero path. The first non-zero term in 

the ( )dβ spectrum represents dfree and can be easily obtained by searching in the final 

vector coordinates. This computation is performed in block 9 in Figure 2.3. 
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3. Adapting ( )dβ  for Various Coded Symbol Lengths  

 

Sometimes the definition of ( )dβ is a little confusing and some details pass 

unnoticed. For example, as discussed previously, ( )dβ is a function of the convolutional 

code employed. However, the same convolutional code can generate different ( )dβ when 

attached to different M-QAM modulators. Notice that the distance d is related to the 

number of coded symbols different than the zero-symbol. As seen in Section II.B.4, the 

length of the coded symbol varies with M according to Equation (2.2). 

Consider a certain system of a convolutional encoder generating one fixed coded 

bit sequence as a response to a fixed information sequence at its input. If the option of 

connecting this system to one of the two M-QAM modulators presenting different M’s is 

available, the same coded bit sequence would be clustered in a different amount of q bits 

in order to generate the coded symbols for each modulator considered. Consequently, 

different d’s would result, which would impact ( )dβ directly, even though the 

information bit sequence and the convolutional encoder remains the same for the two 

systems. 

Very often a communication engineer knows that certain convolutional code 

works very well for a certain M-QAM channel and wants to improve the bandwidth 

utilization by employing a modulator with higher M and would like to estimate the 

performance impact that would result if the same convolutional code is used. However, 

the ( )dβ spectrum tabled for that code is specific for the original M-QAM channel. The 

question is how can a new ( )dβ spectrum be achieved for the new M-QAM considered? 

Looking at Figure 2.3, block 6 is responsible for adapting information and coded 

sequences into information and coded symbols. It is this part of the algorithm that really 

takes into account the q bits of the M-QAM channel to reflect on the ( )dβ estimation. 

Thus, the answer for the previously stated question is that if the generator polynomials 
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for the considered code is known, the engineer can simply use the algorithm depicted in 

Figure 2.3 provided with the generator polynomials coefficients and the new desired M. 

The flexibility on counting information and coded symbols for the same original 

sequences makes this process a very useful tool to map different ( )dβ spectra for the 

same convolutional code. Notice, however, that a convolutional code that works very 

well  for a certain M-QAM channel may not perform when working with a different M. 

 

4. The ( )dβ  Spectra for IEEE 802.11a Convolutional Code When 
Applied to BPSK, QPSK, 16-QAM and 64-QAM Modulators  

 

A program in Matlab was developed for this thesis based on the algorithm 

presented in Figure 2.3. One of the various codes checked by this program is the 

industry-standard convolutional code used by the IEEE 802.11a widely applied to 

wireless networks. The code has the following characteristics [5]: transfer function 

matrix [ ]8
133 171G = , 1 / 2CR = , and 7K = . Table 2.1 shows the ( )dβ ’s spectra 

obtained for this code when used with four different M-QAM modulators. The parameter 

i denotes the increment that should be added on dfree to obtain d, i.e., freed d i= + . 
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( )ß d  Modulation dfree 

i = 0 i = 1 i = 2 i = 3 i = 4 

BPSK 10 36 0 211 0 1404 

QPSK 6 1 10 38 92 346 

16-QAM 4 8 44 323 2033 11575 

64-QAM 3 12 140 1784 19873 207985 

 
Table 2.1. The ( )dβ ’s Spectra for the Industry-Standard Convolutional Code 

( 1 / 2CR = ) Used by the IEEE 802.11a When Applied to Different M-QAM Modulators. 

 

Notice in this case that the code rate is 1/2. Thus, the convolutional encoder can 

only be applied to M-QAM modulators presenting q equal to 1 or q as a multiple of 2, 

i.e., { 1q = (BPSK or 2-QAM), 2 (QPSK or 4-QAM), 4 (16-QAM), 6 (64-QAM), 8 (256-

QAM), ... }, through the arguments presented in Section II.B.4. Analogously, if the code 

rate were 1/3, allowed q should be { 1q =  (BPSK or 2-QAM), 3 (8-QAM), 6 (64-QAM), 

9 (512-QAM), ... }. 

 

E. SUMMARY 

Chapter II reviewed some fundamentals on M-QAM modulation, convolutional 

codes, and probability of bit errors. The general formula for determining the probability 

of bit error associated with the use of FEC was highlighted, and special attention was 

given to issues related to the obtainment of ( )dβ spectrum. The most important part of 

Chapter II presented a numerical method for determining the ( )dβ spectrum of any 

convolutional code. As an application, the ( )dβ spectra of the IEEE 802.11a 

convolutional code were obtained for BPSK, QPSK, 16-QAM and 64-QAM. 

Additionally, a formula for determining ( )dβ spectra of dual-k codes was analytically 

derived. In the next chapter, all the concepts and results obtained thus far will be utilized 
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to obtain models, formulas and performance analyses of M-QAM with Viterbi soft-

decision decoding in the AWGN scenario. 
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III. PERFORMANCE ANALYSIS IN AN AWGN CHANNEL  

As explained in Section II.C, the most important figure of merit in a 

communication link is the probability of bit error for the information bits (Pb) as a 

function of the SNR. Therefore, the performance of every digital link can be estimated by 

plotting its Pb against the SNR. This chapter derives a model for determining an upper 

bound of Pb for any M-QAM modulation with Viterbi soft-decision decoding subjected 

only to AWGN. Furthermore, a technique that improves this upper bound will also be 

developed and applied to performance analyses involving 16-QAM, 64-QAM, BPSK and 

QPSK. 

The computation of Pb is performed on the receiver part of the link, and its 

circuits are in an opposite order when compared with the transmitter as shown in Figure 

3.1. 

 

 

 

 

 

 

 
Figure 3.1. Block Diagram of the Main Receiver Circuits. 

 

The parameter Pb will depend on both the demodulator and the decoder. The 

dependence on the demodulator is related with how sensitive this circuit is to the channel 

noise, i.e., how the noise associated with the signal at its input affects the demodulator 

outputs. On the other hand, the dependence on the decoder rests on the type of processing 

performed on its analog input (demodulator output) in order to decide which information 

bit sequence has been transmitted. 

Analog 
Demodulated 

Signals 

Received 
Signal 

r(t) ... 
 

Demodulator 
 

Decoder 

Information 
Bit-sequence  

{0, 1} 
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This thesis will concentrate on all the performance analyses considering the 

demodulation performed by a M-QAM coherent demodulator and the decoding done by a 

Viterbi soft-decision decoder (SDD). Notwithstanding this configuration requires more 

complexity from circuits and algorithms than when using a non-coherent demodulator 

and a hard-decision decoder, the results obtained are much better. The goal is to 

concentrate on the best performances since today’s technology provides relatively cheap 

resources to implement complex circuits on a large scale. 

 

A. VITERBI SOFT-DECISION DECODING 

The Viterbi soft-decision decoding (SDD) is a process of determining the 

information bit- sequence related to one or more sets of demodulated coded symbol 

outputs by using a maximum-likelihood sequence estimator (MLSE). The principle is to 

exploit the interdependence (memory) that exists among successive coded symbols, 

established by the convolutional encoder, in order to choose the most probable coded 

symbol that was actually transmitted given the reception of a certain signal corrupted by 

noise. 

Recalling that the trellis characterizes the memory in the transmitted signal, the 

MLSE algorithm searches among all possible paths through the trellis for a certain path 

that maximizes the probability that the received signals represent the coded symbols 

expressed by this path. For this purpose, the decoder associates a metric, called 

correlation metric, to each path. This metric is mathematically described for a certain 

path i, compounded by B branches, according to Ref. [3] as 

 ( )( ) ( ) ( )

1 1

log |
B B

i i i
j R j j

j j

CM fµ
= =

= =∑ ∑ R C , (3.1) 

where ( )( )| i
R j jf R C  represents the conditional probability density function (pdf) of the 

vector that expresses the received signals of the j-th branch (Rj) given that the coded 

symbols of the j-th branch of the i-th path ( ( )i
jC ) are considered to have been transmitted. 
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Notice by this definition that ( )i
jµ  can be considered a branch metric causing the 

correlation metric to be the summation of all branch metrics in the path. 

After computing the correlation metric for all possible paths reaching a 

considered stage in the trellis (B branches ahead of some starting point), the MLSE 

simply chooses the path with the highest metric and discards all others. Considering tha t 

the number of paths to compute the metrics grows exponentially with the number of 

branches, some optimizations are done in order to save computation resources. For 

example, taking advantage of the fact that the correlation metric is cumulative, the 

algorithm needs only to keep track of a fixed number, ( 1)2k K− , of the highest metrics and 

their corresponding paths at a certain stage in order to compute the next stage metric.  

Those tracked paths are called survivors [3]. 

 

B. ADDITIVE WHITE GAUSSIAN NOISE CHANNEL 

The additive white Gaussian noise (AWGN) is a term that refers to the 

characteristics of the thermal noise, which is present in all communication systems and is 

the predominant noise source for many of them. It corrupts the signal in an additive 

fashion causing: 

 ( ) ( ) ( )r t s t n t= + , (3.2) 

where r(t) is the total received signal, s(t) is the component due to the transmitted signal, 

and n(t) is the noise component. 

Thermal noise is considered white because its two-sided power spectral density 

0( ) / 2nG f N=  is flat for all frequencies of interest [6]. It also presents a zero-mean 

Gaussian pdf depicted by 

 

2

22

2

1
( )

2

n

Nf n e σ

πσ

 −
 
  = . (3.3) 

From this point forward the notation 2( , )XX σN  will be used to denote a normal 

or Gaussian random variable (r.v.) X with mean X  and variance 2
Xσ . 
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The autocorrelation function of the AWGN is equal to ( )2σ δ τ . Also, 

0( ) / 2nG f N=  is the Fourier transform of this autocorrelation, which causes: 

 2 0

2
N

σ = . (3.4) 

A channel is designated as an AWGN channel when its impairments are limited to 

the degradation caused by the thermal noise. Particularly, the AWGN present in a signal 

is split within a coherent M-QAM demodulator into its two orthogonal channels. Such 

noise can be represented by a bidimensional vector of orthogonal AWGN components 

expressed by 

 [ ]1 2x x xN n n= , (3.5) 

where nx1 and nx2 are independent- identical-distributed (iid) Gaussian random variables 

with pdf’s given by Equation (3.3). 

 

C. DETERMINING THE PARAMETER P2(d) FOR M-QAM 

Recalling Section II.C, the type of noise in a channel affects only 2 ( )P d . In this 

Section, a general formula for determining the upper bound of 2 ( )P d for every M-ary 

modulation, whether orthogonal or non-orthogonal, will be analytically derived for an 

AWGN channel and customized for the special case of M-QAM modulators that use a 

rectangular constellation.  Furthermore, a way to improve this upper bound, i.e., make it 

tighter, will be shown in an attempt to match the realistic communication characteristics 

for a particular link. The overall result will reflect directly on the predictions of the 

channel performance.   

 

1. Derivation of an Upper Bound of P2(d) for any M-ary Coherent 
Demodulator Followed by a Soft-Decision Viterbi Decoder 

 

In this Section the M-ary bidimensional case will be considered in a first analysis 

and then the results will be extended to a multi-dimensional modulation scheme. 
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Assume the block diagram in Figure 3.2. 

 

 

 

 

 

 

 

Figure 3.2. Block Diagram of an M-QAM Coherent Demodulator Followed by a Soft-
Decision Viterbi Decoder. 

 

The goal is to determine an upper bound for 2 ( )P d , which is the probability of 

choosing a wrong path in the trellis in a pairwise comparison of the all-zero path with 

another path that differs in d symbols from the all-zero path. For this purpose, the 

symbology that follows will be established. 

The vector jmC is the coded symbol related to the mth symbol of the jth branch in 

the trellis. Recall from Section II.2.4 that the n-bit output of the convolutional code can 

be split in L sets of q-bit to adjust itself to the channel symbol length. This vector is 

depicted by its two components as 1 2=jm jm jmC c c   , where 1jmc and 2jmc can assume any 

discrete value mapped in the modulation constellation. 

The vector jmR represents the two outputs from the demodulator, i.e., the Viterbi 

decoder inputs, corresponding to the mth symbol of the jth branch in the trellis. It is 

expressed as 1 2=jm jm jmR r r   , where 1jmr and 2jmr are shown in Figure 3.2. 

The vector jmN is the AWGN vector representation like the one in Equation (3.5) 

that affects the reception of the mth symbol of the jth branch in the trellis. Equation (3.2) 

can be written in a vector form as 

∫ •
ST

dt
0

)( Soft-
Decision
Viterbi 
Decoder 

Ts 

)(1 tΨ

r(t) 

rjm1 

rjm2 

{0, 1} 

Ts 

)(2 tΨ

∫ •
ST

dt
0

)(
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 jm jm jmR C N= + . (3.6) 

Consider the following metric definition for the jth branch of the ith path in the 

trellis: 

( ) ( ) ( ) ( ) ( )
1 2 3 1 2 3

( )

( )

log ({ ... } | { ... })

log ({ , 1, 2,. . . } | { , 1, 2,. . . })

log ({ } | { })

i i i i i
j R j j j jN j j j jN

i
R jm jm

i
R jm jm

f R R R R C C C C

f R m N C m N

f R C

µ =

= = =

=

, (3.7)  

where N is the number of coded symbols transmitted per information symbol. 

Since Rj1 is independent of Rjm for any m different than 1, it follows 

 ( ) ( )

1

log ({ } | { }) ( | { })
N

i i
R jm jm R jm jm

m

f R C f R C
=

= ∏ . (3.8) 

Considering that the reception of Rj1 is only being affected by Cj1, the following 

relationship stands 

 ( ) ( )( | { }) ( | )i i
R jm jm R jm jmf R C f R C= . (3.9) 

Substituting Equation (3.9) in (3.8), and Equation (3.8) in (3.7) yields 

 ( ) ( ) ( )

11

log ( | ) log ( | )
N N

i i i
j R jm jm R jm jm

mm

f R C f R Cµ
==

= = ∑∏ . (3.10) 

However, due to the orthogonality of components 1 and 2 as well as the 

characteristics of the coherent detection employed, the conditional probability of 

Equation (3.10) can be derived as 

 ( ) ( ) ( )
1 1 2 2( | ) ( | ) ( | )i i i

R jm jm R jm jm R jm jmf R C f r c f r c=  

                                               

( ) ( )2 2
1 21 2

2 2

( ) ( )

2 2

2 2

1 1
.

2 2

i i
jm jmjm jmr c r c

e e
σ σ

πσ πσ

   − − − −
   
      = , 

which implies 

 
( ) 2

2
1

. | | ||
2( )

2

1
( | )

2

i
jm jmR C

i
R jm jmf R C e σ

πσ

 −
− 

  = . (3.11) 
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Substituting Equation (3.11) in (3.10) results in 

 

( )

( ) 2
2

1 . | | ||
2( )

2
1

( ) 2
2 2

1

1
log

2

1 1
log log . || ||

2 2

i
jm jmN R C

i
j

m

N
i

jm jm
m

e

N e R C

σµ
πσ

πσ σ

 − − 
  

=

=

 
 =
 
 

 = + − −  

∑

∑

. 

Since N is a constant for the considered convolutional code, the above equation 

can be rewritten as follows 

 ( ) ( ) 2
1 2

1

|| ||
N

i i
j jm jm

m

K K R Cµ
=

= + −∑ , (3.12) 

where 

1 2

1
log

2
K N

πσ
 =  
 

  , and 2 2

1
log

2
K e

σ
= −  . 

As seen in Section III.A, the Soft-Decision Viterbi decoder computes an entire 

path metric for all paths that reach an intended stage in order to discard the lower metrics 

and keep the highest one. The correlation metric for this decoder is given by Equation 

(3.1) and rewritten below: 

 ( ) ( )

1

B
i i

j
j

CM µ
=

= ∑ . (3.13) 

Substituting Equation (3.12) in (3.13) yields 

 

( ) ( ) 2
1 2

1 1

( ) 2
1 2

1 1

|| ||

|| ||

B N
i i

jm jm
j m

B N
i

jm jm
j m

CM K K R C

BK K R C

= =

= =

 = + − 
 

= + −

∑ ∑

∑∑
. (3.14) 

Considering the linear property of the convolutional codes, a sequence of all-zero 

symbols (C0 )  can be assumed to be transmitted without any loss of generality. Following 

this transmission pattern, the Viterbi decoder should choose the all-zero symbol path, 

called path 0, as the correct path to be processed. 
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Suppose that, due to channel errors, the Viterbi decoder chooses an incorrect path 

1 instead of the correct path 0. Also assume that this wrong path 1 contains d erroneous 

symbols, i.e., d symbols different than C0 . Therefore, an initial formula for 2 ( )P d can be 

written as 

 (1) (0) (1) (0)
2 ( ) Pr Pr 0P d CM CM CM CM   = ≥ = − ≥    . (3.15) 

Substituting Equation (3.14) in (3.15) results in 

( )

(1) 2 (0) 2
2 1 2 1 2

1 1 1 1

(1) 2 (0) 2
2

1 1

( ) Pr || || || || 0

Pr || || || || 0

B N B N

jm jm jm jm
j m j m

B N

jm jm jm jm
j m

P d BK K R C BK K R C

K R C R C

= = = =

= =

 
= + − − − − ≥ 

 
 

= − − − ≥ 
 

∑∑ ∑∑

∑∑
. 

In Equation (3.12) recall that K2 is a negative constant, which leads to 

 ( )(1) 2 (0) 2
2

1 1

( ) Pr || || || || 0
B N

jm jm jm jm
j m

P d R C R C
= =

 
= − − − ≤ 

 
∑∑ . (3.16) 

Considering that a sequence of all-zero symbols is the one being transmitted, the 

following stands  

 
(0)

0

0

,  and 

.
jm

jm jm

C C j m

R C N

= ∀

= +
 (3.17) 

Replacing Equations (3.17) in (3.16) yields 

 ( )(1) 2 2
2 0 0 0

1 1

( ) Pr || || || || 0
B N

jm jm jm
j m

P d C N C C N C
= =

 
= + − − + − ≤ 

 
∑∑  

      ( )( )(1) 2 2
0

1 1

Pr || || || || 0
B N

jm jm jm
j m

C C N N
= =

 
= − − − ≤ 

 
∑∑  

    ( )(1) 2 (1)
0 0

1 1

Pr || || 2 ( ) . 0
B N

jm jm jm
j m

C C C C N
= =

 
= − − − ≤ 

 
∑∑ . (3.18) 
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Recalling that (1) (0)
0jm jmC C C= = , for all combinations of j and m except for d 

symbols, Equation (3.18) can be rewritten as follows 

 ( )(1) 2 (1)
2 0 0

1

( ) Pr || || 2 ( ) 0
d

l l l
l

P d C C C C N
=

 
= − − − ≤  

∑ . (3.19) 

Expanding the noise vector in its orthogonal components in Equation (3.19) 

results in 

     ( )(1) 2 (1) (1)
2 0 1 01 1 2 02 2

1

( ) Pr || || 2 ( ) 2 ( ) 0
d

l l l l l
l

P d C C c c n c c n
=

 
= − − − − − ≤  

∑ . (3.20) 

At this point, notice that 2 ( )P d will be very dependent on the wrong symbol 

sequence Cl
(1) , for l = 1, 2, ... d. However, for a given sequence of Cl

(1), i.e., path 1, it can 

be seen that the left side of the inequality in Equation (3.20) is a Gaussian random 

variable due to nl1 and nl2 being zero-mean Gaussian r.v.'s and the other terms being 

deterministic values. This random variable will be called X, which leads to 

 ( )2 2

1 1

, ,
d d

X l Xl
l l

X X Xσ σ
= =

 
= =  

 
∑ ∑N N , (3.21) 

where 

 (1) 2
0|| ||l lX C C= − , (3.22) 

and 

( )2 (1) 2 (1) 2 2 (1) 2 2
1 01 2 02 04 ( ) ( ) 4|| ||Xl l l lc c c c C Cσ σ σ= − + − = −  

                               24 lX σ= .  (3.23) 

Here an upper bound can be established by assuming that all Cl
(1)’s, for every l , 

are equal to a worst-case symbol, CW , in such a way that 2 ( )P d becomes the highest 

possible. 

If CW is a constant vector for every l, then Equation (3.21) can be rewritten as 

 2 2( , ) ( , )X W XWX X dX dσ σ= =N N . (3.24) 
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The problem now is to find a symbol CW different than C0 among all possibilities 

within the modulation constellation that could be the worst-case symbol. For this 

purpose, a useful theorem should be derived involving normal distributions. 

Theorem: consider two Gaussian r.v.'s X and Y  

 ( ) ( )2 2, and ,X YX Yσ σN N ,  

then 

 [ ] [ ]Pr 0 Pr 0 Y XX Y X Yσ σ≤ ≥ ≤ ⇔ ≤ .  

Proof: 

 [ ] [ ]Pr 0 Pr 0X Y≤ ≥ ≤  

 
0 0

1 1
X Y

X Y
Q Q

σ σ
   − −

− ≥ −   
   

 

 1 1 1 1
X Y

X Y
Q Q

σ σ

      
− − ≥ − −               

 

 
X Y

X Y
Q Q

σ σ
   

≥   
   

. 

Since the Q-function is a descending monotonic function, in order for the above 

inequality to be true, the following stands 

 
X Y

X Y
σ σ

≤  

Y XX Yσ σ≤ . 

Notice that the reverse also works, which concludes the theorem’s proof. 

By the above theorem, it can be stated that, within a set of Gaussian r.v.'s with 

different means { }, 1,2 , . . . ,iX i N= , the one that has the lowest mean will comply with the 

following property 
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 [ ] [ ]Pr 0 Pr 0 , where ,  k i k k i kX X X X i≠ ≠≤ ≥ ≤ ≤ ∀ , 

except if one of the other r.v.'s with a higher mean presents such a large standard 

deviation that makes 

 k i k i k kX Xσ σ≠ ≠> , (3.25) 

which would hurt the theorem. 

Therefore, CW is thus chosen to make the mean in Equation (3.24) the lowest 

possible and then checked if there is any other remaining choice that would make the 

Inequality (3.25) true. 

Looking at Equation (3.22), it can be seen that the minimum mean in Equation 

(3.24) is obtained by choosing a CW that makes 

 2 2
0 0,min|| ||WC C D− = , (3.26) 

where D0,min is the Euclidean distance between C0 and its closest neighbors in the 

constellation. Notice that there is at least one CW for every constellation, but in some 

cases, there are more than one. However, for those cases, any closest neighbor chosen to 

be CW will yield the same statistical results (mean and variance) because of Equations 

(3.22) and (3.23). 

Substituting Equation (3.26) in Equations (3.22) and (3.23) yields 

 2
0,minWX D= , (3.27) 

and 

 2 2 2
0,min4XW Dσ σ= . (3.28) 

The next step is to determine if there is another possible choice of CW, called CWW, 

which would comply with the following relationships 

  and   
WW WWW W W X WW XX X X Xσ σ> > , (3.29) 

and could make the exception pointed by inequality (3.25) true. 

With Equations (3.22) and (3.23), the second inequality at (3.29) becomes 
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 2 24 4W WW WW WX X X Xσ σ> . 

Since both WX  and WWX  are positive values due to Equation (3.22), it is possible 

to square both sides of the above inequality and obtain 

 2 2 2 24 4W WW WW WX X X Xσ σ>   

 W WWX X> . 

This latter result hurts the hypothesis formulated by the first inequality in 

Equation (3.29). It means that CWW does not really exist and the choice of CW as the 

closest symbol to C0 can be definitely considered the one that will conduct to an upper 

bound for 2 ( )P d in Equation (3.20). 

Finally, it should be recalled that the left side of the inequality in Equation (3.20) 

represents a Gaussian random variable defined by Equation (3.24). Thus, an upper bound 

for 2 ( )P d can be set as  

 

[ ]2

2 2 2

( ) Pr 0

0
( ) 1 .W W

XW XW

P d X

dX dX
P d Q Q

d dσ σ

≤ ≤

   −   ≤ − =
   
   

 (3.30) 

Substituting Equation (3.27) and (3.28) in (3.30) yields 

2 2 4 2
0,min 0,min 0,min

2 2 2 22 2
0,min0,min

( )
4 44

d D d D d D
P d Q Q Q

d Dd D σ σσ

     
     ≤ = =

    
    

, 

which implies 

 
2
0min

2
0

( )
2

d D
P d Q

N

 
 ≤
 
 

, (3.31) 

where the last step stands due to 2
0 / 2Nσ = , expressed in Equation (3.4). 

Notice that D0,min can vary depending on the C0 chosen to be the zero-symbol in 

the constellation. Therefore, in order to guarantee that Inequality (3.31) will provide the 
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real upper bound, C0 should be chosen to be the one that yields D0,min  = Dmin , where Dmin  

is the minimum Euclidean distance in the constellation. Thus, the final formula to 

determine 2 ( )P d becomes 

 ( )
2
min

2
02

dD
P d Q

N

 
≤  

 
 

. (3.32) 

Due to the orthogonality achieved by coherent demodulators, all the assumptions 

thus far are also valid for multi-dimensional M-ary modulations such as M-FSK, as well 

as unidimensional ones such as BPSK. Consequently, 2 ( )P d found in Inequality (3.32) 

can be considered a general upper bound to be applied to every M-ary coherent 

demodulator followed by a soft-decision Viterbi decoder. 

 

2. Upper Bound of P2(d) for M-QAM 

 

In this Section, Equation (3.32) will be customized for the cases of BPSK and 

QPSK, special cases of M-QAM in which M = 2 and M = 4, respectively, as well as two 

other M-QAM coherent demodulators, 16-QAM and 64-QAM. All of them will be 

considered to be using rectangular constellations. Notice that Equation (3.32) can be 

applied to every type of constellation. The particularization for the rectangular one results 

since this type is the most frequently used in practice [3]. 

For rectangular constellations, regardless of M, Dmin is always equal to a constant 

2A, where A is one unit of the grid represented in Figure 2.1. Hence, it stands 

 2 2
min 4D A= . (3.33) 

Applying Equation (3.33) in (3.32) leads to 

 ( )
( )2 2

2
0 0

4 2
2

d A dA
P d Q Q

N N

   
 ≤ =       

. (3.34) 
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Equation (3.34) will be used to derive the well-known formula for a BPSK 

demodulator followed by a soft-decision Viterbi decoder [3]:  

( ) ( )2 2 b CBPSK
P d Q R dγ≤ . 

Assume the following symbology: 

• ?cs  is the average energy of one coded symbol 0/CS Nε  (average SNR for one coded 
symbol), 

• ?cb is the average energy of one coded bit / N0   (average SNR for one coded bit), and 

• ?b is the average energy of one information bit / N0   (average SNR for one 
information bit). 

As regards these parameters, it can be stated that: 

 
0

cs
cs N

ε
γ = , (3.35) 

 cs cbqγ γ= , (3.36) 

and 

 cb C bRγ γ= . (3.37) 

Substituting Equations (3.37) in (3.36) and the result into Equation (3.35) yields 

 0cs C bq R Nε γ= . (3.38) 

For BPSK, considering each coded symbol to be equiprobable to occur in the 

channel, the energy per coded symbol can be expressed by: 

 [ ] ( )
2

2 2

1

1
Pr symbol 2

2i ics cs i cs
i

E C A Aε ε ε
=

 = = = =  ∑ . (3.39) 

Replacing the results of Equations (3.38) and (3.39) in (3.34) leads to 

 ( ) ( )0
2

0 0

2 2
2cs C b

C b

d dqR N
P d Q Q Q dqR

N N
ε γ

γ
   

≤ = =      
   

. (3.40) 

Recalling that q = 1 bit for BPSK, Equation (3.40) becomes 

 ( ) ( )2 2 C bBPSK
P d Q dR γ≤ . (3.41) 
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This latter result is exactly the one expected to be found. 

For the QPSK, the energy per coded symbol can be written as: 

 [ ] ( )
4

2 2

1

1
Pr symbol 4 2 2

4i ics cs i cs
i

E C A Aε ε ε
=

 = = = =  ∑ . (3.42) 

Replacing the results of Equations (3.38) and (3.42) in (3.34) leads to 

 ( ) ( )0
2

0 0

2
2
cs

C b
C b

d dqR N
P d Q Q Q dqR

N N

ε
γ

γ

 
   
 ≤ = =      
 

. (3.43) 

Recalling that q = 2 bits for QPSK, Inequality (3.43) assumes its final format as 

 ( ) ( )2 2 C bQPSK
P d Q dR γ≤ . (3.44) 

Notice that this result is identical to the one obtained for BPSK. 

Now is the time to see how the upper bound of 2 ( )P d for the 16-QAM behaves. 

The constellation is shown in Figure 2.1. Notice that Equations (3.34) and (3.6) are the 

same, even though q changes to 2log 16 4q = = bits. 

Using the same arguments as for BPSK, the following computation stands 

 [ ]
16

2 2 2 2 2

1

1
Pr 4(2 10 10 18 ) 10

16i ics cs i cs
i

E C A A A A Aε ε ε
=

 = = = + + + =  ∑ . (3.45) 

Replacing Equation (3.45) in (3.34) causes 

 ( )2
0 0

2
10

5

cs

cs
d d

P d Q Q
N N

ε
ε

 
   
 ≤ =       
 

. (3.46) 

 

 

Finally, substituting Equation (3.38) in (3.46) yields 
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 ( ) 0
2 16

05
C b

QAM

dqR N
P d Q

N
γ

−

 
≤   

 
, 

which results in 

 ( )2 16

4
5 C bQAM

P d Q dR γ
−

 
≤   

 
. (3.47) 

For the 64-QAM, the development is the same but 2log 64 6q = = bits, leading to 

 [ ]
16

2

1

Pr 42
i ics cs i cs

i

E C Aε ε ε
=

 = = =  ∑ . (3.48) 

Replacing Equation (3.48) in (3.34) results in  

 ( )2
0 0

2
42

21

cs

cs
d d

P d Q Q
N N

ε
ε

 
   
 ≤ =       
 

. (3.49) 

Therefore, by substituting Equation (3.38) in (3.46), the final formula becomes 

 ( ) 0
2 64

0

6
21 21

C b C b
QAM

dqR N dR
P d Q Q

N
γ γ

−

   
≤ =      

   
, 

which yields 

 2 64

2
( )

7QAM C bP d Q dR γ−

 
≤   

 
. (3.50) 

 

3. Improvements on the Upper Bound of P2(d)   

 

The core of the analytical development of the latter upper bound for 2 ( )P d resides 

in Equation (3.21). The worst-case scenario for the result of this equation was assumed. 

However, some questions can be posed. Is the worst-case assumption too conservative for 

a certain application in terms of leading to a loose upper bound? Can different hypotheses 

other than the worst case be assumed and still have a reliable but tighter upper bound?  
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How far can this process go? The answers to these questions are the subject of this 

Section. 

Rewrite Equation (3.21) in a different fashion by replacing Equations (3.22) and 

(3.23) in it. 

 (1) 2 2 (1) 2
0 0

1 1

( ) || || , 4 || ||
d d

X l l
l l

f x C C C Cσ
= =

 
= − − 

 
∑ ∑N . (3.51) 

The worst case was shown to happen when all d symbols are the ones closest to 

C0 in the constellation. In this case (1) 2 2
0 min|| ||lC C D− = , which led the summation in 

Equation (3.51) to be the smallest possible, 2
mind D , and the final result to be Equation 

(3.32).   

Notice, however, that there are many symbol combinations for filling all d slots 

when d = 3 and M = 16. The probability of all symbols being the closest ones to C0 tends 

to be very small for those cases. Even though small these special symbol combinations 

must be considered for the worst-case scenario, in which 100% of all possible 

combinations result in (1) 2 2
0 min

1

|| ||
d

l
l

C C dD
=

− ≥∑ . Consider all combinations that lead to 

the second smallest possible value for the latter summation instead of the smallest one 

(worst case). The percentage of the total d-symbol combinations this second smallest 

value will cover can be expressed as 

 
[ ]cov min 0

(1) 2 2
0 min

1 Pr all  symbols have distance to 

1 Pr || || ,for  = 1, 2, ... , 1 .l wc

P d D C

C C D l d P

= −

 = − − = = − 
 (3.52) 

If the worst-case probability Pwc for a certain link is very small, the second 

smallest possible value for the summation could be assumed as the worst case without 

significant losses in generality. 

Consider the definition of an average distance, DAV, dependent on the specific 

combination of all d symbols chosen to be the wrong path, given by: 
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 (1) 2 2
0

1

|| ||
d

l AV
l

C C dD
=

− =∑  

 2 (1) 2
0

1

1
|| || .

d

AV l
l

D C C
d =

= −∑  (3.53) 

Notice, in the worst case that 2 2
minAVD D= , and for all other cases, 2 2

minAVD D≥ . The 

idea of making a different choice for the worst-case sequence impacts directly in 

Equation (3.32) in which 2
minD  will be replaced by 2

AVD . Even if 2
AVD  is just a little bit 

greater than 2
minD , due to the Q-function, the parameter 2 ( )P d will be considerably 

reduced. 

The bigger the parameters d and M, the smaller the worst-case probability Pwc in 

Equation (3.52) will be, and consequently, the closer to 100% the Pcov will become, and 

the closer to 2
minD  the parameter 2

AVD  will reach. Recall that d is at least equal to dfree, 

which usually is greater than 3 for good convolutional codes. Summarizing the issue, the 

main goal to improve 2 ( )P d would be to determine an acceptable 2
AVD  for d = dfree that 

can replace 2
minD  in Equation (3.32). Even though the effort begins by considering 

d = dfree , as will be seen later, the same 2
AVD  found for dfree works rather well for the 

other terms of 2 ( )P d with d greater than dfree. 

Applying Equation (3.53) for all possible d-symbol combinations, it can be seen 

that 2
AVD  lies on a finite and discrete domain of values. Therefore, the best way to study 

the possible choices of 2
AVD  is to plot its discrete probability density function (dpdf) for a 

certain dfree. Notice, however, that the dpdf will be very dependent on the symbol in the 

constellation chosen to be C0. Figure 3.3 shows a 16-QAM constellation with two 

different possible choices of C0. The circled numbers indicate the square of the Euclidean 

distance, D2, normalized by the grid unit A2 for every symbol different than the 

considered C0. For every l in Equation (3.53), each correspondent term (1) 2
0|| ||lC C−  

can assume any value of D2 represented in Figure 3.3. Notoriously, the numbers for 

configuration (b) are much greater than (a). 
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Figure 3.3. Square of the Normalized Euclidean Distance (D2/A2) Related to the 16-
QAM Rectangular Constellation Symbols for 2 Different Choices of C0. 

 

The choices of C0 that provide larger values for (1) 2
0|| ||lC C−  will lead to greater 

2
AVD  and, consequently, will achieve better results for 2 ( )P d , i.e., a smaller 2 ( )P d . In 

order to be conservative, this study will focus on rectangular constellations choosing C0 

to be the one resulting in the smallest 2
AVD  and the largest 2 ( )P d , which is the worst 

choice available in terms of 2 ( )P d . For any rectangular constellation, it is easy to see that 

the conservative choice of C0 falls on any one of the most internal symbols because they 

present the largest number of neighbors with Euclidean distance equal to Dmin. The option 

(a) in Figure 3.3 represents this choice. 

Consider a practical example. Suppose the analysis of 2
AVD  for a 16-QAM 

rectangular constellation is associated with a dual-4 convolutional code, i.e., dual-k in 

which k = 4 to match the 4-bit coded symbols of the 16-QAM. In the Appendix it is 
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(a) -  C0  is one of the most internal 
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(b) -  C0  is one of the corner symbols 
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shown that dfree = 4 for dual-k convolutional codes. Thus, by computing the dpdf of 2
AVD  

for all possible sequences of 4 symbols in which each symbol can be any of the 15 

symbols different than C0, the plot shown in Figure 3.4 can be obtained. The set of 

different values for 2
AVD , i.e., the horizontal axis, are again normalized by the factor A2. 

 

Figure 3.4. Dpdf of 2
AVD  for a 16-QAM Rectangular Constellation, d = 4, and 
Conservative Choice of C0. 

 

Even though the number of possible combinations for a sequence of 4 symbols is 

equal to 415 50625= , due to Equation (3.53), those combinations result in only 26 

different values for 2
AVD . The point where 2 2/ 4AVD A =  represents the probability of one 

worst-case sequence ( 2 2
minAVD D= ) occurring. This value can also be determined 

analytically by considering the existence of 4 different closest symbols to C0 in the 
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constellation. Thus, there are 44 possible sequences that will result from 2 2
minAVD D= . The 

probability that one of these sequences occurs is given by 

 
4

4

4
0.00506 0.5%

15wcP = = = . 

Substituting this result in Equation (3.52), it can be stated that the choice of 
2 25AVD A=  instead of 2 2

min 4D A= would be valid for 99.5% of all possible transmissions 

in the channel and could lead to d = dfree = 4. What about the other values of 2 ( )P d used 

for the calculation of Pb in which d > dfree? Since their d is different from dfree , should a 

specific 2
AVD  be determined for each d or can the the value obtained for dfree be applied to 

all d’s? 

Notice that when d increases, the domain of the possible 2
AVD  also increases and 

all probabilities of the previous dpdf will be diluted along this new longer domain. 

Consequently, by using a certain threshold determined for dfree in a path presenting 

d > dfree, the probability of obtaining 2
AVD  greater than this threshold is greater than this 

equivalent probability when using the same threshold for a path in which d = dfree. In 

other words, a threshold that is good for dfree will be even better for d > dfree. To 

summarize, the analytical conclusion of the 16-QAM example can be restated as: “... the 

choice of 2 25AVD A=  instead of 2 2
min 4D A=  would be valid for at least 99.5% of all 

transmissions in the channel”. 

Figure 3.5 shows the difference in performances for the discussed example. The 

curve for Pcov = 99.5% was determined following the equation 

 ( ) ( ) 2 2 2
min

2 5

1
A V

free

b D D A
d d

P d P d
k

β
∞

= =
=

= ∑ . (3.54) 

However, 

 ( )
( ) ( )

2 2 2
min

2 22

2 5
0 0 0

5 5

2 2 2AV

csAV
D D A

cs

d A d AdD
P d Q Q Q

N N N

ε

ε= =

    
    = = =

     
     
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 ( )
( ) ( )

2 2 2
min

2 2

2 5

5 5

2 2AV
cs C bD D A

cs cs

d A d A
P d Q Q qRγ γ

ε ε= =

   
   = =
   
   

 (3.55) 

Substituting Equation (3.45) in (3.55) yields 

 

( )
( ) ( ) ( )2 2 2

min

2

2 5 2

5
( ) 4

2 22 10AV C b C b C bD D A

d A d
P d Q q R Q R Q d R

A
γ γ γ

= =

    = = =      
. (3.56) 

Compare Equation (3.56) with (3.47) and notice that the argument of the Q-function is 

slightly smaller now, which results in a tighter upper bound. Substituting Equation (3.56) 

in (3.54) and recalling that 1 / 2cR = , dfree = 4 and k = 4 for the dual-4 code, obtains 

 
4

1 1
( )

4 2b b
d

P d Q dβ γ
∞

=

 
=   

 
∑ . (3.57) 

 

Using the formula in the Appendix for ( )dβ  of dual-4 code leads to ( )dβ  = 15, 60, 570, 

2820, and 18165, for d = 4, 5, 6, 7 and 8, respectively. Approximating Equation (3.57) 

with its five first terms, the final formula for Pb with Pcov = 95.5% in Figure 3.5 is 

obtained as 

 
( ) ( ) ( )

( ) ( )

1
15 2 60 2.5 570 3

4

2820 3.5 18165 4 .

b b b b

b b

P Q Q Q

Q Q

γ γ γ

γ γ

= + +

+ + 

 (3.58) 

Notice that the simple assumption of 2 25AVD A=  made the upper bound for Pb 

tighter in 1 dB, which can make a difference when designing a communication link. As 

stated previously, this assumption is valid for 99.5% of the transmissions. However, the 

remaining 0.5% will still follow the original upper bound, which could be considered bad 

if 100% of the data were submitted to it, but considering that only 0.5% of the data will 

ever truly be submitted, this original upper bound can become very acceptable. 
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Figure 3.5. Difference on Performances when Changing 2
minD  on the Calculation of 

the Upper Bound of 2 ( )P d from 2 2
min 4D A=  to 2 25AVD A=  for a 16-QAM Channel with 

Dual-4 Convolutional Code and Soft-Decision Viterbi Decoding. 

 

How far can the process of increasing 2
minD  go? Can it be increased to a point 

where 95% of the channel data will follow the new correspondent upper bound?  

Probably yes, but the precise answer to these questions will only depend on the 

application intended for the communication link. Some practical experiments should be 

done in order to define the acceptance threshold. Anyway, this approach provides a 

tremendous enhancement to the upper bound, allowing a more realistic view of the 

behavior of some good, simple and cheap configurations that probably would be 

discarded at first glance if considering just the worst-case upper bound. 
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Recall that Equation (3.52) was created assuming that the second smallest 

possible value for 2
AVD  was chosen. However, for general choices that could be greater 

than the second smallest, this formula will change to 

 
1

2 (1) 2 2
cov , 0 ,

1 1

1
( ) 1 Pr || ||

n d

AV n l A V i
i l

P D C C D
d

−

= =

 
= − − =  

∑ ∑ , (3.59) 

where 2
cov ,( )AV nP D represents the percentage of the total d-symbol combinations that the n-

th smallest possible value of 2
AVD  will cover. Note that 2 2

,1 minAVD D= by the previous 

symbology. 

 

Figure 3.6. Dpdf of 2
AVD  for a 64-QAM Rectangular Constellation, d = 3, and 
Conservative Choice of C0. 

 

Figures 3.6 and 3.7 describe two dpdf’s for a same 64-QAM constellation in 

which the first plot corresponds to a path presenting d = 3, while, in the latter, d = 4. The 

79 different points 
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previously mentioned effect of diluting the dpdf of 2 2/AVD A  as d increases is easily 

identifiable in these figures. The number of possible values for 2
AVD  found in both cases 

were 79 and 110, respectively. Notice that in Figure 3.7, since the 2
AVD  domain is greater, 

the overall height of the dpdf is smaller than that in Figure 3.6. The probability of finding 

one value for 2
AVD  that is smaller than a certain fixed threshold reduces when the dpdf 

shortens. 

As previously exposed, since the 2
AVD  determined for a path with d = dfree will be 

even better for another path with d > dfree, Figures 3.6 and 3.7 can be used to study the 

association of a 64-QAM modulator with different convolutional codes presenting 

dfree = 3 (Figure 3.6) and dfree = 4 (Figure 3.7). For instance, if 2 2/ 20AVD A =  is chosen for 

improving 2 ( )P d , by entering the data of the dpdf’s in Equation (3.59), the probabilities 

that the improved upper bound covers all data transmission would be 95.0% for dfree = 3, 

and 97.2% for dfree = 4.  Notice that for the first case, in which dfree = 3, there are 12 

values in the horizontal axis of the dpdf in Figure 3.6 that precedes 20, whereas for 

dfree = 4, this number increases to 16. 
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Figure 3.7. Dpdf of 2
AVD  for a 64-QAM Rectangular Constellation, d = 4, and 
Conservative Choice of C0. 

 

Although there are 16 values for 2 2/AVD A  smaller than 20 to be considered in 

Figure 3.7, these values are very small due to the large possibilities of combining 63 

symbols in 4 slots ( 463 15,752,961= ). Figure 3.8 shows a zoom-in on the first values of 

the dpdf in Figure 3.7. Notice how small the 16 values are. The sum of all of them is 

0.028, and when applied to Equation (3.59), can result in 97.2%. If, instead of 97.2%, the 

specification for the upper bound was 99.5% of the data, a value of 2 213AVD A=  would be 

appropriate when looking up the dpdf in Figure 3.8.  

110 different points 
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Figure 3.8. Initial Part of the dpdf of 2
AVD  for a 64-QAM Rectangular Constellation, 

d = 4, and Conservative Choice of C0. 

 

As a final comment on this topic, this method of improving the upper bound 

for 2 ( )P d results in breaking the complete independence between ( )dβ and 2 ( )P d . 

Although most of the independence remains, when considerations are made about dfree 

applied to 2 ( )P d , they create an implicit link between the convolutional code and the 

demodulation scheme. In conclusion, the methodology herein exposed is directly 

dependent on the specific communication system being considered and not solely on an 

isolated 2 ( )P d . 
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D. PERFORMANCE ANALYSIS 

Finding good convolutional codes is not easy. They are normally found by 

computational researches on a try-and-error basis. The goal of this Section is not to find 

the best convolutional code that can be applied to a certain M-QAM modulator, but to 

demonstrate how the concepts developed thus far in this thesis can be applied to measure 

realistic performances in communication systems when combining a certain M-QAM 

modulator with a certain convolutional code. It is much more a question of showing 

analysis tools and overall behaviors than obtaining the best results. A straightforward 

way to do that is to run performance analyses over a limited number of interesting target 

systems. 

The focus will be concentrated on three convolutional codes and four different M-

QAM modulators that will be presented in the following order for didactic purposes: 16-

QAM, 64-QAM, BPSK, and QPSK. The codes were chosen due to either being well 

known or by having demonstrated outstanding performance during computational 

research. The plots of Pb versus Eb/N0 were obtained from simulations taking into account 

the methods for determining ( )dβ and the formulas for finding the upper bound of 2 ( )P d  

and Pb presented thus far in this chapter. The improvements in the upper bound of 2 ( )P d , 

the subject of the latter Section, were also part of the results. Although the BPSK channel 

is not a non-binary channel, it has been included here for the purpose of comparison since 

its characteristics are usually well known to the reader and very well cited in the 

literature. 

Sometimes the uncoded 8-QAM performance will be necessary for comparison 

between the options of sending coded or uncoded symbols through the channel. The 8-

QAM modulator will then be assumed to have the constellation in Figure 3.9, which leads 

to the following expression for its uncoded performance: 

 ( )
2
min

0

2 2
3 2 3b b

D
P Q Q

N
γ

 
= = 

 
 

. (3.60) 
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Figure 3.9. The 8-QAM Rectangular Constellation 

 

The three convolutional codes are the following: 

• (2k, k) dual-k that is appropriate to work with BPSK, QPSK, 16-QAM and 64-QAM, 
or in general, with all 22 k - QAM, and has its ( )dβ determined by the formula 
developed in the Appendix 

• (2, 1) IEEE 802.11a code that can be applied to BPSK, QPSK, 16-QAM and 64-
QAM, widely employed in wireless networks. The correspondent ( )dβ ’s for each 
modulation scheme was determined by the numerical method discussed in Section 
II.D.2, and shown in Table 2.1 

• (4, 3) CHL code from Ref. [7]. This code will be referenced from this point forward 
as Chang-Hwang-Lin, or CHL for short, in honor of the three discoverers. It is 
appropriate for 16-QAM only and counts on having, as an advantage, a relatively 
high code rate compared with the other two (2, 1) codes. By this latter characteristic, 
CHL does not compromise the maximum bit rate capacity available in the channel 
very much. Table 3.1 depicts the main characteristics of this code, where G is the 
octal format representation of the transfer- function matrix G(D) as defined in Chapter 
II. 

Ψ1(t) 

Ψ2(t) 
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( )dβ  
K dfree 

i = 0 i = 1 i = 2 i = 3 i = 4 

4 4 91 3371 64050 1243923 22648788 

8

07 10 11 14

15 04 06 10
00 11 02 16

G
 
 =  
 
 

 

 
Table 3.1. Main Characteristics of the (4, 3) Chang-Hwang-Lin Code Employed in 

this Thesis. 

 

1. 16-QAM with Dual-4, IEEE 802.11a and CHL 

 

Figure 3.10 shows the various performances for a 16-QAM with a dual-4 encoder. 

The performance of an uncoded QPSK channel was also plotted because it represents an 

alternative to sending the same 2 information bits contained in the 4-bit 16-QAM coded 

symbol during one transmission. Recall tha t Rc = 1/2 for dual-k codes. Keeping this 

alternative in mind, the first goal of a good convolutional code with Rc = 1/2 applied to a 

16-QAM channel is to exceed the performance of the uncoded QPSK. 

Looking at Figure 3.10, the dual-4 is able to exceed the uncoded QPSK during 

94.4% to 97.5% of all transmissions for values of ?b greater than 8 dB. Notice that the 

consideration of only the first upper bound corresponding to Pcov = 100% would at once 

discard the dual-4 code. 



 55 

 
Figure 3.10. 16-QAM with (8, 4) Dual-4 and Viterbi Soft-Decision Decoding and 

Improvements in the Upper Bound. 

 

Another interesting behavior to note is how fast the upper bound tightens itself at 

the first improvement steps. Although the amount of reduction on Pcov increases during 

the last improvements, the corresponding variation in the upper bound becomes smaller. 

This behavior can be explained by looking at the dpdf of the 16-QAM constellation for 

dfree = 4 in Figure 3.4. The first point corresponds to a small probability that makes Pcov 

vary just a few small steps. On the other hand, the subsequent improvements reflect at 

least in 3% of the changes in Pcov. The analysis of the dpdf determines what can be 

expected from the improvements. 

Table 3.2 shows the correspondence between the values of 2
minD  and Pcov 

considered for each improvement in Pb. These values can be achieved using the dpdf in 

Figure 3.4 and the method described in Section III.C.3. The first four were used in the 

plot in Figure 3.10. 
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Pcov (%) 
 

100 99.5 97.4 94.4 91.4 
2
AVD / A2 4 5 6 7 8 

 
Table 3.2. Values of 2

AVD / A2 Correspondent to Different Probabilities of Coverage 
(Pcov) for a 16-QAM Rectangular Constellation Using Convolutional Code with dfree = 4. 

 

Finally, notice that due to improvements, it is possible to tighten the original 

upper bound up to 2.5 dB and still have a reliable curve that covers 94.4 % of all data in 

the channel. 

Figure 3.11 illustrates the behavior of the (2, 1) IEEE 802.11a code when applied 

to a 16-QAM channel. In general, the behavior is very close to the dual-4, being slightly 

worse.  

 
Figure 3.11. 16-QAM with (2, 1) IEEE 802.11a Convolutional Code, Viterbi Soft-

Decision Decoding, and Improvements in the Upper Bound. 
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All the considerations made for the dual-4 are still valid except that only one bit is shifted 

per time into the (2, 1) IEEE 802.11a encoder contrasting with the four bits of the dual-4. 

Figure 3.12 depicts the behavior of the (4, 3) CHL code working with the same 

16-QAM channel. The performance now is almost 1.5 dB better than the other two cases. 

Considering that this code consumes only 25% of the channel bandwidth in contrast to 

the 50% achieved by the other two, the obtained result becomes much better. In fact, 

notice that the basis for the performance comparison in Figure 3.12 is the uncoded 8-

QAM curve instead of the uncoded 4-QAM used on both (8, 4) dual-4 and (2, 1) IEEE 

802.11a. The difference occurs because now there are three information bits per 

transmitted coded symbol instead of two, which could be done through an uncoded 8-

QAM channel. 

The relative step improvements in the upper bound when applying the (4, 3) CHL 

can be seen to be the same in Figure 3.12 as those obtained in Figures 3.10 and 3.11. As 

was demonstrated previously, the effect of the convolutional code on those improvements 

depends only on its dfree. Since, coincidently, all three codes exposed here present dfree = 4 

when working with the 16-QAM channel, the improvement steps will be exactly the same 

for all of them. 

Clearly, the best choice among all three codes to associate it with a 16-QAM 

modulator falls to the (4, 3) CHL. When trying to express this performance in one single 

metric, note in Figure 3.12 that only 8 dB are required for the SNR to achieve Pb = 10-5 

for 94.4% of the data. It represents a gain of 4.5 dB when compared with the uncoded 8-

QAM at the expense of only 25% of bandwidth loss. 

Another remarkable fact about (4, 3) CHL code is its K = 4, considered a relative 

small constraint length for good codes. Just for the sake of comparison, IEEE 802.11a 

code presents K = 7, although its shift registers size is equal to 1, which is smaller than 3 

used by the (4, 3) CHL. 
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Figure 3.12. 16-QAM with (4, 3) Chang-Hwang-Lin Convolutional Code, Viterbi Soft-

Decision Decoding, and Improvements in the Upper Bound. 

 

2. 64-QAM with Dual-6 and IEEE 802.11a 

 

Figure 3.13 illustrates some performances of a 64-QAM channel associated with a 

dual-6 encoder. In this case, since Rc = 1/2 and q = 6 bits, the alternative uncoded channel 

used for comparison is the 8-QAM. 

Just looking at the performance of the upper bound that covers 100% of the data 

in the channel clearly indicates that the dual-6 code does not lead to significant 

enhancements over the uncoded 64-QAM channel. On the contrary, the small gain it 

provides is much less than the choice of an uncoded 8-QAM. However, considering the 

improved upper bounds, this apparently weak dual-6 code becomes a very interesting 

option. Notice especially the first improved upper bound that covers 99.6% of the data. It 

represents about 5 dB in the coding gain analysis along a range that practically goes 

through all possible sequences in the channel. In fact, considering only the curve that 

Pcov = 99.6%, it overcomes most of the gain obtained if choosing the uncoded 8-QAM. 
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The characteristic of the large shift in the upper bound for 64-QAM when 

compared with 16-QAM is very comprehensible when analyzing the dpdf of 2
AVD  for 

both constellations shown in Figures 3.4 and 3.7, respectively. As explained in Section 

III.C.3, when commenting about Figure 3.7, the greater granularity presented by the dpdf 

of 64-QAM points out to a 2
AVD  for covering 99.6 % of all possible sequences much 

farther from 4A2 ( 2
AVD  for 100%) than this same parameter for 16-QAM. In other words, 

the 2
AVD  that makes Pcov = 99.6% is much greater for the 64-QAM than for the 16-QAM 

constellation, even though both present 4A2 as their minimum possible value for 2
AVD . 

The farther the considered 2
AVD  is from the minimum, the larger the first improved upper 

bound will shift from the original one. 

 
Figure 3.13. 64-QAM with (12, 6) Dual-6 Convolutional Code, Viterbi Soft-Decision 

Decoding, and Improvements in the Upper Bound. 

 

Table 3.3 shows the correspondence between values of 2
AVD  chosen to be 2

minD , 

and Pcov for each improvement on Pb. 
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Pcov (%) 
 

100 99.6 99.0 97.2 95.0 
2
AVD / A2 4 13 16 20 23 

 
Table 3.3. Values of 2

AVD /A2 Correspondent to Different Probabilities of Coverage 
(Pcov) for a 64-QAM Rectangular Constellation Using Convolutional Code with dfree = 4. 

 

Finally, it is remarkable how the dual-6 code demonstrates an excellent 

performance with 64-QAM after all improvements. Notice on the curve for Pcov = 95% 

that it requires only 8.5 dB to provide a bit error rate of 10-5. This performance is 

comparable with that shown for 16-QAM with (4, 3) CHL code in the latter Section.  

Furthermore, this result is enhanced by the fact that the dual-6 could be categorized as a 

poor code to work with 64-QAM when analyzing only the most conservative upper 

bound, which would lead to a complete distortion of a realistic behavior. 

Figure 3.14 shows the behavior of the (2, 1) IEEE 802.11a code when applied to a 

64-QAM channel. The overall performance of this code can be seen to be approximately 

2 dB worse than the dual-6 when considering the improved upper bounds. 

The same comments related to the shifts on the improved upper bounds made for 

dual-6 is also applicable for the (2, 1) IEEE 802.11a. However, notice that dfree now is 3 

instead of 4. Consequently, the dpdf for this case is the one shown in Figure 3.6, which 

presents less granularity than that in Figure 3.7 for dfree = 4. Less granularity means 

smaller distances from 4A2 for the 2
AVD  related with the first improved upper bound, 

which leads to a smaller shift. In fact, notice that the first shift in the upper bound for the 

(2, 1) IEEE 802.11a is 4 dB and reaches Pcov = 99.4%, while approximately this same 

parameter for the dual-6 code reaches 5 dB. 

The small dfree presented by the (2, 1) IEEE 802.11a when associated with 64-

QAM can be pointed out to be the cause of this code being outperformed by the dual-6. 

However, notice that for Pcov = 95% the (2, 1) IEEE 802.11a code does not disappoint, 
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achieving 8 dB of coding gain from the uncoded 16-QAM curve at Pb = 10-5, and 4.5 dB 

when compared with the uncoded 8-QAM. 

 
Figure 3.14. 64-QAM with (2, 1) IEEE 802.11a Convolutional Code, Viterbi Soft-

Decision Decoding, and Improvements in the Upper Bound. 

 

Figure 3.15 again demonstrates the performance of the two previously discussed 

codes but are now plotted together and only for the most conservative upper bound. 

Clearly, it can be seen that the dual-6 is better than the IEEE 802.11a. Moreover, a 

performance analysis based only on these plots would lead to the discarding of both 

codes in favor of the uncoded 8-QAM option, which was seen to be a wrong conclusion. 

This last fact highlights the great usefulness of the upper bound in improving 

methodology for large constellations. The larger the constellation and the dfree, the better 

will be the improved upper bounds. 
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Figure 3.15. 64-QAM with (12, 6) Dual-6 and (2, 1) IEEE 802.11a Convolutional 

Codes for Pcov = 100% Using Viterbi Soft-Decision Decoding. 

 

3. BPSK with Dual-1 and IEEE 802.11a 

 

Figure 3.16 reports the performance of the (2, 1) dual-1 and (2, 1) IEEE 802.11a 

codes in a BPSK channel. In this case, improvements in the upper bound are no longer 

possible due to the nonexistence of a possible dpdf of 2
AVD  for BPSK. Recall that BPSK 

presents only two symbols and, regardless of the symbol chosen to be C0, there is only 

one option left for a possible erroneous coded symbol, which leads to 2 2 2
min 4AVD D A= = , 

for every dfree. 

Clearly, it can be seen that the IEEE 802.11a is much better than the dual-6 in 

providing almost twice the coding gain in dB. Notice that the relative performance here is 

the opposite of the 16-QAM and 64-QAM cases for the same analysis. Recall from Table 

2.1 that dfree for the IEEE 802.11a decreases as M increases, obtaining the maximum 

value of 10 exactly for BPSK. Whereas, for the dual-k code, since the number of memory 
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elements in the shift-registers accompany the increasing of M, its dfree remains constant at 

4. When dfree is higher for the IEEE 802.11a code than for the dual-k, the first code 

outperforms the second. 

 
Figure 3.16. BPSK with (2, 1) Dual-1 and (2, 1) IEEE 802.11a Convolutional Codes 

Using Viterbi Soft-Decision Decoding. 

 

4. QPSK with Dual-2 and IEEE 802.11a 

 

The QPSK modulation is midway between BPSK and 16-QAM in terms of the 

possibility of improvements. Contrary to BPSK, it can present a dpdf of 2
AVD  but is not as 

prolific as a 16 or 64-QAM. The QPSK constellation is very symmetrical, which allows 

any choice of the C0 symbol to have the same result. In other words, there is no 

conservative choice for C0 in the QPSK rectangular constellation. Also, once C0 is 

chosen, among the other three remaining symbols, only one of them presents an 

Euclidean distance different than the minimum, which allows the existence of a timid 

dpdf that can only obtain higher granularities if d becomes too large. Figure 3.17 depicts 
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the dpdf’s for the values of dfree equals to 4 and 6, corresponding to the dual-2 and IEEE 

802.11a codes, respectively. 

The dpdf for d = 4 can be seen to have very small granularity presenting only five 

points. Therefore, the minimum value for 2
AVD , 4A2, can be present in 20% of the possible 

sequences in the channel. This means that the minimum improvement achievable for the 

upper bound will embrace only 80% of the possible transmission, which can considerably 

damage theoretical performance forecasts. On the other hand, when d increases just a 

little bit and becomes six, the dpdf granularity increases to seven points and the minimum 

improvement can now cover 91.2% of the data. Notice in Figure 3.17 that there is 8.8% 

of probability of happening the minimum average distance for d = 6. Although, 

Pcov = 91.2% is much less than the minimum of 95% considered before for 16-QAM and 

64-QAM, it is possible to imagine a design considering this value if it yields considerable 

improvement in the upper bound. The restrictions discussed in this paragraph clearly 

demonstrate how the efficiency of the upper bound improvement directly depends on the 

magnitude of M. 

 

Figure 3.17. Dpdf of 2
AVD  for a QPSK Rectangular Constellation Considering Two 

Values of d, 4 and 6. 

d = 4:   5 points 
d = 6:   7 points 
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As a result of the previous issues about QPSK dpdf’s, the performance analysis 

does not consider improvements for the upper bound of the dual-2 code because it 

presents dfree = 4. The only improvement to consider is for the IEEE 802.11a code, which 

shows dfree = 6 when working with QPSK, as can be seen in Table 2.1. Actually, this 

procedure is limited to a first step in which 2 24.6667AVD A=  that corresponds to 

Pcov = 91.2%. Figure 3.18 illustrates the QPSK performance analysis for the two 

considered codes. Since Rc = 1/2 for both codes, the alternative uncoded channel that 

QPSK can compare with is the BPSK, which can be seen to perform the same as the 

uncoded QPSK. In fact, QPSK works like BPSK operating in two completely 

independent orthogonal channels, which explains the identity of these metrics. This 

means, in practice, that there is no alternative uncoded channel to use instead of coded 

QPSK. Consequently, any possible coding gain will be very welcome. The reader can see 

how to this point the QPSK case differs from the 16-QAM and 64-QAM, presenting at 

the same time, characteristics of a binary and a non-binary modulation technique. 

Looking at Figure 3.18 for Pcov = 100%, the IEEE 802.11a code can be seen to 

provide more coding gain than the dual-2 code, even though the difference between these 

gains is now smaller than for the BPSK case. Notice that the dfree for the IEEE 802.11a 

code drops from ten to six when the modulation changes from BPSK to QPSK. However, 

six is still greater than four, dfree for the dual-2 code, pushing IEEE 802.11a to overcome 

the performance of dual-2 for QPSK. 

Concerning the improvement in the upper bound for the IEEE 802.11a code in 

Figure 3.18, the resultant shift can be seen to be very small, almost 0.7 dB. This is 

justified because 2
AVD ( 24.6667A= , for this case) is too close to the minimum distance 

4A2. The consequent loss in Pcov does not compensate for this small improvement and the 

best decision should be to disregard this curve. On the other hand, for the performance of 

IEEE 802.11a with Pcov = 100%, the coding gain at Pb = 10-5 can be seen to be 4 dB, 

which is less than the 5.5 dB obtained for BPSK, but still a good coding gain. Notice that 

the dual-2 code provides only 2.5 dB for this gain. 
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Figure 3.18. QPSK with (4, 2) Dual-2 and (2, 1) IEEE 802.11a Convolutional Codes 

Using Viterbi Soft-Decision Decoding. 

 

E. SUMMARY 

Chapter III dealt only with the pure AWGN scenario, deriving the upper bound of 

2 ( )P d for any M-ary coherent demodulator followed by a SDD. This upper bound was 

customized for M-QAM and generated a model for determining Pb for any M-QAM 

modulation with SDD. The chapter also demonstrated how to take advantage of the large 

number of symbols existing in M-QAM and improve Pb in an attempt to tighten it to 

more realistic data in the channel. As a practical application, the performance analyses of 

16-QAM, 64-QAM, BPSK and QPSK, associated with up to three different convolutional 

codes were shown.  Chapter IV will illustrate how to adapt all results obtained in this 

chapter to derive Pb for Nakagami fading channels. 
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IV. PERFORMANCE ANALYSIS IN A NAKAGAMI-M CHANNEL 

All issues discussed in Chapter III only account for one type of random variable 

in the receiving process, which is related to the AWGN.  Although this approach is 

suitable for many types of communication links, such as free space and wired 

communications, unfortunately it does not completely satisfy the requirements of some of 

the most common applications. Whenever obstacles are present between the transmitter 

and the receiver that can create scattering and multipath, the communication engineer 

must consider the effect of more random variables in the channel model.  This is the case 

with wireless networks and wireless telephony, in which walls, buildings, cars, trees and 

all sort of obstacles can be between the two communicating points.  Other examples are 

the radio ionospheric communications in the HF band and ionospheric forward scatter in 

VHF.  In these cases, the ionosphere is responsible for reflecting and scattering the 

signal, and allowing it to reach the receiver when there is no line-of-sight (LOS).  This 

chapter makes a parallel distinction between the pure AWGN scenario studied in Chapter 

III and the scenario in which all the effects of midway elements can be modeled by a 

Nakagami-m fading channel. 

 

A. NAKAGAMI-M CHANNEL 

Many elements can affect signal propagation, such as multipath, Doppler effects, 

shadowing by surrounding objects and changes in environmental characteristics.  The 

final result is a channel that has a randomly time variant impulse response.  In other 

words, if the same impulse is transmitted successive times, the correspondent received 

signals will be different each time.  The differences can be in the number, in the relative 

delays and in the shape of the received signals related to each transmitted impulse.  Such 

channels are named time-variant channels and can be categorized in terms of the 

frequency selectivity and fading characteristics they introduce in the signal. 

The best model for a certain communication link depends on its bandwidth and 

the environment in which the communication end-points will operate.  A large number of 

channels present the characteristic of non-distorting signal harmonics, i.e., the frequency 
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response of the channel is flat for the entire bandwidth.  Also, the fading conditions in 

those channels vary so slowly during a symbol interval (TS) that the resultant attenuation 

can be considered constant along each TS. Even being constant during a certain TS, notice 

that the fading conditions can vary from symbol to symbol.  Those channels form a 

category named frequency-nonselective slowly fading channels (or flat-slow-fading 

channels) and result in a multiplicative distortion of the transmitted signal by a random 

variable attenuation factor α  as in Ref. [3]. 

The Nakagami-m channel to be considered in this thesis is a frequency non-

selective slowly fading channel in which α  is characterized statistically by a Nakagami-

m distribution and has 2E 1α  =  .  It is the best statistical model for this category of 

channels and is applicable in many communication systems that work under fading 

effects, such as wireless networks and wireless telephony.  A Nakagami-m channel is the 

best fit for data signals received in urban radio multipath channels [3], but it also 

embraces other models in special cases such as Rayleigh, utilized when there is no LOS, 

and Ricean distributed, appropriate in the presence of LOS.  Notice that the channel noise 

remains the same AWGN as previously seen.  Therefore, in the subsequent analyses, two 

types of random variables will be considered, α , that follows the Nakagami-m 

distribution, and nxi, for 1i = and 2, that follows the Gaussian distribution and represents 

the two components of the AWGN that are present in the two orthogonal channels of the 

coherent M-QAM demodulator. 

Applying the Nakagami-m distribution [3] to α  leads to 

 ( )
2

2E(2 1)
2

2
( ) E

m m

mm
f e

m

α
α

α α α
α

−
 −  

 
 =
 Γ    

, (4.1) 

where ( )mΓ  is the Gamma function, which is defined as 

 ( )1

0

( ) , 0m tm t e dt m
∞

− −Γ = >∫ . 
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The parameter m is called fading figure and can be seen as the ratio 
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2 2
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,
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m m

α

α α

  = ≥
  −   

. (4.2) 

Notice that the denominator of m is the variance of the second moment of α . 

Recall that 

 2E 1α  =  . (4.3) 

Substituting Equation (4.3) in Equations (4.1) and (4.2) yields 

 ( ) ( )
2(2 1)2

( )
m m mf m e

m
α

α α α − −=
Γ

, (4.4) 

and 

 
( )2

1 1
,

2E 1
m m

α
= ≥

 − 
. (4.5) 

Notice in Equation (4.4) that when 1m = , ( )fα α reduces to 
2

2 e αα − , which is a 

Rayleigh distribution.  Also, when 2α  remains constant and equal to 1 for every received 

symbol, no variance exists in the attenuation factor, which causes Equa tion (4.5) to obtain 

m = ∞ .  This is what characterizes a no fading scenario in which only AWGN affects the 

receiving process.  All the plots obtained in Chapter III are included in this case. 

As stated previously, the attenuation factor α  imposes a multiplicative distortion 

in the transmitted signal in the cases of frequency-nonselective slowly fading channels.  

Thus, the new received signal can be represented as 

 ( ) ( ) ( )r t s t n tα= + , (4.6) 

where s(t) is the transmitted signal component, and n(t) characterizes the AWGN. 

By Equation (4.6), the average signal energy contained in one received symbol in 

the presence of attenuation factor α  can be expressed as 

 2
S Sαε α ε= , (4.7) 
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where Sε is the average signal energy contained in one received symbol if no attenuation 

exists in the channel. 

Since the noise remains the same, Equation (4.7) leads to 

 2
S Sαγ α γ= , (4.8) 

where Sαγ  is the average SNR in a symbol for a given α  and Sγ  is the average SNR in a 

symbol when there is no attenuation. 

Also, the overall average SNR in a symbol can be expressed as 

 2ES S Sαγ α γ γ = =  . (4.9) 

Substituting Equation (4.9) in (4.8), results in 

 2
S Sα αγ α γ= . (4.10) 

Since 0α ≥ , Equation (4.10) leads to a one-to-one mapping between α  and Sαγ .  

Hence, the pdf of Sαγ  can be straightforwardly obtained by 

 ( ) ( ) ( )1

1
/S S

S f
S

f f
d dα α

γ α α α γ
α

γ α
γ α −=

= . (4.11) 

Working with Equation (4.10), the following relationships stand 
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= , (4.12) 

and 
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Applying Equations (4.4), (4.12) and (4.13) into (4.11) leads to 
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The interpretation of the latter equation can be as follows.  If a sequence of a 

same symbol is sent in a Nakagami-m channel with fading figure m, the set of all SNR of 

each of the equivalent received symbols, Sαγ , would constitute a random variable that 

varies accordingly to the pdf provided by Equation (4.14).  Notice that the reason in the 

previous description for a same symbol being sent is only to simplify the understanding.  

Recall that in M-QAM modulation, different symbols can have different amplitudes 

leading to different SNR.  This explains the application of the term “average” for the 

definition of Sαγ  in Equation (4.8).  Also note that even though Sαγ  is a random variable, 

Sαγ  in Equation (4.14) is a deterministic value equivalent to the SNR that those symbols 

would obtain in the absence of attenuation in the channel. 

 

B. PROBABILITY OF BIT ERROR FOR UNCODED M-QAM IN 
NAKAGAMI-M CHANNEL 

The performance analyses presented in this thesis always compare the probability 

of bit error Pb of a M-QAM modulation that makes use of a certain convolutional FEC 

versus the option of sending uncoded symbols through the same channel.  Thus, in order 

to study the M-QAM performances in a Nakagami-m channel, it is necessary to obtain 

the corresponding expressions relating Pb with the average SNR per information bit, 

called bγ .  Recall that in the case of Nakagami-m channels, since each symbol can be 

received with different attenuations, the SNR per information bit, bγ , is a random 

variable that can be expressed as a function of Sαγ .  Therefore, in order to compare 

performances in Nakagami-m channels with those previously obtained, the average bγ  

must be used since it is a deterministic value and represents the same bγ  employed for 

the pure AWGN case.  The difference in the notations will be kept to emphasize the 

averaging reference. 

In a pure AWGN scenario, the following expressions stand for determining the 

upper bound of Pb of an optimum receiver for a M-QAM uncoded signal [3]: 
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= , (4.15) 

and 
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where q is the number of bits per symbol, PM is the probability of symbol error, MN  is the 

largest number of neighboring points that are at distance 2
minD  from any constellation 

points, and 2
minD  is the minimum Euclidean distance between signal points in the 

constellation. 

Equation (4.16) can be rewritten as 
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where Sε  is the average energy of one received coded symbol. 

Consider a Nakagami-m channel that presented a certain attenuation factor α  

applied to a received symbol and correctly compensated for by the detector, i.e., a 

specific given α .  Due to the energy issues discussed in Equation (4.7), PM can now be 

computed for this specific symbol as a function of α  by means of 
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By substituting Equation (4.8) in (4.18), PM can be expressed as a function of Sαγ  

as 
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Notice that Equation (4.19) is valid only if Sαγ  is known, i.e., this is a conditional 

PM.  In order to determine the average upper bound for PM, an integration with the pdf of 

the random variable Sαγ  is necessary and is given as 

 ( )( )
SM M S S SP P f d

αα γ α αγ γ γ
+∞

−∞
= ∫ . (4.20) 

Substituting Equations (4.19) and (4.14) in (4.20) leads to 
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  Γ 
∫ . (4.21) 

The analytical solution for this integration is not easily obtained.  However, 

following the solution given in [8] for a similar integral when analyzing the special case 

of BPSK, after a development involving Gauss’ hypergeometric function and 

Pochhammer’s Symbol, the following result can be achieved, 
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  
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  + 
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 
 
  

∏

∑
∏

i

 (4.22) 

From the previous discussion about bγ  at the beginning of this Section, notice that 

 S bqαγ γ=  (4.23) 

Substituting Equations (4.22) and (4.23) in (4.15), the final equation for Pb is 

obtained as 
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 (4.24) 

Notice that Equation (4.24) is generic and can be applied to every M-QAM 

constellation. 

In Section III.C.2 it was demonstrated that each M-QAM constellation has a 

different ratio 2
min / SD ε  that depends on M.  Also, for rectangular constellations in which 

2qM = and q is even, there is a special method in [3] for precisely determining NM that 

leads to 

 
( )4 1

M

M
N

M

−
= . (4.25) 

For odd q, NM approaches the average number of neighboring points that are at a 

distance 2
minD .  Table 4.1 summarizes the ratios 2

min / SD ε  as well as the corresponding 

NM’s for each M-QAM rectangular constellation considered in this thesis. The only 

modulator that presents odd q in Table 4.1 is the 8-QAM, which its constellation is 

depicted in Figure 3.9. 



 75 

 

Modulation M q 2
min / SD ε  NM 

BPSK 2 1 4 1 

QPSK 4 2 2 2 

8-QAM 8 3 2/3 2 

16-QAM 16 4 2/5 3 

64-QAM 64 6 2/21 3.5 

 
Table 4.1. Useful Coefficients for Rectangular M-QAM Constellations. 

 

For the special cases of rectangular constellations, the values in Table 4.1 should 

be used into Equation (4.24) to obtain the various performances.  For BPSK and QPSK, 

since ( )2
min/ / 4 1M SN q D q ε= =  for both, Equation (4.24) provides exactly the same 

expressions for these two modulations, which matches the equivalent behavior in the 

AWGN only scenario. 

Figures 4.1, 4.2 and 4.3 show the Pb for the uncoded BPSK/QPSK, 16-QAM and 

64-QAM, respectively.  When 1m = , as discussed previously, the Rayleigh distribution 

for the attenuation is observed.  Recall that small values of m means high variances of 
2α , which signifies more severe conditions of fading.  Note the presence of a tremendous 

drop in the performance for small m’s (0.5, 1 and 1.5) in all three plots.  Moreover, in this 

high fading situation, there is almost no difference in performances among BPSK/QPSK, 

16-QAM and 64-QAM.  They become more evident for larger m’s. 
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Figure 4.1. Uncoded BPSK/QPSK in Nakagami-m Channel. 

 

 
Figure 4.2. Uncoded 16-QAM in Nakagami-m Channel. 
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Figure 4.3. Uncoded 64-QAM in Nakagami-m Channel. 

 

C. PROBABILITY OF BIT ERROR FOR M-QAM WITH SDD IN 
NAKAGAMI-M CHANNEL 

The principles of determining the upper bound of the probability of bit error Pb 

for M-QAM when coding is being used in a Nakagami-m channel are exactly the same as 

previously seen for AWGN, indicating that the general equation shown below remains 

valid, 

 2

1
( ) ( )

free

b
d d

P d P d
k

β
∞

=

≤ ∑ . (4.26) 

The parameter ( )dβ , which corresponds to an exclusive characteristic of the code 

being utilized, is the same seen in Chapter II since the code itself did not change.  The 

only parameter that varies is ( )2P d .  As seen in the latter Section, Pb of an uncoded 

symbol increases tremendously for severe fading conditions (m < 1.5).  Therefore, the 

occurrence of a larger number of wrong paths should be naturally expected through the 

decoding process. 

15 20 25 30 35 ao 
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In this development, the same thread of thoughts followed in Section III.C.1 will 

be adapted to the Nakagami conditions in order to obtain the expressions for ( )2P d .  The 

final Pb will be obtained by substituting this new ( )2P d and ( )dβ , already computed in 

Chapter II, in Equation (4.26). 

 

1. Upper Bound of P2(d) for any M-ary Coherent Demodulator and SDD 
in Nakagami-m Channel 

 

Although the channel is now a frequency nonselective and slowly fading 

Nakagami channel, the receiver is still the same and is shown in Figure 3.2.  Consider the 

reception of a sequence of coded symbols that presented various attenuation factors 'sα  

correctly compensated for by the detector, i.e., consider a given sequence of 'sα .  Each 

α  is related to only one received symbol in the sequence and is considered constant 

during the entire symbol period TS. Therefore, the notation jmα  will refer to a particular 

α  that affected the reception of the mth symbol of the jth branch in the trellis.  

The expression for the received signal r(t) changes to the one expressed in 

Equation (4.6), which can be written in a vector form as 

 jm jm jm jmR C Nα= + . (4.27) 

The branch metric ( )i
jµ , associated with the jth branch of the ith path in the trellis, 

also changes slightly.  Since the decoder should compensate for the various jmα  in the 

signal during the decoding process, this new metric becomes 

 ( ) ( ) ( ) ( ) ( )
1 2 3 1 1 2 2 3 3log ({ ... } |{ ... })i i i i i

j R j j j jN j j j j j j jN jNf R R R R C C C Cµ α α α α=  

         ( )log ({ , 1, 2,.. . } |{ , 1, 2,.. . })i
R jm jm jmf R m N C m Nα= = =  

 ( ) ( )log ({ }|{ })i i
j R jm jm jmf R Cµ α= . (4.28) 

Following the same development as in Section III.C.1, Equa tion (4.28) becomes 
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 ( ) ( ) 2
1 2

1

|| ||
N

i i
j jm jm jm

m

K K R Cµ α
=

= + −∑ , (4.29) 

where 

1 2

1
log

2
K N

πσ
 =  
 

 ,     and       2 2

1
log

2
K e

σ
= −  . 

Considering the correlation metric adopted by the SDD, the probability of 

choosing a wrong path in the trellis in a pairwise comparison of the all-zero path (correct 

path) with a wrong path 1, which presents distance d from the all-zero path, given a 

certain set of jmα , is represented by ( )2P d and can now be written as 

{ }( ) (1) (0)
2 , PrjmP d CM CMα  = ≥   

 { }( ) ( )(1) 2 (0) 2
2

1 1

, Pr || || || || 0
B N

jm jm jm jm jm jm jm
j m

P d R C R Cα α α
= =

 
= − − − ≤ 

 
∑∑ . (4.30) 

Considering again that a sequence of all-zero symbols is the one being 

transmitted, hence 

 (0)
0 ,   and jmC C j m= ∀ , (4.31) 

and Equation (4.27) becomes 

 0jm jm jmR C Nα= + . (4.32) 

Substituting Equations (4.31) and (4.32) in (4.30) yields 

{ }( ) ( )(1) 2 2
2 0 0 0

1 1

, Pr || || || || 0
B N

jm jm jm jm jm jm jm jm
j m

P d C N C C N Cα α α α α
= =

 
= + − − + − ≤ 

 
∑∑  

 { }( ) ( )( )(1) 2 2
2 0

1 1

, Pr || || || || 0
B N

jm jm jm jm jm
j m

P d C C N Nα α
= =

 
= − − − ≤ 

 
∑∑  

 { }( ) ( )2 (1) 2 (1)
2 0 0

1 1

, Pr || || 2 ( ). 0
B N

jm jm jm jm jm jm
j m

P d C C C C Nα α α
= =

 
= − − − ≤ 

 
∑∑ . (4.33) 
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Recalling that (1) (0)
0jm jmC C C= = , for all combinations of j and m except for d 

symbols, Equation (4.33) can be rewritten as follows 

 { }( ) ( )2 (1) 2 (1)
2 0 0

1

, Pr || || 2 ( ) 0
d

l l l l l l
l

P d C C C C Nα α α
=

 
= − − − ≤  

∑ . (4.34) 

Expanding the noise vector in its orthogonal components in Equation (4.34) 

results in 

 { }( ) ( )2 (1) 2 (1) (1)
2 0 1 01 1 2 02 2

1

, Pr || || 2 ( ) 2 ( ) 0
d

l l l l l l l l l
l

P d C C c c n c c nα α α α
=

 
= − − − − − ≤  

∑ . (4.35) 

Notice that the set of all lα , for 1l =  to d, is considered “given” by the first 

assumption of this development.  Furthermore, the sequence of Cl
(1), for 1l =  to d, that 

compounds path 1, is also known by the decoder.  Therefore, due to nl1 and nl2 being 

independent- identical-distributed zero-mean Gaussian r.v.'s and the other terms being 

deterministic values, the left side of the inequality in Equation (4.35) can be seen to be a 

Gaussian random variable X expressed as 

 2

1 1

,
d d

l Xl
l l

X X σ
= =

 
=  

 
∑ ∑N , (4.36) 

where 

 2 (1) 2
0|| ||l l lX C Cα= − , (4.37) 

and 

( )2 2 (1) 2 (1) 2 2 2 (1) 2 2
1 01 2 02 04 ( ) ( ) 4 || ||Xl l l l l lc c c c C Cσ α σ α σ= − + − = −  

                             24 lX σ= .  (4.38) 

Here an upper bound can be established by assuming that all Cl
(1)’s, for every l, 

are equal to a worst case symbol, CW , in such a way that ( )2P d becomes the highest 

possible. 

If CW is a constant vector for every l, then Equation (4.36) becomes 
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d d

W l W l
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X C C C Cα σ α
= =

 
= − − 
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∑ ∑N . (4.39) 

In order to maximize the probability in Equation (4.35) and obtain an upper bound 

for ( )2P d , CW must be the closest symbol to C0.  The same theorem and arguments from 

Section III.C.1 can be used to demonstrate this fact.  This situation leads to 

 2 2
0 0,min|| ||WC C D− = . (4.40) 

Substituting Equation (3.26) in (3.24) and the result in Equation (4.35) yields 

 { }( ) [ ] 2 2 2 2 2
2 0,min 0,min
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, Pr 0 = Pr , 4 0
d d
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which implies 

 { }( )
2 2
0,min

1
2

0

,
2

d

l
l

l

D
P d Q

N

α
α =

 
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 =
 
  
 

∑
, (4.41) 

where the last step stands due to 2
0 / 2Nσ = . 

Notice that D0,min  can vary, depending on the C0 chosen to be the zero-symbol in 

the constellation.  Therefore, in order to guarantee that Equation (3.31) will be the real 

upper bound for a given set of 'lα , C0 should be chosen to be the one that yields 
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0,min minD D= , where Dmin is the minimum Euclidean distance in the constellation.  

Equation (3.31) can be rewritten as 

 { }( )
2 2
min

1
2

0

,
2

d

l
l

l

D
P d Q

N

α
α =

 
 
 =
 
  
 

∑
. (4.42) 

All the definitions made in this chapter related to symbol energy are still valid for 

coded symbol energy.  However, the letter “C” will be added in the notations to 

emphasize the coded symbol scenario.  The following expressions stands  

 2
lCS l CSαε α ε= , (4.43) 

 2
lCS l CSαγ α γ= , (4.44) 

 2E
lCS l CS CSαγ α γ γ = =  , (4.45) 

and 

 
lCS C bqRαγ γ=  (4.46) 

Equation (3.32) can be rearranged as 

 { }( )
2 2

2 2min min
2

1 10

,
2 2

d d
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l l CS l
l lCS CS

D D
P d Q Q

N
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D
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 
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∑ . (4.47) 

Replacing Equation (4.44) in (4.47) yields 

 { }( )
2
min

2
1

,
2l l

d

CS CS
lCS

D
P d Qα αγ γ

ε =

 
 =
 
 

∑ . (4.48) 

Assume a random variable z defined as 

 
1

l

d

CS
l

z αγ
=

= ∑ . (4.49) 
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Substituting Equation (4.49) in (4.48) leads to 

 ( )
2
min

2 ,
2 CS

D
P d z Q z

ε

 
=  

 
 

. (4.50) 

In order to determine the average upper bound for ( )2P d , an integration with the 

pdf of the random variable z is necessary and is given as 

 ( ) ( ) ( )2 2 , ZP d P d z f z dz
+∞

−∞
= ∫ . (4.51) 

Notice that z is the sum of d independent- identical-distributed random variables 

lCSαγ , which have pdf already derived in Section IV.A and equal to 
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γ γ
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−=
Γ

. (4.52) 

Following the solution in Ref. [8] for a similar development involving BPSK and 

SDD, by working with Laplace transforms, it can be demonstrated that the pdf of Z will 

be 

 ( )
( )

( 1)

( )
CS l

l

mzmd
md

Z md

CS

m
f z z e

md
αγ

αγ

−

−=
Γ

. (4.53) 

Applying Equation (4.23) in (4.53) yields 

 ( )
( )

( 1)

( )
C b

mzmd
q Rmd

Z md
C b

m
f z z e

md q R
γ

γ

−
−=

Γ
. (4.54) 

Substituting Equations (4.50) and (4.54) in (4.20) leads to 

 ( )
( )

2
( 1)min

2 2 ( )
C b

mzmd
q Rmd

md
CS C b

D m
P d Q z z e dz

md q R
γ

ε γ

−
+∞ −

−∞

 
=  

  Γ 
∫ . (4.55) 

Note how Equation (4.55) resembles Equation (4.21).  There is no difference with 

respect to the integration variable.  Consequently, the analytical solution can be obtained 

by following the steps in [8], as for Equation (4.21).  The final result can be expressed as 
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∏

i . (4.56) 

 

Due to the orthogonalities existent in the demodulating process, all the 

assumptions thus far in this Section for a bidimensional coherent demodulator are also 

valid for multi-dimensional M-ary modulations such as M-FSK.  The unidimensional 

types, such as BPSK, can be viewed as special cases that are also embraced by the 

previous development.  Consequently, Equation (4.56) can be considered a general 

formula for the upper bound of ( )2P d that can be applied to every M-ary coherent 

demodulator followed by a soft-decision Viterbi decoder in a Nakagami-m channel. 

 

2. Upper Bound of P2(d) for M-QAM and SDD in Nakagami-m Channel 

 

For the special cases of M-QAM rectangular constellations, ( )2P d can be obtained 

by simply substituting the correspondent values of Table 4.1 in Equation (4.56).  Notice 

that “ 2
min / SD ε ” in Table 4.1 can be used for 2

min / CSD ε  in Equation (4.56) since the coded 

symbol is the one that really modulates the carrier, performing the role of one regular 

symbol in uncoded systems. 
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After consulting Table 4.1, the expression ( )2
min / 4 CSD q ε  leads to the following 

values to be directly applied into Equation (4.56) for BPSK, QPSK, 8-QAM, 16-QAM, 

and 64-QAM, respectively: 1, 1, 1/2, 2/5 and 1/7.  Notice that BPSK and QPSK provide 

the same result for ( )2P d again. 

 

3. Improvements on the Upper Bound of P2(d) in Nakagami-m Channel 

 

All considerations regarding improvements on the upper bound of ( )2P d made in 

Section III.C.3 are still valid for a Nakagami-m channel.  The previous study was based 

on the nature of the constellation, the probability of transmitting some specific code 

sequences, and dfree.  There is no relation with the type of channel being used.  Therefore, 

instead of using 2
min / CSD ε  in Equation (4.56), 2 /AV CSD ε  should be employed.  The 

parameter 2
AVD  represents the square of the new average distance to be used as 2

minD . 

A practical procedure for applying a certain improvement represented by 
2 2/AVD A  can be derived as follows: 

 
2 2 2 2 2 2 22

min min min
2 2
min

/
4 4

AV AV AV AV

CS CS CS CS

D D D D D D AD
D Aε ε ε ε

= = = . (4.57) 

Equation (4.57) shows that multiplying the parameter 2
min / CSD ε  from Table 4.1 

by the desired 2 2/AVD A  and dividing the result by 4, the parameter 2 /AV CSD ε  for 

substituting 2
min / CSD ε  in Equation (4.56) is obtained. 

The same values of 2 2/AVD A  correspond to the same and already derived values 

of Pcov . 

 

D. PERFORMANCE ANALYSIS 

This Section revisits all performance analyses made in Chapter III by replacing 

the former pure AWGN scenario by a Nakagami fading channel. For this purpose, it 



 86 

utilizes all results obtained in the two latter Sections concerning the estimation of Pb for 

uncoded and coded M-QAM modulations as a function of the average signal-to-noise 

ratio per bit, bγ .  The same three convolutional codes and four M-QAM modulators are 

presented. Each plot of Pb versus bγ  is associated with a certain configuration and is 

shown for four values of m : 0.5, 1, 2, and 3. Recall that m = 0.5 represents the minimum 

value that m can assume and indicates a very severe fading condition, while m = 1 means 

a Rayleigh channel with no LOS, and m = 2 resembles a Ricean channel in which a LOS 

exists. Finally, m = 3 demonstrates a more favorable fading condition and can be 

considered a relative high value of m. 

 

1. 16-QAM with Dual-4, IEEE 802.11a and CHL 

 

Figures 4.4, 4.5, 4.6 and 4.7 show the performance of the 16-QAM in Nakagami 

fading channels for m = 3, 2, 1 and 0.5, respectively. In these figures, it is remarkable 

how large the coding gain becomes as the fading conditions worsen, reaching a value of 

more than 20 dB for m = 1 at Pb = 10-5. It is interesting to notice how close to each other 

the uncoded curves become as m decreases. When m = 0.5, the uncoded 16-QAM, 8-

QAM and QPSK curves unite themselves into a single curve. These three uncoded curves 

provide a means for comparing the performances of sending coded versus uncoded data 

through a channel that is operating at the bandwidth limit. Recall that the uncoded curve 

must be the QPSK when comparing the use of IEEE 802.11a and dual-4 codes due to 

Rc = 1/2 in both, while it changes to uncoded 8-QAM when considering the use of (4, 3) 

CHL. Although attractive in the pure AWGN scenario, the option of a smaller uncoded 

modulation becomes worthless in the Nakagami fading channel. Even considering a large 

m environment, as shown in Figure 4.4, notice that the uncoded QPSK curve does not 

interlace the coded curves as it did in the AWGN. 

Notice that the legends in Figures 4.4, 4.5, 4.6 and 4.7 display a percentage at the 

end of the CHL labels. This number indicates that an improvement in the upper bound 

was used for the correspondent curve. It represents the percentage of the total possible 
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symbol combinations that are covered by this improved upper bound, Pcov. Note, 

however, that if this percentage equals 100%, no improvements were applied. In order to 

avoid overloading the graphs with many curves that would lead to the same conclusions, 

the improvement technique was applied only for the best of the three codes, CHL, and 

limited to two steps. 

An interesting point to highlight is the maintenance of a constant step-gain for the 

improvements as the fading condition changes. As can be seen in Figures 4.4, 4.5, 4.6 

and 4.7, the average gains were about 1 dB and 2.5 dB for the two improvements and 

they remained constant in all four fading scenarios. 

 
Figure 4.4. Probability of Bit Error for 16-QAM with SDD in Nakagami Fading 

(m = 3) Channel Using IEEE 802.11a, Dual-4 and CHL Convolutional Codes. 
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Figure 4.5. Probability of Bit Error for 16-QAM with SDD in Nakagami Fading 

(m = 2) Channel Using IEEE 802.11a, Dual-4 and CHL Convolutional Codes. 

 
Figure 4.6. Probability of Bit Error for 16-QAM with SDD in Nakagami Fading 

(m = 1) Channel Using IEEE 802.11a, Dual-4 and CHL Convolutional Codes. 

D   urccor^ B-OAM 

-e- DiwH Pt = ^'2 

-    CHl.PC = ?h'4,»5% 
■■    CHI. PC =5/4,^4% 

1 '■ -  ^^- 

» 22 

It/' 

:\\ 

1 

1 1 1 

1 

L 

1     _i_   _■ 

1                             1 

1 

L 

 o. 
1" ^"■"" ■■*.,., 

■0. " 
t 
1 ^^ 

* 

"1  
L 

_]  

1           -      VI      ■ - 

10^ 

 .1  

-1 

4    LIrKQilBd 16-QAU 
u    UrKcdBilF-OAM 
"    UfKodMOPSK 

-a- DLBI-J, P4. ■ 1/? 
-p- CMU s<. ■ if*. tw% 

10^ 1 1 _ r 
 1  1  \ 1 1  

10 15 X 25 
E^,|«> 

M 3S AO 



 89 

 
Figure 4.7. Probability of Bit Error for 16-QAM with SDD in Nakagami Fading 

(m = 0.5) Channel Using IEEE 802.11a, Dual-4 and CHL Convolutional Codes. 
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the bit rate, whereas the use of either IEEE 802.11a or dual-k imposes 50% to this loss. 

Considering the pros and cons, the CHL code could also be considered the best choice 

among all three for 16-QAM in a Nakagami fading channel. 

 

2. 64-QAM with Dual-6 and IEEE 802.11a 

 

Figures 4.8, 4.9, 4.10 and 4.11 illustrate the performance of the 64-QAM 
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channels with m = 3, 2, 1 and 0.5, respectively. Notice again how large the coding gain 

becomes as the fading conditions worsen even using modulations with great M. Figures 

4.10 and 4.11 show coding gains greater than 20 dB at Pb = 10-5 for both codes 

considered.  

The dual-6 code also proved to be better than IEEE 802.11a in Nakagami 

channels, ensuring its superiority already presented in the pure AWGN scenario. For this 

reason, the dual-6 code was plotted together with two improvements in the upper bound, 

which provided a 5 and 7.5 dB of gain for the channel analysis. Once more, these gains 

kept constant for the different m's, as can be seen in each one of the corresponding 

figures. Notice also that the step gains obtained for Nakagami channels due to 

improvements are the same achieved for AWGN, which can confirm the efficiency of 

this technique even for severe fading environments operating with large M modulation 

schemes. 

 
Figure 4.8. Probability of Bit Error for 64-QAM with SDD in Nakagami Fading 

(m = 3) Channel Using IEEE 802.11a and Dual-6 Convolutional Codes. 
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Figure 4.9. Probability of Bit Error for 64-QAM with SDD in Nakagami Fading 

(m = 2) Channel Using IEEE 802.11a and Dual-6 Convolutional Codes. 

 
Figure 4.10. Probability of Bit Error for 64-QAM with SDD in Nakagami Fading 

(m = 1) Channel Using IEEE 802.11a and Dual-6 Convolutional Codes. 
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Figure 4.11. Probability of Bit Error for 64-QAM with SDD in Nakagami Fading 

(m = 0.5) Channel Using IEEE 802.11a and Dual-6 Convolutional Codes. 

 

3. BPSK and QPSK with Dual-k and IEEE 802.11a 
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AWGN scenario. No improvements are possible to BPSK, as already seen in Chapter III, 

and one improvement is shown in all four figures for QPSK operating with IEEE 802.11a 
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was again confirmed in the Nakagami channel actuating with QPSK. 
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Notice how great the IEEE 802.11a code performs with BPSK under severe 

fading conditions. In Figure 4.14, for m = 1, BPSK performance is even better than the 

one obtained for uncoded BPSK in pure AWGN. Also in Figure 4.14, IEEE 802.11a with 

QPSK and no improvement achieves almost the same performance as in pure AWGN for 

Pb = 10-5. In other words, the IEEE 802.11a code is capable of eliminating a severe 

fading effect from the channel in both BPSK and QPSK at the expense of losing half 

bandwidth. 

Another interesting behavior to highlight is the close performance maintained 

between BPSK and QPSK through all different fading conditions when operating with 

dual-k code. As the reader recalls, the dual-k code keeps 4freed = for every M, which 

greatly influences the close behavior previously cited. On the other hand, the IEEE 

802.11a code varies its dfree according to Table 2.1. Since its dfree becomes smaller as M 

increases, the performance also decreases. 

 
Figure 4.12. Probability of Bit Error for BPSK and QPSK with SDD in Nakagami 

Fading (m = 3) Channel Using IEEE 802.11a and Dual-k Convolutional Codes. 
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Figure 4.13. Probability of Bit Error for BPSK and QPSK with SDD in Nakagami 

Fading (m = 2) Channel Using IEEE 802.11a and Dual-k Convolutional Codes. 

 
Figure 4.14. Probability of Bit Error for BPSK and QPSK with SDD in Nakagami 

Fading (m = 1) Channel Using IEEE 802.11a and Dual-k Convolutional Codes. 
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Figure 4.15. Probability of Bit Error for BPSK and QPSK with SDD in Nakagami 

Fading (m = 0.5) Channel Using IEEE 802.11a and Dual-k Convolutional Codes. 
 

E. SUMMARY 
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proposed for this thesis were achieved, leaving to the next chapter the task of 

summarizing all results. 
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V. CONCLUSIONS AND FUTURE WORK 

Many design tools and two analytical models were developed in this thesis. They 

have a general scope of applicability much larger than the special case of communication 

systems that make use of M-QAM modulations with Viterbi Soft-Decision decoding. The 

main conclusions of each of those tools and models will now be summarized per chapter 

together with a suggestion for future work at the end. 

 

A. CONCLUSIONS  

In Chapter II, a numerical method for determining the ( )dβ spectrum of any 

convolutional code was provided. This method turns into a general tool that can be 

applied to every convolutional code. As a specific application, it was shown how to 

adapt ( )dβ spectra obtained for binary convolutional codes to be used in many M-QAM 

modulation. The special case of the IEEE 802.11a code was analyzed and a table with its 

various ( )dβ spectra was presented. It is interesting to notice how its dfree associated with 

each M-QAM modulation decays as M increases. For instance, the use of IEEE 802.11a 

convolutional code with BPSK leads to a 10freed = , whereas this value drops to 3 when 

the same code operates with 64-QAM. 

In Chapter III, a model for studying just the case AWGN channels was created. A 

simple formula for the upper bound of 2 ( )P d  for any M-ary coherent demodulator 

followed by a SDD was analytically derived. This formula is valid for M-QAM and also 

for the cases of orthogonal modulations such as M-FSK. A technique that improves the 

upper bound of 2 ( )P d trying to tighten it to realistic data was shown. The possibilities of 

application and the efficiency of this technique were demonstrated depending on how 

large M is. As an example of extreme cases, no improvements are admitted to BPSK, 

while a realistic gain of up to 7.5 dB was achieved for 64-QAM. The performance 

analyses of 16-QAM, 64-QAM, BPSK and QPSK, associated with up to three different 

convolutional codes were shown. Those analyses demonstrated that the results for BPSK 

differ from QPSK when considering the different ( )dβ spectra they present for the same 



 98 

code. The IEEE 802.11a code demonstrates itself better than dual-k code only when 

associated with BPSK and QPSK. When using 16-QAM and 64-QAM, the dual-k code 

shows more efficiency. The CHL code demonstrates excellent performance with 16-

QAM especially considering that it consumes only half the bandwidth consumed by dual-

k and IEEE 802.11a codes. Its coding gain reached 5.5 dB at 510bP −= when considering 

the use of improvements on the upper bound. 

In Chapter IV, the model for AWGN channels from Chapter III was expanded for 

the Nakagami fading channels, originating the second model of this thesis. A formula for 

the upper bound of 2 ( )P d for any M-ary coherent demodulator followed by a SDD was 

analytically derived for Nakagami fading channels, showing itself valid for both M-QAM 

and for the cases of orthogonal modulations such as M-FSK. The performance analyses 

of 16-QAM, 64-QAM, BPSK and QPSK were repeated for the new model utilizing four 

fading figures m : 3, 2, 1 and 0.5. Considering all different configurations of modulations 

and codes, the same relative behavior among performances for the AWGN scenario was 

confirmed in Nakagami fading channels. As a general characteristic, convolutional codes 

associated to M-QAM with SDD demonstrated large coding gains, greater than 20 dB at 
510bP −= , under severe fading conditions. Also, this gain increases as the fading becomes 

worse. Concerning the upper bound improvements, they generate relative gains that 

maintain themselves constant as the fading figure of the channel varies. Additionally, as 

could be expected, those gains are equal to those provided in the pure AWGN scenario. 

The uncoded channels of the four studied modulations were also depicted and clearly 

demonstrated a trend for the same performances, no matter which M-QAM is being used, 

when operating in severe fading conditions ( 1.5m ≤ ). 

In the Appendix, a general formula to determine ( )dβ spectra of dual-k codes is 

analytically derived. 
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B. FUTURE WORK  

Since the topics in this thesis have general application, many previous studies can 

now be revisited using the developed models in order to extend their results for the cases 

of M-QAM with SDD such as the performance analysis of OFDM in Reference [8]. 
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APPENDIX.  DERIVATION OF ( )dβ  FOR DUAL-K 
CONVOLUTIONAL CODES  

The dual-k codes compound a class of nonbinary convolutional codes that are 

easily decoded by means of the Viterbi algorithm using either soft-decision or hard-

decision decoding. It consists of two ( 2K = ) k-bit shift-register stages and 2n k=  

function generators. Its output is two k-bit symbols for an input of one k-bit symbols 

( 1 / 2CR = ). The general form for the transfer function of a rate 1/2 dual-k code is 

expressed as 

 
( )

4 2

2

(2 1)
( , , )

1 2 2 3

k

k

D J N
T D N J

NJ D D

−
=

 − + − 
,  

where D and N are defined in Section II.B.4 and the exponent on J is equal to the number 

of branches in a given path [3].  

The expression for ( ),T D N can be obtained by making 1J = in the formula for 

( ), ,T D N J , 

 
( )

4

2

(2 1)
( , )

1 2 2 3

k

k

D N
T D N

N D D

−
=

 − + − 
. (A.1) 

For the first step, ( ),T D N will be expanded into an infinite series in powers of D 

and N. Assume 

 2 1 ( 2) 2 3k kA A= − ⇒ − = −  , (A.2) 

and rewrite Equation (A.1) as 

 
( )
4

2
( , )

1 2 2
AD N

T D N
N D A D

=
 − + − 

. (A.3) 

Let 

 2B A= − , (A.4) 
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so, Equation (A.3) can be developed as 
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Assuming that 

 4 ( 4)x j i i x j= + + ⇒ = − + , (A.6) 

Equation (A.5) becomes 

 ( )
2 4

( 4) (2 4) 1

0 4

( , ) 2
( 4)

j
x j j x x j

j x j

j
T D N A B D N

x j

+∞
− + − + +

= = +

  
=   − +  

∑ ∑ . (A.7) 

Considering 

 ( )( 4 ) (2 4)( , ) 2
( 4)

x j j xj
c j x B

x j
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 (A.8) 

applied to Equation (A.7), the following can be obtained, 
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which yields 
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where  

2
(even )

2( )
1

(odd ).
2

d
d

f d
d

d

−
=  −


 

The second step is to find the partial derivative of Equation (A.9) with respect to 

N, and make N equal to 1 afterwards in order to obtain another series in powers of D 

only. 
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hence 
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As can be seen, the expression for ( )dβ turns out to be the equation that defines 

the coefficients of this last series as a function of d. Hence, applying Equations (A.2), 

(A.4)and (A.8) to Equation (A.10) the following is obtained: 

 
3

( ( 1) 4) (2( 1) 4)

( )

1
( ) (2 1) (2 3) 2

( 1) 4

d
k k d n n d

n f d

n
d n

d n
β

−
− − − − − +

=

− 
= − − − − − 

∑ . 



 104 

Finally, it can be concluded: 
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Notice that the minimum free distance dfree = 4 symbols (4k bits). 
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