NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESI S

HOW | NTRUSI ON DETECTI ON CAN | MPROVE SOFTWARE
DECOY APPLI CATI ONS

by
Val ter Monteiro, Junior

March 2003

Thesi s Advi sor: Neil C. Rowe

Approved for public release; distribution is unlimted

THI'S PAGE | NTENTI ONALLY LEFT BLANK

REPORT DOCUNENTATI ON PAGE 5505 0088 T 0P T

Public reporting burden for this collection of information is estinmated to average 1
hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and conpleting and review ng
the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing
this burden, to Washington headquarters Services, Drectorate for I nformati on
Operations and Reports, 1215 Jefferson Davis H ghway, Suite 1204, Arlington, VA 22202-
4302, and to the Ofice of Mnagement and Budget, Paperwork Reduction Project (0704-
0188) Washi ngt on DC 20503.

1. AGENCY USE ONLY | 2. REPORT DATE 3. REPORT TYPE AND DATES
(Leave bl ank) Mar ch 2003 COVERED

Master’s Thesis

4. TITLE AND SUBTITLE How Intrusion Detection Can | 5. FUND NG NUMBERS
| nprove Software Decoy Applications
6. AUTHOR (S) Valter Monteiro, Junior

7. PERFORM NG ORGANI ZATI ON NAMVE('S) AND ADDRESS(ES) 8. PERFORM NG ORGANI ZATI ON
Naval Post graduate School REPORT NUMBER
Mont erey, CA 93943- 5000

9. SPONSORING / MONI TORING AGENCY NAVE(S) AND | 10. SPONSORI NG MONI TORI NG
ADDRESS(ES) AGENCY REPCRT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author
and do not reflect the official policy or position of the US. Departnent of Defense
or the U S. Governnent.

12a. DI STRIBUTION / AVAILABI LI TY STATEMENT 12hb. DI STRI BUTI ON
Approved for public release; distributionis unlinited CCDE

13. ABSTRACT (maxi mum 200 wor ds)

This research concerns information security and conputer-network defense. It
addresses how to handle the information of log files and intrusion-detection systens
to recognize when a system is under attack. But the goal is not the usual one of
denying access to the attacker but providing a justification for deceptive actions to
fool the attacker. W inmplenented a sinple denonstration of how two different kinds
of open-source intrusion-detection systens can efficiently pool data for this purpose.

14. SUBJECT TERVS 15. NUMBER OF
Intelligent Software Decoy, Intrusion Detection, Conputer Deception, PAGES
Response Mechani sm Log File Monitor 85
16. PRICE CODE
17. SECURI TY | 18. SECURI TY | 19. SECURI TY | 20. LI M TATION
CLASSI FI CATI ON CLASSI FI CATION OF TH S| CLASSI FI CATI ON OF | OF ABSTRACT
OF REPORT PACGE ABSTRACT
Uncl assi fi ed Uncl assi fi ed Uncl assi fi ed UL
NSN 7540- 01- 280- 5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THI'S PAGE | NTENTI ONALLY LEFT BLANK

Approved for public release; distribution is unlimted

HOW | NTRUSI ON DETECTI ON CAN | MPROVE SOFTWARE DECOY
CAPABI LI TI ES

Val ter Monteiro, Junior
Li eut enant Conmander, Brazilian Navy
El ectronic Engineering (B.S.), Universidade de Sao Paul o,
1994

Submtted in partial fulfillment of the
requi rements for the degree of

MASTER OF SCI ENCE | N COVPUTER SCI ENCE
fromthe

NAVAL POSTGRADUATE SCHOOL

March 2003
Aut hor : Val ter Monteiro, Junior
Approved by: Neil C. Rowe

Thesi s Advi sor

J.D. Fulp
Second Reader

Peter J. Denning
Chai rman, Departmnment of Conputer
Sci ence

THI'S PAGE | NTENTI ONALLY LEFT BLANK

ABSTRACT

This research concerns information security and
conputer-network defense. It addresses how to handl e the
information of log files and intrusion-detection systens to
recogni ze when a systemis under attack. But the goal is
not the usual one of denying access to the attacker but
providing a justification for deceptive actions to fool the
attacker. We inplenented a sinple denonstration of how two
di fferent kinds of open-source intrusion-detection systens

can efficiently pool data for this purpose.

THI'S PAGE | NTENTI ONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUCTT ON. . . . et e e e e e e e e e 1
BACKGROUND AND DEFINITIONS e 5
A SOFTWARE DECOYS. e e 5
B. LOG FILES. . .. 7
C. PERL SCRIPT — THE LOG MONITOR 9
D. | NTRUSI ON- DETECTION SYSTEMS 11
E. LI DS (LI NUX | NTRUSI ON- DETECTI ON SYSTEM) 15
F. SNORT — A NETWORK | NTRUSI ON- DETECTI ON SYSTEM. 16
G RESPONSE MECHANI SMS OR COUNTERMEASURES. 18
| DS AND SOFTWARE DECOY ARCH TECTURE. 21
A | NTRUSI ON- DETECTI ON I NTEGRATION oo 21
B. | DS AND SOFTWARE DECOY ARCHI TECTURE | NTEGRATION .. 22

1. How NI DS Can | nprove a Software Decoy....... 22

2. How HI DS Can | nprove Software Decoy......... 23

3. Data Reduction, 24
EXPERI MENTAL DESI GN | MPLEMENTATION 27
A EXPERI MENTS. e 28

1. PING. . .. 29

2 SCaAN. . . 30

3. Connect 33

4 O her Suspicious Actions at Target Machine .. 35
DI SCUSSI ON . ..ot e e e e e e 41
CONCLUSI ONS. . . . e e e e e 43
A POSSIBLE FUTURE WORK e 44
APPENDI XES. 45
APPENDI X A — LOG MONI TOR PROGRAM e 45

APPENDI X B — LIDS AND I NSTALLATION 47

1. System Environnment 47

2. Installation......... 47

3. LIDS Files Configurations................... 48

APPENDI X C — SNORT FILE CONFIGURATION. 55

LI ST OF REFERENCES. e e 65
INITIAL DISTRIBUTION LI ST e e 69

Viii

Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure

LI ST OF FI GURES

1. Log File Monitor Red Hat 8.0 9
2. Snort principle of function 17
3. Architecture schema............ 22
4. Inner layers of defense-in-depth................. 24
5. Wn?Map application scanning the target machine .. 31
6. SSH connection from attacker machine............. 33
7. Attacker login. 33
8. Process running at protected nmachine............. 36
9. Attacker deleting and copying files.............. 37
10. Attacker trying to kill httpd process............ 38

THI'S PAGE | NTENTI ONALLY LEFT BLANK

Tabl e 1.
Tabl e 2.
Tabl e 3.
Tabl e 4.

LI ST OF TABLES

Data Col l ection Mechanisns 13
H DS and NIDS Conparisonououuuun.. 14
Experinmental Design Module Inplenentation........ 27
Experinment Security Policy 29

Xi

THI'S PAGE | NTENTI ONALLY LEFT BLANK

Xi i

ACKNON_EDGEMENTS

This thesis contains many others’ contributions.
These include those of the professors and students who
wor ked on the software decoy project, and the group of
speci al i zed professors and students whose conbined efforts
developed this topic. | extend ny thanks to these

i ndividuals for their support during the |last 6 nonths.

| would especially like to thank Dr. Neil Rowe for all
t he support, patience and direction that he gave ne. He
consistently guided nme in the right direction and found

useful ness in all nmy work.

| also want to thank Prof. Geoffrey X e, Prof J.D.

Fulp and CDR Nuccio Zuquello. Wthout Prof. X e's
friendliness, support and his lab and direct study
orientation, this thesis would have been inpossible. Prof.
J.D. Fulp's friendship, advice and instruction in teaching
in the classroom were instrunmental in nmy |earning.
Finally, thanks to CDR Nuccio Zuquello, my Brazilian
advi sor, who sent small e-mails with the right words at the
ri ght nmonment.

Coll ectively, 1 also want to thank all of the
professors of CISR for teaching nme the concepts of good

security and all that | know about conputer security.

This work is dedicated to nmy parents who gave ne life
and the opportunity of education; to nmy wife, Suzana, for
her outstandi ng support and her extraordi nary sense to see

the good side of everything; to Stephanno, ny ol dest son
Xiii

and best friend, for always encouraging me to spend tinme
with himeven for just a while; and finally to Guiga, ny
speci al youngest son, who has taught ne the real |ogic of
life by sinply asking nme every day, “Papai happy”? | wll
al ways work hard to keep these three special people happy.

Xi Vv

. I NTRODUCTI ON

In the "information age" the world becane a nore
i nterconnected place. Critical infrastructure, business
operations, bank operations, mlitary operations, and
communi cati on systens are totally dependent on conputer
systens that control alnost all aspects of life. The
gl obal network includes faxes, cellular phones, satellites,

and nmore than 650 mllion people connected to the Internet.

Wth this scenario, every year the |arger software
corporations in the world, such as Mcrosoft, SUN, Oracle,
and Linux Distributors, release a new version of their
operating systens (OS), service packs, databases, and
desktop and server applications for all of those platforns.
Usually security is not the main goal of all of these
prograns and, even if it were, checking the integrity of

all these mllions of lines of code is inpossible.

Added to this is the nunber of weasily available
"hacker" web sites on the Internet providing tools to
exploit this ocean of vulnerabilities. A factor urging a
change in the approach to defending networks is that hacker
tools are becom ng nore automatic and no |onger require
deep know edge to use them Only a few m nutes of exposure
could create mllions of dollars of |osses due to sensitive

i nformati on becom ng accessi ble by the eneny.

M chael and Riehle suggested in [1] a different
defending information systens approach: "Intelligent

Sof t ware Decoys." This approach borrows ideas frommlitary

1

strategy. I nstead of blocking or fighting attackers as
soon as they are detected, a decoy system tries to keep
t hem occupi ed by making them believe that the assault is
successful and progressing as expected. To do this, we
must deci de how to detect the intrusion, howto respond to

this attack, and how to inplenment decoy capabilities.

| npl enmenting a conplete decoy system is out of the
scope of this research. Therefore, the experinental design
that we developed is only a proof of concept. It shows how
to coordinate an intrusion-detection systemwth software
decoys and how to inprove the performnce of software decoy
application with an intrusion-detection system Qur
research is based on famliar defense concepts |Iike
defense-in-depth, intrusion-detection architecture, secure
log files, data reduction, the principle of |east
privilege, and reference nonitor. In Chapter Il we wll
defi ne these concepts.

Chapter 11l will propose a design that is capable of
integrating nessages read fromlog files, alerts read from
the intrusion-detection alert file, and nmessages read from
all devices installed to protect our system It borrows
some principles from real war strategies, including

integration of a diversity of resources to provide nore

flexibility.
Chapters 1V, V and VI wll show the experinental
design architecture, the data collected from this

experinmentation and the analysis of the gathered
information. As we built the design based on open-source

applications, we developed installation guidelines, which

2

are included in the appendices, answering one of the nost
i nportant objections to open-source: the lack of good

docunent ati on.

THI'S PAGE | NTENTI ONALLY LEFT BLANK

1. BACKGROUND AND DEFI NI TI ONS

A SOFTWARE DECQOYS

Since in ancient times Sun Tzu [2] wote that “al
warfare is based on deception”, deception has a very
inmportant role in warfare. Dunnigan started his book [3]
sayi ng, “The nobst potent weapon in any soldier’s arsenal is
deception.” Deception is an art supported by technol ogy
that, when successful, can have a devastating inpact on
victims. Cohen [4] suggests two way of defeating an eneny
in attacks on conmputers ("information warfare"): have an
overwhel m ng force of sonme sort (be faster, smarter, better
pr epar ed, better supplied, first to strike, better
positioned, and so forth), or manipulate the eneny into
reduced effectiveness by inducing m sperceptions that cause
the eneny to msuse their capabilities (i.e., use
deception).

I n conventional war, the nine main deception types
defined by Dunnigan are: conceal nent, canouflage, ruses,
denonstrations, feints, false and planted information,
lies, displays and insight. Fromthis list, Neil Rowe [5]
expl ained that only the last 3, lies, displays and insight,
are potenti al def ensi ve tactics for cyber space.
Appropriate deceptive tactics depend on the value of the
resources being protected and the danger of the attack [6].
However, the general idea is to limt or confine attacks
t hat get through the first Iine of defense rather than stop
t hem Deception differs from honeypots [7] by providing

def ense not dat a.

Deception could be one nore layer in our defense-in-
depth, thus confusing an attack plan for a while. Cearly,
in the nanosecond conputer world, mnutes can be a | ong
period of tine. Del ays give tinme to win race conditions
against the attacker’s automatic tools, permtting the

anal ysis of the attack and a plan to respond.

Before responding to an attacker or outsmarting them
the system nust detect the attacker. Thus deception
capabilities nmust be integrated in the defense operations.
This would start with a nonitoring system which is
described in the next item

Thi nking about the relationship between tinme and
def ense, Wnn Schwartau in [8] suggested a fornmula (P > D +
R) for a security nodel. He says that if the tine value
afforded a system by protection (P) is greater than the
anount of tinme it takes to detect (D) and respond (R) to an
attack then a secure environnment is evident. A systemwth
deception (C) suggests a new formula: P+ C> D + R This

gives us a quantitative justification for deception.

Intelligent software decoys [9], has both a protection
and counterintelligence component. The decoy consists of
one or nore software wappers placed around a unit of
software (e.g., conponent or method), with each w apper
consisting of a set of rules for detecting and respondi ng
to suspicious behavior. Instead of indicating to the
attacker that he has been detected, the decoy keeps the
attacker occupied by creating the illusion for the attacker
that the attack 1is progressing as expected, usi ng

techni ques ranging fromfake error nmessages to redirecting

6

the interaction with the attacking conputer process to a

virtual sandbox.

The goal is threefold: to gather information about the
nature of the attack, adjust the system s defenses based on
the intelligence information, and cause the attacker to
experience an opportunity cost (e.g., waste attack
resources that could have been better applied, or expose

sources and net hods).

B. LOG FI LES

Log files and intrusion-detection systens provide our
nmoni toring mechani snms for a conputer operating system Log
files are defined as files that contain nessages about the
system including the kernel, services, and applications
running on it [10]. Today all operating systens,
applications, and network devices have the capability to
log information and events that occurred in their
environment. Thomas A. Wall wote in [11] that the better
the log stream the pattern library, and the analysis
tools, the better the overall security. He al so defines
two goals of a nmonitoring system reducing the |ikelihood
of an attack going unlogged to as close to zero as is
af f ordabl e, and increasing the likelihood that the events
| ogged for an attack will be recognized as an attack to as
close to 100 percent as is affordable. He also discusses
t he shape of a | ogging system the areas to be | ogged, the
| ogging nechanisns, the |logging system design, | og

managenent, and | og anal ysi s.

7

In an ideal network, the system |log records every
event. This approach is technically very difficult, as few
systens have the resources to store all this information.
Anot her difficulty is the human incapacity to check
t housands of lines of information of many log files to
figure out what is happening. Therefore the |log systemis
configured to reduce this ocean of information by recording
only events necessary to detect known comon attack
patterns, events necessary to detect unusual patterns of
access, and informati on about the continued trustworthiness
of the |l ogging system

Different log files keep different information, For
exanple, there is a default systemlog file, a log file for
security nessages, and a log file for kernel events. Sone
log files are controlled by a daenon called syslogd. 1In
our experinental design based on the Linux platformwe wl|
use syslog. A list of |log nessages maintained by syslogd
can be found in the /etc/syslog.conf configuration file.
Syslog is the primary |oggi ng nechani sm for nost |nternet-
related equipnment and the nost common network | ogging
mechanism in the TCP/IP world. Syslog runs on all
Uni x/ LI NUX systenms, and on nmany other operating systens,

i ncludi ng Wndows platforns that have adaptors.

The log files that we used in our experinents are in
the /var/log directory. Mst log files are in plain text
format. I n our experinents, we will use a Perl script to
read this text and do data reduction. In addition we can
use any text editor or |ogviewer to inspect the information

as shown in Figure 1 [10].

Elle Eait Help
B Log System Log
Cren Log
Eemaol Starup Log E@ This is the system log fike.
FTF Log
Apachi Access Log Ay 16 15:12:19 falcon aeomount| 744 |: afiempeing o mount entry gminigredhat 1:
Agache Eff Log g 16 15 12:20 Talcon amomourd| 706] FEmeEing 10 meunt entry FOmeic e
Ml Log Aug 16 15:13:31 falcon ausomoune(3321]: expined Mhomoycprum
Bag 1 151641 falcon auromonen|3375]): expieed fonyeedhar
MySOL Server Log Aug 18 15 35:47 falcon sugomourk[748]: atiempeing to mount entry smnjredhat
Pleves Log Purg 16 154102 Talcon sunomourn|3500]; expined fntredhat
RFM Packages Aug 16 15:51:07 falcon automounk|T46]: atiempting ta mount enbry jminifredhat
Secuitty Log Apug 16 15:52:50 falcon sudolpam_unka|4650); achentcation falkee; ogname= uld=0 euid=0 thy=pis)2 ruser=
T : BeH) 16 15:52:50 Talcon sudoa50T pam_kibS: authergication swooeeds Tor They'
o i) | Aug 16 15:53:03 falcon ussmhelper pam_timostamp: tenastamp flo uaruns udotfoe unknosn o’ (5 oo old
Updaie Agent Log Ay 16 155425 lalcon Lseielpen pam_Trmesiamp; TEnestam p file fvaniuns idomros unkrown e’ s oy &1
KRt Loy Aug 16 15:56:50 falcon userthelper pam_timestamp: tmestamp file vanfungs udoytfos unknown:moot” (s anky 14
AU 16 15 5907 Talcon Ioginpeen_um[962] check pess. user unknovwe
Aug 18 1% 58:07 falcon loginipam_unici[362]: authentication Talure; logname=LOGIN uid=0 sud=0 Hy=ityZ s
P 16 155307 lalcon legin[362]: pam_kibs: urable 1o detemmine widighl for user
#Apg 16 15:58:07 falcon login[%62): pam_kdS: authentication fails for “test’
1 Aug 16 15°58:09 falcon legin[962]: FAILED LOGIM 1 FROM Inulll FOR test, Authentication faiure |
Aug 16 15:58:11 falcon medprobe modprebe: Can't locate module char-major-106-134 _}
| L=l
L1] 5]
Fikar far: @ Filtes | | 4 Ruser
Fi gure 1. Log File Monitor Red Hat 8.0

C. PERL SCRI PT — THE LOG MONI TOR

A log nonitor is a process, or daenon, which nonitors

| og nessages produced by the conputer system and prograns

running on it [12]. A properly designed | og nonitor can
recogni ze unusual activity (or i nactivity), al ert
adm ni strators to problens, gather statistics about system

activity, or as in our research, act as the main source for

the systemto take automatic action against a threat.

A log nonitor is an agent, whi ch responds
automatically to conditions reveal ed by one or nore system
| og messages. The response may consist of autononous

to handle a situation and/or notification of a

9

acti ons

human adm ni strat or. A stateful log nmonitor is one that
infers the presence of a condition requiring attention by
conpiling data from nmore than one |og nmessage. Qur
experinments used a stateful |log nonitor inplenmented by a
Perl script.

Log nonitoring requires string manipul ati on, and Perl
has features that make it one of the nost powerful
| anguages for string manipulation. Lutz Prechelt [13]
tested 80 inplenentations of the sanme set of requirenents
and conpared sone properties, such as run tine, nmenory
consunption, source text length, and the anmpunt of effort
required to wite them The results indicate that for the
gi ven pr ogranm ng probl em whi ch regards string
mani pul ati on and searches, a “script | anguage” such as Perl
is nore productive than “conventional | anguages” such as C,
C++ and Java. In terns of run time and nmenory consunption,
“script |anguages” often turned out better than Java and
not nmuch worse than C and C++.

For future inplenentations of deception capabilities,
Perl is also flexible in inplenmenting rules, reading
configuration files, reading streanms from networks,
i mpl enrenting servers and sockets and nmanipulating a

systemi s call. O hers Perl advantages incl ude:

Provi des features necessary for |large projects

i ke nmodul ari zati on and object-oriented techniques.

Provides great flexibility for manipulation of

strings using regular expressions.

10

Allows the use of all system calls including

t hose necessary for network tasks.

Provides a way to dynamcally |oad a nodule

i ncluding code written in C

D. | NTRUSI ON- DETECTI ON SYSTEMS

| ntrusi on-detection systens (IDSs) are inportant
sof tware tools. [14] and [15] provide sone background.
Some useful definitions:

Intrusion: Any set of actions that attenpt to
conprom se t he integrity, confidentiality, or

availability of a conputer resource [14].

| ntrusion detection: The problem of identifying
actions that attenpt to conpromse the integrity,
confidentiality, or availability of a conputer
resource [14].

Moni tored system or system Program application,
host or a network of conputer resources that is being
nmoni tored [14].

| ntrusi on-detection systens: Systens that coll ect
information from a variety of system and network
sources and, then, analyze the information for signs
of intrusion (attacks <comng from outside the
organi zation) and m suse (attacks originating inside
t he organi zation) [16].

11

Croshie and Spafford in [17] identified desirable

characteristics of an intrusion-detection systent

| t nmust run continually with no human

supervi si on
It nmust be fault tol erant.
It must resist subversion and nonitor itself.

It must inpose a m nimal overhead on the systens

where it runs.

It nmust be as “quiet” as possible, precluding
prof essi onal attackers from realizing that they are

bei ng nonitored.

It nust be configurable and expectantly adaptable
to changes in the system and to user behavior over
tinme.

It nmust be able to detect unknown attacks as nuch
as possible without generating a | ot of false positive

and fal se negative.

It nust be able to avoid the situation of being

used as a deni al of service mechani sm

It must report and |aunch automated decoy
capabilities as soon as possible after an intrusion or
an attack detection.

12

| ntrusi on-detection systens can be classified by their
data col l ecti on nechanisns. W can classify IDSs as direct
or indirect [14]. Indirect 1DSs could be sub-classified
into network-based or host-based wth direct dat a
col | ecti on mechani sns bei ng sub-classified into internal or

ext er nal . Table 1 clarifies these definitions.

Dat a Col | ecti on Mechani sns

Direct I ndirect
Host - based Host - based Net wor k- based
Internal | Ext er nal
Tabl e 1. Data Col | ecti on Mechani sns

Internal I DSs are those whose code is incorporated in
the nonitored system W will wuse both, internal and

external, in our experinental design.

I ndirect nonitoring is the observation of a conponent
t hrough a separate nechanismor tool. Direct nonitoring is
better than indirect for many reasons [14]. An intruder
could potentially alter data from an indirect data source
before the I og nonitor uses it, or it could be affected by
non-malicious failures. But the nmajority of IDSs use sone
formof indirect nonitoring. In our experinental design we
will use both direct and indirect.

Net wor k- based I DSs (NI DSs) is the acquisition of data
fromthe network, usually done by capturing packets as they
flow through it. Host-based IDSs (H DSs) process data that
originates in conputers such as event |log files. Network-
based I DSs capture and analyze TCP/IP packets, and host-
based |DSs process event logs from operating systens,
kernels and applications. In our experinental design, we

13

wi ||

use both a NIDS and an HI DS.

t he advantages of NI DSs and HI DSs.

Net wor k- based | DS Host - based | DS

Can watch the whol e Can prevent and | og abuse of
A network or any subsets privil ege attacks.
D of the network from one Can detect elevated privileges
\% | ocation. att acks.
A Can nonitor and detect Can detect for critical data
$ network attacks (e.g., access and nodi ficati on.

probes, scans, nmlicious
A and anomal ous activity
G across the whol e
E net wor k.
. Can become “invisible”

for access.

Can not detect host Can not trace network activity.
D activity. Can only work on specific
| Can not scan protocols pl at f orm
S or content if network Can interfere with inplenmented
A traffic is encrypted. service activities running in
8 Can cause nonitoring and t he host.
A detecting to beconme nore Can not totally trust the host
N dlfflcult on nodern i nformati on, once the machine
T swi t ched net wor k. is conprom sed
A Can | ose sone packet
G when wor ki ng in high-
E speed network
S

Table 2 [15] sunmmari zes

Tabl e 2. HI DS and NI DS Conpari son

An increasing nunmber of hybrid IDSs use both HI DS and
NI DS conponents to augnent the information collected and to
better analyze it. Such hybrids are better able to provide

t anper - proof operation. If an attacker tries to use the

network to |launch the attack, they would be nonitored; if
t hey |l aunched an attack from the machine, they would al so

be nonitored.

14

E. LI DS (LI NUX | NTRUSI ON- DETECTI ON SYSTEM

In our experinments we used LIDS [18] as our HIDS.
LI DS provides protection to file and running processes and
uses a security kernel. Additionally, LIDS has a built-in
portscan detector, which can be used to alert users to the
war ni ng signs of a possible intruder, and can send e-nmil
to the network adm ni strator when a rule is broken. These
features could be considered response nechani snms and could

be used to | aunch decoy capabilities.

Besides this, the nost inportant feature of LIDS is
its inplenmentation of the reference nonitor concept. A
reference nonitor [19] is an abstraction that allows active
entities called subjects to nmake reference to passive
entities called objects, based on a set of current access
aut hori zations. Subjects are processes executing in a
particular domain in a conputer system A domain of a
process is defined as the set of objects which the process
currently has the right to access according to each access
node.

As described in [20], a security kernel is the only
nmet hod proven to be effective at countering the threats of
penetration and subversion of nmechanism therefore it is
the only effective nmethod of preventing illicit access to
i nformati on under protection. A security kernel is defined
as the hardware and software that inplenments a reference
noni t or. Files, records, and other types of information
repositories can be built fromprimtive objects (read and
write), but access control is provided by the reference

moni tor on the basis of these primtive objects over which

15

it has total control. Wth regard to information warfare
in particular, every security feature nust itself be
protected so that they can detect and respond. Thi s

requires a kernel.

Previ ous work of our project inplenmented a deceptive
conmponent [21] with security based on kernel nodules. LIDS
works in the same way by inproving Linux security at kernel
| evel . The main advantage of this solution over NAI
W appers [22] is that LIDS is nore conprehensive in its
ker nel capabilities. In LIDS, the "root" (system
adm nistrator) is no longer all-powerful. Sone files,
directories, and processes protected by LIDS cannot be
nodi fied even with the root password. The advantage is
that even if a vulnerability were found in a programthat
is running wth root privilege, the damge of its

exploitation would be limted.

F. SNORT — A NETWORK | NTRUSI ON- DETECTI ON SYSTEM

Snort is an open-source free NI DS devel oped by Martin
Roesch [23]. In early 2002, Snort was downl oaded over
10,000 tinmes a week to protect governnent, corporate, hone,
and education sites. Snort is small at 1.8 Moytes in the
| ast version (1.9), and extrenmely configurable, allow ng
users to create their own rules or even reconfigure its
base functionality though its plug-in interface. The

schema in Figure 2 shows how Snort works [24].

16

SNORT J
£
o
& Sniffing > Packet Decoder
g
3
[Preprocessor =
(Plug-ins) o
T
©
®
[a)
Detection Engine
(Plug-ins)
Output Stage
(Plug-ins) Alerts / Logs
Fi gure 2. Snort principle of function

Figure 2 shows how the packet is sniffed off the
network interface and passed to the packet decoder where it
is partitioned into its layers. |If any preprocessors have
been defined, they act upon the packet. Preprocessors
all ow Snort to exam ne and mani pul ate network traffic data
in several useful ways, such as in |IP defragnentation, TCP
stream assenbly, portscan detection, and web-traffic
normal i zati on. The preprocessor can maintain state over
mul ti pl e packets to be nore intelligent in its processing.
Then the packets are passed to the detection engi ne where
rules exam ne the processed packet. Snort's official
docunmentation [25] gives details of rule capabilities. |If
an alert or logging is triggered by the rules, the packet
is passed to the output preprocessor for appropriate

processi ng.

There are three basic npbdes of operation in Snort:

sniffer, packet logger, and NIDS. Each is well suited for

17

a particular traffic analysis task. I n our experinental
design we used Snort in network node, where it was | oaded
with a configuration file (snort.conf) containing run-tine
directives and rules. Also, a Snort packet can be either
bi nary or plain text. For speed and portability, it is
best to log to a binary-format file, although we used plain

text in our experinments.

G RESPONSE MECHANI SMS OR COUNTERMEASURES

The concept of active response nechanisns or
counterneasures in an IDS [26] is a form of the idea of
having the | DS capable of automatic reactions to threats.
The goal is to prevent further conpronm se between the
attacker and the attacked nachine. The foll ow ng

t echni ques can be used:
RST em ssi on
Firewal | update
Routing tabl e update

Si gnat ur e-based firewall

An IDS has two parts, data collection and attack
response. Data collection is done by sensors that are
usually self-contained detection engines, which obtain
net wor k packets, search for patterns of msuse, and then
report alarms to a data-analysis central command. Thi s
approach does have sone problenms, however, such as
difficulty in recognizing denial of service attacks and the

18

creation of race conditions between a packet generated by

| DS and the packets send by an attacker [27].

Aut onat ed response to intrusions has becone a mgmjor
issue in defending critical systens. Since the adversary
acts at conputer speeds, systens need the capability to
react without human intervention. An infrastructure that
supports the devel opnent of automated response nust all ow
easy integration of detection and response conponents to

enabl e experinentation with automated response strategies.

19

THI'S PAGE | NTENTI ONALLY LEFT BLANK

20

[11. 1 DS AND SOFTWARE DECOY ARCH TECTURE

A goal of our research is to show that the integration
of a NIDS and a HIDS could facilitate deploynent of a
sof tware decoy. But when we started our research we were
not sure how nodul ar NIDSs and HI DSs could be, which is a
necessity when integrating them with additional conplex
nodul es for deception. W discovered one sinple interface
that allowed for considerable nodularity was to process | og
files created by the NIDS and HI DS, and make this the input

to the decepti on processing.

A | NTRUSI ON- DETECTI ON | NTEGRATI ON

The experinment al design contains two types of
i ntrusion detection, NIDS (Snort) and HIDS (LIDS). Another
module is a log nmonitor that collects information from
NI DS, HI DS, and the kernel log file, and then does data
reducti on. Figure 3 illustrates this. As discussed in
Chapter 11, good IDSs should provide internal direct data
col l ecti on mechani sms such as those provided by a HI DS.
Nonetheless, a NIDS wth its indirect collection is
valuable as it can anticipate the attack and the reaction.
Most attacks start with a probe and scanning and, as seen
in Table 2, these can only be caught by a N DS.
Furthernmore, NI DS can see malicious network behavior in a
variety of fornms that a H DS cannot see. A HI DS can see a
portscan, but a NIDS can see the sim | ar attacks on other
sites that happened first.

21

(& [H =

Log Systems SNORT LIDS

1]
SN

Log Fles NIDS Alarms HIDS Alarms

~ 1/
< LT >

DATA
REDUCTION
Fi gure 3. Architecture schema
B. | DS AND SOFTWARE DECOY ARCHI TECTURE | NTEGRATI ON

1. How NI DS Can | nprove a Software Decoy

Georgi os Fragkos [21] selected an exenplar of attack
and created a deception for it by using NAlI's GCeneric
Software Wapper Toolkit [22] to do both detection and
decoying. But his deception ends when the attacker tries
to interact with the shell since the shell's functionality
is not being sinmulated and the attacker will immediately

di scover that sonething went wong. Since it is thought

22

t hat professional attacks always will use automatic tools
as rootkits, this kind of decoy may only be effective for a
few seconds. An alternative could be to transfer the
attacker to a safer nmachine where everything is sinmulated,
such as a honeypot or sandbox, where it would be hard for

the attacker to tell that he is being fool ed.

NI DS can anticipate the attack, thus inproving the
performance of the software decoy application. For
instance, after NI DS detects a ping it could lie to the
attacker and send an ICWMP (Internet Control Message
Protocol) nmessage saying “host unreachable”, or the
sof tware decoy could delay the ping response. O NIDS
could incorrectly informthe attacker as to which ports are

open and what vulnerabilities they have.

2. How HI DS Can | nprove Software Decoy

After the attacker has gained sone privileges on the
target machi ne, data collected fromthe | ogs woul d decrease
in inportance because the network information could no
| onger be trusted. The attacker could also |launch sone
cryptographic channels to communicate with the outside
worl d, making the network analysis more difficult. The
system devel oped in our experinents tried to deal with this
situation by creating one nore |ayer of defense and one
more chance to fool the attacker, the | ayer above the root

di scussed in Chapter Il (see Figure 4).

23

Root and unprotected world

LIDS protection for software decoy, log files and all important
files - Reference Monitor enforcement

Dx:mpnncn I‘\nnny Il ayer

Kernel and
process to be
protected

RN

Figure 4. | nner | ayers of defense-in-depth

As seen in Figure 4 above, the root is no |ogger the
| ast level to be attacked to reach the control of the host.
Even if the attacker gains root privileges, we keep the
kernel sealed, the process and services untouchable, and
t he decoy prograns running. This design mnimzes the
threat to the target system and provides nore time for
| aunchi ng decoy capabilities against the eneny, which

i ncreases the deception factor in Schwartau formula [8].

3. Dat a Reducti on

Few systenms have the resources to store all
i nformation generated by various log files. In a medi um
network the hard disk could be filled by log file
information in a few weeks. If the log systens are
concentrated in one machine or file, this situation is nmuch
worse. Not concentrating all information in one system or
file is not reasonable either, as this situation

exacerbates the human incapacity to check thousands of

24

lines of information of many log files to figure out what
is happening. To make a realistic analysis of the
information collected by sonme log files, the system
adm ni strator would have to check each |ine of each |og
files, conparing tinmestanps of the events generated by the

all log files or alert files.

Therefore, the best solution is inplenmentation of a
| og nonitor to reduce this ocean of information by, based
on a security policy, recording only those events necessary
to detect attack patterns and events that are suspicious.
The other advantage is that the log nonitor works as an
interface between the detection and the response. To do

this work we used Perl as best explained in Section IIl-c.

25

THI'S PAGE | NTENTI ONALLY LEFT BLANK

26

| V. EXPERI MENTAL DESI GN | MPLEMENTATI ON

We now describe in nmore detail an inplenentation of
i ntrusi on-detection systenms to support software decoys.
The next sections wll nore thoroughly describe the
i npl enentati on of each nodule in Table 3.

Modul es
Type Descri ption
Def ense (a) SNORT as NI DS

(b) LIDS as HI DS
(c) Kernel Log File
Log Monitor | (d) Perl script

Decoy (e) Network decoy
Mechani sns (f) Host decoy

Tabl e 3. Experi nmental Design Moddul e | nplenmentation

The nmodules were inplenented for a Linux Red Hat8.0
platform This platformwas chosen because the source code
is available, which facilitates instrunmentation of the
kernel . This feature is very inportant for the
i npl ementation of LIDS (HIDS) as it works as a patch of a
“pure” Linux kernel, mandatory in the reconpilation of the
kernel . Anot her advant age is t hat t he ker nel
instrunentation capacity can facilitate future work as the
sof tware decoy inplenmentation can al so be enbedded in the

operating system kernel.

27

A. EXPERI MENTS

As a proof of concept, we tested both a network-based
attack and a host-based attack in experinents. Figure 3
shows what was inplemented. We installed two services in a
protected host: a Wb service (Apache2.0) and a SSH
service. The SSH server is part of Red Hat 8.0. In the
installation of both services the default configuration was
used. The sinmulated attacks tried to break into the
protected host to exploit vulnerabilities of a Web and SSH

service.

Most attacks are initiated with footprinting, foll owed
by probes and scans. These first steps have the main goal
of discovering open ports and known vul nerabilities thus
finding the best way to break into the target host [32].
In the first part of an attack the invader bases his action
on the network environment, so NI DS could better nonitor
the invader's actions. In the second part of the attack
after the invader had obtained some privileges, the kernel
Log Files and HIDS alerts becone essential for attack

det ecti on and anal ysi s.

As described in earlier sections, the Perl script
(Appendi x A) reads the alert file generated by Snort, reads
the log file generated by Linux kernel and reads the |og
file generated by LIDS, witing in a file called decoy.| og
i nformati on about the security policy (Table 4), tinestanmp
and | P address. This experinment had the rules shown in

Table 4 for its security policy.

28

Att acker Det ecti on by Pl oy Def ense Decoy System Reaction

Pl NG NI DS HONESTY |(a) Log nonitor records the action to
a data reduction file;

(b) Starts a programto simulate false
ports;

(c) Delays the response.

SCAN NIDS and HIDS | LYING |(d) Log nmonitor records the action to
a data reduction file;

(e) Responds with fal se ports as open;

(f) Changes the configuration of the
border Cisco router, redirecting
the attacker to a fake server.

CONNECT | NI DS and LYING |(g) Log nmonitor records the action to
(LOG N) Kernel Log a data reduction file;
File (h) Launches fake xterm
BAD HI DS LYING (i) Log nonitor records the action to
ACTI ONS a data reduction file;

(j) Reports |ogin.

Tabl e 4. Experiment Security Policy

1. Pl NG

Following Table 4, we prepared our environment to
detect any kind of "ping" (attenpt to query the status of
our protected machine). From an attacker nachine
(192.168.0.1), we started to ping the protected host
(192.168.0. 3).

Snort: We wote a rule to detect any |ICVP (Internet
Cont r ol Message Protocol) packet that has a

destination of the protected host:

Alert icnp $EXTERNAL_NET any -> $HOVE NET any (nsg:”|CW
Packet to Protected Host”; classtype: bad-unknown;)

To do this, in the snort.conf (see Appendix C) we

defined $EXTERNAL _NET as any |P nunber but the

protected host was assigned |IP nunber 192.168.0. 3.
29

The $HOMVE_NET is the protected host [25]. This rule
generated the followi ng nessage at the alert file at

[var/l og/snort directory for each ping:

02/ 23-15: 16: 33. 464600 [**] [1:0:0] | CvP Packet [**]
[Classification: Potentially Bad Traffic] [Priority: 2] {ICMP}
192.168.0.1 -> 192.168.0. 3

LI DS: Not i nvol ved.
Kernel Log File: Not involved.
Log Monitor: Read the alert file, searching for a

/| PING pattern. After matching the PING string at

alert file, the Log nonitor recorded in decoy. | og:

HONESTY: hacker(192.168.0.1) PING DEST:192.168.0.3 at 02/23
15:16: 33. 464600 2003.

2. Scan

Usi ng Wn?Map, a well-known scanner, from 192.168.0.1
(the attacker machine), we scanned the target protected
host (192.168.0.3) (see Figure 5).

30

[resmenay i
Hoat IEI
R
Halp Emi
e | Cireon | Optione | Trsing | Flan | Sarvicn | winz]|
Made e Dptions : -
= g T T | Pt Fiarga [L Doy I~ BrareSom
" oE e e : r~ S
SVH Crvalh i Tree FCP G = T T H P
™ FIH SwEh = |P Eoan L B | |
C Prgomesp © ddeSoen T I SoanHoul
7 UDPGcan MK Scsn
Curpad
SERCEING g Me 1.00 W, TN0 LS, O RTrEE ;I
McareaTing POrEE o dLBToLEw. @03
(The 1143 pOFCT TCMNEd LUl NOT T Bl oe wPE 1R SCACER CTA5EM)
fart State Jervies
& rtep cpen hetp
PARICE CEECATING EyRCET QUASE! Limis pEmel 2.4.0 - 2.8.20
U TIme 0, 004 BN (FN0E WOn FED 24 11115148 1003y
iw run’ comoicted - 1 IF address (L hetoupd scamed in o4 et
|
2| i
[V e w5 FT A o F 0T 2132 1ER.DD N [zamem [T
Fi gure 5. W n?Map application scanning the

target machine

Snort: The scan is |ogged by the Snort portscan

preprocessor [30]. It records an alert in the
scan.log file and in the alert log file, both in the
/[var/| og/snort directory. Streamd, anot her

preprocessor, also logged this activity in the
[var/log/snort/alert file. This is the output of that

file.

02/ 24-11:27:29.905403 [**] [117:1:1] (spp_portscan2) Portscan
detected from 192.168.0.1: 1 targets 21 ports in O seconds [**]
{TCP} 192.168.0.1:60517 -> 192.168.0. 3: 506

02/ 24-11:27: 31. 586498 [**] [111:9:1] (spp_streamd) STEALTH
ACTIVITY (NULL scan) detection [**] {TCP} 192.168.0.1:60525 ->

192.168. 0. 3: 80

The portscan preprocessor is a powerful and flexible
scan detector. It checks for TCP connection attenpts to
more then P ports in T seconds, and UDP packets sent to
nmore than P ports in T seconds [25], where P and T are

31

given in the snort.conf file. This portscan can also
detect a single “stealth scan” packet as in NUL, FIN,
SYNFI' N, and XMAS scans. Anot her benefit of portscan is
that alerts only showed once per scan, rather than once per
packet, which reduces the anount of redundant information

in the alert file.

The streamd preprocessor provi des TCP stream
reassenbly and stateful analysis capabilities for Snort.
Streamd al so gives users the ability to track nore than 256
si mul taneous TCP streams. Streamd should be able to scale
to handle 32,768 sinultaneous TCP connections in its

default configuration.

LIDS: LIDS can also detect port scans when its

optional port scan detector is enabled. Here is an

exanple fromits nmessage log file.

Feb 24 11:19:39 LIDS kernel: LIDS: (undeterm ned program pid O
ppid O uid/gid (0/0) on (null tty): Port scan detected:
192.168. 0.1 scanned 1153 cl osed ports including 575 ports < 1024)

Kernel Log File: Not involved.
Log Monitor: Read the alert file generated by
Snort, searching for /spp_portscan2/ or /spp_streand/

patterns. After matching one of these patterns at
alert file, the log nonitor recorded in the decoy. | og

file:

LYl NG hacker (192. 168. 0. 1) SCAN DEST: 192.168.0.3 at 02/ 24-
11:27:29. 905403 20083.

The Log nonitor also read the kernel nessage log file
generated by LIDS and generated the following record in

decoy.log file:

32

LYI NG

hacker (192. 168. 0. 1)

11:19: 39 2003

SCAN DEST: 192.168.0.3 at

Feb

24

3. Connect

| n our
the attacker

to connect to the t ar get

=0
= Bmazion
Logong
= Tormiral Hast Mawes (o0 F adovests|
;':';W'\! EALELE]
Ry Fictenal
L ek fSEN
DAY
Eieha-ain 5 gomd & i
Trars bation
:;:_,"“ Tictmadl Golirg
=3 Conrmchon
i "-a._-l-
Turvalz
B b e
oo
Fi gure 6.
After that, for
attacker logs in as root
r oot

scenari o,

see Tabl e 4,

after

a ping and a scan

tries using the PUTTY application (Figure 6)

machi ne at

port

25 PuTTY Conliguration

Banc optora for poar PuT T s
S iy ysour conrsBon b o rare o P sddharz

© Teret C Albgn 7 BEH
Lowsd. strve iod s 5 oeesd et

ey

1= Dby orizisan ezl

e

22 (ssh).

SSH connection from attacker

machi ne

Fi gure 7.

33

experi ment al
(Figure 7),
password was previously known.

At t acker

pur poses

| ogi n

only,

t he

simul ating that the

Snort: Snort was configured to detect any attenpt

to telnet or to connect using the protocol SSH agai nst

t he protected host. These are the rules:

alert tcp $EXTERNAL_NET any -> $TELNET_SERVERS 23 (nsg: " TELNET
attenpt”; flow to_server,established; classtype:shellcode-detect;
sid: 1430; rev:5;)

alert tcp $EXTERNAL _NET any -> $SSH SERVERS 22 (nsg:"SSH
attenpt"; flags: S+; classtype: suspicious-login; sid:1431; rev:5;)

These rul e configurations use t he vari abl e
$EXTERNAL_NET defined in snort.conf as being any host but
the protected host (192.168.0.3). Bot h TELNET_SERVER and
SSH SERVER are defined as being the protected target host,
192. 168. 0. 3.

Due to the encrypted nature of a SSH connection,
detecting such an attacker's attenpt to scale privileges is
I npossi bl e. But we can detect whether encrypted traffic
was enpl oyed to communicate with the protected host. The
following nessage was logged in the alert file at
[var/log/snort directory:

02/ 24-22: 47: 10. 107040 [**] [1:1431: 5] SSH attenpt [**]
[Classification: An attenpted login using a suspicious usernane
was det ect ed] [Priority: 2] {TCP} 192.168.0.1:1884 ->
192.168.0. 3: 22

LIDS: As a SSH is a service available by the
protected server, LIDS is not involved.
Kernel Log File: A nessage to record the SSH

connection was recorded in the kernel log file:

Feb 24 21:23:01 LIDS sshd(pam uni x)[684]: session opened for user
root by (uid=0)

34

This is msleading because we called the target
machi ne LI DS. The | og nessage above was recorded by the
kernel and not by the HI DS call ed LIDS.

Log Monitor: Read the alert file, searching for

an attenpt to CONNECT record. After matching the SSH
connection recorded by Snort, the log nonitor was
recorded in decoy.log file:

LYI NG hacker(192.168.0.1) CONNECT SSH DEST: 192.168.0.3 at Sat
Feb 21 15:16:33 2003

The log nonitor also read the kernel message log file

generated by the kernel log and generated the foll ow ng
record in decoy.log file:

LYI NG hacker (192.168.0.1) CONNECT SSH DEST: 192. 168.0.3 at Feb 21
15:16: 33 2003.

4. Ot her Suspicious Actions at Target Machine

Using the PuTTY application, we |ogged on to the

target machine and tried to execute sone forbidden actions

such as copying files, decompressing files, and killing
processes (Figure 8). The rules for this are defined in
Appendi x B.

35

Fi gure 8. Process running at protected
machi ne

In Figure 8, we have some process running on the

server as httpd (PID 1923) and sshd (PID 1929). The
attacker will try to delete a file and copy a file fromone
directory to another; after that the intruder will try to
kill some process.

Snort: Not involved.

LIDS: This blocked all of the attacks that the
attacker tried to invoke against the target machine.
The LIDS configuration needed to acconplish this and
allow ssh and the HTTP Server to keep running are
described in Appendix B. Following is the output of
the message log file | ogged by LIDS when the attacker

36

tried to remove and copy a file (Figure 9) to the

protected system

Feb 24 23:47:16 LIDS kernel: LIDS: rndir (dev 3:2 inode 840392)
pid 2031 ppid 1995 uid/gid (0/0) on (pts) : Attenpt to rndir
apache_pb2. gi f

Feb 24 23:48:00 LIDS kernel: LIDS: cp (dev 3:2 inode 840382) pid
2032 ppid 1995 uid/gid (0/0) on (pts) : Attenpt to open
i ndex. htl for writing,flag=32834

After that, the attacker tried to kill the
process htt pd. Figure 9 shows the nonent that the
attacker attenpted to check if there was a root
privilege; the attacker ultimately realized that the
commands, even with root privilege, would not work

since the process was still running.

* yimontei@LIDS: ust, fapache2/htdocs
tnl. 1. ucfs

.html.nl
1000 5 i shtml.onn
1000
1000
1000
1000
1000 i Jhtml.
1000 2 z Shtml.ru
1000 i ! Jhtml.ru
1000 i L Jhtml.ru
1000

i
i
i
i
i
i
i
4
4
3l
3l
3l
al
al
il

Operation not permitted

Figure 9. Attacker del eting and copyi ng
files

Next we show what happened when the attacker
attenpted to term nate process 1929 that was protected
by the system (Figure 10).

37

i wirrvorte A TS/ s o ol packee WA KIEN =0k

Fi gure 10. Attacker trying to kill httpd

Her e

process

is the output of nessage log file.

Feb
pid
Feb
pi d
CAP_

Feb

24 23:58:20 LIDS kernel: LIDS: bash (dev 3:2 inode 840369)
1995 ppid 1994 uid/gid (0/0) on (pts) : violated CAP_KILL

24 23:58:38 LIDS kernel: LIDS: bash (dev 3:2 inode 840369)
1995 ppid 1994 uid/gid (0/0) on (pts) : violated
KI LL_PROTECTED - 1ogging disabled for (60)s

24 23:58:38 LIDS kernel: LIDS: bash (dev 3:2 inode 840369)

38

pid 1995 ppid 1994 uid/gid (0/0) on (pts) : Attenpt to kill
pi d=1929 with sig=15

Kernel Log File: Does not make any kind of
record, as the conmands are not execut ed.

Log Monitor: Read the alert file generated by
LI DS, searching for patterns that indicate a violation
of rules, such as attenpting to renove file (/rmdir/),
to copy file (/cpl) and Kill process
(/ CAP_KILL_VI OLATION/). After matching the patterns,

the log nonitor is recorded in decoy. | og:

LYI NG hacker(192.168.0.1) ATTEMPT to RMDIR at Feb 24 23:48:00
2003.

LYING hacker(192.168.0.1) ATTEMPT to COPY a FILE at Feb 24
23:48: 00

LYI NG hacker(192.168.0.1) ATTEMPT to KILL PROCESS 1929 at Feb 24
23:58: 38 2003.

39

THI'S PAGE | NTENTI ONALLY LEFT BLANK

40

V. D SCUSSI ON

Mlitary history suggests it is best to enploy a
| ayered, def ense-i n-depth strategy t hat i ncl udes
protection, nonitoring, and response [28]. Al so, deception
should be integrated with operations [29]. This is the
strongest point of the architecture developed in the
experinmental design, which has its structure based on
def ense-i n-dept h. We showed that an intrusion-detection
system can inprove decoy capabilities if the two are
integrated together . The detection system cannot be a job
of only one mchine or technology. Both of these
capabilities have to be spread around the defensive

structure.

As we do not have, at the present date, a defined
decoy policy, we created one (Table 4) based on sone
experience in the security and network field. Wth this
sinple and real exanple, we denonstrated sinple detection
and response capabilities. In our experinents, different
phases of a sinmulated attack (PING SCAN, CONNECTION and
BAD ACTI ONS), used di fferent ki nds of detection
technol ogi es that can be associated with different kinds of

decepti on.

I'n particul ar, with this architecture and
i npl ementation: a |log nonitor that reads and anal yzes al
detection alarns and then | aunches deception capabilities,
we have a better coordination between an intrusion-
detection system and a software decoy. This integration
bet ween defense mpdules and the log nmonitor is very
41

inportant since we can l|aunch different decoys for
different situations based on information about the whole

ar ena. This significantly inproves the performance of

sof tware decoy applications.

42

VI . CONCLUSI ONS

Some concepts of this work, such as defense-in-depth,
centralized coordination, surveillance, event registry, and
decepti on, have been widely used by mlitary forces around
the world for thousands of years. In the "information age"
these tactics and strategies of mlitary forces are
mgrating to the digital world. This nakes sense because
the digital world also enconpasses; enemes, attacks,
networks to be defended, defense planning to be perforned,
countermeasures to be executed, information warfare to be
depl oyed, technology to be devel oped, and deceptions to

fool the eneny.

Qur experinments in this thesis denonstrated the
advant ages of intrusion-detection software as a conponent
in defense of conputer systens, nuch as any mlitary
defense plan should be based on battlefield intelligence
information. But intrusion information can be vol um nous
and needs to be collected and fused by a central "brain" as
we described in this research. In the proposed
architecture, network intrusion detection, host intrusion
detection and log files acted as our defense nodul es.
Their integration with a |log nonitor becanme vital for the

i npl ement ati on of decoy capabilities.

This approach is not new and was first proposed in

1980 [30]. Since then a |og analysis has been one of the

nost overl ooked aspects of operational conputer security.

Many organi zati ons spend hundreds of thousands of dollars

on intrusion-detection systens (I1DS) depl oynents, but still
43

ignore their firewall | ogs. Bird [31] suggests that the
next wave in security will be to usefully correlate and
process the contents of nultiple logs and intrusion-

detection technology in real tine.

A POSSI BLE FUTURE WORK

More tests and experinments are necessary to best

address sone issues not covered in this research

Synchroni zation of all nodules with tinmestanps woul d
be wuseful as the timng of wevents is a very

i mportant issue in this kind of approach.

Encrypted comruni cati on bet ween defense nodul es and
the coordination nodule could help conceal

decepti ons.

Redundancy of all data stored in the coordination

modul e coul d i ncrease robustness.

Def ense nodul es could be created with a high |eve
of specialization. The rules and policy could be
custom zed for each environment and each defense

modul e.

Integration of the intrusion-detection systemwth
ot her defense technology using the [Intruder
Detection and Isolation Protocol (IDP) could
provi de addi ti onal resources to facilitate

i mpl enent ati on.

44

VI . APPENDI XES

APPENDI X A — LOG MONI TOR PROGRAM

#!'/usr/ bin/ perl

HUERBHBHHHHHH BB BB HHHHH R BB B HBHHHHH BB
Load Configuration
HUERBHBHHHHHH BB BB HHHHH R BB B HBHHHHH BB
$decoy file = "./decoy. | og";

$ping_file = "/var/log/snort/alert";
$scan_file = "/var/log/snort/alert"”;
$connect _file = "/var/log/snort/alert"”;
$login_root_file = "/var/l og/ messagens";

HHHBHHHHHHHHH BB R HHHHHHH BB B HHHHH BB BB HHHHH BB R HHHHH SRR HHHHH R B R R HHHHH 37
open(PING, $ping_file) or die "can't open PING file: $ping_file: $!'\n";
print "Checking $ping_file ...\n";
whi | e(<PI NG>) {
next unless /1 CVMP Packet | Portscan detected | TELNET attenpt /;
if ("$&" == "ICMP Packet") {
my $status = "PING';
if (/.* (\d+\. \d+\oNvd+\ o Nd+) -> (VdH\ N dH o NdH LN dE)) |
&check_I P_Tabl e($1, $2, $status);
t#end if
}#end if
if ("$&" == "Portscan detected") {
my $status = "SCAN';
if (/.* (\d+\.\d+\ o AdH\ o\ d+) N d+ -> (VdH\ N dH N dH LN dE) N dH) |
&check_I P_Tabl e($1, $2, $status);

}
}#end if
if ("$&" == "TELNET attenpt") {
my $status = " CONNECT";
if (/% (VAR AdH L dR LV dH) Vv d o> (VdH L dH L dR LV dH))
&check_I P_Tabl e($1, $2, $status);

t#end if
Y#end if
}#end whil e

HEHH U R H U RS H BB HH B RGP H RS H BB H U RS H B H U H PR PR T T T R R
open (LOG, "/var/log/ messages”) or die "Can't open /var/l og/ messagens\n";
print "\nChecking $login_root_file..\n";
while (<LOG>) ({

next unl ess /session opened/;

ny $status = "LOG N*;

#$t ot al _good_su++;

if (/session opened for user (\w) by/) {

&check_| P_Tabl e($1, undef, $status);

Y#end if

}#end while

HHBHYHYBHBHYHY R B R HY YRR R SRR Y R H R RS RS Y R RS H R
#Area for Sub Rotines
HHBHYHYBHBHYHY R B R HY YRR R SRR Y R H R RS RS Y R RS H R

sub write_decoy_file {
ny $message = $_[0];
print STDOUT $nmessage;
open (DECOY, ">>$decoy_file");
print DECOY $nmessage;
cl ose (DECQOY);

45

}# end of wite_decoy file

sub check_| P_Tabl e {
ny ($source, $dest, $status) = @;
$key_hash = "$source. $status”
i f ($hash{$key_hash}) {
$hash{$key_hash} ++
print "\tlP $source has $hash{$key_hash} attenmpts\n";
Y#end if
el se {
print "\tNew Hacker Activity: |P nunber: $source, $status\n”
&check_hacker ($source, $dest, $status);
}#end elsif
}#end check_| P_Tabl e

sub check_hacker {
my ($source, $dest, $status) = @
ny $date = localtime();
if ($status eq "PING")
&wite_decoy file("\t\tHONESTY: ");
&wite_decoy_file("hacker($source) $status DEST: $dest\n");
}#end if
if ($status eq "SCAN")
&wite_decoy file("\t\tLYING ");
&wite_decoy_file("hacker($source) $status DESt: $dest\n");
&write_decoy file("\t\tRedirecting to FAKE SERVER...\n");
Y#end if
if ($status eq "CONNECT") {
&wite_decoy_file("\t\tLYING ");
&write_decoy_file("$hacker($source) $status DEST: $dest\n");
Y#end if
if ($status eq "LOG N')
&wite_decoy_file("\t\tLYING ");
&write_decoy_file("$hacker($source) $status DEST: $dest\n");
Y#end if
}#end check_hacker

46

APPENDI X B — LI DS AND | NSTALLATI ON

Thi s appendi x provides guidelines to inplement LIDS in
the LINUX system This guide is based on the docunentation
available in the LIDS official home page [42], along with
sone of our own updates.

Before installing LIDS in the machine, you nust
downl oad the "pure" kernel devel oped by Linux (or did you
mean Linus Torvalds?); LIDS is a patch of the kernel. WMany
di stributors, including Red Hat, custom ze their Kkernel.
Al t hough this is not a problem LIDS only runs over Linux
pure kernel. There are many docunments and books about
Li nux Kernel conpilation [41].

1. Syst em Envi r onment
Operating System LI NUX RedHat 8
Ker nel 2.4.18
LI DS version lids-1.1.1r2-2.4.18

Unpacked LIDS directory |/usr/src/lids-1.1.1r2-2.4.18

Configuration directory |/etc/lids

Configuration Files Li ds. conf LI DS ACL configuration file
Li ds. cap LIDS capabilities file
Li ds. pw LI DS password file
Li ds. net Lids mail alert configuration file
2. Install ation

Before installing LIDS, the kernel nust be patched.
To do this, download the LIDS patch [42] that matches the
speci fic kernel, which for this research, was |ids-1.1. 1r2-
2.4.18. After that follow the steps:

Step Comrands Comrent s
01 cd /usr/src/linux This is the directory that you unpacked the original
Li nux Kkernel
02 pat ch -pl < | Patch the Linux kerne
/usr/src/lids-1.1.1r2-

47

2.4.18. patch

03 make cl ean Reconpi | e the Linux kernel
04 make xconfig Open Linux kernel menu. Make sure that the follow ng
options are enabl ed:
[*] Pr onpt for devel opnent and/ or i nconpl ete
code/ dri ves
[*] Sysctl support
In the LIDS option in the kernel, make sure that the
foll owing options are enabl ed:
[*] Linux Intrusion-detection System support
[*] Attenpt not to flood | ogs
[*] Allow switching LIDS protection
[*] Allow reloading config. File
[*] Port scanner detector in kernel
[*] Send security alerts through network
05 make dep cl ean bzl mage Conpl ete the kernel reconpilation
06 lilo Do not forget to configure lilo for this new patched
ker nel
07 cd Jusr/src/lids- | Go to lids directory and install lidsadm an Iidsconf
1.1.1r2-2.4.18 with ./configure & nake && nake install
08 cp lusr/src/lids- | This will create the files in order to reboot the
1.1. 1r2- machine. To the system work properly we have to
2.4.18/ exanpl e/lids.* change this file accordi ng to our system
letc/lids configuration and security police
09 I'idsconf —P Cenerate the password file |ids. pwd
10 r eboot Reboot the machi ne
11 There are sone inportant comrands to deal with LIDS inplementation and debug
Ii dsadm -S -- - | Disabl e LIDS conmpl etely
LI DS G OBAL
i dsadm -S -- | Enabl e LIDS conpl etely
+L1 DS GLOBAL
| i dsadm -V This will produce output that show all LIDS options
12 In the official reference there are some old comands that use |idsadm
instead of lidsconf. Use the both commands |idsadm -help and |idsconf -help
to make sure about the right conmand
3. LIDS Files Configurations
- Lids.cap file:
0: In a systemw th the _POSI X CHOANN_RESTRI CTED option defined, this overrides the
restriction
0: of changing file ownership and group ownership.
#

+0: CAP_CHOWN

1. Override all DAC access, including ACL execute access if _POSIX ACL is defined
Excl udi ng

1: DAC access covered by CAP_LI NUX_| MMUTABLE

#

+1: CAP_DAC_OVERRI DE

2. Overrides all DAC restrictions regarding read and search on files and directori es,

i ncl udi ng

2: ACL restrictions if _POSIX_ACL is defined. Excluding DAC access covered by
2: CAP_LI NUX_I MMUTABLE

#

+2: CAP_DAC_READ_SEARCH

3. Overrides all restrictions about allowed operations on files, where file owner ID

48

must be equal

3. to the user 1D, except where CAP_FSETID is applicable. It doesn't override MAC and
DAC

3. restrictions.

#

+3: CAP_FOWNER

4. Overrides the following restrictions that the effective user ID shall nmatch the
file owner ID

4: when setting the S ISUDand S ISA@D bits on that file; that the effective group
ID (or one of

4: the supplenentary group |IDs) shall match the file owner | D when setting the
S ISG D bit on

4. that file; that the SISUDand S ISAD bits are cleared on successful return from
chown(2)

4: (not inplenented).

#

+4: CAP_FSETI D

5. Overrides the restriction that the real or effective user ID of a process sending
a signal nust

5. match the real or effective user |ID of the process receiving the signal.

#

-5: CAP_KI LL

6: - Allows setgid(2) manipulation

6: - Allows setgroups(2)

6: - Allows forged gids on socket credentials passing.
#

+6: CAP_SETG D

7: - Allows set*uid(2) manipulation (including fsuid).
7: - Allows forged pids on socket credentials passing.
#

+7: CAP_SETUI D

8. Transfer any capability in your permitted set to any pid, renove any capability in
your

8: permitted set from any pid.

#

+8: CAP_SETPCAP

9: Allow nodification of S_| MMUTABLE and S_APPEND file attributes.
#
-9: CAP_LI NUX_I MMUTABLE

10: Allows binding to TCP/UDP sockets bel ow 1024.
#
-10: CAP_NET_BI ND_SERVI CE

11: All ow broadcasting, listen to multicast.

#

+11: CAP_NET_BROADCAST

12: - Allow interface configuration

12: - Allow adm nistration of IP firewall, masquerading and accounting

12: - Allow setting debug option on sockets

12: - Allow nodification of routing tables

12: - Allow setting arbitrary process / process group ownership on sockets

12: - Allow binding to any address for transparent proxying
12: - Allow setting TOS (type of service)

12: - Allow setting prom scuous node

12: - Allow clearing driver statistics

12: - Allow nmulticasting

12: - Allow read/wite of device-specific registers
#

-12: CAP_NET_ADM N

13. - Allow use of RAW sockets

49

HHtH
-13:

#it#
##t#

+14:
##t#
#
+15:
##t#
#
-16:
##t#
H##t#
##t#
-17:
##t#
+18:
##t#

-19:

13:

CAP_

14:
14:

CAP
15:
CAP
16:
CAP
17:
17:
17:
CAP
18:
CAP
19:
CAP

20:

CAP_

- Al'l ow use of PACKET sockets
NET_RAW

- Allow | ocking of shared menory segnents
- Allow mock and m ockall (which doesn't really have anything to do with | PC)

| PC_LOCK

Override | PC ownership checks.

| PC_OWNER

Insert and renmove kernel nodul es.

' SYS_MODULE

- Allow iopermiopl and /dev/port access
- Allow /dev/mem and /dev/ kmem acess
- Allow raw bl ock devices (/dev/[sh]d??) acess

' SYS_RAW O

Al |l ow use of chroot()

' SYS_CHROOT

Al l ow ptrace() of any process

' SYS_PTRACE

Al l ow configuration of process accounting

SYS_PACCT

- Allow configuration of the secure attention key

- Allow administration of the random device

- Allow device adm nistration (nmknod)

- Allow exam nation and configuration of disk quotas

- Allow configuring the kernel's syslog (printk behaviour)

- Allow setting the domai nnanme

- Allow setting the hostnane

- Allow calling bdflush()

- Allow nmount() and umount (), setting up new smb connection
- Allow some autofs root ioctls

- Allow nfsservectl

- All ow VMB6_REQUEST_I RQ

- Allow to read/wite pci config on al pha

- Allow irix_prctl on mps (setstacksize)

- Allow flushing all cache on n68k (sys_cachefl ush)

- Allow removing semaphores

- Used instead of CAP_CHOM to "chown" | PC nmessage queues, senmaphores and shared

- Allow | ocki ng/unl ocki ng of shared menory segnent

- Allow turning swap on/off

- Allow forged pids on socket credentials passing

- Allow setting readahead and flushing buffers on bl ock devices

- Allow setting geonetry in floppy driver

- Allow turning DMA on/off in xd driver

- Allow admi nistration of nd devices (nobstly the above, but some extra ioctls)
- Allow tuning the ide driver

- Allow access to the nvram device

- Allow adm nistration of apm.bios, serial and bttv (TV) device

- All ow manufacturer commands in isdn CAPI support driver

- All ow readi ng non-standardi zed portions of pci configuration space
- Allow DDI debug ioctl on sbpcd driver

- Allow setting up serial ports

50

21: - Allow sending raw qic-117 conmands

21: - Al ow enabling/disabling tagged queuing on SCSI controllers and sending
arbitrary SCSI conmmands

21: - Allow setting encryption key on | oopback fil esystem

#

-21: CAP_SYS_ADM N

22: Al ow use of reboot ()

#

+22: CAP_SYS_BOOT

23: - Allowraising priority and setting priority on other (different U D) processes
23: - Allow use of FIFO and round-robin (realtine) scheduling on own processes and
setting

#H## 23: the scheduling al gorithm used by another process

#

+23: CAP_SYS_NI CE

Override resource limts. Set resource limts
24: - Override quota limts.

24: - Override reserved space on ext2 filesystem

24: NOTE: ext2 honors fsuid when checking for resource overrides, so you can
override

24: using fsuid too

24: - Override size restrictions on | PC message queues

24: - Allow nore than 64hz interrupts fromthe real-time clock
24: - Override max nunber of consol es on console allocation
24: - Override max nunber of keymaps

#

+24: CAP_SYS_RESOURCE

25: - Allow mani pul ation of system cl ock

25: - Allow irix_stime on mps

25: - Allow setting the real-tine clock

#

-25: CAP_SYS_TI ME

26: - Allow configuration of tty devices

26: - Al ow vhangup() of tty

#

+26: CAP_SYS_TTY_CONFI G

27: Allow the privileged aspects of nknod()
Hit#

+27: CAP_MKNOD

28: All ow taking of |eases on files */

Hit#

+28: CAP_LEASE

29: Restricts viewable processes by a user.
+29: CAP_HI DDEN

30: Allow to kill protected processes

-30: CAP_KI LL_PROTECTED

31: Protect process against signals

+31: CAP_PROTECTED

Lids.conf file configuration

This file is auto generated by |idsconf
Pl ease do not nodify this file by hand

H*HH#

51

:791855: 770: / sbin: 0-0

:840334: 770: /bin: 0-0

:2:769:/boot:0-0

:921136: 770:/1ib:0-0

323201: 770: /usr:0-0

:226241:770: /etc: 0-0

1 745099: 770: /etc/lids:0-0

:743370: 770: /var/ 1 0g: 0-0

1 745391: 770: /var/ | og/ wt np: 0-0

:770:/bin/login:7:0:743373:770:/var/log/lastlog:0-0

:770:/etc/rc.d/rc:16:-1:-1:30: CAP_KI LL_PROTECTED: 0- 0

695028: 770: /etc/rc.d/rc: 16:-1:-1:12: CAP_NET_ADM N: 0-0

695028: 770: /etc/rc.d/rc: 16:-1:-1:21: CAP_SYS _ADM N: 0-0

840422:770:/etc/rc.d/init.d/ halt:16:-1:-1:30: CAP_KI LL_PROTECTED: 0- 0

840422:770:/etc/rc.d/init.d/halt:16:-1:-1:21: CAP_SYS ADM N: 0-0

840422:770:/etc/rc.d/init.d/halt:16:-1:-1:17: CAP_SYS RAW O 0-0

840422:770:/etc/rc.d/init.d/ halt:16:-1:-1:12: CAP_NET_ADM N: 0-0

0:0::1:0:290881: 770: /root:0-0

387985: 770: / usr/ sbin/sshd: 16: 0: 22-22: 10: CAP_NET_BI ND_SERVI CE: 0- 0

387985: 770: / usr/ sbin/sshd: 16: 0: - 1: 31: CAP_PROTECTED: 0- 0

145448: 770: / usr/ X11R6/ bi n/ XF86_SVGA: 16: 0: - 1: 17: CAP_SYS_RAW O 0- 0

340048: 770: / usr/ bi n/ ssh: 16: 0: 0- 1024: 10: CAP_NET_BI ND_SERVI CE: 0- 0
: :791855: 770: / sbin: 0-0

1 840338: 770: /usr/l ocal : 0-0

:743375:770: /opt: 0-0

:921138: 770: /usr/local /etc:0-0

:227208: 770: / et ¢/ shadow: 0- 0

: 1227644:770: /etc/lilo.conf:0-0

840445: 770:/ bin/1 ogin: 1: 0: 227208: 770: / et c/ shadow: 0- 0

840414: 770:/ bin/su:1:0:227208: 770: / et ¢/ shadow: 0-0

840414:770:/bin/su:16:0:-1:7: CAP_SETUI D: 0-0

840414:770:/ bin/su:16:0:-1: 6: CAP_SETGI D: 0-0

840369: 770: / bi n/ bash: 7: 0: 293155: 770: / root/ . bash_hi story: 0-0

840445: 770:/ bin/login:7:0:745391: 770: /var/| og/ wt np: 0-0

791916: 770: /sbin/init:7:0:745391: 770: /var /| og/ wt np: 0-0

791916: 770: / sbin/init:7:0:743373:770:/var/log/l astlog:0-0

791915: 770: / sbin/ halt:7:0:743373: 770: /var/l og/l astl og: 0-0

791915: 770:/ sbin/ halt:7:0:745391: 770: /var /| og/ wt np: 0- 0

695030: 770: /etc/rc.d/rc.sysinit:7:1:745391: 770: /var/ |l og/ wt np: 0-0

695030: 770: /etc/rc.d/rc.sysinit:7:1:743373: 770:/var/log/l astl og: 0-0

791945: 770: / sbi n/ hwel ock: 7: 0: 226410: 770: /etc/ adj ti me: 0-0

791916: 770:/sbin/init:16:0:-1:5: CAP_KILL:0-0

840422:770:/etc/rc.d/init.d/halt:16:1:-1:5: CAP_KILL:0-0

791863: 770: / sbin/update: 16: 0: -1: 21: CAP_SYS_ADM N: 0- 0

0:0::0:0:599268: 770: / var/ www. 0-0

0:0::0:0:339533: 770: / usr/ bi n/ consol ehel per: 0-0

0:0::0:0:226493:770:/etc/ ssh/ sshd_config:0-0

0:0::0:0:227197: 770: / et c/ ssh/ ssh_host _key: 0-0

0:0::0:0:227214:770: /et c/ ssh/ ssh_host _dsa_key: 0-0

387985: 770: / usr/ sbin/sshd: 1: 0: 226493: 770: / et ¢/ ssh/ sshd_confi g: 0-0

387985: 770: /usr/ sbin/sshd: 1: 0: 227197: 770: / et ¢/ ssh/ ssh_host _key: 0-0

387985: 770: /usr/ sbin/sshd: 1: 0: 227214: 770: / et ¢/ ssh/ ssh_host _dsa_key: 0-0

387985: 770: / usr/ sbin/sshd: 7: 0: 745391: 770: / var/ 1 og/ wt np: 0-0

387985: 770: / usr/ sbin/sshd: 7: 0: 743373: 770: / var/ 1 og/ | astl og: 0-0

387985: 770: / usr/ sbin/sshd: 16: 0: -1: 7: CAP_SETUI D: 0- 0

387985: 770: / usr/ sbi n/ sshd: 16: -1 6: CAP_SETGI D: 0-0

387985: 770: / usr/ sbin/sshd: 16: 0: - 1: 3: CAP_FOWNER: 0- 0

387985: 770: / usr/ sbin/sshd: 16: 0: - 1: 0: CAP_CHOWN: 0- 0

387985: 770: / usr/ shi n/sshd: 16: 0: - 1: 1: CAP_DAC_OVERRI DE: 0- 0

387985: 770: / usr/ shi n/ sshd: 16: 0: 22- 22: 10 CAP_NET_BI ND_SERVI CE: 0- 0

387985: 770: / usr/ shi n/ sshd: 16: 0: - 1: 18: CAP_SYS_CHROOT: 0- 0

387985: 770: / usr/ sbi n/ sshd: 1: 0: 227208: 770: / et ¢/ shadow. 0- 0

857457: 770: /usr/l ocal / bin/snort:16:0:-1:1: CAP_DAC_OVERRI DE: 0- 0

857457: 770: /usr/ 1l ocal / bin/snort:16:0:-1: 13: CAP_NET_RAW 0-0

857457: 770: / usr/ | ocal / bi n/ snort: 16: 0: - 1: 29: CAP_HI DDEN: 0- 0

857457: 770: /usr/l ocal / bin/snort:16:0:-1:7: CAP_SETUI D: 0-0

857457:770:/usr/local/bin/snort: 16:0:-1:6: CAP_SETGA D: 0-0

857457:770:/usr/local/bin/snort:7:0:81730:770:/var/l og/snort:0-0

QR

eeeeLeeeee
NweRRRRERR
000000000

o 0o
(eI
[K=}
o A
N A
oo o1

ocooooo

coocoo-

52

Lids.net file configuration

LI DS

Send Alert Message From Network

for lids 0.9.8

Xi e@nuchi na. org

H e s e — =
MAIL SWTCH =1] O

1 , send alert function is on

0, send alert function is off

MAI L_SW TCH= 0

MAI L_RELAY=hex | P: port

1P11.1 of the machine that will be directly connected by LIDS
for relaying its mails. Port is usually 25, but who knows...
MAI L_RELAY=127.0.0. 1: 25

MAI L_SOURCE=source machine :

Name of the source machine, used for the ehlo identification.
Note that a bad nane here could nmake the mail relay refuse your
mails.

MAI L_SOURCE=decoy. cs. nps. navy. mi |

MAI L_FROMEsender address
Sender address, which will also be in the " “from' field.
MAI L_FROM= LI DS_ALERT@ps. navy. mi |

MAIL_TO=reci pi ent address :
Reci pi ent address.
MAI L_TO= vj nont ei @ps. navy. m |

MAI L_SUBJECT= subject :
Subj ect of the mail.
MAI L_SUBJECT= LIDS AlLert

Li ds. pw password file

8f ee5733a4caef 5n1992e25508e0428740f 99be7

53

THI'S PAGE | NTENTI ONALLY LEFT BLANK

54

APPENDI X C — SNORT FI LE CONFI GURATI ON

Modified by Valter Monteiro - Thesis Research
e
http://ww. snort.org Snort 1.9.0 Rul eset
Contact: snort-sigs@ists. sourceforge. net
-
NOTE: This rul eset only works for 1.9.0 and | ater
#
#
#

$1d: snort.conf,v 1.110 2002/08/14 03:17:58 chrisgreen Exp $

HEHH AR H AR S H AR S HARFH AR SHARHH AR SH AR HH AR HH AR FH ARG H AR
This file contains a sanple snort configuration.
You can take the followi ng steps to create your
own custom configuration:

1) Set the network variables for your network
2) Configure preprocessors

3) Configure output plugins

4) Custom ze your rule set

HAERBHBHHHHH R BB BB HBHHH BB BB BHYHHH R BB B BB HHH SRR BRRHY
Step #1: Set the network vari abl es:

You nust change the follow ng variables to reflect
your |l ocal network. The variable is currently
setup for an RFC 1918 address space.

You can specify it explicitly as:

var HOME_NET 192.160.0.0/24

or use gl obal variable $<interfacename>_ADDRESS

which will be always initialized to |IP address and
net mask of the network interface which you run
snort at.

var HOMVE_NET $et hO_ADDRESS

You can specify lists of |P addresses for HOVE_NET
by separating the IPs with commas |ike this:

var HOVE_NET [10.1.1.0/24,192.168. 1.0/ 24]
MAKE SURE YOU DON' T PLACE ANY SPACES I N YOUR LI ST!

or you can specify the variable to be any |IP address
li ke this:

B R i T T I s i g s s R i T T T i S s s - i i T S-S s = i s 3

var HOMVE_NET 192.168.0. 3/24

Set up the external network addresses as well.
A good start may be "any"

var EXTERNAL_NET any

Configure your server lists. This allows snort to only |look for attacks

to systens that have a service up. Wy look for HTTP attacks if you are

not running a web server? This allows quick filtering based on |IP addresses
These configurations MJUST follow the same configuration schene as defined

above for $HOVE_NET.

#

v

Li st of DNS servers on your network
ar DNS_SERVERS $HOVE_NET

55

List of SMIP servers on your network
var SMIP_SERVERS $HOME_NET

List of web servers on your network
var HTTP_SERVERS $HOME_NET

List of sql servers on your network
var SQL_SERVERS $HOME_NET

List of telnet servers on your network
var TELNET_SERVERS $HOME_NET

Configure your service ports. This allows snort to |look for attacks
destined to a specific application only on the ports that application
runs on. For exanple, if you run a web server on port 8081, set your
HTTP_PORTS variable like this:

Port lists nmust either be continuous [eg 80:8080], or a single port [eg 80].
We will adding support for a real list of ports in the future

#

#

#

#

var HTTP_PORTS 8081

#

#

#

Ports you run web servers on
var HTTP_PORTS 80

Ports you want to | ook for SHELLCODE on
var SHELLCODE_PORTS ! 80

Ports you do oracle attacks on
var ORACLE_PORTS 1521

ot her vari abl es

Al M servers. AOL has a habit of adding new AlM servers, so instead of

nmodi fying the signatures when they do, we add themto this list of

servers.

var Al M_SERVERS

[64.12.24.0/ 24, 64. 12. 25. 0/ 24, 64. 12. 26. 14/ 24, 64. 12. 28. 0/ 24, 64. 12. 29. 0/ 24, 64. 12. 161. 0/ 24, 64. 12. 163. 0/ 24, 205

HHHFHH

Path to your rules files (this can be a relative path)
var RULE_PATH ../rules

HHHBHHHHHHHHHBRBHHHHH AR BB B R HHHHH S H BB HHBHHH BB RRHS
Step #2: Configure preprocessors

Ceneral configuration for preprocessors is of
the form
preprocessor <name_of _processor>: <configuration_options>

frag2: | P defragnentation support

This preprocessor perfornms |IP defragnentation. This plugin will also detect
peopl e |l aunching fragnmentation attacks (usually DoS) against hosts. No
argunents | oads the default configuration of the preprocessor, which is a
60 second timeout and a 4MB fragnment buffer.

The followi ng (comma delimted) options are available for frag2

ti meout [seconds] - sets the nunmber of [seconds] than an unfinished
fragment will be kept around waiting for conpletion
if this tine expires the fragment will be flushed
mencap [bytes] - limt frag2 nenory usage to [nunmber] bytes
(default: 4194304)
mn_ttl [nunmber] - mninumttl to accept
ttl _limt [nunber] - difference of ttl to accept without alerting
wi Il cause false positves with router flap

HHHFHFHHFEHFHHEHHE HHHFHHEH O HHHFHRH

56

Frag2 uses Generator ID 113 and uses the follow ng SIDS

for that Gl D

SID Event description

e

1 Oversized fragment (reassenbled frag > 64k bytes)
2 Teardrop-type attack

preprocessor frag2

streamd: stateful inspection/streamreassenbly for Snort

Use in concert with the -z [all|est] conmand line switch to defeat
stick/snot against TCP rules. Also perfornms full TCP stream
reassembly, stateful inspection of TCP streans, etc. Can statefully
detect various portscan types, fingerprinting, ECN, etc

stateful inspection directive
no argunments |oads the defaults (tineout 30, nencap 8388608)
options (options are comm delinited):
detect _scans - stream4 will detect stealth portscans and generate alerts
when it sees them when this option is set
detect _state_problenms - detect TCP state problens, this tends to be very
noi sy because there are a |lot of crappy ip stack
i mpl enent ati ons out there

di sabl e_evasion_alerts - turn off the possibly noisy mtigation of
over| appi ng sequences

mn_ttl [nunber] - set a mniumttl that snort will accept to
stream reassenbly

ttl _limt [nunber] - differential of the initial ttl on a session versus
the normal that someone may be playing ganes
Routing flap may cause lots of false positives

keepstats [machi ne| binary] - keep session statistics, add "machine" to
get themin a flat format for machine reading, add
"binary" to get themin a unified binary output

f or mat
noi nspect - turn off stateful inspection only
ti meout [nunber] - set the session timeout counter to [number] seconds
default is 30 seconds
mencap [nunmber] - limt stream4 nenory usage to [nunber] bytes
|l og_flushed_streanms - if an event is detected on a streamthis option will

cause all packets that are stored in the streamt
packet buffers to be flushed to disk. This only
wor ks when 1 ogging in pcap node

Streamd uses Generator |ID 111 and uses the follow ng SIDS
for that G D

SID Event description

1 Stealth activity

2 Evasi ve RST packet

3 Evasi ve TCP packet retransm ssion

4 TCP W ndow vi ol ation

5 Data on SYN packet

6 Stealth scan: full XMAS

7 Stealth scan: SYN- ACK- PSH- URG

8 Stealth scan: FIN scan

9 Stealth scan: NULL scan

B i T I R s s R g T T o g s s R T T i s s S S R e R T S s s S 3R TR S i . o

10 Stealth scan: NMAP XMAS scan

11 Stealth scan: Vecna scan

12 Stealth scan: NMAP fingerprint scan stateful detect
13 Stealth scan: SYN-FIN scan

14 TCP forward overl ap

preprocessor streamd: detect scans, disable evasion alerts

57

tcp streamreassenbly directive
no argunments | oads the default configuration

Only reassenble the client,

Only reassenble the default list of ports (See bel ow)

G ve alerts for "bad" streams

#

Avail abl e options (conmm delimted):

clientonly - reassenble traffic for the client side of a connection only
serveronly - reassenble traffic for the server side of a connection only
both - reassenble both sides of a session

noalerts - turn off alerts fromthe streamreassenbly stage of streamt

ports [list] - use the space separated list of ports in [list], "all"

will turn on reassenbly for all ports, "default" will turn
on reassenbly for ports 21, 23, 25, 53, 80, 143, 110, 111
and 513

preprocessor streami_reassenbl e

http_decode: normalize HTTP requests

http_decode normalizes HTTP requests fromrenote

machi nes by converting any %XX character

substitutions to their ASCI| equivalent. This is

very useful for doing things |ike defeating hostile
attackers trying to stealth thenselves from | DSs by

m Xi ng these substitutions in with the request

Specify the port nunbers you want it to analyze as argunents.

Maj or code cl eanups thanks to rfp

uni code - normalize unicode

iis_alt_unicode - % encoding fromiis

doubl e_encode - alert on possible double encodings
iis_flip_slash - normalize \ as /

full _whitespace - treat \t as whitespace (for apache)

for that G D

HHHFHBHHFHFFHHHF TS

SID Event description
1 UNI CODE attack
2 NULL byte attack

eprocessor http_decode: 80 unicode iis_alt_unicode double_encode iis_flip_slash full_whitespac

o
=

rpc_decode: normalize RPC traffic

RPC may be sent in alternate encodi ngs besides the usua

4-byte encoding that is used by default. This preprocessor
normalized RPC traffic in much the sane way as the http_decode
preprocessor. This plugin takes the ports nunmbers that RPC
services are running on as argunents.

The RPC decode preprocessor uses generator |ID 106 and does not
generate any SIDs at this time.

HHHFHFHHEHRE

preprocessor rpc_decode: 111 32771

bo: Back Orifice detector

Detects Back Orifice traffic on the network. This preprocessor
uses the Back Orifice "encryption" algorithmto search for
traffic conformng to the Back Orifice protocol (not BO2K)

This preprocessor can take two arguments. The first is "-nobrute"
which turns off the plugin's brute forcing routine (brute forces
the key space of the protocol to find BO traffic). The second
argunent that can be passed to the routine is a number to use

as the default key when trying to decrypt the traffic. The
default value is 31337 (just like BO. Be aware that turning on
the brute forcing option runs the risk of inpacting the overal

HHHFEHFEHHEHFHEHSR

58

performance of Snort, you've been warned...

The Back Orifice detector uses Generator |ID 105 and uses the
followi ng SIDS for that G D:
SID Event description

1 Back Orifice traffic detected

HHHFEHHHH

preprocessor bo: -nobrute

tel net _decode: Tel net negotiation string normalizer

This preprocessor "normalizes" telnet negotiation strings from

telnet and ftp traffic. It works in rmuch the sane way as the
http_decode preprocessor, searching for traffic that breaks up

the normal data stream of a protocol and replacing it with

a normalized representation of that traffic so that the "content"
pattern matching keyword can work without requiring nmodifications.

This preprocessor requires no argunents.

Portscan uses Generator |ID 109 and does not generate any SID currently.

HHHFHHHHFHFHHR

preprocessor tel net_decode

Portscan: detect a variety of portscans

portscan preprocessor by Patrick Miullen <p_mull en@ i nuxrc. net>

This preprocessor detects UDP packets or TCP SYN packets going to

four different ports in less than three seconds. "Stealth" TCP

packets are al ways detected, regardl ess of these settings.

Portscan uses Generator | D 100 and uses the followi ng SIDS for that G D:
SID Event description

Portscan detect

2 Inter-scan info

3 Portscan End

preprocessor portscan: $HOVE_NET 4 3 portscan.|og

Use portscan-ignorehosts to ignore TCP SYN and UDP "scans" from
specific networks or hosts to reduce false alerts. It is typical
to see many false alerts from DNS servers so you nmay want to
add your DNS servers here. You can all nultiple hosts/networks
in a whitespace-delimted |ist.

HH HFHHFH H* HFHEFHFIFHHHHHRHHR
=

#preprocessor portscan-ignorehosts: 0.0.0.0

Experinmental ARP detection code from Jeff Nathan, detects ARP attacks,
uni cast ARP requests, and specific ARP mapping nonitoring. To nmake use
of this preprocessor you nust specify the | P and hardware address of hosts on # the sane |ayer 2 segne
I P MAC conbo per line.
Also takes a "-unicast" option to turn on unicast ARP request detection.
Arpspoof uses Generator |ID 112 and uses the following SIDS for that G D:
SID Event description

1 Uni cast ARP request

2 Et herframe ARP mi smatch (src)

3 Et herframe ARP m smatch (dst)

4 ARP cache overwrite attack

HHHFHHHR

#preprocessor arpspoof
#preprocessor arpspoof _detect_host: 192.168.40.1 f0: 0f: 00:f0: 0f: 00

ASN1 Decode

Hoe oo e e o e o e e e e e e e e e e e e e eao o
This is an experinmental preprocessor. ASN. 1 decoder and analysis plugin
from Andrew R. Baker. This preprocessor will detect abuses of the ASN. 1

protocol that higher level protocols (like SSL, SNWMP, x.509, etc) rely on.

59

HHHFHEHEHR

p

HHHFHHHHFHEHR

F*

HHHIFHFFHFHFFHEHF TSR

p

HHHFHTHHEHFTHH

#
#
#
#

The ASN. 1 decoder uses Generator ID 115 and uses the follow ng SIDs for
that G D
SID Event description

1 Indefinite Il ength

2 Invalid length

3 Oversized item

4 ASN. 1 specification violation
5 Dat aum bad | ength

reprocessor asnl_decode

This is an experinental preprocessor. Polynorphic shellcode analyzer and
detector by Dragos Ruiu. This preprocessor will watch traffic for

pol ynor phic NOP-type sleds to defeat tools |ike ADMutate. The Fnord detector
uses Generator ID 114 and the follow ng Sl Ds:

SID Event description

1 NOP- sl ed det ect ed
preprocessor fnord

Conversation

This preprocessor tracks conversations for tcp, udp and icnp traffic. It
is a prerequisite for running portscan2.

al l owed_i p_protcols 1 6 17
list of allowed ip protcols (defaults to any)

timeout [nuni
conversation timeout (defaults to 60)

max_conversations [nuni
nunber of conversations to support at once (defaults to 65335)

al ert _odd_protocols
alert on protocols not listed in allowed_ip_protocols

reprocessor conversation: allowed_ip_protocols all, tinmout 60, nmax_conversati ons 32000

Port scan2

Portscan 2, detect portscans in a new and exciting way.

Avai |l abl e opti ons:
scanners_max [num
targets_max [num
target _limt [nuni
port_limt [num
timeout [num
log [l ogdir]

reprocessor portscan2: scanners_nmax 3200, targets_max 5000, target_limt 5, port_limt 20
Experimental Perf stats
No docs. Highly subject to change

preprocessor perfnonitor: console flow events time 10

HUERBHHHHHHH R BRBHHHHH BB HBHHH SRR BB B HHHHH AR B R R HHHHHH BB RHH S
Step #3: Configure output plugins

Uncomment and configure the output plugins you decide to use.

time

60

T

HHHFHHHHFHHHE HHBFEHHFH HHBHBFHBHEFHFBHEFEHFREEHEE OBHFHHEH OFHBFHRFHHEHT OHEHHFHHE OHHBEHFHREHRE

General configuration for output plugins is of the form

out put <name_of _plugi n> <configuration_options>
alert_syslog: log alerts to syslog

Use one or more syslog facilities as arguments
out put alert_syslog: LOG AUTH LOG_ALERT

| og_tcpdunp: | og packets in binary tcpdunp format
The only argument is the output file name.
out put | og_tcpdunp: tcpdunp.|og

dat abase: log to a variety of databases

See the README. dat abase file for nore information about configuring

and using this plugin.

out put dat abase: | og, nysql, user=root password=test

dbname=db host =l ocal host

out put dat abase: alert, postgresql, user=snort dbname=snort
out put dat abase: | og, unixodbc, user=snort dbnane=snort

out put dat abase: | og, nssql, dbname=snort user=snort

xm : xm | ogging

See the README. xml file for nore information about

and using this plugin.

output xm: log, file=/var/log/snortxm

passwor d=t est

configuring

uni fied: Snort unified binary format alerting and | ogging

The unified output plugin provides two new formats for | ogging
and generating alerts from Snort, the "unified" format. The
unified format is a straight binary format for |ogging data
out of Snort that is designed to be fast and efficient. Used

with barnyard (the new alert/log processor), npst

t he overhead

for logging and alerting to various slow storage nmechani sns

such as dat abases or the network can now be avoi ded

Check out the spo_unified.h file for the data formats.

Two argunents are supported.

filenanme - base filenane to write to (current time_t is appended)

limt - maxi mum si ze of spool file in MB (defaurt: 128)
output alert_unified: filename snort.alert, limt
output log_unified: filename snort.log, limt 128

trap_snnp: SNMP alerting for Snort

Read the README. SNWP file for nore information on enabling and using this

plug-in.

[plm s]]

he
[c]
wher e,

trap_snnmp plugin accepts the follow ng notification options

c : Cenerate conpact notifications. (Saves on bandw dth by
not reporting MOs for which values are unknown, not
avai l abl e or, not applicable). By default this option is reset
p : Generate a print of the invariant part of the offending packet
This can be used to track the packet across the Internet.

By default this option is reset.

m: Use the MD5 algorithmto generate the packet

print.

61

HHEHFHBHFHFFH A HFE R HFH SRS

#out put trap_snmp: alert, 7, trap -v 3 -u snortUser -l authPriv -a SHA -A Snort Aut hPassword

By default this algorithmis used
s : Use the SHAl algorithmto generate the packet print.

The trap_snnp plugin requires several paraneters
The paraneters depend on the Snnpversion that is used (specified)
For the SNMPv2c case the parameters will be as follows
alert, <sensorlD>, [NotificationOptions]
{trap|infornm -v <SnnmpVersion> -p <portNunber> <host Name> <comunity>
For SNMPv2c traps with MD5 di gest based packetPrint generation
output trap_snnp: alert, 7, cpm trap -v 2c nmyTrapLi stener nyConmunity

For SNMPv2c informs with the 'conpact' notification option

out put trap_snnp: alert, 7, ¢, inform-v 2c myTrapLi stener nyConmunity

For SNMPv3 traps with
security nanme = snortUser

security level = authentication and privacy
aut hentication parameters
aut hentication protocol = SHA

aut henticati on pass phrase = Snort Aut hPassword
privacy (encryption) paranmeters

privacy protocol = DES

privacy pass phrase = SnortPrivPassword

myTr apLi st ener
#For SNMPv3 infornms with authentication and encryption

#out put trap_snnp: alert, 7, inform-v 3 -u snortUser -1 authPriv -a SHA -A SnortAut hPassword - x

myTr apLi st ener

HHH HHEHFFAHFHFHAEHFFHFRHRTEHRFHRFTHRHHERH
~ ~

You can optionally define new rule types and associ ate one or
nor e out put plugins specifically to that type

This exanple will create a type that will log to just tcpdunp.
rul etype suspicious

type | og
out put | og_tcpdunp: suspicious.log

}

EXAMPLE RULE FOR SUSPI Cl OUS RULETYPE:
suspi ci ous $HOVE_NET any -> $HOME_NET 6667 (msg:"Internal |IRC Server";)

This exanple will create a rule type that will log to syslog
and a nysql database.
rul etype redal ert

type alert
out put alert_syslog: LOG AUTH LOG_ALERT
out put database: |og, nysql, user=snort dbname=snort host =l ocal host

}
EXAMPLE RULE FOR REDALERT RULETYPE

redal ert $HOME_NET any -> $EXTERNAL_NET 31337 (nsg: " Sonmeone is being LEET"; \
flags: A+;)

Include classification & priority settings

include classification.config

#
#
#

I nclude reference systens

62

include reference.config

HURBHBHHHH BB BB HBHHH BB BB R B HHHH R B BB BB HHH R R B BB R B HHH SRR B BB HHHH R BB
Step #4: Custom ze your rule set

Up to date snort rules are available at http://ww.snort.org

The snort web site has documentation about how to write your own
custom snort rules.

The rules included with this distribution generate alerts based on
on suspicious activity. Depending on your network environment, your
security policies, and what you consider to be suspicious, sone of
these rules may either generate false positives ore may be detecting
activity you consider to be acceptable; therefore, you are
encouraged to conment out rules that are not applicable in your

envi ronment .

Note that using all of the rules at the same time may lead to
serious packet | oss on slower machines. YMW, use with caution,
standard disclaimers apply. :)

The follow ng individuals contributed many of rules in this
di stribution.

Credits:
Ron Gul a <rgul a@ecurityw zards. com> of Network Security W zards
Max Vi sion <vision@hitehats.com>
Martin Markgraf <martin@mil . du.gtn.conm>
Fyodor Yarochkin <fygrave@i gerteam net>
Ni ck Rogness <ni ck@ api dnet. conp
Jim Forster <jforster@ apidnet.comnm>
Scott MclIntyre <scott@hoi.edu>
Tom Vandepoel <Tom Vandepoel @bi zen. conp
Bri an Caswel| <bnc@nort.org>
Zeno <adm n@gi security.conp
Ryan Russell <ryan@ecurityfocus.conpr

I nclude all relevant rul esets here

HHHFHFHHFHFHHHFHHFHFHHF TSRS

di sabl ed by default. These require tuning and maintance.

#

#

shell code, policy, info, backdoor, and virus rul esets are

#

Pl ease read the included specific file for nmore information.

#i ncl ude $RULE_PATH/ bad-traffic.rules
#i ncl ude $RULE_PATH expl oit.rules
#i ncl ude $RULE_PATH/ scan. rul es

#i ncl ude $RULE_PATH/ finger.rul es

#i ncl ude $RULE_PATH/ ftp.rul es
include $RULE_PATH/ tel net.rul es

#i ncl ude $RULE_PATH/rpc.rul es

#i ncl ude $RULE_PATH/rservices.rul es
#i ncl ude $RULE_PATH/ dos. rul es

#i ncl ude $RULE_PATH/ ddos. rul es

#i ncl ude $RULE_PATH/ dns. rul es

#i ncl ude $RULE_PATH/ tftp.rules

#i ncl ude $RULE_PATH/ web-cgi.rul es

#i ncl ude $RULE_PATH/ web- col df usi on. rul es
#i ncl ude $RULE_PATH/ web-iis.rules

#i ncl ude $RULE_PATH/ web- front page. rul es
#i ncl ude $RULE_PATH/ web-m sc.rul es

#i ncl ude $RULE_PATH/ web-client.rules

#i ncl ude $RULE_PATH/ web- php.rul es

#i ncl ude $RULE PATH/ sqgl . rul es

63

#i ncl ude $RULE_PATH/ x11.rul es

#i ncl ude $RULE_PATH/ i cnp.rul es

#i ncl ude $RULE_PATH/ net bi os. rul es

#i ncl ude $RULE_PATH/ mi sc.rul es

#i ncl ude $RULE_PATH/ att ack-responses. rul es
#i ncl ude $RULE_PATH oracle.rul es

#i ncl ude $RULE_PATH/ nysql . rul es

#i ncl ude $RULE_PATH/ snnp. rul es

#i ncl ude $RULE_PATH/ snt p.rul es
#i ncl ude $RULE_PATH/ i map.rul es
#i ncl ude $RULE_PATH/ pop3.rul es

#i ncl ude $RULE_PATH/ nntp.rul es

#i ncl ude $RULE_PATH/ ot her-ids.rul es
#i ncl ude $RULE_PATH/ web- attacks. rul es
#i ncl ude $RULE_PATH/ backdoor.rul es

#i ncl ude $RULE_PATH/ shel | code. rul es
#i ncl ude $RULE_PATH policy.rules

#i ncl ude $RULE_PATH/ porn.rul es

#i ncl ude $RULE_PATH/ i nfo.rul es

#i ncl ude $RULE_PATH/icnp-info.rules
include $RULE_PATH i cnp.rul es

#i ncl ude $RULE_PATH/ virus.rul es

#i ncl ude $RULE_PATH/ chat.rul es

#i ncl ude $RULE_PATH/ mul ti medi a. rul es
#i ncl ude $RULE_PATH/ p2p.rul es

#i ncl ude $RULE_PATH experi mental . rul es
#i ncl ude $RULE_PATH/ | ocal . rul es

64

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

LI ST OF REFERENCES

M chael ,J.B., and Riehle, R D., Intelligent Software
Decoys. Proc. Monterey Workshop: Eng. Automation for
Software Intensive Syst. | nt egration, Mont er ey,
California: Naval Postgraduate School, June 2001,
pp. 178-187

Sun Tzu, The Art of War, Oxford University Press,
January 1986

Dunni gan, J.F., and Nofi, A A Victory and Deceit,
second edition: Deception and Trickery in War. San
Jose, California: Witers Club Press, 2001

Cohen, F., A Franmework for Deception, July, 1993.

Rowe, Neil C., Counterplanning Deceptions to Foil
Cyber-Attack Plans, Proceedings of the 2003 |IEEE,
wor kshop on Information Assurance, United State
MIlitary Acadeny, West Point, New York June 2003

Neil C. Rowe, J.Bret M chael, M khail Auguston, and
Ri char d Ri ehl e, Software decoys for Sof t war e
Counterintelligence, June 2002

Honeynet Project, Know Your Eneny. Addison-Wesl ey,
2002

W nn Schwartau, Tinme Based Security, Interpact Press,
February 1999

Col | ection of papers, NPS Wb Page — Software Decoy
Proj ect

The O ficial Red Hat Linux Custom zation Guide, Red
Hat 8.0, 2002

Thomas A. Wadl ow, The Process of Network Security.
Addi son- Wesl ey, 2000

Breatt G ass, Log Mnitor in BSD UNI X, Laram e,
presented at BSDCon 2002, San Franci sco.

Lutz Prechelt, An enpirical conparison of C, C++,

TawvAa narl Dvit hAan DA v AnAd TAI Canlsnnl + At f v

65

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Java, perl, Python, Rexx, and Tcl, Faukultat fur
I nformati k, University Karl sruhe

Di ego Zanmboni, Using Internal Sensor for Conputer
I ntrusion Detection, PhD Thesis, Center for Education
and Research in Informati on Assurance and Security,
Purdue University, August 2001

Proctor, Paul E., The Practical Intrusion Detection
Handbook, Prentice-Hall, 2001

The I ntrusion Detection Systens Consortium (1 DSC), An
I ntroduction to Intrusion Detection Assessnment, March
1999

Mark Crosbie and Gene Spafford. Active defense of a
comput er system

usi ng autonomous agents. Technical Report 95-008,
COAST Group, Departnment

of Conmput er Sci ences, Purdue University, West
Laf ayette, Indiana,

February 1995.

Build a Secure System with LI DS. URL
http://ww.lids.org, March 2003

Anderson, J.P., Conputer Security Technol ogy Pl anning
Study, ESD-TR-73-51, Vol1l, Hanscom AFB, Massachusetts,
1972

Donald L. Brinkley and Roger R Schell, Concepts and
term nol ogy for conputer Security, May 1993

Georgi os Fragkos, Master’'s Thesis , An Event-Trace
Language for Software Decoys, Septenber 2002, Nava
Post gr aduat e School

Ko, C., Fraser, T., Badger, L., Kil patrick, D.
Detecting and Countering System Intrusions Using
Software Wappers, 1In Proc. 9'h USENI X Security
Sysposi um Denver, Col orado, August 2000.

Nort hcutt S., Novak J., Network |Intrusion Detection
Third Edition, New Ri ders, 2003

66

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

SANS Institute, Intrusion Detection Snort Style
Bookl et, 2002.

Martin Roesh, Snort O ficial Mnual, release 1.9,
April 2002. URL http://ww. snort.org

Krzyszt of Zaraska, |IDS Active Response Mechani sns:
Count er neasure Subsystem for Prelude IDS, July 2002.

Jason Larsen, Jed Halie, Understanding IDS Activate
Response Mechani sns, securityfocus, January 29, 2002.
URL http://ww. securityfocus.con’infocus/ 1540, March
2003

Gasfinkel, S. and Spafford, G, Practical Unix and
Internet Security, OReilly & Associates, Inc, 1996.

Fow er, C. A, and Nesbit, R F., Tactical deception in
air-land warfare. Journal of Electronic Defense, Vol
18, No. 6 (June 1995), pp. 37-44 & 76-79

Janes P Anderson, Conputer Security Threat Monitoring
and Surveillance, James P. Anderson Co., Fort
Washi ngt on. PA, Apri | 1980. URL
http://csrc.nist.gov/publications/history/ande80. pdf,
March 2003

PhD Ti na Bird, Mar cus J. Ranum URL
http://ww. | oganal ysi s. org, March 2003

Valter Monteiro, Neil C. Rowe, |[|ndependent Study,
Naval Post graduate School, Monterey, California,
Decenber, 2002

67

THI'S PAGE | NTENTI ONALLY LEFT BLANK

68

| NI TI AL DI STRI BUTI ON LI ST

Def ense Techni cal | nformation Center
Ft. Belvoir, VA

Dudl ey Knox Library
Naval Postgraduate School
Mont erey, CA

Neil C. Rowe
Naval Postgraduate School
Mont erey, CA

J.D. Fulp
Naval Postgraduate School
Mont erey, CA

69

