
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A GENERIC SOFTWARE ARCHITECTURE

FOR DECEPTION-BASED INTRUSION DETECTION
AND RESPONSE SYSTEMS

by

Engin Uzuncaova

March 2003

 Thesis Advisor: James Bret Michael
 Thesis Co-Advisor: Richard Riehle

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A Generic Software Architecture for Deception-based
Intrusion Detection and Response Systems
6. AUTHOR(S) Engin Uzuncaova

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Today, intrusion detection systems provide for detecting intrusive patterns of interaction. Although the responses
of such systems are typically limited to primitive actions, they can be supplemented with deception-based
strategies. We propose a generic software architecture combining intrusion detection and deceptive response
capabilities in a uniform structure. Detecting and responding to attacks are realized via runtime instrumentation of
kernel-based modules. The architecture provides for dynamically adjusting system performance to maintain
continuity and integrity of both legitimate services and security activities.

15. NUMBER OF
PAGES

85

14. SUBJECT TERMS
Computer Security, Intrusion Detection, Intrusion Response, Deception, Software
Architecture, Unified Modeling Language

 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

A GENERIC SOFTWARE ARCHITECTURE FOR DECEPTION-BASED
INTRUSION DETECTION AND RESPONSE SYSTEMS

Engin Uzuncaova

Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

and

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: Engin Uzuncaova

Approved by: James Bret Michael

Thesis Advisor

Richard Riehle
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Today, intrusion detection systems provide for detecting intrusive patterns of

interaction. Although the responses of such systems are typically limited to primitive

actions, they can be supplemented with deception-based strategies. We propose a generic

software architecture combining intrusion detection and deceptive response capabilities

in a uniform structure. Detecting and responding to attacks are realized via runtime

instrumentation of kernel-based modules. The architecture provides for dynamically

adjusting system performance to maintain continuity and integrity of both legitimate

services and security activities.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION..1

II. DOMAIN ANALYSIS ...5

A. CYBER SECURITY..5

B. INTRUSION DETECTION..6

C. INTRUSION RESPONSE...8

D. INTELLIGENT SOFTWARE DECOYS..11

III. DEVELOPMENT PROCESS...15

A. OVERVIEW...15

B. DEVELOPMENT PHASES..18

1. Plan and Elaborate ..18

2. High-Level System Definition ...18

3. Detailed Architectural Design...19

C. A MODELING TOOL: UML...19

IV. PLAN AND ELABORATE...21

A. OVERVIEW...21

1. Requirements..21

2. Use Cases...21

B. FUNCTIONAL REQUIREMENTS...22

1. Intrusion Detection ..22

2. Deception-based Response ..22

3. Automated Response ...22

4. Runtime and Offline Analysis...23

5. Kernel-based Detection and Response Modules23

6. Distributed Detection and Response Capabilities...........................23

7. System Performance Maintenance...23

8. Dynamic Adaptation and Evolution...24

9. Global Defense Policy and Doctrine...24

C. NON-FUNCTIONAL REQUIREMENTS...24

vii
1. Interoperability ..24

2. Stability ...25

3. Scalability..25

4. Survivability ...25

5. Effectiveness ...26

6. Performance ...27

D. HIGH-LEVEL USE-CASES...27

1. Initiate Attack...28

2. Monitor System Activity..28

3. Perform Runtime and Offline Analysis ...29

4. Detect Intrusions ..29

5. Track Intrusions ..29

6. Respond to Attacks ..30

7. Apply Deception...30

V. HIGH-LEVEL SYSTEM DEFINITION ...31

A. OVERVIEW...31

B. CONCEPT CATEGORY LIST..32

C. CONCEPTUAL MODEL ...34

D. HIGH-LEVEL ARCHITECTURAL DESIGN...37

1. Overview ...37

2. Dynamic Behavior Model..37

3. Adaptation Management...39

4. Evolution Management ...41

5. Architecture Package Diagram ..43

VI. DETAILED ARCHITECTURAL DESIGN..45

A. OVERVIEW...45

B. DETAILED ARCHITECTURAL DESIGN..45

C. PACKAGE DESCRIPTIONS...45

1. Presentation ..46

2. Monitoring ..46

3. Analysis ...48

viii
4. Deployment...50

5. Supervisor...51

6. Interpreter ..52

7. Operating System...52

8. Database..53

D. NON-FUNCTIONAL REQUIREMENTS...54

VII. CONCLUSION AND FUTURE WORK ...59

A. SUMMARY ..59

B. FUTURE WORK...60

LIST OF REFERENCES..63

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

LIST OF FIGURES

Figure II-1 The relationship of inner- and outer-loop responses (From: [19])9
Figure II-2 Runtime system for execution of detection engines (From: [20])10
Figure II-3 High-level software decoy architecture (From: [2]) ..12
Figure II-4 Decoy interaction with a buffer overflow attack (After: [6])14
Figure III-1 The "4+1" view model. (From: [23]) ...15
Figure III-2 The four views of software architecture (From: [43])16
Figure III-3 Architectural views for intrusion detection and response framework17
Figure IV-1 High-level use case diagram for DB-IDRA...27
Figure V-1 Central functionality of DB-IDRA ..34
Figure V-2 Conceptual Model..35
Figure V-3 High-level adaptation and evolution process (From: [36])..............................37
Figure V-4 Process diagram ...39
Figure V-5 Adaptation management process ...40
Figure V-6 Evolution management process ...42
Figure V-7 Architecture package diagram ...43
Figure VI-1 Monitoring Package ...46
Figure VI-2 Observation categories...47
Figure VI-3 Analysis package ...49
Figure VI-4 Categories of actions generated by the analysis package50
Figure VI-5 Deployment agents...51
Figure VI-6 Internal structure of the supervisor ..52
Figure VI-7 Hierarchical supervisor organization ...56

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

LIST OF TABLES

Table 1 Concept category list..33

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

ACKNOWLEDGMENTS

 This is the last part that I am adding to this thesis, so I am trying hard to capture

what I really feel. Is it that I am happy and relaxed, because I have finally finished my

thesis? I think that it is much more than that.

It has been a long journey. The point that I am at right now is not something that I

imagined two years ago. I had the chance to know invaluable personalities and get their

assistance throughout that journey: Prof. J.Bret Michael and Richard Riehle. I want to

thank you for the inspiration, motivation and help that you gave me. If I am successful, it

is not actually only mine, more like ours…

My wife has been always beside me, she even tried to learn C++ to help me when

I was stuck! My parents always believed in me to pursue my goals. My son always tried

to take me away from my work and wanted me to play with him.

To my son, Berk…

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

I. INTRODUCTION

As military forces around the globe become ever more reliant on software-

intensive systems for war fighting, the importance of these systems increases. Today,

intrusion detection systems provide for detecting intrusive patterns of interaction;

however, responses against attacks are limited to primitive actions such as terminating

the intrusive processes and shutting down the system. As a result, valuable information

about the attacks cannot be collected, which might otherwise be used to improve the

security mechanism’s capabilities to manage the exposure of information systems to the

suspicious behavior of programs, with which they interact.

Deception-based strategies can be incorporated into intrusion detection and

response systems to address to some extent the aforementioned weakness. The history of

deception in military operations presents a wide spectrum of possibilities to realize

deception in military information systems. We use deception as an active software

component that interacts with intruders and provides fake responses to gather information

about the nature of their interaction while protecting the key assets of the targeted system.

The level of sophistication involved in those responses can be adjusted based on

considerations such as system performance, the value of protected assets, the threat level

of the attacks, and global security policies.

Intrusion detection systems are designed to discover intrusions on a computing

system or the misuse of a computing system. However, most of the time these systems

fail to differentiate between malicious actions of an attacker versus the egregious use of

these resources by legitimate users. False positives and negatives along with monitoring

overhead are problematic for intrusion detection systems, irrespective of whether they

provide for anomaly, misuse, or signature-based detection. While some intrusion

detection systems include response mechanisms, the capabilities of those mechanisms are

constrained by the performance overhead introduced by both monitoring and response

activities. Choosing simple responsive actions is considered to be sufficient as long as the

detection mechanism does its job to detect attacks. However, with technological

1

improvements and creative thinking on the part of attackers, it is likely that more

sophisticated deception techniques will need to be employed to successfully thwart cyber

attacks.

Michael et al. [1,2] investigates the feasibility of applying deception in intrusion

detection systems and introduced an abstraction, called intelligent software decoy, to

demonstrate both theoretical and practical applications of deception in software-intensive

systems. An intelligent software decoy is an abstraction for protecting objects within a

component-based architecture from egregious and malicious use of their methods and

interfaces. Deception is used to simultaneously make the intruders believe that they have

been successful in accessing methods and interfaces, and permit the decoys to gather

information about the intrusions. The concept covers a wide range of research topics

including implementing military deception tactics in cyber space, developing deceptions,

using kernel-based modules for intrusion detection and response capabilities, and

developing a high-level specification language for specifying both detection and response

rules.

Our focus in this thesis is on developing a deception-based intrusion detection and

response architecture (DB-IDRA), with the intent to do the following: select an

architectural representation for the DB-IDRA, and construct the architecture so that it can

support a wide range of architectural frameworks.

The architecture that we settled on has the following characteristics. The

architecture combines intrusion detection and deceptive response mechanism in a

uniform structure. Responses are automated to minimize human interaction with the

system. The DB-IDRA uses kernel-based software modules to detect attack sequences

and respond to those attacks. To improve the survivability of the architecture, detection

and response capabilities are distributed across the entire domain. To minimize the effect

of defensive activities on the performance of the services provided by the system to

legitimate users, DB-IDRA employs a mechanism to observe the global state and keep

the system functioning within predefined tolerances. The architecture is based on a

dynamic adaptation and evolution process to fulfill the abovementioned tasks. Global

policy and doctrine are used to govern the behavior of the detection and response system.

2

The conclusions to be drawn from this research are mostly based on the

architectural representation of a deception-based intrusion detection and response system.

Architectural representation provides a consistent and comprehensive definition of the

problem domain for future work that might refine or extend our findings. We proposed a

means to incorporate deception into software-intensive systems as an active component.

However, deception still presents complicated aspects that require more research

regarding its applicability and feasibility in software domain.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

II. DOMAIN ANALYSIS

A. CYBER SECURITY
Information warfare consists of those actions intended to protect,

exploit, corrupt, deny, or destroy information or information resources in
order to achieve a significant advantage, objective, or victory over an
adversary. [8]

The preceding definition identifies the responsibilities of the information warriors.

Information along with the computing resources has value to both their rightful owners

and the rogue actors (a.k.a attackers). The owners can use either defensive or offensive

means to protect their information and computing resources from being compromised.

Likewise, the attacker will use offensive means to gain illicit access to these resources,

while using defensive means in case the response of an owner is offensive in nature. In

theory, defense can be more challenging than offense because defense entails protecting

against all technically feasible vulnerabilities. Conversely, offense involves targeting

specific vulnerabilities.

Information warfare has an impact on national security, from the well being of

individual citizens and organizations (e.g., loss of confidentiality of tax identification

numbers), to the security of nation states (e.g., compromise of the computers that control

either the distribution of electricity within North America or the launching of

intercontinental ballistic missiles (ICBMs)). As in kinetic-type warfare, there are laws,

treaties, and other types of rules that place constraints on combatant actors’ use of

defensive and offensive tactics and strategies: violation of these rules would result in an

actor being accused of war crimes. There are also laws and codes of conduct that pertain

to the civilian actors in their use of defensive and offensive measures [5]. Although the

“good guys” are often operating in a defensive mode, this is not necessarily the case. For

instance, the Allies’ victory in the Gulf War in 1991 was the culmination of their

application of both defensive and offensive information warfare [9].

5

There is a wide spectrum of tools and techniques for conducting offensive

information warfare. These may include simple social engineering ploys intended to trick

or coerce legitimate users of computing resources into disclosing passwords or

cryptographic keys. Alternatively, they may be in the form of fully automated attack

programs (e.g., malicious cooperating agents). On the defensive side, there exists a

spectrum of tools and techniques for protecting computing resources, such as simple

intrusion detection systems and systems that have an integrated detection-and-response

capability. While defense against known tactics and strategies for attacks can be difficult

to provide for, it is even more difficult to reengineer and apply defenses to address the

continual emergence of previously unknown tactics and strategies of attack in a timely

manner. This is part of the reason that conventional intrusion detection and simple

response techniques have been ineffective against many real-world cyber attacks, such as

the recent Sapphire worm [10]. Thus, as a defender, one needs some way of rapidly

detecting new types (including variations on existing) attacks and deploying defensive

measures to counter these attacks.

B. INTRUSION DETECTION
Intrusion detection systems (IDS) are designed to discover intrusions on a

computing system or the misuse of a computing system, and often these systems fail to

differentiate between malicious actions of an attacker versus the egregious (e.g.,

mistyping one’s password or accidentally trying to run a user process in kernel space) use

of these resources by legitimate users [1]. Either case may cause a denial of service to

legitimate users (known as the false-positive problem). In an ever-changing world of

cyber security, the defenders of computing resources often rely on IDS as a means of

forward first line of defense. In general, there are two primary tasks associated with

intrusion detection: data collection and detection. Some of the desired properties for an

IDS, as listed in [11], are the following:

• Accuracy: IDS must differentiate between a legitimate action in a system
environment from an anomaly or a misuse, which relates to false positive
and false negative issues.

• Performance: IDS must provide sufficiently high-level of performance
while not introducing an unacceptable level of overhead on the system
being protected.

• Completeness: While completeness emphasize that the IDS should not fail
to detect an intrusion, this is very difficult in practice, because there is no
global information about the attacks, which also includes past, present and
future data.

6

• Fault tolerance: IDS must be resistant to faults caused by the
environment. Most of the time, IDS sit on top of commercially available
operating systems and interact with third-party tools, potentially
increasing the vulnerability of the overall system.

• Timeliness: IDS must perform the analysis as quickly as possible. The
countermeasures against a detected attack must be initiated before the
attack would damage a system resource or IDS itself.

There are three typical approaches to intrusion detection: misuse, anomaly, and

signature-based (a.k.a., specification-based) detection. Anomaly detection models normal

or intended system behavior. Deviations from the model represent probable anomalies in

the system [12]. There are challenges in this approach: defining what is “normal”

behavior of a system and updating the model of normal or abnormal behavior for

dynamic and complex environments. Anomaly detection can be used to detect previously

unknown attacks, but is known to often result in high rates of false positives being

generated.

In contrast, misuse detection defines behavior patterns and uses those

specifications to locate any evidence of known attacks [13]. Specification rules are

matched against the system audit data, thus, producing few false positives, but may result

in a high rate of missed detections (i.e., events that should have been flagged as intrusions

or misuses but were not). As the new types of attacks manifest themselves, the signature

database needs to be updated.

The specification-based approach tries to address the weaknesses of misuse

detection [14]. Instead of describing the events occurring in known attacks, a

specification-based approach defines a program’s intended behavior; then, deviations

from that behavior can be flagged as suspicious behavior. This enables detection of

previously unknown attacks and minimizes false positives. Additionally, with the

retained precision of misuse detection, initiating immediate defensive actions is possible

as violations are detected.

The shortcomings of existing IDS can be summarized under four different topics

[15]:

7

• Variants: Attack signatures are defined in response to known attacks;
however, the difficulty here is that attack sequences are often changed
easily and new exploits are defined over the known ones.

• False positives: In defining the signatures or the behavior models to be
used in IDS, the effort usually falls on the side of alerting too often rather
than not enough. Filtering is a possible solution, but the risk of potentially
missing an attack still stands as an open issue.

• False negatives: A false negative occurs when the system allows an actual
intrusive action to pass as a non-intrusive behavior. This can be more
serious than false positives because it gives a misleading sense of security.

• Data overload. This problem includes collection and analysis of the data.
Collecting the right data and collecting the right amount of data results in
a trade-off between performance overhead and effectiveness.

There are other challenging problems with current IDS such as identifying

distributed attacks. IDS might fail to identify individual system events as malicious when

analyzing the data from a single sensor. However a more comprehensive analysis of

network activity could reveal an attack pattern, not only for a single network domain but

also across domains.

C. INTRUSION RESPONSE
Increasingly, military and civilian information systems are becoming globally

interconnected, thus tying their fates together (in terms of the effects of cyber attacks on

any one system) on the security of the global domain. To address what might be called

“composed vulnerabilities”, a three-tier approach can be followed: protect, detect, and

react. [16] The first two steps (protect and detect) have been explored extensively in the

research community. For example, simple mechanisms such as encryption, firewalls, and

authentication provide protection to some extent. Automated detection systems further

filter message traffic for intrusions as mentioned in the previous section. Reacting to

attacks is a relatively new subject focusing on techniques to prevent attacks from

damaging the system and collecting information about the nature of those attacks.

Two primary reaction categories are introduced in [17]: discrete administrative

actions, and security policy reconfiguration. Discrete actions include but are not limited

to terminating connections, killing processes, and blocking certain communication

channels. On the other hand, the second category (security policy reconfiguration)

focuses on reducing the risk of further penetrations in dynamic environments, due to the

fact that the systems usually are not designed with dynamic security in mind. Although

this categorization presents different alternatives for intrusion response, these measures

8

are not always practical to deploy. Most of the time-responsive actions conflict with the

intended system behavior and quality of service (QoS) because of the risk of deploying

false and inappropriate responses.

Somayaji [18] introduces a delay-based intrusion response approach intended to

defeat buffer-overflow attacks. This is accomplished by delaying suspicious system calls.

However, this approach can adversely affect the level of performance and QoS for

legitimate users. For example, in case of false positives, the delays could slow reaction or

response time of the operating system to legitimate user requests. Furthermore, as the

intensity of suspicious system behavior increases, the delay is more likely to introduce a

performance overhead in general.

Survivable Autonomic Response Architecture (SARA) introduced by

Lewandowski et al. [19] uses coordinated autonomic responses for defending information

systems. Responses are generated automatically by a system without real-time human

intervention, which rely on human knowledge and a policy that is programmed into the

system in advance. As shown in Figure II.1, responses are selected based on either local

or global system information. Global information is used by an orchestrator to effect

coordinated responses, whereas local information is used to trigger local responses at the

Figure II-1 The relation

request of simple coordinators.

ship of inner- and outer-loop responses (From: [19])

taking

While the response systems using local information are able to respond quickly,

global state into consideration increases the effectiveness of the response and

contributes to the overall defense strategy. However, this kind of coordination depends on

the efficiency of the analysis mechanisms used for response generation. Since the

9

analysis mechanisms are based on the system being protected and the potential threats to

the system, that kind of response architecture should be adaptable to changing internal

system structures and extensible to new components without disrupting the existing

architecture. That is, the system should be able to endure modifications to underlying

behavior without compromising the architecture or framework in which it resides.

Sekar et al. [20] emphasize the need for real-time reaction to attacks before they

impact

T

is not n

system performance or functionality. Figure II.2 shows how the detection engines

generated by the offline components are used at runtime. Auditing Specification

Language (ASL) enables specification of normal and abnormal behaviors of processes as

logical assertions. Those assertions are based on the sequences of system calls and

system-call argument values invoked by the processes. ASL specifications are compiled

into optimized programs for efficient detection of deviations from the specified behavior.

When discrepancies are detected at runtime, automatic defensive actions – also described

in ASL – are initiated to contain or isolate the damage.

Figure II-2 Runtime system for execution of detection engines (From: [20])
he idea of moving both intrusion detection and response actions into the kernel

ew. Some of the advantages attributed to this approach are as follows: firstly, it

reduces system overhead by avoiding extra context switching; and secondly, it is harder

for an intruder to tamper with the IDS itself, as the attacker would have to modify the

kernel to do so. However, there are also some disadvantages. Firstly, kernel-resident

systems are not easily portable across platforms. Secondly, a misbehaving kernel module

can do significant damage, because it has full access to the system [21].

10

'Process running
program P)

For the most part, conventional response capabilities are limited to simple discrete

administrative actions. The solutions providing more sophisticated techniques are prone

to not be able to scale to large domains or adapt to dynamic environments.

D. INTELLIGENT SOFTWARE DECOYS
An intelligent software decoy is a software abstraction introduced by Michael et

al. [1] for protecting objects within a component-based architecture from egregious and

malicious use. In that regard, this paradigm for protection addresses all the steps in the

three-tiered approach: Protection and detection mostly benefit from existing work,

whereas reaction is based on deliberately deceptive responses. The main objective of this

approach is to deceive attackers into thinking that their attacks have succeeded while

simultaneously protecting the key components (or assets) of the system and learning

about the nature of the attacks.

Deception-based approaches involve many levels of sophistication in terms of

detection and response over that provided by conventional IDSs. Conventional IDS

respond to attacks with primitive types of actions, which eventually indicate to attackers

that they have been detected, likely causing the attackers to change their strategies and

tactics: This leaves little if any opportunity for the defender to learn about the attack

strategies and tactics. In contrast, automated deception-based responses can be used to

engage the attacker for as long as possible to gather information about the nature of the

attack (e.g., behavior pattern, impact on the system, and origin). Deceptive responses can

be automated much like the attacks. Such responses can be effective because attackers

depend on the honesty of the computer systems they attack. Deception can confuse the

attackers’ planning or frustrate them for a while without indicating that their attack has

been detected. This could be especially important during intensive information warfare

when terrorists attempt to bring down critical systems in a short period of time: Delaying

intrusive processes gives the IDS time to analyze the attack and plan a response.

Deception also allows for turning an attacker’s own strengths of patience and

determination against the attcaker, much as is done in the defensive martial art known as

Aikido [37].

Michael et al. [2] proposed a high-level architecture for software decoys, shown

in Figure II.3. The architecture is based on instrumentation of kernel libraries and log
11

monitors available on a chosen platform. The basic instrumentation provides for the

detection of events and event attributes specified in the generic behavior model and the

interface for executing monitoring programs. A specialized compiler will generate

monitoring programs from a high-level language, such as CHAMELEON [3], for

specifying both detection and response rules for carrying out deceptions. Below is a rule

combining an event pattern with an action, represented in CHAMELEON. The rule

specifies that each time a read event is detected, and the buffer contains the string “SITE

EXEC”, then the value “NOOP” should be assigned to the buffer. This rule is used in a

case study, reported in [3], to detect and respond to an attack against Washington

University’s ftp server (wu-ftpd), which uses the SITE EXEC command to gain root

privileges [42].

detect x: read & post (buf(x) == “SITE EXEC”)

 from execute-program do buf(x) = “NOOP”

Figure II-3 High-level software decoy architecture (From: [2])
In the software-decoy architecture, the supervisor coordinates the actions among

the decoyed-enabled components in order to make decisions on how best to instrument

12

; ;

components given the latest information about component interaction and selected

responses – conforming to information operations doctrine and policy – to effect system-

wide deception strategies. In that regard, the decoy approach has in common some of the

founding goals of the SARA architecture (described in the previous section), such as

rapid and coordinated responses to patterns of suspicious system events.

Software components are wrapped with decoy functionality on a selective basis:

Wrapping can be performed at more than one level of abstraction from application-level

objects such as web applets to low-level operating system calls. This provides a level of

flexibility in coordinating the overall system strategy dynamically as characteristics and

intensity of threats change. If any of the assertions (e.g., preconditions, postconditions, or

invariants) built into the behavioral model for the system are violated, the software decoy

isolates the interaction with the intrusive process into an antechamber to further analyze

the process’ real intention and apply, if necessary, deceptive responses to gather

information. The antechamber is either hosted by the operational system on which the

software decoy resides, or on a separate processor or platform in order to minimize the

effect of the monitoring and decoy actions (e.g., those of delay tactics) on the availability

and performance of computing resources requested by legitimate users of the decoy-

enabled software components.

Figure II-4 illustrates a possible scenario, in which the protected system is under a

buffer overflow attack. The main components in this diagram are the wrappers,

supervisor and repository of detection rules and decoy actions. The software component

is wrapped by decoys with the purpose of both detecting buffer overflow attacks and

responding back to those attacks with system delays. When a malicious request is made

to the component, which violates the contract specifications, the buffer-overflow-wrapper

passes the intrusion/misuse information in the form of event traces to the supervisor.

Then, the supervisor analyzes the situation based on the rules included in the repository

and selects a response strategy. This strategy should conform not only to local scope, but

also to the global system state and the defense strategy. Based on the analysis results, the

supervisor invokes pre-programmed decoy actions in the wrappers and installs new

wrappers to change the granularity of monitoring if necessary. In this particular scenario,

13

the supervisor invokes a wrapper to delay the malicious process for a finite period of

time, possibly determined using some form of counter planning [7].

Figure II-4 Decoy interaction with a buffer overflow attack (After: [6])

The salient features of the decoy approach can be summarized as follows:

• Deception as a response strategy. Traditional warfare and military tactics
presents many opportunities that can also be applied in the cyber world.
Deception also increases the range of responses from the production of a
fake error message to the simulation of the whole operating system.
Another benefit is collecting information about the attacks, which enables
better preparation for future attack scenarios.

• Dynamic configuration. As the context changes, it is possible to update
the structure of defensive components for both detection and response
purposes and reconfigure the overall strategy according to the decoy
policy and doctrine.

• Automated response. Unlike most of the intrusion detection systems,
software decoys integrate detection and response mechanisms within a
single automated framework. This reduces the need for human
intervention at runtime. While having some disadvantages, kernel-based
detection and response provides fast and efficient mechanisms to confront
the attacks before they potentially damage the system.

14

request
/-^-■—.-..-1

response
-L—^^- Jl

information about
the intrusive
request

control flow to invoke
re^pon^e actions
against the attack

III. DEVELOPMENT PROCESS

A. OVERVIEW
Software-intensive systems require an organized approach for the creation,

analysis, and maintenance of architectural design. An architectural design is defined in

terms of architectural abstractions, such as patterns, styles and views. The way

architectures are designed has been evolving towards a more challenging and complex

process, because mapping the real-world problems into a software domain requires more

and more multifaceted considerations, particularly related to complexity and new

technological developments. To overcome this challenge in system development,

architectural design provides a transition from the user world (e.g., domain, requirements

and risk analysis) into software-related abstractions (e.g., software components,

connectors, interfaces) by describing the elements of the system and how they work

together to fulfill the system’s requirements.

Architectural design activities are usually separated into different views. Each

view addresses one or more of the concerns of the system and the stakeholders; therefore,

a view refers to the expression of a system’s architecture with respect to a particular set

of conventions by which a view is created, depicted, and analyzed [22]. Although there is

no common approach in separating architecture into different views, the main reason

behind multiple views is to be able to manage complexity.

Figure III-1 The "4+1" view model. (From: [23])

15

In the literature, there are several approaches explicitly treating different views of

architecture. The 4+1 approach, by Kruchten, describes software architecture using five

concurrent views: logical, process, physical, developmental, and scenarios. As

Figure III.1 shows, each view addresses a specific set of concerns of interest to different

stakeholders in the system [23]. Hofmeister et al. used a four-view model, as shown in

Figure III.2, describing the architecture from four different structures: conceptual,

module, execution, and code. The four-view model is the result of a search for

commonalities across domains and underlying principles that lead to good and useful

software architectures [24].

Figure III-2 The four views of software architecture (From: [43])

The main goal of architectural views is to articulate different aspects of the

system in a loosely coupled and highly cohesive way. Considering that principle, both of

the models provide a tenable solution to the problem, while preserving their distinct

characteristics. However, the essence of using a view model is that it should provide such

a level granularity that the designers could define the system properties clearly within the

scope of each view. Most of the time, achieving such granularity is hard due to the

complexity of a problem domain. That is why, existing view models may need to be

modified according to the characteristics of the problem. For example, an architecture for

a web-based shopping application presents different characteristics than an application in

the computer security domain.

For intelligent software decoys, the problem domain is not fully explored yet. For

example, incorporating deceptive responses in an intrusion detection framework is a

relatively new subject, and the effects of both defensive and offensive deception on a

16

cyber domain are not well-understood. Our architectural design process is intended to

provide a generic framework to be used to demonstrate the feasibility of deception-based

intrusion detection and response approaches. For the required level of abstraction, we

want to explore the domain in two views: conceptual and module. The conceptual view

enables us to explore the concept, whereas the module view allows us to map the

conceptual view to the actual problem in a form of architectural description. Besides

these two architectural views, it is possible to enhance our view of the system by

decomposing the problem into its major subcomponents: monitoring, intrusion detection,

intrusion response, analysis, and planning. Figure III.3 represents the architecture views

based on both the architectural abstractions and major subcomponents of the system.

Figure III-3 Architectural views for intrusion detection and response
framework

The decomposition of the entire problem domain allows us to investigate sub

areas independent of each other. This introduces a simplified view of the system.

Monitoring includes data collection and observation tasks. Based on these data, analysis

provides the required decision-making capability for both intrusion detection and

response mechanisms. On the other hand, planning involves the required set of rules for

governing all the other tasks. Planning uses both low-level rules defining atomic actions

17

MOMTOmNG

E^JTRUSION
DEITICTION

INTRUSION
RESPONSE

ANALYSIS

PLANNING

(e.g., response actions, detection patterns) and high-level rules defining the global

defense strategy (e.g., policy, doctrine).

B. DEVELOPMENT PHASES

Developing the architecture for a deception-based intrusion detection and

response framework is a complex problem. Major steps in this development process are

understanding the problem, exploring the domain for possible approaches, finding and

elaborating the requirements, conceptualizing the problem, mapping the conceptual view

into architectural abstractions, and developing the detailed architecture. Regardless of its

complexity, it is possible to solve the problem in a “grand-design” approach; however,

there are some significant risks associated with this approach. A better way is to separate

the development into phases, and follow a incremental iterative approach such as the

Rational Unified Process [39]. For this purpose, we use a three-phase process to develop

the architecture defining the activities from requirements through to detailed architectural

design: plan and elaborate, high-level system definition, and detailed architectural

design.

1. Plan and Elaborate
The Plan and Elaborate phase includes the initial concept exploration,

investigation of possible approaches, planning, specification of requirements, and

developing use cases. At the end of this phase, we expect to define “what problem we are

trying to solve.” Understanding the problem is essential, because the requirements and

the design will be built on top of this definition. Then, the fundamental requirements will

be expressed and scenarios will be developed to further elaborate these requirements.

This phase will generate the functional and non-functional requirements and the use

cases.

2. High-Level System Definition
The High-level System Definition phase uses the artifacts generated in the

previous phase and starts building the system. The essence of this phase is to leave out

the low-level design details and focus on the high-level aspects of the system, including

major components and their collaborations. The conceptual model is the primary artifact

of this phase, which decomposes the problem into meaningful concepts and shows their

18

collaboration. Another artifact is the high-level architectural design, which maps those

concepts into architectural abstractions, such as components and connectors.

3. Detailed Architectural Design

The Detailed Architectural Design phase defines the architecture in a sufficient

level of detail including subcomponent, interface, and system behavior specifications.

The essence of the detailed architecture is that it integrates the functional and non-

functional requirements into the system structure. Although the implementation details

are excluded at this stage, the architecture should provide an unambiguous approach,

which will support implementation-level activities later on.

C. A MODELING TOOL: UML
The Unified Modeling Language (UML) is a standard language for writing
software blueprints. The UML can be used to visualize, specify, construct,
and document the artifacts of a software intensive system [25].

The role of software architecture in software-intensive system design is important

and, as those systems become more sophisticated and larger, architectures become

increasingly essential for understanding, managing and describing their complexity.

While the benefits of architectural design are obvious, there are several shortfalls in the

representation of architectures [26]. The ad-hoc and informal approaches to architectural

design present several significant challenges to be overcome.

• Architectural designs are often poorly understood and not amenable to
formal analysis or simulation.

• Architectural design decisions are based more on default than on solid
engineering principles.

• Architectural constraints assumed in the initial design are not enforced as
the system evolves.

• There are few tools to help the architectural designers with their tasks
[27].

In an effort to address these challenges, a level of formalism is required for

describing architectures, and therefore, supporting overall software development lifecycle

efforts. That level of formalism can be achieved through various ways, including

programming languages, module interconnection languages, interface definition

19

languages, and architecture description languages (ADL) [28]. Approaches other than

ADLs fall short in representing architectural abstractions for several reasons:

• They are defined to represent low-level constructs, which is not adequate
for architectural abstractions.

• They cannot represent reusable architectural patterns.

• They address specific problem domains; therefore, extendibility of those
methods is low.

• They mostly focus on the static structure of the systems, and hence, the
dynamic behavior of systems cannot be described sufficiently.

On the other hand, ADLs are used to define and model system architectures prior

to implementation. Besides static structures of systems, they also address system

functionality, interactions between components, and interfaces. There are numerous

ADLs, such as Rapide, Wright, ACME, UniCon, and MetaH. Detailed information about

ADLs can be obtained from [29].

The capabilities of UML are limited when compared to ADLs. However, the rich

set of tools provided by UML supports the representation of software systems. The main

advantage of UML is its wide acceptance within the software engineering community: It

provides a lingua franca for communication among designers, architects, and other.

While the notations in UML present many alternatives in describing the implementation

of a system, using the same kind of notations in architectural design blurs the distinction

between implementation and architecture views. For example, UML provides only

interaction diagrams for describing the dynamic properties of a system and using these

diagrams in both implementation and architecture views may create confusion.

Considering the pros and cons, UML is well suited for the purpose of our study.

Our main goal is to be able to represent the architecture in an understandable way. The

power of UML for representing the conceptual design and static structure of a system

allows us to visualize our ideas in an efficient and organized way. UML also provides

“lightweight extension mechanisms” – stereotypes, tagged values, and constraints – that

can be used to enhance the language with architectural definitions. Further discussion of

the applicability of using UML to describe software architectures can be found in [30]

and [31].

20

IV. PLAN AND ELABORATE

A. OVERVIEW
Plan and elaborate is the first step in the developments process and the main

purpose of this phase is concept exploration. The requirements produced in this step

constitute the foundation for architectural design activities. We explored the domain in

two ways: by capturing the high-level requirements and then modeling those

requirements with use cases to gain a better understanding about the system. This phase

produces the entities involved in the system and the interactions between those entities.

1. Requirements
Requirements analysis, for our problem domain, covers the high-level

functionality and associated non-functional aspects of the system. We used two primary

resources for requirements elaboration: project group meetings and related literature. In

that regard, we explored the computer science literature in related areas such as intrusion

detection approaches, runtime code instrumentation, kernel-based software modules, and

deceptive strategies.

The set of requirements, developed in this phase, represent the key functional and

non-functional features of the system. Without going into implementation detail, we

defined what is really needed for the system in a clear form. Requirements are generally

described in textual format. They fall short in visualizing the relations between the

system and its users. For that reason, we augmented the requirements with use cases, in

which we were able to make readily visible the fundamental behavioral aspects of the

system.

2. Use Cases
Every system consists of a set of sub components and a set of interactions either

internally or externally. Use cases provide a view to describe the behavior of the system

as seen by its end users. This view focuses on the aspects that outline the system’s

architecture. Use cases are based on the actors that the system interacts with, the roles of

these actors, and how they interact with the system. Additionally, use cases specify the

behavior of a system or a part of a system, and are descriptions of a set of sequences of

actions, including variants, that a system performs to yield an observable result or value
21

to an actor [25]. In that regard, we developed a use case model to capture the intended

behavior of the system and augment the requirements.

B. FUNCTIONAL REQUIREMENTS

1. Intrusion Detection
Deception-based intrusion detection and response architecture (DB-IDRA)

combines both intrusion detection and response in a single structure. As described in

section II.B, there are three common techniques to intrusion detection: anomaly, misuse,

and signature-based. Although there are specific concerns associated with each

technique, DB-IDRA provides a generic framework in which any intrusion detection

approach can be integrated. The point is that the intrusion detection and response

mechanisms should be able to communicate with each other as defined by the

architecture. In any case, the architecture should specify the necessary components along

with the data structures.

2. Deception-based Response

DB-IDRA uses a deceptive defense strategy for intrusion response. The main

objective in this approach is to be able to deploy deceptive tactics against intrusions to

gather as much information as about the nature of the attack. The spectrum of possible

tactics needs to cover a wide range from mimicking of normal system behavior through

inventing of fake activities to attract the attacker’s attention. The appropriateness and

effectiveness of the deceptive tactics depends on the situation, including the intensity of

conflicts, the value of the information being protected, and the threat level of attacks.

Additionally, deception strategies should not introduce an unreasonable performance

overhead on the system.

3. Automated Response

DB-IDRA integrates the automated response functionality in the architecture to

realize deception-based defense strategies. It should be capable of making decisions and

performing actions that help the system accomplish its mission much more quickly and

accurately than a human could. Capabilities for specifying automated response actions

must be invoked as intrusions are detected, which provides damage prevention and

containment. This functionality also minimizes the constant involvement of human

experts in runtime activities.

22

4. Runtime and Offline Analysis

Combining intrusion detection and response in a uniform framework increases the

performance overhead due to the complex decision-making process. The analysis

mechanism is grouped into two layers: runtime and offline.

• Runtime analysis supports the decision-making capabilities for detecting
and responding to attacks, and maintaining an acceptable level of system
performance. The main concerns are: (i) fast and efficient detection with
false positive rates, (ii) maintaining the consistency of the defense strategy
against the global policy and doctrine, and (iii) maintaining the system
performance by observing the system state.

• Offline analysis involves analyzing the past data and improving the system
for detection and response approaches (e.g., addition of new response
actions and new attack specifications), high-level policy and doctrine rules
(e.g., switching from defensive to offensive countermeasures), and system
functionality (e.g., addition of the capability to trace the origin of attacks).

5. Kernel-based Detection and Response Modules
Kernel-based operations avoid overhead caused by extra context switching.

However kernel-resident implementation introduces a level of complexity in management

and configuration of entities inside the kernel and also has an impact on the host

behavior. These problems can be addressed by a careful design approach. DB-IDRA uses

kernel-based modules to detect attack sequences and respond to those attacks. It should

also provide means to modify these modules dynamically. Ko et al. discusses the

feasibility and practicality of in-kernel intrusion detection and introduced the Generic

Software Wrapper Toolkit as the basis for implementing kernel-resident intrusion

detectors in [32] and [33].

6. Distributed Detection and Response Capabilities

DB-IDRA should distribute detection and response capabilities across the entire

domain to eliminate single-point of vulnerability. The advantage here is that doctrine and

policy developed for systems could be integrated into larger joint information operations

and be distributed throughout the cooperative engagement grid [6].

7. System Performance Maintenance
While protecting a system against intrusions, performance overhead could

degrade the level of service provided by the system to legitimate users. DB-IDRA will

include a mechanism to observe the global state and keep the system functioning within

23

predefined tolerances. For example, as the intensity of conflict increases, sustaining

interactions requires more system resources and eventually causes degradation of system

performance. In order to address this problem, a set of system variables can be monitored

at runtime, such as the load of malicious interactions on the network. If this load is

beyond a predefined threshold value, then necessary measures would be taken to keep the

system stable.

8. Dynamic Adaptation and Evolution
Dynamic environments require a system to adjust its behavior at runtime. This

kind of an adjustment can be achieved in two successive steps:

• Observing the system’s behavior and analyzing the observations to
determine appropriate adaptations, and

• Carrying out these adaptations in such a way that the system protects its
consistency and integrity.

DB-IDRA should include such mechanisms to provide addition, removal, or

replacement of components (e.g., adding new sensors), and modifications to the

configuration of components (e.g., response actions and defense strategies).

9. Global Defense Policy and Doctrine

Global policy and doctrine are required to govern the behavior of the detection

and response system. Policy and doctrine represent a set of high-level rules indicating

essential properties (e.g., appropriateness, limitations, course of actions, and so on) that a

defensive strategy should conform to. For example, an administrative domain may be

bounded to specific legal regulations and is able to deploy only defensive actions against

adversaries, whereas another domain may extend its defense strategies to be more

offensive. This also indicates that these rules are dynamic in nature and can be modified

according to the domain-specific scenarios.

C. NON-FUNCTIONAL REQUIREMENTS

1. Interoperability

Interoperability, within the context of intrusion detection and response systems,

represents the need for effective communication and collaboration among different

administrative domains. While sharing the common purpose of protecting their domains

via efficient mechanisms, those administrative domains are independent from each other.

What they need is a strong collaboration that will allow them to update their own security

24

measures and inform the other domains about ongoing security-related events and their

results. For an effective communication, timeliness and security of the information is

critical. The ultimate goal of interoperability is to provide the necessary means to

establish this collaboration scheme.

2. Stability
Stability, in general, is the property of a system ensuring that the system will

remain within defined and recognizable limits against disturbances. Resilience is another

concept defining stability in two dimensions: (i) how a system behaves in order to

maintain stability within a specific stability domain (i.e., engineering resilience), and (ii)

the intensity of disturbances that can force a system into a different stability domain (i.e.,

ecological resilience) [34].

Based on these two definitions, stability of an intrusion detection and response

system mainly focuses on the disturbances from the environment, and the defined and

recognizable limits for the system behaviors. Besides defining these key elements for the

system, it is also necessary to evaluate the stability under varying levels of intensity of

conflict to guarantee the system operates as intended.

3. Scalability

DB-IDRA represents a total defense strategy consisting of single host to network-

wide and inter-domain protection. Implementing this hierarchical strategy requires a

scalable architecture. As the size and complexity of the domain increases, the intended

use of the system must behave as defined and critical system properties must be

preserved. For example, logical groups of individual hosts may implement a common

deception strategy and also need to cooperate with a different administrative domain. One

of the requirements for that strategy is for a central unit to manage the global defense

strategy and inter- and intra-domain communication paths.

4. Survivability
DB-IDRA has a critical mission to protect software systems against attacks in

bounded time. In the presence of threats against the system, DB-IDRA must be able to

remain operational throughout the mission. This is the issue of survivability.

Furthermore, mechanisms must not introduce additional vulnerabilities that can be

exploited to degrade the survivability of the system.

25

In the first case, survivability scope is limited to the incidents caused by attacks.

However, survivability is also subject to vulnerabilities caused by failures and accidents

that are not necessarily related to attacks. Policy decisions related to survivability can

change continuously according to system context; it is even possible to observe evolution

of survivability in a particular system as problems occur and are handled, mission

objectives change, and the intensity and load of the environment changes.

The second case is the focal point for maintaining DB-IDRA’s own survivability.

Essential functionalities and properties in decoy mechanisms must be maintained in order

for providing continuous protection. Even in case of failures or attacks, DB-IDRA must

behave in accordance with the mission objectives. Distributed capabilities can address

this issue to some extent.

5. Effectiveness
Protecting a system from cyber attacks is a challenging task in its own right.

Combining this task with a sophisticated response mechanism makes this task even more

challenging. This combination requires a set of rules for both detection patterns and

decoy actions. Representation of these rules requires the use of a sufficient level of

formalism, as the rules must be precise and concise in their representation. Even small

ambiguities in rule definitions may cause some security holes in systems; that is why, a

continuous evaluation of the general system state is necessary for the effectiveness of the

system. It is also possible that a set of rules considered to be efficient in one scenario may

turn out to be inadequate in another scenario. New types of threats to information systems

introduce the need for new measures to be taken, as well.

Effectiveness has two different views regarding the mentioned facts: providing

effectiveness and maintaining effectiveness. Although it is necessary to provide an

effective mechanism to facilitate the desired defensive strategy, situations such as those

mentioned above could force a change of context that forces the system to operate

ineffectively. Evaluation of the system state is, therefore, important to locate these

inefficiencies. The system should also provide a set of corrective actions to recover from

those ineffective states.

26

6. Performance

Performance is a general constraint over all the functional and non-functional

requirements. Means must be provided to minimize the affect of the monitoring and

decoy actions (e.g., those of delay tactics) on the availability and performance of

computing resources requested by legitimate users of the protected software components.

D. HIGH-LEVEL USE-CASES

System

Attacker#1

Initiate
Attack

Monitor System
Activity

Detect Intrusions

Attacker#n

DB-IDRA

Respond to
Attacks

Response
Actions

Behavior
Patterns

Apply Deception<<include>>

Track Intrusions

Perform Offline
& Runtime Analysis

<<include>>
<<use>>

<<use>>

<<include>>

Figure IV-1 High-level use case diagram for DB-IDRA

Figure IV-1 shows the use case diagram for DB-IDRA. The diagram includes the

fundamental system functionality such as monitoring, intrusion detection, deceptive

responses and analysis capabilities. Each ellipse represents an individual use case

describing a set of actions that the system performs to yield an observable result. Stick

figures represent the roles that users play when interacting with the use cases. The

associations between the actors and use cases show that they communicate with one

another, possibly sending and receiving messages. While use cases can be organized by

specifying generalization, include, and extend relationships, in this specific use case

diagram, there are only include relationships between use cases. This type of relation
27

means that the base use case (e.g., respond to attacks) explicitly incorporates the behavior

of another use case (e.g., apply deception).

1. Initiate Attack

Actors : Attacker(s)

Type : Primary

Description : DB-IDRA protects a software component from cyber attacks.

Therefore the basic assumption is that there are intrusive actions against the protected

entity. Not only individual attackers initiate those intrusions, but also organized groups

conduct attacks on systems depending on their value, and criticality. The complexity of

those attacks can range from simple scripts to distributed attacks. Those attacks usually

try to invoke unauthorized queries and attempt to modify data or processes. While the

origin and purpose of attacks are important to some extent, intensity of attacks presents

another significant problem for counter-measures.

2. Monitor System Activity
Actors : DB-IDRA, Attacker(s)

Type : Primary

Description : Monitoring is the first step in observing the activities on a

system. Monitoring is used to observe events and system parameters for intrusion

detection and system performance purposes. Monitoring usually perturbs system

performance by consuming system resources such as CPU or storage. Minimizing this

overhead is, therefore, necessary for an efficient real-time intrusion detection and

response framework. Monitoring is divided into layers to analyze various components

involved in monitoring process: observation, collection, analysis, presentation,

interpretation, console, and management [35]. For our problem domain, monitoring

covers the first two layers in this sequence. The observation layer gathers raw data on

individual components of the system, and the collection layer collects data from different

observers. This approach introduces a hierarchy of sensors focusing on different aspects

of the system being monitored. Besides an organized structure, this approach also allows

for systematic use of monitoring, such as turning off some observers, modifying some

aspects of the observers, and reconfiguring the hierarchy.

28

3. Perform Runtime and Offline Analysis
Actors : DB-IDRA

Type : Primary

Description : Analysis is performed at two levels: runtime and offline. Runtime

analysis is done for evaluating the system state and making decisions about intrusions

and responses. Runtime analysis governs the dynamic behavior of the system. On the

other hand, offline analysis works on system audit that is recorded at runtime and

evaluates how well the system performed its mission. This evaluation concentrates on the

performance and effectiveness of the system and also finds deficiencies, abnormalities, or

suspicious events, if any, related to intrusion detection rules and response actions.

Evaluation results can be used as a means for process improvement.

4. Detect Intrusions

Actors : DB-IDRA, Attacker(s)

Type : Primary

Description : Every attack follows a specific behavior pattern, and DB-IDRA

employs an intrusion detection mechanism to match behavior patterns against a central

shared database of detection rules at runtime. DB-IDRA introduces a level of flexibility

to use any kind of detection technique. While some simple attack sequences can be

detected at the observation layer (i.e., decoy wrappers), more sophisticated attacks may

require further system- and network-wide analysis to draw a final conclusion about the

nature of the interactions.

5. Track Intrusions
Actors : DB-IDRA, Attacker(s)

Type : Primary

29

Description : Once an intrusion is detected in the system, the response

mechanism isolates it from the system into a different mode. The distinction between

different operating modes is necessary to keep track of deception-related activities. As

introduced in [1], when an intrusion is detected, the software decoy switches from its

nominal operating mode to a deception mode for that particular intrusive process. In the

deception mode, the interaction with the process is redirected to a construct called an

antechamber. The antechamber serves as a waiting area for the requests initiated by

intrusive processes. The software decoy assesses the nature of the attack and generates

responses while the process is kept in the antechamber. Both attack attempts and

egregious actions may trigger that transition between operating modes.

6. Respond to Attacks
Actors : DB-IDRA, Attacker(s)

Type : Primary

Description : DB-IDRA includes both intrusion detection an response

functionality. The response mechanism requires an efficient detection approach. Ranging

from simple response actions such as terminating the connection, to sophisticated

responses like deception, there is a wide range of possibility to realize responsive

strategies. The complexity of responses is likely to increase the overhead for the system.

Therefore, feasibility of response approaches turns out to be important. Responses are

performed by kernel-based wrappers on a selective basis. Criteria for a response must be

related to the defense policies, system state, and the characteristics of each particular

attack.

7. Apply Deception
Actors : DB-IDRA, Attacker(s)

Type : Primary

Description : Unlike many primitive intrusion responses, deception is a

sophisticated approach against cyber attacks, which aims to fool an intruder into

believing the attack is successful while both gathering information about the nature of

attacks and protecting the key assets of the system. Some example deceptive responses

include fake error messages, delays in responses, and lying about the status of the files

[2]. Feedback about the effectiveness of the deception tactics is also important for a good

defensive deception.

30

V. HIGH-LEVEL SYSTEM DEFINITION

A. OVERVIEW
High-level system definition is the second step in the development process for the

architectural design of DB-IDRA. This phase is the bridge between initial concept

exploration and detailed architectural design. This phase takes the artifacts defined in the

previous step (i.e., requirements and use cases) and produces the conceptual model of the

system and high-level architectural design, which, in turn, become the input to the

detailed design phase.

The conceptual model illustrates the concepts in the problem domain and helps

understand the problem domain further. The concepts represent the essential entities that

will eventually act the way in the real world. The conceptual model presents the problem

domain, abstracted out from design details. Formally, a concept consists of its symbol,

intension and extension [40]. A concept should have a specific name, a context, a

definition, and a set of examples to which the concept applies. Associations between the

concepts show how concepts relate to both the model and other concepts. Typically, it is

the symbol and intension of a concept that is of practical interest. The intension defines

the concept with an emphasis on the context that applies to the concept. Modeling starts

with identifying the concepts, and this can be done via two different techniques. The

concept category list can be used to provide a list of candidate concepts related to

different categories, such as physical objects, places, events, and transactions. Another

approach is based on noun-phrase-identification technique, that is, to identify the noun

and noun phrases in textual descriptions (e.g., requirements, use cases) of a problem

domain. Our approach used both techniques to come up with an inclusive list of concepts

as described in the following section.

Software architecture is defined as a structural plan that describes the elements of

a system, how they fit together, and how they work together to fulfill the system’s

requirements [24]. In order to describe the architecture as software abstractions, there is a

need to map requirements to architectural entities. The high-level system definition

combines the artifacts from requirements analysis and conceptual modeling and produces

31

the main entities and the structural organization of the architecture. In phase, the main

entities are the logical groupings organizing functionally related elements of the system.

For this study, the main product of high-level design activities is that the architecture is

decomposed into layers consisting of architecture packages with distinct functionalities.

B. CONCEPT CATEGORY LIST
Generation of a concept category list is an intermediate step to find and describe

the candidate concepts for the architecture’s conceptual model. The concepts are defined

by their names and intensions. The set of concepts provides for building the domain

vocabulary and dealing with the complexity at simpler levels of abstraction by using

decomposition. The following list describes the concepts extracted from the requirements

and the use cases for DB-IDRA.
Administrative Domain Administrative domain consists of a number of hosts

(systems). Domain also represents the entity for which the
decoy policy is in effect.

Host Host is an individual computer system that includes
software components to provide services to its users.

Software Component Software component is either a complete program or a sub
program. Software components provide services to system
users.

Contract Specification Contract specification represents the formal definition of
component interfaces. Contract specification consists of
three sub elements: precondition, postcondition, and class
invariants.

System Activity System activity stands for all the interactions taking place
in a computer system.

System Event System activity is described by sequences of system events
(event traces) initiated by the processes in that system.
Events perform some actions that change the system state.

System State System state represents the combination of system variables
and ongoing activities at any given time.

System Metric System metrics, within the context of software decoys,
define the nominal system state so that it is possible to
measure system state against those metrics and determine
corrective actions.

Wrapper Wrappers are kernel-based constructs that interact with the
processes in the system. They are deployed and coordinated
by the supervisor. They perform the actions that are
assigned to them.

Probe Probes collect data about the system state, and pass those
data to the analysis component. They are different from the
wrappers in a sense that they do not participate in the
defensive actions.

Intrusion Detection Intrusion detection refers to the se of monitors to recognize
intrusive behaviors. Generally, intrusion detection includes
response handling, but this study intrusion response is
considered separately from detection.

32

Intrusion Response Intrusion response refers to actions that are taken after

attacks are detected. In traditional approach, responses
address containing and recovering from damages and
hardening defenses. DB-IDRA extends this scope to also
include deception-based defense strategies.

Behavior Pattern Behavior pattern represents sequence of system events.
Depending on the detection technique deployed in a system,
patterns define either nominal system behaviors, or attack
sequences. Each behavior is defined by unique sequence of
system events.

Intrusion Intrusions are either malicious (intentional) or egregious
(unintentional) use of the system resources. Intrusions ask
for system resources in a sequence, thus, their behavior
represents a pattern.

Attacker Attacker is the person who initiates intrusive processes
against a system. Attackers can be either individuals or
coordinated groups. Organized attacks can be more
sophisticated than amateur individual attacks. While
persistency, and motivations are different for each type of
attacker, there are commonalities in basic attack techniques
that are employed.

System Action System actions optimize the system performance.
Decoy Action Decoy actions are the embodiment of the defense strategy

and they are specified in the software wrappers.
Action Specification Both system and decoy actions are specified in a high-level

specification language.
System Log System log stores defense related system activities and is

used for offline analysis.
Defense Strategy Deception strategy represents the global defense strategy

for the overall system. It should conform to decoy policy
and doctrine.

Policy / Doctrine Policy and doctrine draw the framework in which the
domain-based defense strategy is defined. Deception-based
actions and tactics conform to this framework.

System Engineer System engineers keep the decoy system operational.
Although DB-IDRA is mostly automated, system engineers
analyze the system performance and, if necessary, they
update specifications for behavior patterns and decoy
actions manually.

Table 1 Concept category list

33

C. CONCEPTUAL MODEL

The conceptual model in Figure V-2 (on the next page) represents the general

concepts and their associations with each other. The model represents the functions to be

performed by the system. The conceptual view in the diagram contains the concepts and

their relations. The conceptual model does not show the architectural entities; however, it

Figure V-1 Central functionality of DB-IDRA

defines how the concepts and relations can be applied to the architecture.

FigureV-1 repre on the central

functio

sents a partial view of the diagram concentrating

nalities of DB-IDRA. The associations in the diagram are bi-directional, meaning

that from each concept logical traversal to the other is possible. The little arrowheads

indicate the direction of this logical traversal. Depending on the type of association, it is

possible to have unidirectional associations. For example, the association between the

DB-IDRA and Intrusion detection is interpreted as “DB-IDRA provides intrusion

detection”. On the other hand, the association between DB-IDRA and Software Wrapper

is bi-directional, indicating data flow from each concept to the other. Software wrappers

monitor the system activity and send intrusion-related activity reports to DB-IDRA. Then

DB-IDRA sends back corresponding updates and deploys necessary actions. As a result,

wrappers perform those actions. The diagram also shows that DB-IDRA provides

intrusion response that is based on deception strategy.

34

iiioiulois

I ■* < iipdalei I

ieiiOi mliuiioii .
{■^.^ info niiat ion

perfomis-

I ^ I ^
based on

I *

DeceplioiL

Slraleg^r

Intelligent

provides

provides

Intrusion
Detection

Intrusion
Response

1

1..*

based on

Deception
Strategy

Software
Wrapper (Decoy)

1

1..*

deploys

Sensors System
State

1..*

monitors

monitors 1..*

1..*

deploys /
updates 11..*

System
Activity

sends intrusion
information

Behavior
Pattern

event
event trace

uses for
pattern
matching

conforms to

Policy /
Doctrine

System
Metric

defines normal
system state

1..*
uses for system
state evaluation

sends system state
information

1..*

generates

Action

System
Action

Decoy
Action

conforms to

1

specified by

Action
Specifications

1

Attacker

Intrusion

1

1

specified by

1

initiates

1..*

Host

has

has

1..*

described by
sequence of

System
Event

Administrative
Domain

1

1..*

contains

Contract
Specification

precondition
postcondition
invariant

Software
Component

specified by

1

1..*

contains

1

1..*
System

Log

keeps

System
Engineer

updates

uses

updates

updates

performs

1

1..*

1..*

Software

 DB-IDRA

Figure V-2 Conceptual Model

35

After analyzing the concepts and the relations between them, it is possible to

make preliminary decisions about the architecture. DB-IDRA should have at a minimum

the following functionalities.

1. DB-IDRA should include a flexible intrusion detection mechanism that
employs either anomaly-, misuse-, or signature-based detection technique.

2. The DB-IDRA should have an intrusion response mechanism that is based on
deceptive defense strategy.

3. Kernel-based software wrappers (decoys) are used to detect and respond to
attacks. Decoys should be reconfigurable and modifiable dynamically by a
central decision-making module in order to handle runtime activities.

4. Deceptive tactics should be realized by decoy actions that are defined
formally.

5. The defense-related activities should conform to a global decoy policy and
doctrine.

6. While protecting host-based systems from cyber attacks, DB-IDRA should
provide a defensive approach that must be scalable to a network and also
should provide an interoperability framework among different administrative
domains.

7. Besides intrusion detection and response, DB-IDRA should also take the
system state into account in order to evaluate the impact of the defense
activities on the system performance and QoS provided to legitimate users.
Corrective actions (system actions) to optimize the system performance must
be defined and integrated into the architecture.

8. In order to measure the system performance, a set of metrics should be
defined for the system.

9. In order to detect intrusions and observe system state, DB-IDRA should
employ an effective monitoring approach. Effectiveness, in this context,
consists of timeliness, adaptability and robustness of the monitoring activities.

10. DB-IDRA requires a formal approach for specifying nominal system
behavior, intrusion patterns, response actions and system actions.

11. DB-IDRA should provide a system audit log for offline analysis.

36

D. HIGH-LEVEL ARCHITECTURAL DESIGN

1. Overview
After requirements analysis and conceptual modeling, high-level architectural

design is the first step towards a representation of the architecture in a form of software

abstractions. Based on the functions defined in the previous section, high-level design

involves describing the behavioral model for the DB-IDRA and then specifying the

Figure V-3 High-l

architecture in UML notation.

evel adaptation and evolution process (From: [36])

2.
tionalities:

ction,

These functionalities govern the runtime behavior of the system; therefore, the

architec

Dynamic Behavior Model
DB_IDRA includes five high-level func

• Monitoring,
• Intrusion dete
• Tracking,

nd • Analysis, a
• Response.

37

ture needs to be designed considering how the system functions in a dynamic

environment. Oriezy et al. [36] introduces an approach supporting two simultaneous

processes to manage the dynamic structure of a system based on its software architecture:

(i) evolution, the consistent application of change over time, and (ii) adaptation, the cycle

of detecting changing circumstances and planning and deploying responsive

modifications. In this approach, explicit consideration is given to the role of software

architecture in planning, coordinating, monitoring, evaluating, and implementing

Pkin ch^inges

Deploy change
descnpliong

Archilecliiml-L- -L,

f±l
mode

mpl^m^ntilion

Maintain
consistancy

and syslam inlegrity

adaptive responses. Figure V-3 defines these two processes and their sub elements. The

main distinction between the upper and lower portions of the diagram is that adaptation

management describes the life cycle of adaptive software systems; on the other hand, the

evolution management describes how adaptations are applied to adaptive software

systems.

Although Oriezy et al. defines this approach for self-adaptive software

architec

to

• the intensity and characteristics of intrusions change, it is

• ave a negative

Figure ersion of the process defined in Figure V-3 for

DB-ID

tures, it provides a generic framework in which dynamic behavior of a system can

be modeled. In order to do that, we need to change our focal point to behavioral aspects

of a system, rather than the architectural components. We envision that a dynamic

adaptation and evolution process in our problem domain should address the following:

• Monitoring. Depending on the environment, the system should be able
update the granularity and the hierarchy of data collection and observation
components.

Response. As
desirable to be able to update the defense strategy. This kind of update
may be related to either low-level (e.g., deception tactics, atomic response
actions) or global (e.g., dynamic policy update) decisions.

System state. Protecting a system against attacks can h
impact on the system performance and resource usage. Therefore,
observing and fine-tuning the system state, if necessary, against these
fluctuations is important.

V-4 shows the modified v

RA. Adaptation management describes the runtime decision-making process,

while evolution management focuses on the mechanisms employed to change the runtime

configuration of the system. DB-IDRA represents a dynamic behavior; that is, it must

update its behavior at runtime according to the current system state. To do so, it must

collect data, analyze the data, and deploy necessary responses based on analysis results.

The process characterizing the behavior model must, at a minimum, manage those three

basic functionalities comprising adaptation management, and maintain consistency and

integrity of the system via evolution management

38

Figure V-4 Process diagram

3. Adaptation Management
Adaptation management describes the process from data collection to change

specification deployment. The adaptation process defines the activities from when an

observation is reported, until necessary actions are deployed, as illustrated in Figure V-5.

Observation is the initial step in adaptation management, which gathers raw data

about individual components of the system via observers and passes those data to

collectors. These data provide information about both intrusive processes and system

state. Intrusion-related data are used to determine if there is an intrusive interaction with

the system. Data about the system state indicate the necessary system properties to

evaluate the environment regarding performance, efficiency, stability and so on.

Observers may be expanded with the filtering functionality to decide whether to keep a

record of an observed event or to ignore it.

The Collection step involves gathering raw data from observers and repositories

with the data. It is possible to place several collectors in a system, providing an

opportunity to monitor the system from different views at each collector. Communication

39

between the observers and the collectors can be established via either sending data on a

shared medium (advertising), or using queries to get the data individually (soliciting)

[35]. Collectors also store a system log containing past data about the system activity.

This log can be used for offline analysis to evaluate how well it operates in terms of

correctness, performance, efficiency, and so on. The number and size of buffers (required

for this log) can be adjusted to store only the essential data for the defensive-related

activities.

Figure V-5 Adaptation management process

Runtime analysis refers to the analysis of the observations passed by the

collectors. DB-IDRA performs analysis for intrusion detection and system optimization.

For this purpose, the analysis package employs different analyzers for each task, which

are called intrusion and system analyzers. Based on the intrusion detection technique

used in a system, intrusion analyzers work with a corresponding database storing the

detection rules. This approach provides a flexible framework in which any intrusion

detection technique (e.g., anomaly, misuse, and signature-based) can be used

40
independently from the rest of the system. On the other hand, system analyzers make

analysis

Feedback

action
svedficatfons

observations

raw data

1

decisions about the system state by analyzing some prespecified system variables. That

repository contains the formal specifications for behavior patterns for intrusions and

response actions. Observations are compared to those behavior patterns, and then

necessary actions are produced as a result. It is also possible to delegate some of the

primitive analysis requirements to observers, such as counting and time stamping.

Deployment is the last step in adaptation management. The deployment module

employ

system at runtime. There are several

challen

in consistency and integrity of the system, evolution

manage

s agents to carry out the specified actions. At this point, action specifications are

distributed among agents in an organized way. Actions’ being coordinated or not has an

impact on this distribution process. Deployment agents interact with the supervisor. Once

the actions associated with agents are approved, agents proceed and modify the wrappers

according to the transactions contained within the action specifications.

4. Evolution Management
It is not enough to decide what to change in a

ges with respect to how those changes are integrated to the running configuration

of the system. These challenges may be related to safety, reliability, consistency, integrity

and correctness. There are two possible scenarios that might cause an unintended

outcome. In the first scenario, the adaptation process may decide on an ill-considered

action. In the second scenario, the decision made by the adaptation process is added to

the system incorrectly. For example, an intrusion detection mechanism may decide on

blocking the http channel; however, this might ruin an ongoing deception tactic for

interacting with an attacker.

In order to mainta

ment defines the approach in which actions are incorporated into the system, as

shown in Figure V-6. Actions produced by adaptation management are reflected in the

system’s current state, while ensuring that those actions are consistent with the global

security policy, the current defense implementation, and the system configuration. The

results of the activities in the supervisor are fed back to the adaptation management level

mechanisms. The evolution management introduces two types of components to

accomplish its tasks: supervisor and wrappers. The supervisor verifies that the actions do

not conflict with the consistency and integrity of the system. In this context, consistency

implies that the actions should conform to the global defense policies. Furthermore,
41

integrity ensures that all the defensive actions accomplish the same goal without

conflicting with each other. Wrappers are the kernel-based modules that can respond to

Figure V-6 Evolution management process
The superviso

intrusive processes.

r contains three sub components to manage the system consistency

and integrity from three ger analyzes the

actions

different perspectives. The Monitoring Mana

 that change the monitoring configuration of the system. The Deception Manager

analyzes the deceptive actions against intrusions. The System Manager analyzes the

actions that change the system configuration for optimization purposes. These

components depend on each other and the global state of the system. For example, as the

intensity of attacks against a system escalates, resources used for maintaining the global

defense strategy also increase. In that case, the system may not be able to accommodate

more deceptive actions and may need to adjust some of the runtime variables to keep the

system stable. The system should be able to continue servicing its legitimate users, and

DB-IDRA should still be able to protect the system, even with degraded capabilities. Any

action conflicting with the criteria set by the supervisor is vetoed and the necessary

feedback is sent back to the adaptation layer. Approved actions are sent to the wrappers

and subsequently activated.

42

action
— - - - 1^1 — -^1 - L- —

I
I
I

Feedback

I
I
I
I

Wrappers are kernel-based modules that perform the intrusion detection and

response actions. Within the scope of the evolution layer, wrappers respond to intrusive

process

ate the system architecture, we used the UML package construct.

Packag components, use cases, or

other p

es with the actions passed by the supervisor. Alternatively, wrappers can be used

for intrusion detection; in fact, detection and response functionalities can be combined in

wrappers. In this regard, observers mentioned in the adaptation layer can be implemented

as wrappers too.

5. Architecture Package Diagram
To illustr

es contain groups of elements or sub systems such as

ackages. Representing the architecture in a multi-layered approach provides

several advantages. First of all, it isolates application logic into separate components that

can be reused. Thus, it allows designers to organize their ideas about how to distribute the

tiers on different physical computing entities. Figure V-7 shows the architecture package

diagram for DB-IDRA. This diagram includes the logical groupings that will be

expanded in the detailed architecture presented in the next section.

43

Figure V-7 Architecture package diagram

DB-IDRA is sep tation, evolution,

operati

f the adaptation and evolution layers. These two

layers d

arated into five layers: presentation, adap

ng system, and storage. Although presentation functionality is important, we think

it is sufficient to note that the system should provide a user interface. Our main focal

point is the underlying architecture.

Application logic consists o

escribe the tasks and rules that govern the entire system behavior. Following the

previous section on behavior model, there is a continuous interaction between the

adaptation and the evolution layers. The operating system layer consists of the kernel-

based modules to perform response actions and monitoring activities (if monitoring is

done in the kernel space). The storage layer provides the persistent storage mechanism

that serves both the adaptation- and evolution- layer components.

44

VI. DETAILED ARCHITECTURAL DESIGN

A. OVERVIEW
In the previous chapters, we explored the problem domain and articulated an

initial set of requirements for the system, from which we then derived both a conceptual

model and high-level architecture. Our design reflects a four-layered architecture:

presentation, application-logic, operating system and storage layers. Each layer

represents a modular entity containing sub components to perform the entity’s assigned

tasks. The Detailed Architectural Design phase further defines these packages, their sub

components, and the intra- and inter-package collaborations.

B. DETAILED ARCHITECTURAL DESIGN
DB-IDRA is designed in a layered approach. The adaptation and evolution layers

(these two are sub layers of the application logic layer) constitute the underlying logic of

the system. The operating system layer organizes the software wrappers for detection and

response purposes. The storage layer provides the common shared database structure,

whereas the presentation layer allows system engineers to interact with the system both at

runtime and offline. Each layer represents a logical grouping assigned a specific set of

tasks. For example, the monitoring package consists of observers and collectors to gather

data about the system and perform primitive actions (e.g., simple preprocessing of the

sensor data). The layered architecture has interfaces between the layers and their sub

elements. The following sections describe each package in detail and how the packages

interact with each other.

C. PACKAGE DESCRIPTIONS

Packages are general-purpose mechanisms for organizing elements into groups.

Packages are purely logical unlike components. They only exist at development time, for

the most part, to manage complexity. This section describes each package included in the

architecture package diagram. Package descriptions address the static structure of the

architecture and address key aspects of the dynamic behavior of the system.

45

1. Presentation

The presentation layer encompasses the user interface, which is to be used to

monitor system behavior and modify the system configuration in order to coordinate the

system’s behavior. The Presentation layer can be grouped into runtime and offline

functions. In each category there are some key design considerations that are generally

applicable to any kind of user interface. Since intrusion detection systems perform time-

critical tasks, the user interface should be capable of presenting information about the

entire system in a bounded response time. Additionally, it should have notification

mechanisms to let the system engineers know when prespecified conditions occur.

Besides timeliness, information organization and level of detail must be considered in the

presentation layer design too.

Figure VI-1 Monitoring Package

2. Monitoring
The Monitoring package is composed of observers and collectors. Observers are

the lowest level entities interacting with the system components, and sense system-level

events. Collectors aggregate and perform postprocessing on sensor data. Observers and

collectors can be organized in a hierarchical monitoring structure. Each collector also

checks that the observers are operating normally. If a collector detects a malfunction in

any of its observers, then the collector alerts the analysis package about the malfunction.

46

law data

obseiuaDon;

<<iibseivs>>

Figure VI-1 illustrates an example of how monitoring components can be

organized. The observers collect data about different aspects of the system activities.

System activities are composed of events (E1, E2…En). In the diagram, E1 can be events

related to all or a specific set of http requests and replies. The observers (O1, O2…Ok) can

either collect all data on system events or selectively collect data by using prespecified

rules as a guide. As independent entities, observers can be turned off and on during

runtime. On the other hand, collectors provide different views over the same set of

observers. For example, C1 gathers data from both O1 and O2, where C2 and Ct collect

data from Ok only. This kind of an organization provides for flexible monitoring

capabilities. For example, different groupings of collectors (like C1 and C2) can focus on

different aspects of the system (e.g., events related to http, ftp, and DNS). Additionally,

collectors can share the same observers (e.g., C2 and Ct) but concentrate on different

properties (e.g., attributes) of the events being passed by those observers.

Figure VI-2 Observation categories

47

A

A

The monitoring package passes the observations to the analysis package. First,

observers gather the data and filter it if necessary, and then collectors group and pass

those data to the analysis package.

Observations are the basic system events, and they are grouped into two main

categories, as shown in Figure VI-2. The first category includes the events generated by

the processes running in the system. This category consists of legitimate and intrusive

events. The second category includes the events generated by the system components to

indicate a specific situation. Events generated by the system components include

component failures, system variables, or processing failures.

3. Analysis

The Analysis package provides the functionality to analyze observations from

three different perspectives: intrusion detection, response, and system optimization. To do

that, the analysis package employs analyzers. Currently, we envision three types of

analyzers: intrusion detector, system optimizer, and response generator. However, new

analyzers can be added to the package or the existing ones can be modified. The analysis

package employs a tracking component to isolate intrusive processes from the nominal

system mode. This isolation enables the system to apply deception to keep the intruders

uninformed about the actual system state, while gathering information about the nature of

these processes. Figure VI-3 shows the internal structure of the analysis package.

The intrusion detector performs intrusion detection based on the detection

techniques employed in the system, which could also be hybrid (e.g., anomaly and

signature-based detection). The detector analyzes the observations according to the

database of detection rules. The intrusion detector interacts with the tracking component

to compare the current behavior of an intrusive process to that process’s past behavior. If

a process is considered to be intrusive, the specifications about the intrusion are passed to

the response generator.

48

The system optimizer obtains system state and configuration. The optimizer gets

that kind of data via probes. Probes are specific-purpose observers to gather data about

system variables. Data received from probes are checked against predefined limits for the

nominal system operation. Those limits are defined by metrics, such as performance,

stability, and efficiency. For example, the system resources are shared by the legitimate

services and intrusion detection activities. It would not be logical to dedicate all the

system resources to the security activities at the expense of all the other system services.

Therefore, optimizing the resource usage is necessary for an efficient runtime

performance of both the security and all other legitimate activities. Based on the analysis

performed by the optimizer, specifications about system actions are passed to the

response generator.

Figure VI-3 Analysis package
The response generator t cifications as inputs

and pro

se

implementation.

akes the intrusion and system spe

duces the analysis results containing the corresponding action specifications.

Those specifications are based on the action rules stored in the database. The response

generator takes into consideration not only the response rules but also the current defen

49

The tracking component isolates intrusive processes from the normal system

context and keeps track of their behavior and the responses against them. All the

interact

ed in two types of actions, as shown in Figure VI-4, changing

different asp ons.

Intrusio

. The basic criterion for this is whether the actions are

coordin pecification defines an agent’s task. However,

agents

ions with the intrusive processes are managed by the tracking component and the

data about those interactions are stored in a database. This component provides an

interface to the other components requesting services about the current status of the

defense implementation.

Analysis results are defin

Figure VI-4 Categories of actions generated by the analysis package
The analysis package passes the analysis results to the deployment package.

ects of the system: intrusion response and system configuration acti

n responses can be either deception-based or primitive actions. System

configuration actions either change the components’ structure or optimize system

performance.

4. Deployment
When the response analyzers pass the analysis results, the distributor assigns the

responses to deployment agents

ated. Therefore, each response s

can collaborate with each other to realize coordinated responses. Agent1 and

Agentn, in Figure VI-5, can participate in a coordinated response as they propagate

50

A A

through the system and carry out their mission individually. In case of coordinated

attacks, deceptive responses are deployed separately for each process playing a part in

that attack. However, the necessity of coordination is obvious considering the need to

present a consistent deceptive counter measures to the attacker. In addition, agents can

perform responses against attacks, for instance, directing an intrusive process to a fake

Figure VI-5 Deployment agents

5. Supervisor
The Supervisor is the main evolution layer component containing three sub

componen

resource.

ts: monitor, deception, and system managers. The Supervisor is responsible for

maintaining the consistency bet the current defense

implem perties of the supervisor is that it has the right to

approv n of

e

e the number of

observe

ween the global security policy and

entation. One of the essential pro

e or veto any change specification passed by the adaptation layer. Modificatio

the inappropriate changes is not part of the supervisor’s responsibilities.

Figure VI-6 shows the interdependencies between the components of th

supervisor. For example, if the intensity of the intrusions is high and the system is not

able to allocate any more resources for intrusion detection and response activities, it may

be required to rely on less computationally-intensive deceptions or reduc

rs in order to maintain acceptable level of QoS.

51

anal";!; result;

<-^geneiate>>

< < n p n p 'i|-p > >

N»
action
specification;

Monitor planning determines which observation components are necessary for

monitoring the system activities. Planning takes into account the system performance and

the intr

 compile-time component that translates high-level

specifications for dece nent is used in

preprog dules. As a result of this compilation, wrappers

are equ

erform intrusion detection,

response tasks, or both. Observers, mentioned in the monitoring package, can actually be

usion load on the system. The monitor planner can reconfigure the structure of the

monitoring components dynamically. Deception manager examines the changes before

they are applied to the current system implementation. The deception-based responses

must conform to both the global security policy rules and the current defense

implementation. The system manager determines how the changes will affect the system

performance. Optimization is necessary for maintaining the legitimate service of the

system, while protecting it from cyber attacks. Each component uses its veto option if an

action conflicts with the criteria set by the supervisor and sends feedback to the

adaptation layer mechanisms.

The interpreter is a

Figure VI-6 Internal structure of the supervisor

6. Interpreter

ptions into low-level wrapper language. This compo

ramming the kernel-resident mo

ipped with both detection and response capabilities.

7. Operating System
The Operating System package includes the kernel-based intrusion detection and

response modules (i.e., wrappers). These modules can p

52

implem are preprogrammed with detection and

respons

ction rules, response actions, defense implementation,

and sys

consistency and integrity between this framework and the current defense

ight affect the course of actions against cyber opponents.
Obviously, the policy and doctrine for different administrative domains,

•

• ngoing

is the

ented as kernel modules too. Wrappers

e capabilities at compilation time. Then these capabilities are configured at

runtime as the system context changes. The essence of the kernel-based approach is that

complicated tasks should not be carried out in the kernel. Wrappers provide the front-end

of the security measures against the attackers, while benefiting from the additional secure

environment of the kernel space.

8. Database
All the packages and components perform their tasks based on rules,

specifications or configurations. There are at least five groups of data shared by the

components: policy/doctrine, dete

tem configuration.

• The policy/doctrine database draws the framework in which the domain-
based defense strategy is defined. The supervisor maintains the

implementation. These rules represent legal, strategic and administrative
issues that m

such as military and nongovernmental organizations, dictate different rules
according to their legal status, assets being protected, defense approach,
and so on.

The detection rules define the intrusive behavior patterns for the detection
technique being used in the architecture. This database is used for two
different purposes. In the first case, the wrappers are initially equipped
according to the rules stored in this database. In the second case, the
intrusion detector uses these rules to detect intrusions at runtime.

• The response actions define both deceptive and primitive actions against
attacks. This database represents a wide spectrum of actions to increase
the efficiency of responses. The response generator selects response
actions based on the input from the intrusion and system analyzers.

The defense implementation database contains the data about the o
intrusion-related activities in the system such as the current intrusive
processes, behavior history of and past responses against those processes.
This database affects intrusion detection, response generation and
supervisor activities. This database provides the capability to keep track of
these isolated intrusive processes. If the policy/doctrine database
generic model for the system, then the defense implementation is the
realization of the model. The defense implementation database is a
dynamic data structure, which means, it is updated as: New intrusions (or
suspicious behaviors) are detected; processes perform new actions,

53

interactions with the processes are terminated; and processes are
considered to be legitimate and released from the antechamber.

UNCTIONAL REQUIREMENTS
re architectures are derived from functional and non-functional

The purpose of having two types of requirements is to reduce the

D. NON-F
Softwa

requirements.

m does from how the system

behave

onal qualities preserving distinct characteristics for the

design,

n with other

domain

complexity of the design by separating what the syste

s with respect to some observable attributes such as performance, reliability, and

stability. While functional requirements can easily be observed in an architecture

supported by an inclusive documentation, that is not the case for non-functional

requirements. Although, the considerations regarding this group of requirements are

specified in advance, it is important to verify that the architectural design complies with

the non-functional requirements.

We have introduced six levels of non-functional requirements for the architecture:

interoperability, stability, survivability, scalability, efficiency, and performance. We

chose to focus on the non-functi

 rather than the common ones such as reliability and maintainability. We believe

that it is possible to realize this architecture in an implementation meeting all of these

qualities, but this remains to be demonstrated through a detailed case study.

Interoperability represents the need for effective communication and

collaboration means between different administrative domains. As an administrative

domain collects valuable information about attacks, sharing that informatio

s allows for establishing proactive protection measures. That kind of information

can be directly inserted into the databases for the analysis mechanisms to use. For

example, if a domain has detected a new type of attack, then it shares this information

with other domains, thereby permitting the other domains to take precautions to detect

and perform deceptions in response to that attack. As the number of collaborating

domains increases, interpretation of data from multiple sources becomes more complex.

With its current design, DB-IDRA can use the information provided by external sources.

This information can be either inserted into the databases or fed into the runtime process

as system events, provided that a common communication language is already developed

among collaborating domains.

54

Stability of the runtime architecture necessitates that the system should confront

as many attacks as possible to keep the overall system optimized. It is also necessary to

evaluate the stability under different levels of intensity of conflicts to make sure the

system

m depending on the essential services

and ass

l protection mechanisms. In case of a

failure

network in order to achieve redundancy. The network can have its own supervisor with

 operates as intended. We can measure the level of stability based on the network

load. The network load can be separated into two types of interactions: legitimate and

intrusive processes. The system can adjust itself by maintaining a threshold ratio between

these two groups of users at any point in time. For example, if a system allows only one

third of the system resources to be used for intrusive processes, then the intrusion

detection mechanism adjusts the current defense implementation based on this threshold.

Besides network load, the complexity of ongoing deception activities can consume

system resources if they are at a sophisticated level such as mimicking the operating

system. Network load and deception activities are concerned with effective resource

allocation among legitimate and intrusive processes; however, failure of the system

components can also cause the system to transition into unstable states. The supervisor

needs to mitigate the effects of such disturbances.

Survivability, in its basic definition, is a system’s capability to fulfill its mission

(as desired) in the presence of attacks, failures, or accidents. The survivability process

represents different characteristics for every syste

ets contained in it [38]. Our architecture provides a deception-based intrusion

detection and response framework. It may be possible, for instance, to use redundancy as

a mean to increase the survivability of the system.

Wrappers are used in the kernel space. Wrappers modified for different purposes

including intrusion detection and response. They provide an autonomous front-end

against attacks with the benefit of additional kerne

within one of the supervisor components, the system can still provide intrusion

detection services. This can be accomplished with the primitive logic preprogrammed

into the wrappers. For example, if the deception manager fails, DB-IDRA can deactivate

deception functionality, but still provides intrusion detection without deception.

There are several possible ways to distribute supervisor capabilities throughout a

55

full functionality as defined in earlier sections. If any of the hosts fails, then another host

takes over the role of the failed host. Another approach is to organize supervisors in a

hierarc

he data transferred to the

upper layers, because hile each host

can ma

hical manner. Figure VI-7 illustrates that kind of a scenario for a network of eight

hosts. In that case, each host can have either a fully functional supervisor, a supervisor

with limited functionality or no supervisor at all. This approach supports the

implementation of inter-domain level survivability strategies.

based system; however, there are some distinct properties that enable the architecture to

be scaled up for use in large distributed systems. Wrappers, in the architecture, include

self-controlling primitive logic mechanisms. This reduces t

Figure VI-7 Hierarchical supervisor organization
DB-IDRA represents a scalable architecture. The architecture describes a host-

unnecessary data is filtered out at the kernel layer. W

nage its defense and decision making activities by itself, network-wide analysis

and defense need to be managed by a higher-level entity. In our architecture, this can be

done via hierarchical organization of supervisors, as described in Figure VI-7. At level 3,

each host manages its own protection. Level 2 represents sub domains in the network; in

that case, SS1 and SS2 are responsible from three and two hosts, respectively. These sub

domains can be established along with physical boundaries, such as subnets, or some

other logic that might promote the robustness of the system. The information flow from

level 3 to level 2 includes only the essential data that contributes to a sub domain’s

coordinated activities. Level 1 supervisor (SSS1) collects data from sub domain

supervisors (SS1 and SS2) to make further decisions about the network. This highest-level

56

T I i
Level I h.' h-'h-'i

Level 2 ^^i ^^2

Level 3 SI S^ S3 S4 S^

decision making unit is responsible for the entire domain, so it also communicates with

other domains to support interoperability.

Performance is a general constraint over all the functional and non-functional

requirements so that necessary means must be provided to minimize the affect of the

monitoring and decoy actions (e.g., those of delay tactics) on the availability and

performance of computing resources requested by legitimate users of the protected

software components. DB-IDRA observes the runtime system performance and

dynamically adjusts system variables to keep the system within predefined limits like

resource usage, network load, and so on.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

VII. CONCLUSION AND FUTURE WORK

A. SUMMARY
The scope of this thesis study was to design a generic software architecture for

deception-based intrusion detection and response systems. We demonstrated a systematic

process for architecting deception-based intrusion detection and response systems. We

followed a disciplined approach starting from requirements analysis to detailed

architectural design. UML notations provided for representing the architectural

abstractions.

We started by analyzing the requirements for the decoy-based system. Since the

intelligent software decoy concept is still evolving, we spent most of our efforts to extract

essential requirements from the theoretical and practical results presented in related

publications. We incorporated a set of non-functional requirements into the design

activities, which drove the design decision throughout the development process.

Based on these essential requirements, we developed the architecture in three

consequent phases. In the first phase (i.e., Plan and Elaborate), we explored the domain

and produced the requirements and the use cases. The second phase (i.e., High-level

System Definition) used the artifacts produced in the initial phase to come up with the

high-level definition of the architecture in a form of software-related abstractions. At this

level, the architecture is organized in a layered structure, each layer representing a logical

grouping of functional properties allocated to architectural packages and components.

The last phase (i.e., Detailed Architectural Design) further defined these.

The end product of this study is the software architecture for deception-based

intrusion detection and response systems. The resulting architecture is generic enough to

be flexible. For example, the architecture does not specify a particular intrusion detection

technique. It includes the constructs that are necessary to implement the intrusion

detection mechanism regardless of the technique being used. A major contribution of the

research is a proposed way to incorporate deception into software architecture. The

architecture addresses production, application, and management of deception-based

activities. However, the details about theory of deception are out of the scope of this

59

study. The architecture also serves as a guide for optimizing system performance at

runtime to mitigate the performance overhead introduced by the defense activities.

Lastly, the UML diagrams provide unambiguous representations of the system

architecture.

B. FUTURE WORK
A logical follow-up to this study would be to complete the development process

and implement the architecture, resulting in a prototype. As the concept evolves, the

prototype would also be updated. The value of prototyping in software development is

especially significant in demonstrating evolving design concepts and facilitating

communication between business customers and technical developers. Instead of

implementing the whole architecture, a logical subset can also be implemented such as

response generation, system monitoring, and system optimization.

However, formal definition and representation of the architecture presented in this

thesis may provide additional benefits before the implementation. For formal definition

of the architecture, architecture description languages (ADL) can be used [28] and [29].

ADLs are used to define and model system architecture prior to system implementation.

Further, ADLs typically address much more than system structure. In addition to

identifying the components and connectors of a system, ADLs typically address: (i)

Component behavioral specification, (ii) Component protocol specification, and (iii)

Connector specification. A detailed analysis of the existing ADLs is required to decide

which one is appropriated to use for this purpose.

 A central aspect of architectural design is the use of patterns and architectural

styles. Intrusion detection systems have commonalities in their functionalities and

architectures. For example, the architecture represented in this study can be implemented

on top of anomaly, misuse, or signature-based intrusion detection techniques. As long as

the interface between the detection and response mechanisms is defined formally, the

only difference would be related to the characteristics for each kind of detection

technique. Therefore, it is logical to conclude that an architectural style can be developed

for the systems that have deception-based intrusion detection and response capabilities.

An architectural style has a number of practical benefits [41].

60

• It promotes design reuse

• It can lead to significant code reuse

• It is easier for others to understand a system's organization if
conventionalized structures are used.

• Use of standardized styles supports interoperability.

• By constraining the design space, an architectural style often permits
specialized, style-specific analyses.

• It is usually possible to provide style-specific visualizations.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

LIST OF REFERENCES

[1] Michael, J. B., and Riehle, R. D., “Intelligent Software Decoys,” in Proc.
Monterey Workshop: Eng. Automation for Software Intensive Syst. Integration,
Monterey, California, Naval Postgraduate School, pp. 178-187, June 2001.

[2] Michael, J. B., Auguston, M., Rowe, N. C., and Riehle, R. D., “Software Decoys:
Intrusion Detection and Countermeasures,” in Proc. IEEE Workshop on
Information Assurance, New York, West Point, pp. 130-138, June 2002.

[3] Michael, J. B., Fragkos, G., Auguston, M., “An Experiment in Software Decoy
Design: Intrusion Detection and Countermeasures via System Call
Instrumentation”, in Proc. IFIP Eighteenth Intl. Information Security Conference,
Kluwer Acad. Publishers, Athens, Greece, May 2003.

[4] Rowe, N.C., Michael, J. B., Auguston, M., Riehle, R. D., “Software Decoys for
Software Counterintelligence,” IANewsletter, v. 5, no. 1, pp. 10-12, Spring 2002.

[5] Michael, J. B., Wingfield, T.C., “Lawful Cyber Decoy Policy”, in Proc. IFIP 18th
Intl. Information Security Conference, Kluwer Acad. Publishers, Athens, Greece,
May 2003.

[6] Michael, J. B., “On the Response Policy of Software Decoys: Conducting
Software-based Deception in the Cyber Battlespace,” in Proc. the 26th Annual
Computer Software and Applications Conference, IEEE, Oxford, England, August
2002.

[7] Rowe, N.C., “Counter planning For Multi-Agent Plans Using Stochastic Means-
Ends Analysis,” Unpublished Manuscript, February 2003.

[8] Schwartau W., Information Warfare, 2nd ed., p. 12, Thunder’s Mouth Press,
October 1996.

[9] Denning D.E., Information Warfare and Security, pp. 3-19, Addison Wesley,
February 2001.

[10] CERT Advisory CA-2003-04 MS-SQL Server Worm,
http://www.cert.org/advisories/CA-2003-04.html, February 2003.

[11] Debar H., Dacier M., Wespi A., “Towards a taxonomy of intrusion-detection
systems,” Computer Networks, v. 31, no. 8, pp. 805-822, April 1999.

[12] Denning D.E., “An Intrusion-Detection Model,” IEEE Trans. Software Eng.,
v. SE-13, no. 2, pp. 222-232, February 1987.

63

http://www.cert.org/advisories/CA-2003-04.html

[13] Lindqvist, U., Porras, A.P., “Detecting Computer and Network Misuse Through
the Production-Based Expert System Toolset (P-BEST),” in Proc. the 1999 IEEE
Symposium on Security and Privacy, Oakland, California, May 9–12, 1999.

[14] Ko, C., Ruschitzka, M., Levitt, “Execution Monitoring of Security-Critical
Programs in Distributed Systems: A Specification-based Approach,” in Proc. the
1997 IEEE Symposium on Security and Privacy, Oakland, California, May 4–7,
1997.

[15] Phung, M., “Data Mining in Intrusion Detection”,

http://www.sans.org/resources/idfaq/data_mining.php, February 2003.

[16] Brackney, R., “Cyber-Intrusion Response,” in Proc. 17th IEEE Symposium on
Reliable Distribution Systems, West Lafayette, Indianapolis, October 20-23, 1990.

[17] Petkac, M., Badger, L., “Security Agility in Response to Intrusion Detection”, in
Proc. of the 16th Annual Computer Security Applications Conference, New
Orleans, Louisiana, pp. 11-20, December 11-15, 2000.

[18] Somayaji, A. B., Operating System Stability and Security through Process
Homeostasis, Ph.D. Dissertation, University of New Mexico, 2002.

[19] Lewandowski, S., Van Hook, D., O’Leary, G., Haines, J., Rossey, L., “SARA:
Survivable Autonomic Response Architecture,” in Proc. DARPA Information
Survivability Conference & Exposition II, pp. 77-88, vol.1, June 2001.

[20] Sekar, R., Bowen, T., Segal, M., “On Preventing Intrusions by Process Behavior
Monitoring,” USENIX Intrusion Detection Workshop, Santa Clara, California,
pp. 29-40, April 1999.

[21] Balasubramaniyan, J., Garcia-Fernandez, J., Isacoff, D., Spafford, E., Zamboni,
D., An Architecture for Intrusion Detection using Autonomous Agents, Technical
Report TR-98-05, Purdue University, June 1998.

[22] IEEE Recommended Practice for Architectural Description of Software-Intensive

Systems, IEEE Std. 1471-2000, September 21, 2000.

[23] Kruchten, P., “Architectural Blueprints—The “4+1” View Model of Software
Architecture,” IEEE Software, v. 12, no. 6, pp. 42-50, November 1995.

[24] Hofmeister, C., Nord, R., and Soni, D., Applied Software Architecture, Addison
Wesley, April 2001.

[25] Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User
Guide, Addison Wesley, October 1998.

[26] Shaw, M. and Garlan, D., Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, April 1996.

64

http://www.sans.org/resources/idfaq/data_mining.php

[27] Garlan, D. and Shaw, M., “An Introduction to Software Architecture,” in
Advances in Software Engineering and Knowledge Engineering, v. 2, pp. 1-39,
New York, New York, 1993.

[28] Allen, R. J., A Formal Approach to Software Architecture, Ph.D. Thesis, Carnegie
Mellon University, Technical Report CMU-CS-97-144, May 1997.

[29] Architecture Description Languages, Carnegie Mellon University, Software
Engineering Institute, http://www.sei.cmu.edu/architecture/adl.html, February
2003.

[30] Hilliard, R., “Using the UML for Architectural Description,” in Proc. UML’99
The Unified Modeling Language, Second International Conference, Lecture Notes
in Computer Science volume 1723, Springer, 1999.

[31] Hofmeister, C., Nord, R. L., and Soni, D., “Describing Software Architecture with

UML", in Proc. 1st Working IFIP Conference on Software Architecture
(WICSA1), pp. 145-159, San Antonio, Texas, February 1999.

[32] Ko, C., Fraser, T., Badger, L., Kilpatrick, D., “Detecting and Countering System
Intrusions Using Software Wrappers”, 9th USENIX Security Symposium, Denver,
CO, pp. 145-156, August 2000.

[33] Fraser, T., Badger, L., and Feldman, M., “Hardening COTS Software with
Generic Software Wrappers,” in Proc. IEEE Symposium on Security and Privacy,
pp. 2-16, May 1999.

[34] Holling, C. S., “Engineering Resilience vs. Ecological Resilience,” Engineering
Within Ecological Constraints, National Academy Press, Washington, D.C, pp.
32-43, 1996.

[35] Jain, R., The Art of Computer Systems Performance Analysis, John Wiley & Sons,
April 1991.

[36] P.Oreizy et al., “An Architecture-Based Approach to Self-Adaptive Software,”
IEEE Intelligent Systems, v.14, no.3, pp. 54-62, 1999.

[37] Westbrook, A., Ratti, O., Aikido and the Dynamic Sphere, Charles E. Tuttle Co.,
September 1994.

[38] Ellison, R.J. et al., “Survivable Network System Analysis: A Case Study,” IEEE
Software, v. 16, no. 4, pp. 70-77, July/August 1999.

[39] Kruchten, P., The Rational Unified Process: An Introduction, 2nd ed., Addison
Wesley, March 2000.

[40] Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design, 1st ed., Prentice-Hall, 1998.

65

http://www.sei.cmu.edu/architecture/adl.html

[41] Garlan, D., “What is Style?” in Proc. Dagshtul Workshop on Software
Architecture, Saarbruecken, Germany, February 1995.

[42] Widespread exploitation of rpc.statd and wu-ftpd vulnerabilities. Incident note
IN-2000-10, CERT Coordination Center, Carnegie Mellon University, Pittsburgh,
Pennsylvania, September 15, 2000.

[43] Hofmeister, C., Nord, R., and Soni, D., “Software Architecture in Industrial
Applications,” in Proc. 17th International Conference on Software Engineering,
Seattle, Washington, pp. 196-207, April 1995.

66

DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. J. Bret Michael
 Department of Computer Science
 Naval Postgraduate School
 Monterey, California

4. Richard Riehle
 Department of Computer Science
 Naval Postgraduate School
 Monterey, California

5. Deniz Kuvvetleri Komutanligi (Turkish Navy Headquarters)

Ankara, Turkey

6. Deniz Harp Okulu Komutanligi (Turkish Naval Academy)
Istanbul, Turkey

7. Arastirma Merkezi Komutanligi

Yazilim Gelistirme Grup Baskanligi
(Turkish Navy Software Development Center)
Istanbul, Turkey

67

	INTRODUCTION
	DOMAIN ANALYSIS
	CYBER SECURITY
	INTRUSION DETECTION
	INTRUSION RESPONSE
	INTELLIGENT SOFTWARE DECOYS

	DEVELOPMENT PROCESS
	OVERVIEW
	DEVELOPMENT PHASES
	Plan and Elaborate
	High-Level System Definition
	Detailed Architectural Design

	A MODELING TOOL: UML

	PLAN AND ELABORATE
	OVERVIEW
	Requirements
	Use Cases

	FUNCTIONAL REQUIREMENTS
	Intrusion Detection
	Deception-based Response
	Automated Response
	Runtime and Offline Analysis
	Kernel-based Detection and Response Modules
	Distributed Detection and Response Capabilities
	System Performance Maintenance
	Dynamic Adaptation and Evolution
	Global Defense Policy and Doctrine

	NON-FUNCTIONAL REQUIREMENTS
	Interoperability
	Stability
	Scalability
	Survivability
	Effectiveness
	Performance

	HIGH-LEVEL USE-CASES
	Initiate Attack
	Monitor System Activity
	Perform Runtime and Offline Analysis
	Detect Intrusions
	Track Intrusions
	Respond to Attacks
	Apply Deception

	HIGH-LEVEL SYSTEM DEFINITION
	OVERVIEW
	CONCEPT CATEGORY LIST
	CONCEPTUAL MODEL
	HIGH-LEVEL ARCHITECTURAL DESIGN
	Overview
	Dynamic Behavior Model
	Adaptation Management
	Evolution Management
	Architecture Package Diagram

	DETAILED ARCHITECTURAL DESIGN
	OVERVIEW
	DETAILED ARCHITECTURAL DESIGN
	PACKAGE DESCRIPTIONS
	Presentation
	Monitoring
	Analysis
	Deployment
	Supervisor
	Interpreter
	Operating System
	Database

	NON-FUNCTIONAL REQUIREMENTS

	CONCLUSION AND FUTURE WORK
	SUMMARY
	FUTURE WORK

	LIST OF REFERENCES

