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Quantum structural methods for the solid state and surfaces 

B3.2 
Quantum structural methods for the solid state and 
surfaces 

Frank Starrest and Emily A Carter   ■ 

B3.2.1   Introduction 

We are entering an era when condensed matter chemistry arid physics can be predicted from theory with 
increasing realism and accuracy. This is particularly important in cases where experiments lead to ambiguous 
conclusions, for regimes in which there still exists no experimental probe and for predictions of the properties 
of modem materials in order to select the most promising ones for synthesis and experimental testing. For 
example, continuing miniaturization in microelectronics heightens the importance of understanding of quan- 
tum effects, which computational materials theory is poised to provide, based to some degree on the methods 
presented here. 

Our intention is to give a brief survey of advanced theoretical methods used to determine the elec- 
tronic and geometric structure of solids and surfaces. The electronic structure encompasses the energies and 
wavefunctions (and other properties derived from them) of the electronic states in solids, while the geometric 
structure refers to the equilibrium atomic positions. Quantities that can be derived from the electronic struc- 
ture calculations include the electronic (electron energies, charge densities), vibrational (phonon spectra), 
structural (lattice constants, equilibrium structures), mechanical (bulk moduli, elastic constants) and opti- 
cal (absorption, transmission) properties of crystals. We will also report on techniques used to study solid 
surfaces, with particular examples drawn from chemisorption on transition metal surfaces. 

In his chapter on the fundamentals of quantum mechanics of condensed phases (A1.3), James R Che- 
likowsky introduces the plane wave pseudopotential method. Here, we will complement his chapter by 
introducing in some detail tight-binding methods as the simplest pedagogical illustration of how one can 
construct crystal wavefunctions from atomic-like orbitals. These techniques are very fast but generally not 
very accurate. After reviewing some of the efforts made to improve upon the local density approximation 
(LDA, explained in A1.3), we will discuss general features of the technically more complex all-electron band 
structure methods, focusing on the highly accurate but not very fast linear augmented plane wave (LAPW) 
technique as an example. We will introduce the idea of orbital-free electronic structure methods based directly 
on density functional theory (DFT), the computational effort of which scales linearly with size, allowing very 
large systems to be studied. The periodic Hartree-Fock (HF) method and the promising quantum Monte 
Cario (QMC) techniques will be briefly sketched, representing many-particle approaches to the condensed 
phase electronic structure problem. 

In the final section, we will survey the different theoretical approaches for the treatment of adsorbed 
molecules on surfaces, taking the chemisorption on transition metal surfaces, a particularly difficult to treat 
yet extremely relevant surface problem [1], as an example. While solid state approaches such as DFT are often 
used, hybrid methods_are also advantageous. Of particular importance in this area is the idea of embedding, 
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where a small cluster of surface atoms around the adsorbate is treated with more care than the surroundino 
region. The advantages and disadvantages of the approaches are discussed. 

B3.2.2    Tight-binding methods 

B3.2.2.1    Tight binding: from empirical to self-consistent '   - 

The wavefunction in a solid can be thought to originate from two different limiting cases. One extreme is the 
nearly free electron (NFE) approach. The idea here is that the valence electrons are hardly affected by the 
periodic potential of the atomic cores. Their wavefunctions can then be assumed to be easily described as 
linear combinations of the solutions for free electrons: the plane waves, exp(ifc • r). The NFE approximation 
is particularly useful for so-called NFE metals, such as the alkali metals. At the other extreme, the solid can be 
viewed as constructed from individual atoms. The valence wavefunctions of the solid are then approximated 
as linear combinations of the wavefunctions of the valence electrons of the atoms (see also section Al.3.5.6). 
In this case, the electrons are considered to be 'tightly bound' to the atoms. This is a physically reasonable 
view of covalendy bound solids and molecules, where localized chemical bonds are the norm (bulk silicon 
organic or biomolecules etc). Methods which employ this view of the electrons in the solid are called ti^ht- 
binding (TB) methods. The wavefunctions are generally^xpanded in atomic orbitals (in a linear combination 
of atomic orbitals (LCAO) formalism) or similarly localized functions. 

An advantage of TB is that generally the number of basis functions linearly combined to give the 
wavefunctions is rather small. The solution of the Schrodinger equation in these bases is then fast because 
the matrices representing the operators are small. Also, the construction of the Hamiltonian matrix elements 
is fast, since generally a number of, sometimes drastic, approximations are made. At the same time, however, 
the small basis set generally limits the quality of the TB results, since the variational freedom for the solution 
of the Schrodinger equation is not as high as in other methods. The approximations of Hamiltonian matrix 
elements often further reduce the quality of the results. 

Today, the term TB method is generally understood to refer to a technique using TB basis functions 
in which the Hamiltonian matrix elements are adjusted to reproduce results from experiments and/or from 
more sophisticated electronic structure methods [2]. Depending on the degree of dependence on external 
parameters, the methods are called empirical or semi-empirical TB. A number of approaches are used for the 
fitting of the TB parameters, generally a tough minimization task with many minima (using genetic algorithms 
has proved quite efficient [3,4]). It has been noted that 'great care is needed to test the resulting model for 
reasonable behavior outside the range of the fit' [5,6]. A disadvantage of the empirical methods is that it is 
difficult to distinguish to what extent the parametrization or the method itself is responsible for errors in the 
results. 

Frequent approximations.made in TB techniques in the name of achieving a fast method are the use of a 
minimal basis set, the lack of a self-consistent charge density, the fitting of matrix elements of the potential, 
the assumption of an orthogonal overlap matrix, a cut-off radius used in the integration to determine matrix 
elements, and the neglect of matrix elements that require three-centre integrals and crystal-field terais. We 
will now provide more details on these approximations. 

Generally, the following ansatz for the wavefunction is made: 

i'i{r)^'Y^c'^^^)ai{r), 
al 

where (Pai{r) = {r\(pc,i) represents an atomic orbital of symmetry a (such as s, p.v, p,,, p,) at atom /. 
This yields the generalized eigenvalue problem 

Hc'=eiSc', (B3.2.1) 
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with the elements of the Hamiltonian matrix Wa/;3,„ = ((pa/|/f|^^m) and the overlap matrix 5„;^,„ = {(PaiWum)- 
In the TB approximation, the basis functions are thought to be sufficiently localized such that contributions to 
the Hamiltonian rtiatrix usually are accounted for only up to at most the third or fourth neighbour. Frequently 
a minimal basis set is used, i.e^ a single orbital (/>„/ is used per atom and per orbital symmetry to expand the 
wavefunction. 

In orthogonal TB methods, the overlap matrix is'assumed to be diagonal, even though the basis functions 
of adjacent sites ordinarily are not orthogonal [6]. Harrison has shown that this approximation can be compen- 
sated for by adjustments to the Hamiltonian matrix elements (these adjustments are arrived at automatically 
in methods depending on fitting, for example, a DFT band structure) [7]. However, this approach reduces 
the transferability of the TB parameters to other structures [8]. Including the overlap matrix brings with it 
the additional cost of its calculation and solving the generalized eigenvalue problem, see equation (B3.2.1), 
rather than an ordinary eigenvalue problem. 

, One can construct an effective potential, written here in the DFT language (see, for example, equa- 
tion Al.3.38 of A1.3) as 

Ueff('') = Vext(r-) + VH[/o(r)] + Uxc[yO(r)]. (B3.2.2) 

To rationahze tlie 'two-centre approximation', the effective potential is written as 

Vis(r) = Y^v^iij{\r - Ri\), 

where Ueff,/ is centred on the atom / and vanishes away from the atom, which need not involve any approxi- 
mation. 

In the calculation of the elements 

Halfim = (<Pal T + Y1 ^eff.n (Ppn 

with r = -5 V^ the kinetic energy operator, several types of potential matrix elements can be distinguished 

[6]: 

(1) Three-centre terms, i.e. / # m ^4 «. These are frequently neglected, in what is called the two-centre 
approximation, based on the assumed strong localization of the orbitals cpai (r). 

(2) Inter-atomic two-centre matrix elements {<Pai\vtf[,i + VeB.m\<Pfim)- These matrix elements represent the 
hopping of electrons from one site to another. They can be described [7] as Unear combinations of 
so-called Slater-Koster elements [9]. The coefficients depend only on the orientation of the atoms / 
and m in the crystal. For elementary metals described with s, p, and d basis functions there are ten 
independent Slater-Koster elements. In the traditional formulation, the orientation is neglected and the 
two-centre elements depend only on the distance between the atoms [6]. (In several models [6,10], they 
have been made dependent on the environment of the atoms / and m.) These elements are generally fitted 
to reproduce DFT results such as the band structure or the values of DFT matrix elements in diatomics. 

(3) Intra-atomic matrix elements, or on-site terms, with / = m. Traditionally, the potential contributions' 
from other atomic sites, Ueff,„yt/=m. so-called crystal-field terms, are neglected [ 10]. In this case, then the 
only non-zero on-site terms have a = P, since basis functions on the same site are orthogonal atomic 
orbitals. There are methods which include these crystal-field terms [11,12]. Physically, these diagonal 
elements represent the energy required to place an electron in a specific orbital. In some implementations, 
they are set to the orbital energy values of the neutral free atom [13], guaranteeing the correct limit for 
isolated atoms. However, this approach ignores the potential contributions to the diagonal elements due 
to different environments in a molecule or crystal; these are taken into account in other variants of the 
method [6,10,11]. 
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Most TB approaches are not charge self-consistent. This means that they do not ensure that the charge 
derived from the wavefunctions yields the effective potential v^g assumed in their calculation. Some methods 
have been developed which yield charge densities consistent with the electronic potential [14-16]. 

The localized nature of the atomic basis set makes it possible to implement a hnear-scaling TB algorithm, 
i.e. a TB method that scales lineariy with the number of electrons simulated [17]. (For more information on 
linear scaling methods, see section B3.2.3.3.) 

The accuracy of most TB schemes is radier low, although some implementations may reach the accuracy 
of more advanced self-consistent LCAO methods (for examples of the latter see [18-20]). However, the 
advantages of TB are that it is fast, provides at least approximate electronic properties and can be used for 
quite large systems (e.g., thousands of atoms), unlike some of the more accurate condensed matter methods. 
TB results can also be used as input to determine other properties (e.g., photoemjssion spectra) for which 
high accuracy is not essential. 

B3.2.2.2.   Applications of tight-binding methods 

TB methods have been widely used to study properties of simple semiconductors such as Si [11] and GaN [16]. 
In the latter study, the effect of dislocations on the electAnic structure of GaN was investigated with a view 
toward understanding how dislocations affect the material's optical properties. The large supercell of 224 
atoms led to TB as the method of choice. This particular variant of TB fits TB matrix elements to DFT-LDA 
results and solves self-consistently for atomic charges. It has also been used to predict reaction energetics of 
organic molecules, the structure of large biomolecules and the surface geometry and band structure of III-V 
semiconductors [15]. The TB method is expected to provide qualitatively reasonaJDle results for systems 
where localized atomic charges make sense and hence is not expected to perform as well for metallic systems. 
Despite potential problems of TB for metals, the TB approach has also been used to study the phonon spectrum 
of the transition metal molybdenum [6], the elastic constants, vacancies and surfaces of monatomic transition 
and noble metals and the Hall coefficient of complex perovskite crystals [10]. As an example of data available 
from a TB calculation, a TB variant of extended Hiickel theory [21,22] was used to describe the initial states in 
photoemission from GaN [23]. The parameters were fitted to the bulk band structure E„ (fc) (for a definition, 
see section Al.3.6). As displayed in figure B3.2.1, good agreement is found for the occupied states (negative 
energies), while larger differences for the conduction bands (positive energies) reveal a typical problem of 
the TB methods: they are far less capable of describing the delocalized conduction band states (the same is 
true for delocalized valence states in a metal, as mentioned above). In figure B3.2.2,-we show a series of 
calculated photoemission spectra compared to experimental results [23]. The dispersion of the main peaks as 
a function of emission angle and photon energy agrees reasonably well in theory and experiment. 

B3.2.3    First-principles electronic structure methods 

In this section, we briefly review the basic elements of DFT and the LDA. We then focus on improvements 
suggested to remedy some of the shortcomings of the LDA (see section B3.2.3.1). A wide variety of techniques 
based on DFT have been developed to calculate the electron density. Many approaches do not calculate the 
density directly but rather solve for either a set of single-electron orbitals, or the Green's function, from which 
the density is derived. 

In section B3.2.3.2, we introduce a number of techniques commonly referred to as ab m/rioall-electron 
electronic structure methods. Ab initio methods, in particular, aim at calculating the energies of electrons 
and their wavefunctions as accurately as possible, introducing as few adjustable parameters as possible. 
(Empirical or semi-empirical methods include the empirical pseudopotential approach (see section Al.3.5.5) 
and many TB techniques (see section B3.2.2).) Within the ab initio band structure approach, two communities 
exist that differ in their treatment of the singular nature of realistic. Coulomb-like ci7stal potentials. In the 
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Figure B3 2 1 The band structure of hexagonal GaN,.calculated using EHT-TB parameters determined by a genetic 
algorithm [23] The target energies are indicated by crosses. The target band strucmre has been calculated with an 
abinitio pseudopotential method using a quasiparticle approach to include many-particle coiTections [194]. 

pseudopotential approach discussed by Chelikowsky in chapter A1.3, the Coulomb singularity i'^Mof 
the crystal potential is replaced by a smoother function, whereas in the so-called 'all-electton approach, the 
Coulomb singularity is retained. The pseudopotential transformation Umits the range of electron energies 
which can be accessed. However, since the pseudo-wavefunction is much smoother than the all-electron 
wavefunction (which has large oscillations near the nucleus), the pseudopotential allows ttie use of a plane 
wave basis set, which is comparatively easy to handle. In principle, the all-electron methods have no hmitation 
on the energy range of calculations. This is achieved by a sophisticated representation of the wavefunction 

The so-called orbital-free DFT technique, which aims to directly calculate the electron density for which 
the total energy is minimal, is presented as an example of methods whose computational effort scales hnsarly 
with system size (see section B3.2.3.3). In section B3.2.3.4, we discuss the periodic HF niethod, an alternative 
approach to DFT that offers a well defined starting point for many-particle corrections. Finally, the two most 
frequently used QMC techniques are described in section B3.2.3.5. 

B3.2.3.1    The local density approximation and beyond 

In DFT the electronic density rather than the wavefunction is the basic variable. Hohenberg and Kohn showed 
124] that all the observable ground-state properties of a system of interacting electrons moving in an external 
potential v^^r) are uniquely dependent on the charge density p(r) that minimizes the system s total energy. 
However, there is no known formula to calculate from the density the total energy of many e ectrons moving 
in a aeneral potential. Hohenberg and Kohn proved that there exists a universal functional of the density. 
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Figure B3.2.2. A series of photoemission spectra. The angles give the polar angle of electron emission at the stated photon 
energy scanning the surface Brillouin zone from f to M. Left: A calculation using the tight-binding parametrization 
(given the band structure in figure B3.2.1) for the initial states [23]. Right: Experimental spectra by Dhesi et al [195]. The 
difference in binding energies is due to the experimental difficulty in determining the Fermi energy [23]. (Experimental 
figure by Professor K E Smith.) 

called G[p], such that the expression 

E[p] = J v..^{r)p{r)d'r + -J    ^^_^,^ ''dVdV + GLp] (B3.2.3) 

has as its minimum value the correct ground-state energy associated with Veair). Here, the first term on the 
right-hand side represents the energy due to an external potential, including the electron-nuclear potential, 
while the second term is the classical Coulomb energy of the electronic system. The functional G[p] is vahd 
for any number of electrons and any external potential, but it is unknown and further steps are necessary to 
approximate it. , 

Kohn and Sham [25] decompose G[p] into the kinetic energy of an analogous set of non-interacting 
electrons with the same density p (r) as the interacting system. 

Ts[p] = J2\'l'' 
1 
-V- V^/ 

(where iA,(r) 5= (r|-i/f,) is the wavefunction of electron /), and the exchange and correlation energy of an 
interacting system with density p(r), E^cip]- The functional £xc[p] is not known exactly. Physically, it 
represents all the energy corrections beyond the Hartree term to the independent-particle model, i.e. the non- 
classical many-body effects of exchange and correlation (xc) and the difference between the kinetic energy 
of the interacting electron system T[p] and the analogous non-interacting system Ts[p]. 
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In the LDA, the exchange and correlaUon energy is approximated using the exchange and correlation 
energy of the homogeneous electron gas at the same density (see section Al.3.3.3). The crystal density is 
obtained by solving the single-particle Kohn-Sham equation 

(-W- + v,ft{r)\fi{r) = Eifi(r), (B3.2.4) 

for a self-consistent potential v^g, i.e. a potential which is produced by the density p. In bulk crystal calcu- 
lations, the index / runs over both the Bloch vector fe (see section A 1.3.4) and the band index n (m a simple 
crystal! this band could be derived, for example, entirely from s states). The solutions to equation (B3.2.4) 
are often called Kohn-Sham orbitals. The crystal density is then 

p(r) = J])i/^;(r)i/A,(r-). 

The eigenenergy £, can be defined as the derivative of the total energy of the many-electron system with 
respect^to the occupation number of a specific orbital [26]. In HF theory (where equation (B3.2.4) applies and 
the iJeff contains a non-local exchange operator, see section Al.3.1.2 and chapter B3.1), Koopraans' theorem 
states that the single-particle eigenvalue is the negative of the ionization energy (neglecting the relaxation of 
the electronic system). In contrast, the identification of the highest occupied Kohn-Sham eigenvalue with 
the negative of the ionization energy is a controversial subject [27]. While there is no rigorous connection 
between eigenvalue differences and excitation energies in either HF or DF theory, comparisons of these values 
are common practice (see below for more appropriate methods). Relative differences among occupied single- 
particle energies often agree well with the experiment. Even though DFT only provides a solution for the 
ground state of the electronic system, the energy differences in the lower conduction bands, i.e. low-energy 
excited states, often are represented surprisingly well, too. However, in LDA calculations of semiconductors 
and insulators, almost always the size of the gap between the valence band maximum and the conduction 
band minimum is underestimated, since many-particle effects are incorrectly represented by the parametrized 
exchange-correlation energy (see, for example, [28]). Omadhoc remedy, which works well for many systems 
and which is employed in the examples presented here, is to use what is amusingly referred to as a scissor 
operator, i.e. a rigid shift, to correct the gap size [29,30]. Typically the shift is determined by knowing, for 
example,'the DFT error in predicting the measured optical band gap. The entire conduction band is shifted 
rigidly upward by the amount to match the experimental band gap. 

More advanced techniques take into account quasiparticle corrections to the DFT-LDA eigenvalues. 
Quasiparticles are a way of conceptualizing the elementary excitations in elecuronic systems. They can be 
determined in band structure calculations that property include the effects of exchange and correlation. In 
the LDA, these effects are modelled by the exchange-correlation potential ujf A. In order to more accurately 
account for the interaction between a particle and the rest of the system, the notion of a local potential has 
to be generalized and a non-local, complex and energy-dependent exchange-correlation potential has to be 
introduced, referred to as the self-energy operator E(T-, r'; E). The self-energy can be expanded in terms of 
the screened Coulomb potential W, where W = e'h is the Coulomb interaction v screened by the inverse 
dielectric function f-'. In a lowest order expansion in W, the self-energy can be approximated as S - GIV, 
giving the GW approximation [31]. Here G is the one-electron Green's function describing the propagation 
of an^additional electron injected into a system of other electrons (it can also describe the extraction of an 

electron). 
To be a bit more explicit (following [32,33]), the quasiparticle energies and wavefunctions are given by 

{T + i;e« + VH)ifnkir) + I dr"E(r, r'; E„k)i^nk{r') = Enkfnk(r), 
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where T is the kinetic energy operator, Uext is the external potential due to the ions, and v^ is the Hartre 
Coulomb interaction. Since the self-energy operator in general is non-Hermitian, the quasiparticle enereie 
Enk are complex in general, and the imaginary part gives the lifetime of the quasiparticle. To first order in 
W, the self-energy is then given by '. 

E(r, r'; E) = J- f dcoe-'^'^Gir, r'; E - co)W(r, r'; w) ' 
2n J      . 

where 5 is a positive infinitesimal and co corresponds to an excitation frequency.  The inputs are the full 
interacting Green's function, 

G{r,r,E) = l^ . 

where 5„t is an infinitesimal and the dynamically screened Coulomb interaction. 

W{T, r'; w) = fi~' 7 dr"e-'(r, r"; co)v{r" - r'), 

where e~' is the inverse dielectric matrix, v{r) = \f-\r\ and S2 is the volume of the system. Usually the 
calculations start with the construction of the Green's function and the screened Coulomb potential from 
self-consistent LDA results. The self-energy E then has to be obtained together with G in a self-consistent 
procedure. However, due to the severe computational cost of this procedure, it is usually not carried out (see, 
for example, [34]). Instead, it is common practice to construct the self-energy operator non-self-consistently 
using the self-consistent LDA results to determine quasiparticle corrections to the LDA energies, resulting 
in the quasiparticle band structure. The GW approximation has been applied to a wide range of metals, 
semiconductors and insulators, where it has been found to lead to striking improvements in the agreernent of 
optical excitation spectra with the experiment (see, for example [32,35-37]). Recent studies also found that 
the GW charge density is close to the experiment for diamond structure semiconductors [38], and lifetimes 
of low-energy electrons in metals have been calculated [39]. 

Another disadvantage of the LDA is that the Hartree Coulomb potential includes interactions of each 
electron with itself, and the spurious term is not cancelled exactly by the LDA self-exchange energy, in 
contrast to the HF method (see A 1.3), where the self-interaction is cancelled exactly. Perdew and Zunger 
proposed methods to evaluate the self-interaction correction (SIC) for any energy density functional [40]. 
However, full SIC calculations for solids are extremely complicated (see, for example^ [41^3]). As an 
alternative to the very expensive GW calculations, Pollmann et al have developed a pseudopotential built with 
self-interaction and relaxation corrections (SIRC) [44]. The pseudopotential is derived from an all-electron 
SIC-LDA atomic potential. The relaxation correction takes into account the relaxation of the electronic 
system upon the excitation of an electron [44], The authors speculate that'.. .the ability of the SIRC potential 
to produce considerably better band structures than DFT-LDA may reflect an extra nonlocality in the SIRC 
pseudopotential, related to the nonlocality Or orbital dependence in the SIC all-electron potential. In addition, 

-it may mimic some of the energy and the non-local space dependence of the self-energy operator occurring 
in the GW approximation of the electronic many body problem' [45]. 

The LDA also fails for strongly correlated electronic systems. Examples of such systems are the late 
3d transition-metal mono-oxides MnO, FeO, CoO, and NiO. Within the local spin density approximation 
(LSDA), the energy gaps calculated for MnO and NiO are too small [46] and, even worse, FeO and CoO 
are predicted to be metallic, whereas experimentally they have been found to be large-gap insulators. While 
the GW approximation yields an energy gap of NiO in reasonable agreement with experiment [47], the 
computational cost of this procedure is very high. The SIC-LDA method reproduces quite well the strong 
localization of the d electrons in transition metal compounds, but the orbital energies obtained by SIC are 
usually in strong disagreement with experimental results (for transition metal oxides, for example, occupied 
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d bands are approximately 5 Hartree below the oxygen valence band—a separation not seen in spectroscopic 
data: see, for example, the experimental results in [48]) [49]. An alternative solution to this problem is offered 
by theLDA+L/ method [49,50], where LDA encompasses the LSDA. In the LDA+t/ technique, the electrons 
are divided into two subsystems which are treated separately: the strongly localized (d or f) electrons and 
the delocalized s and p electrons. The latter are treated by standard LDA. The on-site interactions among the 
strongly localized electrons on each atom, however, are taken into account by a term jf/ J2i^j "'"j' where 
m are the occupation numbers of the strongly localized orbitals and U is the Coulomb interaction parameter 
(for details on the first-principles calculation of U, see [51]). At least for localized d or f states, the LDA+U 
technique may be viewed as an approximation td the GW approximation [49]. Band gaps, valence band 
widths and magnetic moments have been calculated with LDA+U that agree with experiment for a variety of 
transition metal compounds [49,52], among other applications. 

B3.2.3.2   All-electron DFT methods 

(a) Introduction 

When the highest accuracy is sought for the electronic and geometric properties of crystals, all the electrons 
of the atoms in the crystal and the full Coulomb singularity of the nuclear potential must be accounted for. 
All-electron approaches, which do just that, generally cannot compete with" pseudopotential techniques in 
speed and simplicity of algorithm. However, the latter suffer from severe drawbacks when it comes to the 
construction of the very pseudopotentials these methods depend upon: even for so-called ab initio potentials, 
the pseudopotentials are far from uniquely determined. Additionally, problems with transferability and the 
construction of potentials for such elements as the transition metals remain. All-electron techniques can deal 
with any element and there are no worries about transferability of the potential. However, the accuracy comes 
at a price: due to the Coulomb singularity of the potential at the nuclear positions, the wavefunctions are 
highly oscillatory close to the nucleus. For those all-electron methods that use wavefunctions to represent 
the electrons (a Green's function method, for examiple, does not), this means that a simple plane wave basis 
set cannot be used for the expansion of the wavefunctions. To reach convergence of a plane wave exp(i/c ■ r) 
expansion would require a prohibitive number of basis functions. Thus, specialized basis sets have been 
invented for all-electron calculations. 

We now discuss the most important theoretical methods developed thus far: the augmented plane wave 
(APW) and the Korringa-Kohn-Rostoker (KKR) methods, as well as the linear methods (linear APW (LAPW), 
the linear muffin-tin orbital [LMTO] and the projector-augmented wave [PAW]) methods. 

In the early all-electron techniques, the crystal was separated into spheres around the atoms, so-called 
"muffin-tin' spheres, and the interstitial region in between. Inside the spheres, the potential was approximated 
as spherically symmetric, while in the interstitial region it was assumed to be constant. This shape approx- 
imation of the potential is reasonable for close-packed crystals such as hexagonally close-packed metals, 
where the spheres cover a large fraction of the crystal volume. However, in less densely arranged crystals, 
such as diamond structure semiconductors (see figure Al.3.4), the muffin-tin approximation leads to large 
errors. In the diamond and the related zincblende structures, only 34% of the volume is covered by touching 
muffin-tin spheres (figure B3.2.3). For all of the all-electron methods, versions have been developed that are 
not restricted to shape approximations of the potential. These techniques are referred to as general, or full, 
potential methods. . 

(b) The augmented plane wave method 

The APW technique was proposed by Slater in 1937 [53,54]. It remains the most accurate of the band structure 
methods for the muffin-tin approximation of the potential. The wavefunction is expanded in basis functions 
(Pi {k + Gi, E, r), the APWs, each of which is identical to the plane wave exp(i(fc + G,) • r) in the interstitial 
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Figure B3 2 3 The muffin-tin spheres in the (110) plane of a zincblende crystal. The nuclei ^e surrounded by spheres 
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Physically the APW basis functions are problematic as they are not smooth at the sphere boundary i.e^ 
Physically, me ^r w D^ i. converged solution of the secular equation, this discontinuity 

discuss. 
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Figure B3.2.4. A schematic illustration of an energy-independent augmented plane wave basis function used in the 
LAPW method. The black sine function represents the plane wave, the localized oscillations represent the augmentation 
of the function inside the atomic spheres used for the solution of the Schrodinger equation. The nuclei are represented by 
filled black circles. In the lower part of the picture, the crystal potential is sketched. 

(c) The linear augmented plane wave method 

The main disadvantage of the APW technique is that it leads to a nonlinear secular problem because the basis 
functions depend on the energy. A number of attempts have been made to construct linear versions of the APW 
approach by introducing energy-independent basis functions in different ways. In 1970, Koelling invented 
the alternative APW [56] and Bross the modified APW [57]. In 1975, Aiidersen constructed the LAPW [58] 
formalism, which today is the most popular APW-like band structure method. Further extensions of the linear 
methods appeared in the early 1990s: Singh developed the LAPW plus localized orbitals (LAPW+LO [59]) 
in 1991 and Krasovskii the extended LAPW (ELAPW [60]) in 1994. Recently the APW+LO technique has 
been implemented by Sjostedt and Nordstrom [61] according to an idea by Singh. While the LAPW technique 
is generally used in combination with DFT approaches, it has also been applied based on the LDA+U [62] 
and HF. theories [63]. 

The LAPW method, as suggested in 1975 [58,64], avoids the problem of the energy dependence of 
the Hamiltonian matrix by introducing energy-independent APW basis functions. Here, too, the APWs are 
derived from plane waves by augmentation: Bessel functions ji{\k + G,|r) in the Rayleigh decomposition 
inside the muffin-tin sphere are replaced by functions uuir) derived from the spherical potential, which 
aie. independent of the energy of the state that is sought and that match the Bessel functions at the sphere 
radius in value and in slope (see figure B3.2.4). The plane wave part of the basis remains the same but the 
energy-independent APWs allow the energies and the wavefunctions to be detennined by solving a standard 
generalized eigenvalue problem. 

In linearizing the APW problem as it is done in the LAPW method, the variational freedom of the APW 
basis set is reduced. The reason is that the wavefunction inside the spheres is rigidly coupled to its plane wave 
expansion in the interstitial region [65]. This means that the method cannot yield an accurate wavefunction 
even if the eigenvalue is within a few eV of the chosen energy parameters [66]. Flexibility is defined in this 
context as the possibility to change the wavefunction inside the spheres independently from the wavefunction 
in the interstitial region. Flexibility can be achieved in the linear band structure methods by adding basis 
functions localized inside the spheres whose value and slope vanish at the sphere boundary [54,67,68]. A 
'flexible' basis set extending the LAPW with localized functions is preferable to the one used in the pure 
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LAPW technique. Flexible linear methods are the MAPW, the LAPW+LO and the ELAPW, the latter of 
which providesa necessary degree of flexibility with a minimal number of basis functions [65]. 

The additional functions increase the matrix dimension slightly and thus the computational effort. How- 
ever, the increased flexibility of the basis set makes possible a number of extensions of the LAPW method. 
One is a A; • p formulation of the ELAPW method [68], which would lead to large errors in the regular LAPW 
due to its lesser flexibility. The augmented Fourier components (AFC) technique [69] for treating a general 
potential is based on this. The AFC method is an alternative to the full-potential L.^PW (FLAPW) method 
[70,71]. (Recently progress has been made in increasing the computational efficiency of the FLAPW method 
[72].) The AFC method does not have the same demanding convergence criteria as the FLAPW method but 
yields physically equivalent results [69]. 

The general potential LAPW techniques are generally acknowledged to represent the state of the art with 
respect to accuracy in condensed matter electronic-structure calculations (see, for example, [62,73]). These 
methods can provide the best possible answer within DFT with regard to energies and wavefunctions. 

(d) The Korringa-Kohn-Rostoker.technique 

The KKR method uses multiple-scattering theory to sol-Ve the Kohn-Sham equations [74,75]. Rather than 
calculate the wavefunction, modem incarnations calculate the Green's function G. The Green's function is 
the solution to the equation schematically given by {H - E)G{E) = -5, where H is the Hamiltonian, E the 
single-electron energy and S the delta function S{r- r'). The properties of the system, such as the electron 
density, the density of states and the total energy can be derived from the Green's function [73]. The crystal is 
represented as a sum of non-overlapping potentials; in the modem version, there are no shape approximations! 
i.e. the potentials are space-filling [76]. Within the multiple-scattering formalism, the wavefunction is built 
up by taking into account the scattering and rescattering of a free-elecu-on wavefunction by scatterers. The 
scatterers are (generally) the atoms of the crystal and the single-scattering properties (the properties of the 
isolated scatterer) are derived from the effective, singular potentials of the atoms (given in equation (B3.2.2)). 
The Green's matrix is then constmcted from the knowledge of the scattering properties of the single scatterers 
and the analytically known Green's function of the free electron. The full-potential KKR method has been - 
shown to have the same level of accuracy as the full-potential LAPW method [73]. The Green's function 
formulation offers the advantage of easy inclusion of defects in the bulk or clean surfaces. Such calculations 
start with the Green's function of the periodic crystal and include the perturbation through a Dyson equation 
[77]. Yussouff states that the difference in speeds between the linear methods and his 'fast' KKR technique 
is at most a factor often, in favour of the former [78]. While the KKR technique has an accuracy comparable 
to.the APW method, it has the disadvantage of not being a linear approach, limiting speed and simplicity. 

(e) The linear muffin-tin orbital method 

The LMTO method [58,79] can be considered to be die linear version of the KKR technique. According 
to official LMTO historians, the method has now reached its 'third generation' [79]: the first starting witii 
Andersen in 1975 [58], the second connmoiily known as TB-LMTO. In the LMTOapproach, the wavefunction 
is expanded in a basis of so-called muffin-tin orbitals. These orbitals are adapted to the potential by constructing 
them from solutions of the radial Schrodinger equation so as to form a minimal basis set. Interstitial properties 
are represented by Hankel functions, which means that, in contrast to the LAPW technique, the orbitals are 
localized in real space. The small basis set makes the method fast computationally, yet at the same time it , 
restricts the accuracy. The locahzatiori of the basis functions diminishes the quality of the description of the 
wavefunction in the interstitial region. 

In the commonly used atomic sphere approximation (ASA) [79], tiie density and the potential of the 
crystal are approximated as spherically symmetiic within overlapping muffin-tin spheres. Additionally, all 
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integrals, such as for the Coulomb potential, are performed only over the spheres. The limits on the accuracy 
of the method imposed by the ASA can be overcome witii the full-potential version of the LMTO (FP-LMTO) 
which gives highly accurate total energies [79,80]. It was found that the FP-LMTO is 'at least as accurate as, 
and much faster than,' pseudopotential plane wave calculations in the determination of structural and dynamic 
properties of silicon [80]. The FP-LMTO is considerably slower than LMTO-ASA, however, and it has been 
found that ASA calculations can yield accurate results if the full expansion, rather than only the spherical 
part, of the charge is used in what is called a fiiU-charge (rather than a full-potential) method and the integrals 
are performed exactly [73,79]. 

The LMTO method is the fastest among the all-electron methods mentioned here due to the small basis 
size. The accuracy of the general potential technique can be high, but LAPW results remain the 'gold standard'. 

(/} The projector augmented wave technique 

The projector augmented-wave (PAW) DFT method was invented by Blochl to generalize both the pseudopo- 
tential and the LAPW DFT techniques [81]. PAW, however, provides all-electron one-particle wavefunctions 
not accessible with the pseudopotential approach. The central idea of the PAW is to express the all-electron 
quantities in terms of a pseudo-wavefunction (easily expanded in plane waves) term that describes interstitial 
contributions well, and one-centre corrections expanded in terms of atom-centred fiinctions, that allow for 
the recovery of the all-electron quantities. The LAPW method is a special case of the PAW method and 
the pseudopotendal formalism is obtained by an approximation. Comparisons of the PAW method to other 
all-elecu:on methods show an accuracy similar to the FLAPW results and an efficiency comparable to plane 
wave pseudopotential calculations [82,83]. PAW is also formulated to carry out DFT dynamics, where the 
forces on nuclei and wavefunctions are calculated from the PAW waveftinctions. (Ano±er all-electron DFT 
molecular dynamics technique using a mixed-basis approach is applied in [84].) 

PAW is a recent addition to the all-electron electronic structure methods whose accuracy appears to be 
similar to that of the general potential LAPW approach. The implementation of the molecular dynamics 
formahsm enables easy structure optimization m this method. 

(g) Illustrative examples of the electronic and optical properties of modem materials 

As an indication of the types of information gleaned, firom all-electron methods, we focus on one recent 
approach, the ELAPW method. It has been used to determine the band stiructure and optical properties over 
a wide energy range for a variety of crystal structures and chemical compositions ranging from elementary 
metals [60] to complex oxides [85], layered dichalcogenides [86,87] and nanoporous semiconductors [88]. 
The k • p formulation has also enabled calculation of the complex band structure of the Al (100) surface [89]. 

As an illustration of the accuracy of the AFC ELAPW-fc • p method, we present the dielectric function of 
GaAs. The dielectric function is a good gauge of the quality of a method, since not only do the energies enter 
the calculation, but also the wavefunctions via the matiix elements of the momentum operator -i V. For the 
calculation of die dielectric function (equation (Al,3.87)) of GaAs, the conduction bands were rigidly shifted 
so that the highest peak agreed in both experiment and theory, a shift of 0.75 eV. The imaginary part of the 
dielectric function is shown in figure B3.2.5. Comparing die energy differences between die three peaks, we 
find that they agree to within 2 meV. For a wider comparison, we plot die results of two more experiments 
(which only have measured die two peaks at lower .photon energy) and several all-electron calculations of die 
dielectric function of GaAs in figure B3.2.6. The FLAPW results agree almost exacdy witii die AFC ELAPW 
values. The discrepancies compared to the experimental results found for the odier methods are considerably 
larger than for the general potential LAPW results, particularly for £i. 

A recent study of a class of nanoporous materials, die cetineites [88], offers further illustration of the 
possibilities offered by the modern band structure mediods. The crystal is constiiicted of tubes of 0.7 nm 
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Figure B3.2.5. The imaginary part of the dielectric function of GaAs, according to the AFC ELAPW-fc • p method (solid 
curve) [195] and the experiment (dashed curve) [196]. To coirect for the band gap underestimated by the local density 
approximation, the conduction bands have been shifted so that the Ei peaks agree in theory and experiment. 
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Figure B3^.6. The energies of the Ei and E\ peaks relative to the En peak of the imaginary part of the dielectric function 
of GaAs, calculated by self-consistent DFT all-electron methods. These energies do not depend on the gap size. The 
theoretical methods are noted, as are experimental results obtained by ellipsometry (see chapter B1.26). The lower (upper) 
histogram gives the energy of peak E] (E\) relative to E2. LCGO designates a hnear-combination-of-Gaussian-orbitals 
inethod, OLCAO an orthogonahzed hnear-combination-of-atomic-orbitals approach. Sources: (1) [195],' (2) [196], 
(3) [197], (4) [198], (5) [199], (6) [200], (7) [199], (8) [201], (9) [202]. 

diameter arranged in a two-dimensional hexagonal structure with 'flattened' SbSes pyramids arranged be- 
tween the tubes (see figure.B3.2.7). Cetineites are of potential technological interest because, singularly 
among nanoporous materials, they are semiconductors rather than insulators. In figure B3.2.8, we show 
the comparison of the predicted density of states to the ultraviolet photoemission spectrum (FES, see chap- 
ter B 1.1). The DOS can explain the two main structures in the PES at about —3 and -12 eV. Their relative 
intensities agree with those suggested by the DOS curve. Three structures in the DOS at -1, -6 and -9 eV 
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Cetineite (Na;Se) 

Sb{2) 0(1) 

^6[Sbi20j8][SbZ3]2   A=Na, K; X=S, Se 

Figure B3.2.7. A perspective view of the cetineite (Na;Se). The height of the figure is three lattice constants c. The 
shaded tube is included only as a guide to the eye. (From [88].) 

are not resolved in the PES. This may be due to the selection rules of the photoemission process, not accounted 
for in the theory, or perhaps due to incomplete angle integration experimentally. The experimental results 
confirm, in particular, that the number of states is very high close to the valence band maximum. An orbital 

■ analysis shows that these states are derived mainly from the p states of the O and Se constituents of the crystal, 
with the chalcogen dominating near the top of the valence band. Electrons in the Se p states are thus most 
easily excited into the conduction band. This, together with their high DOS, makes the Se p states located on 
the pyramids the prime candidates for the initial states of the photoconductivity observed in the cetineites. 

As another example of properties extracted from all-electron methods, figure B3.2.9 shows the results of 
a PAW simulation of benzene molecules on a graphite surface. The study aimed to show the extent to which 
the electronic structure of the molecule is modified by interaction with the surface, and why the images do 
not reflect the molecular strucmre. The PAW method was used to determine the structure of the molecule at 
the surface, the strength of the interaction between the surface and the molecules, and to predict and explain 
scanning tunnelling microscope (STM) images of the molecule on the surface [90] (the STM is described in 
section B1,19). 

B3.2.3.3   Linear-scaling electronic structure methods 

DFT calculations such as the ones mentioned in chapter AI.3 and section B3.2.3.2 become computationally 
very expensive when the unit cell of the interesting system becomes large and complex, with certain parts of 
the computational algorithm typically scaling cubically with system size. A recent objective for treating large 
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Figure B3 2.9. A benzene molecule on a graphite surface [90]. The geometry and the charge density (indicated by the 
surfaces of constant density) have been obtained using the PAW method. (Figure by Professor P E Blochl.) 

systems is to have the computational burden scale no more than linearly with system size. Methods achieving 
this are called ^ear^scaling or 0(N) (order A^) methods, most of which are based on the Kohn-Sham equation 
(see equation (B3.2.4)), aiming to calculate single-electron wavefunctions, the Kohn-Sham orbitals. These 
inethods tend to be faster than the conventional Kohn-Sham approach above a few hundred atoms [20,91-93]. 
Another class of methods is based directly on the DFT of Hohenberg and Kohn [24]. With these techniques one 

.^ ^^ S!T.f ^'^""^^ *^ '^^"'"^ *^^ minimizes the total energy; they are often referred to as orbital-free, 
methods [94^97]. Such orbital-free calculations do not have the bottlenecks present in orbital-based O(A^) 
DFT calculations, such as the need to localize orbitals to achieve linear scaling, orbital orthonormalization, 
or Bnlloum zone sampling. Without such bottlenecks, the calculations become very inexpensive 
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Equation (B3.2.3) lists the terms comprising the calculation of the total energy. The term due to the 
external potential and the Hartree term describing the Coulomb repulsion energy among the electrons akeady 
exphcitly depend on the density instead of on orbitals. More difficult to evaluate is G[p] = Ts[p] + E^^p], a 
functional which is not known exactly. However, over the years a number of high-quality exchange-correlation 
functionals have been developed for all kinds of systems. Only quite recently have more accurate kinetic 
energy density functionals (KEDFs) become available [97-99] that afford linear-scaling computations. 

One current hmitation of orbital-free DPT is that since only the total density is calculated, there is no way 
to identify contributions from electronic states of a certain angular momentum character /. This identification 
is exploited in non-local pseudopotentials so that electrons of different / character 'see' different potentials, 
considerably improving the quality of these pseudopotentials. The orbital-free methods thus are limited to 
local pseudopotentials, connecting the quality of their results to the quality of the available local potentials. 
Good local pseudopotentials are available for the alkah metals, the alkaline earth metals and aluminium 
[100,101] and methods exist for obtaining them for other atoms (see section VI.2 of [97]). 

The orbital-free method has been used for molecular-dynamics studies of the formation of the self- 
interstitial defect in Al [102], pressure-induced glass-to-crystal transitions in sodium [103] and ion-electron 
correlations in liquid metals [101]. Calculations of densities for various Al surfaces have shown excellent 
agreement between the charge densities as calculated by Kohn-Sham DPT and an orbital-free method using 
a ICEDF with a density-dependent response kernel [99]. The method was used recently to examine the 
metal-insulator transition in a two-dimensional array of metal quantum dots [104], where the theory showed 
that minute overiap of the nanoparticle's wavefunctions is enough to transform the array from an insulator to 
a metal. As an example of the ease with which large simulations can be performed, figure B3.2.10 shows a 
plot of the charge density from an orbital-free calculation of a vacancy among 255 Al atoms [98], carried out 
on a workstation. 

B3.2.3.4   The Hartree-Fock method in crystals , 

The HP method (discussed in section Al.3.1.2) is an alternative to DFT approaches. It does not include 
electron correlation effects, i.e. non-classical electron-electron interactions beyond the Coulomb and exchange 
interactions. The neglect of these terms means that the Coulomb interaction is unscreened, and hence the 
electron repulsion energy is too large, overestimating ionic character, which leads to band gaps that are too 
large by a factor of two or more and valence band widths that are too wide by 30-40% [63]. However, the 
HP results can be used as a well defined starting point for the inclusion of many-particle corrections such as 
the GW approximation [31,32] or, with considerably less computational effort, the results can be improved 
considerably by accounting for the Coulomb hole and screening the exchange interaction using the dielectric 
function [63,105]. 

Ab initio HP programs for crystals have been developed [106,107] and have been appUed to a wide variety 
of bulk and surface systems [108,109]. As an example, a periodic HP calculation using pseudopotentials 
and an LCAO basis predicted binding energies, lattice parameters, bulk moduli and central-zone phonon 
frequencies of 17 III-V and IV-IV semiconductors. The authors find that'.. .[o]n the whole, the HP LCAO 
data appear no worse than other ab initio results obtained with DF-based Hamiltonians' [110]. They suggest 
that the largest part of the errors with respect to experiment is due to correlation effects and to a lesser extent 
due to the imperfections of the pseudopotentials [110]. More recently, the electronic and magnetic properties 
of transition metal oxides and halides siich as perovskites, which had been a problem earlier, have been 
investigated with spin-unrestricted HP [111]. In general, the periodic HP method is best suited for the study 
of highly ionic, large band gap crystals because such systems are the least sensitive to the lack of electron 
correlation. "■ 
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Figure B3.2.10. Contour plot of the electron density obtained by an orbital-free Hohenberg-Kohn technique [98] TTie 
figure shows a vacancy in bulk aluminium in a 256-site cell containing 255 Al atoms and one empty site the vacancy 
Dark areas represent low electron density and light areas represent high electron density. A Kohn-Sham calculation for 
a cell of this size would be prohibitively expensive. Calculations on smaller cell sizes using both techniques yielded 
densities that were practically identical. 4 <=!> yiciaea 

B3.2.3.5   Quantum Monte Carlo 

QMC techniques provide highly accurate calculations of many-electron systems. In variational QMC (VMC) 
[112-114], the total energy of the many-electron system is calculated as the expectation value of the Hamilto- 
luan. Parameters in a trial wavefunction are optimized so as to find the lowest-energy state (modem methods 
mstead minimize the yanance of the local energy ^ [115]). A Monte Carlo (MC) method is used to perform 
me multi-dimensional integrations necessary to determine the expectation value, 

^^/m^^dr 

where^isfte trial waveftinctionand|«I>p//|*pdrisanormalized probability distribution. The integration 
IS perfomied by sumimng up the local energy at points, corresponding to electron configurations, given by 
the probability distnbution. A random walk algorithm, such as the Metropolis algorithm [116], is used to 
sample those regions of configuration space more heavily where the probability density is high. The standard 
Slater-Jastrow trial wavefunction is the product of a Slater determinant of single-electron orbitals and a 
Jastrow factor, a function which includes the description of two-electron correlation. As an example, the trial 
wavefunction used for a silicon crystal contained 32 variational parameters whose optimization required the 
calculation of the local energy for 10 000-20 000 statistically independent electron configurations [117]. In 
conttast to the DMC technique described below, the accuracy of a VMC calculation depends on the quahty 
of the many-particle wavefunction used [114]. In figure B3.2.11, we show the determination of the lattice 
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Figure B3.2.11. Total energy versus lattice constant of gallium arsenide from a VMC calculation including 256 valence 
electrons [118]; the curve is a quadratic fit. The error bars reflect the uncertainties of individual values. The expenmental 
lattice constant is 10.68 au, the QMC result is 10.69 (±0.1) au (Figure by Professor W Schattke). 

constant of GaAs by VMC by minimization of the total energy [118]. This figure illustrates the roughness of 
the potential energy surface due to statistical errors, which poses a challenge then for the calculation of forces 

with QMC. X.     •     /^   •   11 
In the diffusion QMC (DMC) method [114,119], the evolution of a trial wavefunction (typically wave- 

functions of the Slater-Jastrow type, for example, obtained by VMC) proceeds in imaginary time, r = if, 
according to the time-dependent Schrodinger equation, which then becomes a diffusion equation. AU com- 
ponents of the wavefunction except for the ground-state wavefunction are damped by the time evolution 
operator exp(-iHt) = exp(-HT). The DMC was developed as a simpUfication of the Green's function MC 
technique [113]. A particularly well known use of the Green's function MC technique was die determination 
by Ceperley and Alder of the energy of the uniform electron gas as a function of its density [120]. This E(p) 
was subsequently parametrized by Perdew and Zunger for the conrnionly^used LDA exchange-correlation 
potential [40] UsuaUy two approximations are made to make DMC calculations tractable: the fixed-node 
approximation, in which the nodes, the places where the trial function changes sign, are kept fixed for the 
solution to enforce the femlion symmetry of the wavefunction and the so-called short-ume approximation, 
whose effect can be made very small [114]. Excited states have been calculated by replacing an orbital in the 
Slater determinant of the trial wavefunction by a conduction-band orbital [121]. 

Recently, a method has been proposed to overcome the problems associated with calculating forces in 
both VMC and DMC [122]. It has been suggested that the use of QMC in the near future to tackle the 
energetics of systems as chaUenging as liquid binary iron alloys is not unthinkable [123]. 

B3.2.3.6   Summary and comparisons 

As we have outUned, a very wide variety of methods are available to calculate the electronic structure of 
soUds Empirical TB methods (such,as discussed in section B3.2.2) are the least expensive, affording the 
calculation of unit cells' with large numbers (e.g. 10^) of atoms, or to provide cheap input to subsequent 
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years. The wdeofffotDFTistheopposiKi,sex»e„e.,™^^^^^ 

general (for example, when orbital-free DFT can treat „„„T„T *^ °" '"^*°* become mor,^ 
able .utinely .„ treat systems as la„e as SilZZ::^^ '''""'* *" *= ^" -"..x, w.7^ 

-^^^ diversity ofapproaches based on HFrsectionRT 9 ■^/t^o   '   ., 
found forDFT. For solids, HFappears ioyiZtuZfcrion^^^^^ ^^"'P-^^'° «^e diversity 
but being a genuine many-particle theoiy'it offersi ^osS^o^con!- ? .' "°"'''' °'''^^^°" ^"-^latioT 
Finally, the QMC techniques (section B3.2.3 4) hoid promSrt""' ^""-ections, in contrast to DF?' 
are still far fron, able to offer the same qu^ '"^LTsSe'r^^^ 
theones mentioned before: With this wide ran-e of method, 12] ? f "^^'"^^^"^s and geometries as the 
to chemisorption on solid surfaces ^ ' "°^ introduced, we will look at their application 

B3.2.4   Quantum structural methods for solid surfaces 

B3.2.4.1   Introduction 

the drastic approximation made by using a finite cluster to irntfo ''f^"'"' "^^ '«^™P''° '^o^ect 
ekctronic structure is inherently delocallzed or an i JnS rystl wi h o' ''''"^ -^' '"'^"^ '^^"^"^^^^ ^'^"^e 
chemisorption. the binding of an atom or a molecl toTsurfl f f'"^' ''°"^°"' interactions. Upon 
jn the bond between the adsorhate and suifacTatm  and tl^st^^^^^^ ^^-"^ °f ^'-^rons 
localization of the electrons. TCe attractive feature o^the emhl . . ''^'''' '^"^"'^ ^'" ^"'^"^^ 
strengths of the cluster approach, namely it allow one to dlnbe r^^ ''?''V''' '^ ''^''' ^''''^^' ^he 
a high degree of accuracy by, for exampL. qu^mm ch^c^ me^ho^^ T'''' of chemisorption to 
account for the presence of-the restof the urface a^d Sturff ' ^^' '' '^' ''"' ^™^ ^"^"^P^ing to 
have been studied on a variety of surfaces inclul^intw''""^^^^^^ 
these methods, we will focus on those ued to Lt^nf,^^^^^^^^^^ semiconductors and metals. To ilJtrate 

surfaces. This is not a comprehensive review o?racrapprrh" r ttrT"' "t"'" °" '^^"^^^^°" '"^'^ 
demonstrate the range of techniques and applications. aSZe ;fTe Ll^^^^^^ "^P^" *^' 

B3.2.4.2   The finite cluster model 

calculations can be performed, typically Aeredec'ln^^^^^^ "P'° '^"' ''°"^- ^'^"S'^ ^""^^^^tron 
core potential (ECP. the quanturchemir^vv^^^^^^^^ ■ 
core-valence electron interaction). ZZ va  nee eL;^^^^^^^^^^^^ ''^ ^'^^'^""^^ ^PP---ately for ±e 
a HP, CI, FT, or DPI formalism TypicX a few atntf   ^H ""^f^'^.'"''^^ ''°^ ^'^ treated explicitly within 

all) electrons explicitly, while suXc^J  t Is tnTt'b^dt'Tr'^" "-"^°" ^°"^^*" *^ ^'-^ (- 
one-electron ECP representation, model pseudTpotentta^s or fn 2       T '™'''^ ""'^' '°^ ^^^"^P^^' ^ 

, point charges. Generally, the structure of the clnSn. T ?    ''^ °^'°™' ^^^^^tals, a finite array of 
of this type of approach ncludeteeadywoS^^^^^^ H? '^^'^ ''"-™^ °f *^ bulk. Examples 
electronegative and electropositiv?atom ola Ni    HT ^'^.^^'^^^'"'^ ^24], who examined adsorption of 

in .. model, only the 4s^lectr:^r;S;^^:::;r ^:^ ^t^l^ tltt"^' ""• 
ucaicu explicitly, while the 3d electrons were 
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it is more accurate to tr^at me^al atom! dlectly 1 ac^^^^^^^^ 'TT' '^^"P"^^"" '''''' ^^"^"^"^^ *^^ 
is sufficient to describe the suiroundmc me al 1^'^^^^ an adsorbate at an all-electron level; while it 

cluster should be 'bond-prepared' n^ZlZ^^'t?!' T '' ^' ^'^^^ P^"P°^^^ *^ ^^ea that a 

has enough singly-occupld orbitdfo'te^oLec svmmt "^' '" ''"'""" ''''' '' ^^ «"^*^ ''^'^'^ ^^^ 
■ form the necessary covaLt bonds betwet S/o b™^^^^^ mlufi "* ''/ ^r'"^" ^'^^'^'^"'^ '° 

surface reaction, Panas. et al [111] examined ITOIHV' ^ °"' °^'^' ^''' ''"'^^"^ °f ^ "^^tal 
level for 0, on aNi,3 cluster UneraUvZ.EcTf ^?K Tl"'^''"" P'*^^^^ ^' '^' multi-reference CI 
used DFT-LDA witL a Gaus r^bls" to  xaZ .f        ' ""^ 4s electrons. Salahub and co-workers [128] 

containmguptoi6atomsmea:;to^SlT^^^^^^^ 
scheme improved dramatically the hinHino .n». •    t T .        ^ ' ^"^^"^lent corrections to the LDA 

foj example, i„ *e ca.. of h^droin on^"SSIt" ^^^^^^^^^^^^ '' °"-^«A^ 
calculated by DFT-LDA for clusters containinc .m tr. ™'"«,™^^^'J-> tl30]. Diffusion bamers were also 

examples include HF calculations o? SlVon cVi^^^^^^ 
FT (MP2) calculations of acetylene on Cu and Pd H, f n'i. ^' '^'^ M0ller-Plesset second-order 
calculations for CO on Cu cluSs [134] atra'ed S^cic'^t "''^'/K T''^' P- ^-ctional (CPF) 
Cu clusters [135], HF CASSCF (comolete acXlt      ,? "' °^ ''^'^'"S"" "'^^°'^^°" °" relaxed  : 
calculations for CO [36] and O flT?! on n. ? ^f=°"«'«^ent field) and multireference CI and FT 
tetramers [138] and of K and CO "n pi mQ 1?' 'H ^P'"-P°^^"^^d DFT of c-CH,N, on Pd and Cu 
systematically include Ih levels of elec^ol ro Vl" ''™'' °^ *' Anite-cluster model is that one can 

band structure, the presence of edge elSc ^ 2^^^^^ *" '' '' '' '''^"^^' ^""^^"^^ *^ ^^^ °f ^ P-P- 
Next we outline cuLt strategiesli^eli^llt;^^^^^^^ 

5J.2.4. J   Finite-cluster model in contact mth a classical background 

^^:^^Z:t:^:^Z^r^ r ^°- f- ^^^ background Fermi sea of electrons 
mations of L surfacetirusui y^^r^^^^^^ ^^^l -'^ - ^™P^e approxi- 
crystals (see, for example, [140]) Of these the mnH^f ^^^'^^"f f'^^'"^eractions and usually applied to ionic 
sidered adsorption on me a surfaces [Ml' The To . n"rf ^^/akatsuji is the primary one tiiat has con- 
cfuster plus an adsorbate as the'Sc us t-J^^^ dipped adcluster model' [142] considers a small 
A normal HF calculation on the smS" vste^ iVnel^"^ . u" ^'"^ ''^ °^ ''^^^°"^ °f *^ ''"^k metal, 
the cluster in each calculatforBrcoI^; K^^^^^ " ^'"' ''''="'°"' ^^ ^^^^^'° °^ ^^-^o^^d from 
electron transfer, d£/d., to the wo kTnTu^VS t^TrT "^T"' '"'^^^ ""'^ "^P^<^^ ^° ^^^ ^-^^^^-1 
adcluster and the bulk m;tal can Te StaSed 4^. T ' ""' '''" '"''"' "^ '^''='^°" '^^"^^^■- "^^^^^^n the 
Charge con-ection is also account d S^I^ cenaifcSe^t^^^^^^^^ T""' '^^"^" T ^^'^"'^ ^"^ ^ -^^- 
and the 'surroundings'; tiien electron co^e}^^^^ T ' ^ ^^^^' "^^ transferred between the cluster 
purely classical elec^ota^^L approach toT^^^^^^^^^^ '? ^^^"P^^ ^^' '^-^ ^^ '^^^'^ -'• This is a 
explicit, manner. Nakatsuji haTrd tSs o s Cidtr^^^^^^^^^ ^" ^" ^"^P'^'^''' ^^^^ *- 
one can describe the polaiization of the mem rea.onnh7^^ ^'^"''^'''' °" '^''^^'' ^"^ ^^^^ *^t 
[143], but found tiiat there is aroblerwretlndTn?.^^^^ "    ' 7u ^'"' "'"'^^'^ ^"'^^ ^^* this approach 
of an ambiguity of where to pfa'e t^^r^p^^^^^^^ '^^^""'^ two-dmiensional clusters, because 
two-dimensional clusters  It fs alsoSthat r' ^"'l^^^' ^^katsuji's examples are always small one- or 

atoms) would not adequately :^z^^::i^:;:^::£:^ ^"^^"''-'-'' ^^^^^^^^^ --' --^ 

oy leveis m order to determine a cluster Fermi level within DFT, 
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A) B) 

i^i^v:^l4^-ic;fi.-i^i.^i.i;4^itJt-ui. 

C) D) j^     _rt/^       j£, 
^i.»^V4-»-*-*-*-*-*^»-*-*-«i*->M" 

*4;***-^-**M'.*-*>aHt-»^4-*-4- 

E) 

Figure B3.2.12. Schematic illustration of geometries used in the simulation of the chemisorption of a diatomic molecule 
on a surface (the third dimension is suppressed). The molecule is shown on a surface simulated by (A) a semi-infinite 
crystal, (B) a slab and an embedding region, (C) a slab with two-dimensional periodicity, (D) a slab in a supercell geometry 
and (E) a cluster. 

originally by the Xa method (a simplified version of DFT-LDA; see section Al.3.3.3). Recent applications of 
this method have utilized more accurate forms of gradient-corrected spin-polarized DFT to look at adsorption 
of, for example, acetylene on Nii4,20 clusters [145], CO adsorption on Ni, Pd and Pt clusters of eight or nine 
atoms [146] and NO adsorption on Ru [147]. 

B3.2.4.4   Slab calculations 

The other extreme of modelling chemisorption is to use a slab described by DFT or HF. The slab is typically 
taken to be periodic in the directions parallel to the surface and contains a few atomic layers in the direction 
normal to the surface. For the adatoms not to influence each other, unless that is intended, the unit cell 
needs to be sufficiently large, parallel to the surface. For computational reasons, it is advantageous in some 
methods, namely plane wave techniques, to have periodicity in three dimensions. In the supercell geometry, 
this periodicity is gained by considering slabs which are periodic in the direction perpendicular to the surface 
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but separated from each other by vacuum regions. The vacuum reaion has to be thick enough so that there is 
no mfluence between the surfaces facing each other (the same is true for the slab thickness). For a schematic 
description of several simulation model geometries, see figure B3.2.12. 

Freeman and co-workers developed the FLAPW method (see B3.2.2) during the early 1980s [70 148] 
This was a major advance, because the conventional 'muffin-tin' potential was ehminated from their calcu- 
lation allowing general-shape potentials to be evaluated instead. Freeman's group first developed this for 
thin films and then for bulk metals. As mentioned before, the LAPW basis, along with the elimination of 
any shape approximations in the potential, allows for highly accurate calculations on transition metal sur- 
faces, withm the DFT-LDA and the generalized gradient approximation, GGA (see section Al 3 3 3) For 
the 'stand-alone' slab geometry, figure B3.2.12(C), the LAPW basis functions decay exponentiaUy into the 
vacuum. The numerous interfacial systems examined by Freeman's group include, for example CO with K 
or S coadsorption on Ni(OOl) [149], adsorption of sulfur alone on Ni(OOl) [150], Fe monolayers on Ni(lll) 
[151], Ag monolayers on MgO(OOl) [152], Au-capped Fe monolayers on MgO(OOl) [153], NO adsorption 
on Rh, Pd and Pt [154], and Li on Ru(OOl) [155]. Typical properties predicted are the equilibrium positions 
magnetic moments, charge densities and surface densities of states. 

More recently, other groups—primarily in Europe—have begun doing pselidopotential plane wave (often 
gradient-corrected) DFT supercell slab calculations (figure B3.2.12(D)) for chemisoiption on metals TTie 
groups of N0rskov [156], Scheffler [157], Baerends [158,159] and Hafner and Kresse [160,161] have been 
the most active. Adsorbate-metal surface systems examined include: alkalis and N, on Ru [156] NO on Pd 
[156], Ho on Al [156], Cu [156,158], Pd [157,158] and sulfur-covered Pd [157], CO oxidation on Ru [1571 
CO on Ni, Pd and Pt [158], O on Pt [160], and H, on Rh, Pd and Ag [161]. 

An interesting study by te Velde and Baerends [159] compared slab- and cluster-DFT results for CO 
absorption on Cu(lOO). They found large oscillations in the chemisorption binding energy of CO to finite 
copper clusters as a function of cluster size. This suggests that the finite-cluster model (figure B3 ^ 12(E)) 
is likely to be inadequate, at least for modeUing metal surfaces. By contrast, the slab calculations converge 
quickly with the number of Cu layers for the CO heat of adsorption and CO-CO distances. 

The supercell plane wave DFT approach is periodic in three dimensions, which has some disadvantages- 
(1) thick vacuum layers are required so the slab does not interact with its images, (ii) for a tractably sized unit 
cell, only high adsorbate coverages are modelled readily and (iii) one is hmited in accuracy by the form of the 
exchange^orrelation functional chosen. In particular, while DFT, especially using gradient-corrected forms 
of the exchange-correlation functional (GGA), has proven to be remarkably reliable in many instances there 
are a number of examples for chemisorption in which the commonly used GGAs have been shown to fail 
dramatically (errors in binding energies of ~1 eV or greater) [162,163]. This naturally motivates the next set 
of approaches, namely the embedded cluster strategy. 

B3.2.4.5   Embedded-cluster schemes: cluster in cluster 

Whitten and co-workers developed a metal cluster embedding scheme appropriate for CI calculations during 
the 1980s [164]. In essence, the method consists of: (i) solving for a HF minimum basis set (one 4s 
orbital/atom) descnption of a large cluster (e.g., -30-90 atoms); (ii) localizing the orbitals via exchange 
energy maximization with atomic basis functions on the periphery; (iii) using diese locaUzed orbitals to set up 
effective Coulomb and exchange operators for the electrons within the cluster to be embedded; (iv) improving 
the basis set on the atoms comprising the embedded cluster and (v) performing a small CI calculation (0(10^) 
configurations) within orbitals localized on the embedded cluster. This strategy provides an approximate 
way of accounting for nearby electrons outside the embedded cluster itself Whitten and co-workers have 
applied It to a vanety of adsorbates (H, N, O, C-containing small molecules) on, primarily, Ni surfaces 
Duarte and Salahub recently reported a DFT-cluster-in-DFT-cluster variant of Whitten's embedding vi'ith a 
couple of twists on the original approach (for example, fractional orbital occupancies and charges 'and an 
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and renormaJizing the charge on the cln.fPr  h „,.c      7 ^ introducing a semiorthogonaJ bask 

[167;, a„. b, bro°a.e.i„g e:::3.™=re^   ri '"S-1  bill' "^ ™*°^ '° *' f°™ - 
the cluster in the latter case [168]. *" '''^'' structure within HF theory for 

fh. h^l''"' ^i^l^ ^"^ "'^'^ *' ''^"'^^y °f ^f^tes from periodic HF (see B3 2 2 4W,.K    ,    ,   • 
the host ,n which the cluster is embedded, where the aDolication. h!!   K   ^ ^ ^- '^^^^^^^"^^^'ons to describe 
as LiF The original calculation to derive the extern^ S^^^^^ P""^^"'^ '° '°"''^ ^^^stals such 
cluster and at a low level of at ihitio tLory (tSctllv ^^^^^      u"^""^" ^'^^' '' "^"^"^ ^'^' °" ^ finite 
treated explicitly). ^ ^'^^'^"^^^ ™"™""^ ''^s^s set HF, one electron only per atom 

a -v2S-^S^::^^;S^r;:^^^^ r-^-^ op-- are denved from 
function/density with a proper band struZ  Cd ? ^efe^^^^^^^^^ infinite wave- 
out recently a series of problems with such cluster-in-cluster emhlnH '   °""^ '"^ co-workers pointed 

of marked improvement of the results over fi^L s o 1-. ' '''''°'''''- '''''' "''"'' ''^ ^^'^'^ 
partitioning such that ch^ge conservation i7v olat Tpurii^^^^ mT ""; '"'^'"' "^* *^ ^^''"^^ ^P^- 
matrix [170], the inherem delocalized nature of Sc o'ra s [ m lite "'"'^^ ^"'° *^ '^^^^ 

B3.2.4.6 Embedding df clusters in periodic background 

- a periodic self-consistent ciy'ta, field apj^^pltf foTbulk ;>^^^^^^^   ^^t'-^'"'^ ^^"^'^ -''^^'^^d 

sei.^:s^r^;s^^^^^sch^^^^ 
the near-surface layers using an embeddTn™^ o ^^^^^^^^^^^ 
all-electron approach, using an LAPW bas^ [^7^ sSer nl" *,' bulk Green's function within an 

using a Gaussian basis for the valence ele^^Jnltd'S^^^^^^^^^^^ '^^'r' ] "^"^ '''''^'' 
method IS somewhat different from Inglesfield's and Benesh^s {^^.7     7^" ^^"""l^fion of the latter 
the Green's function and density are known (typ cX the buik m.Mf   '.''"'' '^'''"^'' ^^°^^" f°^ ^^^'^ 
m order to get a A(embedding potential) anXcf a'A(de^LTTh' '"n "^^"""'"'^ '""'^^""^ ^^ ^^'^^ f^ 

dopo^;:s:rd^:^L2szt:Sm:^ 
Williams et al [176]. The physical ba rfc^fhrtechn" ' T V '^''^ ^'^^^' ^''''^ °" ^^^^^^ ^^rk by 
off which the Bloch waves'of the peXtrbstr^s a^ r ''"^'"' "^^ ''^ ^""^^^^^^'^ ^ ^^^f^' 
of screening by the electron gas of the metal FIS. interaction region is short-range because 
the chemisorption of an H, m'oTecJl o„m ^OlUn T^^^ IZ^' this technique to study, for example, 
mil) ri79]. Charge densities, relativren^lLsovJH;!   H °" ^'^'^^^ f^^^J andAg adatoms on 
agreement with experiment) we;e the :;;S^^::^:::^^     ^'' '^^^-n '^-er.(the latter in good 

KrugerandRosch implemented within DFT the Trpp ' ■ 
period,cslabenvironment[180]. They were abletosucSsfunl?xt?^^^^^^ c Lo successrully extend Pisam's embeddingapproach to metal 
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surfaces by smoothing out the step function that determines the occupation numbers near the Fermi level. 
Keys to the numerical success of their method included: (i) symmetric orthogonalization of the Bloch basis 
to produce a localized set of functions that yielded a balanced distribution of charge in the system and 
(ii) self-consistent evaluation of the Fermi energy by fixing the charge on the cluster to be neutral. The slab 
was described with a Slater basis at the DFT-LDA level, while the embedded cluster orbitals were expanded in 
terms of Gaussian functions at the DFT-LDA level. While some properties exhibited non-monotonic behaviour 
with increasing cluster size, the charge transfer between the metal surface and the adsorbate seemed to be 
well described. They concluded that properties are not well converged in this method if the cluster does not 
contain shells of metal atoms that are at least next-nearest-neighbours to the adsite metal atoms. 

Head and Silva used occupation numbers obtained from a periodic HF density matrix for the substrate to 
define localized orbitals in the chemisorption region, which then defines a cluster subspace on which to carry 
out HF calculations [181]. Contributions from the surroundings also only come from the bare slab, as in the 
Green's matrix approach. Increases in.computational power and improvements in minimization techniques 
have made it easier to obtain the electronic properties of adsorbates by supercell slab techniques, leading to 
the Green's function methods becoming less popular [182]. 

Cortona embedded a DFT calculation in an orbital-free DFT background for ionic crystals [183], which 
necessitates evaluation of kinetic energy density functionals (KEDFs). Wesolowski and Warshel [184] had 
similar ideas to Cortona, except they used a frozen density background to examine a solute in solution and 
examined the effect of varying the KEDF. Stefanovich and Truong also implemented Cortona's method with 
a frozen density background and applied it to, for example, water adsorption on NaCl(OOl) [185]. 

B3.2.4.7    Embedding explicit correlation methods in a DFT background 

In principle, DFT calculations with an ideal exchange-correlation functional should provide consistently 
accurate energetics. The catch is, of course, that the exact exchange-correladon functional is not known. 
While various GGAs have been remarkably successful, there are notable exceptions [186,187], including 
ones specific to surface adsorption mentioned earlier, where the binding-energy errors can be more than an 
eV [162,163]. As another example, Louie and Cohen and co-workers found no systematic improvement over 
the LDA when gradient corrections were included in calculations of Al, Nb and Pd bulk properties, including 
the cohesive energy [186]. Indeed, the design of exchange-cortelation functionals constitutes an active field 
of research (see, for example, [188]). The lack of completely systematic means to improve these functionals 
is an unappealing aspect of these calculations. 

A first step towards a systematic improvement over DFT in a local region is the method of Aberenkov et 
al [189], who calculated a correlated wavefunction embedded in a DFT host. However, this is achieved using 
an analytic embedding potential function fitted to DFT results on an indented crystal. One must be cautious 
using a bare indented crystal to represent the suiroundings, since the density at the surface of the indented 
crystal will have inappropriate Friedel oscillations inside and decay behaviour at the iridented surface not 
present in the real crystal. 

We have developed a different first-principles embedding theory that combines DFT with explicit cor- 
relation methods. We sought to develop a method for treating bulk or surface phases that is more accurate 
than current implementations of DFT. The idea is to provide more accurate predictions for local energetics, 
such as chemisorption binding energies and adsorbate electronic excitation energies. To achieve this, our 
theory improves upon the DFT description of electron correlation in a local region. This is accomplished by 
an embedding theory that treats a small region within an accurate quantum chemistry approach [190,191], 
which interacts with its surroundings via an embedding potential, UembedC^)- This i'embed('') is derived from 
a periodic DFT calculation on the total system. It is expressed purely in terms of orbital-free DFT (kinetic 
and potential energy) interaction terms between the embedded region and its surroundings a. la Cortona and, 
in particular, purely in terms of functionals of the total density, ptot, and the density of the embedded region. 
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A. We thus avoid construction of localized orbitals to describe the electrons in the surrounding environme 
This is especially important for metal surfaces, where the extensive fc-point sampling required to get a wlu 
converged density makes localization impractical (very expensive). This way of expressin<^ the embeddi 
operator also eliminates problems that occur in other forms of embedding, such as those of matchina cond"^ 
tions at the embedding boundary, or spurious charge transfer, since the electrostatic potential and the'^densitl" 
are continuous by construction. Its only real disadvantage is that there is an arbitrariness associated with th^ 
choice of Ts. Development of optimal 7; functionals is an active area of research in our group [97-99] 

The self-consistent embedding cycle proceeds as follows. First, a well converged density, p^„, is calcu 
lated for the extended metal surface in the presence of an adsorbate. This is accomplished within°a standard 
pseudopotential plane wave DFT calculation (see-chapter A 1.3). Second, we partition the system into the 
region of interest (typically the adsorbate and neighbouring metal atoms at or near the surface) and its sur 
roundings (all the other atoms in the periodic unit cell).  The embedded region is defined by the integral" 
number of electrons and nuclei within that region but not by a particular physical, fixed boundary This aUows 
for the electron density from the embedded region to expand or contract variationally into the surroundinc^s 
thus affording some effective charge polarization to occur as needed. •    o . 

The electron density, pi, of the embedded cluster/adsorbate atoms is calculated using quantum chemistry 
methods (HF, FT, muWreference SCF, or CI). The initial step in this iterative procedure sets i;e„bed(r) to zero 
since pi is needed in order to calculate it. On subsequent iterations, the third step is to use p, and p^ot to 
calculate UembedCr-), then insert it, as a one-electron operator expressed in matrix form in the atomic orbital 
basis of the adsorbate/cluster, into the quantum chemistry calculation of step two, and then p, is updated (via 
the wavefunction). We repeatedly update v^r^Mir) and then p, until full self-consistency is achieved with 
fixed ptot. In this way, we variationally optimize both the quantum chemistry wavefunction and implicitly 
the density of the surroundings, subject to fixed AO,. We tacitly assume that the DFT-slab density for the total 
system, pto,, is in fact a good representation and does not need to be adjusted. 

We have shown that our embedding total energies may be written in terms of the total energy obtained 
in step one (the DFT total energy for the entire system), plus a correction term, that subtracts out the DFT 
energy in the local region land adds back in an ab initio total energy for that same region, 

■ c-embed    rDFT  ,   / c-abinitio        cDFTv 
■'^tot        — •C'tot     + \^l — -fcl      )■ 

Thus, another way to think of the embedding is that the ab initio treatment of region I is correcting the DFT 
results in the same region, for the same self-consistent density. We expect, then, that such a treatment should 
reduce, for example, the famous LDA overbinding problem (LDA bond energies are generally significantly 
overestimated). We have indeed seen a smooth decrease in the LDA overbinding as a function of increasing 
electron correlation. We benchmarked the method against nearly exact calculations on a small system and 
then further corroborated it on experimentally well studied chemisorption systems: GO on transition metal 
surfaces. Our binding energies are in good agreement with nearly full configuration interaction in the former 
and expenmental adsorbate binding energies in the latter. Very recently, we have demonstrated that excitation 
energies for adsorbed CO are dramatically improved compared to experiment upon inclusion of the embedding 
potential [192]. In the future, we hope this method will provide a general means for accurate predictions of 
the local electronic structure of condensed matter. 

B3.2.5   Outlook 

Computational solid-state physics and chemistry are vibrant areas of research. The all-electron methods for 
high-accuracy electronic structure calculations mentioned in section B3.2.3.2 are in active development, and 
with PAW, an efficient new all-electron method has recently been introduced. Ever more powerful computers 
enable more detailed predictions on systems of increasing size. At the same time, new, more complex materials 
require methods that are able to describe their large unit cehs and diverse atomic make-up. Here, the new 
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orbital-free DFT method may lead the way. More powerful techniques are also necessary for the accurate 
treatmentof surfaces andtheirinteraction with atoms and, possibly complex, molecules. Combined with recent 

progress in embedding theory, these developments make possible increasingly sophisticated predictions of 

the quantum structural properties of solids and solid surfaces. 

Acknowledgments 

The authors would like to thank Professor P E Blochl, Dr H Eckstein, Professor W Schat&e, Professor 
K E Smith and T Strasser for making figures available for this publication. FS thanks Dr E E Krasovskii for 
introducing him to the LAPW method. 

References 
ril  Whitten J L and Yang H 1995 Theory of ehemisoqjtion and reactions on metal surfaces Surf. Sci. Rep. 24 59-124 
S  MeWM J tnd Papac^onstantoponlos D A 1998 Ttght-binding parametrization of first-principles results Top:cs m Con.pu,anonal 

Materials Science ed C Y Fong (Singapore: World Scientific); 
irRI httoZ/cst-www.nrl.navy.mil/~mehl/review/rev4.html .    ,     ..,     DI.     r>     v ei 

[3] StLsS elholdt S. Solterbeck C and Schattke W 1996 Band-structure parameters by genetic algonthm Pky. Rev. B 53 

Stri'sS St'^oft R Soktri'ecfc and Schattke W 1997 Valence-band photoemission from GaN(OOl) and GaAs: GaN surfaces 

[4]  Klimect ollll R c'Boykin T B, Salazar-Lazaro C. Cwik T A and Stoica A 2000 Si tight-binding parameters from genetic 

KiiSrBri^'rSTTT^;::^:Li^^ ,, 
[5]  Shen R E Mehl M J kfd Papaconstantopoulos D A 1994 Ttght-binding total-energy method for transition and noble metals 

[6] HaiftWangVz, FaSS, Elsasser C and Ho K M 1998 Environment-dependent tight-binding model for molybdenum Phys.^ 

m   Harrison W A 1989 Electronic Structure and the Properties of Solids (New York: Dover) 
8    MeTon M and Subbaswamy K R 1994 Transferable nonorthogonal tight-binding scheme for^hconP/,y..i?.uB 50 11 577 
Q    q^Mer P C and Koster 0 F 1954 Simplified LCAO method for the periodic potential problem Phys. Rev. 94 1498-524 

[Jo]  MehlMfa^fdpS^™^^^^^^ 
PlaQtir constants vacancies and surfaces of monatomic metals Phw./Sev.B 54 4519 .    ,•   .•     .   ,u 

Mazin it Para~ntopoulos D A and Singh D J 2000 Tight-binding Hamiltonians for Sr-fiUed ruthenates: Application to the 
gap anisotropy and Hall coefficient in Sr2Ru04PAvi./i:ev.B 61 5223 p,„ R do 8506 

[11]  Mercer J L Jr and Chou M Y 1994 Tight-binding model with intra-atomic matrix elements Phys. Rev. B 49 8506 

[12] Watson S C, Carter E A. Walters M K and Madden P A (unpubhshed) 
[13]  Seifert G, Eschrig H and Bieger W 1986 An approximate variation of the LCAO-Xa method Z Phys. Chem. 267 529 
riAi  Hnr<:fif>IH A P 1997 Efficient aiimrio tight binding P/iyj./?ev. B 56 6594-602 „„„„,,       • .   .   u 

■     5   £ ne ^Po ezag D     ngnickel G. Ekner J. Haugk M, Frauenheim Th, Suhai S and Seifert G 1998 Se f-consistent-charge 

densiVv toc^^^^ .-,     ;■ 
[16] Lee S ?BS M ASU X Y Lee Y H, Huang Y G and Frauenheim Th 2000 Electronic structure of GaN edge dislocations 

[17] Bow!'e/DTAo"M'°Goringe CM. Horsfield A P and Pettifor D G 1997 A comparison of linear scaling tight-binding methods 

^^:cSS!Z;^^ sSoSa A package of programs for the calculation of electronic energy bands by the LCGO 

VOZ'"S£TU2'A'ZZ;^^^^^^  Atomic and electronic structure of WSe. from .. initio theory: bulk crystal and 

ArtSoSrzSlKor'dSnRi^^^^^ 
systems P/iyi. SrafuiSo/Wi B 215 809 ,n ,,"0, 

nil  HnffmannR 1Q63 An extendedHucke! theory. I. Hydrocarbons/Chem. F/iyi.Jy Ijy ..... 
[22]  HSchattke^^^SnsenH,ManzkeRa^^ 

[23]  Stra^ StulrS'fs™ ^a^fschattke W 1999 Valence-band photoemission from the GaN(OOOl) surface Phys. Rev. B 

[24]  Hohenberg P and Kohn W 1964 Inhomogeneous electron gas Phys. Rev. 136 B864 
[25]  Kohn W and Sham L J 1965 Self-consistent equations including exchange and correlation effects Phys. Rev. 14U AUii 

[18] 

[19] 

[20] 



ucture 

56 

. ^-^^^ ~ ■ ■ Quantum structural methods for the^olJH^tM^^^ 

[26] Janak J F 1978 Proof that aE/9n, = s; in density-functional theory Phvs. Rev. B 18 7165-8 
[27] Perdew J P. Parr R G. Levy M and Balduz J L Jr 1982 Density-functional theory for fractional oarticl.       . 

discontinuities of the energy Phys. Rev. Lett. 49 1691-4 fractional particle number: derivaUve 

Kleinman L 1997 Significance of the highest occupied Kohn-Sham eigenvalue Phv.s. Rev B 56 P 049- , 
Perdew JP and Levy M 1997 Comment on 'Sisniticanceofthehichest occupied Kohn <;hl. ,1 
KleinmanL 1997 Reply to'Commenton'SignificanceoftheLSccZ^^^^ 

[28]  Bechstedt F 1992 Quasipartic.e correc.ons for energy gaps i^sero3ors'St^;S:; 3^       ' '' '''''-'' 

[29]Fio™VandBaldereschiA1995D.electricsca.ingofthese,f-energyscissoroperatorins;^^^^^^^^^ 

''  "1i5l'S.i3 V'' "''''' °^^'—>-- and electron-pHonon interactions on the one-electron states of solids 

'' "^Sr^:'^:t^i'^"^^'-^^^"^'^'^^'"-°^----"'-^^ calculation Of band g^s in semiconductors and   ■ 

'^^^  ^Tn!n \^^]'^'°'y of quasiparticle energies and excitation spectra of semiconductors and insulators Electronic BanH ., 
l^A^  p  "'^f\yj'':.''"°'"(^""'-'^"'"'" Physics vol 283) ^dUYoyxs^mUB^vlm-. Springer)      ''"°^''^'^"'^"'"'«°"'^^'"'- 
[34] Rohlfing^M. Kruger P and Pollmann J 1997 Quasiparticle calculations of semicore'states i!i Si. Ge, and CdS Pkys. Rev B 

[35]  Godby R W^ Sch^ter M and Sham L n988 Self-energy operators and exchange-correlation potentials in semiconductors PHys 

''"' ""^ret Jw^Sre^k^TTs^^^^^ ' '^'' "^--^^^ -^^^y ^-^^ Of transition-metal oxides within a 

lifetimes in metals Phys. Rev B 61 13 484-9'' tclenique P M 2000 First-pnnc.ples calculations of hot-electron 

''' 'TvlTfi? U4r°" ° '''' Transition:metal oxides m the self-interaction-corrected density'-functional formalism PHys. 

'""' 'Ti. B'JT^OT" ^ '^ -'^ ^""^ " '''' ^PP'-'- Of the self-interaction correction to transition-metal oxides PHys. 

[43] Sva^n^e A, Temmerman W and Szotek Z 1999 TTieot, of pressure-induced phase transitions in cerium chalcogenides./,,.. Re. B 

'""' ^tfL^^Zr '"'""""^ ''" ''^"^•"^^' -"' ^'-'-"'^ P™P-'- °f =-P-«I n^'ri^es .,v.. ..,. B 55 .2836, and 

[46] Teraku. K..Williams A R, Oguch, T .nd Kubler 1 1984 Transition-metal monoxides: Band or Mot. insulators PHys. Rev. Lett. 

^'tZlTZ'^-R^fZlZ^ "' ^""'"^ '''' '"'' 'Heory of insulating transition-metal monoxides:' Band-structure 

S ^:vLiuts=srj^s~^i^-r:^^^ ^^ 
approximation PAjvi. /?ev. B 50 8257-65 vaience spectra in the impunty-Anderson-model 

[49] Anisimov V I. Aryasetiawan F and Liechtenstein AI 1997 First-DrinciDle<; cilmlntinnc „f ,K    i 
strongly correlated systems: THe LDA.U method J. /'A;   SZlr^.; 9 767 "" '"""""" "' ''^'"^ °' 

m An„ V I. Zaanen J and Andersen O K 1991 Band theory and Mott insulators: Hubbard U instead of Stoner / PHys. Rev. B 

'' °"=°lS.i"r Mi^; C^^r ^?B^^jr2?^"^''^-^""-°- -'-'^^'- - - P— in - An-rson 
Anisimov VJ and Gunnarsson 0 1991 Density-functional calculation of effective Coulomb interactions in metals Phys. Rev. B 

PJ   MaterJC 1937 Wave Junctions in aperiodic potential/'/ivj.;?ey 51 846 ' 

55 M^t^iuT,^'':;;'^7'\'''^^^^^^ ■ -■ 
56    Z.I1      n n ?o3o !?    °"" '"'*°'^ '" '"' ^°"'P"'a"°n of energy bands Int. J. Quantum Chem 1 S 567 

[56]  Koelling D D 1970 Alternative augmented-plane-wave technique: theory and appSationToSppej^P/i ... B 2 290-8 



References  1975 

[57] Brass H, Bohn G, Meister G, Schubo W and Stohr H 1970 New version of the modified augmented-plane wave method Phys 
Rev. B 2 3098-103 

[58] Andersen O K 1975 Linear methods in band theory Phys. Rev. B 12 3060 
[59] Singh D and Krakauer H 1991 H-point phonon in molybdenum: Superlinearized augmented-plane-wave calculations Phys Rev 

B 43 1441-5 

[60] Krasovskii E E, Yaresko A N and Antonov V N 1994 Theoretical study of ultraviolet photoemission spectra of noble metals 
/ Electmn Specirosc. Relat. Phenom. 68 157 

[61] Sjostedt E, Nordstrom L and Singh D J 2000 An alternative way of linearizing the augmented plane-wave method Solid State 
Commun. 114 15 

[62] Shick A B, Liechtenstein A I and Pickett W E 1999 Implementation of the LDA+U method using the full-potential linearized 
augmented plane-wave basis PAjij. fiev. B 60 10763 

[63] Massidda S, Postemak M and Baldereschi A 1993 Hartree-Fock LAPW approach to the electronic properties of periodic systems 
Phys. Rev. B 4S 5Q5S 

[64]  Koelling D D and Arbman GO 1975 Use of energy derivative of the radial solution in an augmented plane wave method: 
applicatioatocopper J. Phys. F: Met. Phys. 5 2M1 

[65] Krasovskii E E 1997 Accuracy and convergence properties of the extended linear augmented-plane-wave method Phys Rev B 
5612866 ^ y .y 

[66] Krasovskii E E, Nemoshkalenko V V and Antonov V N 1993 On the accuracy of the wavefunctions calculated by LAPW method 
Z Phys. B 91 463 

[67] Singh D 1991 Ground-state properties of lanthanum: treatment of extended-core states Phys. Rev. B 43 6388 
[68] Krasovskii E E and Schattke W 1995 The extended-LAPW-based k'p method for complex bandstructure calculations Solid State 

■Commun. 93 775 
[69]  Krasovskii E E, Starrost F and Schattke W 1999 Augmented Fourier components method for constructing the crystal potential in 

self-consistent band-structure calculations PAvj. ^ev. B 59 10504 
[70] Wimmer E, Krakauer H, Weinert M and Freeman A J 1981 Full-potential self-consistent linearized-augmented-plane-waVe method 

for calculating the electronic structure of molecules and surfaces: O2 molecule Phys. Rev. B 24 864 
[71] Weinert M 1981 Solution of Poisson's equation: beyond Ewald-type methods / Math. Phys. 22 2433 
[72]  Petersen M, Wagner F, Hufnagel L, Scheffler M, Blaha P and Schwarz, K 2000 Improving the efficiency of FP-LAPW calculations 

Comp. Phys. Commun. 126 294-309 
[73] Asato M, Settels A, Hoshino T, Asada T, Bliigel S, Zeller R and Dederichs P H 1999 Full-potential KKR calculations for metals 

and semiconductors Phys. Rev. B 60 5202 
[74]  Korringa J 1947 Oft the calculation of the energy of a Bloch wave in a metal Physica (Amsterdam) 13 392-400 
[75]  Kohn W and Rostoker N 1954 Solution of the Schrodinger equation in periodic lattices with an application to metallic lithium 

P/i>'j./?ev. 94 1111-20 
[76] Drittler B, Weinert M, Zeller R and Dederichs P H 1991 Vacancy formation energies of fee transition metals calculated by a full 

potential Green's function method 5o/W 5Mfe Commun. 79 31 
[77] Podloucky R, Zeller R and Dederichs P H 1980 Electronic structure of magnetic impurities calculated from first principles Phys 

Rev. B 22 5777 i-      f        J' ■ 

[78]  Yussouff M 1987 Fast self-consistent KKR method Electronic Band Structure and Its Applications (Lecture Notes in Physics 
vol 283) ed M Yussouff (Berlin: Springer) pp 58-76 

[79] Tank R W and Arcangeli C 2000 An introduction to the third-generation LMTO method Phys. Status Solidi B 217 89 
[80] Methfessel M. Rodriguez C 0 and Andersen 0 K 1989 Fast full-potential calculations with a conveiged basis of atom-centered 

linear muffin-tin orbitals: structural and dynamic properties of silicon Phys. Rev. B 40 2009-12 
[81] Blochl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953 
[82] Holzwarlh N A W, Matthews G E, Dunning R B, Tackett A R and Zeng Y 1997 Comparison of the projector augmented-wave, 

pseudopotential and linearized augmented-plane-wave formalisms for density-functional calculations of solids Phys Rev B 
55 2005 ■■ 

[83]  Alfe D, Kresse G and Gillan M J 2000 Structure and dynamics of liquid iron under Earth's core conditions Phys. Rev. B 61 132 
[84]  Ohtsuki T, Ohno K. Shiga K, Kawazoe Y, Maruyama Y and Masumoto K 1998 Insertion of Xe and Kr atoms into C60 and C70 

fuUerenes and the formation of dimers Phys. Rev. Lett. 81 967-70 
[85] Krasovska 0 V, Krasovskii E E and Antonov V N 1995 At initio calculation of the optical and photoelectron properties of RuO-, 

Phys. Rev.B Sinus t-   i- . 
[86] Leventi-Peetz A, Krasovskii E E and Schattke W 1995 Dielectric function and local field effects of TiSe2 Phys. Rev. B 51 17 965 
[87] Traving M, Boehme M, Kipp L, Skibowski M, Starrest F, Krasovskii E E, Periov A and Schattke W 1997 Electronic structure of 

WSe2: a combined photoemission and inverse photoemission study Phys. Rev. B 55 10 392-9 
[88] Starrost F, Krasovskii E E, Schattke W, Jockel J, Simon U, Adelung R and Kipp L 2000 Cetineites: electronic, optical, and 

conduction properties of nanoporous chalcogenoantimonates Phys. Rev. B 61 15 697 
[89] Krasovskii EE and Schattke W 1997 Surface electronic structure with the linear methods of band theory Phys. Rev. B 56 12 874 
[90] Fisher A J and Blochl P E 1993 Adsorption and scanning-mnneling-microscope imaging of benzene on graphite and M0S2 Phys 

Rev. Lett. 70 i263-6 B   f i     y 



,Q^g Quantum structural methods for the solid state and surfaces 

[91] Goedecker S 1999 Linear scaling electronic structure methods Rev. Mod. Phys. 71 1085 ^ 
921 Galli G 2000 Large-scale electronic structure calculations using linear scaling methods Phys. Status Solidi B 217 231 

[93] Fattebert J-L and Bemholc J 2000 Towards grid-based 0(N) density-functional theory methods: optimized nonorthogonal orbuals 
and multigrid acceleration/'/i>'i. i?ev. B 62 1713-22 ,     .    „,      n     D .icn IQA ion 

[94] Wan" L-W and Teter M P 1992 Kinetic-energy functional of the electron density Phys. Rev. B 45 13 196-220 
[95] PerrotF 1994 Hydrogen-hydrogen interaction in an electron gas y.Mw.;Condeni.Marr.r 6 431-46 

[96] Smargiassi E and Madden P A 1994 Orbital-free kinetic-energy functionals for first-pnnciples molecular dynamics m.. Rev. B 

1971 Walg Y A and Carter E A 2000 Orbital-free kinetic-energy density functional theory Theoretical Methods in Condensed Phase 
Chemistry (Progress in Theoretical Chemistry and Physics Series) ed S D Schwartz (Boston: Huwer) pp 117-84 

[98] Wang Y A, Govind N and Carter E A 1998 Orbital-free'kinetic energy functionals for the nearly-tree electron gas Phys. Rev. B 

58 13465 
WanE Y A, Govind N and Carter E A 1999 P/.w.«ev.B 60 17 162E .,    .     .    ^       ^   ,i,      , D.. 

[99] Wang Y A, Govind N and Garter E A 1999 Orbital-free kinetic-energy density functionals with a density-dependent kernel Phys. 

[100] WafsOT S,*jesion B* J, Carter E A and Madden P A 1998 Ab mmo pseudopotentials for orbital-free density functional Europhys. 

[101] Ant^J Ajel^n B J and Madden P A 1998 Ion-electron correlations in liquid metals from orbital-free ab initio molecular 

dynamics/'/ivi./Jev-B 58 6124-32 ,...,,    j        • 
[102] Jesson B J, Foley M andMaddenP A1997 Thermal properties of the self-interstitial in aluminum: an ab initw molecular-dynamics 

smdv/'/ivj./?ev.B 55 4941-6 ,        ■.•      •  .u      j- 
[ 103] Aoki MI and Tsumuraya K 1997 Ab initio molecular-dynanjjcs study of pressure-induced glass-to-crystal transitions in the sodium 

systeih Mw. ^ev. B 56 2962-8 .   r     . ,   ,-        DJ. 
[104] Watson S C and Carter E A 2000 Linear-scaUng parallel algorithms for the first pnnciples treatment of metals Comp. Phys. 

[105] HedinTigesVew method for calculating the one-particle Green's function with application to the electron-gas prbblem Phys. 

[106] Pisfri C, Do'lesi R and Roetti C 1988 Hartree-Fock Ab Initio Treatment of Crystalline Systems (Lecture Notes in Chemistry. 

[107] CRYSTAL9?ifthe^cu^S?version of the commercial HP program developed at the University of Torino and at Daresbuiy 

Laboratory (http://www.dl.ac.ukn'CS/Software/CRYSTALO .  '        ,    K,-^      J I    r- n   DI, 
[108] Su Y-S, Kaplan T A, Mahanti S D and Harrison J F 1999 Crystal Hartree-Fock calculations for La2Ni04 and La2Cu04 Phys. 

[109] Fu U^Yaschenko E' Resca L and Resta R 1999 Hartree-Fock studies of surface properties of BaTiOj Phys. Rev. B 60 

[110]  CausTt^Dovesi R and Roetti C 1991 Pseudopotential Hartree-Fock study of seventeen IH-V and IV-IV semiconductors P/.yi. 

[Ill] ChSier\'* D'A^co"^ Dovesi R and Saunders V R 1999 Ab initio Haitree-Fock investigation of the stnicmral, electronic, and 
magnetic properties of Mn304 Phys. Rev. B 60 14042-8, and references therein 

[1121 McMillan WL 1965 Ground state of Uquid "He Ph>i./?«v. 138 A442 , „,    ■   ,T   ■    ■  ^ 
[113]  Ceperly D M and Kalos M H 1986 Quantum many-body problems, Monte Carlo Methods in Statistical Physics (Topics m Current 

Mwici, w/7; 2nd edn,e'dK Binder (BerUn: Springer) pp 145-94 , ,.^   . .     x<   ,   r.A^ 
[114] Rajagopal G, Needs R J. James A, Kenney S D and Foulkes W M C 1995 Variational and d'ff"=^°V"^"'"'",^°"f_F^'°- 

cSculations at nonzero wave vectors: theory and application to diamond-structure germamum Phys Rev B 51 10591-6(X) 
[115] Umrigar C J, Wilson K G and Wilkins J W 1988 Optimized trial wavefunctions for quantum Monte Carlo calculations Fhys. Kev. 

[116] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 Equation of state calculations by fast computing 

machines/. C/iem. PAvi. 21 1087 ...     „_„ !,„,)„ 
[117] Kent P R C, Hood R Q, Williamson A J, Needs R J. Foulkes W M C and Rajagopal G 1999 Fimte-size errors m quantum many-body 

simulations of extended systems Myj.iJev.B 59 1917-29 f r.Ao Pfcvr R,.v B 
[118] Eckstein H, Schattke W, Reigrotzki M and Redmer R 1996 Variational quantum Monte Carlo ground .state of GaAs Phys. Rev. a 

[119]  Harnn^ond^B U Lester W A and Reynolds P J 1994 Monte Carlo Methods in Ab Initio Quantum Chemistry (Singapore: Worid 

11201 Cecerlv D M and Alder B-J 1980 Ground state of the electron gas by a stochastic method Phys. Rev. Lett. 45 566-9 
[121] Towler M D, Hood R Q and Needs R J 2000 Minimum principles and level splitting in quantum Monte Carlo excitation energies. 

application to diamond P/iyi./?ev. B 62 2330-7 „.      D    n/:i pifi^QI 
[122] Filippi C and Umrigar C J 2000 Correlated sampling in quantum Monte Carlo: a route tp.forces Phys. Rev.B 61 Rl^^y' 
[123] Alfe D, GiUan M J and Price G D 2000 Constraints on the composition of the Earth's core from ab initio calculations Nature 

172-5 



References ^ ; 1977 

[124]  Upton T H and Ooddard W A III 1981 Chemisorption of H, Cl, Na, O, and S atoms on Ni(lOO) surfaces: a theoretical study using 
Ni:o clusters Cnf./?ei'. 5o/W5/awyWa/e;: 5c7. 10 261-96 . 

[i25]  Bagus P S, Bauschlicher C W Jr, Neliri C J, Laskowski B C and Seel M 1984 A proposal for the proper use of pseudopotentials 
in molecular orbital cluster model studies of chemisorption y. C/jem. Wiyj. 81 3594-602 

[126]  Panas I, Schiije J, Siegbahn P and Wahlgren U 1988 On the cluster convergence of chemisorption energies Chem. Phys. Lett. 149 
265-72 

Siegbahn P E M, Nygren M A and Wahlgren U 1992 Cluster Models for Surface and Bulk Phenomena ed G Pacchioni, P S Bagus 
and F Parmigiani (NATO AS! Series B: Physics vol 283) (New York: Plenum) p 267 

[127] Panas I, Siegbahn P and Wahlgren U 1989 The mechanism for the Oi dissociation on Ni(lOO) / Chem. Phys. 90 6791-801 
[128]  Foumier R and Salahub D R 1990 Chemisorption and magnetization: A bond order-rigid band model Surf. Sci. 238 330-40 

Ushio J, Papal I, St-Amant A and Salahub D R 1992 Vibrational analysis of formate adsorbed on Ni(l 10): LCGTO-MCP-LSD 
study Sur/; 5d. 262 LI34-8 

[129]  Mlynarski P and Salahub D R 1991 Local and nonlocal density functional study of Ni4 and Nij clusters. Models for the chemisorp- 
tion of hydrogen on (111) and (100) nickel surfaces / Chem. Phys. 95 6050-6 

[130] Papal I, Salahub D R and Mijoule D 1990 An LCGTO=MCP-LSD smdy of the (2x1) H-covered Pd(l 10) surface Surf. Sci. 236 
241-9 

[131]  Rochefort A, Andzelm J, Russo N and Salahub D R 1990 Chemisorption and diffusion of atomic hydrogen in and on cluster 
models of Pd, Rh, and bimetallic PdSn, RhSn, and RhZn catalysts / Am. Chem. Soc. 112 8239-47 

[132]  Bagus P S and Pacchioni G 1995 Ionic and covalent electronic states for K adsorbed on Cus and CU25 cluster models of the 
Cu( 100) surface 7. C/iem-V/iw. 102 879 

[133]  Clotet Aand Pacchioni G 1996 Acetylene on Cu and Pd(l II) surfaces: A comparative theoretical study of bonding mechanism, 
adsorption sites, and vibrational spectra 5ur/: 5d. 346 91 

[134] BauschlicherCWJr 1994 A theoretical study of CO/Cu( 100)7. C/iem,f/i>'i. 1013250 
[135] Triguero L, Wahlgren U, Boussard P and Siegbahn P 1995 Calculations of hydrogen chemisoiption energies on optimized Cu 

clusters Chem. Phys. Lett. 237 550 
[136] Illas F, ZuritaS, Marquez AM andRubio J 1997 On the bonding mechanism of CO to Pt(lll) and its effect on the vibrational 

frequency of chemisorbed CO 5ur^ 5ci. 376 279 
[137]  Illas F, Rubio J, Ricart J M and Pacchioni G 1996 The importance of correlation effects on the bonding of atomic oxygen on 

Pt( 111) y. C/iem./>/!«. 105 7192 
[138]  Rochefort A, McBreenP and Salahub D R 1996 Bond selectivity in the dissociative adsorption of C-CH2N2 on single crystals: a 

comparative DFT-LSD investigation for Pd( 110) and Cu (110) Surf Sci. 347 11 
[139] Filali Baba M, Mijoule C, Godbout N and Salahub D R 1994 Coadsorption of K and CO on Pd clusters: a density functional 

study Surf. Sci. 316 349 
[140]  Kantorovich L N 1988 An embedded-molecular-cluster method for calculating the electronic structure of point defects in non- 

metallic crystals. I. General theory 7. PAyj. C; 5o/id5rare Mvi. 21 5041 
Meng J, Pandey R, Vail J M and Kunz A B 1989 Impurity potentials derived from embedded quantum clusters: Ag* and Cu* 

transport in alkali halides J. Phys.: Condens. Matter 1 6049-58 
Grimes R W, Cadow C R A and Stoneham A M 1989 A comparison of defect energies in MgO using Mott-Littleton and quantum 

mechanical procedures J. Phys.: Condens. Matter 1 7367-84 
Zuo J, Pandey R and Kunz A B 1991 Embedded-cluster study of the lithium trapped-hole center in magnesium oxide Phys. Rev. 

B 44 7187-91 
Zuo J, Pandey R and Kunz A B 1992 Embedded-cluster study of Cu^-induced lattice relaxation in alkali halides Phys. Rev. B 45 

2709-11 
Visser O, Visscher L, Aerts P J C and Nieuwpoort W C 1992 Molecular open shell configuration interaction calculations using 

■ the Dirac-Coulomb Hamiltonian: the i*-manifold of an embedded EuO^   cluster'/ Chem. Phys. 96 2910-19 
Pisani C, Orlando R and Cora F 1992 On the problem of a suitable definition of the cluster in embedded-cluster treatments of 

defects in crystals y. CAem. My-v. 97 4195-204 . 
Martin R L, Pacchioni G and Bagus P S 1992 Cluster Models for Surface and Bulk Phenomena ed G Pacchioni et al (NATO ASI 

Series B: Physics vol 283) (New York: Plenum) p 485 
Martin R L, Pacchioni G and Bagus PS 1992 Cluster Models for Surface and Bulk Phenomena ed G Pacchioni et al (NATO ASI 

Series B: Physics vol 283) (New York: Plenum) p 305 . 
Pisani C 1993 Embedded-cluster techniques for the quantum-mechanical study of surface reactivity J. Mol. Caial. 82 229 
Hermann K 1992 Cluster Models for Surface and Bulk Phenomena ed G Pacchioni et al (NATO ASI Series B: Physics vol 283) 

(New York: Plenum) p 209 
[141] Nakatsuji H 1987 Dipped adcluster model for chemisorptions andcatalytic reactions on metal surface J. Chem. Phys. 87 4995-5001 

. Nakatsuji H and Nakai H 1990 Theoretical study on molecular and dissociative chemisorptions of an O2 molecule on an Ag 
surface: dipped adcluster model combined with symmetry-adapted cluster-configuration interaction method Chem Phys. Lett. 
174 283-6 

Nakatsuji H, Nakai Hand FukunishiY 1991 Dipped adcluster model for chemisorptions and catalytic reactions on a metal surface: 
. Iniage force correction and applications to Pd-02 adclusters / Chem. Phys. 95 640-7 



 —  Quantum structural methods for the solid statennH surfaces 

Na.a.^H and Naka. H i992 Dipped adcluster mode, study for the end-on che.isorptaon of O, on an Ag surface Can. , CHem. 

Nakatsuji H, Kuwano R, Morita H and Nakai H 1993 Dipped adcluster model and SAC-CI method aoplied to h-,™n •      u 
luminescence and electron emission in halogen chemisorption on alkali metal surface J Mol. Catal 82 "T,o"'"^'    '™"' 

Zhen-Ming Mu and Nakatsuji H 1999 Adsorption and disproportionation reaction of OH on A» surfaces dinneHTn , 
study Surf. Sci. 425 296-312 ^n un «.;, sunaces. dipped adcluster model 

n^\ rf'^'f.^ 1997 Dipped adcluster model for chemisorption and catalytic reactions Prog. Surf. Sci 54 1 
[143] Chang T-M, Martinez! land Carter E A 1994 unpublished results 
[144] Rosch N Sandl P, Oorling A and Knappe P1988 Toward a chemisorption cluster model using the LCGTO-Xa merhnH-      v 

lonx(\mm&lnt.J. Quantum Chem.SMmp. 22215 '"-'"='-'-'^' <J ^« method: application 
[145] Weinelt M, Huber W. Zebisch P, Steinriick H-P, Ulbricht P, Birkenheuer U, Boettger J C and Rosch N 1995 Th. ,H       • 

acetylene on Ni( 110): an experimental and theoretical study / Chem Phys 102 9709 ^dsotption of 

[146] Pacchioni G Chung S-C, Kriiger S and Rosch N 1997 Is CO chemisorbed on Pt anomalous compared with Ni and PH9  A 
example of surface chemistry dominated by relativistic effects Surf. Sci 392 173 witn M, and Pd? An 

nTJ, w "^^ "^/u/ ^^^^ I"teT^e'ation of x-ray emission spectra: NO adsorbed on Ru(OOl) J. Chem Phys 111 4704-1 ^ 
[143] Wemen M, ^^.mmer^H a_nd Preeman A ; 1982 Total-energy all-electron density functiLl metbodt bTs^aid su.aces 

"^:d^r~ii;:s;s's"'^s^"^^^^^ 
[149]  WimmerE,FuC Land Freeman A J 1985 Catalytic promotion and poisonin.^- all-electi-on local d^ndtv f„„.,-     , u 

on Ni(OOl) surfaces coadsorbed with K or S Phys Rev Lett. 55 •^618-'^? lo<:al-dens.ty-funcuonal theory of CO 

^''°^ ^"^^^35?""^'''''''°'^"''°"''"=°'^"^"°"''''°°''^ ^ 
nlll ,^"\?''/'f'"^^•' 1992 Structural and magnetic propeniesofFe/NidUjPAv.. fev. B45 7905 

""^ "A-XTOCOOIX r;:^^^^^ 
''' "^^Sr^i^rEn^^^^^"""'^"^^^^ -ctsofaAuoverlayeron the magnetic properties Of 
[154] '^^"J^W^nJFreeman A J 1997 Dynamical and geometrical aspects of NO chemisorption on transition metals: Rh, Pd. and 

"''' ""TuS^C'.'^rS^ ll 28r '^^ ''-'"' °' *^ ""'''-'' '^^"-^-^ °^ '^^ '°-' '-^^^ °^ -s: Li adsorbed on 

• "r;S:urfr.;;rT3^4^o^""^^^^^ 
°"'raw nf °'"" "" '^"''°"'" ' "" '"' """"" ^ '''' ^^ ^""="'" ^"'^ <^y--- °f "= dissociation on Al(UO) Surf. 

TomanekD, Wilke S and SchefflerM 1997 Hydrogen-induced polymorphism of the Pd(llO) surface Phys Rev Lett 79 1329 

''TSl^^S fo"ctp"f/:.'z:S°;^r^"°^ "^'^^ ^°^ ^^'^■^'^^ -^^^^-^ ^*--'-' -^^ Of thfctiiJe'ait' 
11581  ?S1^P'H T "''^'' ^ ^f c ?«°^="=^' ='"dy °f O adlayers on Ru(OOOl) />Av.. Rev. B 54 2868 

suSSNiTd^n".pf'^ surfaces of Ni. Pd and Pt within the zeroth-order regular approximation Phys. /Jev. B 56 13 556 

aua«t,,^'r"7'^^r""*^'''^°'^°''"'^°"^'^°^l^^ 
WierneZTSefrl'   HT'°^'rtro<™'" Wiesenekker 0 Kroes G ; and Baerends E J 1996 An analytical six-dimensional potential ener-^y'surface for dissociation of 

molecular hydrogen on Cu(lOO) / Chem. Phys 104 7344 °^ aissociation of 

''™Lil''sSt,° ft' ^""r^fnl,.''.r7'^o''"' °' density-gradient corrections for a molecule-surface potential 
n^Qi      ,"fJ°y^^"'*^''^-^'^''"''="'='"onsonCu(100)c(2x2)-COC/!em.P/iyj./^r/.226 583 
[159] te Vdde G and Baerends E J 1993 Slab versus cluster approach for chemisorption studies, CO on Cu(lOO) Chem. Phys. Ill 

[160] FeibelmanPJ,HafnerJandKresseG1998VibrationsofOonsteppedPt(lll)/-Av^/?^v BS82179 84 

' ' ''t Hl^te^nSuurS'^^^Rh'^^^^^^ 0IH2 on me (100) surfaces of Rh,Pd and Ag5u//5c/397116-36 
[162] Roscj, N 199^8^Z.cm.e Given at the 7th International Symposium on Theoretical Aspects of Heterogeneous Catalysis. Cambridge.      : 



References  1979 

[163]  Hammer B, Hansen L B and N0rskov J K 1999 Improved adsorption energetics within density functional theory using revised 
Perdew-Burke-Enerhoffunctionals P/j.vj./fffu B 59 7413-21 

[164]  Whitten J L and Pakkanen T A 1980 Chemisorption theory for metallic surfaces: Electron localization and the description of 
surface interactions Phys. Rev. B 21 4357-67 

Madhavan P and Whitten J L 1982 Theoretical studies of the chemisorption of hydrogen on copper / Chem. Phys. 77 2673-83 
Cremaschi P and Whitten J L 1987 The effect of hydrogen chemisorption on titanium surface bonding Theor. Chim Ada 72 

485-96 

Whitten J L 1992 Cluster Models for Surface and Bulk Phenomena ed G Pacchioni et at (NATO ASI Series B: Physics vol 283) 
(New York: Plenum) p 375 ' 

Whitten J L 1993 Theoretical studies of surface reactions: embedded cluster theory Chem. Phys. 177 387-97 
[165] Duacte H A and Salahub D R 1998 Embedded cluster model for chemisorption using density functional calculations: oxyen 

adsorption on the Al(lOO) surface / Chem. Phys. 108 743 " " 
[166]  Sellers H 1991 On modeling chemisorption processes with metal cluster systems. II. Model atomic potentials and site specificity 

of N atom chemisorption on Pd(l 11) Chem. Phys. Lett. 178 351-7 
[167]  Ravenek W and Geurts F M M 1986 Hartree-Fock-Slater-LCAO implementation of the moderately large-embedded-cluster 

approach to chemisorption. Calculations for hydrogen on lithium (100) J. Chem. Phys. 84 1613-23 
[168]  Fukunishi Y and Nakatsuji H 1992 Modifications for ab initio calculations of the moderately large-embedded-cluster model. 

Hydrogen adsorption on a lithium surface / Chem. Phys. 97 6535-43 
[ 169] Pisani C 1978 Approach to the embedding problem in chemisorption in a self-consistent-field-molecular-orbital formalism Phvs 

«pv. B17 3I43 ^' 
Pisani C, Dovesi R and Nada R 1990 Ab initio Hartree-Fock perturbed-cluster treatment of local defects in crystals / Chem 

Phys. 92 7448 .     ' 

Pisani C 1993 Embedded-cluster techniques for the quantum-mechanical strudy of surface reactivity / Mol. Catal. 82 229 
Casassa S and Pisani C 1995 Atomic-hydrogen interaction with metallic lithium: an ab initio embedded-cluster study Phvs Rev 

B 517805 . J     . ■      ■ 

.    [170] Gutdeutsch U, Birkenheuer U, Kriiger S and Rosch N 1997 On cluster embedding schemes based on orbital space partitionins 
J. Chem. Phys. 106 6020 

[171] Gutdeutsch U, Birkenheuer U and Rosch N 1998 A strictly variational procedure for cluster embedding based on the extended 
subspace approach / Chem. Phys. 109 2056 

[172] Ellis D E, Benesh G A and Byrom E 1978 Self-consistent embedded-cluster model for magnetic impurities: B'-NiAl J Ami 
/"/iw. 49 1543 a i- /- HF- 

Ellis D E, Benesh G A and Byrom E 1979 Self-consistent embedded-cluster model for magnetic impurities: Fe, Co, and Ni in 
/S'-NiAl P/ivj. ;?cv. B 20 1198 

[173]  Benesh G A and Inglesfield J E 1984 An embedding approach for surface calculations / Phys. C: Solid State Phys: 17 1595 
Inglesfield J E and Benesh G A 1988 Surface electronic su-ucture: embedded self-consistent calculations Phys. Rev. B 37 6682 
Aers G C and Inglesfield J E 1989 Electric field and Ag(OOl) surface electronic structure Surf. Sci. 217 367 
Colboum E A and Inglesfield J E 1991 Effective charges and surface stability of O on Cu(OOl) Phys. Rev. Lett. 66 2006 
Crampin S, van Hoof J B A N, Nekovee M and Inglesfield J E 1992 Full-potential embedding for surfaces and interfaces / Phys.: 

Condens. Matter 4 \A15 

Benesh G A and Liyanage L S G 1994 Surface-embedded Green-function method for general surfaces: application to AKlll) 
Phys. Rev. ^49X12(4 

Trioni M I, Brivio G P, Crampin S and Inglesfield J E 1996 Embedding approach to the isolated adsorbate Ph\s. Rev. B 53 8052-64 
[174] Scheffler M, Droste Ch, Fleszar A, Maca E Wachutka G and Barzel G 1991 A self-consistent surface-Green-function (SSGF) 

method/'/iyiicaB172 143 
Wachutka G, Fleszar A, Maca F and Scheffler M 1992 Self-consistent Green-function method for the calculation of electronic 

properties of localized defects at surfaces and in the bulk /. Phys.: Condens. Matter 4 2831 
Bormet J, Neugebauer J and Scheffler M 1994 Chemical trends and bonding mechanisms for isolated adsorbates on Al( 111) Phys 

/f«v. B49 17242 ■ 
Wenzien B, Bormet J and Scheffler M 1995 Green function for crystal surfaces I Comp. Phys. Commun. 88 230 

[175]  Feibelman P J 1987 Force and total-energy calculations for a spatially compact adsorbate on an extended, metallic crystal surface 
Phys. Rev. B 35 2626 

[176]  Williams A R, Feibelman P i and Lang N D 1982 Green's-function methods for electronic-structure calculations Phys Rev. B 26 
5433 . , . 

[177]  Feibelman P J 1991 Orientation dependence of the hydrogen molecule's interaction with Rh(OOl) PAvj. Rev. Lett. 67 461 
[178] Feibelman PJ 1994 Sulfur adsorption near a step on AlP/iyj./?ev. 6 49 14632 
[179]  Feibelman P J 1994 Diffusion barrier for a Ag adatom on Pt(l 11) Surf. Sci. 313 L801 
[180]  Kruger S and Rosch N 1994 The moderately-large-embedded-cluster method for metal surfaces; a density-functional study of 

atomic adsorption y./>/iM.; Condenj. Afaner 6 8149 
Kruger S, Birkenheuer U and Rosch N 1994 Density functional approach to moderately large cluster embedding for infinite metal 

substrates / Electron Spectrosc. Relat. Phenom. 69 31 



1980          Quantum structural methods for the solid state and surfaces 

[181] Head J D and Silva S J 1996 A localized orbitals based embedded cluster procedure for modeling chemisorption on large fi "t 
clusters and infinitely extended surfaces / Chem. Phys. 104 3244 

[182]  Brivio G P and Trioni M I 1999 Ttie adiabatic molecule-metal surface interaction: theoretical approaches /Jev Mod Phv   7i 
231-65 ■       ■     ys.l\ 

[ 183] Cortona P 1991 Self-consistently determined properties of solids without band structure calculations Phys. Rev. B 44 8454 
Conona P 1992 Direct determination of self-consistent total energies and charge densities of solids: A study of the cohesi 

properties of the alkali'halides P/iw. «ev. B 46 2008 ve 
[184]  Wesolowski T A and Warshel A 1993 Frozen density functional approach to ab initio calculations of solvated molecules J Phv 

CAem. 97 8050 '     ■*'■'■ 
Wesolowski T A and Warshel A 1994 Ab initio free energy perturbation calculations of solvation free energy using the frozen 

density functional approach y. P/ij'j. C/iem. 98 5183 
[185] Stefanovich E V and Truong T N 1996 Embedded density functional approach for calculations of adsorption on ionic crystals 

J. Chem. Phys.  104 2946 
[186] Garcia A, Blsasser C, Zhii J, Louie S G and Cohen M L 1992 Use of gradient-corrected functionals in total-energy calculations 

for solids Phys. Rev. B 46 9829 
[187] Nachdgall P, Jordan K D, Smith A and Jonsson H 1996 Investigation of the reliability of density functional methods: reaction 

and activation energies for Si-Si bond cleavage and Hi elimination from silanes / Chem. Phys. 104 148 
[188] Perdew J P, Burke K and Emzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865 

Proynov E I, Sirois S and Salahub D R 1997 Extension of the LAP functional to include parallel spin correlation Int J Quantum 
Chem. 64 427 ■ 

Tozer D J, Handy N C and Green W H 1997 Exchange-correlation functionals from ab initio electron densities Chem Phvs Lett 
273 183 * ' '      ■ 

Filatov M and Thiel W 1997 A new gradient-corrected exchange-correlation density functional Mol. Phys. 91 847 
van Voorhis T and Scuseria G E 1998 A novel form for the exchange-correlation energy functional / Chem. Phys. 109 400 
Zhang Y and Yang W 1998 Phys. Rev. Lett. 80 890 
Tozer D J and Handy N C 1998 The development of new exchange-correlation functionals / Chem. Phys. 108 2545 

[189]  Abarenkov I V, Bulatov V L, Godby R, Heine V, Payne M C, Souchko P V, Titov A V and Tupitsyn 11 1997 Electronic-structure 
multiconfiguration calculation of a small cluster embedded in a local-density approximation host Phys. Rev. B 56 1743 

[ 190] Govind N, Wang Y A, da Silva A J R and Carter E A 1998 Accurate ab initio energetics of extended systems via explicit correlation 
embedded in a density functional environment Chem. Phys. Lett. 295 129 

[191] Govind N, Wang Y A and Carter E A 1999 Electronic structure calculations by first principles density-based embedding of 
explicitly correlated systems J. Chem. Phys. 110 7677 

[192]  Kluenei- T, Wang Y A, Govind N and Carter E A 2000 in preparation 
[193] Rubio A, Corkill J L, Cohen M L, Shirley E L and Louie S G 1993 Quasiparticle band structure of AIN and GaN Phys. Rev B 48 

11810-16 
[194]  Dhesi S S, Stagarescu C B, Smith K E, Doppalapudi D, Singh R and Moustakas T D 1997 Surface and bulk electronic structure 

of thin-film wurtzite GaN F/i>'j. Sev. B 56 10271-5 
[195]  Starrost F 1999 PhD Thesis Christian-Albrechts-Universitat Kiel 

Starrost F, Krasovskii E E and Schattke W 1999 unpublished 
[196] Giinther O, Janowitz C, Jungk G, Jenichen B, Hey R, Diiweritz L and Ploog K 1995 Comparison between the electronic dielectric 

functions of a GaAs/AlAs superlattice and its bulk components by spectroscopic ellipsometry using core levels Phys. Rev. B 
52 2599-609 

[197] Starrost F, Krasovskii E E and Schattke W 1998 An alternative full-potential ELAPW method Verhandl. DPG (VI) 33 741 
[198] Aspnes D E and Studna A A 1983 Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb 

from 1.5 to 6.0 eV Phys. Rev. B 27 985-1009 
[199] Logothetidis S, Alouani M, Garriga M and Cardona M 1990 E-> interband transitions in AlvGa]_rAs alloys Phys. Rev. B 41 

2959-65 
[200]. Hughes J L P and Sipe J E 1996 Calculation of second-order optical response in semiconductors Pft^ii. Rev. B 53 10751-63 
[201] Wang C S and Klein B M 1981 First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS and ZnSe. [1. Optical properties 

Phys. Rev. B 24 3411-29 
[202] Huang Ming-Zhu and Ching W Y 1993 Calculation of optical excitations in cubic semiconductors. I. Electronic structure and 

linear response Phys. Rev. B 47 9449-63 

Further Reading 

Pisani C (ed) 1996 Quantum-Mechanical Ab-inido Calculation of the Properties of Crystalline Materials (Lecture Notes 
in Chemistry vol 67) (Berlin: Springer) 

A general introduction. 



Further Reading ' '  1981 

Dreizler R M and Gross E K U 1990 Density Functional Theory: an Approach to the Quantum Many-body Problem 
(Berlin: Springer) 

A monograph on the foundations of density functional theory. 

Pisani C, Doves R and Roetti C 1988 Hartree-Fock Ab Initio Treatment of Crystalline Systems (Lecture Notes in Chemistry 
vol 48) (Berlin: Springer) 

An introduction to periodic Hartree-Fock. 

Nemoshkalenko V V and Antonov V N 1998 Computational Methods in Solid State Physics (Amsterdam: Gordon and 
Breach) 

An explicit introduction to the all-electron methods. 

Singh D J 1994 Planewaves, Pseudopotentials and the LAPW Method (Norwell, MA: Kluwer) 

A textbook on plane-wave and LAPW methods. 

Whitten J L and Yang H 1996 Theory of chemisorption and reactions on metal surfaces Surf. Sci. Rep. 24 59-124 


