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1.    INTRODUCTION 

Turbulence is generally conceived as a collection of 
eddies of many different sizes (Hinze, 1975; Batchelor, 
1953). The "quasi-wavelet" (QW) model discussed in 
this paper is an attempt to develqj a mathematical 
representation for the turbulence that more closely re- 
sembles this physical picture than Fourier modes or cus- 
tomary wavelets. Like customary wavelets(Far^, 1992; 
Meneveau, 1994), the QW representation is based on 
self-similar localized functions. However, the orienta- 
tions and petitions of the quasi-wavelets are random, 
and the QW basis functions are not required to be or- 
thonormal cr to form a mathematically complete set. 
Some other important features of quasi-wavelets are: 
• They naturally have ensemble statistics close to that 
of real turbulence as a consequence of the realistic basis 

functions. where A is a vector potential; o is the "size" or length 
• They can simultaneously provide infwmation about    scale of the quasi-wavelet, b is thelocation of its Center, 
scales of motion and spatial intermittency. and Jl is its angular velocity parameter. Jn an isotropic 
• They potentially allow simplified models of anisjtropy    model, the angular velocity has a uniforin, random dis- 

2.    OVERVIEW OF THE QW MODEL 

The main goal of the QW model is to represent 
turbulent fluctuations by the simplest possible set of 
localized structures that resemble actual eddies. In the 
original fwmulation of the model (Goedecke and Auwr- 
mann, 1997), these structures »«re called "turbules." 
Here we use "quasi-wavelet," due to the localized and 
self-similar nature of the basis functions. For isotropic 
turbulence, the simplest quasi-wavelet for solenoidal ve- 
locity fluctuations vras found by Goedecke and Auver- 
mann to be a rotating spherically symmetric structure 
given by 

V X A,        A = a^Qf (1) 

and inhomogeneity. 

• They can readily be used to generate synthetic tur- 
bulence fields. 

With regard to this last point, quasi-wavelets can 
serve as a substitute for random Fourier modes, which 

tribution over the iw solid an^e. The scalar function 
/, called the QW envelope function, is any dimension- 
less localized function of its argument |r — b|/a. The 
model turbulent velocity field results from superpc»ition 
of very many such quasi-wavelets.   R>r homogeneous 

have previously been used in many applications such as tu^u'ence, each quasi-wavelet has uniformly random 
structural wind loading and simulation of wave scatter- ""**•■ '°"*«>" "'^'*'« ^ <^''°^^" turbulent volume V. 
Ing (Mann. 1998; Gilbert et al., 1990). In these applica- Note that the individual quasi-wavelets do not nec- 
tions, the spatially localized nature of the quasi wavelets essarily satisfy the fluid equations. We merely require 
can be advantageous (deWolfe, 1983; Goedecke and ^^^^ ^" appropriate superposition of quasi-wavelets 
Auvermann, 1997). ""J^* y'^W the impatant statistical properti^ of the 

This paper is organized as follows.   In Section 2, turbulence. In particular, w« require in this paper that 
wffi provide an overview of the formulation of the QW ^^^ QW model yield correct or otherwise ph^ically rea- 
model. A relationship betwreen the quasi-wavelet basis sonable spatial spectra fw all ranges of the turbulent 
function and the energy spectrum of the turbulent ve- vtavenumber k. 
locity fluctuations is derived in Secticm 3. Several pos- Many different slz^ a„ are used in the QW model, 
sible QW bas^ and their corr^ponding energy spectra ranging from oi, the largest size chcKen, to UM, the 
are discused in Section 4.  In particular, a QW basis smallest.    Clearly, ai corresponds to an outer scale 
function that exactly yields the von Kirmin spectrum (length scale near the transition betwreen the ener^ and 
is found.  We also consider possible QW models cor- inertial subranges), and ojv to an inner scale (length 
responding to the modified von Kirmin spectrum of scale near the transition between the inertial and dissi- 
Kristensen et al. (1989), which includes the empirical pation subranges). A fractal scaling of sizes is chosen, 
Kansas spectram developed by Kaimal et al (1972) as a such that o^/ai = 03/02 = ... = UMfaN-i = const, 
special case. In Section 5, we present example results. The magnitude 0 of the angular velocity Q s:ate with 
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size a such that the characteristic speed v = Sla = 
Jconst.)(o^/^), which is the scaling derived in the Kol- 
mogwov energy cascade model (Batchelw, 1953)rAs^ 
result of these chosen scaling properties, the model pre- 
dicts the Kolmogorov spectrum in a well-defined inertial 
subrange, for any physically reasinable choice of QW 
function /, if and only if the number density n of the 
quasi-wavelets of size o scales like n = (const.)(a"^), 
i.e., the QW packing fraction na^ must be size invari- 
ant. 

Other results in Goedecke and Auvermann (1997) 
include physically reasonable behavior of the predicted 
spectra in both the energy and viscous subranges. In 
fact, the QW model always yields ener^ spectra that 
go like fc* for small k, then transition to k~^/^ for in- 
termediate k (the inertial subran^), and then fall off 
much faster than k~^/^ for large k (the viscous sub- 
range and beyond). This small k behavior is due to the 
fact that there is a maximum QW size Oi, while the 
drop-off at large k is due to the presence of a minimum 
QW size ojv. 

3.    QUASI-WAVELET THEORY OF VELOCITY 
SPECTRA 

In Goedecke and Auvermann (1997), an expression 
for the velocity, spectral tensor #y(k) was derived from 
a superposition of velocity quasi-wavelets. As shown in 
Goedecke et al. (2002), this expression leads to the fol- 
lowing relationship between the energy spectrum E{k) 
and the scale-invariant, dimensionlffis QW spectral func- 
tion Fiv): 

rkai 

E(k) = aiat(tei)-V3 / dy y^*'^ (F{v)f.     (2) 

Here, k is the wave vectw, a% is the variance of one 
of the velocity components, and y = feo, so that the 
integral extends over all eddy sizes o. The lower limit 
on the integral is actually fcojv, where ojv is the smallest 
scale length used. We put ajv -* 0 here; this can only 
influence the behavior of £(fc) in the viscous subrange. 
The QW envelope function /(|) follows as the three- 
dimensional, inverse Riurier transform of F(t/): 

''«^e^^«'*'^' (3) 

where { = (r-b)/o and (, = |^|. Also, (r-b) is 
the vector from the uniformly random position b of the 
center of an eddy to tiie ^neral petition vector r, K) 

that f is the scaW distance (in units of a) from the 
eddy center. Because of the spherical symmetty, v« 
ha\« in general from (3) 

fm = ^JdvVBHvi)Fiv)- (4) 

Multiplying both sides of (2) by fc^/^ g^j differentiating 
with respect to k yields 

I [k^/^Eik)] ^ 4anka^r^'FHka^).     (5) 

4.    MODEL EDDIES 

As mentioned earlier, any localized QW envelope 
/(I) can be normalized to yield exactly the Kolmogorov 
j^-5/3j energy spectrum in an inertial subrange. Only 
the boundaries of the inertial subrange and the behavior 
of the spectra outside it are sensitive to the functional 
form of /(I). In this section, sue investigate several 
possible QW envelopes. 

4.1    Von Kirman eddy 

The von KirmSn spectrum is commonly used in tur- 
bulence modeling. Application of this spectrum to at- 
mospheric turbulence along with appropriate parameter 
values is discussed by Ostashev and Wilson (2000). The 
equation for the energy spectrum is 

„.,_   CvKtrlk^Ll 55r(5/6)    _ 

Using (5), we new find 

FvKiv) =- 
8r(23/6)]^/^ 

Lv^r(l/3). 

5/2, 

2   2\ -23/12 
1 + 

Lly- 
(7) 

The von K^rmin QW envelope function /vif (I) is de- 
termined by substituting (7) into (4). The integral can 
be found in tables, resulting in 

/Vif (I) = 
r(23/6) fli ll/2 2-11/12 

. r(i/3) L„\    ff7/4r(23/i2; 

K, 5/12 m- '=' 
where K„ is the modified Besel function of the second 
kind. The value of aj is flexible, although since oj and 
£„ are both outer scales, we must have L^/ax ~ 1. 
Note that in the inertial subrange, E{k) = (55a/18) 
g2/3 ]g-5/3^ vrfiere e is the rate of di^ipation of the tur- 
bulent kinetic ener^ per unit mass and a = 0,52 is an 
empirical constant. Matching this to the von Kirmin 
energy spectrum in the inertial range kL„ » 1 yields 
a relation among L„,a^, and e: 

L„ = 
2r(5/6) 

aV^r(l/3) e (9) 



4.2    Generalized von Karman and Kansas spectra 

-K«steBsen^t3l^5i9)-proposed4lie43llGwing-gen- 
eral equation fw the one-dimensional longitudinal spec- 
trum: 

with b(fj,) = 5rA*r(5/6/i)/r(l/2/i)r(l/3^). The para- 
meter n controls the sharpness of the transition between 
the energy and inertial subranges; fi = 1 corresponds 

to the von Kirmin spectrum. The longitudinal inte- 
gral length scale for this model is £ = b{fi)L„. The 
corresponding ener^ spectmm is 

_ 5albi^)L4kL,f'' 

If fjL — 1, this reduces to the von KSrmin expression. 
fw small k, the energy spectrum E{k) fw isotropic 
turbulence is expected to go like fc* (Hinze, 1975). We 
note that EQVK goes like k^ for small k only fw fj. = l 
or 2. The empirical spectra developed by Kaimal et 
al (1972) on the basis of the 1968 Kansas experiment 
corespond to /i = 1/2, for which EavK is proportional 

i to fc for small k. For the Kansas spectra with fi — 1/2, 
(5) and (11) yield 

p*.=i/2r,A-   /^(i^./ai) (l + 14X„y/3ai)i/= 
J'GFK   IW - y 27     ym (l-Fi,y/oi)14/6 

(12) 
as the Fourier transform of the QW function SKA{0- 

This Fif^ diverges fa- y -* 0, a direct result of the 
unusual behavior EKA OC k for small k. We have 
not attempted to find a closed-form expression for the 
"Kansas eddy" fnAii), mainly because the unphysi- 
cal behavior of FKA fw small y casts doubts that the 
Kansas spectrum can be modeled ty quasi-wavelets. 
Perha|K this difficulty is to be expected, because em- 
pirical spectra can contain anisotropic features that are 
not present in the isotropic QW model. 

4.3    Gau^ian and Exponential Eddies 

Although the ycm Kirmin spectrum is simple, its 
QW envelope function SYKH) is not. We now show 
that simpler QW functions can produce spectra vsry 
cicse to the von Kirmin spectrum. First, consider the 
following Gaussian-type envelope, which was used in 
Goedecke and Auvermann (1997): 

FG{v) = FGme -»V4 
/G(I) :^-3/2FG(0)e-«^ 

(13) 
where the second equation results from (3).   Substi- 
tuting (13) into (2) and requiring that the resulting 
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Figure 1: Comparison of various QW envelope functions. 

spectrum agree with the von Kirmin spectrum in the 
inertial range, we obtain 

and 

Fom = 

Earn 

■'VK 
11/2 

2ii/6r(i7/6) fe) 

1/3 

gFifgg 7 (17/6, feW2 
ft5/3£2/3 r(17/6) 

ri4i 

(15) 

where j(p, z) is the incomplete gamma function. 
We may asign the ratio in L.j/ai in several rea- 

sonable w^s. For example, wffi could require the vari- 
ances of the QW and von Kirmin spectra to be the 
same. After a lengthy analj^is, this leads to the con- 
dition i„/ai = 0.8379. Alternatively, we could require 
the small k behavior of the Gaussian QW and von Kir- 
min spectra to be the same. This choice is diseased 
in more detail in Goedecke et al. (M02). 

A second example of a simple QW envelope con- 
sists of eddies with an exponential Fourier transfwm 
(exponential FT eddies), given ly 

FB(y)^FBme-v ./^(D^JL^MOL (16) 

Substituting (16) into (2) and requiring that (6) and 
(2) agree in the inertial range, vre obtain FE{0) and 
the energy spectrum EEik) for these eddies: 

FeiO) = 
2"/3Cviff^' 

te) 

1/3 

EBm : 

. r(i7/3) . 

" CVKOI 1 r7(17/3,2fai 

WI^LTI r(i7/3) 

(17) 

(18) 

Setting a% = (7%.vm find i„/oi = 0.7238. 



e>q5erimental data in both the energy and inertial sub- 
ranges.  This will require a QW model of anisotropic 

NffliTsllzed wawnumber, k L 
10' 

Figure 2: Comparison of energy spectra resulting from var- 
ious QW envelope functions. 

5. RESULTS 

Various QW envelopes /(f) derived in the preced- 
ing section are shewn in Figure 1. The Gaussian and 
exponential envelopes are similar, both being flat at 
the o-igin. The von Kirmin envelope, in contrast, has 
non-zero slope at the origin. Two versions of the von 
KirmSn envelope are showm, one fm variance equal- 
ing the Gaussian spectrum, and the other for variance 
equaling the exponential spectrum. 

In Figure 2, we plot the normalized energy spectra 
for the von Kdrmdn, Gaussian, and exponential QW 
envelopes. The spectra have been normalized to have 
the same variance. While they are all identical in the 
inertial subran^, in the ener^ subrange they share only 
the same slope (k*). The position of the asymptote 
differs because the integral length scale depends on the 
QW envelope. 

6. SUMMARY AND DISCUSSION 

The von Kirmin ener^ spectrum of turbulent ve- 
locity fluctuations has been widely used in studies of 
turijulence and wave (acoustic and electromagnetic) 
propagation in random media. In this paper, VHB found a 
QW envelope function that yields ecactly the von K3r- 
min velocity spectrum. We also showed that the QW 
model has fle>dbility extending beyond the wsn Kirmin 
spectral model. In particular, it allows velocity spectra 
that reduce to the Kolmc^orov spectrum in the inertial 
subrange but are adjustable in the ener^ subrange. 
This is important because models based on the win 
KirmSn spectrum sjmetimes do not ap-ee v«ll with ex- 
perimentally determined one-dimensional spectra in the 
energy subrange. An objective in further development 

of the QW model is to determine a QW function and 
cwr^ponding spectrum that yields the best match to 

turbulence, which we are now attempting to formulated 
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