
MMY R^CARCH U^ORATORY

The U.S. Army Research Laboratory Dynamic
Terrain Server

by Mark A, Thomas

ARL-TR-2962 April 2003

Approwd for pnbllc rd^Q dtetributioii b nnliniited.

20030529 185

NOTICES

Disclaimers

The findings in this report are not to be construed as an ofiBcial Department of tiie Army position unless
so designated by other authorized docimients.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2962 April 2003

The U.S. Army Research Laboratory Dynamic
Terrain Server

Mark A. Thomas
Computational and Information Sciences Directorate, ARL

Approved for pubBc rdeasei distribution M unlimited.

INTENTIONALLY LEFT BLANK.

11

Contents

Acknowledgmente

1. Introdnctioii

2. Capabilities

3. Architecture

3.1 Networic Interf^e Unit......

3.2 Munitions Effects Module.....

3.3 Set Data PDU Breach Subtract PDU......

3.4 Breach Polygon Numbo- Set Data PDU.

3.5 Ding Information Set Data PDU............

4. DTServer GUI

5. Runtime Considerations

5.1 Terrain Datdjase.....................................

5.2 Object Database................................

5.3 Munitions Datable................................

5.4 Run Script...

6. Reiulto

7. Conclusion

Bibliography

Report Documentation Page

IV

1

1

2

..........3

..........3

..........3

..........6

..........7

8

9

..........9

..........9

........11

........12

13

14

15

16

m

Acknowledgments

The author would Uke to acknowledge the participation of the following individuals: Ms. Pat
Jones, U.S. Army Research Laboratory (ARL), for managerial support; Mr. Andrew Neiderer
and Mr. Charles Hansen, ARL, for coding and algorithm development; Mr. James Grosse and
Mr. Brian Comer, Program Executive Office for Simulation, Training, and Instrumentation, for
their support in funding the integration of the Dynamic Terrain Server (DTServer) with the
Soldier Visualization System; and Dr. Bruce Knerr and Dr. Steve Goldberg, U.S. Army Research
Institute for the Behavioral Sciences, for funding integration of the DTServer with the After-
Action Review system developed by the Institute for Simulation and Technology.

IV

1. Inlrodiictioii

The U.S. Anny Research Laboratory (ARL) is conducting research in methods to compute and
distribute dynamic terrain information in real-time distributed simulation. The purpose is to
populate virtual environments with real-world dynamic tarain and objecte such m rubble and
debris, dinp, aad bre^jhes of structures. Dismounted infantiy simulation lequii^ thrae
obsta:!^ and c^djiMes for room-clearing operations, urban terrain warfere, and situational
awareness.

The ARL Dynamic Terrain Server (DTServer) provides Ms capability. The DTServer computes
efifecte on stractures fiwm munitions detonations and coUisions. The server trananite the i^ults
to client simulatiom on the network and updates the status of rabble entities. Tlie result of using
the DTServer is a unifiai terrain database MTOSS all simulator enuring feir-fight, reaUsm, and
training efifectivenras. Hiis report will describe the DTServer capabiUties, architwture, and
run-time considerations.

2. CapabiUties

The DTServer computes effecte on stractures using tsMe look-up and en^irical formute. The
DTServer contains a munitions effects table which has date for relevant munitions swh as the
9-mm bullet, 50-cal, munition, ATS munition, and artillery. Hiese munitions all create some
efifect on structures. A 9-mm wapmt on a concrete stmcture will leave a mark, or ding, on a
concrete wall. This mark is not significant for stnwtural mechanics but is significant to
dismounted combatante for situatioMl awareness and survivd>ili1y. An ATS btot, however, will
completely breach a wall, afiforfing access for room-clearing operations. TTie DTServer
computes fliese effects and distribute them to compliant simulations acrom the network.

Hie DTServer trananits dynamic changes using distributed interactive simulation (DB) protocol
date unite (PDU). The DIS Set Date PDU is used to transmit date to client simulations for
breaches and dinp. The Set Date PDUs sent by tiie DTServer are the Breach Subtract, Breach
Vertices, and Ding messages.

Rubble is treated as an entity. This is a compatibility issue with the Dismounted Ihfantiy Semi-
Automated Forces (DISAF) program. The DISAF program reqmres geometiy to be continuoiM.
The bre^hing function cannot guarantee continuity with the rabble field computed. Therefore,
sach piece of rabble is traiwmitted to the simulators as an entity. The Entity State PDU transmits
rabble stete to client applications. The DTServer computes the rabble field and transmite a PDU

for each piece of rubble. The DTServer then sends a heartbeat for each piece of rubble to keep it
active in the simulation.

The DTServer can log and replay events. Logged events can be replayed to provide an after-
action capability or to predamage a database using data from a previous run.

The DTServer includes a graphical user interface (GUI) to viev/ the database. The DTServer
display is shown in Figure 1.

i ^mwumm J r ,_ - .,; ,,-. -i ^

Figure 1. DTServer display showing Fort Polk database.

3. Architecture

The DTServer is comprised of a network interface imit (NIU), a munitions effects module
(MEM), and a GUI.

3.1 Network Interface Unit

The Nnj handles DIS commimications for the DTServer. The DTServer rea<b the DIS
Detonation PDU network packet. The Detonation PDU contains the information required for the
munitions effects module. This information includes tiie point of detonation, the munition
description, and the velocity vector. When a Detonation PDU is received by the NTU, it is sent
to the munitions effects module.

The NIU requires two values at program initialization, the DIS port and exercise identifier.
Th^e vdues are entered by the user at program start-up.

3.2 Munitions Effecte Module

The MEM computes the effect of the detonation on the unpacted object. The MEM contains a
database of munitions properties, terrain objwts (building, bridges, other man-m^e objects),
and pmund terrain. The MEM parees the munition ^e, velocity vector, and detonation location
from the Detonation PDU. If the deton^on location does not import a terrain object, the MEM
(to^ nothing. Ifa terrain object is impacted, the effect k computed. Tlie computation is a
simple maflienmtical relation between hole size and the m^s of trinitrotoluene (INT) in the
projwtile: d = n^l/3, where d = diameter and mp = mass of TNT.

This relation was derivai from a ne«i to compute holes of different sizes firam different
munitions. The formula can be replaced by ph^ics-basM models which f^tor in projectile
impact q»e^ direction, and wall properties. The effecte computation returns two values—^a
breach flag and a size. If the bre^h flag is true, the size is the taMm of the breajh. If the breach
flag is fake, the size is the size of the ding.

If a breach occure, tiie geometry engme is called to compute the new geometry. The new
geometry consiste of the new polygons which make up the new wall. Whrai this computation is
completed, flie NIU is call^ to traiwmit the Set Date PDU Breach Subtr«;t PDU and the set date
polygon information. In addition. Entity State PDUs are transmitted for the resulting rubble.

If the breach flag is false, a dmg is the result. Tlie size is the i^im of the ding. A Set Data PDU
ding packet is formatted and sent to cHents.

3.3 Set Data PDU Breach Subtract PDU

The Set Data PDU Breach Subtr^rt PDU includes the necessary information for cUents to initiate
a breach. The PDU date packet includes breach location in round world coordinates, the surf^e
normal in local cooniinates, the name of the texture of the unp^ted polygon, and the number of
polygons to follow. The following code fiagment shows the coimtruction of the Breach Subti^t
Set Data PDU:

typedef struct FixedDatuniRecord{

Umnt32 id;

Umnt32 value;

}

typedef struct BreachRecord{

Unint 32 id;

Unint32 length;

Float64 value[8];

}

typedef struct VertexRecord{

Unint32 id;

Umnt32 length;

Float64 value[5];

}

typedef struct DingRecord{

Unint32 id;

Unint32 length;

Float64 value[5];

}

BreachRecord *v = (BreachRecord *)setdatapdu->variableDatum;

FixedDatumRecord *f = (FixedDatumRecord *)setdatapdu->fixedDatum;

setdatapdu->origmating_entity_id.eotity_id = EntitylD;

setdatapdu->receiving_entity_id.address.site = 65535;

setdatapdu->receivin^entity_id.address.application = 65535;

setdatapdu->receiving_entity_id.entity_id = 65535;

setdatapdu->request_id = breachnumber;

seMat^du->nmnber_of_fixed_datimi_reconk = 34;

setdatapdu->numbCT_of_variable_dattim_records = 1;

f[0].id = BREACH_SUBTRACT_INFORMATION;

f[0] .value = numberofjjolygons;

f[l].id = BREACH_TEXTURE_INFORMATION;

f[l].value = strlen(texture);

for(intI = 0;I<32;I-H-){

f[I+2].id = BREACH_TEXTURE_][NFORMATION + 1+1;

f[I+2].value = texture[I];

}

v->id = BREACH_SUBTRACT_INFORMATION;

v->length = 512;

v->value[0] = world X location of breach;

v->value[l] = world Y location of breach;

v->value[2] = world Z location of breach;

v->value[3] = surfk^e normal X;

v->value[4] = surface normal Y;

v->value[5] = surface normal Z;

v->value[6] = major_axis_length in meters;

v->value[7] = minor_axis_length in meters;

3.4 Breach Polygon Number Set Data PDU

The Breach Polygon Number Set Data PDU contains the polygon information. Clients will store
the polygon data in the arrays allocated after arrival of the Breach Subtract Set Data PDU. The
Breach Polygon Number Set Data PDU contains the number of the polygon from zero to N, the
round world coordinates of the vertex, and the texture coordinates. The following code fragment
shows the construction of the data packet:

FixedDatumRecord *f = (FixedDatumRecord *)setdatapdu->fixedDatum;

VertexRecord *v = (VertexRecord *)setdatapdu->variableDatum;

setdatapdu->originating_entity_id.entity_id = EntitylD;

setdatapdu->receiving_entity_id.address.site = 65535;

setdatapdu->receiving_entity_id.address.application = 65535;

setdatapdu->receiving_entity_id.entity_id = 65535;

setdatapdu->request_id = BreachJDD;

setdatapdu->mmiber_of_fixed_datum_records = 1;

f->id = BREACH_POLYGON_NUMBER;

f->value = Polygon Nimiber [0 - N]

setdatapdu->number_of_variable_datum_records = 3;

v[I]->id = BREACH_POLYGON_][NFO]RMATION;

v[r|->length = 320;

v[ri->value[0] = world X location;

v[I]->value[l] = world Y location;

v[r|->value[2] = world Z location;

v[I]->value[3] = texture u coordinate;

v[I]->value[4] = texture v coorfinate;

The information in the PDU is independent triangles. Each triangle is described by its
coordinates (vertices) and texture values. Using this data, the receiving simulator culls out the
impacted wall ftom the scene and replaces it with the triangles received ftom the network. The
receiving simulator can extract color information for the new triangle from the impaited
trian^e. hi the future, color information should be included in the Set Data PDU, with a
corresponding d«a-ease in network respome.

3.S Ding Infornution Set Data PDU

The ding data packet wjntains ttie necessary data to diqjlay a ding resulting from a small-aims
imp^t on a terrain object. Hie following code fiapnent shows the Ding Set Date PDU:

FixedDatumRecord *f = P^ixedDatumReconl *)setoJat^du->fixedDatum;

DingRecord *d = (DingRecord *)seMat^u->variableDatum;

setdatq)du->originating_eaitity_id.entity_id = EntitylD;

set(tot^du->receiving_entity_id.aidress.site = 65535;

seMatapdu->^eivin^entity_id.^dress.application = 65535;

setdat^du->receivmg_entity_id.entity_id = 65535;

setdatq>du->request_id = DING_ID;

setdat^du->number_of_fixed_datum_recor^ = 1;

setdatapdu->number_of_variable_datum_records = 1;

d->id = DING_ID;

d->length = 320;

d->value[0] = world X location;

d->value[l] = world Y location;

d->value[2] = world Z location;

d->value[3] = angle in XAi' plane;

d->value[4] = size in meters;

4. DTServerGUI

The DTServer GUI provides a visual check on the state of the database. Breaches and rubble are
displayed. The GUI is a three-dimensional display of the terrain, and the viewer can fly around
the terrain using keyboard commands. The GUI may be turned off to increase system response
on computers with slow graphics hardware. The GUI also allows the user to fire munitions at
walls to create damage in a stand-alone mode. The user can select the weapon to be fired, aim at
a wall, and fire the weapon. The effect is calculated, and the appropriate Set Data PDU is
transmitted. This capability is usefiil when inserting new munitions into the database or testing
client program compatibility.

The arrow keys provide steering and speed control. The up and down arrows speed up and slow
down forward and reverse motion. The left and right arrow keys turn the view left and right.
The Fl 1 and F12 keys raise and lower the eyepoint. The H key turns the GUI drawing off. This
will greatly improve DTServer processing speed on slower machines. The L key will turn on
logging. The logger will store all received detonation events that result in a breach or ding. The
events are stored in a file, DTlog.dat in the current working directory, and can be replayed with
the R command. This allows the DTServer to store simulation runs for playback later or to
predamage a database using data fi-om an earlier run.

The space bar fires the current mimition. The munition is fired at the center of the screen. The
user selects the weapon with the S key.

5. Runtime Considerations

The DTServer requires three datab^es in order to run—Ihe terrain datable, the object database,
and the munitions database. The following sectiora describe these dat^^es and give an
example of a run script for the DTSCTver.

5.1 Terrain Database

The terrain datable is used for ground clamping rabble. The terrain datdjase is lowled using the
following-t command line option: dtserver-t flpolk_terrain.flt. Multiple terrain databases may
be loMed, e^h witii the -t flag.

5.2 Object Database

The DTServCT can function on an entire database (with the -t nmtime option) or on specific
objects wifliin a datable. The presence of the file sconccfg will deteraiine specific objecte or
whether fhe entire datable is processed.

The scene.cfg file is a user-creat«i datofile of objost names. The object names may be file
names or di^lay Ust names. For example, buildingL.flt will lo^ in the OpenFUght file namai
buildingLflt and will ^d it to the list of processed objecte. In addition, nodeS will search the
datable for a node named nodeS and aM it to the list of processed objects.

The DTServer creates a file called nodenames.dat when ececuted. A node is a graphics obJTCt in
the scene gi^h of the graphical database. A node can have a name; such named nodes are of
interest. This file lists the names ofall named nodes in a database. The user then selects the
objecte to be processed fixjm this list and ^ds them to the scene.cfg file. This is a trial and error
process and is prone to erroi^ hence, caution is advised.

The scene.cfg file is of the following format:

staticNodes

{

XbldlG

Xbld2C

XbldlG

Xbld4H

XbldSF

Xbld6EE

Xbld6EE

XbldlOH

Qlroom

XbldllHH

Xbldl2HH

XbldlSB

Xbldl4H

XbldlSH

Xbldl6H

XbldlTHH

XbldlSH

Xwatertower

Xbld20H

Xbld21AA

Xbld22B

Xbld23A

Xbld6EE

Xbld25E

Xbld26D

Xbld6EE

Xbld6EE

Xhbuilding

}

terrainNodes

10

{

tGround

The staticNodes keyword lists the nodes which will be processed for detonatiom. Using the
UNIX* sptem grep command, the node names are extracted from the nodenames.dat file created
by the DTServer. The grep pfGroup command will print out all named groups in the scene
graph. These nodes will be the only nodes which will be processed for bre^hes. The
terrainNodes keyword liste nodes which will be processed as terrain. Terrain is not breached but
can show dings for ground impacts. This is useful when showing history of ground impacts and
r^idue of anoke munitions.

In addition, the scene.cfg file may contain file nmnes. The corresponding keywortk would be
staticFiles and terrainFiles.

5.3 Munitions Database

For the munitioiB effwts models, the munitions file contains information required such as the
name, DB enumeration, the equivalent weight of TNT, buret r^us, mass, warhead diameter,
fiize, and muzzle velocity. The file format is as follows:

Start{

Name: Redeye

Kind: 3

Domain: 1

Country: 225

Category: 1

SubCategory: 1

EqWtTNT: 5.00

BuretR^us: 10.00

SmokeType: 1

Unix is a register^ trademark ofThe Open Group.

11

Mass: 0.50

Diameter: 0.25

Warhead: 0.00

Fuze: 0.00

Muzzle Velocity: 0.00

}

The current values in the munitions file are derived from open-source literature.

5.4 Run Script

The DTServer is best run from a shell script. The following shell script correctly sets up all
environmental variables and executes the DTServer:

#!/bin/csh

setenv DISIMDEV_ROOT /home/disim

setenv PFPATH $DISIMDEV_ROOT/texture:$DISIMDEV_ROOT/FTPOLK/textures

setenv LD_LIBRARY_PATH "/usr/Xl lR6/LessTi£Motif2.0/lib"

hole_server-p 1313 -e 10 -r 20 -t /home/disim/FTPOLK/models/terrain.smf925b.flt

-b ftpolk.dat-1488360.0 3440792.0 15

This command executes the DTServer with the following settings:

12

-p 1313 : The DIS UPD port to commuiiicate on

-e 10 : The DB Exercise ID is set to 10

-r 20: The rabble heartbeat is set to 20

-t /home/disim/FTPOlJK/models/terraiii.sm©25b.flt: The ground terrdn database file

-b flpolk.dat: The terrain objwte are read fix>m the file flpolk.dat

-1488360.0 3440792.0 15 : The terrain m^ lower left easting and northing of&ets and gridzone

6. Results

The DTServer was used in the Cuhninating Event for the Virtual Environments for Dismounted
Soldier Simulation, Training, and Mission Rehearsal Science and Twhnolo^ Objective at
Ft. Benning, GA, in September 2002. The DTServer was used with the Fort Pol^Shugartt-
Gjrdon datdiase to provide dinp and brcKhes.

The DTServer for this exercise was required to bre^h walk with the C4 explosive. One
problem with the C4 was the lack of a velocity vector. Hie bre^^hing algorithm iwed the
velocity vector to ojmpute tiie sh^e of the hole. The lack of a velocity vector caus^ flie
algorithm to djort. Ihw was fixed by adding a velocity vector normal to the wall. Another issue
for the Cuhninating Event was ctata dropoute. Due to the unreUable USCT datagram protocol
message-passing protocol of the DIS standard, these dropouts causal the DTServer to not get a
detonation, therefore not computing a breach. In Ms instance, the soldiera m ttie evaluation had
to redo the C4 charge emplacement. Another case w^ more saious. This involve the situation
where some soldier simulatore r^^eived the Breach Subti^rt; Set Date PDU and othere did not. In
this case, some simulators di^layed the htmch properly and some did not. This resultai in
inconsistent databases on die network, which negatively impacted the training exercise. Using a
reliable network protocol such as the High-Level Architecture would fix these problenw.

Most simulation nins were successfiil. The soldiera in the training exercise used the ding
mechanism as trwere and markera. SnipCT location was marked by shooting at die wall outeide
the hide position, and bre«^hing was ntilized by the soldiera in accoidance witii doctrine for
room clearing.

Another issue for the DTServer concerned the terrdn ^tebase. The DTServw process^ objects
in the database for which it is programmed, namely buildinp and die ground. Entities are
ignored in the DTServer at this time. The scenarios in the Culminating Event contaned entities
for fiimiture and other building objects controlled by the semiautomated forces soflwa^, DISAF.

13

In one instance, the soldiers breached a wall only to find a Coca-Cola* machine in the way. In
the real world, blast overpressure may have knocked the Coca-Cola machine down, or a large
mimition may have blown it up. These secondary effects need to be included in any future
system for MOUT (military operations in urban terrain) simulations.

7. Conclusion

The DTServer provides real-time damage effects to distributed simulations. The DTServer has
been interfaced to the Soldier VisuaUzation System by "Reality By Design," the afler-action
review system by the Institute for Simulation and Training, and the ARL DIS. The DTServer
provides logging and playback functionality for after-action review or predamaging a database
from a previous run.

Future work will include upgrading to the High-Level Architecture, providing updates to late-
arriving clients, and additional real-time munitions effects such as terrain cratering and effects on
entities.

The mobility, hne-of-sight, and obstacle creation provided by the DTServer can be appUed to all
high-resolution ground level entities such as robots, areal sensors, and xmmaimed ground
vehicles.

Coca-Cola is a registered trademark of the Coca-Cola Company.

14

Bibliography

Neiderer, A. M.; Thomas, M. A.; Pearaon, R. A Fracturing of Polygonal Object, ARL-TR-1649,
U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, April 1998.

Neiderer, A. M.; HaMon, C. E. Distribution of Fragments Resulting From Polygonal Object
Fracture; ARL-TN-182, U.S. Army Research Laboratory: Aberd^n Proving Ground, MD,
September 200L

iMtitute for Electrical and Electronic Engineera. Standard for Distributed Interactive Simulation
-Application Protocols; DIS-4 Veraion 2.0,4th draft (supereeded by ffiEE 1278.1); Mstitute
for Sunulation and Training: Orlando, FL, 4 February 1994.

15

REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188
Public reportiiig biinlen for fliis coUecticm of Infbnnation is estiinited to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining Uic data needed, and completing and reviewing the collection information. Send comments regarding this burden esBmate or any other aspect of tWs collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarten Services, Directorate for Information Operations and Keports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any ofter provision of law, no person shall be subject to any penalty for falling to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2003

2. REPORT TYPE

Final
3. DATES COVERED (From - To)

30 September 2001-30 September 2002
4. TITLE AND SUBTITLE

The U.S. Army Research Laboratory Dynamic Terrain Server

6. AUTHOR{S)

Mark A. Thomas

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-CT
Aberdeen Proving Ground, MD 21005-5067
8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Sa. CONTRACT NUMBER

Sb. GRANT NUMBER

Sc. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

P622783.Y103TEDNC
Se. TASK NUMBER

«. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2962

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORmiONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The U.S. Army Research Laboratory is conducting research in methods to conqjute and distribute dynamic terrain information
in real-time distributed simulation. The purpose is to populate virtual environments with real-world dynamic tenain and objects
such as rubble and debris, dings, and breaches of structures. This project is part of a science and technology objective to
develop simulation capabihties for training dismounted soldiers using virtual simulation. This research resulted in the
development of a dynamic terrain server, DTServer. DTServer con5)utes results of battlefield munitions inqjacts on structures
then transmits the results to receiving other simulations on the network using distributed interactive simulation protocol data
units. Results of DTServer use in a dismounted infantry exercise at Ft. Benning, GA, demonstrate the utility of the tool. This
report will describe the DTServer software and results of the dismounted infantry exercise.

15. SUBJECT TERMS

dynamic terrain, modeling and simulation, MOUT, distributed interactive simulation, High-Level Architecture

18. SECURTTY CLASSIFICATION OF:

a. REPORT

UNCLASSIFffiD

b. ABSTRACT

UNCLASSIFffiD

c THIS PAGE

UNCLASSIFffiD

17. UMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

22

IBa. NAME OF RESPONSIBLE PERSON

Mark Thomas
19b. TELEPHONE NUMBER (Include area code)

(410)278-5011
Standard Form 298 (Rev. 8f98)
Prescribed by ANSI Std. ZSQ.IB

16

