
Carnegie Mellon
Software Engineering Institute

Architecture Reconstruction
Case Study

Liam O'Brien
Christoph Stoemier

April 2003

Architecture Tradeoff Analysis Initiative

Technical Note
CMU/SEI-2003-TN-008

20030519 015
Unlimited distribution subject to the copyright.

DISTRIBUTION STATEMENT A
Approvedfor Public Release
..: Pistributldn Unlimited

Technical Note
CMU/SEI-2003-TN-(K)8

Architecture Reconstruction
Case Study

Liam O'Brien
Christoph Stoermer

April 2003

Architectui^ Tradeoff Analysis Initiative

Unlimited distribution subject to ttie cop^ight.

A(?^o3~aF-^^^

Tlie Software Engineering Institute is a federally fiinded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.htinl).

Contents

Executive Summary

/Ujstract..

1 Introduction

2 Source information Extraction...,

3 Architectural View Composition,

4 Conclusions

References.........................

.VII

..ix

...1

...3

...6

.11

.12

CMU/SEI-2003-TN-008

CMU/SEI-2003-TN-008

List of Figures

Figure 1: Reconstruction Process
Figure 2: "White-Noise" View Showing All of the Elements and Relations..
Figure 3: VANISH Architectural View with the Utilities Layer
Figure 4: VANISH Architectural View Without the Utilities Layer...........
Figure 5: Details of the Relations Between FunctionaLCore and Dialogue

.2

.4
.....8
....9
..10

CMU/SEI-2003-TN-008

iv CMU/SEI-2003-TN-008

List of Tables

Table 1: Elements and Relations Extracted from the VANISH System...„.........3

CMU/SEI-2003-TN-008

vi CMU/SEI-2003-TN-008

Executive Summary

This technical note outUnes an architecture reconstruction carried out at the Software
Engineering Institute (SEI*'^) on a software system called VANISH that was developed for
prototyping visualizations. There were multiple goals for this reconstruction effort. The first
was to understand the architecture of the VANISH system. The second was to use a new
architecture reconstruction tool called ARMIN (Architecture Reconstruction and MINing) to
support the reconstruction. The third goal was to make sure that this new tool provides at
least the same capabilities as the Dali Worklwnch that was used in a prior reconstruction of
the VANISH system [Kazman 97].

During the reconstruction several architectural views were generated through abstraction of
low-level information extrjK:ted from the system. These views show the components of the
system and the relations among them. The ARMIN tool provides the ability to visualize and
manipulate the set of views generated diiring the reconstruction.

The reconstruction shows that the VANISH system is divided into several layers. When the
system was originally designed, it was designed in a strictly layered fashion. However, from
the views generated in the reconstruction we identified that this strict layering was
compromised and interlayer bridging occure in several places. The reconstruction results can
be used to further examine why the relations between the components in the various layere
cause the bridging to (x;cur.

During the reconstruction exercise, we found that the same capabilities that were available in
the Dali Workbench have been uicorporated into the ARMIN tool and that the ARMIN tool
provides additional capabilities, including better presentation and layout of the generated
architectural views and better capabilities for manipulating them.

SEI is a service mark of Carnegie Mellon University.

CMU/SEI-2003-TN-008 vli

viii CMU/SEI-2003-TN-008

Abstract

This report outlines an architecture reconstruction carried out at the Software Engineering
Institute (SEI***) on a software system called VANISH that was developed for prototyping
visualizations. The goals of the reconstruction were to understand the existing VANISH
system and to use a new architecture reconstruction tool, called ARMIN, for the
reconstruction, while ensuring that ARMIN has at least the same capabilities as the Dali
Architecture Reconstruction Workbench.

During the reconstruction several architectural views were generated through abstraction of
low-level mformation extracted fi-om the system. These views show the components of the
system and the interfaces among them. The ARMIN tool provides the ability to visualize,
navigate, and manipulate the set of views generated, and yields results technically compatible
with the Dali Workbench but with improved presentation and layout.

CMU/SEI-2003-TN-008 l5j

CMU/SEI-2003-TN-008

1 Introduction

This report ouflines an architecture reconstruction carried out on a software system called
VANISH that was developed for prototyping visualizations. The VANISH system consiste of
50,000 lines of ct^e and is implemented in C++. It was designed in a strictly layered fashion.

There were multiple goals for this reconstruction effort. The first was to generate several
architectural views of the VANISH system and to determine if this strict layering is adhered
to in the implementation. The second goal was to use a new tool for architecture
reconstruction called ARMIN (Architecture Reconstruction and MINing) and to determine
the usefulness of this tool in supporting the reconstruction proiess. The third goal was to
make sure that ARMIN has at least the mim capabilities for reconstruction as the Dali
Architecture Reconstruction Workbench.

Kazman has written a prior case study in which the Dali Workbench was used to reconstruct
the VANISH system [Kazman 97], and O'Brien has written a case study showing
reconstruction of several other systems [O'Brien 01]. This technical note does not give an in-
depth detailed description of the ARMIN tool, nor does it contain a detailed discussion of the
differences between the ARMIN tool and the Dali Workbench. This vdll be the subject of a
separate technical report.

The reconstruction process that was followed is shown in Figure 1. This process consists of
the following steps:

1. Source information extraction. In this step a set of elements and relations is extracted
from the system and loaded into ARMIN.

2, Architectural view composition. In this step views of the system's architecture are
generated by abstracting the source information through agpegation and manipulation.
The views are presented to the reconstructor in the ARMIN tool, and the user can
navigate and manipulate thent

The source code and any documentation are input to the reconstruction process. During the
reconstruction process, the reconstruction would use the knowledge of the maintainere and
developers in generating the architectural views and they would assist m the process.

The end result of the reconstruction process is a set of architectural views of the VANISH
system These views show various characteristics of the system; for example, that it is
decomposed into several layers. These views are presented to the user in the View Generator
component of the ARMIN tool, and the user can navigate and manipulate them using the tool.
By selecting a particular component or connector between components, the user can see its
details.

CMU/SEI-2003-TN-008

The View Generator contains an Interpreter that provides the capability of loading and
running command scripts to carry out most of the Architectural View Composition step
automatically. A command script can be written in an editor and loaded into the tool, and then
be used to carry out manipulations on the data in the database and produce new views as a
result.

Source Code
Documentation

v
Source Information

Extraction

Elements and Relations

v
Architectural View

Composition

Architectural Views

Figure 1: Reconstruction Process

The remainder of this technical note is organized as follows. Chapter 2 outlines the source
information extraction. Chapter 3 details the reconstruction process, and Chapter 4 provides a
summary, as well as planned additions to the ARMIN tool.

CMU/SEI-2003-TN-008

2 Source Information Extraction

The information needed from the VANISH source code had been extracted in the previous
reconstruction exercise using the Dali Workbench. In the previous reconstruction, the
VANISH source code was analyzed using program analysis tools. Information was extracted
from the source code in the form of a set of elements and relations among these elements.
Many program analysis tools can do this type of analysis, depending on the language in
which the system is implemented. In this case the language is C++ and the set of elements
and relations, shown in Table 1, was extracted from the VANISH system and used to assist in
the reconstruction of the system.

Element Relation Element Description

Function Calls Function A static function call

Class definesjn Function Functions defined in classes

Class has_member Member_variable Member variables of a class

Function deflnes_var LocaLvariable Local variables of a function

Class has_subclass Class Class hierarchy

Class hasjriend Class Friends of a class

File Contains Function Functions defined infiles

File definesjiobal GlobaLvariable Global variables defined in a file

File Defines Class Classes defined in files

File depends_on File Dependencies between files

Table 1: Elements and Relations Extracted from the VANISH System

Most of these analysis tools provide the ability to output their analysis results in a text file
that can be manipulated using a scripting language, such as Perl, into the format required for
the ARMIN reconstruction tool. One important format used in ARMIN is the Rigi Standard
format (RSF) [Miiller 93] (a tuple-based data format in the form of "relation <entityl>
<entity2>"). ARMIN also supports the Graphical extensible Markup Language (GXML).

CMU/SEI-2003-TN-008

Other sources of information can be used in addition to analyses of source code. In this case
the "Makefile" for the system was analyzed to identify the information for the "depends_on"
relation. This relation captures dependencies between source files that contribute to particular

executables.

Kazman provides more details about the types of analysis that can be carried out and the
types of tools that support them [Kazman 02].

This information was loaded into ARMIN. A view of this information visualized by the tool
is shown in Figure 2. This view shows all the elements and relations that have been extracted
and loaded into ARMIN.

Figure 2: "White-Noise" View Sliowing All of the Elements and Relations

On the right-hand side of Figure 2, the entity (element) and relation types are listed in a
selection panel. It is possible to select the element and relation types to be displayed in the
view and to filter out certain elements and relations. This selection panel is available for each
view that is generated. In the Dali Workbench, it was possible to filter by navigating the
menu system to open two filtering windows, one for elements and another for relations. Also

4 CMU/SEI-2003-TN-008

in ARMIN, colors can be applied dynamically to the different element and relation types at
any time. This capability is only available in the Dali Workbench if the colors are set before
the worktench is run.

The bottom portion of the window shown in Figure 2 provides a command interface to the
hiterpreter. We can write commands in that window to manipulate and present views, or we
can load a command script from an external file that contains a series of commands. More
details about the command scripts are in the next section.

ARMIN also allows for different views to be presented in the window. As we generate new
views we can select the one we want to be currently displayed m the window. This capability
is not available in the Dali Workbench. In DaU, once a view is presented and a query is
applied to it, it is not possible to redisplay the previous view without restarting the
workbench and applying the set of queries to reproduce it.

In Figuie 2 the "Source" view is visible. The View Generator has capabilities for hiding node
laWs and adding arrows to all edges if necessary. The tool also siqjports different types of
view layouts; m this case the view is laid out in a grid style, and we have the ability to zoom
in to particular parts of the graph for closer examination.

CMU/SEI-2003-TN-008

3 Architectural View Composition

The reconstruction of any system usually involves several activities for abstracting
information that ranges from source-level information (consisting of a set of elements and
relations) to higher level views of that information. These activities include

• aggregation

• pattern matching

• analyzing documents to help identify abstractions

• interviewing developers and maintainers to help identify abstractions

In this case the original developers of the system were not available, the system is not
currently maintained, and little documentation is available.

We began by carrying out the same abstractions that were carried out in the previous
reconstruction of the VANISH system using Dali. First we aggregated local information
inside functions to hide details that were not architecturally relevant. In order to do this, we
wrote the following command script and executed it within the interpreter:

#collapse a function's locaLvariables

$c = desc(systenri.types.function);

$c.merge(/ext="+");

collapse($c, /graph="FUNCTION+", /type=system.types.function);

show();

This command script takes each fimction and aggregates its locaLvariables so that they are
removed from the view, and adds a plus sign (+) after each function name. The aggregated
function itself is of type function. The resultant view "FUNCTION+" is displayed (using the
command "show()") in the tool.

A similar aggregation was carried out on classes within the system. In this case the member
variables and functions defined in a class were aggregated within the class. The resultant
view, CLASS+, shows each class name followed by a plus sign (+).

CMU/SEI-2003-TN-008

#collapse member functions and variables inside classes

$d = desc(system.types.class);

$d.merge(/e)rt="+");

collapse($d, /graph="CLASS+". /type=system.types.class);
show();

In generating architectural views we carry out other aggregations including aggregating
functions and global variables within files and then aggregating files within classes. These
aggregations help to reduce the amount of information that we have to deal with and help in
creating the structure of the reconstructed architecture. Having carried out these aggregations,
we can now identify components irom groups of classes. In the following script we identified
the set of elements that Wongs to the Dialogue component.

fcreate Dialogue component

$diag = {{{"Dialogue"},

{"vanish-xforms+","PrimitiveOp-H-","Mapping++",

"MappingEditor++","MappingLibrary++"."Application++",

"Renderer++","lnputValue-H-","VEC++","MAT++",

list("Dbg-H-$",system.types.class),

list("Event++$",system.types.class),

desc("PrimitiveOp++",system.types.has_subclass,/dim=1 /grade=1)}

$comps = $diag;

The Dialogue component consists of the set of files and classes Usted, those that end with
"Dbg" and "Event" and sul^l^ses of PrimitiveOp,

The command script for creating the Utilities component is below. The Utilities component
consiste of the class Socket, classes that start with "List" and those classes that end with
"Map".

#create Utilities component

$util = {{{"Utilities"}.

{"Socket-H-",list("^Usf,system.types.class).list("Map++$",system.types.class)}

$comps.append($util);

CMU/SEI-2003-TN-008

In this way we identified the set of components and produced an architectural view of the
VANISH system showing the layers (set of components) and the relations among them. This
view is shown in Figure 3, which also shows the Utilities layer. In Figure 4 the Utilities layer
has been removed.

Dialogue

Logic3l_lnteraction

Presentation

Functional Core

IL i';|;ilii!lil!!IEl

Figure 3: VANISH Architectural View with the Utilities Layer

We can navigate the architectural view that we generated within the View Generator of the
ARMIN tool and provide different layouts for the view. We can select a particular node or
edge between nodes (in this case, layers and relations) and drill down to identify the low-
level elements that make up a layer or the low-level relations that make up an edge.

In the original design, the VANISH system was intended to have strict layering—that is, the
Dialogue layer was not to have direct connection to the Functional_Core, and the
Functional_Core_Adapter was meant to isolate the functionality of the Functional_Core from
Dialogue. However, in the implementation of the system we can identify instances where that
strict layering has been compromised, that is, we see instances of interlayer bridging. Figure
4 shows that edges directly connect Functional_Core and Dialogue.

CMU/SEI-2003-TN-008

11

Dialogue

Loglcaljnteract on

Functional Core Presentation

iL If uiJ!>

t!i'

H»

, »

Figure 4: VANISH Architm^ural View Without the Utilities Layer

To investigate what is causing this inter-layer bridging we can select one of the edges as
shown in Figure 5. In this case it is the edge from Functional_Core to Dialogue. This edge
means that there is some uses relation between the Functional_Core and Dialogue layers. We
can bring up a second window that shows what relations are represented by the edge. At the
top of this window, we see that there is a relation between "CallNode++" and "Mapping++".
We can navigate to the low-level details to see exactly which set of elements and relations is
included in this relation. In this case two function calls are shown in the window
(CallNode-MakeNode calls Mappingr.Compute and CallNode::MakeNode calls
Mapping::Reset), and we can drill down to many other relations that contribute to this edge.

CMU/SEI-2003-TN-008

~3

Dialogue

LogtcaI_Interac1ion

13 Rjnct)onal_Core -> Diakxjue
B aic*Jocle++-> Mapplnq++

e 23 Canode+ -> Mapplng+
a 3Cat*xle::MakeNocle+ -> Mapping: :Compute+

'--• CaModeiiMakeNode -> Mapping:;Compute
£3Cat>locle::MakeNode+ -> Mapping: :Reset+
---♦ Ca^Jode::MakeNoc)e-> Mapp(ng::Reset

B ClJCIassNocle++ -> Mapplng++
H CljDeviceNode++ -> Mapping++
ffl lJFieNode++ -> Mapplng++
ffl lJLogFleNocle++ -> Mapplng++
SI :UMCFNode++ -> Mapprig++
S CJC?uervNode++ -> MapptTg++
ffl URCSNode++ -> Mapplng++
51 LlJRawNocle++ -> InpLitVaiue++
e CllRawfJode++ -> Mapp»Tg++
S 2JWWWNode++ -> Mapplng++
ffi U WWWfienode++ -> Mapplng++

l!IllIII]llillii!Ll: i;;i!!lJHili]iHiHi

Figure 5: Details of the Relations Between Functional_Core and Dialogue

Using the ARME^ tool gives us the same results as the Dali Workbench. However, the
ARMBSJ tool provides better facilities for displaying and navigating the views that are
generated. The interpreter and command scripting provides a better interface for applying
queries to the information than was available in the Dali workbench. In the Dali Workbench
queries were written in a mixture of SQL and Perl. A new script language has been developed

for use in the ARMIN tool.

10 CMU/SEI-2003-TN-008

4 Conclusions

The reconstruction of the VANISH system shows that the system is decomposed into layers,
though there is no strict adherence to the use of layers. As a result, interlayer bridging occurs
within the implementation. Using the ARMIN tool it is possible to investigate the set of
elements and relations between tiiose elements that contributes to that bridging.

Using the ARMIN tool, we generatwi the same views that had been generated in the previous
reconstruction of the VANISH system using the Dali Workbench. The ARMIN tool provides
many enhancements to Dali's capabilities including the ability to have different graphical
representations for different node types within a view. ARMIN also has the concept of a view
stack, which enables users to select and display different views generated during die
reconstruction. And ARMIN has the ability to link the information loaded into it to the source
code and the ability to be able to navigate to the source code to identify, for example, where a
particular function definition occure m the code (this feature was not shown in this report).

ARMIN also allows for information from multiple systems to te simultaneously loaded into
the tool and provides the ability to jump back and forth between the different systenK. Also
ARMIN's perfomwnce is significantly better than that of the Dali Worktench. The Dali
Workbench was limited to a particular set of operating systenK: Sun Solaris and Lmux. The
ARMIN tool can run on platforms where the Java Development Kit (JDK) 1.4 is available,
which means that it can run on many more platforms. We have used the tool on Wmdows
2(XK) and XP, and on various Linux installations.

Further case studies usmg the ARMIN tool are planned. We are also exploring the addition of
further functional capabilities to ARMIN. One of the areas under investigation is the
alignment of the views generated by the reconstruction tools with the viewtypes and styles
outlined in Documenting Software Architectures: Views and Beyond by Clements and
associates [Clements 03]. We are investigating what capabilities can be added to ARMIN to
support generation of these vievrtypes and styles.

CMU/SEI-2003-TN-008 ^,|

References

[Clements 03] Clements, P.; Bachmann, E; Bass, L.; Garlan, D.; Ivers, J.; Little, R.;
Nord, R.; & Stafford, J. Documenting Software Architectures: \^ews and
Beyond. Boston, MA: Addison-Wesley, 2003.

[Kazman 97] Kazman, R. & Carriere, S. J. Playing Detective: Reconstructing Software

Architecture fi-om Available Evidence, (CMU/SEI-97-TR-OlO,

ADA330928). Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University, 1997. <http://www.sei.cmu.edu/publications

/documents/97.reports/97tr010/97ti010abstract.html>.

[Kazman 02] Kazman, R.; O'Brien, L.; & Verhoef, C. Architecture Reconstruction
Guidelines, Second Edition (CMU/SEI-2002-TR-034). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2002.
<http://www.sei.cmu.edu/publications/documents/02.reports
/02tiO34.html>.

[MiJIIer 93] Miiller, H. A.; Mehmet, O. A.; Tilley. S. R.; & Uhl, J. S. "A Reverse
Engineering Approach to System Identification." Journal of Software

Maintenance: Research and Practice 5,4 (December, 1993): 181-204.

[O'Brien 01] O'Brien, L. Architecture Reconstruction to Support a Product Line Effort:

Case Study (CMU/SEI-2001-TN-015, ADA395167). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2002.
<http://www.sei.cmu.edu/publications/documents/01.reports
/01tn015.htm]>.

12 CMU/SEI-2003-TN-008

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public r^ortlng buiden for Mils ortleotlon of Infotmation Is ssBmatsd to average 1 h<Hir per response, including the time for reviewing Instmotlwis, searohlno
esstlng data KXiro^, gatliffilng and maintaining the drta needed, and ootrpleting and rewewing the cdlectlon of InfomaBon. Send conmente regarding Ws
burden esBmate or any other aspect of this collection of Infomation, inclurtng suggesBwts for reducing ttils Ixirden, to Washington Headijjarters Sewloes
raiectorate for Intotimtion (^rations and Rsp<Mts, 1215 Jefferson Davis Highway, Suite 1204, Aillngton, VA 22202-4302, and to the OBloe of Management and
Budget, Paperaioifc Restetion Pr^eet (0704-0188), Washington, DC 20503.
1. MENCYIKECMLY

(Leave Blank)

2. REPORT DATE

^riiawa
4. -nTUANBaiBTniE

Architecture Reconsfructlon C^e Study
6. AUTHOTjS)

Liam O'Brien, Chrlstoph Stoermer

7. PEBFC»MING(»C3«IIZ«n(WNMIIE|S)iWDADim^B)

Software Engineering Insttute
Carnegie Mellon University
Pittsburgh, PA 15213

9. SP(MIS(»BNQtaSMtT{«IM6AGENCVMMIE(S)«D*M»S^ES)

HQESC/XPK
5 Eglin Sftreet
Hanscom AFB, MA 01731-2116

BEPOrr TYPE AND DATES COVERED

Final

S. njNDINQ NUMBERS

F19628^-(WKX)3

11. SUPPLEHeNT/WY NOTES

PERRMMING mBAMSkTIWI
REP(WT NUMBER

CMU/SEI-M>3-TN-ro8

10. SPC»S«5INGftKWIT(»INaAaHCY
REPWTNUmER

12A oisTRimmcw/AVAiuBiLmf STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B TOTRIBUntWCOTE

13. ABSTRACT (MAXIMUM 200 VWMIB)

Tills report oufllnes an architecUire reconstmcUon carried out at the Software Engineering Institute (8E|SM) on a
software system called VANISH fliat was developed for prototyping visualizations. The goals of the reconsttucflon
were to understand the ewsting V^ISH sptem and to use a new architecture reconstmction tool, called ARMIN,
for the reronstructlon, while ensuring ttiat ARMIN has at least the same capabilities as flie Dali ^chitecture
Reconstruction Workbendi.

During the reconstruction several architectural TOTO were generated through absfraction of low-level infomiation
extracted from ttie sptem. TTiese views show ttie componente of ttie system and ttie interfaces among them. Tlie
^MIN tool prowdes the ^ility to visualize, navigate, and manipulate the set of views generated, and yields
results tedinically compatible with ttie Dali Workbench but with improved presenteton and layout.

14. SUBJECTTERMS ~~

ARMIN, Dali /^diitechjre ReronstmcHon Workbench, Kjftware architecture,
ajftware architecture reronstrudlon, VANISH

16. PRICE CC»E

15. NUMBER OF PASES

24

17. SECURfTY CLASSIFICATION OF
REPOrr

Unclassified
NSN 7540-01-280-5500

18. SECURfTYCUSWICATi™
OFTHISPAOE

Unclassified

19. SEOIRrrYCU^IFICATOJNW
ABSTRACT

Unclassified

20. UMITATKWffl: ABSTRACT

UL

Standard Fomi 298 (Rev. 2-89) Presciibed Ijy ANSI Std. Z39-18 298-102

