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1.    Introduction 

1.1. Research Objectives 

As part of this research program we proposed the development of a general multiech- 

elon hierarchical nonlinear switching control design framework that minimizes control law 

complexity subject to the achievement of control law robustness. In particular, we con- 

centrated on hybrid control, impulsive dynamical systems^ nonnegative dynamical systenw, 

compartmental systems, nonlinear switching control, and adaptive control. Application ar- 

eas included biological systems, physiological systems, pharmacological systems, ecological 

systenM, vibration control of aerospace structures, spacecraft stabilization, and control of 
combiwtion in jet engines. 

1.2. Overview of Research 

Controb research by the Principal Investigator has concentrated on nonlinear control 

with appUcatiom to aerospace systems and biological and physiological systems [1-125]. In 

particular, a imiied dynamical systems framework for a general class of systems possess- 

ing left-continuous flows; that te, left-continuoi^ dynamical systems was developed. These 

systeuM are shown to generalize virtually all existing notions of dynamical ^stems and in- 

clude hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we 

generalize dissipativity, passivity, and nonexpansivily theory to left-continuous dynamical 

^sterns. Specifically, the classical concepts of system storage fimctions and supply rates 

are extended to left-continuous dynamical ^sterns providing a generalized hybrid system 

energy mterpretation in terms of stored energy, dwsipated energy over the continuous-time 

*^y°^*^s,^ *^^^^fe**®d energy over the resetting events. The generalized dissipativity 

notioiM are then used to develop general stabihty criteria for feedback interconnection of 

left-continuoTK dynamical s^ten^. These results generalize the positivity and small gain 

theorena to the case of left-continuoiM, hybrid, and impubive dynamical systems. In addi- 

tion, a unified framework for hybrid feedback optimal and inverse optimal control involving a 

hybrid nonhnear-nonquadratic performance functional is developed. It is shown that the hy- 

brid cost functional can be evaluated in closed-form as long as the cost fiinctional coMidered 

is related in a specific way to an underlying Lyapunov fimction that guarantees asymptotic 

stabihty of the nonlinear closed-loop left-continuous dynamical system. Furthermore, the 

Lyapunov function is shown to be a solution of a steady-state, hybrid Hamilton-Jacobi- 
BeUman equation. 



In addition, we developed a unified hierarchical hybrid nonhnear stabilization framework 

for hybrid port-controlled Hamiltonian systems. Specifically, we design passivity-based hier- 

archical hybrid controllers such that the total ener^ of the closed-loop hybrid system is the 

difference between the energy of the multi-agent hybrid system and the energy suppUed by 

the controller. Hybrid passivity-based control architectures are extremely appealing since 

the control action has a clear physical energy interpretation over the continuous-time dy- 

namics and the resetting instants. This feature can considerably simpMfy hardware/software 

implementation for hierarchical hybrid control systems. 

Finally, a unified dynamical systems framework for stabihty and dissipativity theory for 

nonnegative dynamical systems is developed. Nonnegative dynamical system models are de- 

rived from mass and energy balance considerations that involve dynamic states whose values 

are noimegative. These modek are widespread in biological, physiological, and ecological sci- 

ences and play a key role in the understanding of these processes. In particular, we develop 

several results on stability, dissipativity, and feedback interconnections of hnear and nonlin- 

ear nonnegative dynamical systen^. Specifically, iMing Iwear Lyapunov functions we develop 

necessary and sufficient conditioi^ for Lyapunov stability, semistabihty, and asymptotic sta- 

bihty for nonnegative systenw. In addition, using linear storage functions and linear supply 

rates we extend the notions of dissipativity theory to nonnegative dynamical systems. These 

results are used to develop general stabihty criteria for feedback interconnections of non- 

negative dynamical systen^. Finally, an adaptive control framework for a class of nonlinear 

dynamical systenw with state-dependent uncertainty is developed. The proposed framework 

guarantees global asymptotic stabihty of the closed-loop system states associated with the 

plant dynamics without requiring any knowledge of the system nonhnearities other than the 

assumption that they are continuoiw and lower bounded. Generalization to the case where 

the system nonhnearities are unbounded are abo considered. In the special case of matrix 

second-order systems with polynomial nonhnearities with unknown coefficients and unknown 

order, we provide a universal adaptive controller that guarantees closed-loop stabihty of the 

plant states. The aforementioned design frameworks were apphed to pharmacokinetic sys- 

tems, epidemic systena, population dynamics as well as to the control of thermoacoiKtic 

combustion instabihties in aeroengines. 

1.3.    Goals of this Report 

The main goal of this report is to summarize the progress achieved imder the program 

during the past three years. Since most of the technical results appeared or wiU soon appear 

in over 125 archival journal and conference publications, we shall only summarize these 



results and remark on their significance and interrelationship. 

2.    Description of Work Accomplished 

The following research accomplishments have been completed over the past three years. 

2.1.    Stability, Dissipativity, Feedback Interconnections, and Op- 
timality of Hybrid Dynamical Systems 

In the hght of the increasingly complex nature of dynamical systems requiring controls, 

the predominant consideratioiw in control law design for modem engineering systems have 

focmed on general multiechelon hierarchical nonUnear switching control architectures that 

minimize control law complexity subject to the achievement of control law robi^tness. Mul- 

tiechelon systena are classified as hybrid systems and typically possess a hierarchical struc- 

ture characterized by continuoiM-time dynamics at the lower-level units and logical decision- 

making units at the higher-level of the hierarchy (see Figure 1). The logical decision making 

units serve to coordinate and reconcile the (sometimes competing) actions of the lower-level 

units. Due to their multiechelon hierarchical structure, hybrid dynamical systen^ are ca- 

pable of simultaneoiMly exhibiting continuous-time dynamics, discrete-time djmamics, logic 

commands, discrete-events, and resetting events. Such systems include dynamical switching 

systems, nonsmooth impact mechanical systen^, biological systena, sampled-data systenw, 

discrete-event systems, intelhgent vehicle/highway systems, constrained mechanical systems, 

and flight control systenw, to cite but a few examples. The mathematical descriptions of 

some of these systena can be characterized by impubive differential equations [34,35]. Im- 

pukive dynamical systems can be viewed as a subclass of hybrid systems and coiwist of three 

elements; namely, a continuom-time differential equation, which governs the motion of the 

dynamical system between impukive or resetting events; a difference equation, which gov- 

ern the way the system states are ii^tantaneously changed when a resetting event occurs; 

and a criterion for determining when the states of the system are to be reset. 

Even though numerous results focusing on specific forms of hybrid systems have been 

developed in the Hterature, the development of a general model for hybrid dynamical systems 

has received little attention in the literature. In this research [33-35] we developed a unified 

dynamical systems firamework for a general class of systems possessing left-continuous flo^re; 

that is, left-continuous dynamical systenw. A left-continuoiM dynamical system is a precise 

mathematical object and is defined on the semi-infinite interval as a mapping between vector 

spaces satisfying an appropriate set of axionw and includes hybrid inputs and hybrid outputs 
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Figure 1: Miiltiechelon Dynamical System 

that take their values in appropriate vector spaces. The notion of a left-continuoiM dynami- 

cal system introduced in [33] generalizes virtually all existing notions of dynamical systenw 

and includes hybrid, impulsive, and switching dynamical systen^ as special cases. Further- 

more, iKing generalized left-continuous storage functions and hybrid supply rat^ we extend 

the notions of classical dissipativity theory [48] and exponential dissipativity theory [48] to 

left-continuous dynamical systems. The overall approach provides an interpretation of a gen- 

eralized hybrid ener^ balance of a left-continuoTM dynamical system in tern^ of the stored 

or, accumulated generaUzed energy, dissipated ener^ over the continuous-time dynamic®, 

and dissipated ener^ at the resetting events. Furthermore, as in the continuoi^-time dy- 

namical systems case possessing continuous flows, we show that the set of all possible storage 

functions of a left-continuous dynamical system forms a convex set and is boimded from be- 

low by the system's available stored generalized energy whidi can be extracted from the 

system, and bounded from above by the system's required generalized energy supply needed 

to transfer the system from an initial state of minimum generalized energy to a given state. 

In addition, in the case of nonlinear impulsive dynamical systena we developed extended 

Kalman-Yakubovidi-Popov conditions in terms of the system dynamics for characterizing 

dissipativeness via system storage fimctions for impulsive dynamical systenm. 

Using the concepts of dissipativity and exponential dissipativity for left-continuous sys- 

tems, we also developed feedback interconnection stability results for left-continuous dynam- 

ical systems. Specifically, general stability criteria are given for Lyapunov, asymptotic, and 

exponential stabihty of feedback left-continuous systems. In the case of quadratic hybrid 

supply rates involving net system power and input-output energy, these results generalize 

the positivity and small gain theorems to the case of left-continuous dynamical systems 

and hence hybrid and impubive dynamical systems.   In particular, we show that if the 



left-continuoiw dynamical systems Q and Qc are dissipative (respectively^ exponentially dis- 

sipative) with respect to quadratic hybrid supply rates corresponding to net system power, 

or weighted input and output energy, then the negative feedback interconnection of Q and 

Qc is Lyapunov (respectively, asymptotically) stable. 

Finally, we developed a hybrid feedback optimal control framework for nonlinear im- 

pulsive dynamical systems. The performance functional involves a continuous-time CMt for 

addressing performance of the continuous-time system dynamics and a discrete-time cost 

for addressing performance at the resetting instants. E\irthermore, the hybrid cost fiinc- 

tional can be evaluated in closed-form as long aa the nonhnear-nonquadratic cost functional 

considered is related in a specific way to an underlying Lyapunov fimction that guarantees 

asymptotic stabihty of the nonlmear closed-loop impulsive system. This Lyapunov fimction 

is shown to be a solution of a steady-state, hybrid Hamilton-Ja^obi-Bellman equation and 

thus guaranteeing both optimality and stabihty of the feedback controlled impulsive sys- 

tem. The overall framework provides the foimdation for extending hnear-quadratic feedback 

control methods to nonhnear impulsive and hybrid dynamical systems. We note that the op- 

timal control framework for impulsive dynamical systems developed in [35] is quite different 

from the quasivariational inequality methods for impulsive and hybrid control developed in 

the hterature. Specifically, quasivariational methods do not guarantee asymptotic stabihty 

via Lyapunov fimctions and do not nec^sarily yield feedback controllers. In contrast, the 

proposed approach provides hybrid feedback controllers guaranteeing closed-loop stabihty 

via an underlying Lyapimov ftmction. 

2.2.    An Invariance Principle for Nonlinear Hybrid and Impulsive 
Dynamical Systems 

To analyze the stabihty of dynamical systems with impulsive effects, Lyapunov stabihiy 

r^ults have been pr^ented in the Hterature. In particular, local and global asymptotic sta- 

bihty concliaiom of an equihbrimn point of a given impulsive dynamical system are provided 

if a smooth (at least C^) positive-definite function of the nonlinear system states (Lyapunov 

fimction) can be constructed for which its time rate of change over the continuous-time dy- 

namics is strictly negative and its difference over the resetting times is negative. However, 

unlike dynamical systems pcssessing continuoiw flows, Barbashin-Krasovskii-LaSalle-type in- 

variant set stabihty theorems do not seem to have been addressed for impulsive dynamical 

systems. There appears to be (at least) two reasons for this state of affairs; namely, solutions 

of impulsive dynamical systems are not continuous in tune and are not continuous function 

of the system's initial conditions, which are two of the key properties needed to estabHsh 



invariance of omega limit sets and hence an invariance principle. 

In this research [34,45] we developed an invariance principle for left-continuous dynamical 

systems. In particular, invariant set theorena are derived wherein system trajectories con- 

verge to the largest invariant set of Lyapunov level surfaces of the left-continuous dynamical 

system. These systems are shown to specialize to hybrid systems and state-dependent nonhn- 

ear impulsive differential systems. Furthermore, in the case where the Lyapunov ftmction is 

C^ and defined on a compact positively invariant set (with respect to the nonhnear impulsive 

system), the largest invariant set is contained in a hybrid level surface composed of a union 

involving vanishing Lyapunov derivatives and Lyapunov differences of the system dynamics 

over the continuous-time trajectories and the resetting instants, respectively. In addition, if 

the Lyapunov derivative along the continuous-time system trajectories is negative semidefi- 

nite and no system trajectories can stay indefinitely at points where the function's derivative 

identically vanishes, then the system's equihbrium is asymptotically stable. These results 

provide less conservative condition for examining the stability of state-dependent impukive 

dynamical systems as compared to the classical results presented in the hterature. Finally, 

the impubive invariance principle can be i^ed to estabhsh the existence and investigate the 

stabiUty of limit cycles and periodic orbits of impulsive systenw. 

2.3.    On the Equi^lence Between Dissipativity and Optimality of 
Nonlinear Hybrid Controllers 

Modem complex engineering systems typically possess a multiedielon hierarchical archi- 

tecture characterized by continuoiK-time dynamics at the lower levels of the hierarchy and 

discrete-time dynamics at the higher levels of the hierarchy. Hence, it is not surprising that 

hybrid systems have been the subject of intensive research over the past recent years. As 

discussed in Section 2.1,"the mathematical descriptions of many of these systems can^be 

characterized by impukive differential equations. 

In [34,35] we developed a general firamework for hybrid feedback systems by addressing 

StabiUty, dissipativity, optimahty, and inverse optimality of impulsive dynamical s^tems. 

In particular, in [35] we consider a hybrid feedback optimal control problem over an infinite 

horizon involving a hybrid nonlinear-nonquadratic performance functional. The performance 

fimctional involves a continuous-time cost for addressing performance of the continuoiK-time 

system dynamics and a discrete-time cost for addressing performance at the resetting in- 

stants. Furthermore, the hybrid cost fimctional can be evaluated in closed-form as long as 

the nonUnear-nonquadratic cost fimctional considered is related in a specific way to an un- 

derlying Lyapunov ftmction that guarantees asymptotic stabihty of the nonhnear closed-loop 



hybrid system. This Lyapunov fiinction is shown to be a solution to a steady-state, hybrid 

Hamilton-Jacobi-Bellman equation and thus guaranteeing both optimality and stability of 

the feedback controlled impulsive system. The overall framework provides the foundation 

for extending linear-quadratic feedback control methods to nonlinear impulsive dynamical 
systems. 

For continuous-time nonhnear systems with continuous flows, the problem of guaranteed 

stability margins for optimal and inverse optimal regulators is well known. Specifically, 

nonlinear inverse optimal controllers that minimize a meaningful nonhnear-nonquadratic 

performance criterion involving a nonlinear-nonquadratic, nonnegative-definite fiinction of 

the state and a quadratic positive definite fimction of the control are known to possess 

sector margin guarantees to component decoupled input nonlinearities lying in the conic 

sector (jj oo). These results also hold for disk margin guarantees where asymptotic stability 

of the closed-loop system is guaranteed in the face of a dissipative dynamic input operator. 

In addition, an equi-ralence between dissipativily with respect to a quadratic supply rate and 

optimaUty of a nonlinear regulator also holds. 

In this research [30], we use the results of [34,35] to develop sufiicient conditions for hybrid 

gain, sector, and disk margins guarantees for nonUnear hybrid dynamical systems controlled 

by optimal and inverse optimal hybrid regulators. E\irthermore, we develop a hybrid coun- 

terpart of the retmrn difference inequality for continuous-time systems to provide connection 

between dissipativity and optimality of nonUnear hybrid controllers. In particular, we show 

that unlike the case for continuous-time systems with continuous flows, the equi-ralence be- 

tween dtesipativity and optimality of hybrid controllers breate down. However, we do show 

that optimal hybrid controllers imply dtesipativity with r^pect to a quadratic supply rate. 

2.4.    A Generalization of Poincare's Theorem to Hybrid and Im- 
pulsive Dynamical Systems 

In certain dynamical systems and in particular mechanical and biological systena, system 

state discontinuities arise naturally. In a recent series of papers by the Principal Investiga- 

tor [33,45] a unified dynamical systen^ framework for a general class of systems possessing 

lefl;-continuous fiows; that is, left-continuous dynamical systems, was developed. A left- 

continuous dynamical system is a precise mathematical object that is defined on the semi- 

infinite interval as a mapping between vector spaces satisfying an appropriate set of axioms 

and includes hybrid and impulsive dynamical systems as special cases. Stability analyste of 

left-continuoiw dynamical systems is ako coMidered in [33,45], with [45] presenting invariant 

set stabiUty theorems for a class of left-continuoiw and impulsive dynamical systenm. The 



exteiwion of the invariance principle to impulsive dynamical systenw presented in [45] pro- 

vides a powerful tool in analyzing the stability properties of periodic orbits and Umit cycles 

of dynamical systems with impulse effects. However, the periodic orbit of a left-continuous 

dynamical system is a dmconnected set in the n-dimensional state space making the con- 

struction of a Lyapunov-like fimction satisfying the invariance principle a daunting task for 

high-order nonhnear systems. In such cases, it becomes necessary to seek alternative tools to 

study the stability of periodic orbits of hybrid and impulsive dynamical systems, especially 

if the trajectory of the system can be relatively easily integrated. 

In this research [37], we generalize Poincare's theorem to left-continuous dynamical sys- 

teuM and hence to hybrid and impulsive dynamical systems. Specifically, we develop neces- 

sary and sufficient conditions for stability of periodic orbits based on the stabihty properties 

of a fixed point of a discrete-time dynamical system constructed firom a Poincare return map. 

As opposed to dynamical systenw possessing continuous fiows requiring the construction of 

a hyperplane that fa transversal to a candidate periodic trajectory necessary for defining 

the return map, the resetting set which provides a criterion for determining when the states 

of the left-continuous dynamical ^stem are to be reset provides a natiural candidate for 

the transversal surface on which the Poincare map of a left-continuous dynamical system 

can be defined. Hence, the Poincare return map m defined by a subset of the resetting set 

that induces a discrete-time mapping from this subset onto the resetting set. This mapping 

traces the left-continuoiw trajectory of the left-continuous dynamical system from a point 

on the resetting set to its next corresponding intersection with the resetting set. In the case 

of impulsive dynamical systems possessing sufficiently smooth resetting manifolds, we show 

the Poincare retmm map can be vmd to estabHsh a relationship between the stabihty prop- 

erties of an impubive dynamical system with periodic solutions and the stabihty properties 

of an equilibriiun point of an (n — l)th-order discrete-time system. These results have been 

recently employed to analyze the periodic orbits for the verge and foho clock escapement 

mechanism [56] which exhibits impukive dynamics. 

2.5, A Unification Between Partial Stability of State-Dependent 
Impulsive Systems and Stability Theory of Time-Dependent 
Impulsive Systems 

As discussed in Section 2.1, impukive differential equations are ideal in describing the 

dynamics of hybrid systems which typically possess a multiechelon hierarchical architecture 

characterized by continuo\w-time dynamics at the lower levels of the hierarchy and discrete- 

time dynamics at the higher levels of the hierarchy. Since hybrid dynamical systems involve 

8 



an interacting countable collection of dynamical systems wherein the dynamic states are not 

independent of one another and yet not all system stat^ are of equal precedence, partial 

staUlity, that M, stabihty with respect to part of the system's states, is often necessary. In 

this research [38], we build on the stability results of impubive dynamical systems dewloped 

in [33,34,45] to present partial stabihty theorems for nonlinear impulsive dynamical systenw. 

Since the stabihty analysis of general impulsive dynamical systems can be quite involved, 

two distinct ioxms of the resetting set are typically considered [34]. In the first case, the 

resetting set is defined by a region in the state space and is independent of time. These 

systems are called state-dependent impuMve dynamical systems [34]. In the second case, the 

resetting set is defined by a prescribed sequence of times that are independent of the system 

state. These systems are thus called time-dependent impmhive dynamical systems [34]. Since 

state-dependent impulsive dynamical systems are time-invariant systems and time-dependent 

impulsive dynamical systenw are time-varying systems, stability theory for these systen^ 

are often separated. Using the partial stabihty results we additionally present a unification 

between partial stabihty of (autonomous) state-dependent impulsive dynamical systems and 

stability theory for (nonautonomoiw) time-dependent impulsive dynamical systenm. This 

imification allo-ro for stability theory of time-dependent impulsive dynamical systen^ to be 

presented as a special case of partial stabihty theory for state-dependent impulsive dynamical 
systems. 

2.6.    Energy-Based Control for Hybrid Hamiltonian Systems 

Modern complex engineering systems involve multiple mod^ of operation placing strin- 

gent demands on controller design and implementation of increasing complexity. Such ^s- 

tems typically possess a multiechelon hierarchical hybrid control architecture characterized 

by continuoiK-time dynamics at the lower leve^ of the hierarchy "and discrete-tiniedyhaamra 

at the higher-leveb of hierarchy. The lower-level imits directly interact with the dynamical 

system to be controlled while the higher-level imits receive information from the lower-level 

units as inputs and provide (possibly discrete) output commands which serve to coordinate 

and reconcile the (sometimes competing) actions of the lower-level units. The hierarchi- 

cal controller organization reduces processor cost and controller complexity by breaking up 

the processing task into relatively small pieces and decomposing the fast and slow control 

functions. Typically, the higher-level units perform logical checto that determine system 

mode operation, while the lower-level units execute continuoiK-variable commancb for a 

given system mode of operation. The mathematical description of many of these systenw 

can be characterized by impulsive differential equations. Furthermore, since certain dynam- 



ical s^tenM sudi as telecommunication systems, transportation systen^, biological systen^, 

physiological systems, power systems, and network systems involve high-level, abstract hi- 

erarchies with input-output properties related to conservation, dissipation, and traiwport of 

mass and/or energy, they can be modeled as hybrid port-controlled Hamiltonian systems. 

In this research [63], we use the stability, dissipativity, and optimaMty framework for hy- 

brid and impulsive dynamical systems developed in [34,35] to develop an energy-based hybrid 

feedback control framework for nonMnear impulsive port-controlled Hamiltonian systems that 

preserves the physical hybrid Hamiltonian structure at the closed-loop level. Since the hybrid 

Hamiltonian structure is preserved at the closed-loop level, the passivity-based controller is 

robust with respect to umnodeled passive dynamics. Furthermore, passivity-based control 

architectures are extremely appealing since the control action has a clear physical energy 

interpretation which can considerably simplify controller implementation. 

2.7.    Hybrid Adaptive Control for Nonlinear Impulsive Dynamical 
Systems 

Modern complex engineering systems involve multiple modes of operation placing strin- 

gent demands on controller design and implementation of increasing complexity. Such sys- 

tems typically possess a multiechelon hierarchical hybrid control architecture characterized 

by continuoiK-time dynamics at the lower levels of the hierarchy and dtecrete-time dynamics 

at the higher levels of the hierarchy. The lower-level units directly interact with the dynamical 

system to be controlled while the higher-level units receive information from the lower-level 

units as inputs and provide (possibly discrete) output commancte whidi serve to coordinate 

and reconcile the (sometimes competing) actiom of the lower-level units. The hierarchical 

controller organization reduces processor cost and controller complexity by breaking up the 

processing task into relatively small pieces and decomposing the fast and slow control fimc- 

tiom. Typically, the higher-level units perform logical checks that determine system mode 

operation, while the lower-level units execute continuous-variable commands for a given sys- 

tem mode of operation. The mathematical d^cription of many of these systems can be 

characterized by impuMve differential equations [34]. 

The abiUty of developing a hierarchical nonUnear integrated hybrid control-system design 

methodology for robmt, high performance controllers satisfying multiple design criteria and 

real-world hardware constraints is imperative in hght of the increasingly complex nature 

of dynamical systenw requiring controls such as advanced high performance tactical fighter 

aircraft, variable-cycle gas turbine engines, biological and physiological systenw, sampled- 

data systems, discrete-event systems. Intelligent vehicle/highway systems, and flight control 
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systems, to cite but a few examples. The inherent severe nonlinearities and uncertainties 

of these systems and the increasingly stringent performance requirements required for con- 

trolMng such modem complex embedded systems necessitates the development of adaptive 

nonlinear hybrid control methodologies. 

Even though adaptive control algorithms have been extensively developed in the litera- 

ture for both continuous-time and discrete-time systems, hybrid adaptive control algorithms 

for hybrid dynamical systems are nonexistent. In this research [69,120], we develop a direct 

hybrid adaptive control framework for nonlinear uncertain impulsive dynamical systems. In 

particular, a Lyapunov-based hybrid adaptive control framework is developed that guaran- 

tees partial asymptotic stabihty of the closed-loop hybrid system; that is, asymptotic stability 

with respect to part of the closed-loop system states associated with the hybrid plant dynam- 

ic. Rurthermore, the remainder of the state associated with the adaptive controller gains 

JB shown to be Lyapunov stable. In the case where the nonlinear hybrid system is repre- 

sented in a hybrid normal form, we construct nonhnear hybrid controllers without requiring 

knowledge of the hybrid system dynamics. Finally, we note that since impubive dynamical 

systems involve a hybrid formulation of continuoiw-time and discrete-time dynamics, our re- 

sults build on our adaptive control algorithms for continuous-time and discrete-time systenM 

presented in [36,66]. 

2.8.    Active Control of Combustion Instabilities via Hybrid Reset- 
ting Controllers 

Engineering appMcations involving steam and gas turbines and jet and ramjet engines 

for power generation Mid propulsion technology involve combiMtion processes. Due to the 

inherent coupling between several intricate physical phenomena in these processes involving 

acoiwtics, thermodynamics, fluid mechanics, and chemical kinetics, the dynamic behavior of 

combustion systems is characterized by highly complex nonlinear modeb [10]. The unsta- 

ble dynamic coupUng between heat release in combiwtion processes generated by reacting 

mixtures releasing chemical energy and unsteady motions in the combustor develop acoustic 

pressure and velocity oscillations which can severely impact operating conditions and system 

performance [10]. These pressiure oscillations, known as thermoacoiMtic iiwtabilities, often 

lead to high vibration levels causing mechanical failures, high levek of acoustic noise, high 

burn rates, and even component melting. Hence, the need for active control to mitigate 

combiwtion induced pressure iiatabihties is severe. 

Utilizing a time-averaged combiwtion model for capturing thermoacomtic instabilities, 

we developed hybrid resetting controllers to mitigate combiMtion induced pressure ii^ta- 
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Figure 2: Th^e plots illustrate finite-time stabilization (i.e., finite settling time performance) of 
a two-mode combustion system controlled by a state-dependent hybrid resetting controller. The 
time history of the pressure and pressure rate amplitudes of both modes are shown in the upper 
plot, while the time hfetory of the control force is force given in the lower plot. The pr^sure and 
pre^ure rate amplitudes settle to the origin at the flrat resetting time and remain there for all 
fiititre time. 

biUties in combiMtion systems [82,90,91]. The hybrid resetting controller can be viewed 

as a specialized technique for severing the coupling between the acoustics and unsteady 

combiwtion to eflfectively enhance the removal of energy in the combiMtor. In particular, 

significant modal energy dissipation is achieved via the hybrid resetting controller to sup- 

press thermoacoustic oscillations. The framework in [34,35] is used to design two kinds of 

hybrid resetting controllers; namely, time-dependent and input/state-dependent resetting 

controllers. The overall framework demonstrates that hybrid resetting controllers provide an 

extremely efficient mechanism for dissipating energy in combi^tion processes (see Figure 2). 

2.9.    Direct Adaptive Control for Nonlinear Uncertain Systems 
with Exogenous Disturbances 

Unavoidable discrepancies between system modek aud real-world systems can result in 

degradation of control-system performance including instabihty. Thus, it is not surprising 

that one of the fundamental problems in feedback control design is the abihty of the control 

system to guarantee robiwtness with respect to system uncertainties in the design model. To 

this end, adaptive control along with robust control theory have been developed to address 

the problem of system imcertainty in control-system design. The fundamental differences 

between adaptive control design and robust control theory can be traced to the modehng and 

treatment of system uncertainties as well as the controller architecture structures. In partic- 

ular, adaptive control is based on coi^tant hnearly parameterized system uncertainty modeb 

12 



of a known structure but unknown variation, while robust control is predicated on structured 

and/or uMtructured linear or nonlinear (possibly time-varying) operator uncertainty modeb 

coMisting of boimded variation. Hence, for systenw with constant real parameter uncer- 

tainty, robiKt controllers will unnecessarily sacrifice performance whereas adaptive feedback 

controllers can tolerate far greater system uncertainty levels to improve system performance. 

Furthermore, in contrast to fixed-gain robust controllers, which maintain specified coMtants 

within the feedback control law to sustain robust performance, adaptive controllers directly 

or indirectly adjust feedback gains to maintain closed-loop stability and improve perfor- 

mance in the face of system uncertainties. Specifically, indurect adaptive controllers utiHze 

parameter update laws to identify unknown system parameters and adjust feedback gains to 

account for system variation, while direct adaptive controllers directly adjiwt the controller 
gaiM in response to plant variations. 

In this research [36], we develop a direct adaptive control framework for adaptive stabi- 

lization, disturbance rejection, and command following of multivariable nonhnear uncertain 

systems with exogenous disturbances. In particular, a Lyapunov-based direct adaptive con- 

trol framework is developed that requires a matching condition on the system disturbance 

and guarantees partial asymptotic stabihty of the closed-loop system; that is, asymptotic 

stability with respect to part of the closed-loop system states associated with the plant, fur- 

thermore, the remainder of the state associated with the adaptive controller gams m shown 

to be Lyapunov stable. In the case where the nonUnear system is represented in normal 

form with input-to-state stable zero dynamics, we comtruct nonhnear adaptive controllere 

without requiring knowledge of the system dynamics or the system disturbance. In addition, 

the proposed nonhnear adaptive controllers also guarantee asymptotic stabihty of the system 

state if the system dynamics are unknown and the input matrix fimction is parameterized 

by an unknown constant sign definite matrix. Finally, we generafize the aforementioned 

results to imcertain nonUnear systena with exogenoiw La disturbances. In this case, we 

remove the matching condition on the system disturbance. In addition, the proposed frame- 

work guarantees that the clc«ed-loop nonUnear input-output map from uncertain exogenoiM 

L2 disturbances to system performance variables is nonexpaiMive (gain bounded) and the 

solution of the closed-loop system is partially asymptotically stable. The proposed adap- 

tive controUer thus addresses the problem of disturbance rejection for nonUnear uncertain 

systems with bounded energy (square-integrable) ta signal noriM on the disturbances and 

performance variables. This is clearly relevant for uncertain systen^ with poorly modeled 

disturbances which possess significant power within arbitrarily small bandwidths. 
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2.10. Robust Adaptive Control for Nonlinear Uncertain Systems 

In [36], a direct nonlinear adaptive control framework for adaptive stabilization, dtetur- 

bance rejection, and command following was developed. In particular, a Lyapmiov-based 

direct adaptive control framework was developed that guarantees partial asymptotic sta- 

bility of the closed-loop system; that is, asymptotic stability with respect to part of the 

closed-loop system states associated with the plant. E\urthermore, the remainder of the state 

associated with the adaptive controller gains was shown to be Lyapunov stable. In the case 

where the nonlinear system was represented in normal form with input-to-state stable zero 

dynamics, the nonUnear adaptive controller was constructed without requiring knowledge of 

the system dynamics. 

As is the case in the adaptive control Mterature, the system errors in [36] are captured by a 

constant hnearly parameterized uncertainty model of a known structure but imknown varia- 

tion. This uncertainty characterization allows the system nonlinearities to be parameterized 

by a finite linear combination of basis functions within a class of function approximators 

such as rational functions, spUne ftmctions, radial basis function, sigmoidal functions, and 

wavelets. However, this linear parametrization of basis function cannot exactly capture 

the unknown system nonlmearity. In this research [44], we generalize the results of [36] to 

nonhnear uncertain systen^ with coMtant hnearly parameterized uncertainty and nonlinear 

state-dependent uncertainty. Specifically, we consider a robiwt adaptive control problem 

that guarantees asymptotic robust stabiUty of the system states in the face of structured 

uncertainty with imknown variation and structured (possibly nonhnear) parametric uncer- 

tainty with bounded variation. Hence, the overall adaptive control framework captures the 

residual approximation error inherent in hnear parameterizations of system uncertainty via 
basis ftmctions. 

2.11. A Lyapunov-Based Adaptive Control Framework for Dis- 
crete-Time Nonlinear Systems with Exogenous Distur- 
bances 

The purpose of feedback control is to achieve desurable system performance in the face 

of system uncertainty and system distiurbances. Although system identification can reduce 

uncertainty to some extent, residual modehng discrepancies always remain. Controllers must 

therefore be robust to achieve desired disturbance rejection and/or tracking performance 

requirements in the presence of such modehng uncertainty. To this end, adaptive control 

along with robi^t control theory have been developed to address the problem of system 
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performance in the face of system micertainty in control-system design without excessive 

reliance on system models. 

Adaptive controllers directly or indirectly adji^t feedback gaiiM to maintain closed-loop 

stability and improve performance in the face of system errors. Specifically, indirect adaptive 

controllers utilize parameter update laws to estimate unknown system parameters and ad- 

just feedback gains to account for system variation, while direct adaptive controllers directly 

adapt the controller gains in response to system variations. Even though adaptive control 

algorithms have been developed in the literature for both continuous-time and discrete- 

time systena, the majority of the discrete-time results are based on recursive least-squares 

and least mean squares algorithms with primary focus on state convergence. Alternatively, 

Lyapunov-based adaptive controllers have been developed for continuous-time systems guar- 

anteeing asymptotic stability of the system states. However, the literature on discrete-time 

adaptive disturbance rejection control using Lyapunov metho(b is virtually nonexistent. 

In this research [66,109], we develop a Lyapunov-based direct adaptive control framework 

for adaptive stabilization, distmrbance rejection, and command foUowii^ of multivariable 

discrete-time nonlinear uncertain systen^ with exogenous bounded ampMtude disturbances 

and €2 distiurbances. These results aie analogous to the recent continuous-time adaptive 

disturbance rejection results in [36] for continuous-time nonlinear uncertain systems. Specif- 

ically, a Lyapunov-based direct adaptive control framework is developed that guarantees 

partial asymptotic stability of the closed-loop system; that is, asymptotic stabihty with re- 

spect to part of the closed-loop system states associated with the plant. F\ui;hermore, in the 

case where the nonlinear system is represented in normal form, the nonlinear discrete-time 

adaptive controller is constructed without requiring knowledge of the system dynamics or 

system disturbances. In the case where the system disturbances are £2 disturbances, the 

proposed framework guarantees that the closed-loop nonUnear input-output map from un- 

certain exogenous €2 disturbances to system performance variables is nonexpansive and the 

solution of the closed-loop system is partially asymptotically stable. The proposed adap- 

tive controller thus addresses the problem of disturbance rejection for nonhnear uncertain 

discrete-time systems with bounded energy (square-summable) €2 signal norms on the dis- 

turbances and performance variables. 

2.12.    Direct Discrete-Time Adaptive Control with Guaranteed 
Parameter Error Convergence 

Adaptive control algorithms have been extensively developed in the literature for both 

continuous-time and discrete-time systems. A sahent difference between continuous-time and 
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discrete-time adaptive controllers is that the majority of the discrete-time results are baaed 

on recursive least-squares and least mean squares algorithn^ with primary tocus on state 

convergence. In this research [70], we develop a direct adaptive nonlinear tracking control 

framework based on semidefinite or partial Lyapunov fimctioim for discrete-time nonlinear 

uncertain systems. The proposed framework guarantees attraction of the closed-loop tracking 

error dynamics in the face of parametric system uncertainty. In addition, parameter error 

convergence is also guaranteed when a generic geometric constraint on the update error gain 

matrix fimction holds. This condition is shown to be consistent with the notion of persistent 

excitation in the adaptive control and system identification Mterature. 

2.13.    Adaptive Control for Nonlinear Systems with State-Depen- 
dent Uncertainty 

In Mght of the increasingly complex and highly uncertain nature of dynamical systems 

requiring controk, it is not surprising that rehable system modeb for many high performance 

engineering apphcations are unavailable. In the face of such high levels of system uncertainty, 

adaptive controllers are clearly appropriate since they can tolerate high levels of system errors 

to improve system performance. However, a ftmdamental hmitation of adaptive control is the 

fact that system errors are captured by constant hnearly parameterized uncertainty models 

of a known structure but unknown variation. If the system uncertainty m nonhnear in 

the uncertain parameters or the system uncertainty is nonhnearly dependent on the system 

states, then adaptive controllers predicated on a constant linearly (over)parameterized model 

will unnecessarily sacrifice system performance, and in some cases lead to instabihty. 

In this research [43], we develop a novel adaptive control framework that does not re- 

qufre any parametrization of the state-dependent system uncertainty. In particular, for a 

class of nonlinear multivariable matrw second-order uncertain dynamical systems with state- 

dependent uncertainty we develop a nonlinear adaptive control framework that guarantees 

global partial asymptotic stabihty of the clraed-loop system; that is, global a^mptotic sta- 

bility with respect to part of the closed-loop system states associated with the plant. This 

is achieved without requiring any knowledge of the system nonlinearities other than the as- 

sumption that they are continuous and lower bounded. Next, we extend our main result 

to the case where the system nonHneaiities are unbounded. Using this result, we provide 

a universal adaptive controller that guarantees asymptotic stability for the case of matrix 

second-order systems with polynomial nonlinearities with unknown coefficients and unknown 

order. The class of systenw represented by our framework includes nonlinear vibrational 

systena, as well as multivariable nonlinear dynamical systems with sign varying; that is, 
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nondissipative, generalized stiffness and damping operators. 

2.14. Direct Adaptive Control for Nonlinear Matrix Second-Order 
Systems with Time-Varying and Sign-Indefinite Damping 
and Stiffness Operators 

For a class of nonlinear multivariable matrix second-order uncertain dynamical systena, 

with time-varying and sign-indefinite damping and stiffness operators, we develop a non- 

linear adaptive control framework that guarantees global partial asymptotic stability of the 

closed-loop system; that is, global asymptotic stabiMty with respect to part of the closed- 

loop system states associated with the plant [71,122]. This is achieved without requiring 

any knowledge of the system nonUnearities other than the assumption that they are contin- 

uous and bounded. The class of systems represented by our framework includes nonlinear 

vibrational systems, as well as multivariable nonlinear dynamical systems with sign-varying; 

that is, nondissipative, generahzed stiffiiess and damping time-varying operators. Finally, 

we note that a similar adaptive control framework for nonUnear uncertain matrix second- 

order systems was considered in [43]. The results presented in [43] however only address 

time-invariant, sign-indefinite stiflhess and damping operator micertainty. In this case, the 

unknown system nonlinearities need only be continuous and lower bounded as opposed to 
continuous and bounded.    . 

2.15. Nonnegative Dynamical Systems in Biology, Medicine, and 
Ecology 

With the increasing mergence of engineering disciplines and biological and medical sci- 

ences, it is not surprising that dynamical systems theory has played an increasing role in 

the imderstanding of biological and physiological processes. With this unification it has 

rapidly become apparent that mathematical modelmg and dynamical systems theory k the 

key thread that ties together these diverse disciplines. The dynamical models of many biolog- 

ical and physiological processes such as pharmacokinetics, metaboMc systems, epidemiology, 

biochemical reactions, endocrine systems, and hpoprotem kinetics are derived from mass 

and energy balance considerations that involve dynamic states whose values are nonnega- 

tive. Hence, it follows from physical coMiderations that the state trajectory of such systen^ 

remain in the nonnegative orthant of the state space for nonnegative initial condition. Such 

systen^ are commonly referred to as nonnegative dynamical systems in the Uterature. A sub- 

class of nonnegative dynamical systems are compartmental systems whose dynamical models 
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Figure 3: Modeb for blood flow through the heart as well as the anatomy of the human body 
can be captured by compartmental systems. 

are characterized by conservation laws (eg., mass and ener^) capturing the exchange of 

material between coupled macroscopic subsystems known as compartments (see Figure 3). 

Each compartment is assumed to be kinetically homogeneom; that is, any material enter- 

ing the compartment is instantaneously mbced with the material of the compartment. The 

range of appMcations of nonnegative systems and compartmental systems is not limited to 

biological and medical systems. Thek usage include diemical reaction ^sterns, queuing sys- 

tems, large-scale systems, stochastic systems (whose state variables represent probabilities), 

ecological systems, and economic systems, to cite but a few examples. 

Even though numerous results focusing on compartmental systems have been developed 

in the literature, the development of nonnegative dynamical systems theory has received 

far less attention. In this research [57,105], we develop several basic mathematical results 

on stabiMty, dissipativity, and feedback interconnectioi^ of linear and nonlinear nonnega^ 

tive dynamical systems. Linear nonnegative dynamical systems areli majcFlmportauce 

in biological and physiological systena since almost the entire field of dtetribution of tracer 

labeled materiab in steady state systeuM can be captured by Unear nonnegative systems. 

Alternatively, many appMcatioim in life science give rise to nonlinear nonnegative dynami- 

cal systems. These include metabolic pathways, membrane transports, pharmacodynamics, 

epidemiology, and ecology. Using linear Lyapunov functions, we develop necessary and siiffi- 

cient conditions for Lyapunov stability, semistability; that is, system trajectory convergence 

to Lyapunov stable equiUbrium points, and asymptotic stabiUty for linear nonnegative dy- 

namical systenw. Extensions to nonBnear nonnegative dynamical systems are also provided. 

The consideration of a Unear Lyapunov ftmction leads to a new Lyapunov-like equation for 

examining the stability of linear noimegative systems. This Lyapunov-like equation is anar 
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lyzed iwing nonnegative matrix theory. The motivation for i^ing a hnear Lyapunov fimction 

follows from the fact that the state of a nonnegative dynamical system is nonnegative and 

hence a Unear Lyapmiov fmiction is a valid Lyapunov function candidate. This consider- 

ably simplifies the stability analysis of nonnegative dynamical systems. For compartmental 

systems, a linear Lyapunov function corresponds to the total mass of the system. 

Dissipativity theory has been exteiMively developed for the analysis and design of control 

systems for engineering systems using input-output system descriptions based on energy 

related considerations without the consideration of nonnegative and compartmental models. 

Since biological and physiological systems have numerous input-output properties related 

to conservation; dissipation, and transport of mass and energy, it seems natural to extend 

dissipativity theory to nonnegative and compartmental models which themselves behave in 

accordance to conservation laws. Using Unear storage function and linear supply rates we 

extend the notior^ of classical dissipativity theory and exponential dissipativity theory [48] 

to linear and nonlinear nonnegative dynamical systen^. The overall approach provides a 

new interpretation of a mass balance for nonnegative systen^ with hnear supply rates and 

Hnear storage functions. Specifically, we show that dissipativity of a nonnegative dynamical 

system involving a hnear storage function and a linear supply rate imphes that the system 

mass transport is always less than or equal to the difference between the system flux input and 

the system flux output. In addition, we develop new Kahnan-Yakubovich-Popov equations 

for nonnegative systems for characterizing dissipativeness with Uneax storage fimctions and 
hnear supply rates. 

Feedback systems are pervasive in nature and can be foimd almost everywhere in hving 

systenM. In particular, control at the intercellular level, DNA repUcation and cell di-dsion, 

control of gene expression, control of enzyme activity, control at the organ system and 

organism level, humoral control, neural control, and regulation in biological systems all 

involve feedbadc systen^. To analyze these complex nonnegative systems, the concepts 

of dtesipativity and exponential dissipativity with Hnear storage fimctioi^ and Unear supply 

rates are vsed to develop feedback interconnection stability results for nonnegative dynamical 

systems. General stabiHty criteria are given for Lyapunov, semi, and asymptotic stabiHty 

of feedback hnear and nonUnear nonnegative systen^. These results can be viewed as a 

generalization of the positivity and the small gain theorems to nonnegative systen^ with 

linear storage functions and Hnear supply rates. A key obsermtion of theses results is that 

unlike the classical results on positivity and the small gain theorems requiring negative 

feedback interconnection, positive feedback interconnections are required in order to assure 

that the resulting feedback system is a nonnegative dynamical system. 
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2,16.    Stability and Dissipativity Theory for Nonnegative and Com- 
partmental Dynamical Systems with Time Delay 

Modem complex engineering systems are highly interconnected and mutually interdepen- 

dent, both physically and through a multitude of information and communication networks. 

By properly formulating these systems in terms of subsystem interaction and energy/mass 

traMfer, the dynamical modeb of many of these systems can be derived from mass, ener^, 

and information balance considerations that involve dynamic states whose values are non- 

negative. Hence, it follows from physical considerations that the state trajectory of such 

systems remains in the nonnegative orthant of the state space for nonnegative initial con- 

ditions. As noted in Section 2.15, such systems are commonly referred to as nonnegative 

dynamical systenM in the hterature. Compartmental systems, a subclass of nonnegative 

dynamical systems, involve dynamical models that are characterized by comervation laws 

(e.g., mass and energy) capturing the exchange of material between coupled macroscopic 

subsystenw known as compartments. Each compartment is assumed to be kinetically ho- 

mogeneous; that is, any material entering the compartment is instantaneoiwly mixed with 

the material of the compartment. The range of appBcatiom of nonnegative systenw and 

compartmental systems is not limited to complex engineering systems. Their i^age includes 

biological and physiological systen^, diemical reaction systems, queuing systems, large-scale 

systems, stochastic systems (whose state variables represent probabihties), ecological sys- 

tems, economic systena, demographic systems, telecommunication systems, traMportation 

systems, power systenw, heat trai^fer systems, and structural vibration systems, to cite but 

a few examples. A key physical hmitation of such systems is that transfers between compart- 

ments are not instantaneous and reahstic models for capturing the dynamics of such systeuM 

should account for material, energy, or mformation in trajMit between compartments. Hence, 

to accurately describe the evolution of the aforementioned systems, it is necessary to include 

in any mathematical model of the system dynamics some information of the past system 

states. This of course lea(k to (infinite-dimensional) delay dynamical systems. 

In this research [60,73], we develop necessary and sufficient conditions for time-delay 

nonnegative and compartmental dynamical systems. Specifically, using linear Lyapunov- 

Krasovskii fimctionak we develop necessary and sufficient conditions for asymptotic star 

biUty of hnear nonnegative dynamical systems with time delay. The consideration of a 

linear Lyapunov-Krasovskii functional leads to a new Lyapunov-like equation for examining 

stability of time delay nonnegative dynamical systenw. The motivation for using a linear 

Lyapunov-Krasovskii functional follows from the fact that the (mfinite-dimensional) state 

of a retarded nonnegative dynamical system is nonnegative and hence a hnear Lyapimov- 
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KrasoTOkii functional is a valid candidate Lyapunov-Kraso-rokii fimctional. For a time delay 

compartmental system, a linear Lyapunov-Krasovskii functional is shown to correspond to 

the total mass of the system at a given time plus the integral of the mass flow in transit 

between compartments over the time intervak it takes for the mass to flow through the 

intercompartmental connections. 

Next, exploiting the input-output properties related to conservation, dissipation, and 

transport of mass and ener^ in nonnegative and compartmental dynamical systems, we 

develop a new notion of classical dissipativity theory for nonnegative dynamical systems with 

time delay. Specifically, i^mg Hnear storage functionals with Unear supply rates we develop 

sufficient condition for dissipativity of nonnegative dynamical systems with time delay. The 

motivation for iwing linear storage fimctionak and linear supply rates follows from the fact 

that the (infinite-dimensional) state as well as the inputs and outputs of retarded nonnegative 

dynamical systems are nonnegative. The consideration of linear storage functionals and 

linear supply rates leads to new Kalman-Yakubovich-Popov equations for characterizing 

dissipativity of nonnegative systems with time delay. For a time delay compartmental system, 

a hnear storage functional m shown to correspond to the total mass of the system at a given 

time pliM the mtegral of the mass flow in transit between compartments over the time 

intervals it takes for the mass to flow through the intercompartmental connections. In this 

case dissipativity imphes that the total system mass trai^port is equal to the supphed system 

flux minus the expelled system flux. Finally, using the concepts of dissipativity for retarded 

nonnegative dynamical systenw, we develop feedback interconnection stabiUty resiilts for 

nonnegative systems with time delay. In particular, general stabihty criteria are given for 

Lyapunov and asymptotic stabihty of feedback nonnegative dynamical systems with time 
delays. 

2.17.    On Nonoscillation and Monotonicity of Solutions of Non- 
negative and Compartmental Dynamical Systems 

As disclosed in Section 2.15, nonnegative and compartmental systems are essential in 

captming the phenomenological behavior of a wide range of dynamical systen^ involving 

dynamic states whose values are nonnegative. Compartmental systems are widely used 

as models of biological and physiological processes, such as metabofic pathways, tracer ki- 

netics, pharmacokinetics, epidemic dynamics, and ecological systems. These systems are 

diaracterized by conservation laws that describe the interchange of mass or energy between 

homogeneous subsystems known as compartments. While compartmental systen^ have wide 

apphcabihty in biology and medicine, then me in the specific field of pharmacokinetics is 
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particularly noteworthy. 

The goal of pharmacokinetic analysis often is to characterize the kinetics of drug dis- 

position in terms of the parameters of a compartmental model. This is accompUshed by 

postulating a model, collecting experimental data (typically drug concentration in blood 

as a fimction of time), and then i^ing statistical analysis to estimate parameter values 

which best describe the data. Differences between experimental data and that predicted 

by the model are attributed to measurement noise. Because the ultimate disposition of ex- 

ogenoiM drugs is metabolism and ehmination from the body, it is frequently assumed that 

drug concentrations will monotonically decline after dkcontinuation of drug administration. 

However, compartmental systems may admit non-monotonic solutions (e.g., underdamped 

oscillations); that is, they can predict drug concentrations which do not decay monotoni- 

cally with time after discontinuation of drug administration. Hence, it would be useful to 

identify compartmental systenw which guarantee monotonicity of solutions in order to avoid 

attributing error (differences between model predictions and experimental data) to random 

noise, when the problem M in fact model-misspecification. Similar consideratioim are ateo 

relevant to the other appMcations of nonnegative and compartmental dynamical systems. In 

this research [61,112], we present necessary and sufficient conditions for identifying noimeg- 

ative and compartmental dynamical systen^ that only admit nonoscillatory and monotonic 
solutions. 

2.18.    Hybrid Nonnegative and Compartmental Dynamical Sys- 
tems 

As disclosed in Section 2.15, nonnegative and compartmental systems are ^sential in 

capturing the phenomenolo^cal features of a wide range of dynamical systenw involving 

dynamic states whose values are nonnegative. These ^stems are derived from mass and en- 

ergy balance considerations and are comprised of homogeneoiw interconnected macroscopic 

subsysteuK or compartments which exchange -rariable quantities of material via intercom- 

partmental flow laws. Since biological and physiological systems have numerous input-output 

properties related to coiwervation, dissipation, and transport of mass aaid energy, nonnega- 

tive and compartmental systenm are remarkably effective in describing the essential features 

of these dynamical systems. 

Complex biological and physiological systems typically possess a multiechelon hierarchical 

hybrid structure characterked by continuous-time dynamics at the lower-level imits and 

logical decision-making units at the higher-level of the hierarchy. The logical decision making 

units serve to coordinate and reconcile the (sometimes competing) actions of the lower- 
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level units. Due to their multiechelon hierarchical structiure, hybrid dynamical systena 

are capable of simultaneously exhibiting continuous-time dynamics, discrete-time dynamics, 

logic commands, discrete-events, and resetting events. Hence, hybrid dynamical systems 

involve an interacting countable collection of dynamical systems wherein control actions 

are not independent of one another and yet not all control actions are of equal precedence. 

For example, in physiological systems the blood pressure and blood flow to different tissues 

of the human body are controlled to provide sufficient oxygen to the cells of each organ. 

Certain organs such as the kidneys normally require higher blood flows than is necessary 

to satisfy basic oxygen needs. However, during stress (such as hemorrhage) when perfiision 

pressure falls, perfiwion of certain regions (e.g., brain and heart) takes precedence over 

perfiision of other regions and hierarchical controls (overriding controb) shut down flow to 

these other regions. The mathematical descriptions of many hybrid dynamical systems can 

be characterized by impulsive differential equations [34,35]. 

In this research [49], we developed several basic mathematical results on stabiHty and 

dissipativity of hybrid nonnegative and compartmental dynamical systems. Specifically, 

using linear Lyapunov fiinctions we develop sufficient conditions for Lyapunov stabiHty and 

asymptotic stability for hybrid nonnegative dynamical systen^. The consideration of a linear 

Lyapunov function leads to a new set of Lyapunov-like equatioi^ for examining the stabiHty 

of Hnear impukive nonnegative systems. The motivation for using a Hnear Lyapunov function 

foUo^ fi-om the fact that the state of a nonnegative dynamical system is nonnegative and 

hence a Hnear Lyapunov fimction is a valid Lyapunov fiinction candidate. 

Next, using linear and nonlinear storage fimctions with linear hybrid supply rates we 

develop new notioi^ of classical dissipativity theory and exponential dissipativity theory for 

hybrid nonnegative dynamical systems. The overall approach provides a new interpreta- 

tion of a mass balance for hybrid nonnegative systems with linear hybrid supply rates and 

Hnear and nonHnear storage fimctions. Specifically, we show that dissipativity of a hybrid 

nonnegative dynamical ^stem involving a linear storage function and a Hnear hybrid sup- 

ply rate impHes that the system mass trai^port (respectively, change in ^stem mass) is 

equal to the suppHed system flux (respectively, mass) over the continuous-time dynamics 

(respectively, the resetting instants) minus the expeUed system flux (respectively, mass) over 

the continuous-time dynamics (respectively, the resetting instants). In addition, we develop 

new Kalman-Yakubovich-Popov equations for hybrid nonnegative systen^ for characteriz- 

ing dissipativity with Hnear and nonHnear storage fimctions and Hnear hybrid supply rates. 

FinaUy, using concepts of dissipativity and exponential dissipativity for hybrid nonnegative 

dynamical systems, we develop feedback interconnection stabiHty results for nonHnear non- 

negative impulsive systenw. SpecificaUy, general stabiHty criteria are given for Lyapunov and 
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asymptotic stability of feedback hybrid nonnegative systena. These results can be viewed as 

a generalization of the positivity and the small gain theorems to hybrid nonnegative systenw 

with hnear supply rates involving net input-output system flux. 

2.19.    Adaptive Control for General Anesthesia and Intensive Care 
Unit Sedation 

Even though advanced robust and adaptive control methodologies have been (and are 

being) extensively developed for highly complex engineering systems, modem active control 

technology has received far less consideration in medical systen^. The main reason for this 

state of affairs is the steep barriers to communication between mathematics/control engineer- 

ing and medicine. However, this 'm slowly changing and there is no doubt that control-^stem 

technology has a great deal to offer medicine. For example, critical care patients, whether 

undergoing surgery or recovering in intensive care units, require drug administration to reg- 

ulate key physiological (state) -rariables (e.g., blood pressure, temperature, glucose, degree of 

conscioiwness, etc.) within desired levels. The rate of infiKion of each administered drug is 

critical, requiring coMtant monitoring and frequent adjustments. Open-loop control (man- 

ual control) by cUnical personnel can be very tedioiK, imprecise, time coiKuming, and often 

of poor quality. Hence, the need for active control (closed-loop control) in medical systems 

is severe; with the potential in improving the quahty of medical care as well as curtaiUng 

the increasing cost of health care. 

The complex highly uncertain and hostile environment of surgery places stringent per- 

formance requirements for closed-loop set-point regulation of physiological variables. For 

example, during cardiac surgery, blood pressure control w vital and is subject to numerous 

highly uncertain exogenous disturbances. Vasoactive and cardioactive drugs are adminis- 

tered resulting in large disturbance oscillations to the system (patient). The arterial hne 

may be fliwhed and blood may be drawn, corrupting sensor blood pressure measurements. 

Low an^thetic levels may cause the patient to react to painful stimuM, thereby changing 

tystem (patient) response characteristics. The flow rate of vasodilator drug infiision may 

fluctuate causing transient changes in the infusion delay time. Hemorrhage, patient pwition 

changes, cooling and warming of the patient, and changes in anesthesia levels will also effect 

system (patient) response characteristics. 

In hght of the complex and highly uncertain nature of system (patient) response char- 

acteristics under surgery requiring controls, it is not surprising that reliable system mod- 

ek for many high performance drug deHvery ^stems are unavailable. In the face of such 

high levels of system uncertainty, robust controllers may unnecessarily sacrifice system per- 
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formance whereas adaptive controllers are clearly appropriate since they can tolerate far 

greater system uncertainty levek to improve system performance. In contrast to fixed-gain 

robust controllers, which maintain specified constants within the feedback control law to sus- 

tain robust performance, adaptive controllers directly or mdirectly adjust feedback gains to 

maintain clwed-loop stabihty and improve performance in the face of system uncertainties. 

Specifically, indirect adaptive controllers utihze parameter update laws to identify unknown 

system parameters and adjust feedback gains to account for system variation, while direct 

adaptive controllers directly adjust the controller gains in response to system variations. 

In this research [50], we developed a direct adaptive control framework for adaptive set- 

point regulation of linear uncertain nonnegative and compartmental systems. As noted in 

Section 2.15, nonnegative and compartmental dynamical systems are composed of homoge- 

neous interconnected subsystems (or compartments) which exchange triable nonnegative 

quantities of material with coMervation laws describing transfer, accumulation, and outflows 

between the compartments and the environment. Nonnegative and compartmental models 

thus play a key role in understanding many processes in biological and medical sciences. 

Using nonnegative and compartmental model structures, a Lyapunov-based direct adap- 

tive control framework is developed that guarantees partial asymptotic set-point stabihty 

of the closed-loop system; that is, asymptotic set-point stabihty with respect to part of the 

closed-loop system states associated with the physiological state variables. In particular, 

adaptive controllers are comtructed without requiring knowledge of the system dynamics 

while providing a nonnegative control (source) input for robust stabihzation with respect to 

the nonnegative orthant. Modeling uncertainty in nonnegative and compartmental systems 

may arise in the system transfer coefficients due to patient gender, weight, pre-existing dis- 

ease, age, and concomitant medication. Furthermore, in certain apphcations of nonnegative 

and compartmental systems such as biological systems, population dynamics, and ecological 

systems involving positive and negative inflows, thenonnegalvityconstrdnt on the"control 

input is not natural. In this case, we ako develop adaptive controllers that do not place 

any restriction on the sign of the control signal while guaranteeing that the physical system 

states remain in the nonnegative orthant of the state space. Finally, the proposed approach 

was iwed to control the infi^ion of the anesthetic drug propofol for maintaining a desired 

coMtant level of depth of anesthesia for noncardiac surgery (see Figures 4 and 5). 
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Figure   4:     Bkpectral (BIS) Index (electroen- Figure 5: BIS Index versus time achieved by the 
cephalogram  (BEG)  indicator)  versus effect  site proposed adaptive controller. The proposed adaptive 
(brain) concentration. BIS index values of 0 and 100 controller dora not require knowledge of the system 
correspond, respectively, to an feoelectric EEG signal parameters nor the BIS Index parameters, 
and an EEG signal of a fully conscioim patient; while 
the range betw^n 40 to 60 indicate a moderate hyp- 
notic state, 

2.20.    Neural Network Adaptive Control for Nonlinear Nonnega- 
tive Dynamical Systems 

Neural networks consist of a weighted interconnection of fundamental elements called 

neurons, whidi are functions consisting of a sununing junction and a nonlinear operation 

involving an activation fimction. One of the primary reasoiw for the large interest in neural 

networks is their capabiMty to approximate a large class of continuous nonlinear maps. In ad- 

dition, neural network have attracted attention due to their inherently parallel architecture 

that makes it possible to develop parallel weight update laws. This parallelism makes it pos- 

sible to effectively update a neural network on line. These properties malce neural networks 

a viable paradigm for adaptive system identification and control of complex highly uncertain 

dynamical systems, and as a consequence the use of neural networlra for identification and 

control has become an active area of research. 

In this research [68], we develop a neural adaptive control firamework for nonlinear uncer- 

tain nonnegative and compartmental systems. The proposed framework is Lyapunov-based 

and guarantees ultimate botmdedness of the error signals corresponding to the physical sys- 

tem states as well as the neiural network weighting gains. The neuro adaptive controllers are 

constructed without requiring knowledge of the system dynamics while guaranteeing that the 

physical system states remain in the nonnegative orthant of the state space. The proposed 

neuro control architecture is modular in the mnse that if a nominal Unear design model is 

available, the neuro adaptive controller can be augmented to the nominal design to account 

for system nonlinearities and system uncertainty. Furthermore, since in certain appUcatioM 
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of nomiegative and compartmental systeiM (e.g., pharmacological systems for active drug 

administration) control (source) inputs as well as the system states need to be nonnega- 

tive, we aiso develop neuro adaptive controllers that guarantee the control signal as well as 

the physical system states remain nonnegative for nonnegative initial conditions. We note 

that neuro adaptive controllers for nonnegative dynamical systems have not been addressed 

in the literature. Finally, the proposed neuro adaptive control framework is i^ed to regu- 

late the temperature of a continuously stirred tank reactor involving exothermic irreversible 

reactioi^. 

2.21. Optimal Fixed-Structure Control for Linear Nonnegative 
Dynamical Systems 

In this research [72,123], we develop optimal output feedback controllers for set-point 

regulation of linear nonnegative and compartmental dynamical systems. In particular, we 

extend the optimal fixed-structure control framework to develop optimal output feedbadc 

controllers that guarantee that the trajectories of the closed-loop system remain in the non- 

negative orthant of the state spa^e for nonnegative initial conditions. The proposed optimal 

fixed-structiure control framework is a constrained optimal control methodology that does 

not seek to optimize a performance measure per se, but rather seete to optimize perfor- 

mance within a class of fixed-structiure controllers satisfying internal controller coi^raints 

that guarantee the nonnegativity of the closed-loop system states. FXnthermore, since uncon- 

strained optimal controllers are globally optimal but may not guarantee nonnegativity of the 

closed-loop system states, we additionally characterize domains of attraction contained in 

the nonnegative orthant for unconstrained optimal output feedback controllers that guaran- 

tee nonnegativity of the closed-loop system trajectories. Specifically, domaiia of attraction 

contained in the nonnegative orthant for optimal output feedback controllers are computed 

using closed and open Lyapunov level surfaces. It is also shown that the domains of attrac- 

tion predicated on open Lyapunov level surfaces provide a considerably improved region of 

asymptotic stability in the nonnegative orthant as compared to regions of attraction given 

by closed Lyapunov level surfaces. 

2.22. Nonlinear Control of Hammerstein Systems with Passive 
Nonlinear Dynamics 

In this research [31], we develop a nonlinear control design framework for Hammerstein 

systems with nonlinear passive dynamics.   Oin main result guarantees global asymptotic 
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closed-loop stability for nonlinear passive systems with arbitrary input nonlinearities so long 

as the nonhnear dynamic compeiMator is modified to include a suitable input nonhnearity. 

The only restriction on the input nonlinearity is that it be memoryless and that either its 

characteristics be known or its output be measurable. The proof of this result is based on 

dissipativity theory [48] and shows that the nonhnear controller modification counteracts the 

effects of the input nonhnearity by recovering the passivity of the plant and compensator 

with respect to a modified set of inputs and outputs. 

2.23.    Stability Margins of Discrete-Time Nonlinear-Nonquadratic 
Optimal Regulators 

The gain and phase margins of continuous-time state feedback finear-quadratic optimal 

regulators are well known. In particular, in terms of classical control relative stabihty no- 

tions, these controllera pcffisess at least a ±60° phase margin, infinite gain margin and 50% 

gain reduction for each control diannel. Alternatively, in terms of absolute stabihty the- 

ory these controUers guarantee sector margins in that the closed-loop system wiU remain 

asymptotically stable in the face of a memoryless static input nonlinearity contained in the 

conic sector (|, oo). In contrast, the stabihty margins of discrete-time Bnear-quadratic opti- 

mal regulators are not as well known and depend on the open- and closed-loop pote of the 

discrete-time djmamic system. 

Synthesis techniques for discrete-time linear state feedback control laws guaranteeing 

closed-loop system stabihty with prespecified sector, gain and phase margins were developed 

in the literatiure. However, unlike the continuous-time case, nonhnear-nonquadratic inverse 

optimal state feedback regulatora for nonhnear discrete-time systenw possessing guaranteed 

sector and disk margins to component decoupled input nonUnearities in the conic sector 

(|, oo) and dissipative dynamic input operators have not been addressed in the hterature. 

In this research [40], we obtain sufficient conditioi^ for di^ipativity with respect to 

quadratic supply rates. Next, using these extensions, we develop sufficient conditions for 

gain, sector and disk marpn guarantees for discrete-time nonhnear systems controlled by op- 

timal and inverse optimal nonlinear regulators that minimize a nonhnear-nonquadratic per- 

formance criterion involving a nonlinear-nonquadratic fimction of the state and a quadratic 

fimction of the feedback control. In the case where we specialize our results to the linear- 

quadratic case, we recover the classical discrete-time hnear-quadratic optimal regulator gain 

and phase margin guarantees. 
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2.24.    A Unification Between Partial Stability and Stability The- 
ory for Time-Varying Systems 

In many engineering applications, partial stability (stability with respect to part of the 

system's states) is often necessary. In particular, partial stability axises in the study of elec- 

tromagnetics, inertial navigation systems, spacecraft stabiMzation via gimballed gyroscopes 

and/or flywheels, combustion systen^, vibrations in rotating machinery, and biocenology, to 

cite but a few examples. For example, in the field of biocenology involving Lotka-Volterra 

predator-prey models of population dynamics with age structure, if the bhth rate of some 

of the species preyed upon is left alone, then the corresponding population increases with- 

out bound while a subset of the prey species remain stable. The need to consider partial 

stabiHty in the aforementioned systems arises from the fact that stabihty notions involve 

equilibrium coordinates as well as a hyperplane of coordinates that is closed but not com- 

pact. Hence, partial stabihty involves motion lying in a subspace instead of an equilibrium 

point. Additionally, partial stabihzation, that is, closed-loop stabihty with respect to part 

of the closed-loop system's state, also arises in many engineering apphcations. Specifically, 

in spacecraft stabilization via gimballed ^roscopes, asymptotic stabihty of an equihbrium 

position of the spacecraft is sought while requiring Lyapunov stability of the axis of the 

gyroscope relative to the spacecraft. Alternatively, in the control of rotating machinery 

with mass imbalance, spin stabilization about a nonprincipal axis of inertia requires motion 

stabilization with respect to a subspace instead of the origin. Perhaps the most common 

appHcation where partial stabilization is necessary w adaptive control, wherein asymptotic 

stabihty of the closed-loop plant states is guaranteed without necessarily achieving parameter 

error convergence [36,43]. 

In thw research [41], we present partial stabihty theorems for nonhnear dynamical sys- 

tems-and present a unification between partial stability theory for autonomous systenw and 

stabihty theory for nonhnear time--rarying systena. This unification allo^re for time--rarying 

stabihty theory to be presented as a special case of autonomous partial stability theory so 

that time-varying and time-invariant stabihty theory can be disciwsed in juxtaposition. We 

stress that om aim was to demonstrate that partial stability and time-varying stabihty aie 

derivable from the same principles and can be introduced as part of the same mathematical 

framework without resorting to the more advanced notions of the stabihty of sets. 
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2.25. Actuator Amplitude Saturation Control for Systems with 
Exogenous Disturbances 

Since all actuation devices aie subject to amplitude limitatioM, actuator amplitude sat- 

uration arises in most control engineering applications resulting in loss of closed-loop per- 

formance and, in some cases, in instability. The destabilizing effect of actuator saturation 

has long been observed in feedback systems with unstable controllers and in particular in 

feedback systems with integral control action. In this case, since the feedback loop is severed 

when the actuator saturates the unstable controller modes drift exhibiting a windup effect 

which, in addition, may lead to a finite escape time instability. The problem of actuator 

saturation is further exacerbated by system uncertain exogenous distmbances. Thus, the 

control system design process must account for amplitude saturation as well as for system 
disturbances. 

There exists an extensive literature devoted to the control saturation problem and the 

associated windup problem. However, the satmration controllers developed in the Uterature 

do not account for the effect of exogenous disturbances. In this research [42], we develop an 

absolute stabilization framework to address the actuator amplitude saturation control prob- 

lem for systems with bounded energy L2 exogenous disttirbances. Specifically, we contract 

a modified Rlccati equation whose solution guarantees that the closed-loop undisturbed sys- 

tem is globally asymptotically stable in the face of sector bounded input nonhnearities and 

the cl(Med-loop output system energy is less than the net weighted input system energy at 

any time T in the face of L2 disturbances. Using the modified Riccati equation, construc- 

tive sufficient conditions for fixed-order (i.e., fiill- and reduced-order) dynamic compensators 

guaranteeing ampUtude saturation constraints and disturbance rejection are developed. In 

addition, to account for closed-loop system performance, we ako consider the minimization 

of aquadratic performance criterion involving weighted state and control variables over the 
allowable class of input nonhnearities. 

2.26. Nonlinear Adaptive •n-acking of Surface Vessels with Exoge- 
nous Disturbances 

The desire for developing a control design methodology for surface vessel maneuvering and 

position tracking has led to significant activity in modehng and control of marine vehicles. 

Early conventional vessel control design for dynamic positioning of ships were developed 

under the assumption that the kinematic and dynamic equatioM of motion can be linearized, 

so that Unear optimal control theory is appUcable. However, for vessel tracking applications 
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wherein the surge and sway positioM and yaw angle must be controlled simultaneoiMly, a 

linearized model is not valid. In this research [46], we develop a coupled nonlinear two- 

vessel tracking model for a leading-tracking vessel configmration. The unknown interaction 

disturbances acting on the vessels are modeled as known fimctions with unknown parameters. 

Next; an adaptive control law is designed to attenuate the interaction disturbances and 

maintain a desired separation of the two vessek, where the leading vessel serves as the 

reference for the tracking vessel. Here, the desired reference trajectory is generated by a 

Nomoto reference model. The proposed inverse optimal adaptive controllers are compared 

with a standard adaptive backstepping design and a locally optimal and robust backstepping 

design. This comparison demonstrates that the inverse optimal adaptive controller uses less 

control effort and achieves better tracking as compared with the other designs. 

2.27.    Exponentially Dissipative Dynamical Systems: A Nonlinear 
Extension of Strict Positive Realness 

One of the most basic issues in system theory is stability of feedback interconnections. 

Two of the most fimdamental results concerning stabihty of Mnear feedback systen^ are 

the positivity and small gain theoren^. The positivity theorem states that if Q and Q^ 

are (square) positive real tramfer fimctions, one of which is strictly positive real, then the 

negative feedback mterconnection of Q and Q^ ia asymptotically stable. Alternatively, the 

small gain theorem impUes that if Q and Qc are asymptotically stable finite gain traimfer 

functions, one of which is strictly finite gain so that ||0||oo||0c||oo < 1, then the negative 

feedback interconnection of Q and Qc is asymptotically stable. In an attempt to generalize 

the above feedback interconnection stabiUty results to nonlinear state space systen^, Hill and 

Moylan introduced the novel concepts of input strict passivity, output strict passivity, and 

input-output strict passivity using notiom of storage functiom with appropriate supply rates 

firom dissipativity theory for nonlinear dynamical systems. In particular. Hill and Moylan 

show that if the nonhnear dynamical systems Q and Qc are both input strict passive, or 

both are output strict passive, or Q is passive and Qc is input-output strict passive, then 

the negative feedback interconnection of Q and Qc is asymptotically stable. However, these 

nonlinear feedback stability results do not represent an exact nonlinear extension to the 

positivity and small gain theorems discussed above. Specifically, specializing the notion 

of mput strict passivity, output strict passivity, and input-output strict passivity to hnear 

systeuM yields stronger conditions than strict positive realness and strict bounded realness. 

In this research [48,85], we extend the notion of dissipative dynamical systems to formal- 

ize the concept of the nonlinear analog of strict positive realness and strict bounded real- 

31 



ness. In particular, iKing exponentially weighted system storage fiinctions with appropriate 

exponentially weighted supply rat« we introduce the concept of exponential dissipativity. 

FHirthermore, we develop nonUnear Kahnan-Yakubovich-Popov conditions for exponentially 

dissipative dynamical systenw with quadratic supply rates. In the special cases where the 

system dynamics are Hnear and the quadratic supply rates correspond to the net system 

power, and the weighted input and output system ener^, the Kalman-Yakubovich-Popov 

conditions specialize to the strict positive real lemma and strict bounded real lemma, re- 

spectively. 

Furthermore, using exponential dissipativity concepts we present several stability re- 

sults for nonhnear feedbadc systems that provide a nonhnear analog to the classical posi- 

tivity and small gain theorems for linear feedback systems. In addition, using the extended 

Kalman-Yakubovich-Popov conditions for exponentially passive systems, we extend the H2- 

based positive real controller synthesis methods to nonlinear passive dynamical systems. 

Specifically, globally stabiUzing static and dynamic exponentially passive output feedback 

nonhnear controllers are constructed for nonlinear passive systems that additionally min- 

imize a nonlinear-nonquadratic performance criterion involving a nonlinear-nonquadratic, 

nonnegative-definite function of the state and a quadratic positive-definite function of the 

control. In particular, by choosing the nonUnear-nonquadratic weighting ftmctions in the 

performance criterion in a specified manner, the resulting static and dynamic controllers are 

guaranteed to be exponentially passive. In the dynamic output feedback case, we show that 

the linearized controller for the Unearized passive system is Ha optimal. 

2.28.    Linear Controller Analysis and Design for Systems with In- 
put Hystereses Nonlinearities 

In recent yeara the desire to orbit large, Ughtweight space structures with high-performance 

requirements has prompted researchera to consider actuators which possess a fraction of the 

size and weight of more conventional actuation devices. As a coiwequence, considerable re- 

search interest has focused in the field of smart or adaptive materials as a viable alternative 

to conventional proof mass actuators for vibration control. Due to the fact that adaptation 

in smart materials is a result of physical nonhnear changes occurring within the material, 

these actuation devices exhibit significant hysteresis in the actuator response. Specifically, 

smart distributed actuators such as shape memory alloys, magnetostrictives, electrorheolog- 

ical fluids, and piezoceramics all exhibit hysteretic effects. Since hystereses nonhnearities 

can severely degrade closed-loop system performance, and in some cases drive the system to 

a Umit cycle instabihty, they mast be accounted for in the control-system design process. 
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Even though numerous modek for captiuring hystereses effects have been developed, with 

the Preisadi model being the most widely used, controller analysis and synthesis for feedback 

systems with hystereses nonlineaiities has received Httle attention in the literature. The main 

complexity arMng in hystereses nonlinearities is the fact that every reachable point in the 

input-output hysteresis map does not correspond to a uniquely defined point. In fact, at any 

reachable point in the input-output hysteresis map there exists an infinite number of trajec- 

tories that may represent the future behavior of the hysteresis dynamics. These trajectories 

depend on a particular past history of the extremtun values of the input. However, hystereses 

nonlinearities with counterclockwise loops have been shown to be dissipative with respect 

to a supply rate involving force inputs and velocity outputs. Dissipative hystereses models 

include the well known backlash nonlinearities, stiction nonhnearities, relay hystereses, and 

most of the hystereses nonlinearities arising in smart material actuators. 

The contribution of this research [53,87] is a methodology for analyzing and designing 

output feedback controllers for systems with input hystereses nonlinearities. Specifically, 

by trajMforming the hystereses nonhnearities into dissipative input-output dynamic opera- 

tors, dissipativity theory is used to analyse and design linear controllers for systen^ with 

input hystereses nonhnearities. In particular, by representing the input hysteresis nonlin- 

earity as a dissipative input-output dynamical operator with respect to a given supply rate, 

partial closed-loop asymptotic stabihty; that is, asymptotic stabihty with respect to part 

of the closed-loop state associated with the plant and the controller, is guaranteed in the 

face of an input hysteresis nonhnearity. EHurthermore, it is shown that the reminder of the 

state associated with the hysteresis dynamics is semistable; that is, the limit points of the 

hysteretic states converge to Lyapunov stable equiHbrium points determined by the system 
initial conditions. 

2.29.    A Lyapunov Function Proof of Poincare's Theorem 

Poincare's theorem provides a powerful tool in analyzing the stabihty properties of pe- 

riodic orbits and hmit cycles of n-dimeiwional dynamical systems in the case where the 

trajectory of the system can be relatively easily integrated. Specifically, Poincare's the- 

orem provides necessary and sufficient conditions for stability of periodic orbits based on 

the stabihty properties of a fixed point of a discrete-time dynamical system constructed 

from a Poincare retmrn map. In particular, for a given candidate periodic trajectory, an 

(fi — l)-dimensional hyperplane is constructed that is transversal to the periodic trajectory 

and which defines the Poincare return map. Trajectories starting on the hyperplane which 

are sufficiently close to a point on the periodic orbit will intersect the hyperplane after a 
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time approximately equal to the period of the periodic orbit. This mapping traces the sys- 

tem trajectory from a point on the hyperplane to its next corresponding intersection with 

the hyperplane. Hence, using system analytic arguments along with the somewhat involved 

Hartman-Grobman theorem, the Poincare return map can be vsed to estabHsh a relation- 

ship between the stabihty properties of a dynamical system with periodic solutions and the 

stability properties of an equihbrium point of an (n - l)-dimeMional discrete-time system. 

In this research [62,110], using the notions of Lyapunov and asymptotic stabiUty of sets, we 

construct lower semicontinuous Lyapunov functions to provide a Lyapunov function proof of 
Poincare's theorem. 

2.30.    A Dissipative Dynamical Systems Approach to Stability 
Analysis of Time Delay Systems 

Modern complex engineering systems involve a multitude of information and communi- 

cation networks. A key physical limitation of such systems is that power traiafers between 

interconnecting ^stem components are not instantaneous and realistic models for captiuring 

the dynamics of such systenw should account for information in transit. To axicurately de- 

scribe the evolution of these complex systenw, it is necessary to include in any mathematical 

model of the s^tem dynamics some information of the past systems states. This leads to 

(infinite-dimemional) delay dynamical systems. Time-delay dynamical systen^ have been 

exteiwively studied in the Mterature. Since time delay can severely degrade system perfor- 

mance and in many cases drive the system to instabihty, stabihty analysis of time delay 

dynamical systems remaim a very important area of research. A key method for analyz- 

ing stabihty of time delay dynamical systems is Lyapunov's second method as appMed to 

ftmctional differential equations. Specifically, stability analysis of a given linear time delay 

dynamical te typically shown using a Lyapunov-Krasovskii ftmctional. Standard Lyapunov- 

Krasovskii fimctionak involve a fixed quadratic fimction and an integral ftmctional exphcitly 

dependent on the ^stem delay. As in classical absolute stabihty theory, the fixed quadratic 

part of the Lyapunov-Krasovskii ftmctional is associated with the stabiUty of the forward 

delay-independent part of the retarded dynamical system. However, the system theoretic 

foundation of the integral part of the Lyapunov-Krasovskii ftmctional is less understood. 

In this research [64,117], using the notions of dissipativity and exponential dwsipativity 

theory, we present sufficient conditions for guaranteeing asymptotic stabihty of time delay 

dynamical systems. Specifically, representing a time delay dynamical system as a negative 

feedback interconnection of a finite-dimcMional hnear dynamical system and an infinite- 

dimcMional time delay operator, we show that the time delay operator is dissipative with 
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respect to a quadratic supply rate and with a storage fimctional involving an integral term 

which is identical to the integral term appearing in the Lyapmiov-Krasovskii functional. 

Next; nsing stability of feedback intercomiection results based on dissipativity of a feedback 

interconnected system, we develop siifficient conditioiw for asymptotic stability of time de- 

lay dynamical systems that are consistent with the results in the Mteratmre yet providing 

a system theoretic foundation for the Lyapunov-Krasovskii functional forms. The overall 

approach provides an expUcit framework for constructing Lyaptmov-Krasovskii functionals 

for asymptotically stable time delay dynamical systenw based on the dissipativity proper- 

ties of the time delay operator. Finally, analogous results for dkcrete-time systems are also 

presented. 

2.31.    Adaptive Control for Thermoacoustic Combustion Instabil- 
ities 

High performance aeroengine afterburnera and ramjets often experience combustion in- 

stabilities at some operating condition. Combustion in these high energy deiaity engines is 

highly siwceptible to iow disturbances, resulting in fluctuations to the instantaneous rate 

of heat release in the combustor. This unsteady combiwtion provides an a^oiwtic source 

resulting in self-excited oscillations. In particular, m^teady combustion generates acoiwtic 

pressure and velocity oscillations which in turn perturb the combustion even ftu-ther. These 

pressure oscillations, known as thermoacoiKtic ii^tabihties, often lead to high vibration levels 

calling mechanical failures, high levels of acoustic noise, high burn rates, and even compo- 

nent melting. Hence, the need for active control to mitigate combustion induced pressure 

instabiMties is severe. 

Due to the intricate complex physical phenomena in combustion processes involving 

acoustics, thermodynamics, fluid mechanics, and chemical kinetics, flnite dimensional Un- 

ear or nonlinear models are unavoidably inaccurate. Basic system data such as damping, 

frequency, and mode shapes are often poorly known. Rttthermore, approximatioiw of pres- 

sure and velocity fluctuations involving time-averaging in the governing system equations 

r^ult in further system uncertainty that manifests itself as highly structured constant real 

parametric uncertainty in the modal frequencies and damping. Thus for pressure oscillation 

suppression in combustion processes, system modehng uncertainty necessitates the need for 

nonlinear adaptive control. 

In this research [97], we apply the Lyapunov-based direct adaptive control framework de- 

veloped in [36] to suppress the effects of thermoacoiwtic iiwtabilities in combiMtion processes. 

The overall framework demonstrates that the proposed adaptive controllers provide consid- 
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Figure 6: Open-loop state r^ponse of an un- 
controlled two-mode combustion model. 
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Figure 7: These plots illustrate the removal 
of energy from a two-mode uncertain combus- 
tion model with 8709% deviation in nominal 
s^tem parameters. 

erable robustness in suppressing thermoa<;oustic combustion instabilities in the presence of 

parametric uncertainti^ in the model (see Figures 6 and 7). 
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were involved in research projects that were closely related to this program. Although none 

of these students were financially supported by this program, their research did directly con- 
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The first of the Ph. D. students, Dr. Leonessa, holds the rank of Assistant Professor of 

Ocean Engineering at Florida Atlantic University, while the second of the Ph. D. students, 

Dr. Corrado, is presently with the Raytheon Missile Systems, Tucson. 

4.    Interactions and Transitions 

4.1. Participation and Presentations 

The following conferences were attended over the past three years. 

IEEE Conference on Control Applications, Kohala Coast, HI, August 1999. 

IEEE Conference on Decision and Control, Phoenix, AZ, December 1999. 

American Control Conference, Chicago, IL, June 2000. 

IEEE Mediterranean Conference on Control and Automation, Patras, Greece, July 
2000. 

ASME International Mechanical Engineering Congress and Exposition, Orlando, PL, 
November 2000. 

American Control Conference, Arlington, VA, June 2001. 

ASME International Mechanical Engineering Congress and Exposition, New York, NY, 
November 2001. 

IEEE Conference on Decision and Control, Orlando, FL, December 2001. 

American Control Conference, Anchorage, AK, May 2002. 

Conference on Decision and Control, Las Vegas, NV, December 2002. 

Furthermore, conference articles [76-114] were presented. 

4.2. Transitions 

Computational work on fixed-architectm*e control supported by this program has been 

transferred to Raytheon Missile Systems, IHicson, under the supervision of Dr. J. R. Corrado 

(520-794-1662) to transition our analytical work on robiwt fixed-structure control to indiwtry 

programs. Specifically, in collaboration with D. S. Bermtein at the University of Michigan, 

we have been developing a Robust Fiaed-Structure Control Toolbox integrated within the 

MATLAB® environment that can be used to synthesize fixed-structure controllers that are 

optimal with respect to given performance measures, and at the same time satisfy stabihty 

and robiMtness constraints. The Robust Fwxd-Structure Control Toolbox focuses on the 

development of a control design algorithm which supports the following paradigm: Minimize 
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control law complexity subject to the achievement of a specified accuracy in the face of a 
specified level of uncertainty. 

Our recent analytical work on biological and physiological systems supported by this 

program was communicated to Dr. J. M. Baily (404-778-3957) at the Department of Anes- 

thesiology, Emory University Hospital, Atlanta, GA 30322. This has sparked a close coUabo- 

ration between the Principal Investigator and Dr. Bailey that has resulted in several research 

pubhcations, several mternal Georgia Tech-Emory proposals as well as a National Institute 

of Health proposal. The main goal of this collaboration is to eliminate the steep barriers to 

communication between control engineering and medicine and advance the state-of-the-art 

in active control of drug delivery systems for chnical pharmacology. WMle our apphcation 

objective in this collaboration is to develop active control methods to deliver sedation to 

critically ill patients, our researdi will have imphcations for other uses of closed-loop control 

of drug delivery. There are numerous potential appUcatioM such as control of glucose, heart 

rate, blood pressure, etc., that may be improved as a result of this research program. 
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