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1. Introduction

1.1. Research Objectives

As part of this research program we proposed the development of a general multiech-
elon hierarchical nonlinear switching control design framework that minimizes control law
complexity subject to the achievement of control law robustness. In particular, we con-
centrated on hybrid control, impulsive dynamical systems, nonnegative dynamical systems,
compartmental systems, nonlinear sWitching control, and adaptive control. Application ar-
eas included biological systems, physiological systems, pharmacological systems, ecological

systems, vibration control of aerospace structures spacecraft stabilization, and control of
cembustlen in jet engines.

1.2. Overview of Research

Controls research by the Principal Investigator has concentrated on nonlinear control
with applications to aerospace systems and biological and physiological systems [1-125]. In
particﬁlar, a unified dynamical systems framework for a general class of systems possess-
ing left-continuous flows; that is, left-continuous dynamical systems was developed. These
systems are shown to generalize virtually all existing notions of dynamical systems and in-
clude hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we
generalize dissipativity, passivity, and nonexpansivity theory to left-continuous dynamical
_systems Specifically, the classical concepts of system storage functions and supply rates
are extended to left-continuous dynamical systems providing a generalized hybrid system
energy interpretation in terms of stored energy, dissipated energy over the continuous-time
’dynamlcs, and dissipated energy over the resetting events. The generalized dissipativity
notions are then used to deveiop general stability criteria for feedback interconnections of
left-continuous dyna.zmca} systems. These results generalize the positivity and small gain
theorems to the case of left-continuous, hybrid, and impulsive dynamical systems. In addi-
tion, a unified framework for hybrid feedback optimal and inverse optimal control involving a
hybrid nonlinear-nonquadratic performance functional is developed. It is shown that the hy-
brid cost functional can be evaluated in closed-form as long as the cost functional considered
is related in a specific way to an underlying Lyapunov function that guarantees asymptotic
stability of the nonlinear closed-loop left-continuous dynamical system. Furthermore, the

Lyapunov function is shown to be a solution of a steady-state, ilybnd Hamilton-Jacobi-
Bellman equation.




In addition, we developed a unified hierarchical hybrid nonlinear stabilization framework
for hybrid port-controlled Hamiltonian systems. Specifically, we design passivity-based hier-
archical hybrid controllers such that the total energy of the closed-loop hybrid system is the
difference between the energy of the multi-agent hybrid system and the energy supplied by
the controller. Hybrid passivity-based control architectures are extremely appealing since
the control action has a clear physical energy interpretation over the continuous-time dy-
namics and the resetting instants. This feature can considerably simplify hardware/software
implementation for hierarchical hybrid control systems.

Finally, a unified dynamical systems framework for stability and dissipativity theery for
nonnegative dynamical systems is developed. Nonnegative dynamical system models are de-
rived from mass and energy balance considerations that involve dynamic states whose values
are nonnegative. These models are widespread in biological, physiological, and ecological sci-
ences and play a key role in the understanding of these processes. In particular, we develop
several results on stability, dissipativity, and feedback interconnections of linear and nonlin-
ear nonnegative dynamical systems. Specifically, using linear Lyapunov functions we develop
necessary and sufficient conditions for Lyapunov stability, semistability, and asymptotic sta-
bility for nonnegative systems. In addition, using linear storage functions and linear supply
rates we extend the notions of dissipativity theory to nonnegative dynamical systems. These
results are used to develop general stability criteria for feedback interconnections of non-
negative dynamical systems. Finally, an adaptive control framework for a class of nonlinear
dynamical systems with state-dependent uncertainty is developed. The proposed framework
guarantees global asymptotic stabiﬁty of the closed-loop system states associated with the
plant dynamics without requiring any knbwiedge of the system nonlinearities other than the
assumption that they are continuous and lower bounded. Generalizations to the case where
the system nonli}iea,rities are unbounded are also considered. In the special case of matrix

“second-order systems with polynomial nonlinearities with unknown coefficients and unknown

order, we provide a universal adaptive controller that guarantees closed-loop stability of the
plant states. The aforementioned design frameworks were applied to pharmacokinetic sys-

tems, epidemic systems, population dynamics as well as to the control of thermoacoustic
combustion instabilities in aeroengines.

1.3. Goals of this Report

The main goal of this report is to summarize the progress achieved under the program
during the past three years. Since most of the technical results appeared or will soon appear
in over 125 archival journal and conference publications, we shall only summarize these




results and remark on their significance and interrelationship.

2. Description of Work Accomplished

The following research accomplishments have been completed over the past three years.

2.1. Stability, Dissipativity, Feedback Interconnections, and Op-
timality of Hybrid Dynamical Systems

In the light of the increasingly complex nature of dynamical systems requiring controls,
the predominant considerations in control law design for modern engineering systems have
focused on general multiechelon hierarchical nonlinear switching control architectures that
minimize control law complexity subject to the achievement of control law robustness. Mul-
tiechelon systems are classified as hybrid systems and typicaliy possess a hierarchical struc-
ture characterized by continuous-time dynamics at the lower-level units and logical decision-
making units at the higher-level of the hierarchy (see Figure‘ 1). The logical decision making
units serve to coordinate and reconcile the (sometimes competing) actions of the lower-level
units. Due to their multiechelon hierarchical structure, hybrid dynamical systems are ca-
pable of simultaneously exhibiting continuous-time dynamics, discrete-time dynamics, logic
commands, discrete-events, and resetting events. Such systems include dynamical switching
systems, nonsmooth impact mechanical systems, biological systems, sampled-data systems,
discrete-event systems, intelligent vehicle/highway systems, constrained mechanical systems,
‘and flight control systems, to cite but a few examples. The mathematical descriptions of
some of these systems can be characterized by impulsive differential equations [34,35]. Im-
pulsive dynamical systéms can be viewed as a subclass of hybrid systems and consist of three
elements; namely, a continuous-time differential equation, which governs the motion of the -
dynamical system between impulsive or resetting events; a difference equation, which gov-
erns the way the system states are instantaneously changed when a resetting event occurs;
and a criterion for determining when the states of the system are to be reset.

Even though numerous results focusing on specific forms of hybrid systems have been
developed in the literature, the development of a general model for hybrid dynamical systems
has received little attention in the literature. In this research [33-35] we developed a unified
dynamical systems framework for a general class of systems possessing left-continuous flows;
that is, left-continuous dynamical systems. A left-continuous dynamical system is a precise
mathematical object and is defined on the semi-infinite interval as a mapping between vector
spaces satisfying an appropriate set of axioms and includes hybrid inputs and hybrid outputs

3
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Figure 1: Multiechelon Dynamical System

that take their values in appropriate vector spaces. The notion of a left-continuous dynami-
cal sys{:em introduced in [33] generalizes virtually all existing notions of dynamical systems
and. includes hybrid, impulsive, and switching dynamical systems as special cases. Further-
more, using generalized left-continuous storage functions and hybrid supply rates we extend
the notions of classical dissipativity theory [48] and exponential dissipativity theory [48] to -
- left-continuous dynamical systems. The overall approach provides an interpretatiba of a gen-

eralized hybrid energy balance of a left-continuous dynamical system in terms of the stored

or, accumulated generalized energy, dissipated energy over the continuous-time dynamics,

and dissipated energy at the resetting events. Furthermore, as in the continuous-time dy—

namical systems case possessing continuous flows, we show that the set of all possible storage

functions of a left-continuous dynamical system forms a convex set and is bounded from be-

low by the system’s available stored generalized energy which can be extracted from the

system, and bounded from above by the system’s required generalized energy supply needed
to transfer the system from an initial state of minimum generalized energy to a given state.

In addit{:ion,’ in the case of nonlinear impulsive dynamical systems we developed extended

Kalman-Yakubovich-Popov conditions in terms of the system dynamics for characterizing

dissipativeness via system storage functions for impulsive dynamical systems.

Using the concepts of dissipativity and exponential éissipativity for left-continuous sys-
tems, we also developed feedback interconnection stability results for left-continuous dynam-
ical systems. Specifically, general stability criteria are given for Lyapunov, asymptotic, and
exponential stability of feedback left-continuous systems. In the case of quadratic hybrid
supply rates involving net system power and input-output energy, these results generalize
the positivity and small gain theorems to the case of left-continuous dynamical systems
and hence hybrid and impulsive dynamical systems. In particular, we show that if the
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left-continuous dynamical systems G and G, are dissipative (respectively, exponentially dis-
sipative) with respect to quadratic hybrid supply rates corresponding to net system power,
or weighted input and output energy, then the negative feedback interconnection of G and
. is Lyapunov (respectively, asymptotically) stable.

Finally, we developed a hybrid feedback optimal control framework for nonlinear im-
pulsive dynamical systems. The performance functional involves a continuous-time cost for
addressing performance of the continuous-time system dynamics and a discrete-time cost
for addressing performance at the resetting instants. Furthermore, the hybrid cost func-
tional can be evaluated in closed-form as long as the nonlinear-nonquadratic cost functional
considered is related in a specific way to an underlying Lyapunov function that guarantees
asymptotic stability of the nonlinear closed-loop impulsive system. This Lyapunov function
is shown to be a solution of a steady-state, hybrid Hamilton-Jacobi-Bellman equation and
thus guaranteeing both optimality and stability of the feedback controlled impulsive sys-
tem. The overall framework provides the foundation for extending linear-quadratic feedback
control methods to nonlinear impulsive and hybrid dynamical systems. We note that the op-
timal control framework for impulsive dynamical systems developed in [35] is quité different
from the quasivariational inequality methods for impulsive and hybrid control developed in
the literature. Specifically, quasivariational methods do not guarantee asymptotic stability
via Lyapunov functions and do not necessarily yield feedback controllers. In contrast, the
proposed approach provides hybrid feedback controllers guaranteeiﬂg closed-loop stability
via an underlj}ing Lyapunov function.

2.2. An Invariance Principle for Nonlinear Hybrid and Impulswe
Dynamical Systems

~ To analyze the stability of dynamical systems with impulsive effects, Lyapunov stability =~

results have been presented in the literature. In particular, local and global asymptotic sta-
bility conclusions of an equilibrium point of a given impulsive dynamical system are provided
if a smooth (at least C') positive-definite function of the nonlinear system states (Lyapunov
function) can be constructed for which its time rate of change over the continuous-time dy-
namics is strictly negative and its difference over the resetting times is negative. However,
unlike dynamical systems possessing continuous flows, Barbashin-Krasovskii-LaSalle-type in-
variant set stability theorems do not seem to have been addressed for impulsive dynamical
systems. There appears to be (at least) two reasons for this state of affairs; namely, solutions
of impulsive dynamical systems are not continuous in time and are not continuous functions
of the system’s initial conditions, which are two of the key properties needed to establish




invariance of omega limit sets and hence an invariance principle.

In this research [34,45] we developed an invariance principle for left-continuous dynamical
systems. In particular, invariant set theorems are derived wherein system trajectories con-
verge to the largest invariant set of Lyapunov level surfaces of the left-continuous dynamical
system. These systems are shown to specialize to hybrid systems and state-dependent nonlin-
ear impulsive differential systems. Furthermore, in the case where the Lyapunov function is
C! and defined on a compact positively invariant set (with respect to the nonlinear impulsive
system), the largest invariant set is contained in a hybrid level surface composed of a union
involving vanishing Lyapunov derivatives and Lyapunov differences of the system dynamics
over the continuous-time trajectories and the resetting instants, respectively. In addition, if
the Lyapunov derivative along the continuous-time system trajectories is negative semidefi-
nite and no system trajectories can stay indefinitely at points where the function’s derivative
identically vanishes, then the system’s equilibrium is asymptotically stable. These results
provide less conservative conditions for examining the stability of state-dependent impulsive
dynamical systems as compared to the classical results presented in the literature. Finally,
the impulsive invariance principle can be used to establish the existence and investigate the
stability of limit cycles and periodic orbits of impulsive systems. |

2.3. On the Equivalence Between Dissipativity and Optimality of
| Nonlinear Hybrid Controllers

Modern complex engineering systems typically possess a multiechelon hierarchical archi-

‘t‘e‘cture characterized by continuous-time dynamics at the lower levels of the hierarchy and

discrete-time dynamics at the higher levels of the hierarchy. Hence, it is not surprising that
hybrid systems have been the subject of intensive research over the past recent years. As

‘discussed in Section 2.1, the mathematical descriptions of many of these systems cai be

characterized by impulsive differential equations.

In [34,35] we developed a general framework for hybrid feedback systems by addressing
stability, dissipativity, optimality, and inverse optimality of impulsive dynamical systems.
In particular, in [35] we consider a hybrid feedback optimal control problem over an infinite
horizon involving a hybrid nonlinear-nonquadratic performance functional. The performance
functional involves a continuous-time cost for addressing performance of the continuous-time
system dynamics and a discrete-time cost for addressing performance at the resetting in-
stants. Furthermore, the hybrid cost functional can be evaluated in closed-form as long as
the nonlinear-nonquadratic cost functional considered is related in a specific way to an un-

derlying Lyapunov function that guarantees asymptotic stability of the nonlinear closed-loop
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hybrid system. This Lyapunov function is shown to be a solution to a steady-state, hybrid
Hamilton-Jacobi-Bellman equation and thus guaranteeing both optimality and stability of
the feedback controlled impulsive system. The overall framework provides the foundation

for extending linear-quadratic feedback control methods to nonlinear impulsive dynamical
systems.

For continuous-time nonlinear systems with continuous flows, the problem of guaranteed
stability margins for optimal and inverse optimal regulators is well known. Specifically,
nonlinear inverse optimal controllers that minimize a meaningful nonlinear-nonquadratic
performance criterion involving a nonlinear-nonquadratic, nonnegative-definite function of
the state and a quadratic positive definite function of the control are known to possess
sector margin guarantees to component decoupled input nonlinearities lying in the conic
sector (3,00). These results also hold for disk margin guarantees where asymptotic stability
of the ciosed—lcop system is guaranteed in the face of a dissipative dynamic input operator.
In addition, an equivalence between dissipativity with respect to a quadratlc supply rate and
optimality of a nonlinear regulator also holds.

In this research [30], we use the results of [34,35] to develop sufficient conditions for hybrid
gain, sector, and disk margins guarantees for nonlinear hybrid dynamical systems controlled
by optimal and inverse optimal hybrid regulatdrs. Furthermore, we develop a hybrid coun-
terpart of the return difference inequality for continuous-time systems to provide connections
between dissipativity and optimality of nonlinear hybrid controllers. In particular, we show
that unlike the case for continuous-time systems with continuous flows, the equivalence be-
tween dissipativity and optimality of hybrid controllers breaks down. However, we do show
that optimal hybrid controllers imply dissipativity with respect to a quadratic supply rate.

2.4. A Generalization of Poincaré’s Theorem to Hybrld and Im-
pulsive Dynamical Systems

In certain dynamical systems and in particular mechanical and biological systems, system
state discontinuities arise naturally. In a recent series of papers by the Principal Investiga-
tor [33,45] a unified dynamical systems framework for a general class of systems possessing
left-continuous flows; that is, left-continuous dynamical systems, was developed. A left-
continuous dynamical system is a precise mathematical object that is defined on the semi-
infinite interval as a mapping between vector spaces satisfying an appropriate set of axioms
and includes hybrid and impulsive dynamical systems as special cases. Stability analysis of
left-continuous dynamical systems is also considered in [33,45], with [45] presenting invariant
set stability theorems for a class of left-continuous and impulsive dynamical systems. The
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extension of the invariance principle to impulsive dynamical systems presented in [45] pro-
vides a powerful tool in analyzing the stability properties of periodic orbits and limit cycles
of dynamical systems with impulse eﬁects. However, the periodic orbit of a left-continuous
dynamical system is a disconnected set in the n-dimensional state space making the con-
struction of a Lyapunov-like function satisfying the invariance principle a daunting task for
high-order nonlinear systems. In such cases, it becomes necessary to seek alternative tools to
study the stability of periodic orbits of hybrid and impulsive dynamical systems, especially
if the trajectory of the system can be relatively easily integrated.

In this research [37], we generalize Poincaré’s theorem to left-continuous dynamical sys-
tems and hence to hybrid and impulsive dynamical systems. Specifically, we develop neces-
sary and sufficient conditions for stability of periodic orbits based on the stability properties
of a fixed point of a discrete-time dynamical system constructed from a Poincaré return map.
As opposed to dynamical systems possessing continuous flows requiring the construction of
a hyperplane that is transversal to a candidate periodic trajectory necessary for defining
the return map, the resetting set which provides a criterion for determining when the states
of the left-continuous dynamical system are to be reset provides a natural candidate for
the transversal surface on which the Poincaré map of a left-continuous dynamical system
can be defined. Hence,‘the Poincaré return map is defined by a subset of the resetting set
that induces a discrete-time mapping from this subset onto the resetting set. This mapping
traces the left-continuous trajectory of the left-continuous dynamical system from a point
~ on the resetting set to its next corresponding intersection with the resetting set. In the case
of impulsive dynamical systems posséssing sufficiently smooth resetting manifolds, we show
the Poincaré return map can be used to establish a relationship between the stability prop-
erties of an impulsive dynamical system with periodic solutions and the stability properties
of an equﬂibrium point of an (n — 1)th-order discrete-time system. These results have been
recentiy employed to analyze the periodic orbits for the verge and folio clock escapement
mechanism [56] which exhibits impulsive dynamics.

2.5. A Unification Between Partial Stability of State-Dependent
Impulsive Systems and Stability Theory of Tlme-Dependent
Impulsive Systems

As discussed in Section 2.1, impulsive differential equations are ideal in describing the
dynamics of hybrid systems which typically possess a multiechelon hierarchical architecture
characterized by continuous-time dynamics at the lower levels of the hierarchy and discrete-
time dynamics at the higher levels of the hierarchy. Since hybrid dynamical systems involve




an interacting countable collection of dynamical systems wherein the dynamic states are not
independent of one another and yet not all system states are of equal precedence, partial
stability; that is, stability with respect to part of the system’s states, is often necessary. In
this research [38], we build on the stability results of impulsive dynamical systems developed
in [33,34,45] to present partial stability theorems for nonlinear impulsive dynamical systems.

Since the stability analysis of general impulsive dynamical systems can be quite involved,
two distinct forms of the resetting set are typically considered [34]. In the first case, the
resetting set is defined by a region in the state space and is independent of time. These
systems are called state-dependent impulsive dynamical systems [34]. In the second case, the
resetting set is defined by a prescribed sequence of times that are independent of the system
state. These systems are thus called time-dependent impulsive dynamical systems [34]. Since
state-dependent impulsive dynamical systems are time-invariant systems and time-dependent
impulsive dynamical systems are time-varying systems, stability theory for these ‘systems
are often separated. Using the partial stability results we additionally present a unification
between partial stability of (autonomous) state-dependent impulsive ciynamical systems and
stability theory for (nonautonomous) time-dependent impulsive dynamical systems. This
unification allows for stabiiity theory of time-dependent impulsive dynamical systems to be

presented as a special case of partial stability theory for state-dependent impulsive dynammal
systems.

2.6. Energy-Based Control for Hybrid Hamiltonian Systems

Modern complex engineering. systems involve multiple modes of operation piacing strin-
‘gent demands on controller design and implementation of increasing compiexzty Such sys-
tems typically possess a multiechelon hierarchical hybrid control architecture characterized
'by continuous-time dynamics at the lower levels of the hierarchy and discreté-time dynamics
at the higher-levels of hierarchy. The lower-level units directly interact with the dynamical
system to be controlled while the higher-level units receive information from the lower-level
units as inputs and provide (possibly discrete) output commands which serve to coordinate
and reconcile the (sometimes competing) actions of the lower-level. units. The hierarchi-
cal controller organization reduces processor cost and controller complexity by breaking up
the processing task into relatively small pieces and decomposing the fast and slow control
functions. Typically, the higher-level units perform logical checks that determine system
mode operation, while the lower-level units execute continuous-variable commands for a
given system mode of operation. The mathematical description of many of these systems
can be characterized by impulsive differential equations. Furthermore, since certain dynam-
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ical systems such as telecommunication systems, transportation systems, biological systems,
physiological systems, power systems, and network systems involve high-level, abstract hi-
erarchies with input-output properties related to conservation, dissipation, and transport of
mass and/or energy, they can be modeled as hybrid port-controlled Hamiltonian systems.

In this research [63], we use the stability, dissipativity, and optimality framework for hy-
brid and impulsive dynamical systems developed in [34,35] to develop an energy-based hybrid
feedback control framework for nonlinear impulsive port-controlled Hamiltonian systems that
preserves the physical hybrid Hamiltonian structure at the closed-loop level. Since the hybrid
Hamiltonian structure is preserved at the closed-loop level, the passivity-based controller is
robust with respect to unmodeled passive dynamics. Furthermore, passivity-based control
architectures are extremely appealing since the control action has a clear physical energy
interpretation which can considerably simplify controller implementation.

2. 7 Hybrld Adaptlve Control for Nonlinear Impulsive Dynamlcal

Systems

Modern complex engineering systems involve multiple modes of operation placing strin-
gent demands on controller design and implementation of increasing complexity. Such sys-
tems typically possess a multiechelon hierarchical hybrid control architecture characterized
by continuous-time dynamics at the lower levels of the hierarchy and discrete-time dynamics

- at the higher levels of the hierarchy. The lower-level units directly interact with the dynamical

system to be controlled while the higher-level units receive information from the lower-level
units as inputs and provide (possibly discrete) output commands which serve to coordinate
and réconciie the (sometimes competing) actions of the lower-level units. The hierarchical
controller organizai;ion reduces processor cost and controller complexity by breaking up the

processing task into relatively small pieces and decomposing the fast and slow control func-- - -

tions. Typically, the higher-level units perform logical checks that determine system mode
operation, while the lower-level units execute continuous-variable commands for a givén sys-
tem mode of operation. The mathematical description of many of these systems can be
characterized by impulsive differential equations [34].

The ability of develbping a hierarchical nonlinear integrated hybrid control-system design
methodology for robust, high performance controllers satisfying multiple design criteria and
real-world hardware constraints is imperative in light of the increasingly complex nature
of dynamical systems requiring controls such as advanced high performance tactical fighter
aircraft, variable-cycle gas turbine engines, biological and physiological systems, sampled-
data systems, discrete-event systems, intelligent vehicle/highway systems, and flight control
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systems, to cite but a few examples. The inherent severe nonlinearities and uncertainties
of these systems and the increasingly stringent performance requirements required for con-
trolling such modern complex embedded systems necessitates the development of adaptive
nonlinear hybrid control methodologies.

Even though adaptive control algorithms have been extensively developed in the litera-
ture for both continuous-time and discrete-time systems, hybrid adaptive control algorithms
for hybrid dynamical systems are nonexistent. In this research [69,120], we develop a direct
hybrid adaptive control framework for nonlinear uncertain impulsive dynamical systems. In
particular, a Lyapunov-based hybrid adaptive control framework is developed that guaran-
tees partial asymptotic stability of the closed-loop hybrid system; that is, asymptotic stability
with respect to part of the closed-loop system states associated with the hybrid plant dynam-
ics. Furthermore, the remainder of the state associated with the adaptive controller gains
is shown to be Lyapunov stable. In the case where the nonlinear hybrid system is repre-
sented in a hybrid normal form, we construct nonlinear hybrid controllers without requiring
knowledge of the hybrid system dynamics. Finally, we note that since impulsive dynamical
systems involve a hybrid formulation of continuous-time and discrete-time dynamics, our re-
sults build on our adaptive control algorithms for continuous-time and discrete-time systems
presented in [36, 66].

2.8. Active’ Control of Combustion Instabilities via Hybrid Reset-
ting Controllers | '

Engineering applications involving steam and gas turbines and jet and ramjet engines
for power generation and propulsion teéhnoldgy involve combustion processes. Due to the
inherent coupling between several intricate physicél phenomena in these processes involving
acoustics, thermodynamics, fluid mechanics, and chemical kinetics, the dynamic behavior of
combustion systems is characterized by highly complex nonlinear models [10]. The unsta-
ble dynamic coupling between heat release in combustion processes generated by reacting
mixtures releasing chemical energy and unsteady motions in the combustor develop acoustic
pressure and velocity oscillations which can severely impact operating conditions and system
perfarrha,nce [10]. These pressure oscillations, known as thermoacoustic instabilities, often
lead to high vibration levels causing mechanical failures, high levels of acoustic noise, high
burn rates, and even component melting. Hence, the need for active control to mitigate
combustion induced pressure instabilities is severe.

Utilizing a time-averaged combustion model for capturing thermoacoustic instabilities,
we developed hybrid resetting controllers to mitigate combustion induced pressure insta-
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Figure 2: These plots illustrate finite-time stabilization (i.e., finite settling time performance) of
a two-mode combustion system controlled by a state-dependent hybrid resetting controller. The
time history of the pressure and pressure rate amplitudes of both modes are shown in the upper
plot, while the time history of the control force is force given in the lower plot. The pressure and

pressure rate amplitudes settle to the origin at the first resetting time and remain there for all
future time.

bilities in combustion systems [82,90,91]. The hybrid resetting controller can be viewed
as a specialized technique for severing the coupling between the acoustics and unsteady
combustion to effectively enhance the removal of energy in the combustor. In particular,
significant modal energy dissipation is achieved via the hybrid resetting controller to sup-
preés thermoa,coustic oscillations. The framework in [34,35] is used to design two kinds of
hybrid resetting controllers; namely, time-dependent and input/state-dependent resetting
controllers. The overall framework &emonstrates that hybrid resetting controllers provide an

extremely efficient mechanism for dissipating energy in combustion processes (see Figure 2).

2.9. Direct Adaptive Control for Nonlinear Uncertain Systems
‘with Exogenous Disturbances

Unavoidable diScrepancies between system models and real-world systems can result in
degradation of control-system performance including instability. Thus, it is not surprising

- that one of the fundamental problems in feedback control design is the ability of the control

system to guarantee robustness with respect to system uncertainties in the design model. To
this end, adaptive control along with robust control theory have been developed to address
the problem of system uncertainty in control-system design. The fundamental differences
between adaptive control design and robust control theory can be traced to the modeling and
treatment of system uncertainties as well as the controller architecture structures. In partic-
ular, adaptive control is based on constant Iinéarly parameterized system uncertainty models
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of a known structure but unknown variation, while robust control is predicated on structured
and/or unstructured linear or nonlinear (possibly time-varying) operator uncertainty models
consisting of bounded variation. Hence, for systems with constant real parameter uncer-
tainty, robust controllers will unnecessarily sacrifice performance whereas adaptive feedback
controllers can tolerate far greater system uncertainty levels to improve system performance.
Furthermore, in contrast to fixed-gain robust controllers, which maintain specified constants
within the feedback control law to sustain robust performance, adaptive controllers directly
or indirectly adjust feedback gains to maintain closed-loop stability and improve perfor-
mance in the face of system uncertainties. Specifically, indirect adaptive controllers utilize
parameter update laws to identify unknown system parameters and adjust feedback gains to

account for system variation, while direct adaptive controllers directly adjust the controller
- gains in response to plant variations.

In this research [36], we develop a direct adaptive control framework for adaptive stabi-
lization, disturbance rejection, and command following of multivariable nonlinear uncertain
- systems with eﬁcogenous disturbances. In particular, a Lyapunov-based direct adaptive con-
trol framework is developed that requires a matching condition on the system disturbance
and guarantees partial asymptotic stability of the closed-loop system; that is, asymptotic
stability with respect to part of the closed-loop system states associated with the plant. Fur-
thermore, the remainder of the state associated with the adaptive controller gains is shown
to be Lyapunov stable. In the case where the nonlinear system is represeﬁted in normal
form with input-to-state stable zero dynamics, we construct nonlinear adaptive controllers
without requiring knowledge of the system dynamics or the system disturbance. In addition,
the proposed nonlinear adaptive controllers also guarantee asymptotic stability of the System
state if the system dynamics are unknown and the input matrix function is parameterized
by an unknown constant sign definite matrix. Finally, we generalize the aforementioned
results to uncertain nonlinear systems with exogenous Ly disturbances. In this case, we
remove the matching condition on the system disturbance. In addition, the proposed frame-
work guarantees that the closed-loop nonlinear input-output map from uncertain exogenous
L, disturbances to system performance variables is nonexpansive (gain bounded) and the
solution of the closed-loop system is partially asymptotically stable. The proposed adap-
tive controller thus addresses the problem of disturbance rejection for nonlinear uncertain
systems with bounded energy (square-integrable) L, signal norms on the disturbances and
performance variables. This is clearly relevant for uncertain systems with poorly modeled
disturbances which possess significant power within arbitrarily small bandwidths.
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2.10. Robust Adaptive Control for Nonlinear Uncertain Systems

In [36], a direct nonlinear adaptive control framework for adaptive stabilization, distur-
bance rejection, and command following was developed. In particular, a Lyapunov-based
direct adaptive control framework was developed that guarantees partial asymptotic sta-
bility of the closed-loop system; that is, asymptotic stability with respect to part of the
closed-loop system states associated with the plant. Furthermore, the remainder of the state
associated with the adaptive controller gains was shown to be Lyapunov stable. In the case
where the nonlinear system was represented in normal form with input-to-state stable zero
dynamics, the nonlinear adaptive controller was constructed without requiring knowledge of
the system dynamics.

As is the case in the adaptive control literature, the system errors in [36] are captured by a
constant linearly parameterized uncertainty model of a known structure but unknown varia-
tion. This uncertainty characterization allows the system nonlinearities to be parameterized
by a finite linear combination of basis functions within a class of function approximators
such as rational functions, spline functions, radial basis functions, sigmoidal functions, and
wavelets. However, this linear parametrization of basis functions cannot exactly capture
the unknown system nonlinearity. In this reseé,rch [44], we generalize the results of [36] to
nonlinear uncertain systems with constant linearly parameterized uncertainty and nonlinear
state-dependent uncertainty. Specifically, we consider a robust adaptive control problem
that guarantees asymptotic robust stability of the system states in the face of structured
uncertainty with unknown variation and structured (possibly nonlinear) parametric uncer-
tainty with bounded variation. Hence, the overall adaptive control framework captures the

residual approximation error inherent in linear parameterizations of system uncertainty via
basis functions.

2.11. A Lyapunev-Based Adaptive Control Framework for Dis-
crete-Time Nonlinear Systems with Exogenous Distur-
bances

The purpose of feedback control is to achieve desirable system performance in the face
of system uncertainty and system disturbances. Although system identification can reduce
uncertainty to some extent, residual modeling discrepancies always remain. Controllers must
therefore be robust to achieve desired disturbance rejection and/or tracking performance
requirements in the presence of such modeling uncertainty. To this end, adaptive control
along with robust control theory have been developed to address the problem of system
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performance in the face of system uncertainty in control-system design without excessive
reliance on system models.

Adaptive controllers directly or indirectly adjust feedback gains to maintain closed-loop
stability and improve performance in the face of system errors. Specifically, indirect adaptive
controllers utilize parameter update laws to estimate unknown system parameters and ad-
just feedback gains to account for system variation, while direct adaptive controllers directly
adapt the controller gains in response to system variations. Even though adaptive control
algorithms have been developed in the literature for both continuous-time and discrete-
time systems, the majority of the discrete-time results are based on recursive least-squares
and least mean squares algorithms with primary focus on state convergence. Alternatively,
Lyapunov-based adaptive controllers have been developéd for continuous-time systems guar-
anteeing asymptotic stability of the system states. However, the literature on discrete-time
adaptive disturbance rejection control using Lyapunov methods is virtually nonexistent.

In this research [66,109], we develop a Lyapunov-based direct adaptive control framework
for adaptive stabilization, disturbance rejection, and command following of multivariable
discrete-time nonlinear uncertain systems with exogenous bounded amplitude disturbances
and {4, disturbances. These results are analogous to the recent continuous-time adaptive
disturbance rejection results in [36] for continuous-time nonlinear uncertain systems. Specif-
ically, a Lyapunov-based direct adaptive control framework is developed that guarantees
partial asymptotic stability of the closed-loop system; that is, asymptotic stability with re-
spect to part of the cloSed—loop system states associated with the plant. Furthermore, in the
case where the nonlinear system is represented in normal form, the nonlinear discrete-time
‘adaptive controller is constructed without requiring knowledge of the system dynamics or
system disturbances. In the case where the system disturbances are ¢, disturbances, the
prdposed framework guarantees that the closed-loop nonlinear input-output map from un-
certain exogenous £, disturbances to system performance variables is nonexpansive and the
solution of the closed-loop system is partially asymptotically stable. The proposed adap-
tive controller thus addresses the problem of disturbance rejection for nonlinear uncertain
discrete-time systems with bounded energy (square-summable) £, signal norms on the dis- |
turbances and performance variables.

2.12. Direct Discrete-Time Adaptive Control with Guaranteed
Parameter Error Convergence

Adaptive control a.lgdrithms have been extensively developed in the literature for both
continuous-time and discrete-time systems. A salient difference between continuous-time and
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-discrete-time adaptive controllers is that the majority of the discrete-time results are based

on recursive least-squares and least mean squares algorithms with primary focus on state
convergence. In this research [70], we‘ develop a direct adaptive nonlinear tracking control
framework based on semidefinite or partial Lyapunov functions for discrete-time nonlinear
uncertain systems. The proposed framework guarantees attraction of the closed-loop tracking
error dynamics in the face of parametric system uncertainty. In addition, parameter error
convergence is also guaranteed when a generic geometric constraint on the update error gain
matrix function holds. This condition is shown to be consistent with the notion of persistent
excitation in the adaptive control and system identification literature.

2.13. Adaptive Control for Nonlinear Systems with State-Depen-
- - dent Uncertainty

In light of the increasingly complex and highly uncertain nature of dynamical systems
requiring controls, it is not surprising that reliable system models for many high performance
engineering applications are unavailable. In the face of such high levels of system uncertainty,

~ adaptive controllers are clearly appropriate since they can tolerate high levels of system errors

to improve system performance. However, a fundamental limitation of adaptive control is the
fact that system errors are captured by constant linearly parameterized uncertainty models
of a known structure but unknown variation. If the system uncertainty is nonlinear in
the uncertain parameters or the system uncertainty is nonlinearly dependent on the system
states, then adaptive controllers predicated on a constant linearly (over)parameterized model
will unnecessarily sacrifice system performance, and in some cases lead to instability.

In this' research [43], we develop a novel adaptive control framework that does not re-
quire any parametrization of the state-dependent system uncertainty. In particular, for a
class ofnonlinear muitiv"ariable matriz second-order uncertain dynamical systems with state-
dependent uncertainty we develop a nonlinear adaptive control framework that guarantees
global partial asymptotic stability of the closed-loop system; that is, global asymptotic sta-
bility with respect to part of the closed-loop system states associated with the plant. This
is achieved without requiring any knowledge of the system nonlinearities other than the as-
sumption that they are continuous and lower bounded. Next, we extend our main result
to the case where the system nonlinearities are unbounded. Using this result, we provide
a universal adaptive controller that guarantées asymptotic stability for the case of matrix
second-order systems with polynomial nonlinearities with unknown coefficients and unknown
order. The class of systems represented by our framework includes nonlinear vibrational
systems, as well as multivariable nonlinear dynamical systems with sign varying; that is,
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nondissipative, generalized stiffness and damping operators.

2.14. Direct Adaptive Control for Nonlinear Matrix Second-Order

Systems with Time-Varying and Sign-Indefinite Damping
and Stiffness Operators

For a class of nonlinear multivariable matriz second-order uncertain dynamical systems,
with time-varying and sign-indefinite damping and stiffness operators, we develop a non-
linear adaptive control framework that guarantees global partial asymptotic stability of the
closed-loop system; that is, global asymptotic stability with respect to part of the closed-
loop system states associated with the plant [71,122]. This is achieved without requiring
any knowledge of the system nonlinearities other than the assumption that they are contin-
uous and bounded. The class of systems represented by our framework includes nonlinear
vibrational systems, as well as multivariable nonlinear dynamical systems with sign-varying;
that is, nondissipative, generalized stiffness and damping time-varying operators. Fihally,
we note that a similar adaptive control framework for nonlinear uncertain matrix second-
order systems was considered in [43]. The results presented in [43] however only address
time-invariant, sign-indefinite stiffness and damping operator uncertainty. In this case, the
unknown system nonlinearities need only be continuous and lower bounded as opposed to
continuous and bounded.

2.15. Nonnegative Dynamical Systems in Biology, Medicine, and
Ecology

With the increasing mergence of engineering disciplines and biological and medical sci-
ences, it is not surprising that dynamical systems theory has played an increasing role in
the understanding of biological and physiological processes. With this unification it has
rapidly become apparent that mathematical modeling and dynamical systems thecfy is the
key thread that ties together these diverse disciplines. The dynamical models of many BiOlog-
ical and physiological processes such as pharmacokinetics, metabolic systems, epidemiology,
biochemical reactions, endocrine systems, and lipoprotein kinetics are derived from mass
and energy balance considerations that involve dynamic states whose values are nonnega-

“tive. Hence, it follows from physical considerations that the state trajectory of such systems

remain in the nonnegative orthant of the state space for nonnegative initial conditions. Such
systems are commonly referred to as nonnegative dynamical systems in the literature. A sub-
class of nonnegative dynamical systems are compartmental systems whose dynamical models
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Figure 3: Models for blood flow through the heart as well as the anatomy of the human body
can be captured by compartmental systems.

are characterized by conservation laws (e.g., mass and energy) capturing the exchange of
material between coupled macroscopic subsystems known as compartments (see Figure 3).
Each compartment is assumed to be kinetically homogeneous; that is, any material enter-
ing the compartment is instantaneously mixed with the material of the compartment. The
range of applications of nonnegatkive systems and compartmental systems is not limited to
biological and medical systems. Their usage include chemical reaction systems, queuing sys-
tems, large-scale systems, stochastic systems (whose state variables represent probabilities),
ecological systems, and economic systems, to cite but a few examples.

Even though numerous results focusing on compartmental systems have been developed
in the literature, the development of nonnegative dynamical systems theory has received
far less attention. In this research [57,105], we develop several basic mathematical results

‘on stability, d1smpat1v1ty, and feedback interconnections of linear and nonlinear nonnega-

tive d&nan:ucai systems. Linear nonnegatwe dynamical systems are of major importance
in biological and physiological systems since almost the entire field of distribution of tracer
labeled materials in steady state systems can be captured by linear nonnegative systems.
Alternatively, many applications in life sciences give rise to nonlinear nonnegative dynami-
cal systems. These include metabolic pathways, membrane transports, pharmacodynamics,
epidemiology, and ecology. Using linear Lyapunov functions, we develop necessary and suffi-
cient conditions for Lyapunov stability, semistability; that is, system trajectory convergence
to Lyapunov stable equilibrium points, and asymptotic stability for linear nonnegative dy-
namical systems. Extensions to nonlinear nonnegative dynamical systems are also provided.
The consideration of a linear Lyapunov function leads to a new Lyapunov-like equation for
examining the stability of linear nonnegative systems. This Lyapunov-like equation is ana-
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lyzed using nonnegative matrix theory. The motivation for using a linear Lyapunov function
follows from the fact that the state of a nonnegative dynamical system is nonnegative and
hence a linear Lyapunov function is a valid Lyapunov function candidate. This consider-
ably simplifies the stability analysis of nonnegative dynamical systems. For compartmental
systems, a linear Lyapunov function corresponds to the total mass of the system.

Dissipativity theory has been extensively developed for the analysis and design of control
systems for engineering systems using input-output system descriptions based on energy
related considerations without the consideration of nonnegative and compartmental models.
Since biological and physiological systems have numerous input-output properties related
to conservation, dissipation, and transport of mass and energy, it seems natural to extend
dissipativity theory to nonnegative and compartmental models which themselves behave in

- accordance to conservation laws. Using linear storage functions and linear supply rates we

extend the notions of classical dissipativity theory and exponential dissipativity theory [48]
to linear and nonlinear nonnegative dynamical systems. The overall approach provides a
new interpretation of a mass balance for nonnegative systems with linear supply rates and
linear storage functions. 'Speciﬁcaily, we show that dissipativity of a nonnegative dynamical
system involving a linear storage function and a linear supply rate implies that the system
mass transport is always less than or equal to the difference between the system flux input and
the system flux output. In addition, we develop new Kalman-Yakubovich-Popov equations
for nonnegative systems for characterizing dissipativeness with linear storage functions and

-linear supply rates.

Feedback systems are pervasive in nature and can be found almost everywhere in living
systems. In particular, control at the intercellular level, DNA replication and cell division,
control of gene expression, control of enzyme activity, control at the organ system and

~organism level, humoral control, neural control, and regulation in biological systems all

involve feedback systems. To ana,iyze these complex nonnegative systems, the co:;ﬁepts
of dissipativity and exponential dissipativity with linear storage functions and linear supply
rates are used to develop feedback interconnection stability results for nonnegative dynamical
systems. General stability criteria are given for Lyapunov, semi, and asymptotic‘sta,bility
of feedback linear and nonlinear nonnegative systems. These results can be viewed as a
generalization of the positivity and the small gain theorems to nonnegative systems with
linear storage functions and linear supply rates. A key observation of theses results is that
unlike the classical results on positivity and the small gain theorems requiring negative
feedback interconnections, positive feedback interconnections are required in order to assure
that the resulting feedback system is a nonnegative dynamical sysfem.
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2.16. Stability and Dissipativity Theory for Nonnegative and Com-
partmental Dynamical Systems with Time Delay

Modern complex engineering systems are highly interconnected and mutually interdepen-
delit, both physically and through a multitude of information and communication networks.
By properly formulating these systems in terms of subsystem interaction and energy/mass
transfer, the dynamical models of many of these systems can be derived from mass, energy,
and information balance considerations that involve dynamic states whose values are non-
negative. Hence, it follows from physical considerations that the state trajectory of such
systems remains in the nonnegative orthant of the state space for nonnegative initial con-
ditions. As noted in Section 2.15, such systems are commonly referred to as nonnegative
dynamiéal systems in the literature. Compartmental systems, a subclass of nonnegative
dynaxmcal systems, involve dynamical models that are characterized by conservation laws
(e.g., mass and energy) capturing the exchange of material between coupled macroscopic
subsystems known as compartments. Each compartment is assumed to be kinetically ho-
mogeneous; that is, any material entering the compartment is instantaneously mixed with
the material of the compartment. The range of applications of nonnegative systems and
compartmental systems is not limited to complex engineering systems. Their usage includes
biological and physmiogmal systems, chemical reaction systems, queumg systems, large-scale
systems, stochastic systems (whose state variables represent probabilities), ecological sys-
tems, economic Systems, demographic systems, telecommunication systems, transportation
systems, power systems, heat transfer systems, and structural vibration systems, to cite but
a few examples. A key physical limitation of such systems is that transfers between compart-
ments are not instantaneous and realistic models for capturing the dynamics of such systems

should account for material, energy, or information in transit between compartments. Hence,

to accurately describe the evolution of the aforementioned systems, it is necessary to include
in any mathematical model of the system dynamics some information of the past system
states. This of course leads to (infinite-dimensional) delay dynamical systems.

In this research [60, 73], we develop necessary and sufficient conditions for time-delay
nonnegative and compartmeﬁtai dynamical systems. Specifically, using linear Lyapunov-
Krasovskii functionals we develop necessary and sufficient conditions for asymptotic sta-
bility of linear nonnegative dynamical systems with time delay. The consideration of a
linear Lya;mnov—Krasevskii functional leads to a new Lyapunov-like equation for examining
stability of time delay nonnegative dynamical systems. The motivation for using a linear
Lyapunov-Krasovskii functional follows from the fact that the (infinite-dimensional) state
of a retarded nonnegative dynamical system is nonnegative and hence a linear Lyapunov-
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Krasovskii functional is a valid candidate Lyapunov-Krasovskii functional. For a time delay
compartmental system, a linear Lyapunov-Krasovskii functional is shown to correspond to
the total mass of the system at a given time plus the integral of the mass flow in transit

between compartments over the time intervals it takes for the mass to flow through the
intercompartmental connections. N

Next, exploiting the input-output properties related to conservation, dissipation, and
transport of mass and energy in nonnegative and compartmental dynamical systems, we
develop a new notion of classical dissipativity theory for nonnegative dynamical systems with
time delay. Specifically, using linear storage functionals with linear supply rates we develop
sufficient conditions for dissipativity of nonnegative dynamical systems with time delay. The
motivation for using linear storage functionals and linear supply rates follows from the fact
that the (infinite-dimensional) state as well as the inputs and outputs of retarded nonnegative
dynamical systems are nonnegative. The consideration of linear storage functionals and
linear supply rates leads to new Kalman—Yakubovich—Popov equations for characterizing
dissipativity of nonnegative systems with time delay. For a time delay compartmental system,
a linear storage functional is shown to correspond to the total mass of the system at a given
time plus the integral of the mass flow in transit between compartments over the time
intervals it takes for the mass to flow through the interbempartmental connections. In this
case dissipativity implies that the total system mass transport is equal to the supplied system
flux minus the ekpelled system flux. Finally, using the concepts of dissipativity for retarded
nonnegative dynamical systems, we devélop feedback interconnection stability results for

‘nonnegative systems with time delay. In particular, general stability criteria are given for
Lyapunov and asymptotic stability of feedback nonnegative dynamical systems with time

delays.

2.17. On Nonoscillation and ﬁonéfoniéity “of Solutions of Non-
negative and Compartmental Dynamical Systems

As discussed in Section 2.15, nonnegative and compartmental systems are essential in
capturing the phenomenological behavior of a wide range of dynamical systems involving
dynamic states whose values are nonnegative. Compartmental systems are widely used
as models of biological and physiological processes, such as metabolic pathways, tracer ki-
netics, pharmacokinetics, epidemic dynamics, and ecological systems. These systems are
characterized by conservation laws that describe the interchange of mass or energy between

homogeneous subsystems known as compartments. While compartmental systems have wide
applicability in biology and medicine, their use in the specific field of pharmacokinetics is
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particularly noteworthy.

The goal of pharmacokinetic analysis often is to characterize the kinetics of drug dis-
position in terms of the parameters of a compartmental model. This is accomplished by
postulating a model, collecting experimental data (typically drug concentrations in blood
as a function of time), and then using statistical analysis to estimate parameter values
which best describe the data. Differences between experimental data and that predicted
by the model are attributed to measurement noise. Because the ultimate disposition of ex-
ogenous drugs is metabolism and elimination from the body, it is frequently assumed that
drug concentrations will monotonically decline after discontinuation of drug administration.
However, compartmental systems may admit non-monotonic solutions (e.g., underdamped
oscillations); that is, they can predict drug concentrations which do not decay monotoni-
cally with time after discontinuation of drug administration. Hence, it would be useful to
identify compartmentai systems which guarantee monotonicity of solutions in order to avoid
attributing error (differences between model predictions and experimental data) to random

noise, when the problem is in fact model-misspecification. Similar considerations are also

relevant to the other applications of nonnegative and compartmental dynamical systems In

- this research [61,112], we present necessary and sufficient conditions for identifying nonneg-

ative and compartmental dynamical systems that only admit nonoscillatory and monotonic
solutions.

2.18. Hybrid Nonnegative and Compartmental Dynammal Sys-
tems

~ As diséussed in Section 2.15, nonnegative and compartmental systéms are essential in
capturmg the phenomenological features of a wide range of dynamical systems involving

éyna,mic states whose values are nonnegative. These systems are derived from massanden-

ergy balance considerations and are comprised of homogeneous interconnected macroscopic

“subsystems or compartments which exchange variable quantities of material via intercom-

partmental flow laws. Since biological and physiological systems have numerous input-output
properties related to conservation, dissipation, and transport of mass and energy, nonnega-

tive and compartmental systems are remarkably effective in describing the essential features
of these dynamical systems.

Complex biological and physiological systems typically possess a multiechelon hierarchical
hybrid structure characterized by continuous-time dynamics at the lower-level units and
logical decision-making units at the higher-level of the hierarchy. The logical decision making
units serve to coordinate and reconcile the (sometimes competing) actions of the lower-
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level units. Due to their multiechelon hierarchical structure, hybrid dynamical systems
are capable of simultaneously exhibiting continuous-time dynamics, discrete-time dynamics, .
logic commands, discrete-events, and resetting events. Hence, hybrid dynamical systems
involve an interacting countable collection of dynamical systems wherein control actions
are not independent of one another and yet not all control actions are of equal precedence.
For example, in physiological systems the blood pressure and blood flow to different tissues
of the human body are controlled to provide sufficient oxygen to the cells of each organ.
Certain organs such as the kidneys normally require higher blood flows than is necessary
to satisfy basic oxygen needs. However, during stress (such as hemorrhage) when perfusion
pressure falls, perfusion of certain regions (e.g., brain and heart) takes precedence over
perfusion of other regions and hierarchical controls (overriding controls) shut down flow to
these other regions. The mathematical descriptions of many hybrid dynamical systems can
be characterized by impulsive differential equations [34, 35]. |

In this research [49], we developedvseveral basic mathematical results on stability and
dissipativity of hybrid nonnegative and compartmental dynamical systems. Specifically,
using linear Lyaptnov functions we develop sufficient conditions for Lyapunov stability and
asymptotic stability for hybrid nonnegative dynamical systems. The consideration of a linear
Lyapunov function leads to a new set of Lyapunov-like equations for examining the stability
of linear impulsive nonnegative systems. The motivation for using a linear Lyapunov function
follows from the fact that the state of a nonnegative dynamical system is nonnegative and
hence a linear Lyapunov function is a valid Lyapunov function candidate.

Next, using linear and nonlinear storage functions with linear hybrid supply rates we
develop new notions of classical dissipativity theory and exponential dissipativity theory for
hybrid nonnegative dynamical systems. The overall approach provides a new interpreta-
tion of a mass balance for hybrid nonnegative systems with linear hybrid supply rates and
linear and nonlinear storage functions. Specifically, we show that dissipativity of a hybrid
nonnegative dynamical system involving a linear storage function and a linear hybrid sup-
ply rate implies that the system mass transport (respectively, change in system mass) is
equal to the sﬁpp}ied system flux (respectively, mass) over the continuous-time dynamics
(respectively, the resetting 'instants) minus the expelled system flux (respectively, mass) over
the continuous-time dynamics (respectively, the resetting instants). In addition, we develop
new Kalman-Yakubovich-Popov equations for hybrid nonnegative systems for characteriz-
ing dissipativity with linear and nonlinear storage functions and linear hybrid 'supply rates.
Finally, using concepts of dissipativity and exponential dissipativity for hybrid nonnegative
dynamical systems, we develop feedback interconnection stability results for nonlinear non-

negative impulsive systems. Specifically, general stability criteria are given for Lyapunov and
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asymptotic stability of feedback hybrid nonnegative systems. These results can be viewed as
a generalization of the positivity and the small gain theorems to hybrid nonnegative systems
with linear supply rates involving net input-output system flux.

2.19. Adaptive Control for General Anesthesia and Intensive Care
Unit Sedation

Even though advanced robust and adaptive control methodologies have been (and are
being) extensively developed for highly complex engineering systems, modern active control
technology has received far less consideration in medical systems. The main reason for this
state of affairs is the steep barriers to communication between mathematics/control engineer-
ing and medicine. However, this is sieWiy changing and there is no doubt that control-system
technology has a great deal to offer medicine. For example, critical care patients, whether
undergoing surgery or recovering in intensive care units, require drug administration to reg-
ulate key physiological (state) variables (e.g., blood pressure, temperature, glucose, degree of
eensciousness, etc.) within desired levels. The rate of infusion of each administered drug is
critical, requiring constant monitoring and frequent adjustments. Open-loop control (man-
ual control) by clinical personnel can be very tedious, imprecise, time consuming, and often
of poor quality. Hence, the need for active control (closed-loop control) in medical systems
is severe; with the potential in improving the quality of medical care as well as curtailing
the increasing cost of health care.

The complex highly uncertain and hostile environment of surgery places stringent per-
formance requirements for closed-loop set-point fegulatien of physiological variables. For
example, during cardiac surgery, blood pressure control is vital and is subject to numerous
highly uncertain exogenous disturbances. Vasoactive and cardioactive drugs are adminis-
tered resulting in large disturbance oscillations to the system (patient). The arterial line
may be flushed and blood may be drawn, corrupting sensor blood pressure measurements.
Low anesthetic levels may cause the patient to react to painful stimuli, thereby changing
system (pe:tient) response characteristics. The flow rate of vasodilator drug infusion may
fluctuate causing transient changes in the infusion delay time. Hemorrhage, patient position
changes, cooling and warming of the patient, and changes in anesthesia levels will also effect
system (patient) response characteristics.

In light of the complex and highly uncertain nature of system (patient) response char-
acteristics under surgery requiring controls, it is not surprising that reliable system mod-
els for many high performance drug delivery systems are unavailable. In the face of such
high levels of system uncertainty, robust controllers may unnecessarily sacrifice system per-
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formance whereas adaptive controllers are clearly appropriate since they can tolerate far
greater system uncertainty levels to improve system performance. In contrast to fixed-gain
robust controllers, which maintain specified constants within the feedback control law to sus-
tain robust performance, adaptive controllers directly or indirectly adjust feedback gains to
maintain closed-loop stability and émprove performance in the face of system uncertainties.
Specifically, indirect adaptive controllers utilize parameter update laws to identify unknown
system parameters and adjust feedback gains to account for system variation, while direct

adaptive controllers directly adjust the controller gains in response to system variations.

In this research [50], we developed a direct adaptive control framework for adaptive set-
point regulation of linear uncertain nonnegative and compartmental systems. As noted in
Section 2.15, nonnegative and compartmental dynamical systems are composed of homoge-
~ neous interconnected subsystems (or compartments) which exchange variable nénnegative
quantities of material with conservation laws describing transfer, accumulation, and outflows
between the compartments and the environment. Nonnegative and compartmental models
thus play a key role in understanding many processes in biological and medical sciences.
Using nonnegative and compartmental model structures, a Lyapunov-based direct adap-
tive control framework is developed that guarantees partial asymptotic set-point stability
of the closed-loop system; that is, asymptotic se’s—peixit stability with resiiect to part of the
closed-loop system states assocmted with the physiological state variables. In paxtlcuiar
adaptive controllers are constructed without requiring knowledge of the system dynarmcs
while providing a nonnegative control (seurce) input for robust stabilization with respect to
the nonnegative orthé.nt. 'M{}deling uncertainty in nonnegative and compartmental systems
may arise in the system transfer coefficients due to patient gender, weight, pre—e:ﬁsting dis-
ease, age, and concomitant medication. Furthermore, in certain applications of nonnégative
and compartmental systems such as biological systems, population dynamics, and ecological

systems involving positive and negative inflows, the nonnegativity constraint on the control ~

input is not natural. In this case, we also develop adaptive controllers that do not place
any restriction on the sign of the control signal while guaranteeing that the physical system
states remain in the nonnegative orthant of the state space. Finally, the proposed approach
was used to control the infusion of the anesthetic drug propofol for maintaining a desired
constant level of depth of anesthesia for noncardiac surgery (see Figures 4 and 5).
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Figure 4: Bispectral (BIS) Index (electroen- Figure 5: BIS Index versus time achieved by the
cephalogram (EEG) indicator) versus effect site proposed adaptive controller. The proposed adaptive
(brain) concentration. BIS index values of 0 and 100 controller does not require knowledge of the system
correspond, respectively, to an isoelectric EEG signal parameters nor the BIS Index parameters.

and an EEG signal of a fully conscious patient; while

the range between 40 to 60 indicates a moderate hyp-

notic state.

2.20. Neural Network Adaptive Control for Nonlinear Nonnega-
tive Dynamical Systems ‘

Neural networks consist of a weighted interconnection of fundamental elements called
neurons, which are functions consisting of & summing junction and a nonlinear operation
involving an activation function. One of the primary reasons for the large interest in neural
networks is their capability to approximate a large class of continuous nonlinear maps. In ad-
dition, neural networks have attracted attention due to their inherently parallel architecture _
that makes it possible to develop parallel weight update laws. This parallelism makes it pos-
sible to effectively update a neural network on line. These properties make neural networks
a viable paradigm for adaptive system identification and control of complex highly uncertain

‘ dynam;ga.l systems, and as a consequence the use of neural networks fer idgntiﬁcaﬁiqn»a;;g} -

control has become an active area of research.

In this research [68], we develop a neural adaptive control framework for nonlinear uncer-
tain nonnegative and compartmental systems. The proposed framework is Lyapunov-based
and guamntees‘ ultimate boundedness of the error signals corresponding to the physical sys-
tem states as well as the neural network weighting gains. The neuro adaptive controllers are
constructed without requiring knowledge of the system dynamics while guaranteeing that the
physical system states remain in the nonnegative orthant of the state space. The proposed
neuro control architecture is modular in the sense that if a nominal linear design model is
available, the neuro adaptive controller can be augmented to the nominal design to account
for system nonlinearities and system uncertainty. Furthermore, since in certain applications
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of nonnegative and compartmental systems (e.g., pharmacological systems for active drug
administration) control (source) inputs as well as the system states need to be nonnega-
tive, we also develop neuro adaptive controllers that guarantee the control signal as well as
the physical system states remain nonnegative for nonnegative initial conditions. We note
that neuro adaptive controllers for nonnegative dynamical systems have not been addressed
in the literature. Finally, the proposed neuro adaptive control framework is used to regu-
late the temperature of a continuously stirred tank reactor involving exothermic irreversible

*

reactions.

2.21. 'Optimal Fixed-Structure Control for Linear Nonnegative
Dynamical Systems

In this research [72,123], we develop optimal output feedback controllers for set-point
regulation of linear nonnegative and compartmental dynamical systems. In particular, we
extend the optimal fixed-structure control framework to develop optimal output feedback
controllers that guarantee that the trajectories of the closed-loop system remain in the non-
negative orthant of the state space for nonnegative initial conditions. The proposed optimal
fixed-structure control framework is a constrained optimal control methodology that does
not seek to optimize a performance measure per se, but rather seeks to optimize perfor-
mance within a class of fixed-structure controllers satisfying internal controller constraints
that guarantee the nonnegativity of the closed-loop system states. Furthermore, since uncon-
strained optimal controllers are globally optimal but may not guarantee nonnegativity of the
closed-loop system states, we additionally characterize domains of attraction contained in

‘the nonnegative orthant for unconstrained optimal output feedback controllers that guaran-

tee nonnegativity of the closed-loop system trajectories. Specifically, domains of attraction
contained in the nonnegative orthant for optimal output feedback controllers are computed
using closed and open Lyapunov level surfaces. It is also shown that the domains of attrac-
tion predicated on open Lyapunov level surfaces provide a considerably improved region of
asymptotic stability in the nonnegative orthant as compared to regions of attraction given
by closed Lyapunov level surfaces. |

2.22. Nonlinear Control of Hammerstein Systems with Passive
Nonlinear Dynamics

In this research [31], we develop a nonlinear control design framework for Hammerstein
systems with nonlinear passive dynamics. Our main result guarantees global asymptotic
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closed-loop stability for nonlinear passive systems with arbitrary input nonlinearities so long
as the nonlinear dynamic compensator is modified to include a suitable input nonlinearity.
The only restriction on the input nonlinearity is that it be memoryless and that either its
characteristics be known or its output be measurable. The proof of this result is based on
dissipativity theory [48] and shows that the nonlinear controller modification counteracts the
effects of the input nonlinearity by recovering the passivity of the plant and compensator
with respect to a modified set of inputs and outputs.

2.23. Stability Margins of Discrete-Time Nenhnear—Ncnquadratlc
Optimal Regulators

The gain and phase margins of continuous-time state feedback linear-quadratic optimal
regulators are well known. In particular, in terms of classical control relative stability no-
tions, these controllers possess at least a +60° phase margin, infinite gain margin and 50%
gain reduction for each control channel. Alternatively, in terms of absolute stability the-
ory these controllers guarantee sector margins in that the closed-loop system will remain
asymﬁtoticaﬂy stable in the face of a memoryless static input nonlinearity contained in the
conic sector (3,00). In contrast, the stability margins of discrete-time linear-quadratic opti-
mal regulators are not as well known and depend on the open- and closed-loop poles of the
discrete-time dynamic system.

Synthesis techniques for discrete-time linear state feedback control laws guaranteeing
closed-loop system stability with prespecified sector, gain and phase margins were developed
in the literature. However, unlike the continuous-time case, nonlinear-nonquadratic inverse
cptimai state feedback regulators for nonlinear discrete-time systems possessing guaranteed
sector and disk ma.rgms to component decoupled input nonlinearities in the conic sector
(2, oo) a.nd dissipative dynalmc input operators have not been addressed in the literature.

In thzs research [40], we obtain sufficient conditions for dissipativity with respect to
quadratic supply rates. Next, using these extensions, we develop sufficient conditions for
gain, sector and disk margin guarantees for discrete-time nonlinear systems controlled by op-
timal and inverse optimal nonlinear regulators that minimize a nonlinear-nonquadratic per-
formance criterion involving a nonlinear-nonquadratic function of the state and a quadratic
function of the feedback control. In the case where we specialize our results to the linear-
quadratic case, we recover the classical discrete-time linear-quadratic optimal regulator gaﬁl
and phase margin guarantees.




2.24. A Unification Between Partial Stability and Stability The-
ory for Time-Varying Systems

In many engineering applications, partial stability (stability with respect to part of the
system’s states) is often necessary. In particular, partial stability arises in the study of elec-
tromagnetics, inertial navigation systems, spacecraft stabilization via gimballed gyroscopes
and/or flywheels, combustion systems, vibrations in rotating machinery, and biocenology, to
cite but a few examples. For example, in the field of biocenology involving Lotka-Volterra

predator-prey models of population dynamics with age structure, if the birth rate of some

of the species preyed upon is left alone, then the corresponding population increases with-

- out bound while a subset of the prey species remain stable. The need to consider partial

stability in the aforementioned systems arises from the fact that stability notions involve
equilibrium coordinates as well as a hyperplane of coordinates that is closed but not com-
pact. Hence, partial stability involves motion lying in a subspace instead of an equilibrium
point. Additionally, partial stabilization, that is, closed-loop stability with respect to part
of the closed-loop system’s state‘, also arises in many engineering applications. S’geciﬁcaﬂy,
in spacecraft stabilization via gimballed gyroscopes, asymptotic stability of an equilibrium
position of the spacecraft is sought while requiring Lyapunov stability of the axis of the
gyroscope relative to the spacecraft. Alternatively, in the control of rotating machinery
with mass imbalance, spin stabilization about a nonprincipal axis of inertia requires motion
stabilization with respect to a subspace instead of the origin. Perhaps the most common
application where partial stabilization is neéessary is adaptive control, wherein asymptotic

stability of the closed-loop plant states is guaranteed without necessarily achieving parameter
error convergence [36,43).

‘In this research [41], we present partial stability theorems for nonlinear dynamical sys-

- “tems-and present-a unification between partial stability theory for autonomous systems-and -

stability theory for nonlinear time-varying systems. This unification allows for time-varying
stability theory to be presented as a special case of autonomous partial stability theory S0
that time-varying and time-invariant stability theory can be discussed in juxtaposition. We
stress that our aim was to demonstrate that partial stability and time-varying stability are
derivable from the same principles and can be introduced as part of the same mathematical
framework without resorting to the more advanced notions of the stability of sets.




2.25. Actuator Amplitude Saturation Control for Systems with
Exogenous Disturbances

Since all actuation devices are subject to amplitude limitations, actuator amplitude sat-
uration arises in most control engineering applications resulting in loss of closed-loop per-
formance and, in some cases, in instability. The destabilizing effect of actuator saturation
has long been observed in feedback systems with unstable controllers and in particular in
feedback systems with integral control action. In this case, since the feedback loop is severed
when the actuator saturates the unstable controller modes drift exhibiting a windup effect
which, in addition, may lead to a finite escape time instability. The problem of actuator
saturation is further exacerbated by system uncertain exogenous disturbances. Thus, the

control system design process must account for amplitude saturation as well as for system
disturbances.

There exists an extensive literature devoted to the control saturation problem and the
associated windup problem. However, the saturation controllers developed in the literature
do not account for the effect of exogenous disturbances. In this research [42], we develop an
absolute stabilization framework to address the actuator amplitude saturation control prob-
lem for systems with bounded energy Ly exogenous disturbances. Specifically, we construct
a modified Riccati equation whose solution guarantees that the closed-loop undisturbed sys-
tem is globally asymptotically stable in the face of sector bounded input nonlinearities and
the closed-loop output system energy is less than the net weighted input system energy at
any time T in the face of Ly disturbances. Using the modified Riccati equation, construc-
tive sufficient conditions for fixed-order (i.e., full- and reduced-order) dynamic compensators
guaranteeing amplitude saturation constraints and disturbance rejection are developed. In
addition, to account for closed-loop system performance, we also consider the minimization

of a-quadratic-performance criterion involving - weighted state and control variables over the -
allowable class of input nonlinearities.

2.26. Nonlinear Adaptive Tracking of Surface Vessels with Exoge-
nous Disturbances

The desire for déveloping a control design methodology for surface vessel maneuvering and
position tracking has led to significant activity in modeling and control of marine vehicles.
Early conventional vessel control design for dynamic positioning of ships were developed
under the assumption that the kinematic and dynamic equations of motion can be linearized,
so that linear optimal control theory is applicable. However, for vessel tracking applications
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wherein the surge and sway positions and yaw angle must be controlled simultaneously, a
linearized model is not valid. In this research [46], we develop a coupled nonlinear two-
vessel tracking model for a leading-tracking vessel configuration. The unknown interaction
disturbances acting on the vessels are modeled as known functions with unknown parameters.
Next, an adaptive control law is designed to attenuate the interaction disturbances and
maintain a desired separation of the two vessels, where the leading vessel serves as the
reference for the tracking vessel. Here, the desired reference trajectory is generated by a
Nomoto reference model. The proposed inverse optimal adaptive controllers are compared
with a standard adaptive backstepping design and a locally optimal and robust backstepping
design. This comparison demonstrates that the inverse optimal adaptive controller uses less
control effort and achieves better tracking as compared with the other designs.

2.27. Exponentially Dissipative Dynamical Systems: A Nonlinear
Extension of Strict Positive Realness

One of the most basic issues in system theory is stability of feedback interconnections.
Two of the most fundamental results concerning stability of linear feedback systems are
the positivity and small gain theorems. The positivity theorem states that if G and G,
are (square) positive real transfer functions, one of which is strictly positive réal, then the
negative feedback interconnection of G and G, is asymptotically stable. Alternatively, the
small gain theorem implies that if G and G, are asymptotically stable finite gain transfer
functions, one of which is strictly finite gain so that ||G||eo||Ge/loo < 1, then the negative

feedback interconnection of G and G, is asymptotically stable. In an attempt to generalize

the above feedback interconnection stability results to nonlinear state space systems, Hill and
Moylan introduced the novel concepts of input strict passivity, output strict passivity, and
input-output strict passivity using notions of storage functions with appropriate supply rates
from dissipativity theory for nonlinear dynammal systems. In particular, Hill and Moylan
show that if the nonlinear dynamical systems G and G, are both input strict passive, or
both are output strict passive, or G is passive and G, is input-output strict passive, then
the negative feedback interconnection of G and G, is asymptotically stable. However, these
nonlinear feedback stability results do not represent an exact nonlinear extension to the
positivity and small gain theorems discussed above. Specifically, specializing the notions
of input strict passivity, output strict passivity, and input-output strict passivity to linear
systems yields stronger conditions than strict positive realness and strict bounded realness.

In this research [48,85], we extend the notion of dissipative dynamical systems to formal-
ize the concept of the nonlinear analog of strict positive realness and strict bounded real-

31




ness. In particular, using exponentially weighted system storage functions with appropriate
exponentially weighted supply rates we introduce the concept of exponential dissipativity.
Furthermore, we develop nonlinear Kalman-Yakubovich-Popov conditions for exponentially
dissipative dynamical systems with quadratic supply rates. In the special cases where the
system dynamics are linear and the quadratic supply rates correspond to the net system
power, and the weighted input and output system energy, the Kalman-Yakubovich-Popov
conditions speéialize to the strict positive real lemma and strict bounded real lemma, re-
spectively.

Furthermore, using exponential dissipativity concepts we present several stability re-
sults for nonlinear feedback systems that provide a nonlinear analog to the classical posi-
tivity and small gain theorems for linear feedback systems. In addition, using the extended
Kalman-Yakubovich-Popov conditions for exponentially passive systems, we extend the Ho-
based positive real controller synthesis methods to nonlinear passive dynamical ’systems.
Specifically, globally stabilizing static and dynamic exponentially passive output feedback
nonlinear controllers are constructed for nonlinear passive systems that additionally min-
imize a nonlinear-nonquadratic performance criterion involving a nonlinear-nonquadratic,
nonnegative-definite function of the state and a quadratic pesitive—déﬁnite function of the
control. In particular, by choosing the nonlinear-nonquadratic weighting functions in the
performance criterion in a specified manner, the resulting static and dynamic controllers are
guaranteed to be exponentially passive. In the dynamic output feedback case, we show that
the linearized controller for the linearized passive system is Hy optimal.

2.28. Linear Controller Analysis and Design for Systems with In-
put Hystereses Nonlinearities

In recent years the éé:sire to orbit large, lightweight space structures with high-performance
requirenéents has prompted researchers to consider actuators which possess a fraction of the
size and weight of more conventional actuation devices. As a consequence, considerable re-
search interest has focused in the field of smart or adaptive materials as a viable alternative
to conventional proof mass actuators for vibration control. Due to the fact that adaptation
in smart materials is a result of physical nonlinear changes occurring within the material,
these actuation devices exhibit significant hysteresis in the actuator response. Specifically,
smart distributed actuators such as shape inemory alloys, magnetostrictives, electrorheolog-
ical fluids, and piezoceramics all exhibit hysteretic effects. Since hystereses nonlinearities
can severely degrade closed-loop system performance, and in some cases drive the system to
a limit cycle instability, they must be accounted for in the control-system design process.:
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Even though numerous models for capturing hystereses effects have been developed, with
the Preisach model being the most widely used, controller analysis and synthesis for feedback
systems with hystereses nonlinearities has received little attention in the literature. The main
complexity arising in hystereses nonlinearities is the fact that every reachable point in the
input-output hysteresis map does not correspond to a uniquely defined point. In fact; at any
reachable point in the input-output hysteresis map there exists an infinite number of trajec-
tories that may represent the future behavior of the hysteresis dynamics. These trajectories
depend on a particular past history of the extremum values of the input. However, hystereses
nonlinearities with counterclockwise loops have been shown to be dissipative with respect
to a supply rate involving force inputs and velocity outputs. Dissipative hystereses models
include the well known backlash nonlinearities, stiction nonlinearities, relay hystereses, and
most of the hystereses nonlinearities arising in smart material actuators.

The contribution of this research [53,87] is a methodology for analyzing and designing
output feedback controllers for systems with input hystereses nonlinearities. Specifically,
by transforming the hystereses nonlinearities into dissipative input—eutput dynamic opera-
tors, dissipativity theory is‘ used to analyze and design linear controllers for systems with
input hystereses nonlinearities. In particular, by representing the input hysteresis nonlin-
earity as a dissipative input-output dynamical operator with respect to a given supply rate,

partial closed-loop asymptotic stability; that is, asymptotic stability with respect to part‘

of the closed-loop state associated with the plant and the controller, is guaranteed in the
face of an input hysteresis nonlinearity. Furthermore, it is shown that the reminder of the
state associated with the hysteresis dynamics is semistable; that is, the limit points of the

hysteretic states converge to Lyapunov stable equilibrium points determinedby the system
initial conditions. ' ‘

2.29. A Lyapunov Function Proof of Poincaré’s Theorem

Poincaré’s theorem provides a powerful tool in analyzing the stability properties of pe-
riodic orbits and limit cycles of n-dimensional dynamical systems in the case where the
trajectory of the system can be relatively easily integrated. Specifically, Poincaré’s the-
orem provides necessary and sufficient conditions for stability of periodic orbits based on
the stability properties of a fixed point of a discrete-time dynamical system constructed
from a Poincaré return map. In particular, for a given candidate periodic trajectory, an
(n — 1)-dimensional hyperplane is constructed that is transversal to the periodic trajectory
and which defines the Poincaré return map. Trajectories starting on the hyperplane which
are sufficiently close to a point on the periodic orbit will intersect the hyperplane after a
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time approximately equal to the period of the periodic orbit. This mapping traces the sys-
tem trajectory from a point on the hyperplane to its next corresponding intersection with
the hyperplane. Hence, using system analytic arguments along with the somewhat involved
Hartman-Grobman theorem, the Poincaré return map can be used to establish a relation-
ship between the stability properties of a dynamical system with periodic solutions and the
stability properties of an equilibrium point of an (n — 1)-dimensional discrete-time system.
In this research [62,110], using the notions of Lyapunov and asymptotic stability of sets, we

construct lower semicontinuous Lyapunov functions to provide a Lyapunov function proof of
Poincaré’s theorem.

2.30. A Dissipative Dynamical Systems Approach to Stability
Analysis of Time Delay Systems

Modern complex engineering systems involve a multitude of information and communi-
cation networks. Akey physical limitation of such systems is that power transfers between
interconnecting system components are not instantaneous and realistic models for capturing
~ the djnamiés of such systems should account for information in transit. To accurately de-
‘scribe the évolution of these complex systems, it is necessary to include in any mathematical
| model of the system dynamics some information of the past systems states. This leads to
, (inﬁnite—dimensional) delay dynamical systems. Time-delay dynamical systems have been

‘exteﬁsiveiy studied in the literature. Since time delay can severely degrade system perfor-
kmance and in many cases drive the system to instability, stability analysis of time delay
dynamical systems remains a very important area of research. A key method for analyz-
ing sﬁability_of time delay djmamica.} systems is Lyapunov’s second method as applied to
functional differential equations. Specifically, si:ébiiity analysis of a given linear time delay
~~dynamical is typically shown using a Lyapunov-Krasovskii functional.- Standard Lyapunov-- -
Krasovskii functionals involve a fixed quadratic function and an integral functional explicitly
degendént on the system delay. As in classical absolute stability theory, the fixed quadratic
part of the Lyapunov—Krasévskii functional is associated with the stability of the forward
delay-independent part of the retarded dynamical system. However, the system theoretic
foundation of the integral part of the Lyapunov-Krasovskii functional is less understood.

In this research [64,117], using the notions of dissipativity and exponential dissipativity
theory, we present sufficient conditions for guaranteeing asymptotic stability of time delay
dynamical systems. Specifically, representing a time delay dynamical system as a negative
feedback interconnection of a finite-dimensional linear dynamical system and an infinite-
dimensional time delay operator, we show that the time delay operator is dissipative with
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respect to a quadratic supply rate and with a storage functional involving an integral term
which is identical to the integral term appearing in the Lyapunov-Krasovskii functional.
Next, using stability of feedback interconnection results based on dissipativity of a feedback
interconnected system, we develop sufficient conditions for asymptotic stability of time de-
lay dynamical systems that are consistent with the results in the literature yet providing
a system theoretic foundation for the Lyapunov-Krasovskii functional forms. The overall
approach provides an explicit framework for constructing Lyapunov-Krasovskii functionals
for asymptotically stable time delay dynamical systems based on the dissipativity proper-

ties of the time delay operator. Finally, analogous results for discrete-time systems are also
presented.

2.31. Adaptive Control for Thermoacoustic Combustion Instabil-
ities

High performance aereengme afterburners and ramjets often experience combustion in-
stabilities at some operating condition. Combustien in these high energy density engines is
highly susceptible to flow disturbances, resulting in fluctuations to the instantaneous rate
of heat release in the combustor. This uﬁstea,dy combustion provides an acoustic source
resulting in self-excited oscillations. In particular, unsteady combustion generates acoustic
pressure and velocity oscillations which in turn perturb the combustion even further. These
pressure oscillations, known as thermoacoustic instabilities, often lead to high vibration levels
causing mechanical failures, high levels of acoustic noise, high burn rates, and even compo-
nent melting. Hence, the need for active control to mltlga.te combustion induced pressure
instabilities is severe. '

Due to the intricate complex physical phenomena in combustion processes involving
acoustics, thermodynanﬁcs, fluid mechanics, and chemical kinetics, finite dimensional lin-
ear or nonlinear models are unavoidably inaccurate. Basic system data such as damping,
frequency, and mode shapes are often poorly known. Furthermore, approximations of pres-
sure and velocity fluctuations involving time-averaging in the governing system equations
result in further system uncertainty that manifests itself as highly structured constant real
parametric uncertainty in the modal frequencies and damping. Thus for pressure oscillation

suppression in combustion processes, system modeling uncertainty necessitates the need for
nonlinear adaptive control.

In this research [97], we apply the Lyapunov-based direct adaptive control framework de-
veloped in [36] to suppress the effects of thermoacoustic instabilities in combustion processes.
The overall framework demonstrates that the proposed adaptive controllers provide consid-
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Figure 6: Open-loop state response of an un-  Figure 7: These plots illustrate the removal
controlled two-mode combustion model. of energy from a two-mode uncertain combus-

tion model with 8709% deviation in nominal
system parameters.

erable robustness in suppressing thermoacoustic combustion instabilities in the presence of
parametric uncertainties in the model (see Figures 6 and 7).

3. Research Personnel Supported

Faculty ‘
Wassim M. Haddad, Principal Investigator

Graduate Students ,
Sergei G. Nersesov, Ph. D
Joseph R. Corrado, Ph. D
Natasa A. Kablar, M.S.

Several other students (T. Hayakawa, A. Leonessa, J. Oh, T. Rajpurohit, and E. August)
were involved in research projects that were closely related to this program. Although none
of these students were financially supported by this program, their research did directly con-
tribute to the overall research effort. Furthermore, two Ph. D. Dissertations were completed
under partial support of this program; namely

A. Leonessa, Hierarchical Robust Nonlinear Switching Control Design for Propulsion

Systems, Ph. D. Dissertation, School of Aerospace Engineering, Georgia Institute of
Technology, Atlanta, GA, November 1999.

J. R. Corrado, Robust Fired-Structure Controller Synthesis, Ph. D. Dissertation,

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA,
August 2000.
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The first of the Ph. D students, Dr. Leonessa, holds the rank of Assistant Professor of
Ocean Engineering at Florida Atlantic University, while the second of the Ph. D. students,
Dr. Corrado, is presently with the Raytheon Missile Systems, Tucson.

4. Interactions and Transitions

4.1. Participation and Presentations

The following conferences were attended over the past three years.

IEEE Conference on Control Applications, Kohala Coast, HI, August 1999.
IEEE Conference on Decision and Control, Phoenix, AZ, December 1999.
American Control Conference, Chicago, IL, June 2000.

IEEE Mediterranean Conference on Control and Automation, Patras, Greece, July
2000.

ASME International Mechanical Engineering Congress and Exposition, Orlando, FL,
November 2000.

American Control Conference, Arlington, VA, June 2001.

ASME International Mechanical Engineering Congress and Exposition, New York, NY,
November 2001.

IEEE Conference on Decision and Control, Orlando, FL, December 2001.
American Control Conference, Anchorage, AK, May 2002.
Conference on Decision and Control, Las Vegas, NV, December 2002.

Furthermore, conference articles [76-114] were presented.

4.2. Transitions

Computational work on fixed-architecture control supported by this program has been
transferred to Raytheon Missile Systems, Tucson, under the supervision of Dr. J. R. Corrado
(520-794-1662) to transition our analytical work on robust fixed-structure control to industry
programs. Specifically, in collaboration with D. S. Bernstein at the University of Michigan,
we have been developing a Robust Fized-Structure Control Toolboz integrated within the
MATLABe environment that can be used to synthesize fixed-structure controllers that are
optimal with respect to given performance measures, and at the same time satisfy stability
and robustness constraints. The Robust Fized-Structure Control Toolbox focuses on the
development of a control design algorithm which supports the following paradigm: Minimize
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control law complexity subject to the achievement of a specified accuracy in the face of a
specified level of uncertainty.

Our recent analytical work on biological and physiological systems supported by this
program was communicated to Dr. J. M. Baily (404-778-3957) at the Department of Anes-
thesiology, Emory University Hospital, Atlanta, GA 30322. This has sparked a close collabo-
ration between the Principal Investigator and Dr. Bailey that has resulted in several research
publications, several internal Georgia Tech-Emory proposals as well as a National Institute
of Health proposal. The main goal of this collaboration is to eliminate the steep barriers to
communication between control engineering and medicine and advance the state-of-the-art
in active control of drug delivery systems for clinical pharmacology. While our application
objective in this collaboration is to develop active control methods to deliver sedation to
critically ill patients, our research will have implications for other uses of closed-loop control
of drug delivery. There are numerous potential applications such as control of glucose, heart
rate, blood pressure, etc., that may be improved as a result of this research program.
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