
Carnegie Mellon 
Software Engineering Institute 

Deriving Architectural 
Tactics: A Step Toward 
IVIethodical Architectural 
Design 

Felix Bachmann 
Len Bass 
Mark Klein 

March 2003 

TECHNICAL REPORT 
CMU/SEI-2003-TR-004 
ESC-TR-2003-004 

DISTRIBUTION STATEMENT A: 
Approved for Public Release ■ 

Distribution Unlimited 

20030523 156 



Carnegie Mellon 
Software Engineering Institute 
Pittsburgh, PA 15213-3890 

Deriving Architectural 
Tactics: A Step Toward 
IVlethodical Architectural 
Design 

CMU/SEI-2003-TR-004 
ESC-TR-2003-004 

Felix Bachmann 
Len Bass 
Mark Klein 

March 2003 

Architecture Tradeoff Analysis initiative 

Unlimited distribution subject to the copyright. 

4QA(03~^'^'^'0{ 



This report was prepared for the 

SEI Joint Program Office 
HQ ESC/DIB 
5 Eglin Street 
Hanscom AFB, MA 01731-2116 

The ideas and findings in this report should not be construed as an official DoD position. It is published in the 
interest of scientific and technical information exchange. 

FOR THE COMMANDER 

Christos Scondras 
Chief of Programs, XPK 

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a 
federally funded research and development center sponsored by the U.S. Department of Defense. 

Copyright 2003 by Carnegie Mellon University. 

NO WARRANTY 

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY 
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING. BUT NOT LIMITED TO, 
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED 
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF 
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. 

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is 
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works. 

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external 
and commercial use should be addressed to the SEI Licensing Agent. 

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel- 
lon University for the operation of the Software Engineering Institute, a federally funded research and development center. 
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, 
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy- 
right license under the clause at 252.227-7013. 

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site 
(http://www.sei.cmu.edu/publications/pubweb.html). 



Table of Contents 

Abstract vii 

1 Introduction 1 

2 Review of Key Concepts 5 
2.1 General and Concrete Scenarios 5 

2.2 Tactics 6 

3 Garage Door Example 9 

4 Scenario 1: Performance Scenario to a Design Fragment 11 
4.1 Step 1: Pick a Concrete Scenario 11 

4.2 Step 2: Type-Check tlie Concrete Scenario 11 

4.3 Step 3: identify Candidate Reasoning Frameworks 13 

4.4 Step 4: Determine the Bound and Free Parameters 14 

4.5 Step 5: Determine the Tactics Associated with the Free Parameters 15 

4.6 Step 6: Assign the Free Parameters an Initial Set of Values 17 

4.7 Step 7: Select Tactics and Apply Them to the Bind Values to Achieve the 
Required Response Measure 18 

4.8 Step 8: Allocate Responsibilities to the Architectural Elements of the De- 
sign Fragments That Are Associated with the Selected Tactics 20 

5 Scenario 2: Modifiabillty Scenario to a Design Fragment 23 
5.1 Step 1: Pick a Concrete Scenario 23 

5.2 Step 2: Type-Check the Concrete Scenarios 23 

5.3 Step 3: Identify Candidate Reasoning Frameworks 25 

5.4 Step 4: Determine the Bound and Free Parameters 27 

5.5 Step 5: Determine the Tactics Associated with the Free Parameters 28 

5.6 Step 6: Assign the Free Parameters an Initial Set of Values 30 

5.7 Step 7: Select Tactics and Apply Them to the Bind Values to Achieve the 
Required Response Measure 30 

5.7.1 Using a Compiler as an Intermediary 32 
5.7.2 Using an OS as an Intermediary 32 

CMU/SEI-2003-TR-004 i 



5.8   Step 8: Allocate Responsibilities to the Architectural Elements of the De- 
sign FragmentsThat Are Associated with the Selected Tactics 33 

6 Coupling Concrete Scenarios to Design Fragments 35 
6.1 Assets Available 35 
6.2 Steps for Coupling Concrete Scenarios to Design Fragments 36 

7 Summary and Remaining Open Issues 41 

Appendix A   General Scenarios 43 

Appendix B   Tactics 47 

References/Bibliography 53 

CMU/SEI-2003-TR-004 



List of Figures 

Figure 1: Design Fragment Associated with the Increase Logical Concurrency and 
Determine Scheduling Policy Tactics 21 

Figure 2: Design Fragment from Figure 1 Instantiated for a Concrete Scenario ...21 

Figures: Processor-Dependent Responsibilities 25 

Figure 4: Parameters That Influence the Effort of a Change 27 

Figure 5: Design Fragment of the Break the Dependency Chain Tactic 33 

Figure 6: Allocation of Responsibilities According to the Applied Tactics 34 

CMU/SEI-2003-TR-004 



jv CMU/SEI-2003-TR-004 



List of Tables 

Table 1: Parts of the Sample Concrete Performance Scenario 12 

Table 2: Parts of the Derived Performance General Scenario 12 

Table 3: Performance Reasoning Frameworks and Their Parameters 14 

Table 4: Tactics That Control Parameters for the Scheduling Theory's Reasoning 
Framework 16 

Table 5: Example Rules from Our Performance Decision Procedure 17 

Table 6: Example Rules That Apply to Step 6 18 

Table 7: Example Rules That Apply to Step 7 19 

Table 8: Rules for Relaxing Requirements and/or Design Constraints 20 

Table 9: Parts of the Example Concrete Modifiabillty Scenario 24 

Table 10: Parts of the Example General Modifiabillty Scenario 24 

Table 11: Modifiabillty Reasoning Framework and Parameters 26 

Table 12: Summary of Tactics and the Parameters They Influence 29 

Table 13: Rules That Guide the Use of Modifiabillty Tactics 31 

Table 14: Modifiabillty General-Scenario-Generation Table 44 

Table 15: Performance Generai-Scenario-Generation Table 45 

Table 16: Example General Scenario for Performance 45 

CMU/SEI-2003-TR-004 



vi CMU/SEI-2003-TR-004 



Abstract 

This is one of several reports that provide the current status on the work being done by the 
Software Engineering Institute (SEI^*^) to understand the relationship between quality re- 
quirements and architectural design. The ultimate objective of this work is to provide analy- 
sis-based guidance to designers so that the quality attributes of generated designs are more 
predictable and better understood. 

Currently, four distinct problems must be solved to achieve that objective: (1) the precise 
specification of quality attribute requirements, (2) the enumeration of architectural decisions 
that can be used to achieve desired quality attribute requirements, (3) a means of coupling 
one quality attribute requirement to the relevant architectural decisions, and (4) a means of 
composing the relevant architectural decisions into a design. Embodying the solutions to 
these four problems into a design method that is sensitive to business priorities is an addi- 
tional problem. This report deals with the third problem—coupling one quality attribute re- 
quirement to architectural decisions that achieve it. 

This report provides initial evidence that there is, in fact, a systematic relationship between 
general scenarios, concrete scenarios, architectural tactics, and design fragments. It examines, 
in detail, two concrete scenarios—one for performance and one for modifiability—and de- 
scribes how to move from each scenario, through tactics, to design fragments that satisfy the 
scenario. 

CMU/SEI-2003-TR-004 vii 



vijj CMU/SEI-2003-TR-004 



1 Introduction 

This is one of a sequence of reports [Bachmann 02, Bachmann 00] that provide the current 
status of the work being done by the Software Engineering Institute (SEI^"^) to understand the 
relationship between quality requirements and architectural design. Our ultimate objective is 
to provide analysis-based guidance to designers so that the quality attributes of generated de- 
signs are more predictable and better understood. 

At this point, we see four distinct problems that must be solved to achieve our objective: 
(1) the precise specification of quality attribute requirements, (2) the enumeration of architec- 
tural decisions that can be used to achieve desired quality attribute requirements, (3) a means 
of coupling one quality attribute requirement to the relevant architectural decisions, and (4) a 
means of composing the relevant architectural decisions into a design. Embodying the solu- 
tions to these four problems into a design method that is sensitive to business priorities is an 
additional problem. This report deals with the third problem—coupling one quality attribute 
requirement to architectural decisions that achieve it—while general scenarios and architec- 
tural tactics address the first two problems. 

In a prior report [Bass 01], we introduced the concept of general scenarios as a precise sys- 
tem-independent specification of quality attribute requirements. General scenarios provide a 
structured means of stating quality attribute requirements. System-specific quality attribute 
requirements—called concrete scenarios—are instances of general scenarios. 

We also introduced the concept of architectural tactic as a characterization of architectural 
decisions that are used to achieve a desired quality attribute response. An architectural tactic 
is a means of satisfying a quality-attribute-response measure (such as average latency or 
mean time to failure) by manipulating some aspect of a quality attribute model (such as per- 
formance queuing models or reliability Markov models) through architectural design deci- 
sions. 

Restating the subject of this report in terms of concrete scenarios and architectural tactics, we 
are focusing on the derivation of a set of relevant architectural tactics (actually, we go further 
and derive a set of design fragments) from a concrete scenario. The key idea of our approach 
is that reasoning frameworks for quality attributes enable this linkage. 

SM SEI is a service mark of Carnegie Mellon University. 

CMU/SEI-2003-TR-004 



This report provides initial evidence that there is, in fact, a systematic relationship between 
general scenarios, concrete scenarios, architectural tactics, and design fragments. We exam- 
ine, in detail, two concrete scenarios—one for performance and one for modifiability—and 
describe how to move from each scenario, through tactics, to design fragments that satisfy 

that scenario. 

The process of moving from concrete scenarios to design fragments is based on the following 

set of relations: 

• A concrete scenario is an instance of a. general scenario. 

• A general scenario contains quality attribute parameters. 

• Reasoning frameworks comprise independent and dependent quality attribute parameters 

and their relations. 

• A quality attribute model is an instance ofn reasoning framework. 

• Tactics comprise reasoning framework rules and architectural design rules. 

The process starts with a concrete scenario and then determines the general scenario of which 
it is an instance. The general scenario contains quality attribute parameters that will point to 
one (or possibly several) quality-attribute-reasoning framework (e.g., scheduling theory or 
queuing theory). Reasoning frameworks comprise a set of independent and dependent pa- 
rameters and their relations and thereby offer the vocabulary and analytic machinery for de- 
scribing and deducing specific system properties.. The concrete scenario specifies (or binds) 
values for some of the parameters. Other parameters are free in the sense that they have not 
yet been assigned values; free parameters become the focus of design decisions. 

Making design decisions starts with developing a model (such as a scheduling or queuing 
model). A quality attribute model is an instance of using a quality-attribute-reasoning frame- 
work. Given the model, values for the unbound independent parameters are estimated. When 
all the independent parameters have values, the value of the dependent parameter(s) can be 
computed. The dependent parameter is then compared with the quality attribute requirement 
specified by the concrete scenario. Tactics can be used to adjust the value of independent pa- 
rameters in a manner that will satisfy the concrete scenario. When the requirement is satis- 
fied, tactics can then be used to determine suitable design fragments that are consistent with 

values of the parameters. 

In Section 2, we repeat the key concepts from quality attribute scenarios and tactics. Next, in 
Section 3, we introduce our sample domain—a garage door opener—and derive design frag- 
ments for one performance and one modifiability scenario. Then, in Section 6, we take a step 
back and provide a general treatment of the steps we exemplified using our two scenarios. 
Section 7 provides a discussion of some problems that must be solved to compose the design 
fragments and embed our solutions into a design method. Appendix A provides the general 

2 CMU/SEI-2003-TR-004 



scenarios for performance and modifiability, and Appendix B provides the tactics for those 
two attributes. 

CMU/SEI-2003-TR-004 



CMU/SEI-2003-TR-004 



2 Review of Key Concepts 

We begin by reviewing three key concepts that we introduced in previous reports [Bachmann 
02, Bass 01]: general scenarios, concrete scenarios, and tactics. 

2.1 General and Concrete Scenarios 
A general scenario is a precise system-independent specification of a type of quality attribute 
requirement that consists of [Bass 03] 

• a stimulus: a condition that needs to be considered when it arrives at a system 

• a response: the activity undertaken after the arrival of the stimulus 

• a source of the stimulus: the entity (e.g., a human or computer system) that generated the 
stimulus 

• an environment: the conditions under which the stimulus occurs; for example, when the 
system is in an overload condition 

• a stimulated artifact: Some artifact is stimulated. It could be the whole system or pieces 
of it. 

• a response measure: the attribute-specific constraint that must be satisfied by the re- 
sponse 

An example of a general scenario is 

A periodic event from an independent source arrives at the system under normal 
conditions. The system has to process the stimulus within certain latency. 

The general scenario provides a template for a class of requirements. Appendix A discusses 
general scenarios in more detail. 

CMU/SEI-2003-TR-004 



Ultimately, general scenarios must be changed into system-specific concrete scenarios. To 
make this change, the generic vocabulary is replaced with concrete, system-specific vocabu- 
lary. For example, the performance scenario shown above can be made system specific as 

follows: 

An event from sensor X arrives every 10 milliseconds (ms) at a system that oper- 
ates under normal conditions. The system has to process the stimulus within 1 

ms. 

System-specific quality attribute requirements can be specified using concrete scenarios. 

2.2 Tactics 
An architectural tactic is a means of satisfying a quality-attribute-response measure by ma- 

nipulating some aspect of a quality attribute model through architectural design decisions. 
This definition of tactic is different from (and we hope clearer than) our previous definition 
[Bachmann 02]. We changed the definition to emphasize our reliance on quality attribute 

models since that is key in this report. 

The definition has the following consequences: 

• An architectural tactic bridges the quality attribute model and the architectural design. It 
does so by specifying how the parameters of a quality attribute model (the input, the in- 
dependent variables, and the properties of the model's elements) can be controlled 
through architectural decisions to achieve a desired response measure. This means that an 
architectural tactic represents codified knowledge about the relationship between archi- 
tectural decisions and quality attribute parameters. 

• An architectural tactic uses knowledge from various reasoning frameworks (such as 
scheduling theory and queuing theory) to operationalize the creation of quality attribute 
models (such as scheduling and queuing models) that mirror the architecture being de- 
signed. As such, when we use the term quality attribute model, we mean an instance of 
using a reasoning framework to predict and control the quality attribute behavior of the 

developing architecture. 

At this time, we do not have a complete outline of a tactic description. That will be included 
in a later report. Nevertheless, throughout this report, we point out important information that 

needs to be captured in a tactic description. 

CMU/SEI-2003-TR-004 



We discuss performance and modifiability tactics in more detail in Appendix B. An example 

of a performance tactic is 

Reduce the computational overhead. Computational work usually requires oper- 
ating-system (OS) and middleware services to manage process interaction, 
communications, and the like. One important parameter in many performance 
models (such as queuing and scheduling models) is execution time—one source 
of which is overhead. The purpose of this tactic is to highlight one place where 
execution time is manifested in architectural designs. 

An example of a modifiability tactic is 

Hide information. This tactic is based on dividing a module's responsibilities into 
two categories: public and private. Public responsibilities are those that are visi- 
ble from both inside and outside the module. Private responsibilities are those 
that are visible only from inside the modules. The goal of this tactic is to limit 
the public responsibilities and make them visible through an interface. A parame- 
ter of a modifiability model is the dependency relations among the modules. The 
purpose of this tactic is to highlight one technique for breaking some dependency 

relations. 

Tactics are not necessarily independent. The application of one tactic may assume that an- 
other tactic has already been applied. For example, the application of the Determine the ap- 

propriate scheduling strategy tactic assumes that logical concurrency exists in the system. 
The application of one tactic may also require additional tactics to be applied. For example, 
applying the Break the dependency chain tactic to insert an intermediary would likely require 
additional tactics to isolate that intermediary's responsibilities. 

CMU/SEI-2003-TR-004 



CMU/SEI-2003-TR-004 



3 Garage Door Example 

Our sample design problem is that of a garage door opener. The controller for a garage door 
opener is an embedded real-time system that reacts to "open" and "close" commands from 
several buttons installed in the house and from a remote control unit, usually located in a car. 
The controller then controls the speed and direction of the motor, which opens and closes the 
garage door. The controller also reacts to signals from several sensors attached to the garage 
door. One of those sensors detects resistance to the door's movement. If the amount of resis- 
tance measured by this sensor is above a certain limit, the controller interprets that resistance 
as an obstacle between the garage door and the floor. As a reaction, the motor closing the ga- 
rage door is stopped. 

Many scenarios specify the requirements for the controller software. For the remainder of this 
report, we focus on two specific concrete scenarios—^the performance and modifiability sce- 
narios shown below. 

1. Performance scenario: If an obstacle (person or object) is detected by the garage door 
during descent, the door must halt within 0.1 seconds. 

2. Modifiability scenario: The processor (central processing unit [CPU]) used in different 
products differs. Adaptation of the software to those different processors should be done 
within one person-day. 

In the following sections, we show the relation of the above concrete scenarios to a collection 
of design fragments that supports the achievement of the desired response measures. Each 
derivation of a concrete scenario to a design fragment follows the steps below. In Sections 4 
and 5, these steps are described for use with performance and modifiability scenarios, respec- 
tively. 

1. Pick a concrete scenario. 

2. Type-check the concrete scenario. 

3. Identify candidate reasoning frameworks. 

4. Determine the bound and free parameters. 

5. Determine the tactics associated with the free parameters. 

6. Assign the free parameters an initial set of values. 

CMU/SEI-2003-TR-004 



7. Select tactics and apply them to the bound values to achieve the required response meas- 

ure. 

8. Allocate responsibilities to the architectural elements of the design fragments that are 

associated with the selected tactics. 

Steps 1 and 2 are scenario dependent and provide information for subsequent steps. Steps 3, 
4, and 5 are intended to set up the model in the reasoning framework; they identify the pa- 
rameters that can be manipulated to satisfy the scenario response. Steps 6 and 7 are intended 
to solve the model set up in Steps 3,4, and 5. Step 8 translates the tactics used into design 

fragments. 

10 CMU/SEI-2003-TR-004 

BP^B 



4 Scenario 1: Performance Scenario to a 
Design Fragment 

Our starting point is the following performance scenario: 

If an obstacle (person or object) is detected by the garage door during de- 
scent, the door must halt within 0.1 seconds. 

4.1 Step 1: Pick a Concrete Scenario 
These steps are intended to be applied in the context of a design method. One thing the de- 
sign method must specify is some procedure for choosing the scenario or scenarios for which 
design fragments are to be derived next. For this report, we assume this is the only scenario 

to consider. 

4.2 Step 2: Type-Check the Concrete Scenario 
Often, the concrete scenario is not well formed (by our definition of general scenario). Many 
items are implicit in a particular context and will not be presented in a requirement. Type- 
checking means ensuring that the concrete scenario contains all the parts of a well-formed 
scenario and that each part has a valid value as defined by the general-scenario-generation 
tables in Appendix A. Two important outcomes of type-checking a concrete scenario are 
(1) identifying the general scenario of which the concrete scenario is an instance and (2) 

identifying an initial set of responsibilities. 

To determine the associated general scenario, we divide the concrete scenario into its con- 
stituent parts. The parts of the concrete scenario we're using are listed in Table 1. 

CMU/SEI-2003-TR-004 11 



Table 1:    Parts of the Sample Concrete Performance Scenario 

Part Name Value 

source not defined 

stimulus obstacle (person or object) is detected 

environment during descent 

artifact by the garage door system 

response The door must halt. 

response measure within 0.1 seconds 

The values given for the scenario parts map to the values provided by the general perform- 
ance scenarios. One value is the arrival distribution, which describes how often an obstacle is 
detected. Because we can assume this happens infrequently, there is a bound on how fre- 
quently it can occur (known as a sporadic arrival distribution). Another parameter is the dead- 
line, which is .1 seconds from when the obstacle is detected. 

Comparing the values, we can derive the general scenario described in Table 2. 

Table 2:    Parts of ttie Derived Performance General Scenario 

Part Name Value 

source one of a number of independent sources 

stimulus sporadic events arrive 

environment normal conditions 

artifact system 

response processes stimuli 

response measure deadline 

Note that the general scenario provides the type of information, while the concrete scenario 
provides the values. Using the general scenario, we could also assign a value to the source 
part, which was not described in the concrete scenario. The source would be something like 
"the obstacle-detection sensor." 

12 CMU/SEI-2003-TR-004 



Casting the quality attribute requirement as a concrete scenario provides a natural method for 
identifying some of the initial responsibilities of the garage door opener. Performance general 
scenarios help the user to determine the following three responsibilities: 

1. detect <from a stimulus> 

2. determine <from the environment> 

3. carry out <from the response> 

These responsibilities come into play in Step 8: "Allocate responsibilities to the architectural 
elements of the design fragments that are associated with the selected tactics." 

In our example, the responsibilities of the garage door opener are to 

• Detect the obstacle. 

• Determine that the garage door is descending. 

• Halt the garage door. 

4.3 Step 3: Identify Candidate Reasoning Frameworks 
For modifiability and performance, we intend to construct tables such as Table 3 below. For 

each response measure. Table 3 identifies a reasoning framework (or possibly frameworks) 
that will be useful for satisfying the response measure. The table identifies important parame- 
ters of the reasoning framework. For example, given "hard deadline" as a response measure, 
the table tells us that scheduling theory will be useful. It also tells us that scheduling theory 
uses the following independent parameters to determine the dependent parameter for worst- 
case latency: execution times, arrival distributions, the number of units of concurrency, the 
priority of each unit of concurrency, and the number of processors. Worst-case latency is 
compared with the deadline to determine if that type of response measure (i.e., deadlines) is 
satisfied. This table can also help to determine which tactics are applicable for a particular 
scenario; recall that the purpose of tactics is to manipulate the independent parameters in a 
manner that will satisfy the response measure. 

CMU/SEI-2003-TR-004 13 



Table 3:    Performance Reasoning Frameworks and Their Parameters 

Reasoning Quality Independent Dependent Response 

Framework Attribute Parameters Parameter Measure 

Scheduling Performance •  Execution times (with relatively Worst-case Hard-deadline 

theory low variability) of units of concur- 

rency 

• Arrival distribution (a.l<.a., period, 

with relatively low variability) of 

units of concurrency 

• Number of units of concurrency 

• Priority of each unit of concur- 

rency 

• Number of processors 

latency requirement 

Queuing Performance •  Execution-time distribution asso- Average-case Soft-deadline 

theory ciated with servicing event latency requirement 

streams Average Data loss 
• Arrival distribution of event queue depth requirement 

streams 

•  Number of event streams 

•  Number of servers 

We know from looking at our concrete scenario that we have sporadic event arrivals and a 
hard-deadline requirement. That requirement suggests that the applicable reasoning frame- 
work is likely to be scheduling theory. Sporadic arrivals are arrivals that cannot occur arbi- 
trarily and often. They indicate a bound on the arrival rate variability, again showing that 
scheduling theory might be relevant. The other relevant parameters include execution time, 
the number of units of concurrency, the priority of each unit, and the number of processors. 

The response measure is the deadline. 

We have not yet considered the problem of choosing between several suitable reasoning 
frameworks. Although we suspect that if several reasoning frameworks have the same inde- 
pendent and dependent parameters, they are probably equivalent. 

4.4 Step 4: Determine the Bound and Free Parameters 
In this step, we determine the bound and free parameters of the applicable reasoning frame- 
work. Scheduling theory is concerned with calculating the worst-case latency associated with 
carrying out each scenario, given the execution time, arrival period, and priority associated 
with each unit of concurrency; the number of units of concurrency; and how each unit is allo- 

cated to one or more processors. 

14 CMU/SEI-2003-TR-004 



From our type-checking, we know that the arrival distribution is sporadic with an occurrence 
of one (within some reasonable time bound), and so the arrival distribution parameter is 
fixed. Design constraints can also bind parameters. For example, the business case of the de- 
veloper of the garage door opener's software might dictate that only a single processor is 
used in the garage door. Thus, the "number of processors" parameter is also fixed. 

To summarize, bound parameters include 

• arrival distribution 

• number of processors 

And free parameters include 

• number of units of concurrency 

• priority of each unit of concurrency 

• execution time of responsibilities 

4.5   Step 5: Determine the Tactics Associated with the 
Free Parameters 

The objective of this step is to determine which tactics are applicable to the free parameters 
identified in the previous step. We intend to construct tables such as Table 4 that relate inde- 
pendent parameters of a reasoning framework to the tactics that affect them. 

CMU/SEI-2003-TR-004 15 



Table 4:    Tactics That Control Parameters for the Scheduling Theory's Reasoning 
Framework 

Parameter Tactic That Affects It 

execution times Tactics for Managing Demand 

Reduce computational overhead 

Bound execution times 

Control the demand for resources 

Increase the computational efficiency of algorithms 

arrival distribution Tactics for iVIanaging Demand 

Manage the event rate 

Control the frequency of sampling external events 

Bound queue sizes 

number of units of 
concurrency 

Tactics for Arbitrating Demand 

Increase logical concurrency 

Determine appropriate scheduling policy 

priority of each unit of 
concurrency 

Tactic for Arbitrating Demand 

Determine appropriate scheduling policy 

number of processors Tactics for IVIanaging Multiple Resources 

Increase physical concurrency 

Balance resource allocation 

We also assume that a decision procedure is associated with each reasoning framework. This 
procedure is a set of rules governing which tactics are relevant in particular situations. Table 
5 through Table 7 provide a sampling of the rules in a decision procedure for scheduling the- 
ory.' The decisions are based strictly on which parameters are considered to be bound and 
which are considered to be free: 

1. Which parameters are bound? 

• arrival distribution: Arrivals are infrequent. 

• number of processors: A single processor is being used. 

From the first rule in Table 5, we conclude that the bounded arrival distribution rules out 
the following tactics: Manage event rate and Control the frequency of sampling external 

events. 

The single-processor constraint rules out the following tactics: Increase physical concur- 

rency and Balance resource allocation. 

2. Which parameters are free? 

• execution time: The responsibilities will suggest a likely range, but this is not yet 

fixed. 

An important aspect of this ongoing work is to flesh out the set of rules. 

16 CMU/SEI-2003-TR-004 



• number of units of concurrency: The value of this parameter will be determined 
later. 

• priority of each unit of concurrency: The value of this parameter will be deter- 
mined later. 

The following tactics are concerned with manipulating execution time: Reduce computa- 

tional overhead. Increase computation efficiency. Control the demand for resources, and 
Bound execution time. 

Three rules from our performance decision procedure that are applicable for this step are 
shown in Table 5. 

Table 5:    Example Rules from Our Performance Decision Procedure 

• If the arrival distribution is bounded, the Manage event rate and Control the frequency of 
sampling external events tactics cannot be used to control worst-case latency. 

• If execution time is a free parameter, consider using the following tactics: Reduce compu- 
tational overhead, Increase computation efficiency, Control the demand for resources, 
and Bound execution time. 

• If the number of processors is bound, eliminate the following tactics as candidates: In- 
crease physical concurrency and Balance resource allocation. 

4.6   Step 6: Assign the Free Parameters an Initial Set 
of Values 

Two things occur during this step. First, the architect offers his/her best guess for values of 
the free parameters. The list of applicable tactics suggests factors that impact the setting of 
these values. Second, the decision procedure rules call attention to possibly problematic 
situations. 

From the previous steps, we know that three of the tactics are relevant to estimating execu- 
tion time: Reduce computational overhead, Improve computational efficiency, and Bound 
execution time. The architect might guess that the sum of the sensor's execution time for 
physically detecting an obstacle, plus the execution time of the three responsibilities associ- 
ated with obstacle detection and halting is about 5 ms. The Bound execution time tactic calls 
our attention to the effects of execution-time variability. However, we predict that these re- 
sponsibilities have very little variability. The Improve computational efficiency tactic calls 
our attention to the particular algorithm used to detect that an obstacle exists. The Reduce 
computational overhead tactic calls our attention to various sources of overhead that repre- 
sent extra execution time. It is conceivable that each responsibility mentioned above (i.e., 
detect obstacle, determine that the garage door is descending, and halt the garage door) incur 
some OS overhead for some preselected real-time OS. Consequently, we estimate that the OS 

CMU/SEI-2003-TR-004 17 



adds an additional 1 ms of overhead. Since this is the only scenario being considered, we can 
assume that this scenario's responsibilities are all allocated to a single unit of concurrency. 
This assumption may change in the future as we consider multiple scenarios and deal with 
already-made design decisions—but for now, our assumption is adequate. 

While we don't yet know all the details of the other responsibilities in the system, we do 
know that other responsibilities with associated execution times will exist. If we're not care- 
ful, those responsibilities could potentially have an adverse effect on the ability of this sce- 
nario to be realized. We are not yet ready to assign values to their associated execution times. 

The second consideration at this stage is to examine the scenario to determine if it is unrea- 
sonable or problematic. For example, if execution times or arrival rates vary considerably and 
deadlines can never be missed, problems might arise. Examples of rules that call attention to 

such potentially problematic situations are shown in Table 6. However, none of these situa- 

tions applies to the current scenario. 

Three rules from our performance decision procedure that are applicable for this step are 

shown in Table 6. 

Table 6:    Example Rules That Apply to Step 6 

If the scenario has a hard-deadline-response requirement that cannot be relaxed, and if 
arrivals can occur arbitrarily close to one another, use one of the following tactics to en- 
sure a lower bound on the interarrival interval: Manage event rate and Control sampling 

frequency. 

If the scenario has a hard-deadline-response requirement that cannot be relaxed, and if 
execution times vary considerably to the point that they can approach or exceed the hard 
deadline, consider applying the Bound execution time tactic. 

If either of the above "unbounded" conditions applies, but arrival rate and execution time 
are bound parameters, declare the requirement untenable. ^__^___ 

4.7   Step 7: Select Tactics and Apply Them to the 
Bind Values to Achieve the Required Response 
Measure 

At this point, all the parameters have values, and we have a candidate list of applicable tac- 
tics. The first thing we need to do is to calculate the value of the dependent parameters, given 
the current values of the independent parameters, to determine whether the response measure 

can be met. 

18 CMU/SEI-2003-TR-004 



Without considering the effects of other responsibilities, the model in this case is fairly sim- 
ple. The only contributors to latency are execution time and overhead, 5 ms and 1 ms, respec- 
tively. Their sum is well under the deadline of 100 ms (i.e., .1 seconds), leaving 94 ms to 
spare. On the other hand, it is very conceivable that the other responsibilities in the system 
combined take more than 94 ms. 

Four rules from our performance decision procedure that are applicable for Step 7 are shown 
in Table 7. The last rule in Table 7 suggests that the design decisions we make in Step 8 be 
consistent with our simple model—that is, they should ensure that the latency associated with 
this scenario's responsibilities is not affected by any other responsibilities. 

Table 7:    Example Rules That Apply to Step 7 

If the execution time associated with the arrival is close to the deadline, consider reduc- 
ing the execution time by using the following tactics: Reduce overhead, Bound execution 
time, and/or Increase computation efficiency. 

If the difference between the worst and best case is significant, review the following tac- 
tics and apply their modeling techniques to assess the miss rates and average latency, 
respectively: Bound execution times and/or Bound queue sizes. 

If the response requirement for all scenarios can be achieved even with the worst-case 
delay due to the other responsibilities of the other scenarios, do one of the following: 

- Allocate responsibilities to one of the existing units of concurrency using the Offline 
scheduling tactic. 

- Allocate responsibilities to a new unit of concurrency using the Increase logical con- 
currency and Time-based scheduling tactics. 

If the current scenario cannot suffer the worst-case delay due to the other responsibili- 
ties, consider them to be time sensitive and use the following tactics to create an appro- 
priate scheduling policy: Offline scheduling. Time-based scheduling {such as deadline 
monotonic scheduling), and/or Increase logical concurrency. 

The next thing we need to do is to look at one or more of the applicable tactics to determine 
which parameters can be adjusted to satisfy the concrete scenario. 

The relevant tactics entering into this step include 

• Controlling resource demand through the Control the demand for resources and Bound 

execution time tactics assumes that multiple events are occurring. Our scenario is only 
concerned with a single event (i.e., obstacle detected). 

• The Reduce computational overhead and Increase computational efficiency tactics both 
affect the latency. The computational overhead for this scenario comes from the OS 
choice. Unless the scenario is unachievable (which is not yet the case), we do not want to 
change that choice. Increasing the computational efficiency of the obstacle detection al- 

CMU/SEI-2003-TR-004 19 



gorithm would save possibly 1 ms. Applying the reasoning framework with this new exe- 
cution-time value shows that the execution time does not have much impact. 

•    The Increase logical concurrency and Determine scheduling policy tactics together en- 
able the satisfactory achievement of the response measure. For this reason, we carry these 

tactics forward into the next step. 

Up to now in this step, tactics have been used to set and/or adjust model parameters to satisfy 
the current concrete scenario's response measure. However, the scenario might pose an un- 
tenable requirement, or the collection of scenarios considered up to this point might be unten- 
able in aggregate. If either situation occurs, tactics should offer some ideas for how to relax 

the requirements or design constraints. 

Two rules from our performance decision procedure that are useful for identify and relaxing 

requirements and/or design constraints are shown in Table 8. 

Table 8:    Rules for Relaxing Requirements and/or Design Constraints 

If the response requirement is specified as a hard deadline, but limited misses can be 
tolerated, recharacterize deadlines as follows: 

- firm deadlines: Completing the responses before the deadline is very important. 
Missing the deadline can be tolerated occasionally. A specific bound on the miss rate 

needs to be specified. 

- soft deadlines: In this case, the term deadline is a misnomer. The average-latency 
requirement needs to be specified. 

If the time-sensitive set of responsibilities is not schedulable, incorporate a notion of im- 
portance-based scheduling to handle overload situations using the Semantic-importance- 
based scheduling tactic, or add more resources using the Increase physical concurrency 

tactic.   

4.8 Step 8: Allocate Responsibilities to the Architec- 
tural Elements of the Design Fragments That Are 
Associated with the Selected Tactics 

We assume that a design fragment is associated with each tactic. The fragment associated 
with the Increase logical concurrency and Determine scheduling policy tactics is shown in 
Figure 1. This design fragment shows two threads, one of which has a higher priority than the 

This example points out the importance of understanding how sensitive the reasoning framework is to the 
various parameters. For example, knowing the impact of halving the value of a parameter tells the architect 
how much effort to spend on that type of improvement. If the impact is small, little effort is justified; if the 

impact is large, more effort is justified. 

20 CMU/SEI-2003-TR-004 



other. The fragment rules call attention to the existence of a scheduler (not shown in Figure 1) 
whose responsibilities must be allocated to some module in the system. 

Responsibilities related 
to the deadline 

Have a higher 
priority than 

Other application 
responsibilities 

Key 

thread relation 

Figure 1:   Design Fragment Associated witli ttie Increase Logical Concurrency and 
Determine Scheduling Policy Tactics 

The generic responsibilities in the design fragment shown in Figure 1 are instantiated with 
the values derived from type-checking and result in the design fragment shown in Figure 2. 

Obstacle detection 
responsibilities + OS 
responsibilities 

Have a higher 
priority than 

Other application 
responsibilities 

Key 

thread relation 

Figure 2:   Design Fragment from Figure 11nstantiated for a Concrete Scenario 

Observe the relationship between the design fragment and the associated analysis model. The 
model states that obstacle detection responsibilities must be scheduled with a priority higher 
than that of other responsibilities. The model also identified the OS responsibilities as a por- 
tion of the obstacle detection responsibilities. 

CMU/SEI-2003-TR-004 21 



22 CMU/SEI-2003-TR-004 



5 Scenario 2: Modifiability Scenario to a 
Design Fragment 

Modifiability is the degree to which an architectural design can be modified easily in the fu- 
ture. We want to design an architecture that is prepared for certain modifications. 

To determine the possible tactics for modifiability, we follow the same steps listed in Section 
3 and assume that we are designing based solely on the modifiability scenario. 

5.1 Step 1: Pick a Concrete Scenario 
Our modifiability scenario is 

The processor (CPU) used in different products differs. Adaptation of the 
software to the different processors should be done within one person-day. 

This scenario describes a requirement that typically occurs when building a product line. By 
processor, we mean only the physical hardware and not the software platform associated with 
it. Any platform considerations will be included in the software we design. 

5.2 Step 2: Type-Checf( the Concrete Scenarios 
In this step, we map the concrete scenario to the associated general scenario for modifiability. 
To create that general scenario, we divide the concrete scenario into its constituent parts as 
shown in Table 9. 

CMU/SEI-2003-TR-004 23 



Table 9:    Parts of the Example Concrete Modiflability Scenario 

Part Name Value 

source not defined 

stimulus change processors (CPUs) 

environment not defined 

artifact garage door system 

response adaptation to different processors 

response measure within one person-day 

The values given for the scenario parts map to the values provided in the general-scenario- 
generation table (see Appendix A). Comparing the values and filling in the unspecified fields, 

we can derive the general scenario shown in Table 10. 

Table 10:   Parts of tfie Example General Modifiability Scenario 

Part Name Value 

source developer 

stimulus wants to add/delete/modify/change 
functionality 

environment compile time 

artifact system 

response makes modification without affecting 
other functionality 

response measure effort 

The concrete scenario mentions two sets of responsibilities.^ One set includes all the respon- 
sibilities assigned to the processor (from the stimulus table entry); the other includes all the 
responsibilities of the software (from the artifact table entry). The responsibilities of the 
processor will change, and we have to make sure that the effect on the responsibilities of the 
software is within the limits stated in the concrete scenario (one person-day). We represent 

this relationship in Figure 3. 

^      We treat the processor as though it implements certain responsibilities. Although this may seem somewhat 
strange and blurs the line between hardware and software, it allows us to treat hardware modifications as 

software modifications. 

24 CMU/SEI-2003-TR-004 



o      o 

 \   —-^ 

Garage Door Opener Software 
Key: 

o 

Processor 

Module with responsibilities (dots) 

-> Dependency 

Figure 3:   Processor-Dependent Responsibilities 

5.3 Step 3: Identify Candidate Reasoning Frameworks 
The reasoning frameworks for modifiability are not as precise as those for performance. The 
important question the reasoning framework needs to answer is "how much will it cost to 
make a certain change?" 

The answer to this question is typically stated in terms of effort or time. In this case we are 
concerned with return on investment. Preparing an architecture to support a certain type of 
change requires an investment in terms of effort. The following basic formula shows what 
should be achieved: 

e <e   with e  = n(e  —e) 

where 

• e, is the effort to prepare the architecture for a certain change (investment). 

• e^ is the effort saved because the architecture was prepared for the change. 

• e^ is the effort used to make a change for which the architecture was not prepared. 

• e^ is the effort for making the change in the prepared architecture. 

• n is the number of times this type of change occurs during the lifetime of the architecture. 

Basically, the relation states that the savings should be greater than or equal to the invest- 
ment. The efforts for making a change (e„ and e^) depend on several factors, such as effort 
for 

• finding affected responsibilities 

• adapting the responsibilities 

CMU/SEI-2003-TR-004 25 



• testing all the responsibilities within a changed module 

• testing all the responsibilities of the modules that depend on the adapted module 

The complete effort E for making this type of change n times during the lifetime of the 
software, given that the architecture is prepared for this type of change, is the sum of the ef- 
forts required for every change plus the investment efforts: 

E = e,+J^e, 
1=1 

A particular organization may choose to be influenced by either of the two formulae pre- 
sented. The initial formula suggests that architecting software to be modifiable may be 
worthwhile only if this up-front cost can be amortized over some number of future modifica- 
tions. The second formula suggests that it is important to track the total cost of modification. 
If an organization wants to stay in a particular market, it may not matter how expensive a 
change is. If an organization has both limited developers and limited time to react to a change 
request (e.g., from an important customer), the initial investment may not be as important as 
the cost (time) of any particular change. 

Table 11 shows the main parameters influencing the efforts of making a change. 

Table 11:   Modiflability Reasoning Framework and Parameters 

Reasoning Quality Independent Parameters Dependent Response 

Framework Attribute Parameters Measure 

Dependency Modifiability • number of primary modules Effort for Cost con- 

analysis affected by the change 

• number of responsibilities 

within the primary modules 

affected 

• probability that publicly visi- 

ble responsibilities of a pri- 

mary module are affected 

• number of secondary mod- 

ules that depend on the 

changed publicly visible re- 

sponsibilities of a primary 

module 

• number of responsibilities 

within the secondary mod- 

ules affected 

making a 

change 

straint 

26 CMU/SEI-2003-TR-004 



Figure 4 illustrates those parameters. A change affects several responsibilities in one or more 
modules. If publicly visible responsibilities are affected, most likely one or more other re- 
sponsibilities in one or more other modules are affected. Keep in mind that each affected re- 
sponsibility comes with the costs of finding, changing, and testing it. 

Dependencies 

Secondary Modules 

Primary Modules 

Key: 

Change 

on Module with private and public 
^ (shaded) responsibilities (dots) 

->  Dependency 

Figure 4:   Parameters That Influence the Effort of a Change 

If secondary modules are affected by a change, this list has to be applied recursively, where 
the secondary modules become primary modules. 

5.4 Step 4: Determine the Bound and Free Parameters 
Since we are only considering one scenario, the reasoning framework contains the responsi- 
bilities as shown in Figure 3. We consider two modules—the processor and the garage door 
opener software—which both depend on the processor. The modifiability scenario states that 
the processor will be replaced by another one, meaning that potentially all the processor's 
responsibilities are changed. 

An examination of the differences between an existing processor and the new processor will 
reveal the responsibilities, especially the publicly visible ones that will be added, removed, or 
modified when using the new processor. The result of the examination binds the number of 
responsibilities affected in the processor. 

CMU/SEI-2003-TR-004 27 



Examining the affected responsibilities if they are used by the garage door opener software 
determines the ratio between public and private responsibilities and therefore binds the 
"probability that publicly visible responsibilities are affected" parameter. In our case, we set 
the value of that parameter to 1 because we know that changing the processor will affect at 
least 1 visible responsibility. We therefore consider this parameter to be fixed. Furthermore, 
since all the responsibilities of the processor that affect the software are public, the probabil- 
ity that publicly visible responsibilities of the processor are affected is 1. 

The "number of primary modules affected" parameter is also set to 1. The garage door opener 

will be a single-processor application. 

Therefore, we have the following values for these bound parameters: 

• primary modules affected by the change (1—the processor) 

• responsibilities changed (processor responsibilities) 

• probability that publicly visible responsibilities of the processor are affected (1) 

And we have the free parameter "number of secondary modules that depend on the changed 

publicly visible responsibilities" for which a value must be assigned. 

5.5   Step 5: Determine the Tactics Associated withi the 
Free Parameters 

From the parameters listed above and in Table 11, we see that the following tactics are asso- 

ciated with the free parameters: 

• Limit options 

• Break the dependency chain 

• Limit communication paths 

• Make data self-identifying 

The last two tactics—Limit communication paths and Make data self-identifying—are not 
feasible given that we have no control over the processor hardware. 

Furthermore, the Break the dependency chain tactic involves introducing an intermediary, 
which may, in turn, require restricting the visibility of the intermediary's responsibilities us- 

ing the following tactics: 

• Hide information 

• Raise the abstraction level 

28 CMU/SEI-2003-TR-004 



• Maintain existing interfaces 

• Separate the interface from the implementation 

Using any of the tactics mentioned in Table 12 contributes to the investment costs e,. Only 

the Limit options tactic would actually limit the investment costs because it reduces the num- 
ber of changes the architecture must be able to accommodate. 

Table 12:   Summary of Tactics and the Parameters They Influence 

Parameter Tactic That Affects It 

number of occurrences of a 
change 

Tactics for Localizing Expected Modifications 

Limit options (The fewer the possible options, the less often a 
change occurs.) 

number of primary modules 
affected by a change 

Tactics for Localizing Expected IVIodifications 

Limit options (The fewer the possible options, the less often a 
change occurs and the less modules are affected.) 

Isolate the expected change (Separate what Is likely to change 
from parts that are unlikely to change.) 

Maintain semantic coherence (Put together parts that have strong 
dependencies on each other so they are easier to find.) 

number of responsibilities of the 
primary modules affected by the 
change 

Tactics for Localizing Expected lUlodifications 

Abstract common services in the primary modules (Only a limited 
number of services is affected.) 

Limit options (The fewer the possible options, the fewer responsi- 
bilities are affected.) 

probability that a change to a 
primary module becomes visible 
outside that module 

Tactics for Localizing Expected Modifications 

Limit options (The fewer possible the options, the fewer responsi- 
bilities are affected.) 

Raise the abstraction level (The more abstract a service is, the 
more possible it will be that changes can be supported invisibly.) 

Tactics for Restricting the Visibility of Responsibilities 

Hide information (The more responsibilities are private, the less 
likely a change becomes visible.) 

Maintain existing interfaces (Changes become visible only through 
new interfaces.) 

Separate the interface from the implementation (New behavior can 
be introduced with a low probability of making it visible.) 

number of secondary modules 
affected by a publicly visible 
change 

Tactics for Preventing the Ripple Affect 

Break the dependency chain (Intermediaries of different types 
block different types of dependencies from propagating.) 

Make the data self-identifying (Tagging data with syntax informa- 
tion enables secondary modules to adjust automatically.) 

Limit communication paths (The fewer the dependencies, the fewer 
secondary modules are affected.) 

CMU/SEI-2003-TR-004 29 



5.6   Step 6: Assign the Free Parameters an Initial Set 
of Values 

In our example, we must set initial values for the 

• number of secondary modules that depend on the changed publicly visible responsibili- 

ties of a primary module 

• number of responsibilities in the secondary module(s) that are affected 

The number of secondary modules affected is set to 1. However the number of affected re- 
sponsibilities in the secondary module is likely to be significant. With those initial values, 
e will most likely be much higher than the required cost constraint (one person-day). 

5.7   Step 7: Select Tactics and Apply Them to the 
Bind Values to Achieve the Required Response 
Measure 

We now apply the tactics from our list of candidate tactics (see Section 5.5) until we achieve 
a satisfying result. The procedure is based on the set of rules shown in Table 13. These rules 

guide the use of modifiability tactics. 

In this case, the Limit options tactic asks whether all possible processors are to be supported. 
If they can be limited to a subset (such as those that belong to the same family of processors), 
designing for change is much simpler, but involves trading off possible market share. 

In our example, restricting processors to be in the same family might reduce «to < 5. It also 
might reduce the probability that a change in the processor becomes visible to the software. 
Let us assume that in our example only every other supported processor has different publicly 
visible responsibilities. This means that at least in every other case we can keep the efforts 
e^ lower than requested by the scenario. 

Since we do not change the responsibilities of the processor (because we buy it), we skip 
rules 2, 3, and 4 because they require changing the responsibilities of the primary affected 

modules. We therefore proceed to rule 5. 

30 CMU/SEI-2003-TR-004 



Table 13:   Rules That Guide the Use of Modifiability Tactics 

1.     If the number of occurrences of the change can be modified, apply the Limit options 

tactic. 

If it is impossible to achieve the change within the specified limits when only considering 

the primary affected modules, apply the following tactics: 

• Maintain semantic coherence 

• Isolate the expected change 

If the change can't be achieved within the specified limits when only the primary affected 

modules are considered and after the tactics in rules 1 and 2 have been applied, it is an 

unsolvable problem. 

If the effort required to adapt the affected secondary modules is not within the specified 

limits and the primary modules can be changed, apply the following tactics to the affected 

primary modules: 

• Abstract common services in the primary modules 

• Raise the abstraction level 

• Hide information 

• Maintain existing interfaces 

• Separate the interface from the implementation 

If the effort required to adapt the affected secondary modules is not within the specified 

limits, apply the following tactics: 

• Break the dependency chain 

• Make the data self-identifying 

• Limit communication paths 

6.     If it is impossible to achieve the change within the specified limits after all tactics have 

been applied, it is an unsolvable problem.  

7.    If the investment costs of using the tactics are lower than the possible gain, reconsider 

the requirement.  

Rule 5 leads to use of the Break the dependency chain tactic. We therefore have to determine 
which type of dependencies between the primary and secondary modules should and should 
not be allowed. Between the garage door opener software and the processor, we have the fol- 
lowing dependencies: 

1. data syntax and semantics: The language required to instruct the processor to execute is 
data for the processor. Using an intermediary means the language used is not assembler 
language. 

2. service syntax and semantics: The garage door opener also uses services provided by the 
processor, such as memory management, input/output (I/O) handling, timer manage- 
ment, and so forth. 

CMU/SEI-2003-TR-004 31 



3. sequence of data and control: The software depends on the sequence in which the in- 
structions (data) are executed by the processor. It may also depend to some degree on the 

sequencing of control within the processor (e.g., interrupt handling). 

4. interface identity: The software is loaded onto the processor in which it executes and 
therefore does not have to know the interface identity of the processor. 

5. runtime location: The software is loaded onto the processor in which it executes and 
therefore does not have to know the processor's location. 

6. quality of service: This dependency might exist for services the processor provides (e.g., 

I/O services, processor speed). 

7. existence: The software depends on the existence of the processor. 

8. resource behavior: The software depends on how the processor executes the instruction, 

especially timing behavior. 

To achieve the required efforts stated in the concrete scenario, almost all the dependencies 

have to be broken. It is very unlikely that the software will not be loaded on the processor in 
which it executes. Therefore, the interface identity, runtime location, and existence of the 
processor will not change, and we will not try to break those dependencies. We also assume 
that a resource behavior dependency will always exist on the processor. 

5.7.1 Using a Compiler as an intermediary 

We can break the data syntax dependencies by introducing a higher language than assembler 
language. We assume that a compiler for the processor and language we chose exists. The 
compiler also alleviates the semantic dependencies because it supports the use of a more ab- 
stract language and breaks the dependency on data sequencing. 

Usually, a compiler also comes with a runtime environment that acts as an intermediary for 
some services provided by the processor. Standard I/O services, memory management, and 
time management are examples of services provided by a runtime environment. 

This breaks the service syntax dependencies to the supported processor services. Also, the 
semantic dependencies are reduced because the runtime environment usually provides a more 

generic interface to the services. 

5.7.2 Using an OS as an Intermediary 

We still have dependencies in our software on services not concealed by a compiler. Exam- 
ples include I/O with special devices that manage special memory such as flash memory. To 
break those dependencies, we use an intermediary that is or acts as an OS. This intermediary 

32 CMU/SEI-2003-TR-004 



breaks the service syntax and resource behavior dependencies on the remaining processor 
services, as well as reduces the semantic dependencies. 

When defining the responsibilities of the intermediary, using the Raise the abstraction level 

and Hide information tactics provides a more abstract interface to the processor's services 
and hides all processor-dependent details. 

When use of the rules in Table 13 reveals that the problem is unsolvable, the only way to 
come to a solution is to change one or more of the parameters that were fixed by the scenar- 
ios. Perhaps some of the requirements are not as important as stated, or the acceptable efforts 
for doing the change can actually be higher than previously thought. 

After one or more fixed parameters are changed, the rules can be applied again, and hopefully 
a possible solution can be found. 

5.8 Step 8: Allocate Responsibilities to the Architec- 
tural Elements of the Design Fragments That Are 
Associated with the Selected Tactics 

The Break the dependency chain tactic has the design fragment shown in Figure 5. 

Secondary 

responsibilities 
intermediary Primary 

responsibilities 

Figure 5:   Design Fragment of the Break the Dependency Chain Tactic 

Applying this design fragment three times and assigning the responsibilities according to the 
tactics used lead to the design fragment shown in Figure 6. Most of the direct dependencies 
are now broken. The remaining dependencies of the garage door opener on the processor 
(e.g., location or existence) are those which probably won't be affected by changing the proc- 
essor. 

CMU/SEI-2003-TR-004 33 



Compiler 

Garage Dodc Opener ■. Runtime environment Processor 

Common Services 

Key: 
o-| Module with private and public 
oj (shaded) responsibilities (dots) 

■-> Dependency 

Figure 6:   Allocation of Responsibilities According to the Applied Tactics 

Changing the processor will affect the compiler and the runtime environment (which we can 
buy with the new processor), as well as the OS-like intermediary, which needs to be adapted 

to the new processor. 

None of the responsibilities in the garage door opener modules should be affected by the 

processor change. 

34 CMU/SEI-2003-TR-004 



6 Coupling Concrete Scenarios to Design 
Fragments 

Our goal in this report is to provide initial evidence that it is possible to derive design frag- 
ments from concrete scenarios. Our two example scenarios provided some limited evidence. 
In this section, we take a step back and treat the problem in general. That is, what is the gen- 
eral procedure for deriving design fragments from concrete scenarios? We have already seen 
some elements of this procedure (Steps 1-8). However, in addition to discussing these steps in 
general, we discuss the assets we assume will be available before any particular system is 
examined. 

6.1   Assets Available 
We assume that some set of assets is available prior to examining any particular set of con- 
crete scenarios. These assets might be codified in an engineering handbook, embodied in a 
design assistant tool, and/or made available to the designer in some other form. These assets 
include 

• general-scenario-generation tables: (see Appendix A) tables that provide valid "values" 
for each portion of a general scenario for various attributes (such as performance, modifi- 
ability, reliability, security, and usability) 

• mapping from a general scenario to reasoning frameworks: A general scenario for a par- 
ticular quality attribute contains enough information to identify some of the key parame- 
ters that must be reasoned about when designing an architecture to satisfy that attribute. 
By identifying those quality attribute parameters, the general scenario suggests reasoning 
frameworks (such as queuing theory) that might be applicable. At the most basic level, 
performance scenarios (which reference stimuli in terms of event arrival rates and re- 
sponse measures in terms of latency) suggest performance reasoning frameworks (such 
as scheduling theory or queuing theory); modifiability scenarios suggest modifiability 
reasoning frameworks, and so forth. 

A reasoning framework includes a list of independent parameters, a list of dependent pa- 
rameters, and a means of deducing the value of a dependent variable when given the val- 
ues of independent variables. Once a suitable reasoning framework is chosen, the goal is 
to determine which parameters have already been fixed and which parameters are still 
free. The free parameters become the focus of the architectural design activity. We first 

CMU/SEI-2003-TR-004 35 



choose values for the free parameters and test them using the reasoning framework to see 
if quality attribute requirements are analytically satisfied. Then, we select architectural 
design fragments that are consistent with the chosen values. 

• tactics: a list of tactics for various attributes. While we still have to work out the template 
for describing tactics, we expect each tactic to contain the following information: 

- references to one or more reasoning frameworks 

- the relationship between one or more model parameters and an attribute measure, and 
how the tactic acts to control those parameters 

- examples relating tactics to architectural design fragments 

• decision procedures: a sequence of rules'* that helps you choose a set of applicable tac- 
tics. We provide samplings of rules in this report. We expect these rules to include at least 

- identification/filtering questions: sets of questions that help to determine suitable tac- 
tics 

- optimization questions: known rules of thumb (expert knowledge) that can be used to 
shortcut the identification of tactics 

- "unfixing the fixed" questions: a set of questions to be used for reacting to seemingly 
untenable design situations to identify requirements that can be weakened 

6.2   Steps for Coupling Concrete Scenarios to Design 
Fragments 

We now briefly discuss the steps exemplified in our two scenarios. 

1. Pick a concrete scenario. We are concerned, in general, with satisfying a set of require- 
ments expressed in terms of concrete scenarios. We assume that this set of steps is a por- 
tion of a design method. This method will determine the concrete scenario that is to be 
treated next. In general, the scenario is being treated in the context of a number of design 
decisions that have akeady been made. 

2. Type-check concrete scenarios. Each concrete scenario is an instance of a general sce- 
nario. Using the general-scenario-generation tables, we can verify that the concrete sce- 

nario is well formed by ensuring that it has all the elements of a general scenario. We 
also start identifying responsibilities from elements of the concrete scenario. 

3. Identify candidate reasoning frameworks. One of the assets that we assume is available 
is an association between general scenarios and reasoning frameworks. We itemize pos- 
sible reasoning frameworks. Some of the information from the concrete scenarios might 

*      The rules in this report are more like guidelines and heuristics; they certainly are not formal. However, we 
are hopeful that they provide a starting point for rules that will ultimately be codified for use in an expert sys- 
tem that serves as an architectural design assistant. 

36 CMU/SEI-2003-TR-004 



eliminate possible reasoning frameworks. For example, if we know that the response 
measure is a hard deadline, a queuing modeling framework is eliminated from consid- 
eration. Each reasoning framework has a collection of parameters that must be set before 
the reasoning framework can be applied. 

4. Determine the bound and free parameters. The candidate reasoning framework has a 
number of parameters. Some of them might be given by the concrete scenarios, while 
others might be given by elements of the existing design that are unchangeable. For ex- 
ample, a concrete scenario may specify that "events arrive periodically." This specifica- 
tion may require a specific scheduling model. Another element of the existing design 
might be that a particular OS is to be used, which determines the execution time associ- 
ated with processing one event. That execution time is a parameter of the model that is 
bound. All parameters not bound are considered to be free. The set of bound parameters 
reflects decisions that have already been made; the set of free parameters are decisions 
yet to be made. 

Dependent parameters are a special case. They are constrained by the response measure, 
not bound. Furthermore, all the tactics within a particular reasoning framework, by defi- 
nition, affect the dependent parameters. Thus, dependent parameters are not considered 
in this determination. 

5. Determine the tactics associated with the free parameters. One of the assets we assume 
is an enumeration of tactics and the parameters they control. This enumeration enables 
the tactics associated with the free parameters we use to be listed as candidate tactics for 
Steps 6-8. 

6. Assign the free parameters an initial set of values. The designer makes an estimate for 
each free parameter based on intuition or knowledge. If the designer has no intuition or 
knowledge for a particular parameter, an arbitrary value can be chosen. If this parameter 
is important to the system, an implementation of a prototype might be appropriate to get 
an estimate. 

One question that comes up is "what if the initial set of values is radically incorrect?" 
We have three responses to this question: 

a. This is not a problem associated with our treatment of quality attributes. Any design 
method will require some knowledge of the parameters of importance. Otherwise, 
how can a design accommodate those quality attribute requirements? 

b. The values chosen, regardless of whether they are initial or final values, provide 
budgets or constraints for the remainder of the design. Decisions made during qual- 
ity attribute analysis must be realized through the entire development process— 
architectural design, detailed design, and implementation. 

c. A sensitivity analysis can be done to show how sensitive the response measure is to 
uncertainties in the independent parameters. If there is no sensitivity, inaccuracies 

CMU/SEI-2003-TR-004 37 



will not matter as much; if there is great sensitivity, the steps should lead to a better 

binding, in any case. 

7. Select tactics and apply them to bind values to achieve the required response measure. 
In general, there will be multiple free parameters. We must determine bindings so that 
the response measure is satisfied. This is equivalent to determining satisfactory values 
for X and y in one linear equation in two unknowns. The values chosen for the two un- 
knowns must be compatible with the equation and thus must be determined simultane- 
ously, or at least the second value must be determined in the context of the first. 

We begin our description by considering the situation in which there is only one free pa- 
rameter and one scenario. That is, we are considering a single concrete scenario in which 

there is only one free parameter and only one modeling framework. 

Each candidate tactic for that free parameter controls the parameter's value. For each 
candidate tactic, determine whether it can adjust the value of the free parameter to a new 
value where the resulting model's solution satisfies the response measure of the concrete 
parameter. If it can, the tactic becomes relevant. If it cannot, the tactic is discarded. 

Now consider multiple free parameters. In this situation, we need to consider simultane- 
ously adjusting all free parameters. That is, if tactic 1 controls parameter 1, and tactic 2 
controls parameter 2, we need to determine whether we can move the value for parame- 
ter 1 through tactic 1 and the value for parameter 2 through tactic 2, until the dependent 
parameter satisfies the response measure given by the concrete scenario. If we can, we 
have developed satisfactory bindings. If we have more than one tactic for each parame- 
ter, we need to consider all possible combinations of tactics for the parameters. 

8. Allocate responsibilities to the architectural elements of the design fragments that are 
associated with the selected tactics. Every tactic applied during Step 7 has a design frag- 
ment associated with it and a set of rules that help to 

• Create/delete/refme architectural elements. 

• Add responsibilities to architectural elements. 

• Reallocate responsibilities of already-defined architectural elements. 

• Refine responsibilities and allocate them to architectural elements. 

For example, using the Semantic-importance-based scheduling tactic involves applying 

the following rules: 

• Create an architectural element "scheduler" with its associated responsibilities. 

• Allocate the responsibilities of higher importance to units of concurrency with a 

higher priority. 

38 CMU/SEI-2003-TR-004 



Using the Break the dependency chain tactic involves applying the following rules: 

• Create an architectural element "intermediary." 

• Add responsibilities to the intermediary that translate from the more abstract inter- 
face provided to the secondary modules to the concrete interface provided by the 
primary module. 

• Refine the responsibilities of the secondary modules to use the services of the in- 
termediary. 

CMU/SEI-2003-TR-004 39 



40 CMU/SEI-2003-TR-004 



7 Summary and Remaining Open Issues 

Our goal in this report was to present evidence that it is possible to move from a concrete 
scenario to a design fragment, while maintaining analytic capability. In the process, we 
wanted to identify open issues. 

We demonstrated moving from a concrete scenario to a general scenario and discussed how 
to find tactics to achieve the desired response. This portion of our argument is the most thor- 
oughly thought out. We then hypothesized associating a collection of design fragments with 
each tactic that both realizes the tactic and adheres to the model parameters that we have used 
to do the analysis. This association is clearly possible, although the list of design fragments 
may be rather long; selecting among them is an open issue. 

Another open issue is the composition of design fragments in a methodical way, which is a 

topic of a future report. Composing two design fi-agments most likely changes parameters of 
the quality attribute models. For example, adding additional responsibilities to the intermedi- 
ary to support modifiability may increase the execution time, which is a parameter in the per- 
formance model. Two important open issues in the composition area are (1) understanding 
the influences of design fi-agments on other quality attribute models and (2) modifying a 
composed design in such a way that the response measures continue to be satisfied. 

We assume that the steps presented here are embedded in a design method. What are the 
characteristics of that method? In particular, in which order does it choose among the con- 
crete scenarios? Does it treat one scenario at a time or multiple scenarios at a time? What 
does it do when the quality requirements (the concrete scenarios) over-constrain a solution? 

Cleariy this work is related to previous work on the Attribute-Driven Design method (ADD) 
[Bass 02]. ADD is a method for designing architectures that is based on isolating the "driv- 
ing" quality requirements, identifying design decisions to satisfy them, and using those deci- 
sions as a constraint for further design decisions. Currently ADD provides no guidance on 
how to make design decisions satisfy the driving requirements. The steps discussed in this 
report and their envisioned extensions provide a basis for making such design decisions. 

Finally, our steps depend heavily on the existence and general accuracy of quality attribute 
models. Such models exist for performance and are as accurate as the fidelity of their pa- 
rameters to the values associated with an actual system. They exist much more weakly, if at 

CMU/SEI-2003-TR-004 41 



all, for other quality attributes. Does this mean that our goal of providing analytic guidance to 
a designer is doomed to fail? We think not. First of all, if our design method is capable of 
providing analytic guidance for only performance, the architect is still advanced from the cur- 
rent state. Secondly, large communities are actively working on developing and refining qual- 
ity attribute models, and some of these efforts should be successful in time. Lastly, we have 
seen decision procedures (at least in an initial form) that have the effect of causing an archi- 
tect to focus on and think about a variety of factors that affect the quality attribute achieve- 
ment of architectural design. Those decision procedures, by themselves, provide the architect 

with a checklist that will help to improve any design process. 

42 CMU/SEI-2003-TR-004 



Appendix A   General Scenarios 

Quality requirements of a system shape the software architecture of that system. To be useful, 
quality requirements should be specified precisely. General scenarios provide a vehicle for 
this. A quality attribute scenario consists of the following parts: 

• a stimulus: a condition that needs to be considered when it arrives at a system 

• a response: the activity undertaken after the arrival of the stimulus 

• a source of the stimulus: the entity (e.g., a human or a computer system) that generated 
the stimulus 

• an environment: the conditions under which the stimulus occurs; for example, when the 
system is in an overload condition 

• a stimulated artifact: Some artifact is stimulated. It could be the whole system or pieces 
of it. 

• a response measure: the attribute-specific constraint that must be satisfied by the re- 
sponse 

The values (vocabulary) normally used to specify the six parts of a scenario depend on the 

quality that has to be achieved. We put the vocabulary used for the availability, performance, 
modifiability, usability, security, and testability qualities together into tables that can be used 
to generate general scenarios. The general-scenario-generation tables for modifiability and 
performance are shown in Table 14 and Table 15, respectively. 

CMU/SEI-2003-TR-004 43 



Table 14:  Modifiability General-Scenario-Generation Table 

Part of Scenario Possible Values 

source • end user 

• developer 

• system administrator 

stimulus wants to add/delete/modify/change 

• functionality 

• quality attribute 

• capacity 

environment • runtime 

• compile time 

• build time 

• design time 

artifact • system 

• user interface 

• platform 

• environment 
• system that interoperates with target system 

response • locates places in the architecture to be modified 

• makes a modification without affecting other functionality 

• tests a modification 

• deploys a modification 

response measure • cost/effort in terms of 
- the number of components affected 
- effort 
- money 

• extent to which this affects other functions or quality at- 

tributes 

44 CMU/SEI-2003-TR-004 



Table 15:  Performance General-Scenario-Generation Table 

Part of Scenario Possible Vaiues 

source • one of a number of independent sources 

• possibly from within the system 

stimulus • periodic events arrive 

• sporadic events arrive 

• stochastic events arrive 

environment • normal conditions 

• overload conditions 

artifact • system 

• process 

response • processes stimuli 

• changes level of service 

response measure • latency 

• deadline 

• throughput 

• jitter 

• miss rate 

• data loss 

General scenarios are quality attribute scenarios that are system independent—^that is, they 
can be applied to any system. A general scenario can be generated by choosing several val- 
ues—one from each column of the general-scenario-generation table—and combining them 
in a sentence or two. For example, a potential general scenario for performance is shown in 
Table 16. 

Table 16:  Example General Scenario for Performance 

source one of a number of independent 
sources 

stimulus periodic events arrive 

environment normal conditions 

artifact system 

response processes stimuli 

response measure latency 

CMU/SEI-2003-TR-004 45 



When written as two sentences, the scenario could be 

A periodic event from an independent source arrives at the system under 
normal conditions. The system has to process the stimulus within a certain 

latency. 

Ultimately, a general scenario must be made system specific—called a concrete scenario. 
This conversion involves replacing the more generic vocabulary with concrete system- 
specific vocabulary. For example, the performance scenario shown above can be made sys- 

tem specific as follows: 

An event from sensor X arrives every 10 ms at a system that operates under 

normal conditions. The system has to process the stimulus within 1 ms. 

46 CMU/SEI-2003-TR-004 



Appendix B   Tactics 

We now briefly recapitulate our discussion of tactics from Illuminating the Fundamental 

Contributors to Software Architecture Quality [Bachmann 02]. A tactic is a means of satisfy- 
ing a quality-attribute-response measure by manipulating some aspect of a quality attribute 
model through architectural design decisions.^ 

This definition of tactic has the following consequences: 

• An architectural tactic is concerned with the relationship between design decisions and a 
quality attribute response. This response is usually something that would be specified as a 
requirement (e.g., an average latency requirement). Therefore, architectural tactics (by 
definition) are points of leverage for achieving quality attribute requirements. Conse- 
quently, codifying architectural tactics will involve articulating rules for making design 
decisions that control how and why the response varies. 

• Analytic models for the various quality attributes allow us to identify design decisions 
that offer leverage for achieving quality attribute requirements. The analytic models also 
offer a reasoning framework for explaining how changes in the design decisions affect 
the response. Architectural tactics "live" within this reasoning framework. 

• While architectural tactics are motivated from an analytic perspective, they have specific 
realizations in an architectural design. For example, while a queuing model might only 
require the average execution time as input to the model, there are many sources of exe- 
cution time that need to be derived from an architectural design. Or, while a queuing 
model might be concerned only with how average latency varies as a function of the 
number of servers, in the architectural model, servers might be Web servers in one case 
and processors of a multiprocessor in another. There is a many-to-one relationship be- 
tween the analytic model and the corresponding architectural realizations. Consequently, 
codifying architectural tactics involves articulating some of the possible mappings from 
an architectural model to an analytic, quality attribute model. 

Performance Tactics 

In general, latency is affected by the level and nature of the demand for resources. This in- 
cludes event-arrival rates, the execution time resulting from event arrivals, and the variability 
level of each. Latency is also affected by the rules for choosing between conflicting demands 
for a resource. The inability to use a resource, either because it is being used to process other 

'      Note that this definition is different than in our previous writings [Bachmann 02, Bass 03]. 

CMU/SEI-2003-TR-004 47 



events or is physically (e.g., due to failure) or logically (e.g., due to inadequate resource- 
allocation policies) unavailable, also affects latency. Therefore, we divide performance tactics 

into three high-level groups: 

1. tactics for managing resource demand: These tactics control execution times and transfer 

times by controlling the demand for resources. 

2. tactics for arbitrating between conflicting demands: These tactics control preemption 
and waiting times when competing requests take semantic importance or urgency (dead- 
lines) into consideration and there is contention for shared resources. 

3. tactics for managing multiple resources: These tactics enable multiple resources to be 
used efficiently to ensure that available resources are used when they are needed, 

thereby controlling the waiting time for them. 

Tactics for Managing Demand 

Event streams are the source of resource demand. Two stream traits characterize demand: the 
time between events in an event stream (i.e., the arrival rate) and how much of a resource is 
consumed by each request (a.k.a., execution or service time). The variances in arrival rates 

and execution times also affect latency. 

The tactics for managing demand include 

• Manage the event rate. Tactics in this category control how often events are generated. 

• Control the frequency of sampling external events. If there is no direct control over the 
rate of externally generated events, queued events can be sampled at a lower frequency. 

• Reduce the computational overhead. Computational work usually requires OS and mid- 
dleware services to manage process interaction, communications, and the like. 

• Bound execution times. This means placing a limit on how much execution time is used 

to respond to an event. 

• Bound queue sizes. This tactic directly controls the maximum number of queued arrivals 
and effectively bounds arrival rates, but the consequence can be event loss. 

• Increase the computational efficiency of algorithms. Improving the algorithms used in 
critical areas reduces the demand for processor time and therefore has the effect of im- 

proving latency. 

• Control the demand for resources. When an algorithm requires the use of other re- 
sources, such as disks, its efficiency also depends on how those resources are used. 

Tactics for Arbitrating Demand 
When multiple streams make demands on the same (logical or physical) resource, tactics are 
needed for managing the shared resource. One of the main considerations for arbitration is 
the criterion used for selecting which competing streams should use the resource. Time- 

48 CMU/SEI-2003-TR-004 



based, semantics-based, and fairness-based criteria are all considered. The fact that some- 
times the resource is non-preemptable must also be considered. If such decisions are to be 

made at runtime, support for multiprocessing is helpful. 

The tactics for arbitrating demand include 

• Increase the logical concurrency. Mechanisms for achieving logical concurrency (such as 
processes and threads) allow the separation of concerns associated with processing event 
streams from the interleaving of such processing on a physical resource. 

• Determine the appropriate scheduling policy. Many tactics are focused on the policies 
used to assign processor time to processes. The appropriate scheduling policy strongly 
depends on the system's goals. Scheduling tactics include 

- offline scheduling. A schedule can be constructed offline using assumptions about the 

time to be taken by each stream. 

- time-based scheduling. Informally, a "good" prioritization strategy takes into account 
the timing requirements associated with the stream (or even different arrivals within 
the same stream). This is reflected in three prioritization strategies: 

a. rate monotonic (RM) strategy—a static priority assignment for periodic streams 
that accords higher priorities to streams with shorter periods than to those with 

longer ones 

b. deadline monotonic (DM) strategy—a static priority assignment usually for pe- 
riodic streams that accords higher priorities to streams with tighter deadlines 

than to those with more distant ones 

c. eariiest deadline first (EDF) strategy—a dynamic priority assignment, usually 
for periodic streams, that accords higher priorities to process stimuli with tighter 
deadlines than to those with more distant ones 

- semantic-importance-based scheduling. The importance of different functions can 
vary by system mode. Therefore, the system must focus its resources on the appro- 
priate work at the appropriate times. 

- aperiodic servers. Another tactic for increasing the overall utility of a system focuses 
on computational work that is normally relegated to background processing. 

- fairness-based scheduling. Several scheduling strategies that do not account for dead- 
lines are first-in, first-out (FIFO) scheduling and processor sharing. 

• Use synchronization protocols. When more than one thread of concurrency needs to ac- 
cess a shared resource (such as a queue or a data repository in a mutually exclusive man- 
ner) mechanisms such as locks and semaphores are commonly used. Various protocols 
include FIFO, priority inheritance, and priority ceiling protocols. 

CMU/SEI-2003-TR-004 49 



Tactics for Managing IVIultiple Resources 

Exploiting the power of multiple resources to achieve performance goals introduces addi- 
tional challenges to those managing single resources. However, physical concurrency brings 
with it the need to make resource-allocation decisions, such as which processor(s) should be 
used to process which event streams. When processing is physically distributed, the results 
computed on one processor are often needed by other processors, introducing the need for 
communication and synchronization. Making local copies can help reduce the overhead asso- 

ciated with moving data around. 

The tactics for managing multiple resources include 

• Increase the physical concurrency. A tactic for reducing latency is to increase the number 
of available resources. Additional processors, additional memory, and faster networks all 

have the potential for reducing latency by introducing the possibility of parallelism. 

• Balance resource allocation. Appropriately allocating the load between multiple re- 

sources is important if physical concurrency is to be exploited maximally. 

• Maintain multiple copies of either data or computation. Caching replicates data on dif- 
ferent speed repositories or on separate repositories to reduce contention. The clients in a 
client-server pattern are replicated computations, also to reduce contention. 

Modifiability Tactics 

The tactics for affecting modifiability are organized into three sets: (1) those that localize ex- 
pected modifications, (2) those that restrict the visibility of responsibilities, and (3) those that 

prevent the ripple effect. Each set is described below. 

Tactics for Localizing Expected IViodifications 

The responsibilities that are assigned to modules greatly influence the cost of making a 
change. Depending on how the assignment was done, a specific change can affect either a 
single module or multiple ones. The goal of this set of tactics is to directly affect as few mod- 
ules as possible with a single change by presenting guidelines for how responsibilities are 

assigned. 

The tactics for localizing expected modifications include 

• Maintain semantic coherence. Semantic coherence refers to the relationships between a 
module's responsibilities. Semantically coherent responsibilities are related by what they 
do, carrying out the same or at least similar functions. The goal here—ensuring that a 
module's responsibilities all work together without excessive reliance on other mod- 

50 CMU/SEI-2003-TR-004 



ules—is achieved by choosing responsibilities that have some sort of semantic coherence. 
Doing so binds responsibilities that are likely to be affected by a change. 

• Isolate the expected change. Separating the responsibilities that are likely to change from 
those that are unlikely to change separates an architecture into fixed and variant parts. 
This enables more design effort to be devoted to making a selected subset of modules as 

easy to change as possible. 

• Raise the abstraction level. Raising the abstraction level, and thus making a module more 
general, allows that module to calculate a broader range of functions based on input. 

• Limit options. Limiting the set of possible modifications will reduce the variations that 
need to be considered in the design and simplify constructing a system suitable for modi- 
fication. This tactic is in addition to those published in Illuminating the Fundamental 
Contributors to Software Architecture Quality [Bachmann 02]. 

• Abstract common services in the primary modules. Localize services that are used com- 
monly by a variety of consumers. This tactic is in addition to those published in Illumi- 
nating the Fundamental Contributors to Software Architecture Quality [Bachmann 02]. 

Tactics for Restricting the Visibility of Responsibilities 

If a module is affected by a change, it is important to know whether that change will become 
visible outside the module. If it will, changes to other modules will most likely be required. 

The tactics for restricting visibility include 

• Hide information. This tactic is based on dividing a module's responsibilities into two 
categories: public and private. Public responsibilities are those that are visible from both 
inside and outside the module. Private responsibilities are those that are visible only from 
inside the modules. The goal of this tactic is to limit the public responsibilities and make 
them visible through an interface. 

• Maintain existing interfaces. This tactic is based on keeping interfaces constant across a 
particular change. That is, the module developer will maintain the old identity, syntax, 
and semantics of an existing interface even if the modification changes them. 

• Separate the interface from the implementation. This tactic allows the realization of the 
implementation later in the development process than the interface specification. 

Tactics for Preventing the Ripple Effect 

A ripple effect from a modification is the necessity for making changes to modules that are 
not directly affected by that modification. This necessity occurs because of a dependency be- 
tween the module that is directly affected and another module that is dependent on it. 

CMU/SEI-2003-TR-004 51 



The tactics for preventing the ripple effect include 

• Break the dependency chain. This tactic refers to the use of an intermediary to keep one 
module from being dependent on another and therefore to break the dependency chain. 
Typically, the name of the intermediary depends on the type of dependency it breaks. The 
following examples of intermediaries can also be seen as tactics: 

- Use a name server. A name server breaks a dependency on the runtime location of a 

module. 

- Use a virtual machine. Virtual machines break dependencies on computations spe- 
cific to a particular situation. Examples of virtual machines include the hardware ab- 

straction layer and the Factory pattern [Gamma 95]. 

- Use a publish-subscribe pattern. A publish-subscribe pattern breaks the dependency 

of a data consumer on the identity of the data producer. 

- Use a repository. A repository can be used to break two types of dependencies: 

1. the dependence of a data consumer on the identity of the publisher (as in the 

Publish-Subscribe pattern) 

2. the dependency of the data consumer on the data's syntax. Modem repositories 
allow the consumer to specify the type in which data is presented to them, re- 
gardless of the data's type in the repository. 

- Use a dynamic-scheduling algorithm. Some scheduling algorithms, such as semantic- 
importance-based scheduling, guarantee that deadlines will be achieved within cer- 
tain restrictions. 

• Make the data self-identifying. Tagging the data with identification information, such as 
sequence number (as in network protocols), syntax descriptions (as in some languages 
with dynamic runtime typing), or identity (as in free-form parameter invocation), will 

break dependencies on either sequencing or syntax. 

• Limit communication paths. Restricting the modules with which a given module will 
communicate has the effect of ensuring that no dependency exists between the two mod- 
ules. This tactic is in addition to those published in Illuminating the Fundamental Con- 
tributors to Software Architecture Quality [Bachmann 02]. 

52 CMU/SEI-2003-TR-004 



References/Bibliography 

[Bachmann 02] Bachmann, R; Bass, L.; & Klein, M. Illuminating the Fundamental 
Contributors to Software Architecture Quality (CMU/SEI-2002-TR- 
025, ADA407778). Pittsburgh, PA: Software Engineering Institute, 
Carnegie Mellon University, 2002. <http://www.sei.cmu.edu 
/publications/documents/02.reports/02tr025.html>. 

[Bachmann 00] Bachmann, R; Bass, L.; & Klein, M. Quality Attribute Design 

Primitives (CMU/SEI-2000-TN-017, ADA392284). Pittsburgh, PA: 
Software Engineering Institute, Carnegie Mellon University, 2000. 
<http://www.sei.cmu.edu/publications/documents/00.reports 

/00tn017.html>. 

[Bass 03] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in 
Practice, 2°^ ed. Reading, MA: Addison-Wesley, 2003. 

[Bass 02] Bass, L.; Bachmann, R; & Klein, M. "Quality Attribute Design 
Primitives and the Attribute-Driven Design Method," 169-186. Pro- 
ceedings of the 4th International Conference on Software Product 
Family Engineering. Bilbao, Spain, October 3-5, 2001. Berlin, 
Germany: Spring-Verlag, 2002. 

[Bass 01] Bass, L.; Klein, M.; & Moreno, G Applicability of General Scenar- 
ios to the Architecture Tradeoff Analysis Method (CMU/SEI-2001- 
TR-014, ADA396098). Pittsburgh, PA: Software Engineering Insti- 
tute, Carnegie Mellon University, 2001. <http://www.sei.cmu.edu 
/publications/documents/01.reports/01tr014.html>. 

[Gamma 95] Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Patterns: 
Elements of Reusable Object-Oriented Software. Reading, MA: Ad- 

dison-Wesley, 1995. 

CMU/SEI-2003-TR-004 53 



54 CMU/SEI-2003-TR-004 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection ol infomiation is estimated to average 1 hour per response, including the time for reviewing instructions, searching 
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of infonnation. Send comments regarding 
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Manaaement and Budget, Papenwork Reduction Project (0704-0188), Washington, DC 20503. 

1.    AGENCY USE ONLY 

(Leave Blank) 

2,     REPORT DATE 

March 2003 

3.     REPORT TYPE AND DATES COVERED 

Final 

4.     mLEANDSUBTniE 

Deriving Architectural Tactics: A Step Toward Mettiodica! 
Architectural Design 

5.     FUNDING NUMBERS 

F19628-00-C-0003 

6.     AUTHOR(S) 

Felix Bachmann, Len Bass, Mark Klein 

7.     PERFORMING ORGANIZATION NAHE(S) AND ADDRESS(ES) 

Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8.     PERFORMING ORGANIZATION 

REPORT NUMBER 

CMU/SEI-2003-TR-004 

9.     SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

HQ ESC/XPK 
5 Eglin Street 
HanscomAFB,MA01731-2116 

10.  SPONSORING/MONrrORING AGENCY 

REPORT NUMBER 

ESC-TR-2003-004 

11.   SUPPLEMENTARY NOTES 

12A DISTRIBUnON/AVAILABILfTY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

128 DISTRIBUTION CODE 

13.   ABSTRACT (MAXIMUM 200 WORDS) 

This is one of several reports that provide the current status on the work being done by the Software Engi- 
neering Institute (SEI^M) to understand the relationship between quality requirements and architectural design. 
The ultimate objective of this work is to provide analysis-based guidance to designers so that the quality at- 
tributes of generated designs are more predictable and better understood. 

Currently, four distinct problems must be solved to achieve that objective: (1) the precise specification of qual- 
ity attribute requirements, (2) the enumeration of architectural decisions that can be used to achieve desired 
quality attribute requirements, (3) a means of coupling one quality attribute requirement to the relevant archi- 
tectural decisions, and (4) a means of composing the relevant architectural decisions into a design. Embody- 
ing the solutions to these four problems into a design method that is sensitive to business priorities is an addi- 
tional problem. This report deals with the third problem—coupling one quality attribute requirement to 
architectural decisions that achieve it. 

This report provides initial evidence that there is, in fact, a systematic relationship between general scenarios, 
concrete scenarios, architectural tactics, and design fragments. It examines, in detail, two concrete scenar- 
ios—one for performance and one for modifiability—and describes how to move from each scenario, through 
tactics, to design fragments that satisfy the scenario. 

14. SUBJECTTERMS 

software architecture, software architecture design, software 
architectural tactics, quality attribute scenarios 

15.   NUMBER OF PAGES 

66 

16. PRICE CODE 

17.   SECURITY CLASSIFICATION 

OF REPORT 

Unclassified 

18.   SECURmr CLASSIFICATION OF 

THIS PAGE 

Unclassified 

19.   SECURrrY CLASSIFICATION OF 

ABSTRACT 

Unclassified 

20.   LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Fomi 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 


