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Executive Summary 

Given today's concern about the survivability of large complex networks such as the Internet, 

there is a need to understand how these systems respond to planned attacks or random 

accidents. This understanding requires insights into how information or artifacts flow through 
networks and how networks respond to major disruptions. This in turn requires knowledge of 
how nodes in the network are linked together, how they communicate, and how the failure of 

selected nodes affects the performance of the network as a whole. Significant work in this 
area is ongoing (see review in Appendix A) but a full understanding has yet to be achieved. 
Because the networks of interest can be topologically complex, are highly non-linear in their 
responses, and are inherently unbounded (i.e., no node in the network can have global 
knowledge), they are difficult to analyze. These issues are addressed in this report, which 
provides practical techniques for modeling networked systems and illustrates the use of these 
techniques with examples. 

The basis for these explorations is the Easel modeling and simulation language. This 
language is a general-purpose programming language that has enhancements for performing 
simulation of networked systems. Because Easel is not yet widely known, we first review 
some of the issues that motivated its development (e.g., emergence in unbounded systems) 
and describe some of the key features of the language. 

Since network topology is a central theme to the report, we investigate how large networks 
can be synthesized. In this regard GENeSIS, a program written in Easel, is described and 
used to illustrate the construction of network topologies. Networks with different topological 
properties can be built to examine, for example, their relative survivability. The GENeSIS 
program provides support to output topologies that can be used in survivability and other 

network applications. 

As an example application of synthetically generated networks, we investigate the 
propagation of computer viruses. Two virus propagation models are defined and use networks 
produced by GENeSIS as input. The models are simple but the exercise results in complexity 
because of the non-deterministic manner in which the virus propagates through the network. 
A variety of parametric variations are examined. For example, we look at the sensitivity of 
the number of compromised nodes relative to the length of time before a virus patch is 

released. 
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Abstract 

The survivability of large, complex networks such as the Internet is an increasing concern, 

but such networks are difficult to analyze because they are topologically complex, highly 
non-linear in their responses, and inherently unbounded (i.e., no node in the network can 
have global knowledge). To support survivability research, this report will describe how to 
develop statistically valid networks for analysis and, as an example of their use, applying 

them to the simulation of virus propagation. It will illustrate the construction of network 
topologies with GENeSIS, a program written in the programming language Easel. The report 
will also summarize ongoing significant work in this area of research and give readers insight 
into how information or artifacts flow through networks and how networks respond to major 
disruptions. 
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1 Introduction 

This report describes the results of explorations into the use of simulation in examining Internet 

survivability. As originally conceived during the Cold War [Baran 01], the ARPANET was 
driven by survivability requirements, but these early notions were not sustained. In particular, 
when the Internet was formally defined in 1995,' issues of survivability became a distant 
memory. However, given the Internet's exponential growth, its importance to commerce and the 
military, and the increased concern about terrorism after September 11, 2001, Internet 
survivability is now a critical issue. Survivability is a central theme of the analyses reported 
here. 

Networks such as the Internet have global reach with no central control. This lack of central 
control may make life harder for security personnel (or a paranoid government), but it does 
help survivability. In particular, the Internet has no single point of vulnerability that, if attacked, 
can bring the system down. However, the Internet is still vulnerable to attacks due to 
weaknesses in its topological structure [Albert 02b], its response to malicious code [Staniford 
02], and its lack of robust implementation (distributed denial of service or "DDoS" attacks, 
buffer overflow, etc.). 

The Internet's spatial and temporal characteristics can best be described stochastically, as no 
"grand design" is imposed. These stochastic properties arise out of the opportunistic growth of 
subnets connecting to the Internet and the myriad local actions that take place every second (e- 

mails, Web downloads, etc.). From this state of dynamic flux, stable stochastic properties arise 
in terms of both network linking patterns and message transmission patterns. These properties 
are called emergent, as they are not designed into the system but result from aggregation of 
local interactions, and often have a strong bearing on the network's robustness in the face of 
attacks and accidents. Network linking patterns are the focus of the first topic of this report, 
while virus propagation is the focus of the second. 

The ability of the Internet to survive attack is strongly dependent on the manner in which its 

nodes (routers and other hosts) are connected together [Albert 02b]. As will be discussed later, 
it has been empirically demonstrated [Faloutsos 99] that the number of links associated with the 
nodes follows a power law. This law states that the probability of a node having a specified 
number of links (called link degree) is proportional to that number of links raised to a constant 
a (a~2.1). Because this distribution has no characteristic peak in link degree, it is sometimes 

1  See http://www.isoc.org/internet/history/brief.shtml. 
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called "scale-free." The distribution is also sometimes called "heavy-tailed" because a small 
percentage of nodes have a disproportionately large number of links. 

While the Internet topology is relatively robust against random failures (as evidenced by 

experience), this is not true for attacks, since routers with high link degree make prime targets. 
Taking down these routers would result in severe bottlenecking or even worse, isolation of parts 

of the Internet. This raises a question: Can we replace highly-linked routers with a number of 
less-linked routers, while providing the same quality of service and incurring an acceptable 

economic penalty? In addition to being an important topic in its own right, the ability to 

generate synthetic Internet topologies is an important foundation for many other investigations 
into Internet survivability. In particular, an illustrative application discussed in his report (virus 
propagation) depends on accurate modeling of the Internet's topological properties. 

In virus propagation, emergent properties again arise. When a virus is released, the manner in 

which it propagates over the Internet is difficult to predict. It may appear to be dormant for 
some period of time only to flourish later, or it may make a vigorous entry and then die down 

quickly. Theoretical analysis of viral propagation can be very insightful [Frood 02, Pastor- 
Satorras 02b], but simplifying assumptions often mean that real-world complexities have to be 
ignored. Thus simulation is a key contributor in helping understand or predict the Internet's 

response to virus attack. 
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2 The Easel Modeling and 
Simulation System2 

Easel is a conceptually new language and is central to the simulations that are to be described. 
This section provides a brief overview of the characteristics of the language. We will review 

some of the ideas that motivated the development of Easel; for example, its ability to analyze 
and understand complex systems that are inherently survivable. To this end, we will look at the 
notions of emergent algorithms and unboundedness and how they have influenced Easel's 
design. Further details on Easel's features and implementation can be found at the Easel Web 
site. However, a detailed knowledge of Easel is not required in order to understand subsequent 
sections of this report. 

2.1   Unbounded Systems and Emergent Algorithms 
Easel is a language designed to model systems where unboundedness and emergence are 
central themes. An unbounded system is any system in which the participants (human or 
computerized) have only incomplete or imprecise information about the system as a whole. 
They include human participants as well as automated components. Their boundaries are not 
precisely known. Interconnections among participants in unbounded systems change constantly. 
Furthermore, the trustworthiness and often the identity of participants is unknown. Centralized 
administrative control cannot be fully effective in such systems. These are the characteristics of 
critical national infrastructures, the Internet, and electronic commerce. They characterize most 
social, economic, and biological systems, and most activities one participates in every day. 
Such systems contrast dramatically with the assumptions of closed, centrally-controlled 
computer systems and with the assumptions underlying many modern computer security 
technologies. 

Emergent algorithms differ from conventional hierarchical and distributed algorithms: they 
operate in the absence of complete and precise information; do not have central control, 

hierarchical structure, or other single-point vulnerabilities; and achieve cooperation without 
coordination. Mission requirements are satisfied in the form of global system properties that 
emerge from the combined actions and interactions of all system components. For reasons of 
mission survivability, our research considers only emergent algorithms that do not have single 
(nor any fixed number of) points of failure. For reasons of practicality and affordability, we 

" The author wrote this chapter with David Fisher and David Mundie. 
1 See http://www.cert.org/easel/. 
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consider only those emergent algorithms in which the cost of each node (whether measured in 
dollars, CPU cycles, storage requirements, or communications bandwidth), is less than 
proportional to the number of nodes in the system. The effectiveness of this approach can be 

further enhanced by dynamic trust validation among the participants. 

2.2   The Need for Emergent Simulation 
Although the benefits of ad hoc development of emergent algorithms has been demonstrated, a 

rigorous process for deriving emergent algorithms from mission requirements is a prerequisite 
to their widespread use in automated systems. Intuitions about the global effects of local actions 
and interactions among large numbers of nodes are seldom correct. The problem of designing 
emergent algorithms is especially difficult, because it begins with the desired global properties 

and attempts to determine which simple combinations of local actions and interactions would 
produce those effects over time in a large-scale network. An effective design methodology will 
depend on greater understanding of the influences of local action and interaction on emergent 

global properties and on the sensitivities of emergent properties to local variations. 

The obvious and probably only means to answer these questions is by simulation of emergent 
algorithms and the unbounded systems in which they operate. This recognition has opened a 
new area of research for simulation of unbounded systems. Current simulation systems do not 
produce accurate predictions of the behavior of unbounded systems. By definition, unbounded 

systems are incompletely and imprecisely defined. Thus, a simulation of an unbounded system 
must be able to produce accurate results based only on incomplete information. Current models, 
however, require complete information and thus are always built with assumptions or 
inaccurate information. The ability to operate on abstract specifications and simulate at various 
levels of abstraction is a long-standing need of many applications, but is not provided as a 
feature of existing simulation systems. Equally important, all object-based models (both 
physical and computerized) are inherently inaccurate because they are based on complete 
representations as objects. This might be acceptable when dealing with small numbers of nodes 
or when great care is taken to differentiate between which modeling results are likely to be 
valid. Such remedies seldom if ever succeed in differentiating inaccurate results when modeling 
complex or large-scale systems. Furthermore, as the number of subsystems in a model 
increases, the inaccuracies of each subsystem pervade the whole after a few iterations and 

guarantee that all simulation results will be inaccurate. This may account for the pervasive 
failure of large scale simulations to produce accurate results. These problems are aggravated in 
unbounded systems where the numbers of components are very large and a primary purpose of 
simulation is to accurately predict the global effects from local activities. 

Because accuracy and completeness are not simultaneously achievable when describing the 
physical world, accurate simulation is feasible only if the simulator can guarantee accurate 
results from accurate but incomplete specifications. Other difficulties in simulating unbounded 
systems include the following: 
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the need for thousands to tens of thousands of nodes per simulation 

the lack of linguistic mechanisms in programming languages for making incomplete and 
imprecise specification 

the inability of object-oriented computations to describe and abstractly reason about the 
real world 

the need to combine information about a system from multiple knowledge domains 

management of multiple simultaneous beliefs of the various stakeholders in an 
infrastructure 

integration among separately developed simulations 

quadratic increases in computational cost that accompany linear increments in the 
granularity or number of nodes in a simulation (the so-called n-squared problem) 

2.3   The Easel Solution 
These considerations have led to a new approach to simulation: an emergent algorithm 
simulation environment and language called "Easel." Easel employs a paradigm of property- 
based types (i.e., abstract classes of examples described by their shared properties) which have 
the ultimate goal of addressing all of the above simulation problems. Because Easel is property- 
based it can be used to give accurate, though incomplete, descriptions of anything in the 
physical world. In combination with an automated logic system that has yet to be developed, it 
will be used to produce accurate conclusions about examples from the physical world. This 
contrasts with physical models and automated simulations that depend on representation of 
objects, where descriptions must be complete (and thus inaccurate) and in which conclusions 
are accurate only for the model but never for their extensional interpretation in the real world. 

Easel is currently a discrete event simulation language with limited support for continuous 
variables. It supports multiple levels of abstraction, multiple simultaneous belief systems, 
distributed specification, and dynamic graphic depictions. By using quantifiers, adjectives, 
improper nouns, pronouns, and other forms of anonymous reference, Easel overcomes the 
linguistic limitations that impair traditional programming systems' ability to handle incomplete 
and imprecise descriptions. In combination with property-based types, these mechanisms 
provide a semantic framework of examples of any type, whether real or imagined, and whether 
from the computational, mathematical, or physical worlds. 

Thus we believe that concepts of local action and visibility, unboundedness, and emergent 
properties are important factors in simulating systems where large numbers of loosely coupled 
actors are involved; to this end, we have developed a new general-purpose simulation language 
called Easel, which is currently being implemented. The rest of this section summarizes the 
concepts behind Easel, describes some of its unique properties, and provides a simple example 
of Easel's use. 
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2.4   A Type Is a Type Is a Type... 
Being a property-based type (PBT) language, Easel considers all entities to be types. A type is a 

description of some class of objects, while a description is a set of properties. An example of a 

type is any object that satisfies the type's properties. Easel has a built-in family of types that 
can be extended to specify user-defined types. 

Types are built up by inheriting properties of parent types. The following are some 

characteristics of Easel types: 

• All types inherit from the root type "all." This includes all consistent (true) types and 
inconsistent (false) types. 

• The type that contains all types is the "false" type. It is so named since types with 
inconsistent properties (e.g., 3 > 5) are also types. However, the false type has no examples. 

• As one ascends the type hierarchy, types accumulate more and more examples from their 
children. 

• As one descends the type hierarchy, types accumulate more and more properties inherited 
from their parents. 

Here are some representative Easel types: 

• Mutable - a type whose properties are changeable 

• Immutable - a type whose properties are unchangeable 

• Actor — a physical "thing" that has behavior and is threaded 

• Abstract - a type that can be described completely within computer memory 

• Type - the set of named types is also a type (the type type) 

Even the number 5 is a type, albeit a degenerate, singleton type; it inherits properties from the 

positive integer type and odd integer type, among others. 

2.5   Type Manipulation Within Easel 
The Easel type hierarchy allows you to build up and manipulate types. This is unlike other 
conventional programming (or simulation) languages where you can only operate on examples 
of the type (e.g., through iteration). In the object-oriented paradigm, classes are equivalent to 
types. However, Easel's types can be manipulated in powerful symbolic ways that are not 
possible with classes. The program shown in the example below illustrates some of the ways 
that types can be manipulated. (Note that this is a program, not a simulation.) 
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dog_gonned( ): action is 

food: type is enum(meat, vegetable, anything); 

dog: type; 

omnivorous: type is 

diet :: food := anything; 

Corgi: type is 

property dog & omnivorous; 

Jenkins: Corgi; 

confirm Jenkins isa omnivorous dog; 

dog_gonned(); 

As is usual in Easel, we first define some simple types, and then build up more complex types 
that inherit the properties of these simple types. Thus we begin by defining the type food, which 
has vegetable, meat, and anything as values, and the type dog, which has no specified 
properties. Then we build up the adjectival type omnivorous, which is the type of all creatures 
with a diet of anything, and the type Corgi, which is an omnivorous dog. Finally we declare 
Jenkins to be an attribute whose type is Corgi, and confirm that he is an omnivorous dog. Easel 
uses : to define constants and :: to define attributes whose value may vary over time. 

Parameterized types allow subtypes to be defined in the same way that adjectives qualify nouns 
in English. 

example( ): action is 

flower: type; 

red(any): type; 

large(any): type; 

rose: type is large red flower; 

American_Beauty: rose,- 

confirm American_Beauty isa red flower; 

example(); 

Here "large red flower" is an adjectival phrase that returns the subtype of flowers that are large 
and red. This use of adjectives provides Easel with a powerful mechanism for defining 
subtypes. 

In a similar way, the use of quantifiers such as any, all, some, and numeric quantifiers provides 
Easel with a means of selecting subtypes that have to be manipulated or tested. 
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example( ): action is 

flower: type; 

red(any): type; 

large(any): type; 

bouquet: list flower := 3 new large flower; 

biggy: type is all large flower; 

example(); 

Here "3 new large flower" is a quantified expression that produces a list of three large flowers. 

2.6   Actors and Neighbors 
Easel's architecture is designed so that it can simulate very large numbers of independent 
actors. Actors are simulated entities of the physical world (e.g., a system administrator, user, 

intruder, automobile, bird, or the moon), the electronic world (e.g., a computer, router, or 

peripheral device), or the software world (e.g., a software agent or task). Giving each actor its 
own thread of control allows for a high degree of parallelism in Easel's execution. Actors can 
interact directly only with their near neighbors, and only in ways prescribed by their neighbor 
relationships. Neighbor relationships are protocols of interaction and are defined as types that 
can be associated with any actor. Thus, in a simulation of birds in flight, a bird's near neighbors 
might be any bird or other object that the bird can see from its current position and heading. In 
an organizational simulation, an actor's near neighbors might be only those actors who are 
connected by formal organizational ties, and neighbor operations might include sending and 

receiving messages. 

In summary, actors have threads of control, have behavior, are "bom" and can "die", and have 
significant performance advantages over non-threaded approaches. 

2.7   Interacting with a Simulation 
A simulation needs mechanisms through which it can be controlled. Thus we need to be able to 
start the simulation, set up simulation parameters, change parameters while the simulation is 
proceeding, and observe output from the simulation. None of these functions are part of the 
simulation: they either send information to the simulation or retrieve it from the simulation. 

Easel recognizes two distinct roles: facilitators, which allow for global control, introduction of 
new examples, and control of parameter values; and observers, which extract values of the 
simulation parameters to do statistical analysis or drive graphical depictions. 
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Easel's visibility rules allow selected actors to play the role of facilitators or observers without 

any extra mechanisms. 

2.8   An Example of a Simple Easel Simulation 
As a gentle introduction to Easel, let's consider the following example. Ants are an interesting 
example of emergent algorithms, because an ant colony as a whole can evince behavior that is 
complex, but without global visibility and central control. As a contrived, entomologically 
unrealistic example, consider the question of how ants could form a circle without any 
communication among them. Here is an Easel simulation that shows how it might be done: 

# We are simulating an ant hill 

ant_hill: simulation type is #1 

v :: view := ? ; 

ant_list :: list := new list any; 

# Life cycle of an ant 

ant(id: int) : actor type is #2 

# Ants have a position and a heading 

heading :: number := random(uniform, 0.0, 2.0*pi); # 3 

x :: number := 250.0; 

y :: number := 250.0; 

# Create a depiction 

depict(sim.v, # 4 

var offset_by(paint(circle(0.0, 0.0, 5.0), 

(firebrick)), var x, var y)); 

# Pick a heading, walk out, walk back, repeat 

for every true do #5 

heading := random(uniform, 0.0, 2.0*pi); 

each (1 .. 20) do 

= x + 10.0 * cos heading; 

= y + 10.0 * sin heading; 

wait 1.0; 

heading := heading + pi; #6 

for h 
x 

y 

for h 
x 

y 

each   (1   ..   20)   do 
=  x  +   10.0   *   cos   heading; 
=  y  +   10.0   *   sin  heading; 
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wait 1.0; 

#  Create the simulation and start its actors 

ant_circle(n: int): action is #7 

# Create an ant hill and its view 

ant_sim :: ant_hill := new ant_hill; # 8 

ant_sim.v := new view(ant_sim, 

"Ant Circle", (papayawhip), nil); 

# Create the ants 

for i: each (l..n) do #9 

push(ant_sim.ant_list, new (ant_sim, ant i) ) ; 

# Wait for simulation to finish 

wait ant_sim; # 10 

ant_circle 50; 

We first declare a simulation type (ant_hül) at the line labeled 1. This simulation type has two 
attributes in addition to the predefined attributes of simulations: the view (v), which is used to 
portray the ants, and a list of ants (ant_list) which can be used to reference ants (for example, 
by iterating over the list). 

At the line labeled 2, we declare the ant actor type. The actor is a predefined type in Easel that 
has the property of being threaded. This means that an actor is an independent process, has its 
own memory allocated (while it exists), and requires some CPU time to update its internal state 
and interact with other actors. 

The properties of the ant type are defined next in line 3. These simple ants have only three 
properties: their orientation, an x coordinate, and a y coordinate. Note that the direction for any 
specific ant is defined randomly. Thus, each ant starts off at the center of the coordinate system 
with random initial orientation. 

At line 4 we specify that each ant is to be depicted using a firebrick circle with a radius of 5 

units, offset by whatever the ant's current coordinates are. It is the call on var that ensures that 
the depiction of the ant is continuously updated in the display as the ant's x and y coordinates 
change. 

Starting at line 5, we provide the basic simulation loop through which the behavior of each ant 
is defined. This loop manages the thread of control for the ant in question and defines the ant's 
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behavior. In this simple case, the ant moves out 20 steps, then turns around and moves back to 

the center. 

The procedure starting at line 7 (ant_circle ) is the facilitator that manages the simulation. It 

first creates a simulation (ant_hül) and its view at line 8, then allocates the ants at line 9. Once a 

new ant has been created, it initiates a thread of execution that allows the ant to behave as 
specified by the ant's type (at lines 3-6). 

Some miscellaneous observations of the program are worth making at this point. Note the type 

hierarchies: ant_hill is a subtype of the simulation type, while an ant is a subtype of the actor 
type. The code structure is defined through indenting and "outdenting." Comments extending to 
the end of the line are prefaced by the pound sign (#). 

The ant example is interesting for a number of reasons. First, it demonstrates the concept of 

emergent properties. In this model, the emergent property is the circle that the ants generate as 
they move away from the nest. No individual ant has knowledge of the fact that it is part of this 
circle, yet, viewed globally, this is the shape that they collectively generate. Second, the 
example demonstrates the concept of neighbors. If neighborliness can be equated to nearness, 
then each ant has fewer neighbors as it moves farther from the nest until it finally has none. 
Third, other simulation languages that can address problems such as the ant circle often do so 
using a grid pattern that constrains each ant to be located in one of the grid's squares. This 
granularity issue has ramifications, for example, in accuracy of representation. While Easel 
could model the problem using a grid, no such grid need be imposed as each ant simply has 
position as one of its properties. 
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3 Synthetic Networks 

In order to understand the general survivability characteristics of the Internet, we first focus on 

the construction of synthetic Internets that exhibit statistical properties comparable to the actual 
Internet. There has recently been considerable activity by researchers to gather data on the 
Internet (using, for example, Web "bots"). This data has provided insights about how to model 
synthetic variants of the Internet that, although different from the Internet in layout (routers and 
links), have statistical properties that reflect those of the Internet. 

3.1   Existing Models 
To date, there have been several attempts to develop synthetic models of the Internet. These 
include WAXMAN [Waxman 88], BRITE I and II [Medina 00], INET [Jin 00], and TIERS 
[Doar 96]. As with the approach taken here, these approaches do not attempt to generate exact 
replicas of the Internet's layout, but to generate models whose statistical properties (for 
example, distribution of router size) reflect those of the Internet. The model developed in this 
report was motivated in part by the limitations of these earlier models (as identified by Yook 
[Yook 02]), but it was also developed to exercise the Easel simulation system in this area, to 
provide us with some first-hand experience in developing such models, and to support work in 
Internet survivability. For example, such models are important in examining the survivability 
properties of different Internet IP protocols. 

Existing network generation models appear to be deficient in one or more aspects that are 
important to Internet modeling [Yook 02]. A significant omission is lack of appropriate spatial 
clustering models for the nodal population. These models place network nodes randomly, 

resulting in a fractal dimension Df of 2.0 (see Section 3.3 for the definition of Df). However, 

empirical evidence suggests that this clustering has a fractal dimension of about 1.5 [Yook 02]. 

Figure 3.1 illustrates the difference between two nodal distributions, one having a Df of 2.0 

and the other having a dimension of 1.41. Clearly there is a major difference. Clustering occurs 

because new nodes tend to co-locate in regions that already have a high density of nodes. This 
tendency is reflected in the way our model generates nodal distributions. The way this 
clustering occurs is central to the overall spatial connectivity of the network and will have 

significant implications for its survivability. 
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Figure 3.1: Nodal distributions with differing dimensions 

Section 3 focuses on our approach to Internet topology modeling, how the approach is 
implemented in GENeSIS,4 how GENeSIS is used, and finally provides examples of 
computations performed by GENeSIS. There are two appendices—one that reviews recent 
research in network topology and a second that describes how to use GENeSIS. This program 

can be accessed from the URL http://www.cert.org/easel/. 

3.2   A Basis for Synthesizing Internet-Like Topologies 
The approach we take to Internet topology modeling is based in part on the work of Barabasi 
and colleagues [Albert 02a, Albert 02b, Barabäsi 99, Barabäsi 02a, Barabäsi 02b, and Yook 
02]. Underlying their approach to characterizing the Internet's topology are three assumptions: 

1. The spatial distribution of the nodes5 in the Internet forms a fractal set. 

2. The network is built incrementally by adding nodes one at a time. 

3. New nodes are linked to the existing network through a mechanism called preferential 
attachment (new nodes link preferentially to existing nodes that are more highly linked 
and spatially close). 

Use of these simple rules results in networks that, for the most part, reflect the statistical 
properties of the actual Internet.6 Each of these assumptions is reviewed below. 

GENeSIS is an acronym for Generation of Emergent Networks in Support of Internet Survivability 
Routers, hosts, and any other devices that are linked into the network are considered as "nodes." 
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3.3  The Internet's Spatial Distribution 
After examining the spatial distribution of routers in North America and around the world, 

Yook determined that this distribution was characterized by a fractal set with dimension Df ~ 1.5 

[Yook 02]. This was determined using the "box counting" method [Chen 93], the method also 

used in the GENeSIS program to generate the spatial node distribution. 

To determine the fractal dimension of a two-dimensional pattern, a square grid of various 

widths w is superimposed on an image of the pattern, in this case the distribution of network 
nodes. The number of grid boxes N(w) of width w that contain one or more nodes is then 

counted. The fractal dimension is defined through the equation N(w) = w   f, which could also 

be stated as follows: 

D, •log(N(w))/log(w) (1) 

Figure 3.2: Basis for 
fractal box algorithm 

In the GENeSIS program, the inverse procedure is used. Here 
we start with an empty square box, diving it into four 
quadrants. Each quadrant is recursively divided into four sub- 
quadrants and so on, down to a specified low level of 

4    4 
granularity. Thus if we do four recursions we obtain 2 *2  = 

256 low-level boxes. To determine the box in which to place 
the next node, we select one of the top-level quadrants, biasing 
our selection preferentially to that quadrant that has the most 
number of existing nodes (if this is the first node placement 
then the selection will be purely random). Upon selecting one 
of the quadrants, we repeat the procedure using the subquadrants within this quadrant, and so 
on recursively down to the lowest-level box. At this point we place the node at a location 
determined by a normal distribution, centered in the middle of the box and with a standard 
deviation equal to half the box width. This procedure is repeated as each node is incrementally 
added to the population. Note two points. First, the degree of nodal clustering resulting from 

this procedure will depend on the strength of the bias used in quadrant selection. This bias can 
be changed through a fractal clustering exponent on the number of nodes in each of the boxes.7 

By varying this exponent, one can influence the value of the fractal dimension. Second, in order 
not to bias the clustering to any preferred box alignment, each time a new node calculation is 
performed, the origin of the box coordinates is randomly shifted. 

' There is still some disagreement about the complete accuracy of the resulting networks, at least as far 
as these assumptions go with respect to modeling the Internet's autonomous systems [Chen 02]. 

7 For example, an exponent of 2 will bias the selection to the square of the number of nodes in each box. 
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3.4   Incremental and Preferential Attachment 
Once the spatial population of nodes has been defined, the nodes can then be linked. This is 

performed by incrementally connecting the nodes in the sequence they were generated 
(incremental attachment). As each node i is added to the network, it can be linked to one or 
more nodes j already in the network. To accomplish this, a selection function of the following 

form is used, where numLinksj is the number of links that currently attach to node j and 

distance^ is the distance between nodes i and j: 

a 
sfi.   =   (numLinks.) a /  distancei . 0<=  a< = l        (2) 

The actual node(s) j to which the node i is attached is probabilistically selected, based on the 

magnitude of the sfjj values. With a=l, we get a topology that is strongly hub-based, and this is 

characterized by a power law in the distribution of numbers of links (see Scale Free Networks 

in Appendix A). With a=0, only distance is important in determining linkage, and the topology 
is more like a fishnet. As discussed in Survivability Implications in Appendix A, these 
differences have strong implications on network survivability. Empirically, it was found [Yook 
02] that o~l, but other relationships are possible, so this parameter provides that flexibility. For 

example, for a =2 we would get an inverse square law on links and thus a greater weight would 

be given to nearby nodes. 

Nodes need not be symmetrically connected. In other words, if node X connects to node Y, Y 
need not be connected to X. A connection probability p is specified such that if p = 1.0 then 

symmetric connectivity is guaranteed. If p = 0.0 then the reverse connections are not made. 

3.5   Cliques 
In addition to spatial clustering, clustering can take place through association between nodes. If 

node A is linked to node B and node B is linked to node C, in many cases there is a greater than 
random probability that node A is also linked to node C. This phenomenon is central to social 
networks—if Tom knows Mary and Mary knows Jean, then there is a significant probability 
(relative to random) that Tom will also know Jean. This probability has been estimated to be 
anywhere between a few percent to as high as fifty percent [Girvan 02, Newman 02], 
depending on the size of the network. If the probability were to reach 100 percent then the 
network would be fully connected (everyone would know everyone else), a situation that would 
only apply for very small networks. Clearly associations formed by cliques can have a 
significant influence on how viruses propagate through email lists, and that has motivated the 
incorporation of clique behavior into the model. 

In GENeSIS, clique behavior is simply modeled by specifying that if node A associates with 
node B, and node B associates with node C then, with a certain probability greater than random, 

node A also associates with node C. This probability can vary anywhere between 0 to 1 
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(i.e.. 0 <= C, <= 1). This model does not. however, account for subpopulations within a 
population where local "cliquing" may be higher than average. 

3.6   The N-Squared Problem 

Generating the network is an inherently n-squared problem, i.e.. the n   node that is 

incrementally inserted into the network searches all existing n-1 nodes in order to find the most 
desirable one(s) to link to. With very large n this is computationally very intensive. One simple 
approach to reducing the magnitude of this problem is to select and evaluate only a random 
sampling of all the existing nodes rather than every node. However, if too few random nodes 
are sampled, then the statistical properties of the network may be skewed. In particular, the 
node degree may no longer follow a power law. The following is a brief experiment into the 
effect of sampling size. 

GENeSIS allows one to enter a sampling size. Thus, for example, if one generates a network of 
1000 nodes one can specify a sampling size of 250. While the growing network is below 250 
nodes, all nodes are selected: while between 251 and 1000 (say 532 nodes), a random selection 
250 nodes out of the 532 nodes is made. Of course, if the sampling size is the same as the 
number of nodes than all nodes are evaluated. 

The charts in Figure 3.3 show the results of 24 parametric runs involving 250 and 1000 nodes. 
In each case, there were 12 runs using different sample sizes. In the 250 node case, there were 
runs on samples of 62. 125. and 250 nodes: in the 1000-node case, there were runs on samples 
of 250. 500, and 1000 nodes. 
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Figure 3.3: Results of parametric runs with different numbers of nodes 

From the 250 node data it appears that, as the sampling size increases, the power law exponent 
somewhat decreases in size (becoming more negative), while the corresponding standard 
deviation on the linear fit to the data becomes smaller. However, it is difficult to see such trends 
in the 1000 node data (i.e.. where confidence should be greater). Thus, at least within the 
limited range of these experiments, there does not appear to be any strong dependency of the 
power law exponent on sampling size. 
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3.7   A Description of the GENeSIS Program 
GENeSIS generates networks. While it is written in the simulation language Easel, there are no 
time-dependent aspects to the computation. Hence it is not a simulation and does not use 
Easel's simulation features. An overview of functional elements in GENeSIS is shown in 
Figure 3.4. The two major components of the GENeSIS program are the fractal computation of 
the node spatial distribution and incremental network generation. One may run GENeSIS so 
that the network is generated immediately after the node population has been computed (option 

1 in Figure 3.4), or one may capture the node population data in a separate file that can 
subsequently be used to generate a network (option 2 in Figure 3.4). The latter option allows 
one to generate different networks based on the same nodal distribution. 

GENeSIS generates a variety of graphical outputs to allow assessment of the properties of the 
node/network properties to be made. Both the node and network spatial distributions can be 
graphically displayed. The fractal dimension of the nodal distribution is calculated using the 
box-counting method described in Section 3.3. Log N(w) is plotted against log w. In the 
network generation component, two analyses are made. First, the network's node degree1* 
distribution is plotted and the associated power law exponent computed. Second, the 
distribution of link distances is plotted and the associated power law exponent is computed. 

Node spatial 
distribution pliH, 

Input 
parameters 
(tile) 

Node 
generation 

Fractal 
analysis 

Network spatial 
distribution ploo 

Cj^pj^) 

distribution 

Network 
generation 

Node degree 
analysis 

network 

model 

Distance 
analysis 

Figure 3.4: The structure of the GENeSIS program 

1 The node degree of a node is the number of links associated with a node. 
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3.8   Network Synthesis Using GENeSIS 
In this section we will first generate node distributions and look at their properties, and then 
based on these distributions we will investigate networks and look at their properties. 

3.8.1   The Fractal Nature of Nodal Distributions 

The following three figures show nodal distributions for 500. 1000. and 2000 nodes 
respectively and their associated fractal dimension characteristics. The 500 and 10O0 node data 
sets were extracted as subsets of the 2000 node data. The fractal distributions show the -log 
(box size) against the log(number of boxes of that size that contain at least one node). The slope 

of this line is the fractal dimension Dr. These data were made at a resolution of 2   * 2  = 40% 

boxes for the fractal calculation and clearly indicate the fractal pattern of the data. The 
dimensionality of each distribution is also quite similar. 
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Figure 3.5: Distribution and fractal dimension curve for 500 nodes 
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Figure 3.7: Distribution and fractal dimension curve for 2000 nodes 

3.8.2     Variability of Distributions Based on 500 Nodes 

This section illustrates the variability of nodal distributions and typical networks generated 

from these distributions. These runs were made for 500 nodes and at a resolution of 2   * 2  = 
4096 boxes for the fractal calculation. These networks were generated such that a newly added 
node only links to one existing node. With respect to the network layouts shown in Figure 3.8 
and Figure 3.9. a link is suppressed graphically if either end of the link is attached to a node 
having less than 25 links. This helps highlight the network structure—displaying all links can 
result in a very messy picture. 
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The linearity of the power law distributions is not very accurate due to the limited number of 
nodes (500) in the network. 

Fractal population with 500 nodes 

link degree • log(# nodes) 

0        1        3        4        fi 

Logi'Unk degree) 

Network with 500 nodes 

1C        11        i;       14       15        ' 10C-1 

I .ink degree distribution (a = -1.575) 

Figure 3.8: Case 1 showing variability of nodal distributions based on 500 nodes 
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Figure 3.9: Case 2 showing variability of nodal distributions based on 500 nodes 

3.8.3     Effect of Cliques 

The degree to which individuals form cliques will have an effect on the linking structure of any 
network. This was examined by comparing two cases in which the nodal distribution was the 
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same but the linking clique coefficient (see Section 3.5) was varied. In one case the clique 

coefficient Cf = 0.0 while in the other Cr = 0.25. Thus if A is linked to B and B is linked to C 

then there is a 25 percent probability that A is linked to C. 

The two networks can be seen in Figure 3.10 and Figure 3.11. Note the much more dense 
linkages in the latter network, even though the nodal distributions in the two cases are the same. 

\ [ink cegree -   log(# nodes) 

2.53748 

2.39771 

7.15/94 

1.91117 

1.57139 

I.43HS? 

1.19885 

9.99031-1 

7.19312«-! 

4.79542p-1 

7.W77I...I 

2.38616»-? 
.\ 

'10fi-l 0        1        3        4       6        :        8        10        U       13       14       IS 

lout' link Jeyec") 

Network link degree distribution 

Figure 3.10:    Case 1 (where Cf = 0.0) 

It is interesting to observe that the network with a high Cf no longer obeys a power law in 

degree distribution (see Figure 3.11). 
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Figure 3.11:     Case 2 (where Q = 0.25) 
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3.8.4     Varying the Network's Topology 

The topologies illustrated in Section 3.8.3 were generated using node degree and distance to 
determine linkage. The following networks show some variations on topology solely on the use 
of distance as a criterion for linkage. While these networks do not reflect the Internet's topology, 
they are interesting since, lacking large hubs, they may be more survivable [Albert 02b]. They 
may also better describe other networks such as the Interstate or railroad systems. Note that the 
nodal distributions for the random networks in Figure 3.12 and Figure 3.13 are the same. 
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^O    ^•^/li 

Random network Clustered network 

Figure 3.12:    Variations in topology with distance as the only criterion for linkage 

Random network Clustered network 

Figure 3.13:    Variations in topology with distance and node degree as 
criteria for linkage 
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4 Simulating Virus Propagation with Easel 

This section briefly explores the use of Easel in simulating computer virus propagation. The 
models are quite simple and are not intended to be rigorous. Rather, they illustrate the use of 
Easel in this area and in particular demonstrate how network topologies developed by 
GENeSIS can be imported into and used by a virus simulation. Extensions to the simulation 
models described here could easily be developed to make them more realistic. 

Differences in network topology may have a decisive impact on the ability of viruses to 
propagate. The paper Epidemic Spreading in Scale-Free Networks [Pastor-Satorras 02b] and 
related work [Pastor-Satorras Ola. Pastor-Satorras 02c] are of particular interest. The authors 
claim that the very property that makes scale-free networks efficient (i.e.. existence of large 
hubs) is also responsible for their propensity to propagate viruses efficiently. This property 
contrasts with the propagation of biological viruses that depend on social networks, where 
nodes (people) do not have the same high concentration of connections. Nor are people able to 
infect neighbors in the massively parallel way that computer viruses can infect connected 
nodes. The major claim of this research is that there is no critical threshold for virus spreading 
and that viruses can continue to remain in the network at low levels for an indefinite period of 
time (which has been observed). However, this work is based on somewhat idealized 
assumptions of. for example, an infinite population and the consequent lack of spatial modeling 
in infection propagation. In addition, the assumption that the Internet topology is the 
appropriate one for virus spreading may be in doubt. Many viruses spread through e-mail 
(buddy) lists, and this "network" topology may be quite different from that of the Internet 
[Patch 02]. It has not been shown that it obeys a power law. and it would be insightful to 
examine the distribution profile of "buddy-list" data. In a subsequent paper. ""Immunization of 
Complex Networks [Pastor-Satorras 02a]. the authors suggest that targeted immunization 
schemes that focus on nodal connectivity can sharply reduce vulnerability to epidemic attack 
(not an unreasonable conclusion). This claim is supported by the paper "Halting Viruses in 
Scale-Free Networks" by Dezsö and Barabäsi [Dezsö 02]. However, these papers deal with 
simplified analytic models (sometimes with verification through simplified simulation), and 
they lack critical real-world behaviors. 

A recent paper by Staniford and colleagues [Staniford 02] presents some hypothetical models of 
worm propagation. The issues cited in this paper are of concern because the proposed 
mechanisms either result in (a) extremely rapid propagation throughout the Internet (in a matter 
of minutes) or (b) very stealthy propagation. The latter would allow large numbers of "zombie" 
machines to be set up in preparation for a potentially catastrophic attack. In all of these cases. 
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an accurate understanding of the appropriate network topology is central to predicting how 
serious these attacks would be. Staniford's paper addresses this issue, but additional work in 
this area needs to be done. 

The aim of this section is to illustrate the use of Easel in modeling propagation. We will look at 
a variety of issues, particularly two issues that were not fully explored by the above papers. 
First, we will look at clustering of network nodes as a mechanism for enhancing the survival of 
viruses. This issue was identified in the paper "Open Problems in Computer Virus Research" 
[White 98]. A second issue that will be explored is virus propagation through buddy lists. 
Quoting Jon Kleinberg. "The real network on which viruses spread is an invisible network of 
who talks to whom sitting on top of the Internet, and that's a network that we have less ability 
to measure at the moment" [Patch 02]. 

Individuals who use the Internet tend to form communities whose frequency of communication 
is high (for example, employees of a business or members of a social club). Individuals in these 
groups may be more prone to being reinfected through other members. Members may then 
spread the virus outside the group at a lower frequency. In other words, pockets of the virus 
may remain active within close-knit communities, while the prevalence of the virus is low or 
non-existent in the general population (see Section 3.5). 

4.1   The Easel Virus Propagation Models 
Two standard models of infection are often considered. In the first, reinfection of an individual 
can occur after the infection has been eliminated. This is called the susceptible-infected- 
susceptible (SIS) model. In the second, immunization or death prevents reoccurrence of the 
infection. This is called the susceptible-infected-removed (SIR) model. Both of these are 
examined below. 

The model accounts for the delay incurred in developing an anti-virus signature and the 
probability that a host's user has installed the software that supports the signature. If the host is 
in the susceptible state, then to become infected (a) the host must receive the virus from another 
host, and (h) the virus signature must be unavailable or the anti-virus patch must not have been 
installed. If the host is infected, then the virus exploits the list of email contacts to propagate the 
virus to other hosts. In the SIS model, the host is then cleared of the virus, but returns to the 
susceptible state. In the SIR model, the host is permanently vaccinated against this particular 
virus. This is summarized in Figure 4.1 below. Note that these models use arbitrary time units. 
While the time units are thought to be relatively consistent, further work is required to pin 
down validated real-world values. 
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Figure 4.1: State model of virus propagation 

The key lines from the Easel model are as follows: 

t* chance in each cycle of acquiring virus SW, if virus signature is available 
if (gen.signature & gen.acquire>random(uniform, 0.0, 1.0)) then 

haveVirusSW := true; 

if state = susceptible then 
# in susceptible state 

clr := green; 
if virusReceive then # virus is received ... 

if (Igen.signature | # but the virus signature not available ... 
ft or virus signature is available but dont have antivirus S/W 
(gen.signature & !haveVirusSW)) then 
# then some of these individuals activate the virus 
if gen.activate>random(uniform, 0.0, 1.0) then 

virusReceive := false; 
wait random(exponential, 1.0/dt_act); # delay until virus file is activated 
newState := infected; 
compromised := true; 

wait gen.dt; 
t* in infected state 
else if state = infected then 

clr := red; 
sendvirus(nodeList); 
if (gen.signature & haveVirusSW) 

wait random(exponential, 
if gen.modelType = SIS then 

newState := susceptible; 
else if gen.modelType = SIR then 

newState : = removed; 

then # virus signature is available and have virus software 
1.0/dt_fix); # delay until virus is eliminated 

# for the SIS model 

else 
wait gen.dt; 

t* in removed state (SIR model only) 
else if state - removed then 

clr := black; 
wait dt removed; 

While the behavior of each host is simple, the emergent behavior of the overall network is quite 
complex and sensitive to the network's topology. 

The networks used in most of these virus simulations are shown in Section 3.8.2. Figure 4.2 
illustrates typical transient plots from the virus propagation program using the first of these 
networks. These are for the SIS and SIR models respectively. Note that the SIR model results in 
nodes becoming immune while the SIS model does not. 
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Figure 4.2: Typical transient plots from the virus propagation program using networks 
described in Section 3.8.3 

4.2   Simulating Virus Propagation Through Networks 
We now briefly look at the response to some parametric variations of attributes in the model. In 
all cases we use the network topology generation program GENeSIS to synthesize the networks 
and then import them into the virus propagation program. To examine these sensitivities, a base 
case virus propagation simulation was run. The simulation had the following properties: 

delay in developing anti-virus patch is 2 arbitrary time units 

100 percent of individuals who receive virus activate it 

network is based on the topology of Figure 3.8 

SIR virus propagation model is used 

virus activation and system fix times are constant across all nodes 

node 0 was selected (this node has four immediate links) for initial infection 

cliquing probability is set to zero 

The resulting transient response is shown in Figure 4.3. The stepwise characteristics result from 
the fact that the time for each node to activate the virus is the same. Thus it takes a fixed time 
for the infection to spread from the first victim to its immediate neighbors (for example, set X) 
and the same fixed time to spread from set X to its immediate neighbors (set Y). and so on. 
With stochastic variations in the delay times, these discontinuities become smoothed out (as in 
Figure 4.2). 
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Figure 4.3: Baseline deterministic simulation of virus propagation (SIR model) 

Table 4.1 summarizes the parametric runs based on the above simulation. 

Table 4.1   Results of parametric variations on virus propagation attributes 
Case Description of run 

0 Base case 

I Effect of delay in virus patch availability 

2 Effect of cliquing 

3 Probability of activating a received virus 

4 Topology modeled with distance-based incremental attachment only 

5 SIS model of virus propagation 

6 Stochastic variation in activation lime 

7 Stochastic variation in fix time 

8 Node selected lor virus insertion 

Case 1: Effect of Delay in Virus Patch Availability 

Case l examined the effect of delaying the availability of a virus patch.The rapidity with which 
anti-virus software vendors can release a virus patch is clearly important. However, what effect 
does this speed of response have on the spread of viruses? Figure 4.4.A shows the sensitivity to 
nodal compromise that results from different delay times in patch availability. These results are 

based on a constant time (Tav) for all individuals to install (activate) the patch once it has been 

released. The stepwise increment in the number of compromised nodes is again a reflection of 
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the constant patch activation time (i.e., each node delays patch installation by the same amount 
after it has received the patch. Figure 4.4.B shows a more realistic response when stochastic 
variations in delay time are introduced. These variations are based on an exponential 

distribution having a characteristic time of Tav Stochastic variations of activation time appear 

to result in wide variations in the degree to which the population becomes compromised, 
particularly when the patch is rapidly released. Note that the model does not account for 
individuals who take measures to protect themselves before or after a patch becomes available. 
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Figure 4.4: Sensitivity of compromise to patch time 

Case 2: Effect of Cliquing 

Case 2 examined the effect of cliquing. The formation of cliques, that is. groups of nodes that 
have a high frequency of interaction, will have the effect of perpetuating a virus within these 
clusters of nodes. To assess the effect of clique formation, two sets of parametric runs were 
performed. The first set of six runs was based on a network in which no cliquing was modeled, 
while the second set of six runs was based on a network in which a cliquing probability of 0.15 
was assumed.'' These networks are shown in Figure 4.5. where it can be seen that the linking in 
the latter case is more local. (For clarity, links that connect to nodes with less than ten links at 
either end are suppressed). While these networks were based on the same nodal distribution, 
their linkage patterns were different, but the average link degree is the same in both cases. 
Because of the topological differences, comparing their responses to virus propagation requires 
statistical examination. For both cases, the last six nodes in the network (nodes 494 through 
499) were initially infected. Although these nodes are not comparable with respect to their 
linkages, they are outliers in that they were the last to connect to the network. Six runs in each 
category is probably not statistically sufficient, but the results show some consistency. 

9 The cliquing model defines a probability p that if node A is linked to node B. and node B is linked to 
node C, then C is linked to A. 
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The cases where cliquing occurs appear to result in lower overall compromise, which can he 
explained by the fact that cliquing tends to result in islands of infection that are somewhat isolated. 

Figure 4.5: Effects of cliquing on virus propagation 

The numbers in Table 4.2 reflect the final percentages of nodes that were compromised. 

Table 4.2   Sensitivity of nodal compromise to cliquing 
Network with no cliquing (cliquing probability = 0.0) 

Run# 1 2 3 4 5 6 

18.8 6.4 16.2 13.4 4.4 16.2 

Network with cliquing (cliquing probability = 0.15) 

Run# 1 2 3 4 5 6 

2 2 4.6 0.8 3.0 1.0 18.8 

Case 3: Probability That a Virus Is Activated 

In case 3. the probability that a virus is activated is reduced from 100 percent to 50 percent. 
This reduction in activation results in a dramatic reduction in the number of compromised 
nodes—the two cases indicate compromise of only 1.4 and 0.8 percent respectively. A 
significant reason for this large drop can be attributed to the slower spread of the virus, which 
allowed greater application of the anti-virus patch prior to major build-up of serious infection. 
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Case 4: Topology Modeled with Distance-Based Incremental Attachment Only 

In case 4. the topology of the Internet is strongly influenced by the presence of large hubs. As 
has been pointed out elsewhere [Albert 02b]. this is both a strength (in terms of the ability to 
function despite a large number of random failures) and a weakness (in terms of the breakdown 
in connectivity when the large hubs are targets of attack). The following comparison illustrates 
the sensitivity of virus spread as a function of nodal topology. 

In the two cases, the same 500-node spatial distribution is used. The first arrangement (the base 
case) generates links using both node degree and node distance criteria: the second only uses 
the distance criterion for link generation.10 (These cases use the equation found in Section 3.4 
with the values a=0.0, o=l .0.) These networks are shown below in Figure 4.6. Although it 
appears that the former topology has many more links, the number of links for the two cases is 
virtually the same. Thus the average link degree is the same. 

The distance-based topology indicates an increase in total number of compromised nodes (from 
37.8% to 51.2%). This may result from the fact that, although the base case has more highly 
connected nodes, it also has more nodes that have few connections (despite the impression 
given by the figures). These more isolated nodes are less likely to become infected and may 
suppress the total number of compromised nodes. 

Base case network 1 Mstance-based network 

Figure 4.6: Networks showing the sensitivity of virus spread as a function of 
nodal topology 

The standard distance criterion in GENeSIS is probabilistic in the sense that the smaller the distance 
between two nodes, the more likely they are to be linked. However, the distance criterion used here 
deterministically links the closest node to the one in question. 
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Case 5: SIS Model of Virus Propagation 

In case 5, the simulation was run with the SIS model. The number of compromised nodes for 
this model is the same as that for the SIR model. At first this may seem counterintuitive, as 
compromised nodes in the SIR model are removed from further involvement in virus spreading. 
However, even though the nodes in the SIS model return to the susceptible state, they have 
already contaminated 100 percent of their linked neighbors. Further contamination of these 
neighbors does not result in increasing the total pool of compromised nodes. 

Case 6: Stochastic Variation in Activation Time 

Case 6 examined stochastic variation in victim activation time. In this case, stochastic 
variations refers to the time it takes for victims to activate the virus once they have received it. 
These variations have the effect of smoothing out the responses (over those observed in Figure 
4.4.). The overall effect on compromise is mixed—sometimes the result is lower and sometimes 
it is higher. 

Case 7: Stochastic Variation in Fix Time 

Case 7 examined variation in victim activation time. Stochastic variations of this parameter 
have no effect on level of compromise. 

Case 8: Node Selected for Virus Insertion 

Case 8 examined the initial fan-out 
of the virus. The ability of the virus 
to gain a foothold is critically 
dependent on whether it can 
establish itself early on in the 
network. Thus we examine the 
effect of the degree of fan-out from 
nodes neighboring the node that is 
first infected. Figure 4.7 shows the 
sensitivity of the spread of the virus 
to this fan-out for three cases, which 
differ only in the node that was 
initially infected. This clearly 
illustrates the property that initial 
fan-out of the virus (as reflected in 
the initial gradients of the curves) is 
important in predicting the severity 
of the viral outbreak. 

Figure 4.7: Effect of initial fan-out on total number 
of compromised nodes 
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4.3   Conclusions 
There are several tentative implications that can be drawn from the simulations in this section." 

• The delay in patch availability has a noticeable effect on the ability of the virus to spread. 
However, if the patch is released with reasonable promptness, then the degree of 
compromise shows such wide swings (as a result, for example, of which node is initially 
infected) that some latitude in release delay may be acceptable. 

Cliquing has a tendency to isolate clusters of nodes, which can hinder viral spread through 
the whole population. 

When the virus activation rate (i.e.. the fraction of nodes that activate a virus upon 
receiving it) is reduced from 100 percent to 50 percent, there is a dramatic drop in the 
compromise to the entire population. 

The link degree of the initially compromised nodes has a strong effect on the subsequent 
ability of the virus to compromise the entire population. 

1' Further work should be performed to collect empirical data upon which to base the numerical values 
used in this analysis and validate the responses of the simulations. 
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Appendix A: Survivability and Network 
Topology: A Survey of Recent Research 

Introduction 
The ability of the Internet to survive broad attacks, accidents, or failures is quite dependent on 
its topological characteristics, i.e., the properties that govern how routers and connected 
platforms are linked together. In the past handful of years there has been a significant paradigm 
shift in our understanding of how real-world networks are constructed. This is having a huge 
impact on modeling, not only of the Internet's topology [Barabäsi 02b. Chen 02. Magoni 02. 
Medina 00. Pastor-Satorras 01a. Vazquez 02. Yook 02.]. but also of many other natural and 
artificial systems such as electrical grids [Stubna 02. Watts 98]. social interactions [Barabäsi 99. 
Ball 02], and food webs [Montoya 02. Strogatz 01]. The increased understanding of how these 
systems are composed can shed light on how to make the Internet more survivable. The issues 
raised are new and different from those we commonly encounter in computer science. Quoting 
Barabäsi. "'Increasingly we are realizing that our lack of understanding of the Internet and the 
Web is not a computer science question. Rather it is rooted in the absence of a scientific 
framework to characterize the topology of the network behind it." [Barabäsi 02b]. 

This appendix is intended to summarize what has been done in the field and provides extensive 
references to relevant articles for those who wish to dig deeper. It also suggests some directions 
we might take to address some of the survivability concerns. 

Summary of Network Concepts 
Pioneering work on examining network characteristics was done by Erdös and Renyi [Erdös 
60]. They primarily focused on unbounded networks in which nodes were randomly connected. 
Such graphs are appealing since they can be investigated analytically and provide insights into, 
for example, the connectedness of subgraphs within the overall graph. In these models, any two 
nodes are connected with a probability p. Thus, for a graph with N nodes the total expected 
number of links in the network is pN(N-l )/2. In addition. Erdös and Renyi discovered that for 
large numbers of nodes, the distribution of the number of links attached to each node in the 
graph turns out to be a Poisson distribution [Erdös 60]. This is important since the Poisson 
assumption was often made in constructing synthetic networks. However, for many network 
topologies, including the Internet, the Poisson assumption turns out to be very poor. Another 
important factor that was examined is the so-called "diameter" of the network [Barabäsi 99], 
The diameter is the average number of hops it takes to get from one node to another. In this 
regard, random networks have characteristics that differ significantly from networks such as the 
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Internet. While both types of network show a logarithmic increase in number of hops as a 
function of the number of nodes, the Internet needs fewer hops to get from one node to another 
[Albert 02a]. 

At the other end of the network topology spectrum are grid models. These networks conform to 
a regular lattice of links that often form a rectangular lattice.12 They have high diameter, since it 
takes many hops to travel from one node to another. 

Between the extremes of random and lattice networks is the most interesting class of 
networks—small world networks—of which the Internet is an example. Figure A.l illustrates a 
"'ring" model created by Watts and Strogatz [Albert 02a. Strogatz 01] and provides a context to 
demonstrate the evolution of a network from a regular lattice to random network. With 
probability p. one end of each link can be reconnected to another node. Two properties are of 
particular importance here: diameter and coupling. The former was discussed above, while the 

latter is a measure of how clumped the nodes are. If we choose a node i and select all its kj 

immediate neighbors, then these nodes can have a maximum number of interconnections kj (kj- 

I )/2. If the actual number of interconnections is Ej. then the node is said to have a clustering 

coefficient of Cj = 2E/kj (kj-1). The average of this overall nodes (C) is the clustering value of 

the whole network. Clustering is "good" since it means that immediate neighbors can always 
get to each other quickly—but it doesn't necessarily mean that there are short paths to distant 
nodes. As shown in Figure A.2. the clustering of the lattice model is high. However, because 
the normalized diameter. L(p)/L(0). is also high, it takes many hops to get to distant nodes. In 
the random network, the opposite is the case—local nodes may be many hops away, while 
distant nodes may have few hops. The intermediate small world graph (which has a small 
number of reconnections) is interesting since it has the best of both worlds—high clustering 
and low diameter. 

lattice small world random 
 • 
p=0 increasing randomness p=l 

Figure A. 1:Spectrum of simple network models 

'" See Figure A. 1 for another lattice example. 
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Thus, we can get to neighbors quickly without sacrificing the need for short hops to distant 
nodes. This is a characteristic of the Internet. Note, from Figure A.2. that with only one percent 
of the links being reconnected we achieve the small world property. This has significant 
implications for the "survivability" of this simple model, since breaking these few crucial long- 
distance links rapidly increases the network's diameter. 
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Figure A.2:Normalized coupling and diameter as functions of probability of links 
being randomly reconnected [Watts 98] 

Percolation Theory 

The Internet is designed with redundancy in mind—i.e.. there are multiple paths through 
intermediate routers between source and destination nodes. However, if major routers are 
corrupted or destroyed, quality of service will be degraded—and the effective diameter 
increases. At some threshold point of destruction the network may become disjoint with non- 
communicating subnets (and the diameter between the subnets becomes infinite). This problem 
falls within the domain of percolation theory [Stauffer 94], which deals with the ability of a 
system to function under increasingly degraded conditions. One classical percolation model 
addresses the manner in which a fire consumes a forest [Malamud 02]. Below a certain density 
of trees, a spark may ignite some trees locally but fail to propagate. However, above a critical 
density," the forest may be totally consumed. This is illustrated in Figure A.3. which shows that 
close to the critical density (0.593) the ability of the fire to propagate changes rapidly. Not only 
is percolation theory relevant to the ability of degraded networks to function, but it is also very 
relevant to epidemics, including the spread of computer viruses. Some viruses fail to propagate, 
while others take off with strong virulence. Understanding why is important and percolation 
theory should shed light on the issue. This simplified forest fire model also demonstrates an 
issue that is important to network survivability: cascading failure. 

1  This density turns out to be a very precise threshold value, 0.592, for a normalized maximum density 
of 1.0 (i.e., when the forest has no empty spaces). 
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Figure A.3:Simulated forest fire with different tree densities (p) (Green represents 
unburned trees, black represents burned trees) 

Scale-Free Networks 
One area that has received wide attention recently is the statistical characterization of real 
networks. Because the Internet was a ready source of data, it was the first target [Faloutsos 99]. 
but this rapidly broadened out to an examination of other fields [Albert 02a. Amaral 02]. This 
work has shown that many topological features of the Internet can be described through a 
power law of the form P(k) ~ k '. an equation which states that the probability P of a node 
having k links is proportional to ky where y is a constant somewhere between 2.0 and 3.0. The 
resulting topological difference between this class of network and random networks can be seen 
in Figure A.414. These two distributions have the same number of nodes and links but their 
connectivities are clearly quite different. These characteristics are reflected in the shape of the 
link distributions (see Figure A.5). Because the power-law based topology does not have a 
characteristic peaked mean value (as in the Poisson case) it is often called "scale-free." 

Figure A.4:      Comparison of random and scale-free network topologies [Barabäsi 02b] 

14 The topologies in Figure A.4 were taken from Barabäsi [Cohen 02]. 
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Figure A.5: Comparison of distributions for random and scale-free topologies [Barabäsi 02b] 

Construction of Scale-Free Networks 
The revelation that the Internet is scale-free has led to new attempts to understand the 
underlying mechanisms that make the Internet topology what it is. In particular the work of 
Barabäsi and colleagues [Barabäsi 02b. Willinger02] has attempted to define some simple 
underlying mechanisms that result in the observed scale-free distribution of links. Barabäsi 
hypothesized that two simple rules were sufficient to define such scale-free networks: 

• incremental growth (nodes are added one at a time and connected to the nodes that 
currently exist in the network) 

• preferential attachment (new nodes are connected preferentially to existing network nodes 
that already have high numbers of links. There is also preferential attachment to nodes that 
are nearby.) 

Networks thus constructed exhibit the required scale-free property. 

While these results look encouraging, recent work [Chen 02. Willinger 02] has cast some doubt 
on whether these simple rules accurately capture the essence of the problem. This issue will be 
revisited later. There are now a number of software packages available that generate synthetic 
networks based on power law and other (e.g.. random) statistics [Medina 01. SSFRN 02. ISI 
02]. The software described in this report (GENeSIS) adds to this list. 
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Attacks Against Scale-Free Based Networks 
Albert and colleagues have addressed the issue of how the Internet's topological properties 
affect its tolerance to failures and attacks. In the paper The Internet's Achilles Heel: Error and 
Attack Tolerance of Complex Networks [Albert 02a] they examine ability of networks to 
function under increasingly degraded conditions, specifically focusing on random failures and 
organized attacks. A significant conclusion they draw is that, for scale-free networks, random 
removal of nodes makes little difference to the ability of a scale-free network to route messages 
(the diameter changes little). This is consistent with observed robustness in the face of local 
failures of the actual Internet. However, with a targeted attack, the situation is significantly 
different. Targeted attacks would attempt to destroy the largest, most critical nodes (hubs), and 
in this situation, the effective diameter rapidly increases. With random networks the situation is 
different. Random networks do not exhibit the frequency of highly connected nodes that scale- 
free networks do. There is thus much less difference between the responses to random failures 
and organized attacks for networks with random topologies. 

These differences are illustrated by the graphs shown in Figure A.6. These graphs were 
extracted from the paper mentioned above. Graph a shows the results of synthetic random (E) 
and scale-free (SF) networks under random failure and organized attack. The fraction of nodes 
removed is/, while d is the effective network diameter. These results show the following: 

• the insensitivity of scale-free networks to random failure (squares) 

• the greater sensitivity of scale-free networks to attack as opposed to random failure (circles 
and squares) 

• the insensitivity of random networks to attack or random failure (diamonds and triangles) 

Graphs h and c show similar characteristics for subsets of the actual Internet and the World 
Wide Web. 
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Figure A. 6: Response of networks to random failures and organized attacks [Albert 02b] 

Natural Versus Engineered Systems 
It is empirically evident that many of the Internet's topological features scale using the power 
law [Faloutsos 99. Tangmunarunkit 01]. However, the reason it. and other systems, do so is still 
not universally agreed on. Carlson and Doyle claim that engineered systems (be they biological 
or man-made in origin) have designed-in features that make their behavior quite different from 
those of non-engineered systems studied by physicists [Carlson 02]. Such non-engineered 
systems exhibit properties that tend to be homogeneous and whose responses are ensemble 
averages over the system's individual particles. This is the case with the forest fire example. 
Carlson and Doyle describe engineered systems as having highly optimized tolerance (HOT) 
and show how their theory can explain these power law distributions. They claim that the 
examples physics commonly focuses on deal with self-organizing criticality around phase 
transition points and that engineered systems may operate far from phase transition. 
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As an illustration [Carlson 99] they extend the forest fire example to include an engineered 
component, firebreaks.'" Without such barriers, a fire will spread through the forest (assuming 
the critical tree density has been exceeded). However, with judiciously placed barriers, the loss 
can be greatly reduced. Optimal placement of barriers can be determined based on cost-benefit 
analysis. Such a tradeoff can be determined through minimizing the expected cost J. where pi is 
the probability of an event i whose size is li. and where ri is the resource allocated to deal with 
the event [Carlson 00b]: 

J  =  1 pi   li       given       li   =   f(ri),   and  I  ri   »R 

Given certain additional assumptions, this minimization leads to a power law that relates the 
event probability to its size: pi ~ li-a. Firebreaks might be optimally engineered for a particular 
spatial probability of spatial spark distribution or tree density. If these parameters change, then 
the optimal performance is degraded. Thus HOT systems tend to be robust in the face of known 
events but fragile in the face of unpredicted events [Carlson 00a]. 

Survivability Implications 
The power-law results described above are relevant, since they may indicate (per the arguments 
of Carlson and Doyle) that cost-benefit issues are important in determining the Internet's 
topology. This has definite survivability implications. We can ask whether there are other 
topological arrangements that are as efficient as the current one but more resilient to attack. 
Would such alternates be economically viable? How could we develop appropriate firebreaks? 

One intriguing possibility of alternative design is that based on the Watts and Strogatz model. 
In this case there is local clustering with a few long-distance links. While the current Internet 
topology is vulnerable to the destruction of the small number of highly connected hubs, the 
Watts and Strogatz topology would be vulnerable to the destruction of the small number of 
long-distance links. Perhaps a topology that incorporates features of both models would be an 
improvement. 

The Internet is robust against predicted events such as local router failure, but when 
unpredicted events occur, such as the release of a new virus, then fragility becomes evident. 
One event for which the Internet was not designed is a major loss of backbone routers. There 
will come a critical point at which communication across the network ceases. This type of 
massive failure is not one that the Internet has been designed to withstand. Thus HOT-designed 
features will not be applicable and we return to a system with a definite phase transition point. 
In such a case, percolation theory would become applicable again and we would need to look at 
survivability as a function of the density of disabled links. 

'  They also look at an avalanche example. 
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Appendix B: Running the GENeSIS Program 

Data Input 
16 Genesis runs in the Easel environment.   All data for a GENeSIS run are currently entered as an 

include file to the GENeSIS program. A data input file (for example, "data input.txt") is 

specified through the include statement (include "::data filesrdata input.txt") at the point in the 
GENeSIS program where the lines in the include file need to be located. (This point is 
identified near the foot of the GENeSIS program.) This external specification of data allows 
one to manage these data in appropriately named files. Only the included file name need be 
changed within the GENeSIS program before it is run. A typical set of data in an include file 
might look like this: 

"run 1 - 500 node run", true, 500, 500, 4, 1.5, "",true, 0.25, 1.0, 1.0, 1.0, true, true, # run 1 
"run 2 - 1000 node run", true, 1000, 1000, 4, 1.5, "", true, 0.25, 1.0, 1.0, 1.0, true, true,  # run 2 
"end" # terminator 

Each data line corresponds to a separate node/network generation run. Thus individual 
generation runs can be stacked to run consecutively. Each line of the data contains 14 data 
elements although some of the data may be irrelevant for a particular run. For example, in the 
above run data, no network generation is called for in the first calculation (data element 7), so 
data elements 8 through 11 are not used. To terminate the run, the last line contains the title text 
string "end." The data for each line contains the following: 

1. A descriptive title for this run 

2. GN (a Boolean value that determines whether to perform a nodal calculation or use node 
location data from a previous run) 

If GN=true then input values 3 through 6 are relevant: 

3. number of nodes in node population 

4. sampling size (see Section 3.6) 

5. cell exponent c (determines the number of lowest level cells N =2A2c—see example in 
Section 3.3) 

6. fractal clustering exponent (see Section 3.3) 

If GN=false then input values 7 and 8 are relevant: 

7. file name of file that contains an existing nodal population 

8. GL (a Boolean value that determines if a network is to be generated) 

If GL=true then input values 9 through 12 are relevant: 

16 Easel is available for download from http://www.cert.org/easel and runs on Macintosh OSX. 
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9. probability that if node A links with node B, and B with C, then node A will link 
with node C 

10. preferential attachment (for link degree) exponent a (see Section 3.4) 

11. preferential attachment (for distance) exponent a (see Section 3.4) 

12. probability that if node A [lb2]links to node B then node B links to node A 

13. doSpatialPlots (if true then generate the nodal distribution and network plots) 

14. doStatistPlots (if true then generate the statistical plots) 

A complete record of a set of GENeSIS runs is automatically captured in the Easel output file 

as ASCII data. This includes a copy of the input data for each run and all output data described 
above. Note that any subsequent calculation will overwrite this fde. If the data is important, its 

contents should be immediately transferred to another file. In order to use node data for 
network generation, that section of the output file that contains the node data (and only this 
data) should be copied and pasted into another ASCII file (for example, "node data.txt"). The 
name of this file (e.g., "node data.txt") is then specified as the input file item 7 for the 
subsequent network generation run (GN=false). 

Example Runs of GENeSIS 
Figure B.l shows example input to a GENeSIS run. The first 16 lines are comment lines and 
are simply there for clarification. As discussed earlier, the program automatically saves text 
output to the Easel text output file. The input data generate 25 nodes but do not link them. 

1: run title 
2: boolean: generate fractal node population 
3: number of nodes to be generated 
4: number of nodes to be sampled 
5: exponent for fractal box calculation 
6: exponent to vary degree of fractal clustering 
7: file name if node distribution to be read in 
8: boolean: network generation requested 
9: prob that if A links to B & B links to C, A will link to C 
10: exponent for node degree preferential attachment 
11: exponent for distance preferential attachment 
12: probability that if A connects to B, B connects to A 
13: boolean: display spatial plots 
14: boolean: display statistical plots 

"run 1 - 25 node run", true, 25, 25, 4, 1.5,"", false, 0.25, 1.0, 1.0, 1.0, true, true, 
"end"  

Figure B. 1: Input to a small GENeSIS run 

The resulting text output file is generated as shown in Figure B.2. 
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Plots of the spatial node distribution and fractal characteristics are also generated (Figure B.4 

and Figure B.6). These figures are for illustrative purposes only—because of the small number 
of nodes used in this example, the distributions are statistically very poor. 

If a network based on this distribution is subsequently desired, then the node data for nodes 0 

through 24 inclusive is extracted from the output file and renamed (for example, as "node 

data.txt"). A second run can then be made using the generated node data. Of course, the two 
calculations can always be performed within the same run, but sometimes it is useful to 

separate them. 

"wi 2-25 reds run",  false,  25,  25, 4,  1.5,   "reds data.txt",  true,  0.25,  1.0,  1.0,  1.0,  true, true, 
"end" 

The resulting output is shown in Figure B.3, while the graphical plots are shown in Figure B.5, 
Figure B.7, and Figure B.8. 
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%%%%%%%%% Input data %%%%%%%%% 
25 node run 
node population generation requested 
— total number of nodes = 25 
— node sampling size = 25 
— cell box exponent = 6 
— clustering exponent = 1.5 
spatial plots requested 
statistical plots requested 
%%%%%% End of input data %%%%%%%%% 

generating node data  
node ID x-location y-location 

0, 115.962, 153.337 
1,98.2674.208.786 
2,437.554,61.3323 
3,442.283,82.7091 
4,469.218,84.6452 
5, 281.366. 26.484 
6, 416.546, 72.4228 
7, 255.526, 50.4265 
8,427.826,43.5817 
9,459.94, 180.66 
10, 466.395, 72.5001 
11,451.034,61.7231 
12, 18.2165,49.2202 
13, 164.666,463.854 
14,454.196,71.4427 
15,334.774,88.7131 
16,459.646,210.756 
17, 435.884. 60.6086 
18,267.455,474.849 
19, 193.329,486.155 
20,277.733,487.1 
21,264.728,9.89424 
22,62.0941,59.5935 
23,76.8364,63.6913 
24, 102.968, 148.429 

computing fractal dimension data... 
1/cell-length, # non-empty cells, log(l/cell-length), log(# non-empty cells) 

1, 1,0.0 
2, 4,0.30103,0.60206 
4, 7.0.60206,0.845098 
8,15,0.90309. 1.17609 
16, 19, 1.20412, 1.27875 
32, 23, 1.50515, 1.36173 
 Power law fit  
exponent k for fit y = xAk is 1.06198 
standard deviation on fit = 0.605369 

drawing node data... 

Figure B.2: Output data from node generation run 
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%%%%%%%%% Input data %%%%%%%% 
25 node run 
prior node population read from file: node 
data.txt 
network generation requested 
— clique probabiluty = 0.25 
— weight on preferential attachment for link 
degree = 1 
— weight on preferential attachment for 
distance= 1 
— asymetric connection probability = 1 
spatial plots requested 
statistical plots requested 
%%%%%% End of input data 
%%%%%%%%% 

reading node data  

drawing node data... 

****** 

generating link data  

node ID x-location y-location IDs of linked 
nodes 

0, 115.962, 153.337, 1, 2, 3, 4, 6, 10, 15, 24 
1,98.2674,208.786,0,21,24 
2,437.554,61.3323,0,3, 11 
3,442.283,82.7091,2,0,4,8, 11, 17, 18 
4, 469.218, 84.6452, 3, 0, 5, 7, 9, 10, 14, 15, 
16,22 
5, 281.366, 26.484, 4, 7, 9, 12, 22, 23 
6,416.546,72.4228,0 
7, 255.526, 50.4265,5, 4, 9, 12, 23 
8,427.826,43.5817,3,11 
9,459.94, 180.66.4,5,7 
10, 466.395, 72.5001, 4, 0, 14, 16 
11, 451.034, 61.7231, 3, 2, 8, 13, 18 
12, 18.2165,49.2202,5,7,23 
13,164.666,463.854,11, 19 
14, 454.196, 71.4427, 10, 4, 16, 22 
15,334.774,88.7131,4,0,22 
16,459.646,210.756.4, 10, 14 
17,435.884,60.6086,3 

18,267.455,474.849,3, 11,20 
19. 193.329,486.155, 13 
20,277.733,487.1, 18 
21,264.728,9.89424. 1 
22, 62.0941, 59.5935, 4, 5, 14, 15 
23,76.8364,63.6913, 12,5,7 
24, 102.968, 148.429,0, 1 
10000 

generating link degree data... 
# nodes link degree log(# nodes) logdink 
degree) 

5, 1,0.69897,0 
3,2,0.477121,0.30103 
8,3,0.90309,0.477121 
3.4,0.477121,0.60206 
2, 5,0.30103.0.69897 
1,6,0,0.778151 
1,7,0,0.845098 
1,8,0,0.90309 
1. 10,0, 1 
 Power law fit   
exponent k for fit y = xAk is -0.918276 
standard deviation on fit = 1.90487 

lower dist upper dist cum. prob. 

0,32.9117,0.25 
32.9117, 65.8235, 0.386364 
65.8235, 98.7352, 0.409091 
98.7352,131.647,0.431818 
131.647, 164.559,0.5 
164.559, 197.47,0.545455 
197.47, 230.382,0.636364 
230.382, 263.294, 0.727273 
263.294, 296.206, 0.772727 
296.206,329.117,0.795455 
329.117,362.029,0.886364 
362.029, 394.941, 0.909091 
394.941,427.852,0.931818 
427.852, 460.764, 0.977273 
460.764, 493.676, 1 

drawing network... 

Figure B.3: Output from network generation run 
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