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Abstract 
We obtain improved bounds on the complexity of m dis- 
tinct faces in an arrangement of n circles and in an arrange- 
ment of n unit circles. The bounds are worst-case tight for 
unit circles, and, for general circles, they nearly coincide 
with the best known bounds for the number of incidences 
between m points and n circles. 

1   Introduction 
Problem statement and motivation. The arrangement 
^(T) of a finite collection T of curves or surfaces in E** is 
the decomposition of the space into relatively open con- 
nected cells of dimensions 0,...,d mduced by T, where 
each cell is a maximal connected set of points lying in the 
intersection of a fixed subset of r and avoiding all other el- 
ements of r. The combinatorial complexity (or complexity 
for short) of a cell # in MiT), denoted as |^|, is the number 
of faces of MiT) of all dimensions that lie on the boundary 
of ^. Besides being interesting in their own right, due to 
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the rich geometric, combinatorial, algebraic, and topologi- 
cal structure that they possess, arrangements also he at the 
heart of numerous geometric problems arising in a wide 
range of applications, including robotics, computer graph- 
ics, and molecular modeling. The study of arrangements 
of lines and hyperplanes has a long, rich history, but most 
of the work until the 1980s dealt with the combinatorial 
structm-e of the entire arrangement or of a single cell in 
the arrangement (which, in this case, is a convex polyhe- 
dron); see [14] for a summary of early work. Motivated by 
problems in computational and combinatorial geometry, 
various substructures of, and algorithmic issues involving 
arrangements of hyperplanes, and, more generally, of hy- 
persurfaces, have received considerable attention, mostly 
during the last two decades; see [2] for a recent survey. 

In this paper we study the so-called many-faces problem 
for arrangements of circles in the plane. More precisely, 
given a set C of n circles in R^ and a set P of m points, none 
lying on any circle, we wish to obtain an upper bound for 
the maximum possible combined combinatorial complex- 
ity of the cells of ,^(C) that contain at least one point of F, 
as a function of n and m. The study of the complexity of 
many faces, and the accompanying algorithmic problem of 
computing many faces, in planar arrangements (as studied, 
e.g., in [3,13]) has several motivations: (i) It arises in a va- 
riety of problems involving 3-dimensional arrangements 
[6,15]. (ii) It is closely related to the problem of bound- 
ing the number of incidences between points and ctirves. 
Informally, in both cases we have points and curves; in 
the case of incidences, the points lie on the curves and an 
incidence is a pair (p,j), where point p lies on curve y. 
In the case of many faces, the points lie "in between" the 
curves, and we are essentially interested in "extended in- 
cidences," involving pairs (p, y), where point p can reach 
curve y without crossing any other curve (i.e., y appears 
on the boundary of the face containing p). The incidence 
problem for points and curves has attracted considerable 
attention in combinatorial and computational geometry. 
The problem of many faces is typically much harder than 
the (akeady quite hard) corresponding incidence problem. 
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(iii) The many-faces problem is the "loosest" (i.e., least 
restricted) of all problems that study substructures in ar- 
rangements. It poses the biggest challenge because there 
is less structure to exploit. Tackling this problem has led 
to the derivation of various tools, like the Combination 
Lemma [20], which are interesting in their own right, and 
have many algorithmic applications (see, e.g., [1] for a re- 
cent such application). 

Previous results. An early paper by Canham [8] initi- 
ated the study of the many-faces problem for line arrange- 
ments. After a number of intermediate results, the tight 
bounds on the complexity of many faces in line and pseu- 
doline arrangements were obtained by Clarkson et a/. [11], 
using the random-sampling technique. This paper and a 
series of subsequent ones, proved near-optimal or non- 
trivial bounds on the complexity of many faces in ar- 
rangements of line segments, circles, and curves in the 
plane, and in arrangements of hyperplanes in higher di- 
mensions; see [2] and the references therein. The cur- 
rently best known bound on the complexity of m dis- 
tinct faces in an arrangement of n circles in the plane is 
0(w-''^n'*^'4'^"''' + n). If all circles are congruent, then the 
bound is 0{m^l^n''-l^a^l^{n)+n)\ here a{n) is the extremely 
slowly growing inverse of the Ackermann's function [20]. 
These bounds were obtained in [11]. 

As mentioned above, the many-faces problem is closely 
related to the incidence problem, which, given a set T 
of curves and a set P of points in the plane, asks for 
bounding the number of pairs (p, y) e P xT such that 
p e y. For example, the tight bounds on the maximum 
number of incidences between points and lines (or seg- 
ments, or pseudolines) are asymptotically the same as the 
maximum complexity of m distinct faces in an arrange- 
ment of n lines, viz., ®{ni^'^n^^^ + m + n) [1\]. (We note, 
though, that the best known bound for the complexity of 
many faces in an arrangement of line segments is slightly 
weaker [5].) The same has been true for arrangements 
of circles (except for the tiny 4"^"'^' factor in the lead- 
ing term), until recently, when Aronov and Sharir [7] ob- 
tained an improved bound on the number of incidences 
between points and circles, showing that this number is 
Oim^'^ri^'^ + ;„6/ii+3£„9/ii-£ + fn + nX for any e > 0. They 
raised the question whether a similar bound can be ob- 
tained for the complexity of many faces in circle arrange- 
ments, which, after the cases of lines, segments, and pseu- 
dolines, is the next natural problem instance to be tackled. 

Our results. In this paper we (almost) answer the ques- 
tion raised by Aronov and Sharir affirmatively. Let C be a 
set of n circles in the plane and P a set of m points. We will 
use K(P, C) to denote the combined combinatorial com- 
plexity of the faces of J?l(C) that contain at least one point 
of P. Set K{m, n) = max K{P, C), where the maximum is 

taken over all families of n circles and all families of m 
points. We prove that K{rn, n) is 

0 [{mn lognf'^ + m^'^^^'n^^^^ + (m + n) log«), 

where £ > 0 is an arbitrarily small constant. 

Let K'{m, n) denote the maximum value of K{P, C) with 
the added assumption that all pairs of circles intersect. 
In this case, we obtain the following improved bound on 
K'(m,n): 

O {{mn \ognf'^ + m^'^n^'^ log^'" n + {m + n) logn). 

If not all pairs of circles intersect, we obtain a bound 
that depends on X, the number of intersecting pairs of cir- 
cles. Let K{m,n,X) = ma\K(P,C), where the maximum 
is taken over all families P of tn points and C of n circles 
with X intersecting pairs. We prove that 

Kim,n,X) = 0(m2/3x'/3l0g2/3„ + ;;,6/n..;f4/n„i/ii 

+ (m + M)lognj, 

where s > 0 is an arbitrarily small constant. This bound 
is nearly the same as the new bound for incidences of [7], 
apart from small, logarithmic factors. 

Our general technique is similar to the one used in [7], 
i.e., we first prove a weaker bound, which is almost op- 
timal for large values of m, by cutting the circles of C 
into "pseudo-segments." Next, to handle small values of 
m, we use a partitioning scheme in the "dual space," de- 
compose the problem into many subproblems, bound the 
complexity for each subproblem using the weaker bound, 
and estimate the increase in complexity as we merge the 
subproblems. However, several new ideas are needed to 
carry out each of these steps. For instance, merging sub- 
problems is trivial for incidences—just add up the bounds 
of each subproblem. In contrast, it is a rather difficult and 
intricate step for face complexities. 

Finally, for the case where all circles in C are congruent 
(the case of "unit circles"), we show that the complexity 
of m distinct faces in an arrangement of n congruent cir- 
cles with X intersecting pairs, is 0(m^'^X''^ + n). This 
bound is asymptotically tight in the worst case, in contrast 
with the same asymptotic upper bound for the case of in- 
cidences, which is far away from the known, near-linear 
lower bound. Note that the improvement here is rather 
marginal—we only remove the factor a(n)''^, appearing 
in the previous bound of [11]. 

The paper is organized as follows. We first prove in Sec- 
tion 2 the bound for congruent circles. Section 3 proves 
the bounds for general circles. We conclude in Section 4 
by discussing a few generalizations and by stating some 
open problems. 
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2   The Case of Unit Circles 
In this section we prove an optimal bound on the maxi- 
mum complexity of many faces in an arrangement of unit 
circles in the plane. We first state the so-called crossing 
lemma (see, e.g., [19]), which we will use to prove the 
main result, as in [7]. A simple graph is said to be drawn 
in the plane if its vertices are mapped to distinct points in 
the plane, and each of its edges is mapped to a Jordan arc 
connecting the points corresponding to the end vertices of 
the edge. We further require that no curve passes through 
any other vertex and that each pair of curves meet a finite 
number of times. A crossing between two curves is a point 
at which their relative interiors intersect transversally. An 
edge-crossing in (the drawing of) the graph is a pair of 
crossing edges. 

Lemma 2.1. Any plane drawing of a simple graph G with 
e edges and n vertices must have D.(e^/n^) edge-crossings, 
provided that e > An. Equivalently, ifG can be drawn in 
the plane with X edge-crossings, then e = 0{n^'^X^I^ + «). 

We now state and prove the main result of this section. 

Theorem 2.2. The combined combinatorial complexity of 
m distinct faces in an arrangement of n unit circles in the 
plane, X pairs of which intersect, is 0(m^/^X^/^ + n). This 
bound is tight in the worst case. 

Proof. Let C be a collection of n unit circles in the plane 
and P a collection of m points marking (lying in the inte- 
rior of) distinct faces in M(C). We aim to bound the total 
complexity K - K(P,C) of the marked faces. Note that 
m = 0(X + n), as the total number of faces in the arrange- 
ment is at most 2X + n+l, since the rightmost vertex of 
every bounded face is either one of the at most 2X arrange- 
ment vertices or one of the n rightmost points of the cir- 
cles, and each point can be used only once in this manner. 
In the remainder of the proof we assume, without loss of 
generality, that the union of the circles of C is connected, 
so X = n(n) and m - 0(X). The analysis can easily be 
extended to the case in which the union is disconnected. 

The analysis begins in a manner similar to that for the 
case of a line arrangement, as presented in [12]. We fix a 
point qe in the interior of every edge e of a marked face. 
For any circle 7 6 C, we distinguish between faces touch- 
ing y "from the inside" and those that touch y "from the 
outside." We construct two separate (multi)graphs G- and 
G+ to encode the two types of occurrences of a circle along 
a face boundary. 

More precisely, suppose that y e C encloses two dis- 
tinct faces /i,/2 in its interior, and appears along their 
boundaries in two respective edges, ei, ez, ofMiC), so thrt 
at least one of the two arcs of y delimited by ^e, and q^^ 
contains no other edge of a marked face enclosed by y; call 
this arc [qe^,qej. We connect the corresponding marking 

points pi,p2 by an edge in G_, drawn as follows; pi is 
connected by a Jordan arc (see below) to qe^, then g^, is 
connected to qe^ by the arc [g^.^esl of y, and finally q^^ 
is connected by another Jordan arc to pz. The Jordan arcs 
connecting the marking point p of a face / to its edges 
are chosen so that their relative interiore lie completely in 
the interior of /, and they do not cross one another. G+ is 
constructed analogously, encoding the edges where faces 
touch a circle on the outside. See Figure 1 for an illustra- 
tion. 

Figure 1; Three edges of the graph G-. The edge (pupt) con- 
necting PI and p2 along the inner side of the circle ji and the 
edge (PA, PS) connecting p4 to ps along the inner side of 73 cross 
at an intersection point of 71 and 72. 

A face-circle incidence is a pair (/, y) where / is a 
marked face and -y is a circle appearing along df. Let 
/ = /(F, C) be the total number of such incidences—^note 
that it may in general be strictly smaller than K = K(P, C), 
as it does not count multiple appearances of the same cir- 
cle along a face boundary. Nevertheless, we have K < 21, 
since the complexity of a single face in an arrangement 
of circles is at most 2€ - 2 if € distinct circles appear 
along its botmdary [20, Theorem 5.7]. To summarize, 
/ < X^ < 2/, so we will somewhat freely switch between / 
and K (whenever it is safe to do so). 

Let 7 be a circle in C. We denote by a-- = 
(sj, sj,..., s~) the circular sequence of marked faces that 
lie in the interior of y and such that y appears on their 
boundary, in the order that these boundaries appear along 
y, say in clockwise direction, with the additional provi- 
sion that a maximal "run" of repeated appearances of the 
boundary of the same face along y with no intervening ap- 
pearances of other marked faces (enclosed by y) is com- 
pressed in o-_ to a single symbol. We assume that y ap- 
pears on the boundary of at least three distinct marked 
faces enclosed by it (the remaining circles contribute at 
most 2n to the overall "inner" face-circle incidence count, 
and can thus be ignored). We denote by o-+ the analogous 
sequence of faces that lie in the exterior of y, provided that 
at least three distinct marked faces appear there. 

The combined length of the sequences o-_, (r+, over all 
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circles y, is exactly |G_| + |G+| < K, since, by construction, 
each graph edge represents the "connection" between the 
occurrences of two different consecutive faces along y and 
thus is also equivalently encoded by a pair of consecutive 
elements in the corresponding sequence cr-,cr+. On the 
other hand, the number of distinct symbols appearing in 
each sequence, summed over all sequences, is exactly / > 
KI2, so it is sufficient to obtain an upper bound for |G_| + 
|G+|. 

The analysis of Clarkson et a/. [11] implies that the 
multiplicity of any edge of G_ is at most two. Ac- 
tually, a stronger property holds: It is impossible for 
two distinct faces to touch three distinct unit circles on 
their interior sides. Hence, Lemma 2.1 implies that |G_| 
is 0{rrP-^^x]!^ + m), where X_ is the number of edge- 
crossings in G-. Since by construction an edge-crossing 
in G_ is also a crossing of a pair of circles in C and no 
two edge-crossings can use the same intersection point 
of the same pair of circles, it follows that X- < 2X and 
\G-\ = Oim^l^X^I^ + m) = Oim^'^X^'^) (the latter estimate 
follows from the fact that m = 0{X)). 

Handling the graph G+ is somewhat more involved. It is 
shown in [11] that G+ can be manipulated as follows. We 
first disregard the faces of the arrangement that lie out- 
side all circles of C, if any of them are marked, because 
they can contribute at most 6n - 12 (for n>3)toK [18]. 
Each remaining marked face is enclosed by at least one 
circle of C and thus has diameter at most 2. We over- 
lay the arrangement of the circles of C with the unit grid. 
Each circle meets the grid lines at most 8 times, so the 
total number of circle arcs of the form [9^,, g^z] that are 
part of the drawing of G+ and are met by the grid lines is 
at most 8n—we remove the edges corresponding to these 
arcs from G+. It can now be shown (adapting the anal- 
ysis given in [11]) that in what remains of G+ the edge 
multiplicities are all bounded by a constant, so we can ap- 
ply an analysis similar to that above to conclude that |G+|, 
and thus also the overall face-circle incidence count, are 
0(m^'^X^'^ +m + n) = Oim^'^X^'^ + n) (the latter estimate 
follows, as above, from the fact that m = 0(X)). This 
completes the proof of the bound asserted in Theorem 2.2. 

To see that the bound is tight in the worst case, take an 
arrangement of n lines which has m faces whose combined 
complexity is 0(m^^^n^^^+n) (see [19] for details). We can 
then "bend" the lines slightly into large but congruent cir- 
cles without changing the combinatorial structure of any 
face. This shows that the bound is worst-case tight when 
X = ©(n^). For smaller values of X, put k = In^/X], 
and take k copies of the preceding construction, placed far 
away from each other, each involving n/k circles and m/k 
faces, of combined complexity (within a single copy) 

%T) U) '-kj- 
Together, we have n congruent circles and m faces in their 

arrangement. The number of intersecting pairs is at most 
k-(n/k)^ = X, and the overall complexity of all the marked 
faces is 

2/3 „ ^2/3„2/3 
+ n 

^1/3 

= e(n?'^X^'^+n). 

3   The Case of General Circles 
Let C be a set of n circles in the plane with X intersect- 
ing pairs, and let P be a set of m points, not lying on any 
circle. In this section, we obtain a bound on K{P, C). The 
proof proceeds in three stages. We first cut the circles in 
C into pseudo-segments. Next, we use the known results 
on the complexity of many faces in arrangements of pseu- 
dolines and the so-called Combination Lemma, to bound 
K(P, C). This bound is near-optimal for large values of 
m, but is weak for smaller values. Finally, we use a dif- 
ferent technique (based on decomposing the problem into 
smaller subproblems via cuttings in dual space) to improve 
the bound for small values of m. 

3.1   Cutting circles into pseudo-segments 
A planar collection F of bounded Jordan arcs (resp., un- 
bounded Jordan curves, each separating the plane) called 
a family of pseudo-segments (resp. pseudolines) if every 
pair of them intersects in at most one point, where they 
cross each other. Tamaki and Tokuyama [21] had shown 
that a set of "pseudo-parabolic" arcs can be decomposed 
into 0{n^l^) pseudo-segments. The following improved 
bound is due to Aronov and Sharir [7], 

Lemma 3.1. Any n circles in the plane, with X intersect- 
ing pairs, can be cut into C>(n''^"^X"^^'^ + n) x-monotone 
pseudo-segments, for any arbitrarily small constant B > 0. 

If every two circles intersect each other, an improved 
bound has recently been obtained by Agarwal et a/. [4]. 

Lemma 3.2. Any n pairwise-intersecting circles can be 
cut into 0{n*^^) x-monotone pseudo-segments. 

A collection F of x-monotone pseudo-segments is 
called extendible if each arc can be extended to an un- 
bounded x-monotone curve (the graph of a totally defined 
continuous function), so that the resulting collection is a 
family of pseudolines. In general (even for circular arcs), 
pseudo-segments need not be extendible; see Figure 2 (i) 
for an illustration. Nevertheless, Chan [9] showed that if 
we store a collection F of x-monotone pseudo-segments in 
a segment tree and split each of them into up to 0(log n) 
pieces, according to the way it is stored in the tree, the re- 
sulting collection of subarcs forms a family of extendible 
pseudo-segments; see Figure 2 (ii). Combining this result 
with Lemmas 3.1 and 3.2, we obtain the following. 
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Figure 2: (i) Three pseudo-segments that are not extendible. 
(ii) Decomposing them into extendible pseudo-segments in a 
segment-tree fashion; dotted lines denote (roughly) the endpoints 
of the atomic intervals of the tree, at which the extension of the 
pseudo-segments to pseudolines takes place. 

Corollary 3.3. Any set C ofn circles in the plane, with X 
intersecting pairs, can be cut into 0(n'/^~®X'/^**+n log n) 
extendible x-monotone pseudo-segments, for any arbitrar- 
ily small constants > 0. If every pair of circles in C inter- 
sect, then the bound can be unproved to 0(n*^^ logn). 

3.2   A weaker bound 

Using Lemma 3.1, we cut the circles in C into a set of 
x-monotone pseudo-segments and then use Chan's pro- 
cedure to cut them fiirther into a set T of N extendible 
pseudo-segments. By Corollary 3.3, N - 0{n^l'^~^X^I^*^+ 
nlogn). Obviously, K(P,C) < KiP,r). 

Chan's procedure constructs a segment tree T on the 
initial collection of pseudo-segments. For a node v € 7", 
let (Tv be the vertical strip associated with v. By slightly 
displacing the points of P, and/or by slightly rotating the 
coordinate frame, we may assume that no point of P Ues 
on a strip boundary. Let Fy be the set of pseudo-segments 
(clipped within a-y) stored at v. The endpoints of all arcs 
in Fy lie on the boundary of 0-^; see Figure 2 (ii). Set 
Pv = Pn o-y, Bv = IFvl, and niy = |Pv|. Let Xy be the 
number of intersecting pairs in Ty. 

^(P,r) 

mr}»)  V, K(p,r,) 

A'(i»r*)) 
IIc^ 

Figure 3: Using the segment tree T to generate subproblems 
from the initial (P, F); the rotated tree on the left shows how the 
various subproblems are merged together. 

Consider the arrangement SKTy). A face of ^(r„) that 
is marked by any point otP\Py must be the (unique) un- 
bounded face of MlFy), and the complexity of this face 

is 0(A3(ny)) = 0(nMnv)) [20]. Therefore, ^(F.Fv) = 
0(nvainv)) + KiP^, Ty). From the point of view of Py, 
we can regard Fy as a family of pseudolines, viewing the 
boundaries of <ry as "vertical lines at infinity." (We may 
assume that no point of P hes in the unbounded face, since 
this face has already been taken into account.) By adapt- 
ing the results and the proof technique in [12], similar to 
the way in which they have been exploited in the preced- 
ing section, we have K(Py, Fy) = Oimf^xl'^ + %), which 
implies that 

KiP.Fy) = 0{mf^Xl'^ + nMriy)). 

Let Vh denote the set of all nodes of T" at a fixed level 
h; see Figure 3. Since the strips spanned by these nodes 
are pairwise (openly) disjoint, we have ^y^Vn '"v = m. Put 
r<« = Uv€% r„ NH = p»\ - Even «« andx* = E^y^ Xy. 
The disjointness of the strips a-y, for v e Vh, implies that 

^(p,r(»)<2^(p,rv). 

Indeed, since each arc of F^*' lies within one strip ay, for 
V € Vh, it follows that J^(I^*>) n tr^ = ^(Fv) for any v € 
Vh, and every edge of SVp^*) lies within a single strip. 
Let / be a marked face in ^(F®), and let e be an edge 
of /. If e lies in a strip o-^, then e e M(Ty). Moreover 
Fy c I^*), therefore e lies in a face of M(Xv) marked by 
a point of P (which needs not lie in the same strip as e). 
Consequently, e is counted by X^(P,Fv), thereby implying 
the above equality. 

Using Holder's inequality, we have: 

^(P,I<») = 2 Oiml'^Xl'^ + nya(ny)) 

o i^myf'HYjXvf'^ + NhaM 
\ veVk V€VA 

= Oim^'^xl'^ + Nnain)). 

We now overlay the marked faces in 
^(F<«),J1(F<«),...,J51(F<fl), where f = O(logn) is 
the number of levels in T, and estimate the complexity of 
the marked faces in their overlay, using the combination 
lemma of Edelsbrunner et al. [13], which provides an 
upper bound on the complexity of marked faces in an 
overlay of two arrangements of line segments. A close 
inspection of the proof of [13] shows that it also holds 
for arrangements of extendible pseudo-segments. We 
state the lemma for extendible pseudo-segments without a 
proof (which is easily derivable from the analysis in [13]). 

Lemma 3.4 (Combination Lemma [13]). The complex- 
ity of the faces marked by m points in an overlay of two 
arrangements of a total ofN (extendible) pseudo-segments 
is at most 0{m + N) plus the sum of the complexities of the 
faces containing the marking points in each of the two ar- 
rangements. 
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In view of the above lemma, 

< K(P, [J r<''') + K(P,[JI<''A + 0(m + N). 
h=\ /i=f/2+l 

Since ^ = 0(log n), the depth of the merge tree depicted 
on the left-hand side of Figure 3 is O(loglogn). Note that, 
by definition, 2;, Nh = A^. Moreover, we have 2A ^h ^ 
2X, which follows from the fact that any intersection point 
between two circles is counted at most once in the left- 
hand side. Hence, we obtain the following estimate. 

K{P, C)<YJ K{P, r^'"') + 0{m \ogn + N log log n) 
h=\ 

= YjOim'^'^Xl'^ + Nha{n)) 

+ 0{m \ogn + N log log n) 

= Oim^'^X^'^ log^^^ n + m log n + A^ log log n). 

By substituting the value of N in the above equation, by 
bounding X by n^, and by letting the factor n^ subsume 
the factor log log n), we conclude the following. 

Theorem 3.5. The maximum complexity of m distinct 
faces in an arrangement ofn circles in the plane is 

K(m, n) = 0{(mn \ognf'^ + n^''^^" + m logn), 

for any £ > 0. 

If every pair of circles intersect, then, by Corollary 3.3, 
A^ = 0{n'^^^ logn). We thus obtain the following: 

Theorem 3.6. The maximum complexity of m distinct 
faces in an arrangement ofn pairwise-intersecting circles 
in the plane is 

0{{mn log nf'^ + n*'^ log n log log n + m log n).     (1) 

3.3   An improved bound 
In Theorem 3.5, the term n^^^+^ becomes dominant when 
m is smaller than roughly n^l^. In order to obtain an im- 
proved bound for small values of m, we (i) choose a pa- 
rameter r, depending on the values of n and m, (ii) parti- 
tion C into O(r^) subsets, each of size at most nir', so that 
the points of P lie in at most mjr distinct faces of the ar- 
rangement of each subset, excluding faces in the common 
exterior or in the common interior of the circles in the sub- 
set, (iii) use Theorem 3.5 to bound the complexity of the 
faces in question in each subarrangement, and (iv) analyze 
the cost of overlaying all the subarrangements. Although 
this technique is similar in spirit to an analogous approach 
used in [7] for the case of incidences, it is considerably 
more involved when analyzing the complexity of many 
faces. 

Cuttings. Although the following discussion holds in 
any dimension d, we only need it for d = 3, so, for sim- 
pHcity, we confine the discussion to the three-dimensional 
case. 

Let // be a set of m planes in R^, and let 5 be a set of n 
points in R^. For a simplex A, we use HA c H to denote 
the set of planes that cross (meet the interior of) A, and S^ 
to denote 5 n A. Set WA = \HA\ and WA = |5A|. Let kA be 
the number of vertices of MiH) that lie inside A. 

Let 1 < /■ < /n be a parameter and A a simplex. A 
simplicial subdivision H of A is called a (1 /r)-cutting of 
H (with respect to A) if at most m/r planes of H cross 
any simplex of E. We will use Chazelle's hierarchical cut- 
tings [10] to compute a (l/r)-cutting S of H, but with the 
additional twist that each simplex of the cutting contains 
at most n/r^ points of S. We sketch the procedure for 
computing such a cutting. 

We choose a sufficiently large constant ro and set 
V = [log^ii rl. We compute a sequence of cuttings 
Eo, E],... Ey = E, where E,- is a (1 /rj,)-cutting of H and 
each simplex of E, contains at most n/ i^' points of 5. Eo is 
simply A itself. Suppose we have computed EQ, ..., E,_i. 
Let T be a simplex of E,-i. If wz^ < /n/rf,, we add T to E;. 
Otherwise, we compute a (l/ro)-cutting S[ of Hj (within 
T) of size c(r^ + (kr/ml)r^), for some absolute constant 
c > 1), as proposed by Chazelle [10], and add the sim- 
plices of ST to E,-. Finally, if a simplex of S,- contains 
more than n/r^' points of 5, we partition it further into 
subsimplices, so that each resulting simplex contains at 
most n/r^' points. The last step adds a total of at most r^' 
simplices. 

It is obvious that Ey is a (l/r)-cutting of H. As for the 
size of E„ we have, using the fact that ^T ^T ^ nt^, 

|E,l<r^' + |S,.,l+    X   ^fo + ^'-o) 
Te=.,-i 

"ir>m/r|, 

<il+crl)\E,.i\ + crl' 1+r; kr 

<(l+crly\Eo\ + c{\ + ri)Yj'o 

< c'r'o' (2) 

for an appropriate constant c' (which also depends on ro). 
Since |So| = 1 and v = | log^,, rl, a simple calculation 
shows that the size of the final cutting, S, is 0(r^).' 

Problem decomposition. Returning to the problem of 
bounding K(P, C), we use the above cutting to decompose 

' If we do not require each simplex of Ey to contain at mo.st n/r^ 
points, then the size of the cutting will be Oir^*"^ + ik^/m^)i^), as proved 
by Chazelle. 
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the problem of estimating KiP, C) into subproblems, each 
involving appropriate subsets of P and C. We use the 
standard lifting transformation, as in [7], to map circles 
to points, and points to planes, in R^: A circle y of ra- 
dius p and center (a, b) in the plane is mapped to the point 
Y* = (a,b,a^ + lp- -fp-) € E', and a point p{^,ri) in the 
plane is mapped to the plane p*: z = 2^x+Irjy - (f^ + tf) 
in E'. As is easily verified, a point p lies on (resp., inside, 
outside) a circle y if and only if the dual plane p* contains 
(resp., passes above, below) the dual point y*. Let P* de- 
note the set of planes dual to the points of P and let C* 
denote the set of points dual to the circles of C. No three 
planes of P* pass through a common line, as all planes of 
P* are tangent to the paraboloid 11: z = :^ + y^. 

Applying the above cutting procedure to P*,C*, and to a 
sufficiently large simplex that contains C* and all vertices 
of Sl(P*), with a value of r that will be fixed later, we 
obtain a (l/r)-cutting 3 so that, for every simplex A € H, 
we have |Py < m/r and |C*| < n/r^; put m^ = |F^| and 
lA = \C*J. For a simplex A € S, let CA be the subset 
of circles in C that are dual to the points of C^, and let 
FA denote the set of points of P dual to the planes of P*^. 
We have 2A "A = n. We define similar quantities for the 
intermediate cuttings 3,-. 

For a point p not lying on any circle in C, let fp denote 
the face of MiC) that contains p. For a subset P' c P 
and a subset C c C, we define /(P', C) to be the number 
of pairs (p, y) e P' x C such that an arc of 7 appears 
on dfp. Note that fp is defined as a face of M(C) and 
not as a face of MiC); it is in fact a subset of the face 
of M(C') that contains p. Clearly, I(P, C) is the same as 
defined in Section 2, As in the case of unit circles, we 
have I(P C) < K(P, C) < ll(P, C). (Note, though, that this 
inequality need not hold when passing to subsets P' c P, 
C c C) It therefore suffices to bound I{P, C). 

Bounding I(P,C). We will follow the notation intro- 
duced earlier for computing a (l/r)-cutting. By defini- 
tion, the quantities I(P', C) are additive, in the following 
sense:^ 

/(P, C) = YJ «^A, CA) + /(P \ PA. CA)) . (3) 
AeH 

Instead of bounding the right-hand side directly, we 
use a recursive approach, using the fact that S was con- 
structed hierarchically by computing a sequence of cut- 
tings Ho, Si,...,3y = S. We first prove the following 
lemma. 

Lemma 3.7. Let Abe a simplex in one of the cuttings S,-. 
Let F c Pbea subset of the marking points. Then I(P' \ 
fA,CA)^0(n + BA). 

*In contrast, the quantities K(P, C) are in general not additive, and 
they have to be combined by using a combination lemma, ^ in the pre- 
ceding subsection; see [20] for details. 

Proof. For any point p € P' \ PA. the dual plane p* does 
not intersect the simplex A. If p* Ues below (resp. above) 
A, and therefore below (resp. above) all points of C'^, then 
p lies in the common exterior (resp. common interior) of 
the circles in CA. Let E denote the set of edges in these 
faces of ,?1(CA); we have \E\ = 0(n^) [20]. af the com- 
mon interior is nonempty, both the common interior and 
the common exterior are connected, so they constitute two 
faces of M(Ci). Otherwise, the common exterior need 
not be connected, but all its faces together have at most 
6nA -12 edges [18].) We construct a planar bipartite graph 
G whose nodes are the points of P' \ PA on one side, and 
the edges of E on the other side. We connect a point p to 
an edge e by an arc of G if c appears on dfp in the full ar- 
rangement Sl(C), drawing the arc within fp, so that no two 
arcs intersect. By construction, G is a simple embedded 
planar graph, so the number of its edges is 0(\P'\ + JIA), 

which is clearly an upper bound for I(P' \ FA, CA) (the 
number of edges of G may be larger because a circle may 
appear along the boundary of a face fp along more than 
one arc of E). n 

Therefore, applying (3) to Si, we have 

/(F Q < 5] WPA, CA) + HP \ FA. CA)) 
A€E, 

< J] /(PA, CA) +J^a(m + «A) 
A€Ei A€2, 

(by Lemma 3.7) 

- Z (Z 'f''" <^-> + ^(FA \ Pr, Cr)) 
A ^3 -,« ' AeSi TsH? 

+ ain + c'l^m), 

where a is the constant provided in Lemma 3.7, and c' is 
the constant defined in (2). Setting a' = ac'rl and using 
Lemma 3,7 again to bound /(PA \ Pr, C^), we obtain 

/(P.C) < T \I(Pr,Cr) + a(nr + —)| + an + a'm 

< 2 /(FT, Cr) + Ian + a'mil + j|). 
Tea2 

because STIT = « and \s.z\ 5 c'r^. Continuing in this 
manner and recalling that for any simplex T e 3j_i, nir < 
m/r^' and that |3j| < crl^, J^gs, % = n, we obtain 

i-l 
/(P, C) < 2 liPr, Cr) + tan + a'm J) rj^' 

res, J=0 

^J^liPr,Cr) + Oinv + mrf) 

= YjliPr,Cr) + Oinlogr + mt^),        (4) 
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because Sy  =  S and v  =   Tlog^ii n.   Next, we bound 

Lemma 3.8. For any T 6 E, 

I(PT, CT) < 2m/r + In^ + K{Pr, Cj). 

Proof. Let F be the set of faces of ^(Cr) that contain a 
point of Pj. Let / be a face in F that contains rrtj > 0 
points of Pj, say pi,... , p^j- The corresponding regions 
fpj, for j = I,... , nif, are pairwise-disjoint connected re- 
gions within / (because each face of J7I(C) is assumed to 
contain at most one point of P). Suppose df has ^f con- 
nected components. For each connected component, we 
choose a point qj, I < j < ^f that lies in the comple- 
ment of / bounded by that component. We decompose 
each connected component of df into maximal connected 
portions, so that each portion overlaps with the boundary 
of a single face fp. of SiiC); such a portion might ap- 
pear on dfp. in many disconnected pieces; see Figure 4. 
Let 7i,..., fh^ denote the resulting partition of df. Then 
the points of K lying in / contribute at most hf + \f\ to 
7(PT. CT), where |/| is the number of edges in df. Hence, 

KPr, Cr) < Yjihf + I/I) = K(Pr, Q) + ^j ^f- 
f€F feF 

Figure 4: Construction of the bipartite graph to bound /(P,-, C^) 
within a single face of J^(CT); small white circles denote the 
partition of df into 71,72  

In order to bound hf, we construct a planar bipartite 
graph whose vertices are the points pj, for _/ = 1,..., wi/, 
on one side, and the points qj, for j = 1,... ,f/, on the 
other side. For each 7/, if ji is a portion of the 7th con- 
nected component of df and overlaps with fp., we connect 
Pi to qj by an edge; we draw the edge as an arc passing 
through 7/; see Figure 4. This can easily be done so that 
these edge drawings are pairwise disjoint (except at their 
endpoints). Hence, the resulting graph is planar and has 
no faces of degree two (although there may be multiple 
edges between a pair of vertices), hence, the number, hf, 
of edges in the graph is at most 2(m/ + ^/) - 4. 

The points of FT are partitioned among the faces of F, 

so 2/eF mf = mr< m/r. Moreover, E/efC^/-1) ^ |CTI = 
rir. Indeed, f/ - 1 is the total number of "islands" (inner 
boundary components) inside the face /, and a circle can- 
not belong to more than one island. This completes the 
proof of the lemma. D 

Substituting the bounds from Lemma 3.8 and Theo- 
rem 3.5 in (4) and using that fact that m^ < m/r, n^ < n/r^, 
and |H| = O(r'), we obtain 

I{P, C) = YJO {(nirnr log nf'^ + n'J'^*'' + m^ log n 
reE 

+ mr^ + n log r\ 

= 0{(mn\0gnf'h'^^ + „3/2+7;.3/2+3. 

+ mr^ log n + n log n. 

Choose r = fn''"/"!^'"] • For this value of r, mr^ > 

{nlrfl^ only when m < n''^, in which case K{m, n) = 
0{n). Using this and substituting the value of r, and in- 
cluding the bounds obtained when r does not fall into the 
required range, we have 

I{P,C) = 0[{mn\0gnf''^ + m^'^^*^n^'^^ + (m + M)logn), 

for any e > 0. Putting everything together, we obtain the 
following main result of the paper. 

Theorem 3.9. The maximum combined complexity of m 
distinct faces in an arrangement ofn arbitrary circles in 
the plane is 

0[(mnlognf'^ + m*"'+V/" + (m + n)logn), 

for any arbitrarily small constant e> 0. 

We can extend Theorem 3.9 to obtain an upper bound 
for K{m, n, X), which takes into account the number X of 
intersecting pairs of circles in C. Here is a sketch of the 
analysis: Put s = \n^/X'\, and construct a (l/s)-cutting of 
Sl(C) that consists of 0{s + s^X/n^) = 0(s) cells, each 
crossed at most n/s circles (see, e.g., [17]). We apply 
Theorem 3.9 to bound the complexity of the marked faces 
within each cell, add up the resulting complexity bounds, 
and also add the complexity of the zones of the cell bound- 
aries to account for faces not confined to a single cell (as 
in [11]). This leads to the following result. 

Theorem 3.10. The maximum complexity of m distinct 
faces in an arrangement of n arbitrary circles in the 
plane with X intersecting pairs is 0(/n^'^X'^^log^'^n + 
^6/n+£^4/n^i/ii ^ (m + n) log n), for an arbitrarily small 

constant e > 0. 

The case of pairwise intersecting circles can be handled 
in a similar manner, using Theorem 3.6 to substitute the 
value of K{Pr, Cj) in (4). Omitting the straightforward 
details, we obtain: 
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Theorem 3.11. The maximum complexity of m dis- 
tinct faces in an arrangement of n arbitrary pairwise- 
intersecting circles in the plane is 

O {(mn log nf'^ + OT'/2„5/6 ^^^H „ + (^ + „) jgg „J 

4   Conclusion 
In this paper we extended the analysis of [7] to obtain al- 
most the same asymptotic bounds for the complexity of 
many faces in circle arrangements. In addition to the ma- 
chinery developed and used in the preceding paper, our 
analysis involves the following ingredients: 

(i) We have shown that cutting the circles of C into a col- 
lection of pseudo-segments facilitates the application 
of the crossing lemma to derive the first bound on 
Kim, n)— a considerably more involved step than in 
the case of incidences. 

(ii) The use of the face-circle incidence count I(m, n), 
instead of the face complexity Kim, n) was instru- 
mental for combining bounds for subproblems into a 
global bound. We believe that this idea can be useful 
in attacking other similar problems. 

This paper raises many open problems. We mention two 
of the more obvious ones: 

• Can one improve the upper bound, given in The- 
orem 3.9, on the complexity of many faces in an 
arrangement of arbitrary circles? (Of couree, one 
should first aim at improving this bound for inci- 
dences!) 

• Can the ideas developed here be applied to obtain an 
alternative derivation of the bound of [5] for the com- 
plexity of many faces in an arrangement of Une seg- 
ments? 
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