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Agenda 

■ Monday 
■ September 2,2002 

Room: Auditorium 

8:00am-10:00am 
NLMA ■ Temporal Fiber Solitons 
Stefan Wabnitz, Xtera Communications, Inc., 
United States, Presider ^jfflBfflB^ 

NLMAl      8:00am mms^ 
Is soliton communications really beneficial in presence 
of polarization mode dispersion? M. Karhson, C. Xie, H. 
Sunnerud, P. A. Andrekson, Chalmers Univ. of Tech., Sweden. 
We discuss and review the impairments from random 
birefringence and PMD on soliton systems, including timing 
jitter coming from PMD and WDM-collision-induced 
polarization scattering. 

NLMA2      8:30am 
Phase-locked soliton pairs in a fiber ring laser, Ph. 
Grelu, P.Belhache, F.Gutty, Univ. deBourgogne, France;}. M. 
Soto-Crespo,Instituto de Optica, Spain. 
We have experimentally observed the formation of stable 
pulse pairs with a 7t/2 phase difference in a passively mode- 
locked stretched-pulse fiber ring laser. We have developed a 
simplified theoretical model that, keeping the essential 
features of the experiment, reduces greatly the number of free 
parameters and solved it numerically. The agreement with the 
experimental results is excellent. 

NLMA3      8:45am 
Observation of soliton explosions, Steven T. Cundijf, Natl 
Inst. of Standards and Tech. and Univ. of Colorado-Boulder, 
USA;]. M. Soto-Crespo,C.S.I.C., Spain;NailAkhmediev, 
Australian Natl Univ., Australia. 
We show, experimentally and numerically, that Tiisapphire 
mode-locked lasers can operate in a regime in which they 
produce exploding solitons. In stable conditions of operation 
all explosions have similar features, but are not identical. 

NLMA4      9:00am 
Temporal soliton compression in beta-barium borate, S. 
Ashihara, T. Shinnira, K. Kuroda, Univ. of Tokyo, Japan. 
We present the temporal soliton compression of femtosecond 
pulses in quadratic media, where cascade quadratic 
nonlinearity and normal dispersion contribute for compres- 
sion. Compression factor of 3 is achieved by using -30 mm 
long beta-barium borate. 

NLMA5      9:15am 
Nonrecursive multiple shock formation via four-wave 
mixing: Theory and experiment, S. Trillo, Univ. ofFerrara, 
Italy; F. Gutty, G. Millot, Univ. de Bourgogne, France. 
We show theoretically and experimentally that a beat signal 
propagating along a normally dispersive fiber can trigger the 
formation of muhiple shocks. This phenomenon critically 
depends on the input frequency separation and power of the 
beat signal. 

NLMA6      9:30am 
Importance sampling for noise-induced amplitude and 
timing Jitter in soliton transmission systems, R. O. 
Moore, Brown Univ., USA; G. Biondini, Ohio State Univ., USA; 
W. L. Kath, Northwestern Univ., USA. 
We apply importance sampling to the Monte-Carlo simula- 
tion of low-probability amplitude and timing jitter events 
produced by amplified spontaneous emission noise in a 
soliton-based lightwave transmission system. 

NLMA7      9:45am 
Complete characterization of milliwatt peak power 
picosecond pulses at 10 GHz propagating over 300 km 
in a fiber recirculation-loop. Marc Hanna, Pierre-Ambroise 
Lacourt, GTL-CNRS Telecom, France; John M. Dudley, Jean- 
Pierre Goedgebuer, Univ. de Franche-Comti, France. 
Frequency resolved optical gating using a novel fiber-based 
wavelength conversion geometry is used to characterize the 
intensity and phase evolution of milliwatt peak power pulses 
propagating over 300 km in an optical fiber recirculation 
loop. 



Room: Auditorium 

10:30am-12:30pm 
NLMB ■ Spatial Solltons and Spatlo-Temporal 
Effects 
Mordechai Segev, Technion Israel Inst. of Tech., 
Israel, Presider ^ifflMB^ 

NLMBl      10:30am (Invited) 
Nonlinear X-waves: A new perspective for space-time 
localization, S. Trilh, INPMani Univ. ofPerrara, Italy; C. 
Conti, INPU, Italy; P. Di Trapani, O. Jedrkiewicz, J. Trull, 
INPMand Univ. oflnsuhria, Italy; G. Valiulis, Vilnius Univ., 
Lithuania. 
Nonlinear and normally dispersive media support a novel 
form of space and time 3D localization of light in the form of 
so-called X-waves. We discuss their properties and their 
evidence in second-harmonic generation experiments. 

NLMB2      11:00am 
Induced Group-Velocity DIsperelon In Second-Harmonic 
Generation: a Route to Ll^t Bullets, K. Beckwitt, Y.-P. 
Chen, P. W. Wtse, Cornell Umv.,USA; T. Wang, H. Zhu, L. 
Qian,Pudan Univ., China. 
We show that in phase-mismatched second-harmonic 
generation, an effective group-velocity dispersion is induced 
at the second-harmonic frequency. In quasi-phase-matched 
structures this allows for temporal soliton formation and 
therefore facilitates the formation of 3-D spatiotemporal 
solitons. 

NLMB3      11:15am 
Snake Instability of the 2+lD spatio-temporal bright 
soliton stripe, N. Roig, S.-R Gorza, Ph. Emplit, M. 
Haelterman, Univ. Libre de Bruxelles, Belgium. 
We demonstrate experimentally the snalce instability of the 
bright soliton stripe in the 2+lD hyperbolic nonlinear 
Schroedinger equation. The instability is observed on a 
spatially extended femtosecond pulse propagating in a 
normally dispersive self-defocusing semiconductor planar 
waveguide. 

NLMB4      11:30am 
Observation of seif-slmliar nonlinear wave collapse, 
K.D. Moll, Alexander, L. Gaeta, Cornell Univ., USA; Gadi 
Pibich, Tel Aviv Univ., Israel. 
We show that during self-focusing induced collapse of a laser 
beam, the spatial profile evolves into the same cylindrically 
symmetric shape, known as the Townes soliton, regardless of 
the shape of the input beam profile. 

NLMB5      11:45am 
3D mapping of seif-focussed llgiit pulses, Stefam 
Minardi GiovanniBlasi, Paolo Di Trapani, INPMand Univ 
degli Studi dell'Insubria, Italy; Arunas Varanavicius, Gintaras 
Valiulis, Algis Piskarskas; Vilnius Univ.,Lithuama. 
By exploiting a cross-correlation technique, we were able to 
investigate the space-time structure of the parametric spatial 
solitons excited by picosecond light pulses. Temporal effects 
that a simple 2D model cannot explain are discussed. 

NLMB6      12:00pm 
Symmetry-breaking Instability of multlmode vector 
solltons in Kerr media, C. Camhoumac, Thibaut Sylvestre, 
Herve Maillote, Universite de Pranche-Comte, Prance; Bruno 
Vanderlinden, Pascal Kockaert, Philippe Emplit,Marc 
Haelterman, Univ. Libre de Bruxelles, Belgium. 
We show experimentally that the two-component two-hump 
vector soliton exhibits a sharp left-right symmetry-breaking 
instability in Kerr media. The experiment is performed using 
molecular re-orientation in CS^and the opposite circular 
polarization states of light as the two components of the 
vector soliton. 

NLMB7      12:15pm 
Skewed colierence along space-time trajectories In 
parametric generation processes, Aittonio Picozzi,Univ. 
de Nice-Sophia Antipolis, Prance; Marc Haelterman, Univ. Libre 
de Bruxelles,Prance. 
Considering the spatio-temporal problem of the parametric 
generation process, we show theoretically that the down- 
converted fields exhibit, as a general rule, a hidden coherence 
characterized by skewed coherence lines along specific space- 
time trajectories. 

Room: Auditorium 

2:00pm-4:00pm 
NLMC ■ Nonlinear Fiber Optics and Pulse 
Propagation 
Marc Haelterman, Univ. Libre de Bruxelles, 
Belgium, Presider 

NLMCl      2:00pm (Invited) 
What Is the role of modulational Instability In ultra-high 
repetition rate pulse generators based on passive and 
active fiber cavities? Stephane Coen, Univ. Libre de 
Bruxelles, Belgium. 
We study experimentally the role of modulational instability 
in two classes of devices that are commonly called 
"modulational mstability lasers". For one of them, this 
denomination is found to be misleading. 

NLMC2     2:30pm 
Temporal modulational instability controlled by pulse 
envelope dynamics, Domenico Salerno, Univ ofMilano, 
Italy; Jose Trull, Paolo Di Trapani, INPM and Univ. degli Studi 
dell'Insubria, Italy; Gintaras Valiulis, Vilnius Univ., Lithuania; 
S. Trillo, C. Conti, INPM, Italy. 
In second harmonic generation, temporal splitting into a 
train of solitons is observed owing to modulational instability 
seeded by a self-induced pulse-envelope modulation. 



NLMC3      2:45pm 
Generation of entanglement between frequency bands 
via a nonlinear fiber propagation and a spectral pulse 
shaping, F. Kannari, D. Fujishima, K. Ohio, M. Sakurama, 
Keio Univ., Japan; M. Sasaki, M. Takeoka, Comm. Res. Lab., 
Japan. 
A novel fiber-based scheme for generating quadrature 
entanglement between a desired pair of frequency bands is 
proposed. The scheme is based on a nonlinear fiber, a spectral 
pulse shaper, and an adaptive feedback loop. 

NLMC4      3:00pm 
Experimental observation of modal attraction In 
optical fibers, Stephane Pitois, Guy Millot, Univ. de 
Bourgogne,France; Marc Haelterman, Univ. Libre de Bruxelles, 
Belgium. 
We investigate experimentally nonlinear optical attractors 
based on four-photon mixing interaction of 
counterpropagating waves in optical fibers. 

NLMC5     3:15pm 
Nonlinear optical properties of As-Se fiber, R.E. Slusher, 
Lucent Tech., USA; J.S. Sanghera, LB. Shaw, I.D. AggarwaJ, 
NRL, USA. 
Large optical Kerr nonlinearities in low linear loss As-Se glass 
fibers are shown to have potential for ultra-fast, low power, 
all-optical processing applications. Nonlinear phase shifts 
near pi radians are demonstrated in fibers only 60 cm long. 

NLMC6      3:30pm ^BBnSfc 
Slow light, fast light, and optical solitons in structured 
optical waveguides, Robert W. Boyd, John E. Heebner, Univ. 
of Rochester, USA. 
We describe the exotic optical properties of a device consist- 
ing of a sequence of optical microresonators coupled to an 
optical waveguide. This device can display slow or fast group 
voelocities of propagation, large tailored dispersion, and the 
propagation of optical solitons. 

Room: Lower Level Foyer 

4:00pm-6:00pm 
NLMD ■ Poster Session: 1 

NLMDl 
Nonlinear transmission in photonic crystal 
waveguides: Optical switchers and diodes, Sergei F. 
Mingaleev, The Australian Natl. Univ., Australia and 
Bogolyubov Institute for Theoretical Physics, Ukraine; Yuri S. 
Kivshar, The Australian Natl. Univ., Australia. 
We derive effective discrete equations with long-range 
interaction which accurately describe light transmission in 
photonic crystal waveguides with embedded nonlinear 
defects and demonstrate the possibility of a bistable (all- 
optical switcher) and unidirectional (optical diode) transmis- 
sion. 

NLMD2 
Modulatlonal Instability of Bose-Elnstein condensates 
in two- and three-dimensional optical lattices, B.B. 
Baizakov, M. Salerno, Univ. of Salerno, Italy; V.V. Konotop, 
Univ. ofLisboa, Portugal. 
We show that the phenomenon of modulatlonal instability 
gives rise to coherent spatial structures in arrays of Bose- 
Einstein condensates confined to optical lattices. A simple 
way to retain these spatial structures is proposed, which may 
be of interest for applications. 

NLMD3 
Optimized 2-dimenslonal poling pattern for fourth 
harmonic generation, Andrew H. Norton, C. Martijn de 
Sterke, Univ. of Sydney, Australia. 
The efficiency of a recently proposed fourth harmonic 
generation scheme depends on two Fourier coefficients of a 
2-dimensional periodic poling pattern. We describe a poling 
pattern responding to a local maximum of this efficiency. 

NLMD4 
Negative group velocities In quasi-phase-matched 
second-order nonlinear optical interactions, S. Longhi, P. 
Laporta, M. Marano; Istituto Nazionale per la Fisica della 
Materia, Dipartimento di Fisica, Politecnico di Milano, Italy. 
Cascading effects can lead to anomalous group velocities for 
pulse propagation in quasi-phase-matched parametric 
amplifiers. This phenomenon permits to observe negative 
transit times in a photonic devices, simulating resonant 
propagation through a gain-doublet atomic system 

NLMD5 
Novel type nonlinear semiconductor waveguide crystal 
for efficient frequency up/down conversion, £. U. 
Rafailov, P. Loza-Alvarez, Univ. of St. Andrews, UK; D. 
Artiga5,Univ. Politecnica de Catalunya, Spain; M. B. Flynn, W. 
Sibbett.Univ.of St Andrews, UK. 
We demonstrate SHG at 980 nm from a novel first-order 
QPM semiconductor GaAs/AlGaAs waveguide crystal. Our 
calculations show that the SHG conversion efficiency from 
the crystal significantly exceeds that from PPLN for wave- 
lengths exceeding 3.4 jam for both femtosecond and CW 
pump beams 

NLMD6 
Semiconductor optical amplifier IViach-Zehnder 
interferometers with feedback, R. Van Dommelen, M. 
Cada, Dalhousie Univ.,Canada. 
We present new results on numerical simulations carried out 
on semiconductor optical amplifier Mach-Zehnder interfer- 
ometers with feedback. We show that these devices can 
exhibit bistability, with the potential for high speed all-optical 
switching applications. 



NLMD7 
Shaping the optical components of solitary three-wave 
weakly coupled states In a two-mode crystalline 
waveguide, Alexandres. Shcherbakov, Natl Inst.for 
Astrophysics, Mexico. 
Bragg solitons, representing coUinear three-wave weakly 
coupled states, are investigated both theoretically and 
experimentally. The dynamics of shaping their optical 
components is studied, and the roles of localizing pulse width 
and phase mismatch are revealed. 

NLMD8 
instability of gap 2Jti>ulses, B.I.Mantsyzov,R.ASilnikov, 
Moscow State Univ., Russia. 
Different regimes of the gap 2n-pulse dynamics in the one- 
dimensional resonantly absorbing Bragg grating are studied. 
A new family of stable oscillating and excited unstable gap 
2ji-pulses is analytically and numerically described by 
transition from the two-wave Maxwell-Bloch equation to the 
modified sine-Gordon equation and by direct integration of 
the Maxwell-Bloch equation. 

NLMD9 
All-optical AND gate using Kerr nonlinear 
microresonators, Suresh Pereira, Philip Chak, J. E. Sipe, 
Univ. of Toronto, Canada. 
We demonstrate numerically that two channel waveguides, 
coupled by Kerr nonlinear microresonators, can operate as an 
all-optical AND gate. The device is about 100mm long, and 
intensity thresholds are lower than in similar Bragg systems. 

NLMDIO 
Triply resonant Integrated optical parametric oscilla- 
tor, B. Naveh, S. Ruschin, Tel-Aviv Univ., Israel; Z. Weissman, 
Tel-Hai Academic Coll., Israel 
We report the modeling of a triply resonant, quasi phase 
matched, one chip, integrated optical parametric oscillator. 
Using a novel iterative calculation scheme, we predict 
threshold levels, conversion efficiency, passive and active 
tuning behavior and bistability. 

NLMDll 
Complete description of aii modulatlonal Instability 
^In bands generated by nonlinear QPM grating, Ole 
Bang, Tech. Univ. of Denmark, Denmark; Joel R Corney, Univ. 
of Queensland, Australia. 
We consider plane waves propagating in quadratic nonhnear 
slab waveguides with nonlinear quasi-phase-matching 
gratings. We predict analyticaDy and verify numerically the 
complete gain spectrum for transverse modulatlonal 
instability, including hitherto undescribed higher order gain 
bands. 

NLMD12 
Temporal compression of self-focusing femtosecond 
pulses in silica glasses, Helene Ward, LucBerge, CEA- 
DAM, Trance. 
Compression of femtosecond pulses to a few optical-cycles 
duration by coupling with an electron plasma in solids is 
shown. Nonlinear dissipation induced by multiphoton- 
absorption, and fast temporal modulations induced shock- 
terms can, however, maintain self-guided propagation. 

NLMD13 
Mode coupling by photorefractive grating in multiple 
quantum well slab waveguide, Ewa Weinert-Raczka, 
Marek Wichtowski, Tech. Univ. of Szczecin, Poland. 
Photorefractive grating in slab waveguide based on semi- 
insulating AlGaAs/GaAs multiple quantum well structure 
with electric field applied along the quantum well planes as 
an externally controlled, frequency selective mode coupling 
element with memory is analysed. 

NLMD14 
Measurement of optical frequency ratios using a 
spectrally broadened frequency comb. Mis Haverkamp, 
Joern Stenger, Harald Schnatz, Christian Tamm, Harold R. 
Telle, Phys.-Tech. Bundesanstalt, Germany. 
Due to nonlinear effects, fsec-pulses from a mode-locked 
laser are spectrally broadened in a photonic crystal fiber to 
span an octave in the visible wavelength region. Using this 
comb, we measured frequency ratios. 

NLMD15 
Nonlinear interactions in slow-wave structures, A 
Melloni, M. Martinelli, S. M. Pietralunga, DEI, Italy; P. 
Morichetti, CoreCom, Italy. 
Nonlinear interactions in coupled resonator slow-wave 
structures are investigated. Kerr based phase modulation and 
wavelength conversion by four-wave-mixing resiih strongly 
enhanced thanks to both the increase of the intra-cavity 
mean power and the interaction time between propagating 
fields. 

NLMD16 
Peakons - a novel type of robust pulses In photmilc 
crystals, U.Peschel, ELederer, Friedrich-Schiller-Univ. Jena, 
Germany; B.A.Mdomed, Tel Aviv Univ., Israel. 
We demonstrate that near resonances, e.g. around the band 
gaps of Bragg gratings, non-solitonic pulses can propagate 
undistorted. These so-called peakons are stabilized by 
nonlinearly induced self-phase modulation, which shifts their 
frequency out of resonance. 

NLMD17 
Canonical Hamlitonlan formulation for nonlinear pulse 
propagation In 3D photonic bandgap structures, Suresh 
Pereira, Philip Chak, J. E. Sipe, Univ. of Toronto, Canada. 
We present a canonical Hamiltonian formulation for pulse 
propagation in a Kerr nonlinear 3D photonic bandgap 
material (PEG). The formulation is amenable to bulk crystals 
and to patterned waveguides in PBGs. 



NLMD18 
Depositing light In a photonic stop gap using Kerr 
nonlinear microresonators, Philip Chak, J. E. Sipe, Suresh 
Pereira, Univ. of Toronto, Canada. 
We numerically simulate the trapping of light, via four-wave 
mixing, in a photonic stop gap using Kerr nonlinear 
microresonators. We also present a scheme, based on cross- 
phase modulation, to retrieve the trapped light. 

NLMD19 
Efficient Integrated Ti:PPLN MIR-optlcal parametric 
generator, Marc C. Huebner, D. Hofmann, W. Sohler, Univ. of 
Paderborn, Germany. 
Efficient tunable MIR-optical parametric fluorescence was 
demonstrated for the first time in a 80mm long single mode 
Ti:PPLN channel guide of 31 \im domain periodicity. Up to 
several |iW of MIR-power were generated using a 
modelocked fiber laser as pump source. 

NLMD20 
Faraday patterns in Bose-Elnstein condensates, 
Kestutis Staliunas,PTB Braunschweig.Germany; Stefano 
Longhi, Politech. di Milano.Italy; German J. de Valcarcel, Univ. 
de VaUncia,Spain. 
Temporal periodic modulation of the scattering length in 
Bose-Einstein condensates is shown to excite subharmonic 
patterns of atomic density through a parametric resonance. 
The patterns are analogous to the Faraday waves excited in 
vertically vibrated liquids. 

NLMD21 
Stability of spiralling solitary waves In Hamiftonian 
systems, D.V. Skryabin, Univ. of Bath, UK;J.M. McSloy, W.J. 
Firth, Univ. of Strathclyde, UK. 
We present a rigorous criterion for stability of spiralling 
solitary structures in Hamiltonian systems incorporating the 
angular momentum integral and demonstrate its applicability 
to the spiralling of two mutually incoherent optical beams 
propagating in photorefractive material. 

NLMD22 
Dynamics of an optical beam in parabolic waveguide 
with periodic and random nonlinear refractive index, 
F.Kh. Abdullaev, Physical-Tech. Inst. of the Uzbek Acad. of 
Sciences, Uzbekistan; J.C.Bronski, Univ. of Illinois-Urbana- 
Champaign, USA; R.M. Galimzyanov, Physical-Tech. Inst. of 
the Uzbek Acad. of Sciences,Uzbekistan. 
Oscillations and associated resonance of an 2D optical beam 
under periodic and random modulations of nonlinear 
refractive index. For random oscillations the mean growth 
rate for the beam width is calculated. Analytical results are 
compared with the numerical simulations of the full 2D NLS 
equation. 

NLMD23 
Non-paraxlal dark solitons, P. Chamorro-Posada, Univ. de 
Oviedo, Spain;G.S. McDonald, Univ. ofSalford, UK; G.H.C. 
New, Imperial Coll., UK. 
We present an analysis of the properties of dark spatial 
solitons when the paraxial restriction is removed. The results 
reveal modifications in the soliton phase period, width and 
transverse velocity. 

NLMD24 
Lossless planar X-Junctlons induced by vector solitons, 
Audrey A. Sukhorukov, Nail N. Akhmediev, Australian Natl. 
Univ., Australia. 
We propose a new design for planar X-junctions based on 
vector soliton theory. Transmission coefficients for such 
device can vary from zero to a maximun value for any fixed 
angle between the waveguide channels. 

NLMD25 
Optical vortices of parametrlcaliy coupled waves, 
Anatoly P. Sukhorukov, AlexeyA. Kalinovich, Moscow State 
Univ., Russia; GabrielMolina-Terriza, Lluis Torner,Univ. 
Politech. da Catalunya, Spain. 
We demonstrate two-component generation of one or three 
dislocations by equally charged input vortices, and two or 
four ones by oppositely charged singularities. The vortex 3D 
trajectories are calculated when the beams interact due to 
frequency conversion. 

NLMD27 
Collapse of optical vacuum pulses due to QED 
nonlinearities, D. Anderson, M. Lisak, M. Marklund, P. 
Johannisson ,Chalmers Univ. of Tech., Sweden; G. Brodin, L. 
Stenflo, Umea Univ., Sweden. 
Due to quantum electrodynamical (QED) effects there are 
nonlinear corrections to Maxwell's equations in vacuum. We 
show that stationary two-dimensional light bullets can form, 
which are unstable and exhibit the possibility of self-focusing 
collapse. 

NLMD28 
Self-pumped phase conjugation in a BaTiOj :Rh 
waveguide, PA. MdrquezAguilar,Univ. Autdnoma delEstado 
de Morelos, Mexico; P. Mathey, Univ. de Bourgogne,France; P. 
Moretti, Univ. Claude, France; D. Rytz, GmbH, Germany. 
We present a self-pumped phase conjugator originated by 
self-bending of the incident beam at A. = 515 nm in a 
BaTiO,:Rh waveguide elaborated by three successive He* ion 
implantations. Phase conjugate reflectivity reached is 28 %. 

NLMD29 
Reflection of excited vector spatial solitons from an 
interface between two photorefractive media, Ilya 
Shadrivov, The Australian Natl. Univ. Canberra, Australia; 
Alexander A. Zharov, Russian Acad. of Sciences, Russia 
Momentum method towards a study of multi-component 
spatial solitons dynamics in photorefractive media was 
developed. It describes both an excitation of the soliton 
intrinsic degrees of freedom associated with the oscillations 
of centres of gravity of the beams making up the soliton and 
soliton interaction with nonlinear interface. 



NLMD30 
Analysis of flelds of nonlinear-cladding optical 
waveguides with butt-coupled linear wave^ldes: 
Effects of the film index, Kiyoshi Tmtsumi, Kyoto Imt. of 
Tech., Japan. 
Effects of the film index of nonlinear-cladding optical 
wa¥eguides are investigated numerically. The path of a beam 
winds between the film and the nonlinear cladding for larger 
film index, whereas soliton-like emission occurs for smaller 
film index. 

NLMD31 
Interaction of Incoherently coupled transversely 
asymmetric beams, P. Papagiannis, K. Himnidis, Natl Tech. 
Univ. of Athens, Greece. 
The stationary evolution of two incoherently coupled beams 
of bi-Gaussian intensity profile propagating in a bulk Kerr or 
saturable medium is sttidied variationally The stability is 
investigated on the basis of the Vakhitov-Kolokolov criterion 
and comparisons are made with numerical integration of the 
(2+l)D coupled NLS equations involved. 

NLMD32 
Spatial solitons In nematic liquid crystals: A new 
model, Claudia Conti, Marco Peccianti, Gaetano Assanto, 
Natl. Imt. for the Physics of Matter, Univ. "Roma Tre", Italy 
We derive a model describing 3D spatial solitons in nematic 
liquid crystals. These solitary waves are governed by the same 
equations of parametric simultons, with nonlocality being 
the dominant stability mechanism. 

NLMD33 
Exact soliton solutions of the quintic complex Swlft- 
Hohenberg equation of the quintic complex Swift- 
Hohenberg equation, Adrian Ankiewicz, The Australian 
Natl. Univ., Australia; Kenichi Maruno, Kyushu Univ. Japan; 
Nail Akhmediev,Australian Natl Univ.,AustraUa. 
Several soliton solutions of the complex quintic generalized 
complex Swift-Hohenberg equation (CSHE) are found 
analytically. These solutions exist for certain relations 
between the parameters of CSHE which are also presented 
analytically. 

NLMD34 
Spatial solitons and Anderson localisation, Kestutis 
Staliunas, PTB Braunschweig,Germany. 
Anderson localization is the spatial localization of the 
wavefimction of electrons in random media. We surest, that 
analogous phenomenon can stabilize the spatial solitons in 
optical resonators: the spatial solitons in resonators with 
randomly distorted mirrors are more stable, than in perfect 
mirror resonators. 

NLMD35 
Discrete solitons In nonlinear zigzag optical waveguide 
arrays with tailored diffraction properties, NikosK. 
Efremidis, JaredHudock, DemetriosN. Christodoulides, 
CREOL, USA. 
We show that the discrete diffraction properties of a 
nonlinear optical zipag waveguide array can be signifigantiy 
modified by exploiting the topological arrangement of the 
lattice itself This introduces extended interactions (beyond 
nearest-neighbors), which, in turn, affect the lattice disper- 
sion relation within the Brillouin zone. As a result, we 
demonstrate that new families of discrete soliton solutions 
are possible which are stable over a wide range of parameters. 
Our method opens new opportimities for diffraction 
management that can be employed to generate low power 
spatial discrete optical solitons. 

NLMD36 
Engineering the nonlinear phase shift, Yan Chen, 
Benjamin Yang, Geeta Pasrija, Steve Blair, Univ. of Utah, USA. 
large nonlinear phase shifts can be achieved using cascaded 
and coupled microresonator systems even if the constituent 
material has large linear and two-photon absorption. Proper 
design can maintain nearly constant intensity transmittance. 

NLMD37 
Characterisation and process evolution of quasi-phase- 
matched semiconductor superlattlce wave^ldes 
using intermixing, K Zeaiter, T. C. Kleckner, ]. S.Aitchison, 
D. C. Hutching!, Univ. of Glasgow, UK. 
We characterise the intermixing febrication process by 
examining the photoluminescence spectra. Subsequently we 
adapt the process, which was initially developed for optoelec- 
tronic integration, to be optimised for the production of 
semiconductor superlattice waveguides for quasi-phase- 
matched frequency conversion. 

NLMD38 
Symmetry properties of %^ in semiconductor 
heterostructure waveguides, D. C. Hutchings, Univ. of 
Glasgow, UK. 
The symmetry of the third-order susceptibility tensor 
elements is addressed for semiconductor heterostructures. 8 
independent elements are found for the normal sample 
geometry and coefficients for nonlinear refractive phenom- 
ena are derived. The change in dimensionality with intermbc- 
ing is discussed. 

NLMD39 
Self-bending of the light in a photorefractive planar 
waveguide fabricated with He* Implanted BaTi03 :Rh, 
Pierre Mathey, Univ de Bourgogne,Prance; Pedro Marquez, 
Univ. Autonoma delEstado deMorelos, Mexico; PaulMoretti, 
Univ. Claude Bernard Lyon I, Prance; Daniel Rytz, Edelmetalle 
GmbH, Germany 
The self-bending of a beam caused by the photorefractive 
non-linearity is observed in a BaTiOj :Rh waveguide. The 
response time in function of the intensity is compared with 
the results in the bulk. 



NLMD40 
Diffraction effects in copper-doped heiium-implanted 
LiNbOj waveguide, YuryM. Larionov,Marina N. Frolova, 
StanislavM. Shandarov, State Univ. of Control Systems and 
Radioelectronics, Russia; Sergey M. Kostritski, Kemerovo State 
Univ., Russia. 
We report an experimental observation of leaky substrate TM 
modes diffraction on a grating-like periodical structure 
formed by defects of waveguide layer. Appearance of such 
defects we explain by features of copper-doped helium- 
implanted optical LiNbO, waveguide fabrication process. 

NLMD41 
Femtosecond measurement of nonlinear refraction in 
perlodicaily poied iitliium tantaiate, 5. Ashihara, J. 
Nishina, T. Shimura, K. Kuroda, Univ. of Tokyo, Japan. 
We present femtosecond measurements of nonlinear 
refraction in periodically poled lithium tantaiate by using 
spectrally resolved two-beam coupling. The sign and 
magnitude of nonlinear phase shifts induced by cascade 
quadratic nonlinearity and intrinsic Kerr nonlinearity are 
measured. 

NLMD42 
Towards an optical parametric oscillator in a GaAs- 
based waveguide, A. De Rossi, M. Calligaro, V. Ortiz, 
THALES Res. and Tech., France; V. Berger, Univ Denis Diderot 
Paris VII, France. 
We will discuss the feasibility of an integrated parametric 
oscillator based on GaAs. Results on parametric fluorescence 
will be presented. Minimization of losses and mirror 
deposition are the crucial points for obtaining parametric 
oscillation. A threshold around 100 mW is expected 

NLMD43 
Pliotorefractlve solltons and iiglit induced resonance 
control in semiconductor CdZnTe, Tal Schwartz, Yaniv 
Ganor, Tal Cannon, Raam Uzdin, Sharon Shwartz, Mordechai 
Segev, Technion - Israel Inst. of Tech., Israel; Uri El-Hanany, 
Imarad Imaging Systems LTD., Israel. 
We experimentally demonstrate the formation of (1+1)D and 
(2+l)D solitons in photorefractive CdZnTe:V, exploiting the 
intensity-resonant behavior of the space charge field. We 
show that the resonance intensity is tunable, allowing soliton 
formation times as low as 10)1 sec scales with very low optical 
power. 

NLMD44 
Efficient parallel algorithm for Simulating wavelengtli- 
division-multipiexed dispersion-managed optical fiber 
systems, P.M. Lushnikov, Los Alamos Natl Lab., USA. 
An efficient numerical algorithm is presented for massively 
parallel computation of dispersion-managed wavelength- 
division-multiplexed optical fiber systems. The algorithm is 
based on a weak nonlinearity approximation and indepen- 
dent parallel calculation of fast Fourier transforms. 

NLMD45 
Nonclassical statistics of intracavity coupled qua- 
dratic nonlinear waveguides: Tiie quantum optical 
dimmer, M. Bache, Yu. B. Gaididei, P. L. Christiansen, Tech. 
Univ. of Denmark, Denmark. 
Two quadratic nonlinear waveguides are immersed in a cavity 
suited for second-harmonic generation. The quantum 
equations are derived to calculate intensity correlation 
spectra and strong quantum violations of the classical limit is 
observed. 

NLMD46 
Darl<-rlng cavity solitons In lasers with bichromatic 
injected signal, German J. de Valcarcel, Univ. de Valencia, 
Spain; Kestutis Staliunas, Physikalisch Tech. Bundesanstalt, 
Germany. 
We show theoretically that broad area lasers driven by a 
nearly resonant bichromatic field may support dark-ring 
cavity solitons as well as domain walls and labyrinthine 
patterns. 

NLMD47 
Localized structures formation and control in second- 
harmonic, intra-cavity generation, £. Toniolo, M. Giltrelli, 
M. Santagiustina, INFMand Univ. ofPadova, Italy. 
A regime in which spontaneous formation of localized 
structures occurs is found for intra cavity second harmonic 
generation. Independent writing, erasing and moving of 
structures are numerically demonstrated. 

NLMD48 
Two-dimensional clusters of solitary structures in 
driven optical cavities, /. M. McSloy, W.}. Firth, Univ. of 
Strathclyde, UK; A. G. Vladimirov, St. Petersburg State Univ., 
Russia; D. V. Skryabin, Univ. of Bath, UK; N. N. Rosanov, Res. 
Inst. for Laser Physics, Russia. 
Interaction between localized structures in the transverse 
plane of a passive optical cavity containing a saturable 
medium is studied analytically and numerically. Stability 
properties of clusters of localized structures and their 
spontaneous motion are described. 

NLMD49 
Optical parametric oscillator in waveguides induced by 
photorefractive spatial solitons, Song Lan,Princeton 
Univ., USA;J.A. Giordmaine, Princeton Univ., USA and NEC 
Res. Inst.,USA; Mordechai Segev, Technion - Israel Inst. of 
Tech., Israel and Princeton Univ., USA;Daniel Rytz, FEE 
GmbH, Germany. 
We demonstrate experimentally an optical parametric 
oscillator constructed in the waveguide induced by 
photorefractive spatial solitons, and show that the pumping 
threshold is reduced considerably. 



NLMD50 
Frequency up-conversion of 770 nm ultra-short pulses 
by twoiihoton absorption In doped PMMA fibers, Grace 
Jordan, Takeytiki Kobayashi, Werner J. Blau, Trinity 
Colljreland; Hartwig Tillmann, Hans-Heinrich HorhoM, 
Friedrich-Schiller- Univ., Germany. 
We report on the up-converted emission of blue ligiit from a 
novel organic stilbenoid compound (l,4-bis(diphenylamino- 
styryl)-benzene) dopant in a PMMA fiber due to the two- 
photon absorption of 770 nm pulses from a Tittanium 
Sapphire laser. 

NLMD51 
LMg-wavelength continuum generation about the 
second dispersion zero of a tapered fiber, /, M. HarboU, 
F. O. May P. W. Wise,Cornell Univ., USA; T. A. Birks,W. /. 
Wadsworth, Univ. of Bath, UK;Z. Chen, Univ.of California- 
Irvine, USA. 

We demonstrate continuum generation at wavelengths longer 
than the zero-dispersion wavelength of ordinary fiber for the 
first time using a narrow-diameter tapered fiber. 

NLMD52 
Orl^n of supercontinuum generation in 
microstructured fibers, Alexander L Gaeta, Cornell Univ., 
USA;Xun Gu, Lin Xu, Mark Kimmel, Erik Zeek, Patrick 
O'Shea, Aparna P. Shreenath, Rick Trebino, Georgia Inst. of 
Tech., USA;RobertS. Wmdeler, OPS Pitel Lab., USA. 
We investigate the propagation of femtosecond pulses in 
microstructured fibers under conditions in which a 
supercontinuum is generated. We find that higher-order 
dispersion primarily determines the spectral envelope and 
that it contains a highly complicated underlying sub- 
structure which is highly sensitive to input fluctuations. 

NL1MD53 
Exact solitary wave solutions of the nonlinear 
Schrodinger equation with distributed gain, V.L 
Kruglov,lD. Harvey Univ. of Auckland, New Zealand. 
We present new exact analytical solutions to the NLSE with 
gain in the anomalous dispersion regime corresponding to a 
compressing or spreading solitary pulses. These solutions 
have application in high gain nonlinear fiber amplifiers. 

NLMD54 
Timing and amplitude Jitter due to intra-channel 
dispersion-managed pulse Interactions, Toshihiko 
Hirooka, Mark J. Ablowitz, Univ. of Colorado, USA. 
Analytical expressions to estimate timing and amplitude jitter 
due to intra-channel pulse interactions in dispersion- 
managed systems are provided. Results are compared to 
direct numerical simulation. Distributed amplification 
reduces timing and amplitude jitter with fixed path-average 
power. 

NLMD55 
Design considerations of all-optical header processing 
circuit for a novel packet forwarding scheme in optical 
networks, W. M. Wong, K. J. Blow,Aston Univ., UK. 
Design of an all-optical circuit that performs modulo-N 
operation for packet forwarding without header modification 
in optical networks is presented. Design considerations such 
as gain modulation effects and bit rate and pattern depen- 
dence are investigated. 

NLMD56 
Traveling-wave model of semiconductor optical 
amplifier based nonlinear loop mirror with feedback, W. 
M. Wong, K. J. Blow, Aston Univ., UK. 
A traveling-wave model of an all-optical switching device 
with feedback is developed to identify important dynamical 
effects for better prediction of device behavior. Using a 
constant lifetime approximation, an efficient heuristic model 
is also developed. 

NLMD57 
Wavelength-divlslon^nultipiexed bl-soliton transmis- 
sion In dispersion-managed system, Takashi Inoue, 
Yasuhiro Yoshika, Akihiro Maruta, Osaka Univ., Japan. 
Bi-soliton transmission in dispersion-managed WDM system 
is studied. It is numerically confirmed that anti-phase bi- 
soliton is more robust for the collision than in-phase one. 
The XPM effects induced by the collision can be analyzed by 
using the variational method. 

NLMD58 
Towards nonlinear waveguide devices from conju^ted 
polymers: Tuning of the materials properties and 
structuring, A. Bahtiar, K. Koynov, C. Bubeck, Max-Planck- 
Inst. for Polymer Res., Germany; M. A. Bader, U Wachsmuth, 
G. Marowsky, Laser-Lab. Gottingen e.V., Germany. 
We prepared slab waveguides of the conjugated polymer 
MEH-PPV and demonstrate that fine-tuning of refractive 
index is feasible by control of molecular weight. Grating 
waveguide structures are fabricated by UV-laser ablation. 
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NLTuA ■ Discrete Solitons and Waveguide 
Arrays 
George I. Stegeman, Univ. of Central Florida, 
United States, Presider ^2ffiB> 

NLTuAl      8:00am 
Discrete solitons in quadratic noniinear waveguide 
arrays, T. Pertsch, U. Peschel, F. Lederer, Friedrich-SchiUer- 
Univ. Jena, Germany; J. Meier, Roland Schiek, Robert Iwanow, 
George Stegeman, CREOL, USA; Yoo HongMin, Wolfgatjg 
Sohler, Univ. Paderborn, Germany. 
We observed the formation of discrete solitons in periodically 
poled Lithium Niobate (PPLN) waveguide arrays. Strongly 
localized dichromatic nonlinear beams were excited with 
ftmdamental wave pulses at a wavelength of 1572 nm. 

NLTuAl     8:15am 
Discrete gap solitons in modulated waveguide arrays, 
AndreyA. Sukhorukov, Yuri S. Kivshar, Australian Natl Univ., 
Australia. 
We demonstrate that the discrete gap solitons can be 
efficiently generated in arrays of optical waveguides with 
alternating widths. Depending on the light intensity, these 
solitons display the properties of both conventional and 
Bragg grating solitons. 

NLTuA3     8:30am 
Discrete vector Kerr spatial solitons in AIGaAs array 
waveguides, Joachim Meier, George Stegeman, CREOL, USA; 
H.S. Eisenberg, Y. Silberberg, The Weizmann Institute of 
Science, Israel; R. Morandotti, J.S. Aitchison, Univ. of Toronto, 
Canada. 
We report the first observation of discrete vector solitons in 
arrays of AIGaAs waveguides. By changing the phase between 
the TE and TM soliton components, we were able to control 
their relative amplitude. 

NLTuA4     8:45am 
Discrete solitons in pliotorefractive optically-induced 
photonic lattices, Nikos K. Efremidis, Jared Hudock, 
Demetrios N. Christodoulides, CREOL, USA; Jason Fleischer, 
Suzanne Sears, Mordechai Segev, Princeton Univ., USA. 
We demonstrate that optical discrete solitons are possible in 
appropriately oriented biased photorefractive crystals. This 
can be accomplished in optically-induced periodic waveguide 
lattices that are created via plane wave interference. Our 
method paves the way towards the observation of entirely 
new families of discrete solitons. 

NLTuA5     9:00am 
The action of linear modes on the evolution and on the 
decay of discrete solitons, U.Peschel, F.Lederer, Friedrich- 
Schilkr-Univ. Jena, Germany; R. Morandotti, J. S. Aitchison, 
Univ. of Toronto, Canada; H. S. Eisenberg, Y. Silberberg, The 
Weizmann Inst. of Science, Israel. 
We experimentally investigate how linear modes evolve 
around the soliton state. In the presence of nonlinear 
absorption they induce collapse and subsequent splitting of 
the soliton, or a transverse motion opposite to initial beam 
tilts. 

NLTuA6     9:15am 
Strong spatiotemporal localization in an array of silica 
waveguides, D. Cheskis, S. Bar-Ad, Tel Aviv Univ., Israel; R. 
Morandotti, J. S. Aitchison, Univ. ofToronto,Canada;D. Ross, 
Univ ofGlasgow,UK; H.S Eisenberg, Y. Silberberg, Weizmann 
Inst. of Science, Israel. 
We experimentally investigated beam propagation in an array 
of silica waveguides, under a regime of anomalous dispersion 
and for different input conditions. In all the cases, we 
succeeded in compressing most of the energy in a single 
waveguide. 

NLTuA7     9:30am 
Optically-controlled photorefractive solitons arrays, 
Jiirgen Petter, Inst.of Applied Physics, Germany; Denis Trdger, 
Cornelia Denz,Wilhelms-Univ. Mitnster, Germany 
We present an optically-controlled array of photorefractive 
spatial screening solitons. Each channel of the array is found 
to guide a probe beam independently. Furthermore a Y- 
coupler within the array is realized by combining two 
channels with an additional control beam. 

NLTuA8     9:45am 
Discrete solitons in optically-induced real-time 
waveguide arrays, /. W. Fleischer, M. Segev, Technion - Israel 
Inst of Tech., Israel and Princeton Univ, USA; T. Cannon, 
Technion - Israel Inst of Tech., Israel; N. K. Efremidis, D. N. 
Christodoulides, CREOL, USA. 
We report the first experimental observation of discrete 
solitons in an array of optically-induced waveguides. The 
waveguide arrays are induced in photorefractives by interfer- 
ing pairs of plane waves, and the solitons form when the 
screening nonlinearity is employed. We demonstrate both in- 
phase and staggered bright solitons in 1-D arrays and discuss 
recent experiments in 2D waveguide lattices. 



Room: Auditorium 

10:30am-12:30pin 
NLTuB ■ DIssipative Spatial Structures 
Luigi Alberto Lugiato, Univ. Degli Stiidi Dell'Insubria, 
Italy, Presider 

NLTuBl      10:30ain ^iMfjKfc 
Interaction of dissipatlve localized structures In 
nonlinear optics, Dmitry V. Skryabin, Univ. of Bath, UK. 
Recent theoretical results on existence and stability of static, 
moving and rotating clusters of bright spatially localized 
structures of light in passive and active optical cavities will be 
reported. 

NLTuB2      11:00am 
Cavity pattern formation witli Incoherent light, Tal 
Carmon, Mordechai Segev, Technion, Israel; Marin Soljacic, 
MIT, USA. 

We present the first observation of cavity modulation 
instability and pattern formation with incoherent light. In 
addition, we also study, theoretically and experimentally, the 
evolution of patterns in a nonlinear cavity without resonant 
frequencies: a passive cavity for which beams from different 
cycles are mutually-incoherent with one another. 

NLTuB3      11:15am 
Self-propelled solltons and moving patterns in a 
nonlinear resonator, Andrew J. Scroggie, John M. McSloy, 
William]. Firth, Univ. of Strathdyde, UK. 
Spontaneously moving bright and dark spatial soHtons and 
patterns are shown to exist in a nonlinear resonator. The 
motion is caused by thermal effects and arises through an 
instability of the stationary soliton. 

NLTuB4     11:30am 
Cavity soiltons worit as pixels In semiconductors, S. 
Barland, M. Giudici, /. R. Trediccejnst Non Lineaire de Nice, 
France; S. Balk, IMEDEA, Spain; M. Brambilla, T. Maggipinto, 
Univ. di Bari, Italy; L. A. Lugiato, L. Spinelli, G. Tissoni, Univ. 
deU'Imubria, Italy;!. Knodl, M. Miller, R. Jager, Univ. ofUlm, 
Germany. 
By using a vertical cavity semiconductor amplifier with a 
large Fresnel number, driven by a coherent field, we provide 
the first proof of the generation of cavity solitons in semicon- 
ductors, written and erased independently of each other and 
of the boundary. 

NLTuBS      11:45am 
TTie origin of motion of solitary waves near Hopf 
biftircatlons, D. Michaelis, Praunhofer Inst. ftir Angewandte 
Optik und Peinmechanik, Germany; U. Peschel, P. Lederer, 
Priedrich Schiller-Univ. Jena, Germany; D.V. Skraybin, Univ. of 
Bath, UK; W.J Firth, Univ. of Strathdyde, UK.. 
We show that the coupling between oscillating eigenstates 
and the translational mode causes solitary waves to move 
steadily, oscillatory or with irregular jumps. Theoretical 
results are compared with numerical simulations for different 
dissipative systems. 

NLTuB6      12:00pm 
Effects of nonlinear guiding on spontaneous pattern 
formation: Formation of spirals and target patterns, P. 
Huneus, T. Ackemann, B. Schaepers, W. Lange, Univ. Muemter, 
Germany. 

Nonlinear guiding induced by gradients of the pump beam 
intensity can drastically affect optical pattern formation. A 
specific example is the emergence of spiral and target patterns 
in a single-mirror scheme with sodium vapor. 

NLTuB7      12:15pm 
Dark ring cavity solitons and stable droplets In models 
of nonlinear optical cavities, Damih Gomila, Pere Colet, 
Maxi San MiguellMEDEA (CSIC-UIB), Spain;Gian-Luca 
OppcAndrew Scroggie, Univ. of Strathdyde, UK. 
Two kinds of localized structures are found in different 
regimes in nonlinear Kerr cavities and optical parametric 
oscillators. Its dynamics is closely related to the growth rate of 
spatial domains of different phases. 

Room: Auditorium 

2:00pm-4:00pm 
NLTuC ■ Fiber Nonlirtearity Applications 
Nail N. Akhmediev, Australian National University, 
Australia, Presider <iliMIBfc 

NLTuCl      2:00pm ^^^ 
Ultrafest optical TDIW transmission with the use of 
novel nonlinear optical flber devices, Masataka 
Nakazawa, Tohoku Univ., Japan. 
We have recently succeeded in transmitting an ultrafast 
OTDM signal which exceeds 1 Tbit/s over 70 km with the 
adoption of nonlinear optical fiber devices such as soliton 
compressor, DI-NOLM for pulse shaping, and NOLM for 
Terabit/s demultiplexing. In this talk, key technologies for 
ultrahigh-speed OTDM transmission are described. 

NLTuC2     2:30pm 
Raman gain efflciencies of modern terrestrial trans- 
mission fibers in S-, C- and L-band, D. Grot, L Bathany, S. 
Gosselin, M. Joindot, France Telecom R&D, Prance; S. Bordais, 
Y. Jaouen, J.M. Delavaux, Keopsys, France. 
We report the most complete measurements presented to 
date of Raman gain efficiency and noise figure for airrent 
G.652 and G.655 fibers in all three transmission windows (S-, 
C- and L-band). Such fiber characterization is paramount to 
the engineering and deployment of fiiUire terrestrial 40 Gbit/ 
s-based WDM transmission systems. 

NLTuC3     2:45pm 
leo^Hz picosecond pulse train generation through 
multiwave mixing compression of a dual frequency 
beat signal, Julien Patome, Stephane Pitois, GuyMillot, Univ. 
de Bourgogne,Prance. 
We report the experimental generation and characterization 
of a 160-GHz picosecond pulse train using multiple four- 
wave mixing temporal compression of an initial dual 
frequency beat signal in the anomalous-dispersion regime of 
a non-zero dispersion shifted fiber. 



NLTuC4     3:00pm 
Cross correlation frequency-resolved optical gating 
characterization of supercontlnuum generation In 
mlcrostructure fiber: Simulation and experiment, John 
M. Dudley, Univ. de Franche-Comte, France; Xun Gii, Lin Xu, 
Mark Kimmel, Erik Zeek, Patrick O'Shea, Apartm P. Shreenath, 
Rick Trebino, Georgia Inst. of Tech., USA; Stephane Coen,Univ. 
Libre de Bruxelles, Belgium. 
Cross-correlation frequency resolved optical gating (XFROG) 
characterization of supercontinuum generation in micro- 
structure fiber is studied using numerical simulations and 
experiments. The XFROG trace clearly reveals the signatures 
of dispersive v^^ave and Raman soliton generation. 

NLTuC5     3:15pm 
Broadband 60% energy conversion of a two-pump fiber 
optical parametric amplifier, Jose Manuel Chavez Boggio, 
Hugo Luis Fragnito, IFGW-UNICAMP Brazil; Walter 
Margulis, ACREO, Sweden. 
We demonstrate over 60% energy conversion on 20 nm 
bandwidth centered at 1568 nm in a two-pump fiber optical 
parametric amplifier. 

NLTuC6     3:30pm 
Spectral phase fluctuations and coherence degrada- 
tion In supercontlnuum generation in photonic crystal 
fibers, John M. Dudley, Remo Giust, Univ. de Franche-Comte, 
France; Stiphane Coen, Univ. Libre de Bruxelles, Belgium. 
Numerical simulations are used to study spectral phase 
fluctuations and coherence degradation in supercontinuum 
generation in photonic crystal fibers. The spectral coherence 
is shown to depend strongly on the input pulse duration and 
wavelength. 

NLTuC7     3:45pm 
Single-mode supercontinuum generation In a standard 
dispersion-shifted flber using a nanosecond microchip 
laser, A. Mussot, L. Provino, T. Sylvestre, H. Maillotte, UMR 
CNRS/Univ. de Franche Comte, France. 
We have generated a single-mode supercontinuum of more 
than 1100-nm simply using a nanosecond microchip laser 
and an usual dispersion-shifted fiber in a regime in which 
both self-phase modulation and parametric generation near 
the zero dispersion wavelength cannot be involved in the 
continuum formation. 

Room: Lower Level Foyer 

4:00pm-6:00pm 
NLTuD ■ Poster Session: 2 

NLTuDl 
Thermal effects and spontaneous motion of cavity 
solitons In semiconductor microcavities, T. Maggipinto, 
L M. Perrini, M.Brambilla, INFM and Univ. di Bari, Italy; L. 
Spinelli, G. Tissoni, LA. Liigiato, INFM and Univ. 
deU'Insubria, Italy. 
We formulate a model to describe the spatio-temporal 
dynamics of a semiconductor microcavity driven by an 
external field including the thermal field. A new kind of 
modulational instability is found, leading to travelling cavity 
solitons and patterns. 

NLTuD2 
Image processing with cavity type-ll second harmonic 
generation, Pierre Scotto, Pere Colet, Maxi San Miguel, 
Campus Univ. Illes Balears, Spain. 
Injecting in a Type II intracavity second harmonic generation 
an image in one polarization and a homogeneous field in the 
other, we can perform either a frequency and polarization 
transfer or a contrast enhancement. 

NLTuD3 
Noise-induced growth of arrays of spatial solitons In 
optical parametric oscillator, Ivan Rabbiosi, Andrew 
Scroggie, Gian-Luca Oppo, Univ. of Strathclyde, UK. 
Domain walls with oscillatory tails can lock and form 
spatially irregular stable states in models of nonlinear optical 
devices. Their stochastic dynamics lead instead to the 
formation of periodic arrays of solitons. 

NLTuD4 
Unconditional instability of the degenerate backward 
optical parametric oscillator, C. Montes,A. Picozzi, Univ 
de Nice-Sophia Antipolis, France; C. Durniak, M. Taki,Univ de 
Sciences et Tech. de Lille,France. 
Stability analysis of the degenerate backward optical 
parametric oscillator in the quasi-phase-matching decay 
interaction, between a cw-pump and a counter-propagating 
signal, proves that the inhomogeneous stationary solutions 
are always unstable whatever the cavity length and pump 
power. 

NLTuD5 
Spatial solitons in an optically pumped semiconductor 
microresonator, V. B. Taranenko, C. O. Weiss, Physikalisch- 
Tech. Bundesanstalt, Germany. 
We show experimentally and numerically the existence of 
stable spatial solitons in an optically pumped semiconductor 
microresonator. We demonstrate that the pump substantially 
reduces the light intensity necessary to sustain the solitons. 



NLTuD6      . 
Spectral control of solltons under periodical disper- 
Slon^lope compensation, JojiMaeda, Ichiro Matsuda, 
Tokyo Univ. of Science, Japan. 
Efifects of guiding filters on solitons in fiber iinlss with 
periodical dispersion slope-compensation are numerically 
studied. The optimum filter bandwidth and the optimum 
transmission power are discussed in comparison with slope- 
free fiber links. 

NLTuD7 
Stability criterion tor solltons In passively mode-locked 
flber lasers, /. M. Soto-Crespo, C.S.I.C., Spain, Nail 
Akhmediev,Australian Natl Univ., Australia,Graham Town, 
Univ. of Sydney, Australia. 
The complex cubic-quintic Ginzburg-Landau equation has 
multiplicity of soliton solutions for the same set of param- 
eters. Based on their analysis, we propose a conjecture for a 
stability criterion for solitons in dissipative systems. 

NLTuD8 
Compound state of dark and bright solltons In disper- 
sion-managed fibers, M. Stratmann, F. Mitschke, Univ. 
Rostock, Germany. 
We report of a bright-dark-bright soliton compound state in 
dispersion managed fibers with either sign of path-average 
dispersion. 

NLTuD9 

Cross-phase-modulatlon Induced modulation Instability 
In Raman flber amplifiers, I.Vdchev, KPammik, J.Toubuse, 
Lehigh Univ., USA 
Modulation instability in forward-pumped Raman amplifiers 
is investigated in detail. The frequency dependence of the 
instability is explained in terms of a two-beam coupling 
process due to a finite relaxation time of the Kerr 
nonlinearitf. 

NLTuDlO 
Numerical study of parabolic pulse generation In 
microstructured fibre Raman amplifiers, AC. Peacock, 
N.G.R. Broderick, T.M.Monro, Univ. of Southampton, UK. 
Numerical simulations are used to demonstrate parabolic 
pulse generation in a highly nonlinear, normally dispersive 
microstractrured fibre Raman amplifier. The results show 
that the output pulse shape depends on the sign of the third 
order dispersion. 

NLTuDll 
improving eflclency of supercontinuum generation In 
photonic crystal fibers by direct degenerate four-wave- 
mixing, N. I. Nikolov,Univ. of Denmark, Denmark; O.Bang, 
A. Bjarklev, Tech. Univ. of Denmark, Denmark. 
The efficiency of supercontinuum generation in photonic 
crystal fibers is significantly improved by designing the 
dispersion to allow widely separated spectral lines generated 
by degenerate four-wave-mixing directly from the pump to 
broaden and merge. 

NLTuDO 
Carrier ftrequency hopping for optical pulse transmis- 
sion In dispersion-managed flber links, Alessandro 
Tonello, Istituto Nazionaleper la Pisica della 
Materia,italy;Pabrizio Carbone, Luciano Socci, Marco 
Romagnoli, Pirelli Labs., Italy. 
We propose a chirped return-to-zero transmission format, 
combining wavelength conversion with dispersion manage- 
ment. Periodically varying the pulse's carrier frequency at 
optimal points, we reduce the impairments of third-order 
dispersion and we mitigate the timing jitter. 

NLTuDia 
Bgenvaiues of the Zakharov-Shabat scattering 
problem for real symmetric pulses, M. Desaix, Univ. Coll 
of Boras, Sweden;D. Anderson, L. Helczymki, M. Lisak, 
Chalmers Univ. of Tech., Swedett. 
The problem of determining the solitons generated from 
symmetric real initial conditions in the Nonlinear 
Schrodinger equation is revisited. The corresponding 
Zakharov-Shabat scattering problem is solved for an example 
of a real double-humped rectangular initial pulse form. It is 
found that this real symmetric pulse generates moving soliton 
pulse pairs corresponding to eigenvalues with non-zero real 
parts. 

NLTuDM 
interaction of pulses In optical fibers, E. N. Tsoy, P. Kh. 
Abdullaev, Uzbek Acad. of Sciences^ Uzbekistan. 
Interaction of pulses in optical fibers is analyzed by solving 
the scattering problem associated with the nonlinear 
Schroedinger equation. It is shown that two pulses without 
initial phase modulation can generate moving daughter 
solitons. 

NLTuDlS 
Suppression of soliton self-frequency shift by up- 
shifted filtering, P. Tchofo Dinda, A. Labmyere, Univ. de 
Bourgogne, Prance; K. Nakkeeran, Hong Kong Polytech. 
Univ.,Hong Kong. 
We propose an efficient method for suppressing the soliton 
self-frequency shift in high-speed transmission lines by 
means of up-shifted filters. 

NLTuDie 
Analytical design of dispersion-managed flber systems 
vsrtth S=a..65, JC Nakkeeran, Hong KongPolytech.Univ.,Hong 
Kj>ng; A. B. Moubissi,P. Tchofo Dinda, Univ. de 
Bourgogne,France. 
We present an easy analytical method for designing disper- 
sion-managed fiber systems with map strength of 1.65, where 
the transmission lines have minimal pulse-pulse interactions. 



NLTuD17 
Suppression of nonlinear effects by phase alternation 
in strongly dispersion-managed optical transmission, P. 
Johannisson, D. Anderson, M. Marklund,Chalmers Univ. of 
Tech., Sweden; A. Berntson, M. Forzati, J. Martensson, Ericsson 
Telecom AB, Sweden. 
The nonlinear effects amplitude jitter and ghost pulse 
generation can be suppressed by alternating the phase of the 
bits. This is due to destructive interference between different 
contributions to the total nonlinear effect. 

NLTuDlS 
Optical solltons in the femtosecond regime, /. Wyller, 
Agricultural Univ. of Norway, Norway; Jan S. Hesthaven, 
Brown Univ., USA; Jens Juul Rasmussen, Riso Natl. Lab., 
Denmark. 
The evolution of optical solitons in the presence of amplifica- 
tion effects and nonlocal Raman response is investigated 
using perturbational analysis. The analysis reveals the 
existence of a soliton which acts as a global attractor in 
certain regimes of the amplification parameters. 

NLTuD19 
Stability of disslpatlve solltons In transmission lines 
beyond the average concept, C.Knoell, D. Michaelis, Z. 
Bakonyi, G. Onishchukov, F. Lederer, Friedrich Schiller Univ. 
Jena, Germany. 
We investigate existence and stability of dissipative solitons in 
a transmission line with lumped amplification/absorption 
introducing a matrix algorithm. Parts of the domain in 
parameter space where the background is stable exhibit Hopf 
instabilities. 

NL'IUD20 
Dynamical evolution of weak perturbations superposed 
to dispersion-managed soliton transmission, Alessandro 
Tonello, Antonio-D. Capobianco, Gianfranco Nalesso, 
Costantino DeAngelis, Francesco Consolandi, INFM, Italy. 
We analyze numerically and analytically the evolution of 
weak perturbations in fiber systems with dispersion manage- 
ment. Linearizing the governing equation around a disper- 
sion-managed soliton, we discuss the role of average 
dispersion and of nearby pulses. 

NLTuD21 
Dependence of spectral width and gain of stimulated 
Brillouin scattering on numerical aperture in optical 
fibre, Valeri I. Kovalev, Heriot-Watt Univ., UK and Russian 
Acad. of Sciences, Russia; Robert G. Harrison, Heriot-Watt 
University, UK. 
We give theoretical interpretation for the recently observed 
phenomenon of inhomogeneous spectral broadening of 
Brillouin scattering in optical fibres. SBS spectral width and 
gain dependencies on numerical aperture and are shown to 
be in good agreement with experiments for both single- and 
multi-mode fibres. 

NLTuD22 
Pulse broadening in dispersion-managed optical fiber 
links with random dispersion, Tobias B. Schaefer, Richard 
O. Moore, Christopher K. R. T. Jones, Brown Univ., USA. 
Random dispersion variations lead to pulse degradation in 
fiber lines. We discuss the validity of a finite-dimensional 
reduction of the nonlinear Schroedinger equation and derive 
an analytical formula describing pulse broadening induced by 
randomness. 

NLTuD23 
The role of dispersion of nonilnearlty In 
supercontlnuum generation with photonic crystal 
fibers. Rumen Iliew, Falk Lederer, Friedrich-Schiller-Univ. 
Jena, Germany. 
We derive field equations in frequency domain for describing 
spectrally broad pulses in nonlinear waveguides. Applying 
this model to supercontinuum generation in photonic-crystal 
fibers we investigate the influence of a frequency-dependent 
nonlinear term for realistic fibers. 

NLTuD24 
Pulse train dynamics In actively modelocked lasers, /. 
Nathan Kutz, Jennifer J O'Neil, t/«iV. of Washington, USA. 
A new model for the active modulation of a modelocked laser 
cavity shows pulsetrains can be stabilized only if adjacent 
pulses are out-of-phase, whereas instabilities destroy the 
pulsetrain or give Q-switching. 

NLTuD25 
On the theory of self-similar parabolic optical solitary 
waves, S. Boscolo, S.K. Turitsyn, Aston Univ., UK; V. Yu. 
Novokshenov, Inst. of Mathematics RAS, Russia; J.H.B. Nijhof 
Marconi Solstis, UK. 
Solutions of the nonlinear Schrodinger equation with gain, 
describing optical pulse propagation in an amplifying 
medium, are examined. A self-similar parabolic solution in 
the energy-containing core of the pulse is matched to the 
linear low-amplitude tails. The theoretical analysis repro- 
duces accurately the numerically calculated solution. 

NLTuD26 
Error preventable line-coding schemes using bl-sollton 
to suppress Intra-channel interactions In dispersion- 
managed system, Akihiro Maruta, Yasumichi Nonaka, 
Takashi Inoue, Osaka Univ., Japan. 
Bi-soliton is a periodically stationary pulse propagating in a 
dispersion-managed (DM) transmission system. We propose 
novel transmission line coding schemes in which binary data 
are assigned to single DM solitons and bi-solitons to reduce 
impairments arising from intra-channel interactions. 



NLTuD27 
Experimental Investl^rtions and theoretical descrip- 
tion of the spectral broadening of a femtosecond pulse 
train In tapered flber, SMBagayev, S.V.Chepumv, 
VLDenisonAK. Dmitriyev, AS. Dychkov, V.M.Klementyev, 
D.B.Kolker, I.LKorel, S.A.Kuznetsov, YuAMatyugin, M. V. 
Okhapkin, V.S.Pivtsov, MM Skvortsov, V.RZakharyash, Imt. of 
Laser Physics, Russia; TAMrks, W.J.Wadsworth P.St.J.Russell, 
Univ. of Bath, UK. 
Experimental investigations and theoretical description of the 
tapered fiber influence on the spectral characteristics of the 
passed continuous femtosecond pulse train were made with 
the use of high stable Ti:S laser. Study of the input and output 
broadened spectrum envelope and intermode beats noise 
pedestal for various experimental conditions are presented. 

NLTuD28 
Wavelen^h conversion of femtosecond pulses by 
crtms phase modulation In single mode fibers, Gilbert 
Boyer, Ecole Polytech.-ENSTA, France. 
Efficient wavelength conversion of a femtosecond probe pulse 
in a single-mode fiber is performed by collision with a pump 
pulse. The background-free auto-correlation of the blue- and 
red-shifted probe is presented and discussed. 

NLTuD29 
Antl-^lde assisted spatial sollton lo^c ^te, 
BalakishoreYellampalle, Kelvin Wagner, Univ. of Colorado- 
Boulder, USA; Steve BJair, Univ. of Utah, USA. 
An anti-guiding structure is shown to assist spatial soliton 
drawing logic gate. A weak beam easily breaks the balanced 
symmetry of a pump propagating in an anti-guide, allowing 
very efficient optical switching. More than an order of 
magnitude improvement over previous spatial dragging gates 
is possible. 

NLTuD30 
Competition of gain—gilded modes In stimulated 
Raman scattering with Bessel beams, T. Manz, J. Baier, 
J. Zeitler, U. T. Schwarz, MaxMaier,Univ. Regemburg, 
Germany. 
Stimulated Raman scattering with a Bessel pump beam in 
hydrogen gas shows conical or axial Stokes emission. 
Selection of the gain—guided Stokes modes is due to gain 
suppression in phase—matched Stokes—anti—Stokes 
coupling. 

NLTuD31 
Spatial tapping In PPLN waveguides with picosecond 
pulsed excitation at 1548nm, Fabio Baronio, Costantino 
De Angelis, Univ. di Brescia, Italy; Paul Pioger, Vincent 
Couderc, LaurentLefort, Alain Barthelemy, LR.C.O.M., Univ. 
de Limoges/CNRS, France; Yoohong Min, Victor Quiring, 
Wolfgang SoMer, Univ.-GH Paderbom, Germany. 
Numerical simulations and experiments have shown the 
possibility of exciting spatially trapped beams in PPLN slab 
waveguides with pulses significantly shorter than the 
temporal walk off between FF arid SH, with only FF at input. 

NLTuD32 
Ultrafest temporal reshaping of picosecond pulses 
based on quadratic spatial soliton generation, C. Simos, 
V Couderc, A. Barthelemy, mCOM, Prance. 
We propose and demonstrate the use of quadratic spatial 
soliton generation together with a spatial filtering of the 
optical beam, as an efficient mean for the realization of 
ultrafast temporal reshaping of optical pulses. 

NLTuD33 
Collisions between optical spatial Solltons, Oren Cohen, 
Raam Uzdin, Tal Carmon, Technion, Israel; Jason W. Fleischer, 
MordechaiSegev, Technion, Israel and Princeton University, 
USA; Serguey Odouov, Inst. of Physics, Ukraine. J 
We theoretically study interactions between spatial solltons 
that propagate in opposite directions. Coherent collisions in 
this setting give rise to interference-induced focusing, are 
insensitive to the relative phase between the beams, and are 
accompanied by radiation even in the ideal Kerr case. 

NLTuD34 
High-order vortices and multi-hump rotating laser 
solltons, Sergey V. Pedorov, NikolayN. Rosanov,AnatoliyN. 
Shatsev, Res. Imt. for Laser Physics, Russia; Nikolay A. 
Veretenov, Andrei G. Vladimirov, St. Petersburg State Univ., 
Russia. 
We present results of semianalytical and numerical study of 
transversely two-dimensional spatial and spatio-temporal 
solitons in a laser with a saturable absorber. We demonstrate 
axially symmetric and asymmetric rotating solitons with 
wavefront dislocations of different order. 

NLTuD35 
Blocking and routing discrete solltons In twixilmen- 
slonal networks of nonlinear waveguide arrays, NikosK. 
Efremidis, Jared Hudock, Demetrios N. Christodoulides, 
CREOL, USA; Eugenia D. Eugenieva, Intel Corp., USA. 
We show that discrete solitons can be navigated in two- 
dimensional nonlinear waveguide arrays. This can be 
accomplished by using vector interactions between two 
classes of solitons - signals and Mockers. Disrete solitons in 
such two dimensional array networks exhibit a rich variety of 
fimctional operations, e.g. blocking, routing, logic functions, 
and time-gating. 

NLTuD36 
Minimizing bending losses in two^lmensionai discrete 
siriiton networks, Jared Hudock, Nikos K. Efremidis, 

; Demetrios N. Christodoulides, CREOL, USA; Eugenia D. 
Eugenieva, Intel Corp., USA. 
We show that reflection losses suffered by discrete solitons 
along sharp bends in two-dimensional waveguide-array 
networks can be almost eliminated. Analysis indicates that 
this can be accomplished by appropriately engineering the 
corner site of the bend. Our analytical results are verified 
using numerical simulations. 



NLTuD37 
Self-focusing of light mediated by cubic nonllnearltles 
In potassium titanyl phosphate, Silvia Carrasco, Hongki 
Kim, George Stegeman, CREOL, USA; Lluis Tomer, Univ. 
Politecnica de Catalunya, Spain. 
We report our observations of the self-narrowing of light 
beams mediated by dominant dissipative Kerr nonlinearities 
in a bulk KTP crystal. Observations agree with comprehen- 
sive numerical investigations. Drastic differences between up 
and down-conversion processes are uncovered. 

NLTuD38 
Inverse transverse modulatlonal Instability, C. 
McCormick, R. Y. Chiao, Univ. of California-Berkeley, USA;}. 
M. Hickmann, Univ. Federal deAlagoas, Brazil. 
We investigate the inverse of a spatial modulatlonal instability 
process resulting from a cross-phase modulation mediated 
four-wave interaction between two noncolinear beams 
crossing a self-defocusing Kerr media. 

NLTuD39 
Dielectric nonllnearlty In photorefractlve spatial 
sollton formation, Eugenia DelRe, Univ. dell'Aquila and 
INFM, Italy; Aharon J. Agranat, Hebrew Univ. of Jerusalem, 
Israel. 
We find that anomalous behavior of spatial screening solitons 
observed in the paraelectric phase is a consequence of 
nonlinear dielectric effects. These change the effective optical 
nonlinearity even far from the phase-transition regime. 

NLTuD40 
Nonlocal mean-field theory In N-body quantum mechan- 
ics for Bose-Einstein condensation, /. Nathan Kutz, Univ. 
of Washington, USA; Bernard Deconinck, Colorado State Univ., 
USA. 
Nonlocal interactions in the mean-field theory for Bose- 
Einstein condensation can destabilize nonlinear wavetrain 
solutions for a condensate trapped in standing light waves. 
The dynamics and stability are considered for arbitrary 
interaction potential. 

NLTuD41 
All-optical AND & XOR logic gates in a single device, 
Marco A. Magana Cervantes,}. Stewart Aitchison, Univ. of 
Glasgow; UK. 
We simulate an all-optical device which performs the AND 
and XOR logic operations. The device is based on the Kerr- 
like nonlinear effect present in AlGaAs optimised to operate 
at 1.55 micrometers. 

NL'I\iD42 
Nonlinear beam shaping in an ensemble of cold 
rubidium atoms, 7^ Ackemann, M. Pesch, Univ. Muenster, 
Germany; G. L Lippi, Inst. Non Lineaire de Nice, France; C. 
Labeyrie, B. Klappauf R. Kaiser, Lab. Ondes etDesordre, 
France. 
Nonlinear beam shaping is observed in the far field of an 
intense resonant beam traversing a sample of cold rubidium 
atoms. Numerical simulations indicate the significance of the 
dispersive action of neighboring lines. 

NLTuD43 
Sollton interaction in weakly nonlocal nonlinear media, 
N.I. Nikolov, O. Bang, P.L. Christiansen, Tech. Univ of 
Denmark, Denmark; J.J. Rasmussen, Rise Natl. Lab., Denmark; 
Wieslaw Krolikowski, The Australian Natl. Univ., Australia. 
A new way to reduce the Kerr type soliton interaction due to 
nonlocality of the nonlinear responce function is reported. 
This effect may lead to stabilization of the two soliton 
propagation. 

NLTuD44 
Dark spatial solitons in photorefractlve planar 
waveguide LINbOj :TI:Fe, Marina N. Frolova, Maxim V. 
Borodin, Stanislav M. Shandarov, Vladimir M. Shandarov, 
State Univ. of Control Systems and Radioelectronics, Russia. 
We study the processes of formation of dark photovoltaic 
spatial soliton in photorefractlve LiNbOj :Ti:Fe waveguide. 
The 2-D distribution of the optical field is considered to 
define the nonlinear change of the refractive index. 

NLTuD45 
Thermally Induced spatial soliton in dye doped nematic 
liquid crystal, J.F. Henninot, F. Derrien, M. Debailleul, M. 
Warenghetn, Univ. d'Artois, France. 
We have observed the self-trapping of a laser beam in a liquid 
crystal thick sample. This propagation mode, which can be 
assimilated to a spatial soliton, is due to a thermally induced 
index change, especially strong for nematics. We show here 
that the non-locality of the thermal effect insures the stability 
of the soliton. 

NLTuD46 
Instabilities of multlcomponent spatial solitons In 
photorefractlve media, Kristian Motzek, Friedemann Kaiser, 
Darmstadt Univ of Tech., Germany; Wieslaw Krolikowski, Glen 
McCarthy Anton Desyatnikov, Yuri S. Kivshar, The Australian 
Natl. Univ., Australia; Carsten Weilnau, Cornelia Denz, 
Univ.Muetister; Germany. 
We investigate numerically the dynamics associated with the 
instabilities of multlcomponent spatial solitons in 
photorefractlve media. The instabilities can lead to the 
formation of swinging structures, giving evidence of the 
oscillatory nature of the instabilities. 

NLTuD47 
Distortion and Improvement of the formation of 
quadratic spatial solitons by temporal walk-off and 
wave-vector-mismatch non-uniformities, Roland Schiek, 
Univ of Applied Sciences Regensburg, Germany; Robert 
Iwanow, George I. Stegeman, CREOL, USA; Gerhard Schreiber, 
Wolfgang Sohler, Univ. ofPaderborn, Germany. 
The influence of temporal walk-off and wave-vector 
mismatch non-uniformities on the formation of quadratic 
spatial solitons in lithium niobate film waveguides with a 
specially engineered non-uniform QPM grating is experi- 
mentally investigated. 



NLTuD48 
Internal oscillations of (2+1) dimensional solltons In a 
saturable nonlinear medium, Jianke Yang, Univ. of 
Vermont, USA ■ 
Internal oscillations of (2+1) dimensional ftindamental 
solitons in a saturable medium is studied. Internal modes 
both with and without angular dependence are discovered. 
The effect of angle-dependent internal modes on the soliton 
visually appears as a rotation of the perturbed soliton. 

NLTuD49 
Sln^e-component higher-order mode solltons in liquid 
crystals, X Hutsebaut, M. Haeltemmn, Univ. Libre de 
Brmelles, Belgium; A. Adamski, K. Neyts, Ghent Univ., 
Belgium. 
We demonstrate experimentally the existence of single- 
component multihump spatial solitons in a dye-doped 
nematic liquid crystal planar cell. The low absorption 
obtained at the working wavelength of 890 nm allows us to 
observe soliton propagation over lengths in the centimeter 
range. 

NLTuDSO 
Optical solltons In twisted nematlcs, MiroslawA. 
Karpierz,KatarzynaBrzdakiewicz, QuangV.Nguyen, Warsaw 
Univ. of Tech., Poland. 
Light beam propagation in twisted nematic liquid crystal 
layer is analyzed theoretically. Reorientation nonlinearity 
induces self-focusing and moreover changes the direction of 
light beam propagation. This behavior requires milliwats of 
light power. 

NLTuDSl 
Pormatlon of photorefractive solitons In barlum- 
calclum titanate: From dark and bright solltons to self- 
trapped brl^t rings, DetlefKip, Monika Wesner, Univ. of 
Osmbruck, Germany; VladymirM. Shandarov, State Univ. of 
Control Systems and Radioelectronics, Russia; Jingun Xu, 
Nankai Univ., China. 
We investigate photorefractive spatial soliton formation in 
iron-doped barium-calcium titanate. In this material with 
both photovoltaic and screening nonlinearity, we observe 
bright and dark spatial solitons, as well as the propagation of 
self-trapped bright rings. 
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Room: Auditorium 

8:00am-l 0:00am 
NLWA ■ New Materials and New Directions 
Alain J. Barthelemy, UER Des Science, France, 
Presider 

NLWAl      8:00am ^BIBBfc) 
Nonlinear phenomena In Bose-Elnstein condensates, 
Luis Santos, Univ. at Hannover, Germany. 
We present a brief overview of the research on Bose-Einstein 
condensation, discussing some of the most recent develop- 
ments in the field, with particular enphasis in the links 
between condensate physics and nonlinear physics. 

NLWA2     8:30am 4BSBS^ 
Single-photon and two-photon photopolymerlzatlon for 
micro-nano fabrication, Satoshi Kawata, Satoru Shoji, 
Hong-Bo Sun, Osaka Univ., Japan. 
Self-growth of micro-fiber structures and spatial optical . 
soliton propagation based on single- photon 
photopolymerization, and nonlinear property of two-photon 
photopolymerizaiton which gives rise to three-dimensional 
microfabrication with sub-diffraction limit spatial resolution 
are introduced. 

NLWA3      9:00am 
Ultrahlgh-speed all-optical wavelength conversion, B. S. 
Ham, ETRI, Korea; P. R. Hemmer, TexaxA&M Univ., USA. 
Ultrahigh-speed all-optical wavelength conversion has been 
demonstrated using a rare-earth doped crystal as a proof of 
principle. The observed switching time is two orders of 
magnitude shorter than the carrier lifetime for on-resonance 
transitions. This demonstration shows a breakthrough in the 
T| limitation of current switching technologies. 

NLWA4      9:15am ^IBS^ 
Wavegulding by optically induced dipolar clusters at 
the ferroelectric-paraelectric phase transition region, 
Aharon Agranat, The Hebrew Univ., Israel. 
Abstract not available at this time. 

Room: Auditorium 

10:30am-12:30pm 
NLWB m Spatial Solltons 
Demetrios N. Christodoulides, Univ. of Central Florida, 
United States, Presider mii^n!» 

NLWBl      10:30am 
Spatial solltons and their Interactions via nonlocallty 
and reorientation in nematic liquid crystals, Marco 
Peccianti, Claudia Conti, Gaetano Assanto, Terza Univ. of 
Rome, Italy. 
A reorientational nonlocal nonlinearity governs 3D-spatial 
solitons in undoped nematic liquid crystals. We demonstrate 
solitons, their attraction and interlacing, outlining the role of 
nonlocality in time and in space, in agreement with a simple 
model. 

NLWB2      10:45am 
Experimental observation of phase controlled three- 
dimensional interactions between two quadratic 
spatial solitons: Scattering, fusion and splraling, 
Christos Simos, Vincent Couderc, Alain Barthelemy, Inst de 
Recherche en Comm. Optiques et Microondes, France. 
We experimentally investigated the non-planar interaction of 
two quadratic spatial solitons in a bulk crystal. We obtained 
repulsion, fusion and spiraling by controlling the phase 
difference between the input fields and/or their direction. 

NLWB3      11:00am 
Collisions of (2+l)D Dipole-mode vector solitons In an 
anisotropic nonlinear medium, Carsten Weilnau, Cornelia 
Denz, Westfalische Wilhehns-Univ., Germany;Marcus Ahles, 
Kristian Motzek, Friedemann Kaiser, Darmstadt Tech. Univ., 
Germany;Wieslaw Krdlikowski, Glen McCarthy, The Australian 
Natl Univ.,Australia. 
We investigate the specific influence of anisotropy on 
generation, stability and dynamics of dipole-mode vector 
solitons in a photorefractive medium, experimentally and 
numerically. Further, we demonstrate collision-induced 
transformation of transverse to angular momentum. 

NLWB4      11:15am 
IVIultlcomponent vector solitons: Theory and experi- 
ment. Glen McCarthy, Wieslaw Krolikowski,Barry Luther- 
Davies, Australian Natl. Univ.,Australia; Anton 
Desyatnikov,Yuri S. Kivshar,Australian Natl. Univ., Australia; 
Kristian Motzek, Friedemann Kaiser, Darmstadt Univ.ofTech., 
Germany; Carsten Weilnau,Cornelia Denz, Westfalische 
Wilhelms-Univ. Muenster.Germany. 
We study, theoretically and experimentally, multicomponent 
spatial solitons in nonlinear saturable (isotropic and 
anisotropic photorefractive) bulk media. We find numerically 
a family of the three-component dipole-mode solitons and 
demonstrate their stability in a wide range of the input 
parameters. We also observe the formation and stability of 
these spatial solitons in experiment with photorefractive 
strontium barium niobate (SBN) crystals. 



NLWB5      11:30am 
Propagation of spatially and temporally incoherent 
iiglit and modulation instability In non^nstantaneous 
nonlinear media, HrvojeBuljan.Umv. ofZagrehCroatia; 
Antonio Siber, Imt of Physics, Croatia; Mann Soljacic ,MIT, 
USA; Mordechai Segev, Technion - Israel Inst. of Tech., Israel 
We present a theory describing propagation of spatially and 
temporally incoherent light in non-instantaneous nonlinear 
media, and demonstrate the existence of modulation 
instability of "white" light. We find that modulation instabil- 
ity of "white" light is fiindamentally a collective effect, where 
all the temporal frequencies participate in the formation of a 
pattern, and self-adjust their respective contributions. 

NLWB6      11:45am 
A solltonic all-optical switcli based on the fractional 
Talbot effect, Stefano Minardi, Gianluca Arrighi, Paolo Di 
Trapani, INPMand Univ. degli Studi dell'Insubria, Italy; 
Arunas Varanavicius, Algis Piskarskas, Vilnius Univ., Lithuania. 
In a parametric down-conversion scheme, a weak seeding can 
shift a periodic array of optical beams by half of its transverse 
period as the resuh of the spatial solitons excitation and the 
fractional Talbot effect. 

NLWB7      12:00pm 
The flnai state of evolution of incoherent light patterns 
In nonlinear media, Mordechai Segev, Raam Uzdin, 
Technion, Israel. 
By using a new coherence measure which can be measured 
without interferometry, we find that a pattern of weakly 
correlated light evolves into a state characterized by [pattern's 
feature size]/[correlation distance)]. A new relation between 
intensity profile and coherence is presented. 

NLWB8      12:15pm 
Nonlinear beam dynamics in x^wave^ides, G. 
Stegeman, R. Makndevich, R. Schiek, R. Iwanow, L. lankovic, 
H. Pang, CREOL, USA; G. Schreiber, W. Sohler, Univ. GH 
Paderbom, Germany; L. Torner, Un. Polit. de Catalunya, Spain. 
The evolution from diffraction, to single and then multiple 
quadratic soliton generation, and finally the onset of 
modulational instability were observed for wide fundamental 
beams in both birefringence and quasi-phase matched 
LiNbOj slab waveguides. 

Room: Auditorium 

2:00pm-4:00pm 
NLWC ■ Nonlinear Periodic Structures 
Neil G. Broderick, Univ. of Southampton, 
United Kingdom, Presider 

NLWCl      2:00pm ^fWfc 
MIcrostructured photonic crystal optical flber device 
structures, Benjamin J. Eggleton, OFS Pitel Lab., USA. 
We review several applications of microstructured photonic 
crystal optical fibers that incorporate active materials infiised 
into the air-holes. The tunable optical characteristics of the 
materials combined with the unique structure of the fiber 
enable a number of functionalities including 
reconfigurability, tunability and enhanced nonlinearities for 
various fiber device applications. 

NLWC2      2:30pm 
Discrete temporal solitons along a chain of nonlinear 
cmipled microcavities embedded in photonic crystals, 
Demetrios N. ChristodouUdes, Nikos K. Efremidis, Jared 
Hudock, Univ. of Central Florida, USA. 
We demonstrate that spatiotemporal discrete solitons are 
possible in nonlinear photonic crystal structures. Analysis 
indicates that these states can propagate undistorted along a 
series of coupled resonators or defects by balancing the effects 
of discrete lattice dispersion with material nonlinearity. 

NLWC3      2:45pm 
Soliton en^neerlng with two^rlod QPM grating, 
St^en K}aerJohansen,Univ. PoUtecnica de Catalunya, Spain 
and Tech. Univ. of Denmark, Denmark; Silvia Carrasco ,Llms 
Torner.Univ. Politemica de Catalunya, Spain; OleBang.Tech 
Univ. of Denmark, Denmark. 
Two-period quasi-phase-matching schemes might make it 
practically possible to engineer the averaged effective 
competing nonlinearities governing beams in quadratic 
materials. We show that the bandwidth for soliton generation 
is broader than in homogeneous structures. 

NLWC4      3:00pm 
Quasi-phase-matched second harmonic generation in 
IMlymer rib waveguides, lung-Jin Ju, SuntakPark, Seung 
Koo Park, Jung Yun Do, Myung-Hyun Lee, Electronics and 
Telecommunications Research Institute (ETRI), Korea. 
Single-mode rib waveguides at both pump and second 
harmonic wavelengths were fabricated with low-loss 
polymers. We investigated the quasi-phase matching 
characteristics, and the second harmonic generation 
properties for wavelength conversions at the optical commu- 
nication baiid. 



NLWC5      3:15pm 
Quadratic Interactions in an hexagonally poled lithium 
niobate burled waveguide, K. Gallo, R. T. Bratfalean, A. C. 
Peacock, N. G. R. Broderick, C. B. E. Gawith, L Ming, R G. R. 
Smith, D.}. Richardson, Univ. of Southampton, UK. 
We demonstrate for the first time second harmonic genera- 
tion fi-om 1.536 um in a buried planar waveguide fabricated 
by an annealed and reverse proton exchange in a two- 
dimensional (2D) nonlinear photonic LiNbOj crystal. 

NLWC6      3:30pm ^TMffifc 
BIstabllity In photonic crystal defects, Marin Soljacic, 
Mihai Ibanescu, Steven G. Johnson, Chiyan Luo, Yoel 
Fink,}.D.Joannopoulos, MIT, USA; Shanhui Fan, Stanford 
Univ., USA. 
We present an analytical theory and computational experi- 
ments to demonstrate optical bistahility in a class of non- 
linear photonic crystal devices. Lengths of our devices are 
smaller than the wavelength of light, they can operate with 
only a few mW of power, and can be faster than Ips. 



Nonlinear Guided Waves 

Temporal Fiber Solitons 

Monday, September 2, 2002 

Stefan Wabnitz, Xtera Communications, Inc., USA 
Presider 

NLMA 
8:00am - 10:00am 
Auditorium 



NLMAl-1 

Is soliton communications really beneficial in presence 
of polarization mode dispersion? 
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Abstract: We discuss and review the impairments from random birefringence and PMD on soliton 
systems, including timing jitter coming from PMD and WDM-collision-induced polarization 
scattering. 

©2000 Optical Society of America 
OCIS  codes:   (060.0060)  Fiber optics  and  optical  communications;  (260.2030)  Dispersion;  (260.5430) 
Polarization 

1. Introduction 

The fact that soliton pulses are robust to the broadening effects associated with random birefringence and 
polarization mode dispersion (PMD) in optical fibers is was demonstrated by simulation work in 1989 [1]. 
However, in communication systems, there are some other effects in sequences of pulses, such as pulse 
interaction and timing jitter, which might be affected by PMD as well. In this paper we discuss and review 
the complete system performance of solitons affected by PMD, including the effects of timing jitter, and we 
also introduce a novel timing jitter effect arising in soliton WDM systems. 

'0        100      200     300      400      600 
Tims (ps) 

(a) 

600  700  800 300  400  500  600 
Time (ps) 

(b) 

Fig. 1. Evolution of soliton pulse PRBS data with transmission length. The GVD is 0.5 ps/l<m.nm, and the initial pulse width 5 ps. (a) 

Without PMD. (b) With PMD, PMD coefficient 0.15 ps/^fhn ■ 

2. PMD-induced distorsions 

Already in the early work it was found that the soliton perturbed by PMD radiated []]. This radiation 
causes the data to be distorted in mainly two ways; direct pulse broadening and intersymbol interference, 
and also (which is much less knovm and investigated) an increased interaction originating from the 
interaction between the solitons and the radiation. The pulse broadening have been investigated in an 
number of papers, both for conventional [1-6] and DM [7-9] solitons, and to put the amount of broadening 
for conventional solitons in perspective, it is on average of the same order as the average broadening of 
linear pulses for which the first-order PMD have been compensated away [10]. For DM solitons [7-9], the 
performance is improved since the radiation is maintained in the vicinity of the pulses [7]. However, the 
radiation that is lost from the solitons will, in addition to the pulse broadening, also give rise to an increased 
soliton interaction that significantly will degrade the soliton system performance. This effect can be seen in 
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Fig. 1, comparing the transmission of a soliton data sequence without (a) and with (b) PMD. Note that in 
(b) a single pulse remains stable, but a pulse sequence (i.e. data) is distorted. This will reduce the system 
robustness to PMD so that conventional soHton systems will always be worse than linear systems in terms 
of bit error rates (neglecting the influence of amplified spontaneous emission (ASE) noise in long systems 
and the fact that solitons have better OSNR due to their higher power). However, if the radiation is 
removed, via e.g. soHton control methods, or reduced by the use of DM solitons, the performance of 
sohtons can be much better than that of the linear systems [11-12]. For DM solitons, the performance is 
improved with increasing map strength and decreasing average dispersion. In terms of outage probability 
(the probability the system bit error rate is larger than lO'^), the average differential group delay (DGD) 
allowed for the outage probabiHty to be below lO'^ is 17% of the bit slot for linear transmission For 
conventional solitons with sliding filters we found that this value could increase to approximately 30 % 
and with amphtude modulation 65% of the bit slot. For DM solitons the corresponding figure is 25 % of the 
bit slot, but those values will of course depend on the details of th receiver, te amount of noise and power 
margins of the systems etc. 

3. WDM soliton systems 

3.1 XPM-induced timing jitter 

One problem that arises for conventional solitons used in WDM configurations is that collisions between 
pulses of different wavelengths may, if they occur asymmetrically around an amplifier, give rise to a 
frequency shift induced by cross-phase modulation (XPM), and this frequency shift will, via the dispersion 
transform into a subsequent timing jitter. This collision-induced timing jitter puts strict design demands on 
the wavelength separation and the dispersion of conventional WDM-soliton systems [2]. However for DM 
sohtons the average dispersion can be kept low which means that the resulting timing jitter will be reduced 
Moreover, if the local dispersion is high, the collisions will occur rapidly and give rise to smaller fi-equency 
shift than for the conventional systems. The result is that the collision-induced timing jitter is more or less 
negligible for DM solitons, and this is an important reason for the good WDM compatibilitv of DM 
solitons. tr j 

3.2 PMD-and-XPM-induced timing jitter 

When PMD and birefringence effects are present there are two additional sources of timing jitter One is 
the birefringence-mediated timing jitter [13], which originates in the fact that the presence ASE noise will 
scatter the polarization state of each soliton, and this will via the PMD be transformed in to a random 
transit time. The second timing jitter source is the PMD-XPM-induced timing jitter, which originates from 
the polarization scattering when WDM solitons with different polarizations conide[14]. Due to XPM the 
polarization will be scattered, as shown by the simulations in fig 2. Via the PMD this polarization 
scattenng will transform into a timing jitter (as shown in fig 3). The figures correspond to are a DM-svstem 
with map strength S=2 and length 600 km at 40 Gb/s. 

*ri .:- 

X, 

.,*    ^^2    A 

•     :     W (b) 
Fig.2.   Distnbution of polanzation states at the center of mark bits on Poincare sphere. The PMD coefficient 0,20 „s/Vte , (a) 
Single channel, (b) Tliree channels with 200 GHz channel spacing. 
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Fig.3. Electrical Eye-diagram at 600 km for DM soliton systems with S=2.0 and Dav = 0.05 ps/km.nm. (a) Single channel without 
PMD, (b) Single channel with PMD coefficient 0.20 ps/^Jkm . (c) Three channels with 200 GHz channel spacing and without PMD, 

(d) Three channels with 200 GHz channel spacing and PMD coefficient 0.20 psl4hn ■ 

The variance of this timing jitter can be simply estimated (assuming first-order PMD and completely 
random polarization scattering over the Poincare sphere) as <5t>= DGDV12. The effect is closely related 
to the birefringence mediated timing jitter [13] and the XPM-induced timing jitter for conventional solitons, 
and can probably be reduced by proper system design. It should be stressed, however that such a timing 
jitter may arise in any WDM system with significant XPM between the channels, since the same 
polarization scatter have been observed also in such systems [15]. 

4. Conclusions 

We have discussed and reviewed the performance of soliton systems in presence of PMD. We have found 
that conventional soliton systems are significantly impaired by the radiation-mediated interaction, but DM 
solitons can show improved performance due to the lower radiation from DM solitons. For WDM soliton 
systems we have discussed a novel source of timing jitter [16]. 
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Abstract: We have experimentally observed the formation of stable pulse pairs with a ^/2 
phase difference m a passively mode-locked stretched-pulse fiber ring teer. We have developed a 
sxmphfiedtheoretxcalmodelthat,keepingtheessentialfeaturesofthee^^^^^ ; 

^ZtZ^''"'^''' "^' '""'^'^ '* ™'"™"y- T^« agreement with tixe experimental 
. ©2002 Optical Society of America 

OCIS codes: (060.5530) Pulse propagation and solitons; (140.3510) Lasers, fiber 

Fiber lasers have been a field of intense research activity for more than a decade fll  They are souAt as 
compact high repetition rate sources for telecommnnications. The field confinemen   n toedTptM fibS 
provides both large optical gain and Kerr nonlinearity, key ingredients for passive mod" Sng inomJ^ 
dispersion favors he existence of multiple pulses inside the cavity when the pump poweHstcrtatd Pnb^^^ 
may spread equally along the cavity, but are more likely to agglutinate into a more or less Xact'bun h 
Under certain conditions these bunches of pulses are very stable [2]. ^ 

Solitpn-soliton interaction has also been deeply studied from a theoretical point of view In the frame of the 
^nlmear Schrodmger equation, soliton-soliton interaction does not produce any staWetunA Tsolttc^ 

MZ^'VT'''^' °' '°'^''''^'y °f **^^ Pl^y^'^^ ^y^t^'"' when taking into aLunt g'rL los   s^^^^^ 
higher order dispersion terms, allows for stable bound states of pulse pairs to be found. In tie to Ise which 
IS the relej^t here, modeling distributed gain and losses leads to the complex cubicWntic Ginl4T£l^^^^ 
equation (CGLE) m which stable two-soliton bound states were predicted [3, 4]. AT mport^^^^^ 
the stable bound states found in M.[4] is the ±./2 phase difference betweeli thl two pulses 

Very recently, the observation of a closely interacting pair of pulses tliat formed a soliton bound state in 
an anomalous fiber ring was reported. The bound state formation required the iniectSn o^ Sen e rw 
field, and the pha^e relationship between pulses seemed to be around. [5]. In thf pM ^^r^^^^^ 
hat a pulse pair is formed with a ./2 phase difference aa predicted in the frame of the CSE LZ 

[4]. Nevertheless aa the pulse experiences strong changes in one roundtrip, the analysis b^ed in the^GLE 

of SMPI fiber        t*" ^^^P'i' *°*° "^^*=^ *^« ^^^ "^ P^^P-S "g^t is injected. A 4^^^!; 
I'SdoX^^^^ ^^=+1^ ps/nm/km). Nonlinear pollrization evolution tfat 
taices place along the propagation m both fibers makes transmission through polarizer PI intensitv deoendent 
a^towmg for passive mode locking to be triggered by an appropriate adjulment of the p Sf wSlt' 

the easiest stable configuration to be obtained in our setup. The pump power is then reduced to keen onlv 

SI   1   ' Pf" "'*!^' "^^ ""P"*"**^' "^*^ 20 PS separation. We notice the presence t^^^^^^^ 
fringes m the spectrum, indicating that the two pulses are phase-locked. However, the precise phLelfeLe 
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Fig. 1. (a) Experimental setup (b) Spectrum of the laser output port (solid line). It is fitted (open circles) 
by the spectrum of two unchirped 610-fs sech-profiled pulses separated by 6.8 ps. and having a 7r/2 phase 

difference 

is difficult to measure, due to the large pulse separation. When the pair separation is below 10 ps (RJ 18 
pulsewidths), this phase relationship can be inferred with good precision from the position of fringes in the 
pair spectrum. The spectrum in fig.l(b) is well fitted (open circles) by the spectrum resulting from two 610 
fs FWHM sech-profiled pulses separated by 6.8 ps, and having a phase difference of 7r/2 [6]. 

The theoretical model is illustrated in Fig2(a). It basically consists of three different parts which represent, I) 
the Erbium doped fiber, assumed to be nonbirefringent; II) the SMF fiber where we put all the birefrmgence 
of the cavity and III) a polarizer whose axis form a certain angle 6 with respect to the fast axis of the 
birefringent SMF fiber. Between the different parts, at points a),b),c) and d) lumped linear losses are assumed, 
representing the different losses (coupling losses and rejected energy) of the real cavity. The field propagation 
in the Erbium doped fiber is governed by the following equation: 

D 
iU, - ^Utt + r|C7p[/+ = ig{Q)U + ipUtu (1) 

where, D = /3f 7,3|^^^ (/^a being the corresponding dispersion coefficients), T = Af^f^/Afff {Aeff being 
the effective area in each type of fiber), ^ is the strength of spectral filtering, due to the gain Umited 
bandwidth and optical components (/? > 0). giQ) is the gain in the cavity, it describes an active medmm 
with a recovery time much longer than the round-trip time of the cavity and therefore does not depend 

explicitly on t. It can be modeled through: 

9iQ) = 1 + Q/EL ' 
9o{z) = 9oi + 

(go/ - 9oi) 

LET 

z,    where     Q 

oo 

dt, 

EL is the saturation energy and go{z) is the small signal gain and depends on z to take into account pump 
depletion, LEV is the total length of the Erbium doped fiber, and got and gof are the correspondmg small 
signal gains at both ends of the fiber as indicated in the figure. 

The output field at the end of the Er fiber is considered to be circularly polarized[7]. Therefore its components 
along the principal axes of the linearly birefringent SMF fiber at its input are: ((^,iA) = 75(1, «)t^- The pulse 

evolution is then governed by the following two coupled nonlinear equations:[7] 

(2) 

where V and (t) are the normalized envelopes of the two optical field components, and 7 is the half-difference 
between the propagation constants of the two components of the field. After the polarizer the field becomes 
U = (i)COs{e) + Tpsin{e), and the process repeats until finding some stationary solutions. 

Taking as initial condition any arbitrary input, fixing the rest of the cavity parameters and by properly 
choosing the angle of the polarizer e, we obtain after many roundtrips a stationary solution consistmg of 
one or several pulses, depending of the pump power, determined by the saturation energy EL and the small 
signal gain go- When two pulses appear its relative phase(a) and distance {p) evolves convergmg to a fixed 
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value ^ shown in Fig.2(b). Fig.3(a) shows the corresponding stationary solution obtained in this way. Both 
intensity and phase profiles are plotted showing clearly two identical pulses with a n/2 phase difference The 
corresponding spectrum is shown in Fig3(b); it resembles very much the experimental one sown in Fig.l(b). 

The relation between the adimensional magnitudes: z, t, £/(^, #) used above and the real ones:^, T, E(E, E,) 
is the following: ss-^j/^ 

z = Z/Zo,   Z, = j^^^, t = {T-^)IT,,  U = E^ETi/\fiSMF^,    R-. 27TO2 igSMF 

Taking, Zo = 1.07m, gives us as time unit in Fig.3a) % = 150/s. 

The work of J.M.S.C. was supported under contract BPM2000-0806. 
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Abstract:   We show, experimentally and numerically, that Ti:sapphire mode-locked lasers can 
operate in a regime in which they produce exploding solitons. In stable conditions of operation 
all explosions have similar features, but are not identical. 
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Mode-locked lasers provide an excellent test bed for soliton dynamics because they represent an essentially 
infinite propagation distance system with identical conditions for each period. For example, polarization 
locked vector solitons were first observed in a modelocked fiber laser [1]. The concept of soliton dispersion 
management yielded important new insight into mode-locked laser dynamics [2]. From a practical point of 
view, scientists were mostly interested in stable ultra-short pulses. Dissipative systems admit stable pulses in 
a certain range of parameters. Beyond this range, pulses might change on propagation regularly or chaotically 
[3]. There can be periodic pulsations or more complicated dynamics [4]. Experimentally, changes of the short 
pulses in shape or in length from one round trip to another is often present in laser dynamics but usually 
is avoided. Careful study of this complicated behavior can be useful both for understanding of conditions of 
stability as well as for creating more versatile systems. 

One of the most striking forms of pulsations are pulse explosions that happen for certain values of the laser 
parameters. These were predicted theoretically [5] for dissipative systems and have been observed in [6]. In 
this work, we, report soliton explosions in a mode-locked laser and give explicit numerical results taking into 
account third order dispersion. We have experimentally observed unstable "exploding" solitons in a Kerr lens 
modelocked (KLM) Ti:sapphire laser [7]. To experimentally detect soliton explosions, we temporally record 
the output spectrum of the laser as well as the integrated energy of the generated pulse. 

Experimental setup is shown in Fig.l. The laser has a "stretched" cavity that is 4 times longer than typical 
(40 ns roundtrip time). The laser spectrum shows very strong "Kelly" sidebands from phase matching of 
the dispersive waves shed as the 50 fs soliton undergoes periodic perturbation [8]. These are stronger than 
typically observed in a KLM laser due to the long cavity and lack of spectral filtering. The gain bandwidth 
is broader than the pulse spectrum and mainly limited by the mirror reflectivity. The output of the laser is 
spectrally dispersed by a diffraction grating across an array of 6 detectors. The spectral dispersion is adjusted 
so that each channel has a spectral width of approximately 12 nm (full width half maximum). The data from 
all of the channels is synchronously recorded with a bandwidth corresponding to averaging over 5 successive 
pulses. 

The spectrally integrated intensity (i.e. total pulse energy) is also synchronously recorded on a separate 
channel. The optical spectrum analyzer is used to record the steady state spectrum. The 6 channels are 
positioned on the short wavelength side of the steady state spectrum because the spectral transients occur 
in that direction. This was verified by running the optical spectrum analyzer in "peak hold" mode during 
a large number of explosions. This captures the highest spectral intensity at a given wavelength. The long 
wavelength side of the captured spectrum was identical to the steady state spectrum. A typical steady state 
spectrum and the spectral response of the individual channels are shown in 1. Typical measured intracavity 
dispersion is also shown. Measurements were performed in situ by measuring the repetition rate as a function 
of wavelength [9]. 
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of the individual channels and the dispersion as a function of wavelength. 

Data exhibiting a typical soliton explosion are shown in Fig.2. The bulk of the integrated spectrum is concen- 

andl^n;"! i ft T*T f'*"°1 ^'l"?- ^u"° "" ^"P^°"°" °^^"^' *^« ^P«*"- becomes asymmetric and abruptly shifts to shorter wavelength. It subsequently returns to the original position. Small oscillations 
that slowly increase m amplitude precede an explosion. The oscillations appear in the spectrally integrated 
intensity. They slowly die out after the explosion. If explicit spectral filtering is imposed on the laser ex- 
plosions do not occur, mstead strong oscillations eventually break out at pump powers lower than those 
characteristic of the occurrence of explosions. We attribute these oscillations to relaxation phenomena be- 

threshoW m'""^ *™'     relaxation oscillations increases as the pump power is lowered towards the lasing 

We observe the following characteristics of the explosions: explosions occur intermittently; the time int 
between the explosions depends on various conditions and strongly depends on system parameters; different 
exposions are similar but not identical; the explosions occur when the laser is close to a critical point of 
unstable operation; the frequency depends on pulse energy; explosions happen spontaneously, but external 
perturbations can trigger them. All these features are similar to those predicted theoretically in the continuous 
model [5] However, the real system is not continuous. The discreteness of the laser must be taken into account 
to verify that the predictions still hold. 

Numerical analysis has been done using a periodic system, similar to the experiment. Mode-locked lasers are 
typically modeled using the complex cubic-quintic Ginzburg-Landau (CGL) equation [11]. 

where Us retarded time (proportional to the the number of round trips), ;. is the propagation distance,^ 
18 the complex envelope of the electric field. D is the dispersion coefficient, & accounts for the linear gain 
/? describes spectral filtering, e and ^ account for nonlinear gain/absorption processes, v is a higher order 
correction term to the intensity-dependent refractive index and h accounts for the third order dispersion. 

We model the laser with the above CGL equation but periodically vary the parameters D, rf, /?, e, ^ ,. and 
/?3 with j, the period corresponding to a cavity round trip. The goal of this is to capture the essential eifects 
of periodicity and abrupt changes of parameters inside the cavity, not to model the laser in detail. The map 
of the parameters is shown m the inset of Fig.3. Dispersion, nonlinearity and linear and nonlinear gain act for 
a certain propagation length, ij (modeling the evolution in the gain crystal). The output coupler is modeled 
by concentrating losses at the end of each round trip. For the bulk of the cavity, the pulse propagates a 

het"th ^^, ™^"f ^, 'fftJ^ "^^ *^P««i°» t^---' ^^. th« only important parameter In thi! stage 
being then the product iaDa. This accounts for the prisms induced dispersion. 

As illustrated in the inset in Fig.3, the sequence during a roundtrip is the following: i) propagation inside 
the active medium a certain distance ii governed by Eq.(l) with constant parameters e, rf, ^, ^, ^ and «. 
all of them different of zero. „) Purely dispersive propagation a distance L-,. iii) Same as step i) (backward 
propagation m the active medium) iv) Instantaneous linear coupling losses. This model differs from the earlier 
work [5J, which had distributed parameters and from the model in [6] which had no third order dispersion 
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Fig. 2. (Left) Typical data showing solitons explosions. In the upper panel the dispersion is adjusted to yield 
solitary explosions, while in the lower one it is adjusted to yield burst of explosions. The resolution and 
position of spectral channels has been optimized in the lower panel. 

Fig. 3. (Right) Soiiton explosion in numerical simulations, (a) The soiiton energy Q is plotted versus the 
number of round trips. Q corresponds to the experimental integrated intensity. Parameters of the simulation 
are shown in the figure, (b) The spectral evolution of the pulse at the time of explosion. The inset in the 
middle shows the map of the parameters of the CGLE for a single round trip in the laser as used in our 
numerical simulations. 

However, explosions exist even in the current model, which is closer to the experimental conditions. 

Fig.3 illustrates the soiiton explosions observed in the above model. Here we calculated the spectral evolution 
of the pulse at the time of explosion. As initial condition, we use a pulse of Gaussian shape with the amplitude 
and width as initial parameters. This initial condition converges to a soiiton with the shape which depends 
on the equation parameters. The soiiton evolves and now and then explodes. Explosions happen irregularly 
but each of them have similar features. The number of explosions is indefinite. The spectra are symmetric 
in the quiet regime of soiiton propagation. They become chaotic and asymmetric at the time of explosion. 
The 3rd order dispersion produces spectrally asymmetric explosions, just as occurs in the experiment. 

The work of J.M.S.C. was supported under contract BFM2000-0806. STC acknowledges support from NIST 
and NSF. NNA acknowledges support from US AROFE (grant N62649-01-1-0002). 
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Abstract: We present the temporal soliton compression of femtosecond pulses in quadratic media, where cascade 

quadratic nonlinearity and normal dispereion contribute for compression. Compression factor of 3 is achieved by 

using-30 mm long beta-barium borate. 
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Introduction 

Pulse compression is a useful technique to shorten pulse durations from those generated by oscillators or 

amplifiers. The most popular pulse compression technique utilizes self-phase modulation due to the Kerr 

nonlinearity in an optical fiber and successive dispersion compensation by grating pairs [1]. Another type of 

compression system, called the soliton compressor, has also been demonstrated [2]. Although the soliton 

compression technique is attractive because of its small loss and its simplicity, the use of this technique with Kerr 

nonlinearity is limited in the spectral region of anomalous dispersion. 

Here we report the numerical and experimental study on soUton propagation and compression in quadratic media 

of ^BaB204 (BBO), where the negative phase shift due to cascade quadratic nonlinearity (CQN) [3] and normal 

dispersion in the identical material contribute for soliton formation. This soliton compression scheme is an extended 

technique of the work of Liu et al. [4], who demonstrated the pulse compression by using negative phase shifts 

induced by CQN and successive material, such as glass prisms, for dispersion compensation. 

Soliton propagation aiid compression in BBO 

We consider femtosecond pulse propagation along z-axis in a nonlinear and dispersive material. Within the slowly 

varying amplitude approximation, pulse propagation under type I phase mismatched second harmonic generation is 

described by the coupled-wave equations as [5] 

^A.    .. 3* A    .    ,. (,,■>,    ^   \ 
-^ = '?|-g-r-'AA 4exp(-iMz)-jo-,|A,| ^,+2|4f A,| 

 % 

where Afc = *, -2*, denotes the wave-vector mismatch, rj, the new temporal coordinate propagating with the group 

velocity of the fundamental piilse, C, the GVM parameter, and |, the group-velocity dispersion (GVD) parameter, p 
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and a denotes the quadratic and cubic noniinearity, respectively. Under the conditions of large phase mismatch, 

these equations can be reduced into the nonlinear Schrodinger equation [6]. 

.3A 
dz 

+ ^, 
9^A PxPi 

-CT, A A=o.  (2) 

Soliton-like propagations are implied by this equation. The difference between CQN solitons in BBO at 800 nm and 

the fiber solitons is the signs of noniinearity. Solitons we present here are supported by the cascade noniinearity of 

negative sign and normal dispersion of the material itself, whereas fiber solitons are supported by Kerr noniinearity 

and anomalous dispersion. Figure 1 shows critical peak intensity for supporting fundamental solitons as a function 

of the wave-vector mismatch Ait, for various pulse durations. We can predict that the soliton compression should 

occur by pumping the higher-order soliton with peak intensity higher than the critical intensity [2]. 

100 —1 1 1!—p-7- 
—120 fs      ;    1     ; 
— 60 fs       /    '     ' 

20    40    60    80    100 

A^[mm ] 

Fig. 1 Critical peak intensity for supporting fundamental solitons as a function of M for various pulse durations. 

We performed soliton compression experiments by using BBO crystals cut for type I phase matching, of totally 32 

mm length. Linearly polarized pulses of -130 fs duration, 800 nm center wavelength, and of 1 kHz repetition rate 

are generated by a mode-locked Ti: sapphire laser and a regenerative amplifier. The pulses are input to the crystal 

with an appropriate intensity and phase-mismatched angle. The transmitted pulses are characterized by using the 

frequency-resolved optical gating (FROG) method. 

When considering the CQN interaction of femtosecond pulses, the GVM effect should be taken into account. We 

choose here relatively large wave-vector mismatch condition, M ~ 60 mm"', to avoid nonlinear chirp induced by 
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Fig. 2 Retrieved intensity and phase profiles of (a) the input and (b) the transmitted pulses. 
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GVM [4]. Figure 2 shows the retrieved pulse profiles of (a) the incident and (b) the transmitted pulses after the 32 

mm propagation, when the input peak intensity is 50 GW/cm^ and M = eOmm"'. The pulse duration is successfully 

compressed down to -45 fs, by a factor of 3. We also measured the compressed pulse duration at the lengtti of 15 

mm and 32 mm. Figure 3 shows the compressed pulse duration as a function of propagation length. The theoretical 

results obtained by numerically solving the equation (1) under the condition of 30 GW/cm' and M = 60 mm"' are 

also shown as a dashed Une. The measured data showed similar behavior as that obtained by calculations. 
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Conclusions 

In conclusion, we have demonstrated efficient soUton compression of femtosecond pulses in quadratic nonUnear 

media. 3-times compression was achieved by use of 32 mm BBO crystal. This compressor proved useful for 

high-energy pulse compression because of its efficient compression ratio and small loss, as well as its extreme 
simplicity. 

ompression of femtosecond optical pulses," Appl. Phys. Lett. 40, 
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Abstract:   We show theoretically and experimentally that a beat signal propagating along a 
normally dispersive fiber can trigger the formation of multiple shocks. This phenomenon critically 
depends on the input frequency separation and power of the beat signal. 
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The propagation along a normally dispersive optical fiber is described by the one-dimensional nonlinear 
Schrodinger equation (NLSE) in the so-called defocusing case. This is a universal equation which describes 
several different phenomena such as propagation in shallow water/ the mean-field evolution of a Bose- 
Einstein condensate in large aspect ratio traps,^ or diffraction in planar waveguides with negative Kerr 
coefficient.^ It is well-known that the defocusing NLSE support the propagation of dark solitons, which have 
been widely studied in the recent past.^ On the other hand the periodic problem (i.e., how a periodic input 
condition evolves) is not equally well understood, though it can be easily accessed experimentally by injecting 
a two-frequency beat signal along the fiber. It is known that a sinusoidal input signal (i.e., two symmetric 
frequencies WQ ± Aw/2) gives rise to generation of four-wave mixing (FWM) sidebands WQ ± nAa'/2, n odd 
integer,^ in such a way that the input condition is eventually restored at some propagation distance.^-^ In 
time domain the counterpart of the FWM phenomenon is the formation of a train (at rep rate oc Aw^) of 
dark solitons, which is formed in a recursive way along the fiber.^ Except for the fact that efficient frequency 
conversion requires two or more finite-amplitude waves, this recursive phenomenon is qualitatively similar 
to its counterpart in the anamalous dispersion regime, where modulational instability permits the recursive 
amplification or arbitrarily weak waves.^'^ 

The aim of this work is to show that a new regime sets in the modulationally stable, normally dispersive 
case, when the frequency separation of the two input frequencies Aw is small enough, (or equivalently the 
power of the beat signal is high enough). In this regime the dynamics is ruled by the collision of multiple 
shocks and is intrinsically nonrecursive. The evolutions might be so complicated to look disordered in spite 
of the fact that the propagation can be still described analytically, being governed by the integrable NLSE. 
To show this let us consider the following dimensionless form of the defocusing NLSE 

subject to the following initial condition UQ = u{z = 0,t), describing a two-color input (possibly asymmetrical 
with power fractions po and 1 — Po) 

uo = ^exp [-i{Q/2)t] + Vl-Poexp [i{fl/2)t]. (2) 

In Eq. (1) z is the distance measured in units of the nonlinear length ZJ = (X-P)'~^ X = kon2r/-Aeff being 
the standard fiber nonlinear coefficient, and P the real-world total power of the input, t is a retarded time 
measured in units of To = {k"Zniy^^- The use of these dimensionless variables permits to characterize the 
dynamics in term of the single parameter Q = AuTo, which can be independently controlled by means 
of changing the physical frequency separation Aw or the power P. Different regimes are found for Q > 
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Pig, 1. Evolution of the field u ruled by the defocusing NLSE. Left: Recursive behavior corresponding to a 
symmetric (po = 0.5) input beat signal with Af = 616 GHz, and P = 13 W. (a) Intensity evolution; (b) 

sna^hot of the intensity and phase at the output. Right: Nonrecursive dynamics obtained with 
a/ - 239 GHz, and P = 75 W. (a) Intensity evolution; (b) Contour plot of the intensity. ' 

1 (recursive behavior) and O < 0.3 (nonrecursive behavior), with the intermediate values marking the 
transition between the two regimes. In Fig. 1 we display examples of the dynamical evolutions obtained 
from numerical integration of Eq. (1). The left panel te relative to the recursive case. The input experiences 
*=°"f««f°",fo™fg a train of dark solitons (corresponding in frequency domain to moderate generation 
of FWM sidebands) and eventually the input is restored at the output. The right panel shows that the 
dynamics change ^qualitatively at lower frequency and higher power (in order to show that this regime is 
notjiecessarily related to the symmetry of the input, we display a result obtained in the asymmetric case 
?f ~RI^ h   ! shocks or grey solitons characterized by different velocity are emitted and collide along 
the fiber, leading to a strongly nonrecursive dynamics. In the time domain, the output exhibits handfuls of 
clo^ly spaced dips (grey solitons, characterized by phase jumps between adjacent solitons) repeated with 
half the period of the beat signal, whereas the signature of this phenomenon in the frequency domain is the 
appearence of shoulders in the spectrum corresponding to high-order FWM sidebands. Without entering the 
details here, it ^ however important to point out that we have been able to explain this phenomenon in 
spite ot Its complexity, in the framework of the inverse scattering theory for the periodic problem.^ 

To inv^tigate this phenomenon experimentally we have performed measurements in a short sample (L = 5 
m m order to avoid the onset of Raman scattering) of a high-birefringence fiber, aligned in such a way to 
ensure scalar propagation. We have used a laser source capable of producing a two-color tunable beat signal 
at visible wavelengths. The use of nanosecond pulses ensures relatively high peak powers, while the envetope 
m still quasi-cw compared with the time scale associated with the frequency separation Af = Aw/ln of the 
two coters. We have performed a first series of experiments by recording the output spectrum against changes 
of the frequency separation Af at fixed power, or versus variations of the power at fixed frequency detuning 
Typical peak powers are in the range of few tens of watts, while the detuning changes in the range from 150 
GHz to 700 GHz. Figure 2 shows the output spectra obtained at fixed detuning Af = 239 GHz and power 
ot one beam (say the pump) while incre^ing the power of the weaker component (say the signal) of the 
two beams. As shown, characteristic spectra with shoulders corresponding to high order FWM sidebands 
appear above 1 W of signal power. A similar phenomenon is observed when Af is decreased at constant 
power levels. 

In order to have a more direct proof of the fact that what is really forming at the fiber output is a handftil 
of pey sohtons with rep rate higher than the modulation period, one has to resort to techniques that 
permit to resolve the field in modulus and phase on the picosecond time scale. To this purpose the FROG 
technique seems particularly well suited.!" We have used a FROG scheme based on SHG, and have adapted 
the retrieval dgorithm, which permits to obtain the modulus and phase of the field from the SHG trace to 
deal with the (nsec) pulsed nature of our experiment." The retrieved field is displayed in Fig. 3 m modulus 
(bj and phase (a) for a typical value of the frequency separation and power such to yield a spectrum with 



NLMA5-3 

Gutty et al., Nonrecursive multiple shock.. NLGW/2002  Page     3 

0 2-20 
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Fig. 2. Sequence of experimental spectra obtained with a fixed 60 W pump beam and a frequency detuned 
(A/ = 239 GHz) signal with power ranging from 1 W to 15 W. The high-frequency sidebands appear for 

signal powers above « 1 W. 

Fig. 3. Retrieved phase (a) and intensity (b) obtained from the measured FROG trace (solid lines), 
compared with the expected results from NLSE simulations with a pulsed input (dotted lines). 

pronounced shoulders (see Fig. 2). As shown in Fig. 3(b) the intensity pattern exhibits a series of dips, though 
the contrast between adjacent dips is substantially lower than that expected from the cw theory based on 
Eqs. (1-2). This, however, should be ascribed to the pulsed nature of the beam. In fact, once the latter is 
accounted for in the calculation based on the NLSE (1), the agreement becomes satisfactory (compare the 
solid and dotted line in Fig. 3b). On the other hand also the phase pattern shown in Fig. 3(a) is in very 
good agreement with that obtained from NLSE calculations. Finally, to be sure that the FROG and spectral 
measurement are consistent, we have calculated the intensity spectrum from the FROG retrieved field, and 
have found excellent agreement with the measured spectra. 

In summary we have shown that FWM in a normally dispersive fiber pumped by (symmetric or asymmetric) 
beams with small frequency separation or high powers leads to the nonrecursive formation of multiple shocks. 
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Introduction One common source of transmission impairments in lightwave systems comes from pulse 
amplitude and/or timmg jitter induced by amplified spontaneous emission (ASE) noise [1, 21. Since ASE noise 
IS a stochastic phenomenon, Monte Carlo simulations can be used to determine its effects on a system The 
direct calculation of bit error rates through standard Monte Carlo simulations is impossible, however because 
error rates are required to be very small, e.g., one error per trillion bits or smaller. As a result, an exceedingly 
large number of realizations would be needed to observe even a single transmission error, and even more 
would be required to obtain reliable error estimates. To overcome this limitation, a common approximation 

- IS to numencally calculate the relevant variances and then extrapolate into the tails by assuming a Gaussian 
probability distribution function (pdf). It is clear, however, that nonlinearity and pulse interactions both 
contribute to make the resulting distributions non-Gaussian [3-5].  : 

Itecently we have successfully applied a technique known as importance sampling (IS) [6] to the direct 
simulation of transmission impairments produced by polarization-mode dispersion [7]. In general, IS works 
by concentrating Monte-Carlo trials on those configurations that are most likely to lead to transmission errors 
thus significantly speeding up the simulations. Here we show how Importance sampling can be applied to 
numenca simulations of ASE-induced transmission impairments. For simplicity, we consider the case of a 
pimple sohton-based transmission system (because in the absence of noise the pulse shape remains fixed) 
but It IS anticipated that the technique can be extended to s^tems employing more general transmission 
formats. The advantages of the method will be shown to be substantial, allowing a speedup of several orders 
ot magnitude over standard Monte Carlo simulations. 

Solitons and amplifier noise. After averaging out the periodic power variations due to fiber loss and 
ampliiication, an optical pulse's slowly varying envelope propagates between amplifiers according to the 
nonlinear Schrodinger equation [8] 

*a; + 2iF + M«==°' (1) 

where rand t are^dimensionless distance and time, z = z/L and t ^ I/To, where i and t are the dimensional 
quantities. To = Jw^./l.Te and L = Ty\k"\ (here T,w„. is the pulse FWHM and k" is the fiber dispersion 
coefficient inps2/km); furthermore, \uf = Lj \qf, where \qf is the electric field photon flux intensity in 1/ps 
and 7 is the fiber nonlinear coefiicient in ps/km [9]. Equation (1) admits the well-known soliton solution 

Mz,t) = Asech[A{t~T-Qz)]expi[nt + ^, (2) 

where^A, Q and T are constant, and #(^) = #„ + (A^ ~ Q^)z/2. When the pulse reaches an amplifier 
at z- nza (where z„ is the dimensionless amplifier spacing and n = l,2...,iV, with N being the total 
number of amplifiers in the transmission line), a small amount of noise A«„(t) is added to «: u(nz+,t) = 
u(nz^ ,t) + A«„(t) Part of the noise is absorbed by the soliton, where it produces small changes"of the 
ir parameters [8, 9]. This process is repeated at each amplifier, resulting in a random walk of A, fl T 

and #0 PJ. The rest of the noise propagates along with the perturbed soliton. 

The ASE noise A«„(t) is modelled as classical zero-mean white noise: {A«„(t)) = 0 and {Aum(t)AuUt')) = 
^'5 Sit-t% where a^ = [{G -1)^0InG] {^T/\k"\) ru,, here G is the amplifier gain and n^l L the excess 
spontaneous emi^ion factor [9]. For typical system configurations, the noise amplitude at each amplifier is 
small, and thus the noise-induced changes of the soliton parameters per amplifier are also usually small In 
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rare cases, however, the individual noise contributions combine to produce large deviations, thus resulting 
in potential transmission errors. 

Importance sampling for amplitude and timing jitter. The main idea of importance sampling is 
to bias the probability distributions used to select the random Monte-Carlo trials so that errors occur 
more frequently than otherwise would be the case [6]. Generally, the difficulty is in determining how to 
bias the distributions in the ways most likely to generate errors (which in this case means determining 
the particular noise instantiations at each amplifier which produce large variations in pulse amplitude or 
position). Fortunately, much is known about solutions of the NLS equation, and this knowledge can be used 
to guide the biasing process. The key information comes from the soliton solution Eq. (2), and in particular, 
its dependence upon the parameters A, Q, T and $o- Because any values of these parameters are allowed, 
this means that there is no resistance encountered if the noise at an amplifier changes one of them slightly. 
This lack of resistance to variations allows large fluctuations to build up after many amplifiers. 

The goal is to use this knowledge to selectively bias the noise at each amplifier to induce larger-than-normal 
changes in A, f2 and T (we will ignore the phase since it does not lead to amplitude or position fluctuations). 
Soliton perturbation theory [8, 9] shows that at a given amplifier, the changes in these parameters are given 
to first order by 

AAn=Refu\{z,t)Aun{t)dt,    AQn = 'ReJun{z,t)Aun{t)dt,    AT„ = ReJy}r{z,t)Aun{t)dt,     (3) 

where the integrals are from -oo to oo and the functions u\, w^ and MT ^^^ the modes of the adjoint 
linearized NLS operator [9]. Note our intent is not the same as soliton perturbation theory: we will not use 
it to approximate the solution over the entire transmission distance, but rather only to show how to modify 
the noise at each amplifier to preferentially bias the Monte-Carlo simulations toward large amplitude and 
timing jitter. As long as the noise added per amplifier is small, this is valid. 

To make these ideas definite, suppose we are numerically solving a discretized version of the NLS equation, 
Eq. (1), using a split-step or other technique. At each amplifier, we first have to determine the soliton 
parameters associated with the solution to that point. We do this either by solving the Zakharov-Shabat 
eigenvalue problem [8], or by using the moment integrals for the soliton parameters [9]. Next, we add random 
noise Au„; we can also represent this noise by a vector x = (xi,... ,X2A:)^ giving the real and imaginary 
components at each discretized time point in the computational interval (here the total number of time 
points, or equivalently, the total number of Fourier modes, is taken to be K). In the unbiased case, the Xk are 
independent, identically distributed normal random variables with mean zero and variance a^ = u'^/{2At); 
explicitly, Px(x) = exp[-x'^x/2cr2]/(27rcr2)^. 

The procedure is to first select an unbiased instantiation of the random noise Au„; this produces parameter 
changes that can be evaluated using Eq. 3. Then the actual biasing is done by modifying the noise to further 
change the pulse parameters A,Q.oiT in the desired direction. If, for example, we are biasing the amplitude 
A toward larger values, we first determine the amplitude shift AAn = Re / w^(2, i)Au„(t) dt associated with 
the unbiased noise, and then add an additional deterministic variation to Au to further increase it. (The 
result for position shifts is similar, but slightly more complicated, since frequency shifts couple to position 
shifts.) It is easy to show that the most likely perturbation AM to further shift the amplitude is the one 
that minimizes x^x a /|Au|^ dt subject to the constraint AM = constant; the result shows that we should 
shift Au proportional to u]^. This produces a biased perturbation AM*, or x*; we then also calculate the IS 
likelihood ratio px(x*)/px-(x*) needed to correct the results for the effect of the biasing [6]. 

Finally, to determine the probability P that the amplitude A falls in a given range, we calculate importance- 
sampled Monte Carlo estimate [6] 

M 

m=l 

where the m indicates the trial number, M is the total number of trials, and I{A) is an indicator function 
equal to 1 if A falls in the prescribed range and is 0 otherwise. In addition, r{x) is the product of the 
likelihood ratios calculated at each individual amplifier. 
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Fig 1 Results of importance-sampled Mont^Carlo simulations for amplitude and timing jitter in a soliton- 
teed transmission system. The simulations assume a pulse FWHM of 17.6 ps, an amplifla 
and a fiber loss of 0.2 dB/km, a spontaneous emission factor of ,^sp of 1.5, a fiber dispersion fc"=-0.2ps2/km 
and a total trMsm.ss.on distance of 10,000 km. In dimensionless units, this gives an amplifier spacing of Ol' ^ 
a power gam G=10 wid a total propagation distance of 20. Rirthermore, we take the nonlinear coefficient of 
t%^^     ^ P*/*"™' '^'''"* "^™ *•*** *« dimensionless noise variance 0-2=1.3 x IQ-^ At total 

of 5,000 Monte-Carlo trials were used. In addition to the results of the Monte-Carlo simulations, the results 
of a simple model using soliton perturbation theory (explained in the text) are also shown. A Gaussian fit 
IS also given for the case of amplitude jitter. 

Itesults. Figure 1 shows the results of importance-sampled Monte-Carlo simulations for one set of parameters 
(given m the caption). In the simulations, different biasings were employed and combined using a weightin<r 
scheme knowii ^ 6ala»ce heuristics [10]. Note that although only a relatively small number of Mont^ 
carlo trials (5,000) is used, the method produces amplitude and timing jitter far down into the tails of the 
probability distributions. For comparison, the results from simple models obtained via soliton perturbation 
are also shown. For amplitude jitter, the model is [9] 

An+l = An + a^ y^ Zn (5) 

Where the 2„ are independent standard normal RVs. The simple model and the full simulations are in good 
agreement. Full unbiased Monte-Carlo simulations also agree well with these results (for as far down in prob- 
ability as such simulations go). Thus, we have provided a proof-of-concept demonstration that importance 
samplmg is an effective tool for simulating rare events in lightwave Systems due to ASE noise. 
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Abstract:    Frequency resolved optical gating using a novel fiber-based wavelength conversion geometry is 
used to characterize the intensity and phase evolution of milliwatt peak power pulses propagating over 300 km 
in an optical fiber recirculation loop. 
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1. Introduction 

Driven by the demands of high capacity optical communications systems, there has been much recent activity to 
develop sensitive intensity and phase characterization methods for pulses around 1.55 |a,m. As well as techniques 
such as second harmonic generation frequency-resolved optical gating (SHG-FROG) [1], methods using sonogram 
analysis [2], time-resolved optical gating [3] and pulse spectral analysis have also been reported [4]. Recently, a 
novel variant of FROG using wavelength conversion has been reported, and has demonstrated mW peak power 
sensitivity, sufficient to characterize the intensity and phase of unamplified pulses from gain-switched 
semiconductor lasers [5]. In this paper, we report the use of this ultrasensitive FROG geometry to perform the 
complete intensity and chirp characterization of mW peak power picosecond pulse propagation over a distance of 
more than 300 km in an optical fiber recirculation loop. Although intensity and chirp evolution in fibers has been the 
subject of previous studies using either indirect measurement techniques with recirculation loops [6] or using FROG 
for sub-km fiber lengths [7-9], the results described here are the first to report direct intensity and chirp 
characterization at peak power levels and over propagation distances corresponding to realistic parameters of optical 
fiber telecommunications systems. 

2. Experiment 

When applied to demultiplexing and optical sampling, wavelength conversion typically uses four-wave mixing 
(FWM) between a CW pump at frequency Vp and a pulsed signal at frequency v^ in order to generate an idler at 
frequency M = 2 Vp- H whose amplitude is directly proportional to that of the signal to be demultiplexed or sampled. 
In our experiments, however, we use a novel configuration where the idler field is generated from a pulsed pump Ep 
mixed with a CW signal Es. The idler amplitude Ei°cEs*Ep^ thus depends quadratically on the pump pulse 
amplitude so that the spectral resolution of the idler as a function of delay yields a FROG trace equivalent to that 
obtained via SHG. This allows existing FROG deconvolution algorithms to be readily used. The FWM process is 
efficiently phasematched for pump wavelengths near the zero dispersion wavelength (ZDW) of an optical fiber, and 
the use of kilometer lengths of commercially-available dispersion shifted fiber (DSF) permits measurements of 
milliwatt peak power pulses in the 1-10 ps range [5]. Fig. 1(a) shows the setup used in our experiments. Here, the 
pulses to be characterized (around 1557 nm) are injected into a Michelson interferometer to yield a pulsed pump 
Ep(t) + Ep(t-T). This is mixed with a CW signal at 1560.15 nm and launched into a -20 km length of DSF with a 
ZDW of (1557 ± 1) nm to generate the nonlinear idler signal. Fig 1 (b) shows the DSF input and output at zero delay 
(T=0) to illustrate the generation of the idler via FWM. The ready availability of high dynamic range spectrum 
analyzers round 1.55 ^m means that the idler spectral resolution can be carried out with excellent signal to noise 
ratio, and deconvolution from the resulting "FWM-FROG" trace yields accurate intensity and phase profiles with 
typical FROG retrieval errors around 0.3%. 
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Fig. 1 (a)   The top figure shows the experimental FWM-FROG setup, whilst the bottom figure shows typical input and output 
spectra of the fiber to illustrate the generation of the nonHnear idler field, (b) The details of the recirculation loop. 

FWM-FROG was used to characterize pulse evolution in the recirculation loop shown in Fig 1(b) TTie primarv 
pulse source is a 10 GHz gain-switched distributed feedback laser which generates negatively-chirped pulses of 10- 
20 ps duration at 1557 nm. The pulses are injected into the loop via a LiNbOs electro-optic (EO) modulator The 
recirculation loop consists of a 22-km span of Coming DSF (ZDW = 1551 nm, dispersion slope = 0.085 ps/nm^'km) 
an EDFA a 2 mw bandwidth optical filter, and an acousto-optic switch (AOl). The average power in the loop 
measured at the DSF input) was 1.7 mW. An external acousto-optic switch A02 was synchronized with AOl and 

the EO to permit pulses to be switched out of the loop for FWM-FROG characterization after an integral number of 
between 1 and 14 loop round trips, corresponding to a maximum propagation distance in the loop of 308 km Fie 
2(a) shows the intensity and chirp retrieved from these FWM-FROG measurements, plotted at 44 km intervals 
^Tl^^^ roundtrips). The retrieved chirp is plotted at the loop input and after propagation distances of 132 km 
and 308 km, and clearly shows progressive compensation and flattening with propagation. The physical origin of 
this chirp evolution is the compensation of the input pulse negative chirp by the positive chirp introduced by 
nonlinear self-phase modulation (SPM) in the DSF. Previous studies of this phenomenon using kW-peak power 
femtosecond pulses have shown how this is associated with spectral compression and a decrease in the pulse 
bandwidth dunng propagation [1(K12]. This effect was also seen in our experiments, and is shown in Fi<. 2(b) 
We stress that tos nonlinear spectral compression is a result of the interaction between the incident negative pulse 

re.?n.t Ifh        f f ^-f **•'' f * ^ '^'"" ^^ 'P^'™' «"«™8 during propagation. In particular, we note that the 
response of the spectral filter m the loop was measured to be flat across the < 0.5 nm propagating pulse bandwidth 

(a) Temporal Evoluflon 

Intensity ; chirp 
(b) Spedral Evolution 

-40       0        40 
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1556.0 1657.0 155ff.O 

WavelengBi (nm) 

Fig.2 ^Ti'Sfi^''^ evolution along 308 km. showing (a) the retrieved intensity and chiip obtained from the 
FWM-FROG measurements at the distances shown, (b) shows the corresponding spectral compression. 
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The complete intensity and chirp characterization using FWM-FROG allows the quantitative comparison 
between experiment and the results of numerical simulations of the recirculating loop based on the scalar nonlinear 
Schrodinger equation. Although the loop modelling included the EDFA and the spectral filter, these elements were 
found to have negligible effect on the pulse properties, and the dominant effects on the intensity and phase evolution 
in the loop were identified as SPM and residual dispersion in the DSF segment. Fig. 3 plots the results of 
experiment (open circles) and simulation (solid line), with Fig. 3(a) comparing the mean slope of the chirp 
calculated across the pulse full width at half maximum (FWHM) and Fig. 3(b) comparing the intensity FWHM of 
the pulse temporal profile. These results confirm the validity of our numerical model of the fiber recirculating loop, 
and clearly illustrate the progressive flattening of the temporal chirp with propagation. 

0 100      200      300 
Propagation Distance (km) 

0        100     200      300 
Propagation Distance (km) 

Fig. 3        Comparison of results from experiment (circles) and numerical simulations for (a) the chirp slope and (b) 
the intensity full width at half maximum (FWHM), plotted as a function of propagation distance. 

3. Conclusion 

We have demonstrated the complete intensity and chirp characterization of telecommunications-compatible 
pulses over 300 km in a recirculation loop by use of an ultrasensitive, FWM-based FROG geometry. Our results 
represent the first direct measurements of SPM-induced spectral compression and chirp compensation on initially 
negatively chirped pulses in a realistic telecommunications context. We anticipate that this FWM-FROG geometry 
will find widespread use in the design and optimization of optical links based on chirped return-to-zero and 
dispersion-managed soliton technologies. 

References: 

1. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and D. J. Kane, Rev. Sci. Instrum., 68, 3277 (1997). 
2. D. T. Reid, B. C. Thomsen, J. M. Dudley, J. D. Harvey, Electron. Lett. 36,1141 (2000). 
3. R. G. M. P. Koumans and A. Yariv, IEEE Photon.Tech. Lett. 12,666 (2000). 
4. P. Kockaert, M. Peelers, S. Coen, Ph. Emplit, M. Haelterman and O. Deparis, IEEE Photon. Tech. Lett. 12, 187 (2000). 
5. P.A. Lacourt, J. M. Dudley, J-M Merolla, H. Porte, J-P Goedgebuer, W. T. Rhodes, accepted for puhlicatinn. Opt. Lett. 27, 863-865 

(2002). 
6. F. Favre, D. Le Guen, and T. Georges, J. Lightwave Technol., 17,1032-1036 (1999). 
7. L. P. Barry, J. M. Dudley, P. G. Bollond, J. D. Harvey, R. Leonhardt, Electron. Lett. 32,2339-2340 (1996). 
8. J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, R. Leonhardt, Opt. Fiber. Tech. 4,237-265 (1998). 
9. F. G. Omenetto, B. Luce, D. Yarotsky, and A. J. Taylor, Opt. Lett,, 24,13 92 (1999). 
10. M. Oberthaler and R. A. HSpfel, Appl. Phys. Lett. 63,1017-1019 (1993). 
11. B. R. Washburn, J. A. Buck, S. E. Ralph, Opt. Lett. 25,445-447 (2000). 
12. J. Limpert, T. Gabler, A. Liem, H. Zellmer, A. Tunnermann, Appl. Phys. B 74, 191-195 (2002). 



Nonlinear Guided Waves 

Spatial Solitons and 
Spatio-Temporal Effects 

Monday, September 2, 2002 

Mordechai Segev, Technion Inst. of Tech., Israel 
Presider 

NLMB 
10:30am - 12:30pm 
Auditorium 



NLMBl-l 

Nonlinear X-waves: a new perspective 
for space-time localization 

S. Trillo,! C. Conti 
Istituto Nazionale di Fisica della Materia, INFM-RM3, 

Via della Vasca Navale 84, OOI46 Roma, Italy 

' Also with Dept. of Engineering, University of Ferrara, Italy 
phone: +39-0532-293838, fax: -1-39-0532-768602, email: strillo@ing.unife.it 

P. Di Trapani, O. Jedrkiewicz, J. Trull 
INFM and Dept. of Chemical, Physical and Mathemetical Sciences, 

University of Insubria, Via Valleggio 11, 22100 Como, Italy 

G. Valiulis 
Department of Quantum Electronics, Vilnius University, 
Building 3 Sauletekio Avenue 9, 204O, Vilnius, Lithuania 
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The dynamics of self-focusing driven by ultrashort intense pulses have been widely investigated recently. ^"^ 
The coupling of space and time, occurring in the high-intensity regime, leads to qualitatively different dy- 
namical evolutions depending on the sign of group-velocity dispersion (GVD). For instance, in focusing Kerr 
media which exhibit anomalous GVD, light bullets (combined soliton trapping in space and time''') can be 
formed. Although mechanisms as different as a saturable intensity-dependent index and second-harmonic 
generation (SHG) support the existence of stable bullet-type solitons, their observation have proven difficult 
for several different reasons. On the other hand, when the GVD is normal, such trapping is not allowed and 
the temporal dynamics is ruled by pulse splitting and wave breaking phenomena.^'^ In this work we show, 
against the common belief that space-time localization is not allowed in the normally dispersive regime, that 
a novel type of localized wavepackets can play a key role in the dynamics of ultrashort tightly focused beams. 
We introduce the concept of nonlinear X-waves (NLXWs), spatio-temporal wavepackets with characteristic 
X-shape, which play the role of general eigenmodes of nonlinear paraxial wave propagation models in the 
normal dispersion regime. In particular NLXWs exist both in cubic media, e.g. in ideal Kerr media where 
the propagation is governed by the scalar 1+3 nonlinear Schrodinger (NLS) equation, 

id.ui -\- Viui - dttui -h r|ui l^ui = 0, (1) 

and in quadratic media, e.g. described by the following standard model for SHG 

(id, + ^l- dtt)ui + Tu2ule'^''' = 0, 

{id, + CTVi + ivdt - ddu)u2 + r^e-'*''-^ = 0. 
(2) 

In Eqs. (1-2) we have adopted suitably normalized dimensionless quantities, leaving T as a coefficient 
that quantifies the impact of nonlinearity. Also, in Eqs. (2) v measures the group-velocity mismatch 
(GVM), 6k is the wavevector mismatch, and a and d are second-harmonic diffraction and dispersion 
coefficients, respectively. Radially symmetric NLXW solutions of Eq. (1) ui - fi{r,t)exp{-i/3z) and 
Um = fm{r,t)exp[-i{mp + (m - l)5k)z], m = 1,2, of Eqs. (2) can be searched by integrating the re- 
sulting equations for fm by pseudo-spectral methods. Typical results for the Kerr case are reported in Fig. 1, 
which shows the existence of ground-state NLXW (Fig. la) as well as higher-order NLXWs with oscillatory 
decay (Fig. lb). In GVM-matched (i.e., v = 0) SHG, we find two-color coupled NLXWs of similar type. 
Along the same lines also walking NLXW solutions can be found, even in the presence of strong GVM. 
NLXWs have distinguished features which makes them qualitatively different from bullet-type solitons. For 
instance, NLXWs have slow decay (~ 1/r), exist in different domains, and infinitely many solutions coexist 
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I      Fig, 2 Spatio-temporal intensity |«i(r,t)p as obtained in SHG from Eqs, (2) with gaussian input left 
panel: output intensity in a 4 cm sample of LBO, GVM-matched (v = 0) conBguration. right panel; 

'"tensity pattern after 1.5 cm propagation in the presence of strong GVM. 

for a given p. Importantly, in the tow intensity limit, NLXWs do not vanish, reducing instead to Unear X 
wav^ (or so-called focus-wave modes), which are known to be the polichromatic generalization of conical 
B^sel Jo (or Durnm) beams.8 Linear X-waves have been observed in optics,^ and acoustics," and share 
with Durmn beams the requirements of special input conditions. Conversely, in the nonlinear regime, we 
conjecture that the formation of NLXWs occurs spontaneously from conventinal (chirp-free, bell-shaped in 
space and time) beams, via a universal mechanism of conical emission, well known in Kerr media" This 
entails amplification of perturbations constituted by conical waves with aperture angles proportional to their 
fr^uency detunmgs. In SHG our hnear stability analysis, carried out for cw plane-wave pump beams, pre- 
dicts the amplification of conical waves around both central pump frequencies. In order to understand the 
7o? w't "l*rasliort focused beams, however, it is necessary to resort to numerical simulation of Eqs 
{I}. We have mainly addressed the case of large negative wavevector mismatch Afc = Ag - 2fci where SHG 
munics an effective Kerr effect led by the beam at ftindamental frequency with lesser impact from higher- 
orded effects (Raman, steepening,...). Our numerical results suggest that the formation of NLXWs play an 
important rde. For instance we show in Fig. 2 the spatio-temporal profiles obtained from an input gaussian 
beaiii with 65Mm (FWHM) width and 170 fsec (FWHM) duration, as obtained after propagation in a LBO 
crystal operating m the normal GVD regime, either in the GVM-matched configuration (left panel), or in 
the case of GVM-dommated dynamics (right panel). » \      F    ^^ 

Remarkable evidence for these phenomena has been obtained in SHG experiments, where a 22 mm LBO 
crystal, operating around M = -30 cm"! is pumped by a pulse/beam at fundamental frequency First 
at high fiuences, strong pulse compression from 170 down to 25-30 feec have been observed, which cannot 
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Fig. 3. Experimental data obtained in a LBO crystal. Left panel: FWHM beam sizes reported against the 
distance from the output face (2 = 0) of the crystal, and compared with gaussian diffraction (upper curve 
for the FH beam); Right panel: radially resolved (vertical axis) autocorrelation trace of the output field. 

be expected on the basis of a pure temporal phenomenon, since the interplay of (focusing) nonlinearity 
and (normal) GVD would lead to temporal broadening. Moreover, at the same intensity, also nonlinear 
compensation of walk-off due to GVM is observed. These considerations have motivated us to investigate 
the role of spatio-temporal coupling mediated by localized wavepackets of the X-wave type. To this end, 
the temporal diagnostic of the output beams (mainly based on noncollinear autocorrelation measurements) 
was enriched by measurements of the near-field and far-field profiles. The collected data indicates that the 
temporal compression is associated with a reshaping of the beam. For instance Fig. 3 (left panel) shows that 
the leading (fundamental) component of beam experience subgaussian diffraction in air after the crystal, 
i.e. it diffracts considerably less than a gaussian beam of the same spot-size. This is also consistent with 
the observation of rings in the far-field measurements. As far as the temporal dynamics is concerned, the 
autocorrelation traces show that a dramatic pulse compression occurs as the intensity is increased. However, 
the spatially resolved autocorrelation trace (see Fig. 3, right panel), shows that the beam has a nonuniform 
temporal structure, with pulse splitting becoming clear in the outer portion of the beam. 

Finally, measurements performed in the spectral domain (in time and space, i.e., A and transverse angle) at 
the same intensity levels clearly show the presence of angular dispersion. This, in turn, affects the effective 
GVD leading to an anomalous contribution which counteract the material normal GVD. Therefore, we 
believe to be in the presence of a genuine effect of spatio-temporal coupling where diffraction and dispersion 
(at least GVM and GVD orders) can be counterbalanced by the nonlinearity via a complex mechanism that 
involves the spontaneous reshaping of the beam/pulse into wavepackets that are reminiscent of X-waves. 

In summary we have shown that X-waves constitute novel solutions of Maxwell wave equations in normally 
dispersive media with nonlinear response, which introduces a new perspective for the interpretation of real- 
world and numerical experiments. Experiments carried out in SHG support this picture. 
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Abstract: We show that in phase-mismatched second-harmonic generation, an effective group- 
velocity dispersion is induced at the second-harmonic frequency. In quasi-phase-matched 
structures this allows for temporal soliton formation and therefore facilitates the formation of 3-D 
spatiotemporal solitons. '•■ 
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It is well known that quadratic nonlinear media can support spatiotemporal solitons (STS) [1, 21. Phase-mismatched 
second-harmonic generation (SHG) produces an effective saturable self-focusing nonlinearity, which balances 
diffraction and group-velocity dispersion (GVD) to produce the soliton. the formation of multidimensional solitons 
requu-es anomalous GVD at both fundamental (FH) and second-harmonic (SH) frequencies, and this presents a 
significant obstacle to then: experimental observation. A survey of available SHG crystals reveals no materials with 
anomalous GVD (and insignificant absorption) at any pair of fundamental and harmonic frequencies To achieve 
characteristic lengths much shorter than available SHG crystals, anomalous GVD an order of magnitude greater than 
^ical values m transparent materials is needed. To date, this has been produced by the use of tilted pulses [3 41 
This technique consumes one transverse dimension and thus cannot be used to make 3-dimensional STS. '; 

\^, "?^ we shw theoretically that an effective GVD is induced at the SH in the SHG process. The magnitude of 
the induced GVD is particularly large when the process is quasi-phase-matched (QPM). Initial experimental results 
are consistent With the theoretical predictions. The induced GVD allows the formation of temporal solitons in 
quadratic media with normal GVD at the SH frequency, and provides a promising path to the generation of 3-D 

(r^sfl''^''^f^^l '"'^f ^ GVD can be obtained analytically if we neglect the group-velocity mismatch 
(GVM) between the fields and assume negligible depletion of the FH field. Under those conditions the SH field is 

£^ « J^,-.expH||)^ + 4«'^z)-^expH^)^), (1) 
iMc 2^2        2 iM 2^2 

produced in a QPM process at large phase mismatch, with zero GVD at the SH frequency. 
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Fig. 1. Second harmonic (solid line) and fundamental (dashed) intensity profiles after propagation through 6 
dispersion lengths (for the FH). There is no material dispersion at the SH. Dotted line is the launched 
fundamental. Inset: broadening of the SH with respect to the launched FH. 

To observe the induced GVD experimentally we used SHG in barium metaborate with birefringent phase- 
matching. Femtosecond pulses at 2.4 [im wavelength generated SH pulses at 1.2 (im, and the temporal profile of the 
SH pulses was measured. The SH pulse calculated under conditions of large phase mismatch (AkL = IOOJC) is shown 
in Figure 2(a). Experimental results obtained under the corresponding conditions (Figure 2(b)) agree reasonably well 
with the calculations. Detailed quantitative verification of the magnitude of the induced GVD is not possible from 
these data because the SH field produced with such large phase mismatch is weak. Measurements in QPM media 
will rectify this and are currently in progress. 
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Fig. 2. Calculated (a) and measured (b) SH pulses. The dashed line in (a) is the output at the FH wavelength 
and dots indicate the launched fundamental. 

The induced GVD can be exploited to obtain net anomalous GVD at the SH frequency if the GVD at the FH 
frequency is large and anomalous. As an example, the GVD of lithium niobate goes from normal to anomalous near 
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1 6 Hm. and is large and anomalous at wavelengths beyond -2.5 jim. For SH wavelengths near 1.6 urn, small normal 
GVD will combine with anomalous induced GVD to produce net anomalous GVD that can support solitons This is 
Illustrated m the numerical simulations of Figure 3. The top panel shows (plane-wave) pulse propagation at low 
intensity: the pulse decays owing to GVD. At higher intensity (bottom panel) the pulse evolves to a form that is 
stable over at least 5 dispersion lengths. At higher intensities, the periodic evolution characteristic of quadratic 
sohtons IS observed. These simulations further demonstrate the significance of the induced GVD. The observation of 
temporal solitons m quadratic media without the use of tilted pulses is clearly possible, and this should remove the 
primary obstacle to the production of spatiotemporal solitons. 
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Rg. 3. Propagation of FH and SH waves in QPM SHG. Parameters correspond to lithium niobate, and the FH 
wavelength is 3 \im. Top panel: low intensity. Bottom panel: a temporal soliton forms. The "ragged" 
appearance of the SH field in the bottom panel is a consequence of coarse sampling. 

■ i" ^i'"^"''**"' *^ ^^^ '''°^ theoretically that an effective GVD is induced at the second-harmonic wavelength 
in the SHG process, and this effect is pronounced in QPM media. Initial experiments agree reasonably well with 
theoretical expectations. Numerical simulations show that this effect can be exploited to generate temporal solitons 
m quadratic media, which is a crucial step toward the generation of light bullets. Numerical and experimental studies 
pi light bullets produced this way are in progress. 
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Abstract: We demonstrate experimentally the snake instability of the bright soliton stripe in the 2+ID 
hyperbolic nonlinear Schrodinger equation. The instability is observed on a spatially extended femtosec- 
ond pulse propagating in a normally dispersive self-defocusing semiconductor planar waveguide. 
© 2002 Optical Society of America 
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Zakharov and Rubenchik have made an early major theoretical breakthrough by showing that the bright soliton solu- 
tions of the canonical 1-l-lD Nonlinear Schrodinger (NLS) equation are unstable when propagating under the form of 
rectilinear stripes in 2-1-1 dimensions [I]. In that early work, the additional dimension was introduced to take into ac- 
count the effect of chromatic dispersion on spatial soliton laser beams propagating in nonlinear optical media with one 
transverse dimension (planar waveguide structure). Considering both signs of dispersion, Zakharov and Rubenchik 
implicitly dealt with both the elliptic and the hyperbolic 2-i-lD NLS equations. Indeed, when chromatic dispersion is 
negative (positive) the associated second order derivative terms representing dispersion and diffraction have the same 
(opposite) signs, and the NLS equation is elliptic (hyperbolic). Zakharov and Rubenchik showed that the bright soli- 
ton stripe is always unstable in 2-1-1 dimensions regardless of the dispersion regime. However, they showed that the 
scenario strongly differs from one regime to the other. Indeed, they predicted that in the elliptic NLS equation (nega- 
tive dispersion), the bright soliton stripe undergoes a neck-type instability (formation of a rectilinear periodic row of 
spots evolving to catastrophic self-focusing), while in the hyperbolic NLS equation (positive dispersion) it exhibits a 
snake-type instability (appearance of a zig-zag-shaped distortion of the stripe followed by its radiative decay). 

Theory was also developed for the dark soliton the NLS equation [2, 3]. The dark soliton was shown to be unstable 
through the exponential growth of an unstable symmetric mode, as for the case of the bright soliton stripe in the elliptic 
NLS equation. However, due to the antisymmetric nature of the dark soliton, this unstable symmetric mode constitutes 
a translational mode and thus naturally leads to the snake instability. 

Experimental observation of the breakup of a bright spatial soliton stripe due to the transverse neck-type instability 
was performed by Mamaev et al. in a photorefractive crystal [4]. The snake instability of the dark NLS soliton 
was observed experimentally in the two-dimensional transverse profile of laser beams in Rubidium vapor [5] and in 
photorefractive crystals [6]. However, all experimental demonstrations of bright and dark soliton stripe instabilities 
were performed in systems ruled by the elliptic NLS equations. And, to our knowledge, experimental studies of the 
stability of soliton stripes in the 2-1-1D hyperbolic NLS equation have never been reported despite the importance of 
this equation in physics. 

We present in our communication an experimental study of the stability of the bright soliton stripe ruled by the 2-(-lD 
hyperbolic NLS equation. From a mathematical viewpoint, the originality of our demonstration is to provide evidence 
for the existence of an antisymmetric unstable mode in the bright soliton stripe of the hyperbolic NLS equation [1]. 
Since this unstable mode constitutes a translational mode of the bright soliton, it leads to the snake instability of the 
bright soliton stripe. 

Our experiment has been performed with femtosecond laser pulses propagating in a planar AlGaAs waveguide that 
exhibits a self-defocusing Kerr nonlinearity at photon energies just below the energy bandgap, which is the situation 
considered in our experiment [7]. Because the chromatic dispersion of AlGaAs is positive (normal dispersion) close 
to the bandgap energy [8], the spatio-temporal propagation equation must include a second-order derivative with a 
sign opposite to that of diffraction. As a result, our system is ruled by the 2-1-1D hyperbolic NLS equation. A soliton 
stripe can be formed by considering ultrashort pulses in a broad laser beam so that the sech-shaped soliton envelope is 
generated in the temporal domain while the spatial transverse coordinate constitutes the homogeneous coordinate of 
the stripe. 
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As regards the temporal aspects, our experimental conditions are in fact similar to those considered by Belanger et al in 

the study of the (l+D-dimensionaltemporalbrightNLS soliton in normally dispersive cylindrical (channel) waveguide 
with negative Keir nonlmearity [9]. Having one additional dimension in our problem, we focus our attention on the 
transverse spatial features of the beam in order to provide evidence for the snake instability of the temporal bright NLS 
sohton stripe. Because we use femtosecond laser pulses we are unable to observe the two-dimensional spatio-temporal 
patterns generated by the snake instability, contrary to what has been performed in the spatial domain for the brioht 
and dark sohton stapes instabilities of the elliptic NLS. Our observations are thus limited to the time-averaged spatial 
spectaim obtained at the waveguide output. However, as we shall see, the spectral signature is very specific to the snake 
mstability and constitutes a genuine experimental proof of the theoretical predictions of Zakharov and Rubenchik. 

The soliton stripe is obtained by launching a broad laser beam made of ultrashort pulses into a 5 mm long planar 
waveguide made of a 1.5 ^m thick guiding layer of Alo,o4Gao,96As surrounded by 3 /xm thick upper and lower 
T^ fj Alo,o6Gao,94As. The gaussian beam of a mode-locked Ti:sapphire laser producing 80 fs (FWHM) pulses 

at &2MHzandtunabIe™d 850 nm is shaped byaset of cylindrical lenses to be end-fire coupled into the wa4g^^^^ 
mtiJofnmtt/m^'       '"''"* ^^^''' ^""^"^ ^^ ™'"' °^ * half-wave plate combined to a polarizer as well as a 

We fixed the wavelength to A = 870 nmsoastohaveanegative nonlinear index coefficientwa = -5 35 IQ-" m^/W 
and a dispersion fi" = 3.39 10-^3 s^/m, as calculated from Refs. [7] and [8], respectively. Note that this value of 
dispersion combined to the pulse duration of 80 fs, corresponds to a dispersion length of 6.1 10 -^ m. The waveguide is 
Aus about 80 times longer than the dispersion length. The two-photon absorption (TPA) coefficient has been evaluated 
fi-om transmission measurements. The inverse waveguide transmission versus input power exhibits a linear slope that 
provides the value a2 = 3.09 10-" mW in good agreement with theoiy [7]. 

For the sake of simplicity of the presentation, we introduce a convenient scaling that leads to the canonical form of the 
hyperbolic NLS equation plus die two-photon absorption term. 

"'h^^ ■i-Arr-i\AfA -ATIAPA (1) 

where K = ka2/i4nm) = 4 10-2 is ^^^ normalized two-photon absorption coefficient. With this scaling, the normal- 
ized sohton stripe £(f. |, r) = sechiT)expn,2) is characterized by a dispei^ion length £ ^ and a nonUnear length 
L^i both equal to unity, while the characteristic TPA length isLr/.^ = 1/^ ^ 25. Zakharov and Rubenchik showed 
that the gam of the snake instability scales as self-phase modulation [1], i.e., the characteristic length of the snake 
mstabilMy is equal to unity, which is much shorter than the TPA length L TPA ^ 25. One can therefore reasonably 
expect the development of the snake instability in our system. 

This conclusion is confirmed by our numerical simulations of the generahzed NLS Eq. (1). The density plots of 

and witf, TPA, of the initial field distnbution A(t, r) = sech(t) * expl-il/lofl with fo = 78. As can be seen, 
the snake instability occurs on fimte-beam width and in the presence of TPA, which reveals that it does not require 
a perfect sohton propagation regime. The resulting spatio-temporal zigzag patterns can of course not be observed 
directly 1>ut its characteristic associated spatial spectrum (integrated over the time variable) can be easily obtained 
Fig. 2(a) shows^a typical example of time-averaged spectrum calculated by numerical simulation of our experiment 
m real-units. This spectrum is obtained at the waveguide output, i.e., z = 5 mm, in the presence of TPA and taking 
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Fig. 2. Time-averaged spatial spectra at the waveguide output obtained from (a) numerical simulation at the power of 30 MW/m , 
(b) experiment at various input powers in the range 2.5-34 MW/m, and (c) numerical simulation at zero dispersion. 

E = Eosech(t/to)exp[-{x/xof] (plus a randoin spatio-temporal noise) as initial conditions, where to = 45 fs and 
A:O = 127 Aim, the peak power being 4kW. Fig. 2(a) reveals that, at high input powers, the averaged spatial spectra 
exhibit (besides the broad central modulated lobe characteristic of self-phase modulation of the gaussian beam) lateral 
peaks characteristic of modulational instability. On the basis of these observations, we established a very simple 
experimental procedure to identify the snake instability of the bright NLS temporal soliton stripe. We progressively 
increase the power at the waveguide input until we approach the soliton regime. With the calculated and measured 
parameters of the waveguide we estimate a soliton peak power of 1.86 10^ W/m, in the absence of TPA. Our power 
range goes slightly above this value to compensate for TPA. Of course the snake instability does not only occur in the 
exact soliton regime and its characteristic spectral signature appears progressively. We thus simply measure, for a series 
of input power levels, the averaged spatial spectra by means of a CCD camera located in the Fourier plane of a lens at 
the waveguide output. The result is shown in Fig. 2(b) that reveals the formation of four lateral peaks at the location 
predicted by theory. An asymmetry appears on the first harmonic on the left hand side but this can be attributed to 
the sensitivity of the spectral signature to perturbations in the initial condition, as observed numerically. Let us notice 
that the amplitudes of the second harmonic peaks appear larger in the experiment, a feature that we have not been able 
to explain up to now. It is important to note that, in the absence of dispersion (i.e., in the absence of spatio-temporal 
coupling) our numerical simulations do not show these peaks because no spatial modulational instability occurs in 
self-defocusing Kerr media in the absence of space-time coupling, which is illustrated in Fig. 2(c). Comparison of 
Figs. 2(a) and (b) reveals a reasonable agreement between theory and experiment and allows us to conclude that the 
snake instability does occur in our system. 

In summary, through the experimental study of the propagation of a spatially extended ultrashort pulse in a self- 
defocusing and normally dispersive semiconductor planar waveguide excited close to the bandgap, we have provided 
the first confirmation of the existence of the bright soliton snake instability predicted three decades ago by Zakharov 
and Rubenchik. This observation proves the existence and the essential role of the soliton antisymmetric unstable mode 
pertaining to the hyperbolic nature of the hfLS equation considered in the present study. Owing to the universality of 
the NLS equations in physics, our results have potential ramifications in other fields of research including plasma 
physics, fluid dynamics or nonlinear matter waves. 

The Authors acknowledge the support of the Fonds National de la Recherche Scientifique (FNRS, Belgium) and of the Inter- 
University Attraction Pole Program of the Belgian government under grants P4-07 and P5-18. 
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Abstract: We show that during self-focusing induced collapse of a laser beam, the spatial 
profile evolves into the same cylindrically symmetric shape, known as the Townes 
soliton, regardless of the shape of the input beam profile. 
©2002 Optical Society of America 

Nonhnear wave collapse is a phenomenon that occurs in many different areas of physics. In nonlinear 
optics, wave collapse can transpire via the process of self-focusing. Mathematically, this corresponds to 
the appearance of a singularity in the 3-D nonlinear Schrodinger equation (NLSE), which is used to model 
the propagation of light under self-focusing conditions, when the power P of the input beam is greater than 
a certain critical power P„. For the case in which P is equal to P„, the NLSE possesses a cylindrical 
symmetric waveguide solution known as the Townes soliton which represents the profile that exactly 
balances diffraction and the nonUnearity associated with the intensity-dependent refractive index The 
Towies profile cannot be represented in terms of elementary functions and must be numerically calculated 
as showi m Fig. 1(a); a gaussian is also plotted for comparison. However, this solution is unstable to 
arbitrarily small perturbations which results in either catastrophic collapse or the eventual diffraction of the 
beam. Catastrophic collapse associated with self-focusing of elliptical beams has been the subject of many 
theoretical studies which have utiUzed a variety of techniques such as the variational principle [11 
modu ation theory [2], and numerical simulations [2,3]. One of the remarkable predictions of the 
modulation theory, which is supported by numerical simulations, is that as the beam collapses its shape 
evolves into a profile that is self-similar to the cylindrically symmetric Townes soliton regardless of the 
shape of the input beam profile. Furthermore, the power contained in the collapsing portion of the beam 
will always be exactly equal to the critical power for self-focusing. 
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Fig. 1. (a) The Townes profile is numericaly calculated and compared to a gaussian profile (b) An 
ellipticaly shaped input beam is numerically simulated. As it collapses (c-d), a circularly symmetric on 
^is component emerges. Lineouts of the output beam along both dimensions (a) match precisely with 
the Townes soliton on-axis. Part (d) has been magnified two times to show more detail of the collapsine 
beam. v   & 
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In this report, we present experimental evidence tiiat confirms the prediction that the collapsing portion 
of the beam approaches the Townes soliton profile for a variety of input beam profiles including those that 
are elliptically-shaped. To illustrate the process of Townes-soliton formation, we numerically simulate the 
propagation of a beam with a noisy profile and an elliptically-shaped beam for input powers above the 
critical power for self-focusing. Figure 1 illustrates the robust nature of the collapse for the case of an 
elliptically-shaped input beam. As collapse occurs [depicted in Fig. l(b)-(d)], the on-axis portion of the 
beam becomes circularly symmetric. Lineouts of the output beam along both axes [Fig. 1(a)] confirm that 
the on-axis profile is both circularly symmetric and precisely matches the calculated Townes profile. 
However, it is important to note that only the on-axis portion of the beam will approach the Townes profile, 
and the power contained in the collapsing portion of the beam is equal to the critical power; the residual 
input power remains in the wings. 

We have experimentally reproduced the results simulated above. The beam from an amplified 
femtosecond Ti:sapphire laser propagates through a 30-cm-long block of BK7 glass at powers close to the 
critical power for self-focusing. To study the effects of ellipticity, a pair of cylindrical lenses is inserted 
into the beam to reduce one dimension with respect to the other. For the case of a beam with random 
perturbations, a roughened microscope slide was inserted into the beam. The beam is further telescoped to 
a diameter of -0.5 mm and collimated. The output beam is imaged by a CCD camera or, alternatively, is 
allowed to strike a thin slit which is then imaged onto a linear photodiode array to yield a lineout through 
the center of the output beam. Figure 2 is representative of the data acquired as the input power is 
increased. The solid line shows a center slice of the beam profile for the low-power beam after propagating 
through the block of glass. As the power is increased, an intense, symmetric on-axis component suddenly 
appears (dotted line). The numerically calculated Townes profile is then fit to the resulting peak 
(dashed/dotted line) and is found to be in excellent agreement with the experimentally observed feature. 
We believe this to be the first experimental observation of the Townes soliton. 
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Fig. 2. Experimental observation of the Townes soliton. Lineouts are taken through the center of the 
beam at two different powers. At sufficiently high powers, a strong on-axis component is observed 
which matches with the Townes profile predicted by numerical simulations. The low-power profile has 
been scaled by a constant factor to account for different input powers. 

While a singularity is predicted by the model equation for powers above the critical power, the field 
intensity is limited by higher-order processes that are not included in the model.  A commonly observed 
result of the collapse of femtosecond pulses is the extreme spectral broadening known as supercontinuum 
generation (SCG) [4]. Thus, the spatial shape of the emitted SCG gives an indication of the shape of the 
beam as it undergoes collapse.  Figure 3 depicts results for an elliptically shaped input beam with a 3:1 
ratio of the axes after propagation through the sample. Whereas the relatively clean input beam shown in 
Fig. 2 clearly shows the Townes-soliton formation, the collapse dynamics of the elliptically-shaped beam 
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Fig. 3. (a) An eUipticaUy shaped input beam propagates through a 30-cm sample and (b) forms drcularlv 
symmetric continuum generation. 

was always accompanied by SCG. We believe this is due to the fact that as the shape of the input profile 
deviates further from the Townes-soliton shape, it is necessary for the beam to propagate closer to the 
collapse point m order for the beam to evolve into the Townes profile. As a result, the shape of the 
continuum was always generated in a nearly perfectly circularly symmetric profile. This observation 
substantiates that even with highly irregular input beam geometries, the evolution to the circularly 
synimetric beam Townes profile persists. This behavior holds even for the case in which the beam is made 
highly elliptical by only using one cylindrical lens which focuses the beam within the sample However 
substantial power remains in the wings at the input wavelength because of the extreme departure from the 
Townes profile. 

In conclusion, we have experimentally observed the Townes soliton in agreement with numerical 
simulations. We believe these results will lead to an improved understanding of the propagation of high- 
power laser beams where self-focusing effects are important such as in the filamentation of femtosecond 
pulses m air [5.6]. 
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Abstract: By exploiting a cross-correlation technique, we were able to investigate the 
space-time structure of the parametric spatial solitons excited by picosecond light pulses. 
Temporal effects that a simple 2D model cannot explain are discussed. 
©2002 Optical Society of America 

OCIS Codes: 190.4410, 190.5530, 190.1900 

Self-focussing of light beams due to parametric interaction is a well known phenomenon [1-3], which has 
been successfully described in the frame of the parametric spatial soliton theory [4]. However, since short 
light pulses (1-lOOps) were used to achieve simultaneously the high intensities of the self-focusing 
threshold and prevent the non-linear material damage, the time domain dynamics may affect the ideal self- 
focussing effect. Departure form the ideal behavior of the parametric ID spatial soliton has been already 
shown theoretically in the case of strong group velocity mismatch between the interacting pulses [5]. 
Furthermore, relying upon modulational instability analysis, it appears that the group velocity dispersion is 
responsible for the instability of ID spatial solitons, even in the regime of continues wave [6]. With the 
exception of the characterization of the 1+1+1 spatio-temporal solitons [7], to date no extended 
experimental investigation on the impact of the time evolution on self-focusing in parametric interaction 
has been performed. 

In this work, we study the time-resolved self-focussing dynamics of the pump beam in the regime of 
parametric amplification of the quantum noise. To achieve this goal, we exploited a spatially resolved 
second-harmonic cross-correlation technique, which allows to reconstruct the temporal evolution of the 
pump-beam profile by mixing it with a probe of much smaller duration. This technique is a generalization 
of the so-called second-harmonic holography [8]. The recovered 3D maps of the pump field exiting the 
nonlinear crystal support the understanding of some counterintuitive features of the self-focussing process 
as it appears in usual time-integrated images. 

In our setting, the self-focussed beam is generated by propagating a 1 ps, 1-2 \jJ, 527nm, 25|.im FWHM 
diameter (at the input) wave-packet inside a 15 mm long LEO crystal, cut and oriented for optical 
parametric generation in the condition of non-critical type I phase-matching (^=0°, 6=90°). The crystal 
temperature was initially set to 110°C, which ensures the generation of a signal centered around 750 nm, an 
operating condition whose small group velocity mismatch (GVM) was proven to be optimum for spatial 
solitons formation from quantum noise amplification [9]. The 527nm pump field exiting the crystal is 
reconstructed (by a M=2.5x telescope) onto a thin SGH crystal, where it is mixed with a quasi-plane-wave 
200fs probe pulse, of the same wavelength, in slightly non-collinear geometry (external angle of 16°). The 
probe pulse is generated by means of a non-linear pulse compressor [10], starting from the same initial 
laser pulse. For a given delay, the non-collinearily generated radiation at 264nm provides a snapshot of the 
self-focussed pump-beam profile integrated over the 200 fs time-slice. The whole pulse space-time profile 
is then easily recovered, with 200 fs resolution, by scanning the delay between the two pulses. Note that the 
non-collinear angle and the beam size were small enough to make negligible the broadening effect due to 
the time delay accumulated across the beam. 
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Fig.l: Space-time intensity sections of the self-focussed pump beam, a) and b). crystal temperature 1 l(fC (Xs= 715 
nm), mput pump energy 1.5 pJ and 1.9 ^^J respectively, c) Crystal temperature 125»C (^s= 815 nm), input pump 

energy 1.5 uJ. Negative delay values correspond to the leading edge of the pulse. 

Contour plots of the time-resolved pump-beam profile are depicted in fig. La and Lb. for the case of two 
different mput-pulse energies. The data reveal that the self-focusing process is more effective in the leading 
edge of the pulse. Even if the focused region increases its duration at increasing the input energy the 
results show that a relevant portion of the pump remains always unfocused. The reason, as clarified by 
numencal expenments. is due to GVM between the interacting pulses, which prevents any effective 
mteractjon to occur m the pulse trailing edge. Note that this effect should causes the appeiance of a 
pedestal to the spatial-soliton beam profile, when the temporal-integrated images are taken. 

The important and quite unexpected result is that the temporal dynamics of the parametric process 
dramatically affects the determination of the threshold for the soliton formation from time-integrated 
profiles. Evaluating the pump level at which the pump beam gets self-focussed, we have found dramatic 
disagr^ment between the prediction of a pure spatial model and the reality. By integrating a purely spatial 
(2D+1) code, we calculated the expected output beam widths for the pump field as a function of its input 
intensity for different phase-matching conditions. The results are plotted in Fig. 2.a which show that the 
flireshold for stable self-focusing is decreasing as the signal wavelength is approaching the degeneracy 
This effect is a clear signature of the idler wave diffraction parameter, which is obviusly more important 
for wavelengths which are far form the degeneracy. However, if one tries to measure this effect by exciting 
the sohtons with short pulses and using a not time-resolved imaging system, he measures exactly the 
opposite effect. For the sake of comparison, the results of the radially symmetric space-time (2D+1) 
simulation are shown in Fig. 2.b, but experimental data are extremely similar. The output beam diameters 
are here calculated after an integration over the time coordinate. A dramatic increase of the threshold for 
stable self-focusmg as the signal wavelength approaces the degeneracy is now evident 

a) 

8- 
3 
O 

s 
a: 

160 
140 
120 
KM 

80- 
m- 
40 

20^ 

0 

2D+1 spaflal model 

X.g=715nm 
>,s=815nm 

";^°lrA.  
20  40   60   80 103 120 140 IW 180 
hput peak pump intensity (GW/cm^) 

b) 

2D+1 simce-tiine model 

IW) 200 30) 400 500 600 700 800 
Input peak pump intensity (GW/cm5 

Fig.2 Pump beam output diameter as a function of input intensity, for two different phase-matching conditions of the 
paramenc mteract.on. a) As resulting form the 2D+1 spatial model integration, b) As resulting form the 2D+1 space- 

time radial symmetric model. 



NLMB5-3 

The solution of this puzzle comes if one considers that the ratio between the energy content in the focussed 
and not-focussed portions of the pump pulse decreases dramatically moving towards the degenerate phase 
matching condition. This is evident in the experimental space-time map depicted in Fig. I.e. The input 
intensity of the pump is the same as in fig. 1 .a, but here the crystal temperature was raised up to 125"C to 
achieve phase-matching with a signal wavelength closer to degeneracy (815nm). In a time-integrated 
spatial profile it would be difficult to recognize the self-foussed part except if the pump intensity is so high 
that all the pulse gets completely self-focussed, this leading to an apparent increase of the self-focussing 
threshold on time-integrated profiles. 

Our measurements show that the same effect does not occur at the signal mode, where the self-focussed 
energy content dominates over the background across the whole tuning range (data not shown). This leads 
to the situation in which the time-integrated signal (idler) field exhibits a well contrasted focussed profile, 
while the focussed part is barely visible in the background dominated pump-beam profile. The space-time 
numerical simulation shows that the time integrated signal (idler) profile exhibits diffraction free-properties 
as well. 

In summary, what we have here shown that time-resolved measurements provide the explanation for two 
quite puzzling phenomena that we have often observed wdth time-integrated measurements, (i) The 
apparent increases of the soliton-formation threshold on moving from tuning edge to degeneracy, when 
only the pump-beam profile is monitored, in contrast with what one will get from a purely cw-model. (ii) 
The occurrence (close to degeneracy) of a diffraction-free regime in the signal (or idler) mode only, whilst 
the pump beam seems to experience just linear diffraction. Work is in progress to provide simultaneous 
spatio-temporal reconstruction of both the pump and signal wave packets, and so afford a more complete 
physical interpretation of the entire process. 
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Abstract:  We show experimentally that the two-component two-hump vector soliton exhibits 
a sharp left-right symmetry-breaWng instability in Kerr media. The experiment is performed 
usmg molecular re-orientation in CSj and the opposite circular polarization states of light as 
the two components of the vector soliton. 
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the complex and intriguing dynamics induced by the vector nature of nonlinear physical phenomena have 
recently witnessed a renewed interest because of their experimental realization in emerging areas of physics 
rhe concept of multicomponent soliton (or vector soliton) is such an important example of current interest 
It has been mtroduced in optics by Christodoulides et al. [1] in a theoretical study of nonlinear optical 
wave couphng m birefringent Kerr media, where stationary solitary waves consisting of a bound state of 
two distmct orthogonally polarized field envelopes were found. Later, Haelterman et al. showed that bound 
states of sohtons can also exist without birefringence and four-wave mbdng (i.e., coherent nonlinear coupling) 
simply on the b^s of the mutual trapping induced by cross-phase modulation (i.e., incoherent coupling 
between the circular polarization components of hght in Kerr media [2]. In the spatial domain, incoherent 
couphng between the field components allows one to simply interpret these solitons as a superposition of 
the fundamental and the first-order (or higher) modes of the waveguide they induce themselves through 
self- and cross-phase modulations. That is why they can be regarded as being multimode vector solitons M 
By exploiting the concept of multimode spatial soliton, impressive experiments were then performed in 
photorefractive materials [4], including incoherent light self-trapping [5] and observation of the dipole-mode 
vector soliton [6]. The latter two-dimensional two-hump multimode soliton has a fundamental nature in the 
sense that it constitutes a ^'self-generated robust basic composite structure of incoherently coupled fields" [71 
For the completeness of such studies however, the question of stabiUty is a crucial issue to investigate 
tor fundamental as well as applied purposes. Unlike saturable Kerr-like media [8], pure Kerr media were 
theoretically shown to give rise to unstable propagation of multimode vector solitons [9,10,11] Rirthermore 
m addition to the^nonlinearity saturation, the nonlinear systems considered so far in experiments have 
the particulanty of exhibiting self- and cross-phase modulations of identical strengths. When cross-phase 
modulation is stronger than self-phase modulation, the multimode soliton undergoes a symmetry-breaking 
instability 111], an mteresting phenomenon that could apply to all-optical switching without threshold The 
present work is aimed at presenting the experimental demonstration of this instability 

To obtain cross-phase modulation (CPM) stronger than self-phase modulation (SPM) we consider, for the two 
components of the vector soliton, the circular polarization states of fight propagating in a Kerr medium with 
a nonlmearity induced by molecular re-orientation, such as in carbon disulfide (CSa). Hence the CPM/SPM 
ratio attains the value of 7 [12], strongly favoring the symmetry-breaking instabiUty of the multimode vector 
sohton as explained in Ref. [11]. The experiment is performed in a planar waveguide (to avoid catastrophic 
beam breakup) and propagation of both circular polarization components is ruled by the two following 
incoherently coupled nonlinear Schrodinger equations 

dU     .Id^U 
= 1- T+mUfU + 7\VfU), (la) dz       2k dx^ 

dV     .1 d^V        „   „ , -dF='Tkl^ + '^(^^fv + nufv), (15) 
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where U{x,z) and V{x,z) are the transverse beam envelopes of the circular polarization components of 
the electromagnetic field {x and z being the transverse and longitudinal coordinates, respectively), k is the 
wavevector modulus in the waveguide and 7 is the nonlinear coefficient. These equations possess a one- 
parameter family of steady-state (or soliton) solutions consisting of a superposition of an envelope of even 
parity (say U) with an envelope of odd parity (say V) [10]. An example of such a solution is given in Fig. 1(a) 
in dimensionless units u and v. U and V can be interpreted physically as being, respectively, the fundamental 
and the first-order modes of the bimodal waveguide they induce together through the Kerr nonlinearity (here 
analogous to a two-core waveguide-induced directional coupler). Similarly to the odd-mode of the nonlinear 
directional coupler (fast mode instability) [13], one can very easily check that the bimodal vector soliton 
undergoes a symmetry-breaking instability by solving numerically Eqs.(l) with the solution of Fig. 1(a) as 
initial condition. A typical result is shown in Fig. 1(b). As can be seen, the energy that is initially evenly 
distributed goes abruptly from one hump towards the other resulting in the destruction of the initial two- 
core induced waveguide. Interestingly, as was noticed in Ref. [11], after the transient regime the field remains 
confined in a steady-state single-hump distribution (i.e., both U and V exhibit even parity) corresponding 
to the fundamental elliptically polarized vector soliton [14]. 
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Fig. 1: (a) Envelopes u and v of the circu- 
lar polarization components of the bimodal 
vector soliton. (b) Contour plot showing the 
evolution of the vector soliton in (a) when 
sightly perturbed by random noise. 
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The observation of the left-right symmetry breaking of the bimodal vector soliton has been performed in 
a 3 cm-long planar waveguide made of a 10 //m-thick CS2 layer sandwiched between two SK5 glass plates 
corresponding to a refractive index step of An = 0.04 [15]. The difference between the propagation constants 
(wavevector moduli) of the TE and TM fundamental modes of this waveguide is small enough to be neglected 
over the propagation distance considered in the experiment, which allows us to consider that the nonlinear 
medium is isotropic as assumed in the theory [2]. The experimental setup is sketched in Fig.2. A gaussian 
laser beam coming from a 10 Hz Q-switched, mode-locked and frequency-doubled YAG laser is split into 
two orthogonally polarized beams by a polarizing beam splitter (PBS). A Michelson interferometer adjusted 
to a zero relative phase difference is used to shape the U and V components. In one arm, a A/4 phase-step 
mirror (PSM) introduces the n phase-shift necessary to shape the V component of odd symmetry. In both 
arms, quarter-wave plates ensure transmission of both beams at the output of the PBS after reflection on 
each mirror. Then, a quarter-wave plate provides the required left- and right-handed circular polarization of 
both beams. Finally, a combination of lenses images the plane of the mirrors at the input of the waveguide. 
The output beams then go through a quarter-wave plate and a Wollaston prism (WP) in order to measure 
the U- and V-wave intensity profiles separately by means of a CCD camera. Fig. 2(a) shows the input beam 
intensity profiles for both polarization components. The F-wave is characterized by a zero intensity (node) 
at the origin. Fig. 2(b) shows the same beams at the waveguide output at low intensity (linear regime). 
According to our experimental parameters, both beams diffract significantly over slightly more than one 
diffraction length. Fig. 2(c) shows the output U- and F-beam profiles obtained when the power is raised 
until diffraction broadening is canceled by the nonlinearity, i.e., when the bimodal vector soliton is formed. 
This condition is characterized by powers of 2.9 kW and 0.9 kW for the U- and V-waves, respectively. As 
can be seen in Fig. 2(c), although we observe a clear reshaping of wave U that now exhibits two humps 
(in agreement with Fig. 1(a)), both the output U- and V-waves exhibit the same width as the input waves, 
confirming in this way, for the first time, the existence of the bimodal vector soliton in pure Kerr media. 
However, as mentioned above, this soliton is not stable. Indeed, the intensity profiles of Fig. 2(c) are obtained 
only for 38% of the laser shots. The other 62% of the shots are characterized by a strongly asymmetric 
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output m which the beam is randomly displaced either on the left or on the right of the initial beam axis 
A typical example of asymmetric output is shown in Fig. 2(d) where the F-wave envelope has lost its node 
due to the energy transfer from one core to the other of the initial self-induced two-core waveguide Apart 
from some residual energy in the wings of the beam profile, the resulting beam has the characteristics 
of the fundamental elliptically polarized soliton [9, 14] in agreement with the numerical simulations [11] 
importantly, these asymmetric outputs appear to be almost evenly distributed between left (53%) and right 
(47%), which indicates that they are induced by the random noise of the laser. The 38% of symmetric shots 
correspond to situations in which the noise asymmetry is too small to induce the symmetry breaking over 
one diffraction length. 
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In summary, we have demonstrated experimentally the existence and the symmetry-breaking instability of 
the bimodal vector soliton in optical Kerr media. Because the mechanism that underlies this instability 
has a universal nature, the present study has potential ramifications in other contexts. In particular our 
results suggest that symmetry breaking can be observed in a binary mixture of miscible Bose-Einstein 
condensates (BECs) set m the bimodal vector soliton configuration, i.e., a configuration in which one BEC 
has a symmetric bell-shaped envelope that confines another BEC exhibiting an antisymmetric envelope 
Finally, besides the fundamental interest of the present study, we can also expect interesting apphcation 
to all-optical thresholdless" switching since the symmetry breaking can, in principle, be triggered by an 
arbitrarily small perturbation. 00 j 
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Abstract: Considering the spatio-temporal problem of the parametric generation process, we show 
theoretically that the down-converted fields exhibit, as a general rule, a hidden coherence 
characterized by skewed coherence lines along specific space-time trajectories. 
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1. Introduction 
The achievement of efficient parametric amplification of broadband spectral light has been the object of 

particular interest these last few years. In this perspective, several recent experiments investigated the properties of 
coherence of the parametric down-converted fields generated from quantum noise fluctuations [1]. However, so far 
the spatial and temporal coherence properties of the down-converted fields have not been analyzed into a general 
framework. 

We analyze theoretically and numerically the spatial and temporal coherence of the generated waves and show 
that they evolve, as a rule, to a specific state that contains a hidden coherence [2], i.e., a coherent state that can not 
be identified by means of the standard concepts of coherence theory. Indeed, one usually deals with two distinct 
concepts of optical coherence [3]: Temporal coherence refers to the ability of a field to interfere with a delayed (but 
not spatially shifted) version of itself, whereas spatial coherence refers to the ability of the field to interfere with a 
spatially shifted (but not delayed) version of itself. As we shall see, this dichotomous picture of optical coherence 
fails to describe the novel state of coherence revealed by our study of the parametric generation process. Indeed, our 
analysis reveals that the parametric interaction generates fields that are self-correlated along specific spatio-temporal 
trajectories. In other words, the coherence of the fields is neither spatial nor temporal, but skewed in the space-time 
reference frame. 

2. Spatial and temporal properties of coherence 

We consider the parametric process in its linear regime of interaction where the depletion of the pump wave may 
be neglected. The propagation of the two down-converted fields (i.e., the signal and the idler) is studied through 
their slowly varying envelopes Ai,2 that obey the usual linear coupled evolution equations 

(d^ + wd,+p^^. + i^d^.,.)A^=KA^, id^-wd,-p^^.+ir]2dy,.)A2 = KA'. (1) 

The parameters w = (vi''-V2"')/2 and p= (/7i-yf>2)/(vi+V2) represent, respectively, the temporal and spatial walk-off 
between the daughter waves A|,2 along the longitudinal z and transverse y axes, where Vi.2 = (vi,2, Pi,2) are the 
longitudinal and transverse components of the group-velocities of A],2- The parameters 71,2 = l/(2/:i,2) are the 
diffraction coefficients of both waves and the parameter K= aco accounts for the nonlinear x"* efficiency a, and the 
constant pump amplitude ^3 = CQ. The symmetric form of Eqs.(l) with respect to these velocities is obtained by 
writing the equations in the reference frame traveling at the average velocity of the fields A 1,2. 

To investigate the coherence properties of the daughter waves Ai,2 during the generation process, we determine 
the spatio-temporal autocorrelation functions Ciiz;t,y) = <Ai{z,t'+t,y'+y) Ai*(z,t',y')> ((=1,2), that may be calculated 
following the Green's function approach (see Ref.[2] for details). Let us first discuss the coherence properties of Ai,2 
in the limit of zero diffraction parameter, i.e., 5 = T]/w -» 0, where the function QivXy) takes the following form [2]: 

C,2(z;r,.y) - c^p[-t'/{2r^)] S{y-rt), (2) 

where ^denotes the Dirac distribution. The first factor of Ci,2 is a gaussian whose temporal width increases with z 
according to Tc = VV(2Z/K)"^ which corresponds to an increase of temporal coherence. This increase of coherence is 
well known since the pioneering works on parametric fluorescence [4]. It is due to the temporal walk-off between 
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the daughter waves, w, that smoothes down the initial noisy fields. However, the second factor that appears in Eq.(2) 
reveals a previously unrecognized fundamental aspect of parametric generation processes: The factor d(y-r t) clearly 
limits the extension of the correlation function to the region surrounding the line y = rt. This means that the waves 
A,,2 become coherent along specific spatio-temporal trajectories parallel to the line y = rt, whereas the initial 
incoherence remains unchanged between points that do not belong to such trajectories. 

This unexpected finding has been checked by numerical simulations of Eqs.(l). As shown in Fig la the fields 
evolve to a peculiar state of coherence characterized by the presence of skewed spatio-temporal lines of correlation 
m complete agreement with theory [Eq.(2)]. To interpret physically this phenomenon, we must consider the fact that 
the coherence of the fields appears thanks to the feedback action caused by the walk-off between the daughter waves 
[5]. In the framework of the present spatio-temporal analysis, the concept of walk-off is generalized to two 
dimensions and hence has a vector nature. The feedback action thus takes place between points belonging to lines 
that are parallel to the walk-off vector (i.e., in the direction of the velocity difference y^-Vj, as illustrated in Fig lb) 
which explains why coherence develops only along such lines. * 

In the particular limit where the parameter r = plw tends to zero (or infinity), the interaction takes place in the 
absence of spatial p (temporal w) walk-off and the trajectory of spatio-temporal coherence becomes parallel to the 
temporal (spatial) axis. It is only in these two particular cases that the coherence properties of the generated fields 
can be correctly descnbed by the usual concepts of spatial and temporal coherence [3]. In the general case of skewed 
coherence, the use of these usual concepts would lead to the conclusion that the field exhibits no coherence since it 
IS neither spatial nor temporal but hidden along spatio-temporal trajectories. 

y[Ao] Transverse axis (y) 

Fig. 1. Skewed spario-temporal coherence: (a) sjace-time intensity distribution of U, (t,y) | at ? = 11 K"' in tlie absence of 
^ffraction (s = 0) for K' = 1.88nim {% = 0.35ps. ^ = 68 nm). (b) Schenatic representation of the group-velocities v„- 
Coherence emerges along lines parallel to v,-v, (the coUinear type II configuration is considered here), " 

_ I^t US consider the influence of diffi-action {s * 0) on the coherence of the generated waves. As illustrated in 
Fig. 2a, the diffraction causes the lines of coherence to cross each other, whereas they were simply juxtaposed side 
by side m the diffractionless ease (Fig. la). This observation is in agreement with the analytical expression of the 
autocorrelation function that may be easily calculated for j ^ 0 [2]: 

^. .-..v    ^^p\-t'l(2tli\       (   ^y.rtf) 
:^"^^'^'^^°^ Ji-4to   H"f:^J <3) 

where k represents the initial correlation length of the down-converted fields. Fig. 2b shows that this autocorrelation 
tunction exhibits an aperture around the direction y = rt,a feature that naturally reflects the appearance of coherence 
hnes of different slopes m the presence of diffi-action, as revealed in Fig. 2a. For higher values of the diffraction 
parameter the aperture of the autocorrelation results in a drastic reduction of coherence characterized by speckle-like 
patterns. This effect is naturally due to the random interf-erences between the intersecting uncorrelated spatio- 
temporal lines whose slopes span the larger aperture of \C\2 (z;f.y)l. Note that this theoretical analysis explains in 
simple terms the experimental observation reported in Ref.[la] where it is shown that diffraction yields a coherent 
parametnc amplification only for very narrow injected pump beams and thus far from the quasi-plane-wave 
configuration considered m our analysis. Conversely, as the beam size of the pump increases, the amplification 
process becomes incoherent in agreement with our theory. 

3. Young's interference experiment 

The previous discussion reveals that the usual technique that consists in measuring the spectral properties of a 
Id to determine Its coherence can not be used to characterize the hidden coherence of the generated waves. It is fie 
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therefore important to propose alternative techniques. We show that the classic Young's interference experiment is 
able to demonstrate the phenomenon of skewed coherence (Fig. 2c). Indeed, we calculated the visibility V of the 
fringe pattern generated when making one of the daughter waves, say Ai, pass through the two Young's pinholes. 
The visibility is determined by V(r) = ir,,2(^l/[r,.,(0)r2.2(0)]"^ where r,,2(T) = </li(f'+r,>'i)A,*(r',>'2)> is the 
mutual coherence function [3], which can be calculated explicitly by means of the Green's function approach [2]: 

exp[-rV(2Tf)] 

(1 + 165V/0"^"'P 
lUa + rr)' 

16.yV u   /: + 
(4) 

where a = J2-J1 is the distance between the two pinholes and ris the time delay between the two beams coming from 
the two pinholes [3]. In contrast with the usual symmetric fringe patterns encountered in Young's experiments, V{f) 
displays an asymmetric shape characterized by a hump localized in r~ -a/r (see Fig. 2d). This asymmetry is actually 
the signature of the presence of skewed lines of spatio-temporal coherence: It merely reflects the ability of the 
daughter wave to interfere with the spatially shifted version of itself provided it is delayed by an appropriate 
quantity determined by the slope r of the spatio-temporal lines of coherence, i.e., T~ -a/r, as indicated in Eq.(4). 
According to Eq.(4) and the numerical simulation reported in Fig. 2a, the phenomenon of skewed coherence could 
be easily demonstrated in Young's experiment with a bulk BBO crystal in the coUinear type II configuration. 

y[AJ 32 

#^\ 

-a/r 0 
t[Xo] 

Fig. 2. (a) Same as in Fig.la, except that diffraction is included (s = 210m^s"'). (b) Respective autocorrelation function 
\Ct,2(.zXy)\ [Eq.(3)] tliat illustrate the aperture of a cone of spatio-temporal coherence along the trajectory y = r t. 
(c) Schematic representation of the Young's interference experiment, and (d) repective asymmetric pattern of the fringe 
visibility V(t) [Eq.(4)] demonstrating the skewed coherence phenomenon (:„ = w/x-= 0.35ps, Ao = plK= 68 urn). 

4. Conclusion 
In summary, we analyzed the coherence properties of the parametric generation process and showed that the 

generated waves exhibit a hidden coherence under the form of skewed spatio-temporal coherence lines. We showed 
that despite the fact that these new coherent states cannot be identified through the standard concepts of spatial and 
temporal coherence, they can be demonstrated by means of simple methods such as the Young's interference 
experiment. The experimental verifications of our predictions would be of great interest, on the one hand, for the 
fundamental study of this previously unrecognized form of optical coherence, and, on the other hand, for a better 
knowledge and control of broadband practical traveling-wave optical parametric generators [6]. 
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Abstract: We study experimentally the role of modulational instability in two classes of devices that 
are commonly called "modulational instability lasers". For one of them, this denomination is found to be 
misleading. 
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For both its fundamental and applied interests, modulational instability (MI) in fibers has attracted growing attention 
over the last two decades (see e.g., [1]). As regards applications, MI provides a natural means of generating ultra-short 
pulses at ultra-high repetition rates and is thus potentially useful for the development of future high capacity optical 
communication systems. MI in an optical fiber leads to the spontaneous break-up of continuous wave (cw) excitation 
into a periodic train of ultra-short pulses, provided that the dispersion of the fiber is anomalous and the cw input 
power sufficiently high [2, 3]. Owing to the simplicity of this ultra-short pulse formation process, the exploitation 
of MI has been considered in many theoretical and experimental studies for the realization of laser sources adapted to 
ultra-high bit-rate optical transmissions. However, despite its simplicity, the MI process in fibers is difficult to control 
and presents, in this respect, some important drawbacks. For instance : - The required cw power level is relatively 
high and is, in general, much larger than the power threshold for stimulated Brillouin scattering so that, in practice, 
cw operation cannot be performed. - The pulses generated by MI are superimposed on a complex background field, 
which is detrimental to their subsequent propagation in fiber. 

To circumvent the difficulties inherent in the control of the MI process, many configurations have been studied. In 
particular, Nakazawa et al have suggested the use of a coherently driven passive fiber cavity [4]. In this configuration 
[see Fig. 1(a)], a cw beam is injected into a ring cavity made of a fiber with anomalous dispersion. During the first 
round-trips in the cavity, sideband waves grow from noise due to MI gain. If the MI gain is larger than the cavity loss, 
oscillation of the MI sidebands can be sustained and steady-state pulse trains are generated. Owing to this principle of 
operation, this simple device has been called MI laser [4]. Considering a high-finesse cavity, we note that the strong 
field-confinement effect that occurs at resonance leads to a substantial decrease of the cw pump power necessary 
to obtain MI. Moreover, one can easily avoid SBS by incorporating an optical isolator into the cavity to prevent 
the buildup of the backscattered Brillouin Stokes wave. Additionally, the cw background field superimposed on the 
generated pulses can be suppressed by destructive interference with the residual pump beam at the cavity output [5]. 

Tough the initial experimental demonstration of the MI laser has been made with a pulsed pump beam [4], we have 
recently successfully operated this device in the cw regime thanks to the help of an interferometrically-stabilized high 
finesse all-fiber cavity. In our first experiment, the laser cavity was made up of 100 m of standard single-mode fiber, 
which has led to the generation of a 52 GHz repetition-rate pulse train with a pump power of 100 mW [6]. Later, we 
have been able to increase the repetition rate of our MI laser up to 150 GHz (see Fig. 2) by decreasing the intracavity 
dispersion through the use of a dispersion-shifted fiber. It is even possible to increase the repetition rate of the laser 
while decreasing the required pump power through intracavity dispersion management. In this way, the overall cavity 
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Fig. 1. Schematic setup of the passive (a) and active (b) Ml laser cavity configurations 
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Fig. 2. Optical spectrum (top) and intensity autocorrelation 
(bottom) of the 150 GHz pulse train generated by the passive- 
cavity MI laser with a dispersion shifted fiber and 110 mW input 
power. 

Fig. 3. Optical spectrum (top) and intensity autocorrelation 
(bottom) of the 70 GHz pulse train generated by the passive- 
cavity MI laser with a dispersion managed cavity and 70 mW 
input power. 

dispersion can be reduced while the cavity length is simultaneously increased. The low average dispersion leads to 
he generatton of a high-repetition-rate pulse train while the long cavity length increases the effective nonlinearity of 

the device therefore reducing the required input power. The successful operation of a dispersion-managed passive- 
^tf^m *' demonstrated in Fig. 3. Here, we have combined 100 m of standard fiber and 100 m of disLsion- 
shifted fiber so as to generate 70 GHz pulse trains with only 70 mW of pump power, which constitutes a significant 
improvement m comparison with a cavity made of standard fiber alone. Additionally, the fact that we are able to predict 
the laser repetition rate with a simple average-dispersion model indicates that the cavity dynamics is averaged over 
many round-trips and that it can be accurately described with a simple mean-field equation. 

In parallel with the experiments performed in coherently driven passive cavities, several authors have investigated the 
generation of pulse trains in active fiber devices such as erbium-doped fiber lasers. In this context, passive mode- 
locking techniques that take advantage of the fiber nonlinearity to create an effective ultra-fast saturable absorber 
appear as simple solutions to obtain ail-optically ultra-high repetition rates. Interestingly, several authors have reported 
m the last few years the spontaneous generation of pulse trains with repetition rates in excess of 100 GHz from 
passively mode-locked fiber ring lasers [7,8]. As initially demonstrated [7], this phenomenon can occur in very simple 
laser cavities incorporating only an optical ampUfier, a bandpass (BP) filter, and an anomalously dispersive fiber [L 
Fig 1(b)]. Mode-locking was interpreted as resulting fi-om a MI of the cw field resonating in the laser cavity MI 
explains naturally the occurrence of ultra-high repetition rate pulse tmins [1], and this interpretation is consistent 
with the observe! linear dependence between the intracavity power and the square of the laser repetition rate [7] 
This so-called self-mducedMI laser has later been improved by introducing a Fabry-Perot (FP) filter inside the laser 
cavity [8]. The role of the FP filter is to select the modes that grow in tiie pulse formation process in order to stabilize 
he laser repetition rate on the FP free spectral range. Also, by selectively confining the intracavity energy in the 

longitudinal modes of the FP filter, the power threshold for the generation of pulses is drastically reduced, which 
allows cw operation of the laser with a relatively low pump power. 

In view of its potential interest for ultrafast technologies, we have revisited this so-called self-induced MI laser As a 
matter of fact, we have verified that its principle of operation is not intrinsically linked to MI in contrast with the passive 
ca^ty device discussed in the previous paragraphs. To offer a conclusive proof of this assertion, we have performed 
both numerical simulations and experiments of the laser operating with an overall normal dispersion instead of the 
anom^ous dispersion necessary to get MI [9]. The result is clear: The laser still generates pulses, which means that 
pulse fonnation and mode-locking does not rely on MI. The mode-lpcking mechanism is in fact a ratiier complex 
process that has been described tfieoretically by Quiroga-Teixeiro et al [10] It can be identified as resultino from a 
dissipative four-wave mixing (DFWM) process in which only the two central frequencies selected by the BP and FP 
falters expenence net positive gain and transmit their energy by four-wave mixing to tiieir higher-order harmonics that 
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Fig. 4. Optical spectrum (left) and intensity autocorrelation (right) of the 80 GHz pulse train obtained with a DFWM mode-loclced 
laser operated in the normal dispersion regime. The inset shows the theoretical pulse profile whose autocorrelation (dashed curve) 
is found to match the experimental measurement. 

undergo linear losses due to the band-pass nature of the filter. As a result of the parametric wave mixing, the phase of 
the longitudinal modes are locked and pulses are formed. 

Our experimental results are presented in Fig. 4 which shows the autocorrelation and the optical spectrum of the 
80 GHz repetition rate pulse train generated by our normally dispersive laser. In inset, we also present a theoretical 
temporal profile of a dark pulse train whose autocorrelation is found to match the experimental observations. The fact 
that our laser generates dark soliton-like pulses is confirmed by the spectrum that exhibits an even number of lines 
with two central peaks of identical amplitude, and by the high level of background that is seen in the autocorrelation. 
The measure of the average intracavity power (62 mW) and of the temporal width of the generated pulses (5 ps) is 
also consistent with the characteristics of fundamental dark solitons. We must stress that the generation of dark pulses 
in our laser is not accounted for by a model based on MI but is correctly predicted by the DFWM mode-locking 
theory [10]. We note that we can interpret pulse formation through DFWM mode-locking in the temporal domain as 
resulting from the nonlinear conversion of the high-frequency beat signal selected by the combined action of the FP 
and BP filters into a soliton train. As a matter of fact, this process is well known to lead to the generation of dark pulse 
trains in the normal dispersion regime without the need for MI [11]. 

In summary, we have studied two different devices that are commonly referred to in the literature as "modulational 
instability lasers". In both cases, we were able to obtain cw pulse trains with repetition rates in the 100 GHz domain. 
However, our observations indicate that only in the passive cavity configuration can pulse formation be attributed to 
MI. In the active cavity configuration, a description in terms of MI appears misleading as it cannot account for the 
generation of dark pulse trains in the normal dispersion regime. Rather, we demonstrate that the pulse formation at 
play in this device relies on DFWM mode-locking as proposed in Ref. [10]. Our experiments show that the physics 
of this so-called self-induced MI laser is not as simple as what is commonly admitted. In fact, reference to MI in the 
literature is only justified by the simple linear relation that exists between the generated signal power and the square 
of its repetition frequency. Such a relation is, however, the result of the simplicity of the phenomenology inherent to 
dispersive Kerr media and can, in fact, be obtained from a simple dimensional analysis of the model. One of the natural 
issues of our paper is therefore to show that one should not draw conclusions too quickly from the observation of a 
simple mathematical law. 
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The modulational instability (MI) is a fundamental process in quadratic nonlinear interaction 
leadmg to soliton formation, wave-packet break-up and spatio-temporal coupling [1] Up to date the 
expenmental analysis has characterized the Ml-induced beam spatial break up; the main attempt has 
been that of recovering the intensity dependence expected from noise-induced dynamics in the 2-D 
spatial domain, with the single exception of [2] where corrections due to temporal pulse compression 
were considered too. The resulting scenario leaves opened two important questions: (i) since the noise 
hves naturally m 3-D, which are the operating conditions that might eventually force the dynamics in a 
ower dimensional space? (ii) Which is the process, competing with the noise-induced one, capable of 

leading in some case to the spontaneous occurrence of pattern with a good regularity [3]?. 
An indirect indication of the natural 3-D nature of the MI process comes from ref [2], in which it 

was shown that the threshold for the spatio-temporal solitons (STS) formation is quite close to that of 
their Ml-mduced spatial break-up, in the non-localized dimension. In support to this claim, it is worth 
noting how the best agreement between the experiment and the spatial-model predictions was obtained 
when the MI process was "forced" in the purti spatial domain by seeding it with a spatial modulation 
that largely overcome the 3-D noise [4]. 

In this work we have proceeded in a somewhat similar way as in ref. [4], forcing here the MI 
process to take place in the pure temporal domain. Here the forcing temporal modulation however 
was not provided externally as in ref [4], via the interference of two waves, but raised spontaneously 
due to a peculiar pulse-envelope control (PEC), which we will describe here below in the numerical 
section of the paper. The spatial analogous of this effect, we believe, has to be considered as the source 
of regular pattern formation in ref [3]. 

Figure 1 shows the experimental result concerning the multiple-shot intensity autocorrelation of 
the first harmonic (FH) pulse exiting the nonlinear crystal. The operating conditions (see figure 
caption) are equivalent to those used for the temporal-soliton formation in second-harmonic (SH) 
generation with tilted pulses [5], the only difference being that here the crystal was operated in phase- 
matching regime. Note that the tilted-pulse configuration is essential for the process in exam since it 
cancels the dominant group-velocity mismatch (GVM) and provides a large, negative, group-velocity 
dispersion (GVD), thus allowing MI process to occur at intensities low enough to prevent dominance 
of higher-order nonUnear effects. Note that the presence of a number of well distinguishable peaks in 
the autocorrelation proves that the input pulse experienced a temporal break-up in a sequence of pulses 
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with rather constant separation in time. In fact, a chaotic breakup would lead to a single central peak in 
the autocorrelation. 
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Figure 1 Experimental output pulse autocorrelation of FH pulse at phase matching. Crystal: 7 mm type IBBO. Ii„p=l.^ 
GW/cm", Tp„,sc=200 fs. Tilted pulse configuration as in ref [5]. 

In order to clarify the underlying mechanism that controls the breakup we performed numerical 
simulation of the process adopting a pure temporal (1-D) model, in which the pulse tilt was accounted 
for via effective GVD and GVM values. The contribution of the real and imaginary cubic nonlinearity 
was also accounted for in the model. The analysis brought us to the following conclusions: 

(i) In the absence of noise, a long pulse with an initially gaussian-type profile breaks up into 
a regular train due to the alternance of pump depletion and back conversion across the 
pulse. In phase matching, both FH and SH pulses exhibit a high-contrast modulation, 
initially with opposite phase, whose frequency increases with the pulse propagation 
inside the crystal. When the frequency becomes large enough to lead to dominant GVD 
effects then self-trapping between FH and SH occurs and a train of temporal solitons 
appears. Figure 2a shows the calculated intensity autocorrelation in case of a fairly long 
(5ps) input pulse. In this case the propagation is by far too short to let any GVD effect {e. 
g. self trapping) to occur. The modulation is entirely due to a GVD-free pulse envelope 
effect. 

(ii) In the presence of noise, the same (long) pulse exhibits completely different dynamics, 
since the GVD effect starts immediately and causes a chaotic breakup of the pulse. The 
resulting autocorrelation, shown in Figure 2b, exhibits a single, thin, spike at 0 delay, 
whilst a trace of the previous effect is barely visible in the weak modulations of its 
profile. The long-pulse dynamics is therefore virtually noise dominated. 

(iii) On shortening the input pulse, the two effects start to compete and finally the first 
dominate over the second, in the regime in which our experiment was done. Figure 3 
report the intensity autocorrelation for the same operating conditions as in Fig. 1. In this 
case, the calculations gave identical results in the presence and in the absence of noise, 
proving that the breakup is here fully controlled by the pulse-envelope effect (PEC 
regime). The FH and SH are here self-trapped after few mm in the crystal, leading to a 
short sequence of solitons to appear. 

(iv) We note that the two-photon absorption is relevant in our regime (due to large SH content 
in phase matching), affecting quantitatively (but not qualitatively) our results. 
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Figure 3 Numerical pulse autocoirelation coiresponding to the fundamental pulse with presence of noise for the case of incident 
200 fe pulse. Crystal: 7 mm type 1 BBO. I|„p=l 3 GW/cml Tilted pulse configuration. 

In summary we have shown that the pulse envelope modulation due to periodic pulse evolution plays a 
fundamental role in the dynamics of the instability leading to temporal pulse splitting of ultrashort pulses in 
bulk quadratic media. The performed simulations in the 1-D temporal are in good agreement with the 
experimental data, indicating that the observed dynamics actually takes place in the pure temporal domain. 
We like to stress that in the long-pulse case one should not necessarily expect the dynamics presented in 
Figure 2(b), whose features are limited to the adopted ID temporal model. On the contrary, the 3D nature 
of noise might lead to spatio-temporal nonlinear effects [6,7]. 
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Abstract: A novel fiber-based scheme for generating quadrature entanglement between a desired 
pair of frequency bands is proposed. The scheme is based on a nonlinear fiber, a spectral pulse 
shaper, and an adaptive feedback loop. 
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In the new emerging field of quantum information technology, the nonlocal correlation in a quantum entity, i.e. 
entanglement, plays a central role. Entanglement in photonic domain is of particular importance in order to realize a 
practical quantum information network. Common types of entangled state of light are a twin photon pair with the 
polarization entanglement[l] and a twin single-mode vacuum with the quadrature entanglement[2], that are both 
created from x'^'materials. The former is based on a spontaneous parametric downconversion and the latter, called a 
two-mode squeezed state, is made by superposing two squeezed states generated from an optical parametric 
oscillator. These two types have been expermimentally used as a source of entanglement for quantum 
teleportation[3]. Alternative schemes have been brought up recently, such as entanglement of the orbital angular 
momentum of photons [4], the quadrature entanglement of optical solitons created from the Kerr nonlinearity in an 
optical fiber^', and several theoretical and experimental studies on fiber-based systems[6-8]. 

We present a novel fiber-based scheme for generating quadrature entanglement between a desired pair of 
frequency bands. This scheme may have two potential advantages at least. One is that the scheme is based on a fiber 
system, which is relatively simple and easily integrable into present fiber-optic communication systems. The other is 
the possibility of the broadband generation of entanglement, which enables us to access the vast resource in optical 
frequency domain for quantum communications. Our proposal is based on the spectral filtering of an ultrashort 
optical pulse after propagating through a nonlinear fiber, which was used for generating the photon-number 
squeezing[9]. It is confirmed theoretically and experimentally that a major contribution to squeezing in this method 
is interpreted as the interference of the correlated frequency modes at the filtering process [10,11]. For efficient 
squeezing, the mode-mode coupling needs to be controlled appropriately. The mode-mode coupling depends not 
only on the physical parameters of a fiber, but also strongly on the envelope of the pulse itself 

Therefore, it was theoretically shown that, by controlling the phase spectrum of the input pulse, the photon- 
number squeezing can be optimized [12]. The idea is similarly applied to generate the quadrature squeezing in two 
selected frequency bands and to entangle them each other simultaneously. We numerically show that the quadrature 
entanglement is generated between two selected frequency bands inside the pulse (the inset of Fig.~l) due to the 
nonlinear fiber propagation, which is directly observable by the present technology. 

Schematic of our proposal is illustrated in Fig. 1 .An ultrashort pulse is directed into a programmable pulse shaper 
in which the pulse is spectrally manipulated [13]. We assume a phase only modulator as a pulse shaper for the sake 
of simplicity. Then the shaped pulse is sent to an anomalous dispersion fiber to generate entanglement. 

Adopting the Gaussian state approximation which is reasonable in a practical situation, the condition for the 
amplitude and phase quadratures entanglement is defined by the following inequality [14]; 

[(AK,±AX,f),     ({^AY,±AY,f)<^<llAX,TAX,f),     [(AY,±AY,f),        (1) 

where  AXj 2 and AY^ 2 are the linearized fluctuation operators for the quadratures     X] 2 = \^i,2 + <^1,2 j/V2 

and      yi2 - ^[^1,2 ~ ^\,2y ^   .respectively.   The   suffices   1   and   2   represent   the 
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selected two frequency bands of the pulse (the inset of Fig.~l). flj^j =t2^a»«(<») and a^ = Jj 2a(0a*(Q)) 

are tiie anihilation and creation operatore, respectively, for the two selected bands. These variances can be detected 
by the spectrally filtered homodyne detection with a 50/50 beam splitter as in Fig. 1. We here assumed that the 
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Hg, 1   Schematic of the adaptive coherent control system for generation, detection and optimization of the intrapulse fi«quency entanglenent 

spatrum of the local oscillator pulse is arbitrarily prepared. It is worthy to note that more sophisticated or practical 
multimode quantum detection schemes have been studied recently [15]. The observed entanglement is fed back to 
the phase mask of the pulse shaper to optimize the mask pattern. The simulated annealing (SA) method is utilized as 

an optimization algorithm [12]. 
Propagation of the pulse in a nonlinear fiber and the 

spectrally filtered homdyne detection are simulated by means of 
the back propagation method [10,16] which calculates the 
variances of quantum fluctuations vwth the linearization 
approxunation. The pulse propagation in a fiber is described by 
the quantum nonlinear Schrodinger equation. We consider the 
normalized optical field and neglect linear losses and the 
stimulated Raman scattering. 

In our simulation, the initial pulse is assumed to be in a 
coherent state with a classical envelope of sech(0. The phase 
mask of a pulse shaper supports all of the pulse spectrum with 
128 pixels and 64 gray levels and is set to be zero modulation 
for all pixels at the teginning of the calculation. The SA 
algorithm is programmed to minimize the product of the 

squeezed variance /(AXJ +AX2) )((AFI -AFjf 

ftA,r,+ax. f)li&y, - Ai>)*) 
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Fig. 2 Optimization ofthe quadrature entanglement 
by the SA iteration. 

Figure 2 shows the result of iteration calculation for 4.7 normalized dispersion lengths of the fiber length L. It is 
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shown that the variances ((AXI + AX2) jmd((AY^ -^^2) )' that are 4.16 dB and 8.21 dB above the shot 

noise limit (SNL) initially, are clearly squeezed to -4.86 dB and -5.33 dB, respectively. 
In conclusion, we have proposed and numerically evaluated an alternative scheme for the generation of the frequency-band 

entanglement inside an ultrashort pulse by using a nonlinear fiber, a pulse shaper and an adaptive feedback loop. Once the 
optimal phase mask is obtained, the entangled pulse is automatically generated from a fiber It provides a greatly simplified 
system for entanglement generation compared to the other systems that utilize cavities or interferometers with severe 
requirements for mode or phase lockings [2,5]. 
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Abstract:   We investigate experimentally nonlinear optical attractors based on four-photon      : 
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Repolarization of an unpolamed signal laser beam by a pump polarized wave in a nonlinear optical medium 
s a fascinating effect of both fundamental and applicative interests. In ref. [1] Heebner et al. have present 

^fficfenTb " "f'T ^''r^' *^"* ^"'^ *^*°^^°™ nn^ol.rv.eA ligU into polarized light witlul 
bf cS ^ T"\ a photorefractive two-beam coupling scheme. This device constitute! what could 
be called a polarization funnel, or a polarization attractor, in the sense that all input polarization stat^ 
are transformed xnto a unique well-defined polarization state. In previous works, we have shown ttetS 

Llsott^ IT"T^ 'v 1° °'"'"^1^^ ""'^^ ^"^^ "^^'^'^^^ '^'^ betweei two waves propagat ng in 
t^a^nZ" ''^f *V Sf S^'^P-^^^ty "i-^atch [2.3]. In this paper, we show that the pLomenology 
I      5 TL       «f t '^' '*" ^PP^*' ''' ™™erous optical fiber systems such as high birefrigent fibers OT 
bmiodal fibers. We report two experimental observations of this remarkable effect of modal attrition 

Let us consider two counter-propagating wav^ of equal frequencies, a pump beam and a signal beam that 
propagate m an optical fiber. We assume that each wave propagates along two guided moles of tte fibt 
for example two orthogonal states of polarization (SOP) in a Hi-Bi fiber or two linearly polarized (LP ) 
modes with different transverse field distribution in a bimodal fiber. The time-dependent into "cfcn of ^se 
counter-propagatmg waves in a Kerr medium is described by the following equations : 

'^ + ir"ar = '^ W ^1 I' +2 I ^2 I' +C I E^ f +C \E^f)E^+CE2Em , 

(2) 

where E^ (E^) BME^ (E^) are the slowly varying field amplitudes of the first and second components of 
the signal (pump) beani respectively, wherea. v^ («1) and v, (v,) are the associated group-velocitieTT is 
the usual nonlinear coefficient and C represents the cross-phase modulation coefficieft (C = 2/3 for ^o 

£cir ffr "^ % ' 1" *"° 'P"*"' '"°*'^^)- T^^ ^^* *«™ ^^ *^« "gJ^t-h-d Bide of each equatton 
fecribes a fully-degenerate phase-matched four-wave mfacing process which is responsible for energy exchange 
between the waves^ We assume now that the pump beam is launched into the fiber along onfy one mole 
of p opagation, whereas the signal wave is injected into any combination of the two nfodes NumS 
simnlations show that his situation is quite interesting since it may lead to an unilateral transfer of energy 
between the two signal components. This unidirectional exchange of energy is a consequence of both the 
nonlinear interaction and the high-group velocity mismatch between the foSard (signal) rdthfb^kw!rd 

into ft ZTd ^m "r ff"*"" •'^°^'' ^^"^^* ^ *^^ P^-*'^ °f *^« ^^ Seam can be tr^^S 
11 p nlT'^T ^^ r' '*' '"^*'^ input state. This remarkable feature is illustrated in Fig. 1 wliere Eqs. (1-4) have been solved numerically. i j- ig. i 
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Fig. 1. Numerical evolution of the signal components, (a) and (b) : first and second components at the fiber 
input (z=0), (c) and (d) : first and second components at the fiber output (z = 2 m). The pump beam 
is a 6.5-ns FWHM, 100 W peak power pulse injected along the first mode of the fiber. The cross-phase 
modulation coefiicient is C = 2 and the nonlinear coefficient is 7 = 0.025 m'^W^ 

We confirm this property experimentally by means of two different optical fiber systems in which the prop- 
agation of the waves can be described by Eqs. (1-4). The setup used in both cases is shown in Fig. 2. The 
6.5-ns FWHM pulses were obtained from a Q-switched frequency-doubled Nd:YAG laser emitting at A=532 
nm with a repetition rate of 25 Hz. The laser was used in the multimode regime to increase the threshold 
for Brillouin scattering well above the power levels involved in the experiment. A beam splitter was used to 
split the laser beam into two equal intensity beams. Each beam was first polarized and then injected into 
the fiber by means of microscope objectives. Half-wave plates were inserted after each polarizer to control 
the orientation of the two wave polarizations with respect to the fiber axis. A portion of the signal output 
beam was removed and analysed. 

Nd:YAG LASER 

532 nm 

PUMP 
BEAM 

P1   [= 

\50/50 Beam Splitter 

/f- ANALYSIS OF 

THE SIGNAL BEAM 

OPTICAL FIBER 

Beam    MO 
^^2   Splitter 

MO 

SIGNAL 
BEAM 

/ 
X/2 

Fig. 2. Schematic of experimental setup. P's, polarizer, A/2's, half-wave plates, MO's, microscope objectives 

In the first example, we consider counter-propagating waves polarized collinearly in a two meters-long bimodal 
fiber which sustains two guided LPQI and LPn modes. Far-field radiation ouput patterns of the pump and 
the signal beams are shown in Fig. 3. Peak powers of both laser beams were fixed to 100 W. The launching 
conditions were first adjusted so that the pump wave propagates only along the LPoi mode (Fig. 3a) whereas 
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the Signal beam was injected into the fiber to give equal excitations of the two spatial modes (Fig 3c) When 
both waves counter-propagate, almost all the signal power is transfered onto the LPH mode (Ficr 3e) in 
complete agreement with the previous numerical simulations (see Fig. 1). Similar results were obtained when 
mjectmg the pump beam into the LPn mode (see Figs. 3b,d,f). 

Fig. 3. Far-field radiation output patterns fl-om 
the bimodal fiber for (a) the pump beam 
propagating alone in the LP^j mode, (c) the signal 
beam propagating alone into the LP^, and LP„ 
modes and (e) the signal beam when both waves 
are counter-propagating into the fiber. Similar 
results are obtained when the pump beam is 
launched along the LP„ mode (see (b), (d) and 
(f)). 

50 100 
PUMP POWER (W) 

Fig. 4. Experimental degree of polarization of 
the output signal beam along the x- (circles) 
and y- (crosses) axis of the Hi-Bi fiber as a 
function of the pump power, ne pump beam is 
launched along the y-axis of the fiber. Solid 
curves are obtained by numerical integration 
ofEqs.(l-4). 

The second experimental observation was performed in a high-birefringent two meters-long optical fiber The 
pump beam was injected along the y-axis of the fiber whereas the signal beam was polarized at 45 degrees 
with respect to this axis. We define the degree of polarization of the output signal wave along each axis by ■ 

di = li/Itot,   i=x,y (5) 

where I (I) is the part of the total energy polarized along the x- (y-) axis and /,„* = 4 -H„ is the total 
energy of the signal laser beam. The signal peak power was fixed to 60 W. Experimental measurements of 
the degree of polarization of the signal beam as a function of the pump peak power are shown in Fig 4 The 
attraction of the signal SOP towards the x-axis as the pump power increases is clearly observed. Attraction 
towards tlie y-axis can also be obtained by injecting the pump wave along the x-axis. 

In summary, we have studied the modal attraction of a signal wave that travels in an optical fiber in 
the presence of a counter-propagating pump wave. Experimental results are in excellent agreement with 
numerical simulations d^cribing this effect. We believe that this effect may find important applications for 
optical signal processing. 
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Abstract: Large optical Kerr nonlinearities in low linear loss As-Se glass fibers are shown to have 
potential for ultra-fast, low power, all-optical processing applications. Nonlinear phase shifts near n radians 
are demonstrated in fibers only 60 cm long. 
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Summary 

Fiber based optical processing devices are interesting for optical communication systems because of their 
low insertion loss and long fiber mode interaction lengths that allow low power operation. High 
nonlinearity fibers are being used at present to demonstrate optical regeneration' and parametric 
amplification^. At present these devices require high powers because they use silica based fibers that have 
very small Kerr nonlinearities at infrared communication wavelengths resulting from the very large ratio of 
the optical bandgap to operating photon energy. This paper reports new results for chalcogenide fibers 
based on As2Se3 where the optical bandgap is approximately twice the communication photon energies 
resulting in Kerr nonlinearities 500 times^ the nonlinearity of silica. These very high nonlinearity fibers 
could provide a new generation of nonlinear optical devices. 

Chalcogenide fibers used in our experiment are formed from very high purity materials in order to achieve 
multimode and single mode fibers with relatively low losses of about 0.1 dB/m and 0.8 dB/m, respectively. 
We are also interested in the effect of low impurity content in our materials has on the nonlinear losses and 
hysteretic photon induced losses that often limit device applications of chalcogenide materials. 

All-optical processing devices typically require a nonlinear phase shift Acj) = -jPL = % radians for an optical 
pulse propagating with a peak power P through a fiber length L. The nonlinear fiber response is measured 
by Y = 2jin2/?iAeff, where ni is the nonlinear Kerr coefficient, X is the wavelength and Aeff is the effective 
core area. Some typical values are Y=2 W'km"' for silica fiber with SOnm^core areas, Y= 10 W'km'' for 
"high nonlinearity" silica based fiber with core areas near 15 |J.m^ and Y = 100 W'km'' for AS2S3 fibers 
with 50nm^ cores'*. Our experiments demonstrate Y = 1000 W'km"' for core areas of 50^ml For micro- 
structured fibers^ with 5 |xm^ core areas, the gamma values for fibers similar to those studied here could 
reach 10,000 W'km'. These very high Y values would allow fabrication of very compact devices with 
fiber lengths of only 10 cm and power levels near one watt. 

We measure strong self-phase modulation in As-Se fibers formed from high purity materials. The double 
crucible process was used to draw single mode fiber with a cladding composed of As38.25Se6i.75 and a 
slightly higher index core of As39Se6i. The core diameter is approximately lO^m and a numerical aperture 
of about 0.25 resulting in nearly single mode propagation at 1.55 nm wavelengths. The fiber is 60 cm in 
length and has cleaved faces on both ends. The total loss through the fiber, including mode coupling losses 
for the microscope objective lens used at the input and reflection looses at the fiber faces was 65%. This 



NLMC5-2 

loss IS consistent with less than Idb loss in the fiber material. The exciting light source is a mode-locked Er 
doped fiber laser and amplifier that emits 2.2 ps duration pulses at a 10 Gb/s rate at peak powers near SOW 
The input pulse width is measured using an autocorrelator. Fiber coupling losses in the present experiments 
reduce the maximum peak power levels in the fiber to approximately 5W. The mode pattern at the fiber 
output was a well-formed Gaussian shaped pattern indicating single mode propagation. 

The optical spectrum of the pulses propagating through the fiber for three values of the input intensity are 
shown m Figure 1, (a) experimentally as measured using an optical spectrum analyzer and (b) numerical 
simulations using the experimentally measured power levels, 60 cm fiber length, m = SO) times the silica 
value, Aeff =50nm^ and a dispersion value of 3000 ps/nm/km. The frequency spectrum broadens as the 
intensity increases and there is reasonably good agreement between the experiment and simulation At the 
highest intensity the dip in the central region of the spectrum is characteristic of a nonUnear phase shift 
equal to it. 

The dispersion value of 3000 ps/nm/km, required for agreement between the experimental spectra and the 
simulations, indicates that in the linear intensity regime a broadening of the 2.2 ps input pulse to 
approximately 2.9 ps is expected for our 60 cm long fiber. A streak camera measurement of the output 
pulse broadening is consistent with this expectation. 

The experimental output power as a function of input power is sub-Hnear as shown in Figure 2, indicating 
two-photon losses of near 50% at the power level required for a n phase shift. This is only marginally 
acceptable for device applications and indicates that a slightly larger chalcogenide energy gap is optimal 
The bandgap of our fiber material was chosen to be close to the optimum for maximum enhancement of the 
nonlinearity while the operating light field energies at wavelengths near 1.5 pm are below half of the 
bandgap energy where they will not induce large two-photon absorption. Clearly we need to increase the 
bandgap m order to further reduce the two-photon absorption. A larger gap can be obtained by adding a 
small fraction of Ge or S to the binary As-Se material. A 10 to 20% decrease in the output intensity is seen 
m Figure 2 as the intensity is reduced after being at the maximum value. This unwanted hysteretic loss 
effect remained for from minutes to hours, but eventually the fiber reverted to its initial transmission value 
Increasing the bandgap to reduce two-photon absorption as well as using lower power levels and increasing 
the fiber length to a few meters should help to reduce this hysteretic loss. The persistence of th. 
hysteretic effects in the high purity fiber points toward an intrinsic mechanism for the photon indue 
losses in As-Se materials. 
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Figure 2 Power out of the fiber as a function of tlie input power up to the power level required for a n phase shift. The units on 
both axes are arbitrary with linear scales. The dashed line is an extrapolation of the initial linear slope to higher powers. The 
solid circles are the data points and the line is a guide for the eye. The upper solid curve corresponds to power increase and the 
lower to power decrease after remaining at the maximum power for 5 minutes. 

Applications of these fibers to parametric amplifiers and optical processing devices will be discussed. 
Fibers several meters long with losses less than a few dB could be used for optical regenerators based on 
self-phase modulation'. Microstructured fibers' with efficient tapered fiber couplers could reduce the 
device length to tens of centimeters while maintaining the low power levels. Broadband parametric 
amplifiers present the problem of phase matching the signals and pump over an extended spectrum. This 
may be difficult in the chalcogenide fibers since the material dispersion and dispersion slope are both large. 
However multi-section microstructured fibers^ might offer tailoring of the dispersion values that could 
achieve broadband, low power amplifiers. 

' G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T. Her, P. Steinvurzel, K. Dreyer, K. Feder, and C. Joergensen, "40 Gbit/s pseudo- 
linear transmission over one million kilometers", OFC Anaheim, March 17-22 (2002), PD FD 10. 
^ L. Provino, A. Mussot, E. l.antz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric gain with a single low-power pump 
in a multi-section fiber arrangement", OFC Anaheim, March 17-22 , 125 (2002). 
' G. Lenz, J. Zimmermann, T. Katsufiiji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and 1. D. 
Aggrawal, "Large Kerr effect in Se-based chalcogenide glasses". Opt. Lett. 25,2.54 (2000). 
'' M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their applications in all-optical switching". Opt. Fiber Tech. 
3,142-148,(1997). 
' T. M. Monro, K. M. Kiang, J. H. I^ee, K. Frampton, Z. Yusoff, R. Monroe, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. 
Richardson, "High nonlinearity extruded single-mode holey optical fibers", OFC Anaheim, March 17-22 (2002), PD FAl -1. 
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Abstract: We describe the exotic opticd properties Of a device consisting of a sequence o^ 
cal microresonators coupled to an optical waveguide. This device can display sl^o^^^^^^^^^ 
voelocxt.es of propagation, large tailored dispersion, and the propagationyoptkarsoTitons^ 

a whispering gallery mode f4 51 of a dhh   A ™,i=«   f r ul  ®^f **°''^ ™ ™e *orm of a ring waveguide or 

(a) 

A. .A. 
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possesses a photonic bandgap, which is not present in tL siSj^^idTst^cturt ^^^^^^ ZT "'*"'"'' ! 
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Our work is related to recent research on the development of nanocomposite materials. Such materials 
display useful optical properties that can be qualitatively dissimilar [6] from those of their underlying con- 
stituents. Nanocomposite materials are especially well suited for photonics applications, because they can 
be constructed in such a manner as to produce enhanced nonlinear optical response. Some such materials 
are formed by a random association of the underlying constituents [7, 8], whereas other are formed with 
deterministic properties through various fabrication methods [9,10]. Nanofabrication techniques are capable 
of forming structures with specially tailored optical properties. One approach leads to the creation of struc- 
tures such as photonic crystals [11, 12] and related [13] materials. In these materials, the refractive index is 
modulated periodically on the distance scale of an optical wavelength. Such structures necessarily produce 
a strong coupling between counterpropagating optical waves; for a sufficiently strong index modulation such 
structures produce a photonic bandgap, that is, a range of frequencies over which light cannot propagate. 

Moreover, our work has been motivated in part by recent work on slow and fast light propagation. This work 
is aimed at the development of techniques that can lead to a significant modification of the group velocity of 
propagation of a light pulse through a material medium. Proposed applications of these procedures include 
the development of optical delay lines and the "storage" of light pulses [14, 15] with perhaps implications to 
the field of quantum information. Most of this research has made use of the response of resonant media [16] 
and much of it has made use of the concept of electromagnetically induced transparency [17]. Our research 
pursue an alternative procedure for the generation of slow light based on inducing large dispersive effects in 
optical waveguides by coupling the waveguide to an array of optical resonators. 

60 "^    ^    80    100 
z (resonator #) 

t(ps) 

z (resonator #) 
t(ps) 

Fig. 2. Because the sign of the group-velocity dispersion parameter can be controlled by the optical frequency, 
both bright and dark solitons can propagate through a given photonic device. 
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Abstract:  We derive effective discrete equations with long-range interaction which accurately 
describe light transmission in photonic crystal waveguides with embedded nonlinear defects and 
demonstrate the possibility of a bistable (all-optical switcher) and unidirectional (optical diode) 
transmission. 
© 2002 Optical Society of America 
OCIS codes: (230.7370) Waveguides; (130.2790) Guided waves; (130.3120) Integrated optics devices 

One of the most promising applications of photonic crystals is a possibility to create compact integrated 
optical devices, which would be analogous to the integrated circuits in electronics, but operating entirely 
with light. To accomplish this, it is crucially important to achieve a dynamical tunability of the properties 
of photonic crystals, and one of the most promising approaches is based on the idea to employ nonlinear 
photonic crystals, i.e. photonic crystals made from dielectric materials whose refractive index depends on 
the light intensity. This opens a broad range of novel applications of photonic crystals for all-optical signal 
processing and switching. 

The properties of the photonic crystals and photonic crystal waveguides are usually studied by solving 
Maxwell's equations numerically, and such calculations are, generally speaking, time consuming. Moreover, 
the numerical solutions do not always provide a good physical insight. Recently we have shown [1] that 
many of the properties of the photonic-crystal waveguides and circuits, including the transmission spectra of 
sharp waveguide bends, can be accurately described by the effective discrete equations which are somewhat 
analogous to the Kirchhoff equations for the electric circuits. However, in contrast to electronics, in photonic 
crystals both diffraction and interference become important, and thus the resulting equations involve the 
long-range interaction effects. 
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Fig. 1. Transmission coefficients for (a) tliree and (b) five nonlinear defect rods embedded into straight 
photonic crystal waveguide, calculated from Eqs. (l)-(2) for low-intensity and high-intensity output light. 
The nonlinear defect rods with the dielectric constant ej = 7 are marked by black circles, (c) Bistability in 
the nonlinear transmission of an array of five nonlinear defect rods shown in Fig. 1(b). 

Let us introduce our approach for a 2D photonic crystal consisting of infinitely long dielectric rods arranged 
in the form of a square lattice with the lattice spacing a. We study the light propagation in the plane normal 
to the rods, assuming that the rods have the radius r = 0.18a and the dielectric constant £ = 11.56. For the 
electric field E{x, t) = e~"^* E(x | u;) polarized parallel to the rods, such a photonic crystal possesses a large 
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TM band gap m the frequency interval from w = 0.303 x 2trc/a to w = 0.444 x 2-nc/a. To create a waveguide 
circuit, we introduce a system of defect rods characterized by the radiuses r„, dielectric constants £„ and 
located at the points «„, where n is the index number bf the defect rods. Assuming that the radiuses rn<r 
are small, and thus the defects support only localized eigenmodes of a monopole symmetry, one can obtain 
rather accurate results in the approximation that the electric iield remains constant inside the defect rods 
[2J. In this case, averaging the electric field over the cross-section of the defect rods, we obtain approximate 
discrete equations for the amplitudes of the electric fields ^„(a;) = £(f„ | w) of the eigenmodes excited at 
the defect sit^ in the following matrix form: 

and 

^ Mn,m{i^)En,{u>) = 0 ,       where       M„,™(w) = e^CE"^) J„.„(w) - 5n,m , 
(1) 

(2) 

are coupling constants determined by the Green function G{x,v\^) of a perfect 2D photonic crystal (see 
details m Itefs. [2, 3]). As described in R«fs. [1, 4], Eqs. (l)-(2) can be used for accurate describing both 
linear and nonlinear properti^ of the photonic crystal circuits, including their transmission. 
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Pig. 2. (a) "n-ansmission of a waveguide bend with three embedded nonlinear defect rods for low-intensity 
(solid curve) and high-intensity (dashed curve) output light. Nonlinear defect rods with the dielectric con- 
stant ei = 7 are marked by black circles, (b) Bistable nonlinear transmission through the waveguide bend 
shown m Pig. 2(a), for the light frequency w = 0.351 x 2wcla. (c)-(d) Electric field distribution for the 
waveguide bend in its "closed" and "open" states. 

As the first example, in Fig. l(a)-(b), we present our results for the transmission spectra of the straight 
waveguides (created by a row of removed rods) with an array of embedded nonlinear defects. We assume 
throughout the paper that all nonlinear defect rods are identical, with the radius r„ = r = 0 18o and the 
dielectric constant, £„ = ei + \Enf (with e^ = 7), which grows hnearly with the light intensity (the so-called 
Kerr effect). In the linear limit (low-intensity light), the embedded defects behave like an effective r^onant 
filter, and only the waves with some specific resonance frequencies can be effectively transmitted through the 
defect section. The r^onances appear due to the excitation of ca,vity modes ii^ide the defect region. When 
the intensity of the input wave grows, the resonant frequencies found in the linear Umit get shifted to lower 
values. The sensitivity of different resonances to the change of the light intensity is quite different and may 
be tuned by matching of the defect parameters. The nonUnear transmission of such a waveguide is found to 
possess bistabiUty, which occurs for the frequencies smaller then the resonant, in a Miiear limit, frequency [see 
Fig. 1(c)]. This bistability phenomenon can be exploited for creating all-optical switching devices. However 
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such a simple switcher is not very efficient, because it has non-zero transmission in its "closed" state and 
non-zero reflection in its "open" state. 
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Fig. 3. TVansmission coefficients of an asymmetric array of nonlinear defect rods in the (a) forward and 
(b) backward directions, calculated for the same parameters as in Fig. 1. (c) Nonlinear transmission of the 
optical diode for both directions at the light frequency w = 0.326 x 27rc/a. 

The performance of an all-optical switcher can be drastically improved by harnessing more elaborated waveg- 
uide structures. To illustrate such a possibility, we consider the waveguide bend with three embedded non- 
linear defects, as is depicted in Fig. 2. In the linear regime, such a sharp bend with defects behaves as an 
optical threshold device that efficiently transmits the guided waves with frequencies above the threshold one, 
but completely reflects the waves with the lower frequencies. The transmission coefficient of this waveguide 
bend in the linear limit is shown in Fig. 2(a) by a solid curve. When the input intensity increases, the thresh- 
old frequency decreases, extending the transmission region [see a dashed curve in Fig. 2(a)]. The resulting 
transmission as a function of the input intensity [see Fig. 2(b)] demonstrates a sharp nonlinear threshold 
character with an extremely low transmission of the waves below a certain (rather small) threshold intensity, 
see Fig. 2(c), and possibility to switch to nearly 100% transmission above this intensity, see Fig. 2(d). 

Another idea is to take advantage of a spatially nonreciprocal waveguide structure for creating an all-optical 
"diode" which allows unidirectional propagation of a signal at a given wavelength. In the ideal case, the 
diode transmission is 100% in the "forward" propagation, while it is much smaller or vanishes for "backward" 
(opposite) propagation. To implement this concept, let us consider the asymmetric structure made of four 
nonlinear defect rods embedded into the straight waveguide, as shown in Fig. 3. Figure 3(a)-(b) shows the 
transmission spectra of such an asymmetric structure in the opposite directions indicated by two arrows in 
the right insets. As is seen, in the linear limit the transmission is characterized by two resonant frequencies 
and does not depend on the propagation direction. However, since the sensitivity of both resonant frequencies 
to the change of the light intensity is different for the "forward" and "backward" propagation directions, the 
transmission becomes, in the vicinity of resonant frequencies, highly asymmetric for large input intensities. 
This results into nearly unidirectional waveguide transmission, as shown in Fig. 3(c). Similar to the all-optical 
switcher, we expect that the optical diode effect with much better efficiency can be found in other types of 
waveguide geometry, and a unitary contrast can be achieved by a proper optimization of the waveguide and 
defect parameters, that can be carried out by employing our method and the effective discrete equations 
derived above. 
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Abstract:   We show that the phenomenon of modulational instability gives rise to coherent 
spatial structures in arrays of Bose-Einstein condensates confined to optical lattices A simple 
^1-J?^®*?'? ?^ ^P***** structures is proposed, which may be of interest for applications. 
©2002 Optical Soaety of America ; 
OCIS codes: (020.0020) Atomic and molecular physics; (270.310)) Instabilities and cha(K i 

Optical lattices formed by laser waves are the media where Bose-Einstein condensates (BEC) exhibit re- 
Wkable Properti^. In this paper we consider the evolution of the atomic distribution over the optical 
Mtice, gmded by the modulational instability. The phenomenon of modulational instability is well known in 
different areas of nonhnear science (hydrodynamics, plasma physics, nonhnear fiber optics) for its relevance 
to formation of solitons. ' 

The origin and dynamics of solitons in BEC are the subjects which attract considerable inters. In view of 
the fact that a continuous BEC with repulsive interatomic forces doesn't support localized humps of atomic 
concentration (for review see e.g. [1]), the possibility of employing optical lattices for creation of solitons 
appears to be most promising. A stimulating discovery here was the proof of the existence of bright solitons 
m arrays of BECs with repulsive interaction between atoms [2]. The physical mechanism by which this 
possibility aris^is similar to that of electrons in a periodic potential, in specific cases acquiring negative 
effective mass. The presence of the optical lattice can invert the sign of the dispersive term, which then 
balance the action of the nonlinearity. Therefore, bright solitons in BEC arrays with repulsive interaction 
between atoms are possible only in the presence of the periodic potential of the optical lattice. 

Out of existing studies on the properties of solitons in arrays of BEC, little attention has been devoted 
to methods of creation of solitons, so far. It has recently been suggested to employ the phenomenon of 
modulational instability in order to create solitons in effectively ID optical lattice [3]. It was demonstrated 
that particular initial waveforms (Bloch states) for the atomic distribution over the optical lattice give rise 
to formation of solitons. In Itef. [4] a variety of locaUzed solutions are found to the one-dimensional nonhneai 
bchrodmger equation with a periodic potential, d^ribing the dynamics of BEC in the optical lattice. 

The extension of the above considerations [3, 4] to 2D and 3D optical lattices seems to be interesting both 
from the viewpoints of the physics and applications of BEC. The major difference here is that, contrary 
to ID case, the nonlinear Schrodinger equation which governs the dynamics of localized excitations in 2D 
and 3D optical lattices doesn't have stable solitonic solutions. Nevertheless, as the modulational instability 
results m formation of spatially localized soliton-like excitations in 2D and 3D optical lattices, they could be 
stabilized by external means, e.g. changing the parameters of the periodic trap potential. In what follows we 
demonstrate the possibility to create regularly spaced localized excitations in arrays of BEC which present 
narrow tub«. in 2D and small hollows in 3D cases, filled in with BEC atoms of much greater density compared 
to surrounding array sites. j        F   ™ 

To develop the model we consider a dimensionless 3D Gross-Pitaevskii (GP) equation 

/■J = -A^ + ^(r)# + Xl#^, (1) 

where the potential F(r) is assumed, for the sake of simplicity, to be separable, i.e. of the form F(r) = 
l^j Vj(rjh j = x,y,z and periodic in each of the spatial directions: Vj{rj) = Vjirj + a,), with a   the 
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period in the direction rj. For convenience Eq. (1) is considered subject to periodic boundary conditions 
rP[r) = ip{rx + Lx,ry,rz), etc., where Lj = NjUj with Nj and Lj respectively, the number of primitive cells 
and the length of the system in the direction rj. The theory is developed for the small amplitude limit, 
when the multiscale analysis is applicable. This means that we are looking for a solution of Eq. (1) in the 
form rp = eipi + e^xp2 + e^V'3 + • • •> where the I/JJ are functions of the scaled independent variables Tp = eH, 

i. = fr> Cv p = 0,1,2,..., with e a small parameter. Further, denoting with WQ^. (QJ), and ^Q^. (TJ) = \aj,qj), the 
eigenvalues and eigenfunctions of the periodic operators Lr^ = -d^^ + Vj{rj), and applying the arguments 
which are similar to those of Ref.[3], one arrives at the following 3D nonlinear Schrodinger equation for the 
slowly varying envelope 

.dA     1   v^ 
dT2 ]=x,y,z 

X\AU = 0, (2) 

where A = -4(R;?2-;T2, ...) with R = ^i - vn and v = -{aoxaoyaoz\2iV\aoxaoyOiOz) is the group velocity 
of the carrier wave. We also introduced the inverse of the effective mass tensor and the effective nonlinearity 

1 |p(!/,z)     |2 1 _,       rLj 

IMZ].=I+V ,' r""--', ,-k>a,(q),  x=x n / 
2 °''" '^Wa.(90,x)-Wao,.(90,x)        2   "' j=xy,zJ^ 

^moi\'^drj. 

To analyze the stability problem within the framework of Eq. (2), we look for a solution of the form 
A={p-[- ae'^"^^-'^^) + he-^f.^^^-^'^)) e-''''''^^ where \a\, |6| «; p. This solution is unstable if 

j=x,y,z 
(3) 

For the numerical study we have used the potential Vj{rj) = 2Acos(fcr_,) for j = a;, y, z. Numerical solution of 
Eq.(l) has been performed by the operator splitting procedure using multi-dimensional fast Fourier transform 
[5]. The spatial domain x,y,z € [-■|..f](i.e. Lx = Ly = Lz = L) was represented by an array of 128 x 128 
X 128 points and the time step was 6t = 0.001. Below we present the results for a box L = 127r, restricting 
consideration to lowest two bands of the Brillouin zone (BZ). 

First we outline results for the 2D case, specifying parameter values as x = 1-0, k = 2.0, (i.e. ax = ay = 
7v) p = 0.5. Then considering particular Bloch states, e.g. corresponding to points qo = (±1,±1) at the 
boundary of the BZ one can distinguish the following three different cases. Case 1. Both eigenfunctions 
^mo.. and #mo,„ belong to the first lowest zone: mo,x = mo,y = (1,±1). Then MJ"].^ = MJ"],^ = MJ"^ < 0 
and the wave is unstable. BEC dynamics in this case is presented in Fig. 1. The most interesting feature of 

lo       6      i6 -10 0 
X 

10 -10 0        10 
X 

(a) (b) (c) 

Fig. 1. Evolution of BEC atomic distribution in a 2D optical lattice according to Eq. (2) with A = 0.5, k = 
2.0, X = 1-0. ^ = 127r. (a) The initial waveform i/)(x,y,0) = 0.5sin(a;)sin(y) at i = 0. (b) Formation of 
soliton-like excitations due to modulational instability at t=50. (c) The distribution (b) remains stable for 
long times when the strength of the trap potential is adiabatically increased up to A = 1.5 during 50 < i < 55. 
The snapshot (c) is shown at < = 100 (stability is verified up to t=1000). 
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Fig 2. Distribution of a BEC in the 2D periodic 
potential with A = 0.5 subject to the initial condi- 
tion i>{x, y, 0) = 0.5sin(a;) cm{y). Regular pattern of 
soliton-like excitations are formed at t =32. 

Fig 3. Formation of soliton-like excitations by t ~ 
28 in 3D BEC array, d is the distance along the main 
diagonal of the cubic domain with L = 127r. The ini- 
tial condition is ^(a;, y, z, 0) = 0.5 sin(a;) sm{y) sm(z). 

the modulational mstability developed is that it evolves in a r^uior structure which represents symmetrically 
spaced localized in space (we call them soliton-like) distributions (see Fig. lb). Each of the humps shown 

.m the figure represents a tightly confined tube along ^-direction. The number of the tubes is proportional 
to the size of the box. However, these structure eventually decay in accordance with Eq.(2), which does 
not support stable solitonic solutions in 2D and 3D. A simple way to retain th^ excitations would be the 
increasing of the strength of the periodic trap potential, when excitations are formed. High potential barrier 
between lattice sites then suppresses the atomic tunneling, providing strong confinement (see Fig. Ic). 

Case 2. The eigenfunctions ^^o,. and #^„_^ belong to different zon^, say #^„^ belongs to the first lowest 
zone: TOO,I = (1,±1) and #„o^ belongs to the second low^t zone: mo,p = (2,±1). Then M^^ < 0 
and Ml Jj^ > 0, and the condensate is unstable. In this case the instability condition takes the form 0 < 

T^lyyK^ - \^I,lz\K^ < 4xp2, and the most unstable excitations have K^ < i^ip-i^l (which is related 

to the fact that an eigenfunction #^„^ belongs to the "mutable" branch). That is why the main instability 
results m a pattern having different symmetry: it develops in the a;-direction. Along this direction the pattern 
IS rapidly split m a sequence of solitary waves. The instability develops also along y-direction, but at much 
larger time scales (see Fig. 2.). 

Case 3. Both^eigenfimctions #^„ , and #„„,, belong to the second lowrat zone: TOQ.X = mo.y = (2, ±1). Then 
Ma,^^ == Mg.Jy > 0 and the wave is stable, which was confirmed numerically ming the initial conditions 
^(:c, y, 0) = 0.5cos(a;) cos(y). 

Qualitatively similar behaviour of the modulational imtability with respect to formation of soliton-like 
excitations was observed in 3D case. Fig. 3 illustrates the emergence of spatial structures with high atomic 
concentration m a 3D BEC array, shown as a section along the main diagonal of the cubic domain with 
L- 127r. The time interval is selected to display the emergence of soliton-like excitations at t = 28, and 
their subsequent decay. Long-term evolution exhibits the recurrence phenomenon. 

In conclusion, we have illustrated the possibility to create and preserve regularly spaced soliton-like excita- 
tions m 2D and 3D BEC arrays employing the phenomenon of modulational instability. Main features of 
their spatial arrangement are d^cribed by the theory based on the multiple scale expansion. 
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1    The coUinear 2-channel FHG scheme 

Quadratically nonlinear optical materials with a 2-dimensional periodic poling pattern were recently shown 
to support a variety of frequency generation processes [1]. These structures, referred to here as nonlinear 
photonic crystals (NPCs), can be fabricated from maferiails such as lithium niobate (LiNbOs) and lithium 
tantalate (LiNbOs) by 2-dimensional periodic poling of the nonlinear quadratic susceptibility (X^ '). One 
possible application for NPCs is collinear fourth harmonic generation (FHG). The FHG scheme proposed 
in [2] is a 2-channel quasi-phase matched process in which a pair of second harmonic (SH) waves mix to 
generate a fourth harmonic (FH) wave collinear with the fundamental. 

The FHG scheme is described in Figure 1(a). Three reciprocal lattice vectors Gi, G2 and G3 are needed 
for phase matching, 

k2i=2ki+Gi,        k22 = 2ki-I-G2,       k4 = k2i4-k22 + G3. (1) 

The wave vectors are: ki for the fundamental; k2i, k22 for the pair of SH waves; and k4 for the FH wave. 

(a) 
Fig. 1. (a) Phase matching diagram for the FHG scheme. The Gj are reciprocal lattice vectors of the NPC 
and the ki are discussed in the text, (b) Simple hexagonal poling pattern considered in [2]. The poling 
lattice is such that the phase matching conditions (1) are satisfied for LiTaOs at 150 °C at a fundamental 
wavelength of A = 1.53/im. The hexagon edge length is 5.12/im, corresponding to a maximum of FHG 
efficiency with respect to hexagon size. 

A 2-dimensional NPC lattice can always be found so that phase matching conditions (1) are satisfied by 
three reciprocal lattice vectors. The equation given in [2] fixes the lattice vectors (eg., dimensions of the 
rectangles in Fig. 1(b)) in terms of the refractive index of the material at the fundamental, SH and FH. So 
the NPC lattice is fixed by the frequency of the fundamental, the material and the operating temperature. 
Relations (1) say nothing about about the poling pattern within a fundamenta] domain of the NPC lattice, 
other than to suggest that it has a reflection symmetry. On the other hand, the efficiency of the FHG scheme 
does depend on the poling pattern. Thus some effort must be put into choosing a good pattern. 

Figure 1(b) shows a poling pattern considered in [2]. Hexagonal regions are poled so that the X^ 333 compo- 
nent of the second order susceptibility tensor changes sign across hexagon boundaries. The hexagonal poling 
pattern is simple but not very efficient, despite being optimized with respect to hexagon size and orientation. 
Here more general polygonal poling patterns are considered. 
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2    PHG efficiency and optimization constraints 

Using standard perturbation methods [3] one can derive evolution equations for the slowly varying amplitudes 
of the waves involved in the PHG scheme. Let A^, ^21, ^22, ^4 be amplitudes for the fundamental, pair of 
SH and FH waves respectively. Then, 

lif     =     ^aJ^J(^21+^22), (2) 

dA 2} 

dx^ ngcosd 
M4    _     i 
dx^ 114 

(MAif+triAiAi^s-j)) , (3) 

20'2^2l422 . (4) 

Here m, na, n4 are the extraordinary refractive indices at the fiindamental, SH and PH respectively, and 9 
IS the angle between the fundamental and SH wave vectors. The coefficients au<T2 are proportional'to the 
relevant Pourier coefficients of the poling function f(x\x^) = ±1. With respect to an orthogonal reciprocal 
lattice basis {Ki, Kj}, with Ki in the direction of ki, these coefficients are given by 

<^i = fmN^\X^%s^\u/c,       O-2 = 2/MO|A'^%3|W/C, (5) 

where w is the frequency of the fandamental. The indices Ni, N2, M are fixed when the NPC lattice is fixed 
(see [2] for details). For the lattice shown in Pig 1(b), JVi = JVj = 1 and M = 8. Although the methodology 
m the following applies quite generally it is this particular case which is considered here. 

A convenient measure of PHG efficiency can be defined by considering the initial growth of the PH energy 
flux for standard initial data, Ai = 1, A21 = A22 = A4 = 0 BA x = 0. The first non-zero coefficient in the 
Taylor series solution for AIA4 is easily found to be [^AiA^/dx^]^^^ = {n4r4cmH/4)~^ al^i (ataif 
Thus, for the purpose of comparing PHG efficiency one can define a poling pattern merit fimctional, 

«[/] = 4/^O/MO (/jjjiv^/jviiv^)   . (6) 

Por the following, a[f] = 4 [/gop Ifuf. The poling pattern shown in Fig 1(b) has a[Hexagonal] = 2.04x10-4. 

The optimization of a[f] with respect to poling fimction / is subject to several constraints: 
(1) The poling fimction can only take the values/(a;^,a;2j ^ J.J 

(2) The poling function periodicity is fix\a^) = f(x^ + md^x^ + nidi) for ni,«2 G Z. The NPC lattice 
pM-ameters di and rfa are fixed once the frequency, material and operating temperature have been specified. 
(3) The poling function is polygonal. All discontinuities in / must coincide with crystal planes of the material. 
For LiNbOa and LiTaOs this means pohng boundaries are parallel to the sides of some hexagon 
(4) The poling function h^ reflection symmetry, fix\-a^) = f{x^,x% This is sugg^ted by the phase 
matching diagram, and is in fact assumed in deriving the evolution equations (and therefore £»[/]) 
(5) Fabrication constraints. Roughly speaMng, / should not have feature that are too small. In particular 
polmg boundaries that are parallel should be separated by at least Ifim. 

3    On Fourier transforms of polygons 

The feasibility of numerically optimizing a{f\ depenck on being able to efficiently calculate the Fourier 
coefficients of an arbitrary polygonal poHng function. The foUowing result gives a simple expression for these 
coefficients in terms of polygon vertex coordinates. 

Proposition. Let {h,h} be a basis for the lattice L and let D = {tHi + iPh : t^,i^ £ [0 1)} be a 
fundamental domain of L. Let P c D be a polygonal region, and denote by i(P) the inion of its lattice 
mages. Let the characteristic function h{x) of the set L{P) have Pourier series expansion, 

^    00       ,00 . I 

a.'t^ooa.t^oo I 0   elsewhere. 
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where {fc^fc^} is the reciprocal basis satisfying fc' • Ij = 27r(5j. Finally, let the N vertices of P be labeled 
anticlockwise as X(,), g = 0,..., A''- 1, {XI^N) =X(O))- Then for (01,02) 7^ (0,0) the following formula holds. 

'^a\a2  — 
-1 

AT-l 

yl-XVoKD) 
^ 5(,),    where   f(,) = I   ^fi.) 

^"liLL (e-*^:^ (9 + 1) 

9=0 
-iA-V(q)e -iKx (9) 

-i/f-x(„)    for A-. A(,) 7^0, 

otherwise. 

Here A = a^h + 02/2, i<' = aik^ + a2A;^ ^ • A" = 27r {{aif + (02)^), A|^j = ^(?+i)" ^(,) ^^ ^'(9) = %'^(3)- 
Proof. An application of Stokes theorem to JpdiA^e-^^-^dx'^ - A^e-'^'^dx}), where A = A'd/dx\ 

Remark. For the case (01,02) = (0,0) one has,  ^00 = 2Voi(£>) ^^^=0 (^(?)^(9+i) " ^(9+1)^(9))- 

4    Optimal poling pattern for FHG 

The numerical search for a poling function that optimizes a[f] = 4 l/goP |/ii|^ requires a good initial guess 
as to what such a pattern may look like. Figure 2 outlines the general approach taken. Figure 3 shows the 
optimized Escher-like poling pattern, having Q[Escher] = 5.00 x 10"^ = 24.5 x a[Hexagonal]. Let us assume 
that similar design improvements can be achieved for other wavelengths and operating temperatures. Then, 
based on a scaling of the results in Fig 3(b) in [2], one can expect roughly 40% of the incident power to be 
converted to the FH frequency using a 1 cm long sample and a few MW/cm of incident fundamental light 
in LiNbOa, or less than lOMW/cm^ in LiTaOs. The optimization code used here is limited in that vertices 
can not automatically appear or vanish. More general procedures are currently being considered. 

11 EH 
Fig. 2. A qualitative design approach. Left: Poling pattern with large (1,1) Fourier component. Center: Poling 
pattern with large (8,0) Fourier component. Right: Compromise between the (1,1) and (8,0) patterns, used 
as the initial configuration in a numerical optimization of a[f] — 4 l/soP l/ii|^- 

Fig. 3. Numerically generated optimal Escher-like poling pattern, Q[Escher] = 5.00 x 10  ^. 
The work was supported by the Australian Research Council. 
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TTie existence of anomalous, i.e. superluminal or negative, group velocities [1] provides one of the most amazing 
phenomenon of wave propagation which is compatible with, and even a consequence of, causality [2], Anomalous 
wave propagation generally relies on the resonant interaction of light with an atomic maiium, i.e. it exploits the 
dispersive properties of absorptive [3] or inverted [4,5] atomic media near r^onances. Evanescent wave propa<^ation 
ao-oss photonic bamers [1] provides the other wide framework where anomalous group velocities have been 
observed, however m such cases the achievement of a negative ponp velocity seems unlikely. By exploiting the 
dispersive properties of a gain doublet, a narrow sp«;tral region of transparent anomalous dispersion around the dip 
center of two Lorentzian gam lines, leading to negative transit times and no pulse attenuation, can be created [41 A 
recent demonstration thereof has been indeed reported in an experiment by Wang and coworkers using Cs vapor [5] 

Pump fflj 
PPLN crystal 

(a) 
*^- IdlertB; 

(b)    I 
' g 

O 

-1500 0 
Frequency [GHz] 

1500 -5 -4-3-2-1012345 
Frequency [GHz] 

Fig.l (a) Sctematic of the QPM parametric amplifier, composed by the cascading of two uniform QPM grating sections (b) Spectral oower   • 
:gaincurveand9-oupdelaycurveoftheaniplifierfor:a=3mm,/=2mm,atri/3=]35RW/cml g seciions. ID; apectral power 

In this work we show that negative group velocities, corresponding to negative transit times for propagation of 
spectrally-narrow optical pulses, can be achieved exploiting the nonresonant interaction of light with a nonlinear 
quadratic medium, witfi the possibility of controlling the transit time by means of a control pump beam In 
particular, we show that a proper design of the quasi-phase-matching (QPM) grating structure of quadratic 
nonlineanty can reproduce the experimental conditions of the gain-assisted superluminal experiment by Wang et al. 
l    -I* 

!^lf°"l^®' *tP™P*8^''°" °*"* ^^* "*«"*' ^«^^ 8* fi^quency w, through a QPM nondegenerate optical 
[see 
,the 
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^A-^(l/v,.)^.A-•^^,P^A• 

(la) 

m 

where Vj,,,2= l/*'(roi,2) are group velocities of signal and idler fields, h is the intensity of the pump wave, d,^z)= 
(1/2) <x'^'(z)exp(iAfe)> is the effective nonlinear interaction coefficient that depends on the QPM grating design, h.k 
is the wave vector mismatch, and the bracket denotes a spatial average over the short coherence length A=2iiJAk. 
The properties underlying the propagation of a spectrally-narrow signal pulse across the parametric amplifier can 
be derived by determining the complex-valued spectral gain curve g{Q) of the amplifier, where Q is the fi-equency 
offset fi-om the reference fi-equency (Oi at the signal wavelength. The determination of the spectral gain curve 
involves the analysis of coupled-mode equations usually encountered in the study of inverse scattering problems and 
wave propagation through periodic media. The modulus GiQ}=\g(D.) P provides the spectral power gain curve, 

whereas the group delay tj= Im[3 (In g) IdQ] gives the transit time for a spectrally-narrow pulse. As a consequence 
of causality, one can show that the group delay T^ is univocally determined by the power spectral gain curve G(Q) 
through a Hilbert-like transform [6]. For Vgi>v^2. this may imply the existence of anomalous transit times near local 
minima of the spectral power gain curve. As an example, we considered a PPLN crystal pumped at the wavelength 
X3=532 nm with a signal field at ?L,=1 .55 /im, (d=diy =27 pnW for extraordinary wave propagation, v^,, =0.4815 Co, 
and v^i =0.44220 Co). The QPM grating [Fig. 1(a)] consists of a sequence of two +/- square-wave uniform gratings, 
each of length a and period A=27t/A/i: =7.39 fim (first-order QPM), separated by a distance /; a sign reversal of ^.^in 
the two grating sections is assumed. For such a QPM structure, a gain dip at Q=0, corresponding to superluminal 
and even negative transit times, is obtained at sufficiently high pump intensities [see Fig. 1(b)]. The transit time can 
be pushed Irom subluminal to superluminal and fiirther to negative values by increasing the pump intensity. An 
example of control of pulse transit time by pump intensity for picosecond Gaussian pulses is shown in Fig2. 
Assuming a =200 /im spot-size, =5 ns duration Gaussian pump pulse, about twenty times longer than the probing 
pulses, a pump pulse energy of =0.90 mJ is required to observe negative transit times. Such power levels can be 
obtained using, e.g., a frequency-doubled Q-switched Nd-based laser system as a pump source. We checked that 
the occurrence of superluminal and negative group velocities persists also when a more realistic model, in which 
imperfections of the QPM grating as well as higher-order dispersion effects, is considered. This is a consequence of 
the causality (Kramers-Kronig) relation between G(Q) and T^(fi), so that local minima in the spectral gain curve 
usually yield anomalous dispersive properties, regardless of the exact shape of G(Q), which may be indeed quite 
sensitive to fabrication imperfections. The basic physics underlying anomalous propagation with no appreciable 

-200 0 200 
Time [ps] 

400 

Fig.2. Traces of the intensity of traasmitted signal pulse at the exit of the crystal (<-=Z,) for a few values of pump intensities (curve 1: /,=0; curve 
2: /3=I08 MW/cm^ curve 3: /3=135 MW/cnf; curve 4: /3=162 MW/cm'). The dashed curve is the Gaussian signal pulse trace at the input plane 
z=0 (2.50 ps FWHM duration). Notice that, for curves 3 and 4, the peak pulse leaves the amplifier before the peak of incident pulse has entered 
into the crystal. The pulse intensities are normlazide to the peak intensity of incident pulse. 
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pulse amplification and distortion can be understood as follows. In the fist section of the QPM grating the signal 
pulse isampMed, with the generation of the idler wave (a)3^m.+a>2); however, owing to the phase reversal in the 
second QPM grating, a back conversion proems (<O,+(»J-M€S) occurs in the second grating section. The result of 
such a cascading process is that the signal pulse is basically not amplified at the output of the crystal, however the 
ph^e delays suffered by its spectral components produce a temporal advancement with no appreciable pulse 

In conclusion, we have theoreticaOy shown that QPM parametric amplifiers can simulate dispereive properties of 
resonant pulse propagation in inverted atomic media. The possibiHty of observing and controlling superluminal and 
negative group velocities of picosecond optical pulses seems feasible with current QPM technology usin<» a PPI 
based optical parametric amplifier. &j      ^am ^'PLN- 
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Abstract: 

We demonstrate SHG at 980 nm from a novel first-order QPM semiconductor GaAs/AlGaAs 
waveguide crystal. Our calculations show that the SHG conversion efficiency from the crystal 
significantly exceeds that from PPLN for wavelengths exceeding 3.4 ^m for both femtosecond 
and CW pump beams. 

Recent progress in the development of electric-field poling techniques for the patterning of the domain structure of 
ferroelectric materials has enabled the implementation of distinctive quasi-phase-matched (QPM) structures for 
efficient nonlinear optical interactions [1]. Such QPM devices have been fabricated in LiNbOa, LiTaOj and in the 
KTP-family crystals. Semiconductor materials which have larger nonlinear coefficients (jf^), are also promising 
candidates for efficient frequency up/down conversion. However, the technology employed at present to fabricate 
semiconductor QPM devices suffers from limitations such as the difficulty in producing and stacking thin plates for 
first-order QPM. 

We report here a first-order quasi-phase matched semiconductor device based on a novel methodology that involves 
a "periodically-switched-nonlinearity (PSN)" [2]. In these PSN-structures, the /^'-coefficient in the material is 
changed periodically using a re-growth process. To achieve this change in y^' we have engineered a GaAs/AlxGai. 
xAs structure, where y^'GaAs»2'^^AiGaAs [3]. The PSN-design is described in [2]. 

The coherence lengths in the original and re-grown material (Ic and l^s, respectively) are different due to their unequal 
refractive indices. The period A of the PSN gratings is given by A= lc+ f.,. 

The semiconductor structure was fabricated by growing three different layers on a GaAs <100> substrate: 2 |J,m of 
Alo.6Gao.4As, -0.2 ^m of Alo.4Gao.6As, and 1.15 nm of undoped GaAs. The wafer was then processed by etching a 
1.1 jam deep grating with a period of A = 2.97 + 4.73 ^lm into the GaAs layer. This was followed by re-growing two 
new layers over the grating: 2 nm of Alo.4Gao.6As and 0.2 ^.m of Alo.6Gao.4As, terminating with a lOnm GaAs 
protective cap. Finally, waveguide ridges of 3, 5, 8 and 15 jam widths were etched perpendicular to the grating, and 
the sample was cleaved into -0.3 and 1.1 mm long devices. The SHG intensity as a function of the fundamental 
wavelength power (from a PPLN-based femtosecond (<150 fs) OPO) launched into the 15 \im wide waveguide is 
plotted in Fig. 1 (squares). These data are in good agreement with a linear fit having a slope of 1.97, as expected for 
a QPM quadratic process. We also observed that the SHG signal disappeared when the polarisation at the 
fundamental wavelength was rotated by 90 degrees, which is consistent with the behaviour expected. The spectra of 
the fundamental wavelengths measured with and without the sample are reproduced in Fig.2 (a). The spectra of 
SHG wavelengths for two different crystal lengths, measured from behind the samples are shown in Fig.2 (b). 

To further investigate this technique, a detailed numerical analysis was undertaken. This model was based on the 
slowly varying envelope approximation that describes pulse evolution in a collinear SHG configuration [4]. The 
model includes group-velocity mismatch, second-order and third-order group-velocity dispersion and the nonlinear 
coefficient. All concerned coefficients change periodically depending on the material in each domain and were 
calculated using the Sellmeier equations from [5]. The model does not take into account waves propagating in the 
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negative z direction, therefore the reflection at the interfaces between domains was included by considering the 
R-esnel transmission coefficients. * 
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iigure 1.   The SHG intensity as a function of fundamental 
power launched into the waveguide (squares). 

Our numerical results showed that efficient SHG conversion in PSN device is limited mainly by the large group 
velocity mismatchmg at wavelengths shorter than 4.2 ^im (femtosecond regime) and interface reflection losses (in 
both femtosecond and CW regimes). Fig.3. shows the change of SHG output power for optimal crystal length as a 
fiinction of fundamental wavelength for (a) the femtosecond and (b) CW regimes and its comparison with 
conventional PPLN crystal. In the femtosecond regime our calculations showed that the wavelength range longer 
than 4.2 nm becomes better when compared with a PPLN crystal. For the CW case Fig.3 (b) the conversion 
efficiency from PSN device increased significantly in the wavelength range beyond 3.4 jim. Fig.3 also shows that 
semiconductor PSN device may cover the wavelength range from 6 to 12 nm which can not be reached with 
conventional periodically-poled nonlinear crystal such as PPLN. 
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Further experimental investigations will include the use of sources having narrower spectral bandwidths and the 
implementation of this technique in OPO-related applications where it has particular potential for efficient light 
generation in the mid-infrared (>3.4 |im) region. 

In conclusion, we have reported a successful demonstration of first-order QPM devices that utilise a periodically- 
switched-nonlinearity in a novel design of a GaAs/AlGaAs structure, which is based on a re-growth procedure. Our 
calculations have good agreement with our experimental results for the 2 ^.m wavelength range. These calculations 
also show that SHG conversion efficiencies from such devices at wavelengths beyond ~4 |xm are significantly higher 
than those in the 1 -3 |xm range. 
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Abstract: We present new results on numerical Simulations carried out on semiconductor optical 
amplifier Mach-Zehnder interi^erometers with feedback. We show that these devices can exhibit 
bistabihty, with the potential for high speed all-optical switching applications 
©2000 Optical Society of America 

; OCIS codes: (190.1450) Bistability; (230.4320) Nonlinear optical (tevices 

Semiconductor optical amplifiers (SOAs) arranged in a Mach-Zehnder interferometer (MZI) and employing cross- 
ph^e modulation, have been well studied for use as all-optical wavelength converters. The same device can also be 
Ilf^-f'/l'ir"™"®/ :?"*f*' ^"^"^ operations [1]. By applying feedback to the device, its transfer function is 
modified Sufficient feedback results in bistabihty, which has applications in high speed all-optical switching 

ITie device under mvestigafion is shown in Figure 1. The structure was proposed for use as a latch, holever no 
results on its operation were reported [2]. In our simulations, it is assumed that the two optical inputs. P„ and P,« 
do not interference as tiiey are independent sources. «-"ui-zw. 

Fig. 1. Device under study; MZI interferometer with feedback. 

The SOAs were studied using a numerical model based on a wave and a carrier rate equation [3 41- however 
amphfied spontaneous emission noise was neglected for simplicity. The wave and rate equations for a given SOA 
are 

dP 
—i=rp p 
dz (1) 

and 

dt     gV    T     ^   hv.S (2) 

whwe I represents each wave in the SOA. P is the optical power of a given wave, z is the axis along the length of 
the SOA,    ,s the waveguide confinement factor, g is the gain per unit length, N is the carrier density, t is time. J is 
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the injection current density, q is tlie charge of an electron, V is the volume of the active region, hv is the photon 
energy,   and   S   is   the   area   of  the   waveguide.   For  each   SOA   we   use   a   cubic   gain   described   by 

g = a{N -N^)-yX^-X^)^ + y^{X-X^y wherea, i, and 2 are gain constants and//<, is the carrier density at 

transparency. The spectral shift and carrier lifetime dependence on carrier density are described by 

X^ = X^^ -K^{N-N^) and T^=[A + BN + CN^y , respectively, where   0 is the wavelength of peak material 

gain at transparency and 0 is the peak material gain shift constant. A, B, and C are the nonradiative, bimolecular, 
and Auger material recombination constants respectively. The dependence of the phase shift imparted by the SOA 
on the carrier density is given by [5] 

A^ = - 
27tLT{N-N^) dn 

dN 
(3) 

where L is the length of the SOA and dn/dN is the differential refractive index. A modifying term can be also added 
to the phase shift equation [6]; however, for simplicity it is not included here. 

Equations 1 and 2 are integrated over the length of the SOA and the resulting equation is solved numerically to 
produce a transfer function of the device [7]. The results are shown in Figure 2 for various values of feedback gain, 
u. These new results show that sufficient gain results in bistability, while the width of the bistability is controlled by 
the strength of the feedback. In these simulations the feedback gain is calculated as the increase in feedback optical 
power relative to the case where the exiting waveguide splitter, at Poun, yields a 50:50 power division. Thus the 
required feedback gain can be achieved by designing the exiting splitter to be asymmetrical, thereby directing more 
power through the feedback loop. Alternatively, a short active waveguide section in the feedback arm could be used 
to provide an adjustable power gain. 
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Fig. 2. Transfer function for various values of feedback gain. 

Dynamic simulations were also carried out to study the transient behavior of the bistable switching. The device 
is latched, or switched on by increasing the input power temporarily. Figure 3 shows the switch-on behavior for 
M = 1.5 and for two different control signals. If the control signal increases to -7.5dBm, just slightly more power 
than the switch-on threshold, the turn on time is very long. This is described as critical slowing down [8]. When the 
control signal contains more power, the switching time improves. The overall switching speed is controlled by the 
speed of the SOA, the delay time of the feedback loop, and the bistability itself. 
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Fig. 3. Switch-on transient behavior. , 

The device can be reset or turned off optically by one of several methods. The first is by decreasing the control 
signal power to below the switch-off threshold. However, in this case the feedback power is still quite large and the 
turn-off time is limited by critical slowing down. In some cases, such as when K = 1,6 . the control signal cannot be 
lowered to below the switch-off threshold. Thus the device may alternatively be reset through the use of a reset 
pulse at P„s [2]. The pulse nulls the output of the interferometer by matching the phase shifts in the two arms We 
have shown that in this case timing is critical to prevent the device from entering an oscillating state For proper 
operation, the duration of the reset pulse must be equal to the delay time of the feedback loop To satisfy this 
condition is difficuh m a practical application. We therefore propose a third method of resetting the device that 
involves blocking the feedback power. This might be achieved with another active device in the feedback waveguide 
using cross-gam modulation or cross-phase modulation. The reset pulse is fed into the new active device which nulls 
the feedback power. In this way the strict timing requirements on the reset pulse are avoided. 

The new results obtained so far include numerically determining the transfer function of an SOA-MZI with 
feedback and showing that a bistability results when the appropriate feedback is supplied. Also the transient 
switching behavior of the bistability was investigated including the effects of critical slowing down We have 
proposed a new method of resetting the device that overcomes the critical slowing down, as well as timing issues 
associated with other reset methods that lead to undesirable and unacceptable instabilities. Work is continuing in an 
effort to have more control over the shape of the bistable transfer functions and to improve switching times 
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Shaping the optical components of solitary three-wave 
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Abstract: Bragg solitons, representing collinear three-wave weakly coupled states, are investigated 
both theoretically and experimentally. The dynamics of shaping their optical components is studied, 
and the roles of localizing pulse width and phase mismatch are revealed. 
©2002 Optical Society of America 
OCIS codes: (190.5530) Pulse propagation and solitons. (190.4410) Nonlinear optics, parametric processes 

1. Introduction 

In a number of cases the analysis of three-wave processes leads to finding various solitary waves in the form of 
coupled states, where waves of the same or even different nature become to be mutually trapped and propagate 
together [1,2]. Under certain condition it is also possible to find the coupled states with the Bragg acousto-optical 
interaction in a two-mode optical waveguide [3], because nonlinear scattering of light by acoustic wave in photo- 
elastic medium represents a three-wave parametric process exhibiting itself as a mechanism of stabilizing self-action 
in a system with square-law nonlinearity. The study of weakly coupled states, originating with scattering the light by 
relatively slow non-optical wave, and the development of quasi-stationary model for describing a phenomenon are 
the subjects of this work. In the main, the dynamics of localizing just optical components of coupled states is studied 
and the parts of their major parameters are analytically estimated. A correlation between the results of conputer 
simulation and the data of experiments with a crystalline waveguide substantiates the model presented. 

2. Originating the weakly coupled states in a two-mode waveguide; the localization conditions 

A three-wave co-directional collinear interaction with the mismatched wave numbers in anisotropic medium is 
described by a set of three nonlinear partial differential equations [4]. Here, we consider a regime of weak coupling, 
when two light modes are scattered from a pulse of relatively slow wave, being non-optical by its nature, and 
essentially effective Bragg scattering of light can be achieved without any observable influence of the scattering 
process on that non-optical wave, because the number of interacting photons is several orders less than the number 
of scattering quanta injected into a medium. Then, the velocities of light modes can be approximated by the same 
value c, because the length of a crystalline waveguide does not exceed of 10 cm. In this regime, the above- 
mentioned set of equations falls into a homogeneous wave equation for a slow wave, which possesses the traveling- 
wave solution U(x-vt), v is the velocity of this wave, and the pair of combined equations for light wave 

amplitudes. The complex amplitudes CQ(x,t) and Cj(x,t), corresponding to the incident light wave and scattered 

one, are governed by 

^=-qiCiU*(x-vt)exp(2iTlx) , ^ = qo CoU(x-vt)exp(-2iTlx). (1) 
ox ox 

Here qo i are the constants of interaction; kg, k|, and K are the wave numbers for both the light waves and non- 

optical wave; 2T| = 1 ko -kj -K I is the mismatch of wave numbers. On the assumption that non-optical pulse 

U (X - V t) = u( X - V t) exp (i (p) has the constant phase <p , Eqs.( 1) can be converted into a pair of equations 

9 Co,i 

d j 
^i|^±iTll^+qoq,«^C„,=0 

u dx I    dx 
(2) 

WeputCo,! =ao,i(x,t)exp(i<l>o,i[x,t] ), Yo,i =30o,i/3x and divide real and imaginary parts in Eqs.(2) as 

u dx 

da 
ax 
^+(qoqi«^-Yo,i±2TlYo,,)ao,,=0, (3) 
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2 (,,,,,)!|«iJ^.M|^) 
ox dx        u   dx ao.l=0' (4) 

It follows from Eqs.(4) that Y04 =±11 (u/a|,,) J «"' (d4,l/dx) dx+ro,,u/ai,,, but here our consideration will 

be restricted by the simplest choice of To,, = 0 .Now, we focus on the process of localization in the case, when first, 

two facets of waveguide at X = 0 and x = h^ bound the area of interaction and the spatial length x^ of non-optical 

pulse is much less than L^; and second, the non-optical pulse u(x,t)=U„(e [z-vt]-e[x-x„-vt]) has a 

rectangular shape with the amplitude U^. We analyze Eqs.(3) and (4) with the fixed magnitude of n and the 

natural boundaiy conditions ao(x = 0,t) = l, a,(x=0,t )=0 and trace the dynamics of phenomenon as far as the 

localizing pulse of non-optical wave is incoming through the facet x = 0, passing in a waveguide, and issuing 
through the facet x = L^ with the constant velocity > . There are two possibilities. The first of them is connected 

with a quasi-stationary description of this effect in the assumption that v «c, while the second one presupposes a 
weak inequality v <c. With a quasi-stationary approach, we may put that Bu/Bx^O in Eqs.(3), (4) everywhere, 

excluding the points x = {o,Xo }, and yield Yo,i =+n • Then, we follow three stages in the localization processes.' 

Stage 1: Localizing pulse is incoming through tlie facet x = 0: Applying the values of yo,i =±n , Eqs.(3) 

can be solved exactly. The intensities of light waves on xe (o, x,) with q^qjUf = o^ are given by : 

h   |2-_JL_ 
•0    —2—2 + 

«2  , _2 O   +1\ 
COS (,^PV}     |,.|==^-^..^,77v} (5) 

To find the coefficients in Eqs.(5) and (6) we use the conservation law q„ a| + q, af = q^ , resulting from Eqs.(l). 

Stage 2: Localizing pulse is passing in a medium. In this regime the rectangular pulse as the whole is in a 
waveguide, so au/3x = 0 exactly and one has to put simply x = %^ in Eqs.(5) and (6) in the region {xo,h^-x^). 

Stages: Localizing pulse is issuing through the facet x =L 0. This stage is symmefrical to the stage 1, whose 
solutions, i.e. the above-mentioned Eqs.(5), can be inverted and related to the spatial interval of x e ( L„ - x,, L„ ). 

The obtained solutions include contributions of two types. The first summand in | ? ^f exhibits the contribution 

of a background, whose level is determined by the mismatch n; the second one represents the oscillating portion of 

solution, i.e. the localized part of incident light imposed on a background. The scattered light contains the only 

oscillating portion of field that gives the localization condition x^ (q^qj U^ +tl^)= u^ N^ , where N =0,1,2,... 

On the second possibility ( v < c ), it is reasonable to put u = aU„ x ( a is to be found), when the localizing'pulse 
is incoming through the facet x = 0. In so doing, we have to take into account the fact that solutions to Eqs.(3) are 

, known ifonly the last coefficients are proportional ton 2 [5], i.e. d,+2n Yo.l =tl'C^x2 with t,= const. That is 

why we are forced to exploit the smallness of mismatch, believing that n «1, and to find approximate solutions to 

Eqs.(3), (4) at this stage. Resolving this algebraic equation relative to Yo,i, we yield Y04 =±11 (l±JT+^V\ 

In terms of these values for Yo.l, Eqs.(4) can be satisfied with an accuracy of n^ while Eqs.(3) can be solved 

ejactly. The intensities of light waves with a ={ on the interval of xs (o, x„) are given by 

0    —2—r+-^—r««s Mr—v*^+11 
0^+11 ,   0^+11^       I l?iP=^ 

fli o^+ii^ 
sin 

ax^ I 
O^-Hl^ (6) 

To find the coefficients in Eqs.(6) we approximate yo,i as y^ = -tl x ^ and Yj = -tl [ (4/3 )+ x^ ] on the interval 

of X6 (0, xj) and then use the conservation law. The stage 2 with v < c is governed by Eqs.(5) as well, because 

again Bu/ax = 0 ; finally, we can invert and apply Eqs.(6) at the stage 3. The parameter o makes it p(Bsible to join 

Eqs.(5) and (6) at the point x^, therefore the localization condition takes the form a^x| (q^qj U^ +1]^)= 4jt^ N^. 
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3. Computer simulation and experimental verification in the quasi-stationary case. 

Shaping the optical components of solitary three-wave weakly coupled states was simulated using Eqs.(5). As an 

example, Fig.l shows a set of plots for the scattered light intensity |Ci| , when both the amplitude UQ and the 

mismatch T) are fixed, while its width XQ = XQ/V is increasing plot by plot in the temporal scale of X^ = \Q/\ . 

Figures lb and Id illustrate shaping the scattered optical components of one- and two-pulse weakly coupled states. 

10 . 

Fig. 1. Intensity of the scattered optical component, normalized by the ratio qi /qi, in a weakly coupled state (vertical axis) versus 
the temporal coordinate T =x/v and the waveguide lengh L-Lo : a. TO<TC/2; b. TO=T(:; C. 3T(:/4<TO <2TC; d.'t(i = 2T(:. 

Verification has been carried out due to acousto-optical experiments in a two-mode crystalline waveguide based on 
calcium molybdate (exact synchronism acoustic frequency 43.7 MHz, Lo= 3 cm, v = 2.95 mm/|ts ) on an optical 
wavelength of 0.633 nm. During the experiments rather effective (> 10%) Bragg scattering of the light has been 
observed without any effect on the acoustic wave, since the number of interacting photons was 10 times less then 
the number of phonons injected into a waveguide, when their powers were approximately equal to 100 mW each, so 
the regime of weak coupling had taken place. The intensity distributions in both incident and scattered optical 
components of coupled states as the functions of the acoustic power density, the localizing pulse width XQ , and the 

frequency mismatch Af = 'nv/7r has been measured. The oscilloscope traces in Fig.2 illustrate the particular case, 

when the only localizing pulse width XQ is varied. One can see 4 sequential steps in shaping the optical components 

of weakly coupled states in a waveguide, which are in agreement with the analysis performed, see Eqs.(5) and Fig.l. 

1 

J 
1    v^ "Y^^^r ~YY~~vr 
J ^_ Jlf—AiL JIA_JWL 

b. d. 

Fig.2. Temporal traces of the incident (upper lines) and scattered (bottom lines) light intensities with Af = 0.4MHz 
in a two-mode calcium molybdate waveguide: a. T(l = 0.8^s; b. 'C(i=Tc = 2.5 |xs; c. To = 4.2 |is; d. To =2T(:= 5.0 |xs. 
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In recent years, there has been vast interest in nonlinear pulse propagation in photonic band gap 
structures, or photonic crystals [1]. It has been shown [2,3], that due to nonlinear light-matter interaction 
intensm laser pulse can propagate at frequency within the linear forbidden Bragg gap band through the structure 
with different types of nonlinearity, so called gap soliton. The steady gap soliton moves in periodical structure 
like optical sohton m homogeneous medium keeping its shape and constant velocity. However, the existence of 
photonic band gap gives rise to specific features of the gap soliton dynamics, for instance, the pulse can stand 
with zero velocity [2,3] or oscillate periodically changing its amplitude and sign of velocity [4 5] These 
osciUatiom have been investigated in the framework of the generaMzed massive Thirring model for gap solitons 
m penodic cubic materials [5], However, the oscillations of gap 2n-pulse of self-induced transparency in a 
resonant penodic structure were only numerically demonstrated in the case of complicated set of equations in 
complex functions [4], and the physical nature of the oscillations has not been described. Physically it is clear 
fliat a reason of the oscillations is in photonic band gap. If an optical soliton is formed by arbitral pulse in 
homogeneous mediiun, then the part of energy, which has not been trapped by the soliton, leaves fast the space 
region of the slow soliton as free linear radiation. In the case of gap soliton, this untrapped energy is fixed in 
excited atoms and in weak field that can not propagate through the structure because of linear photonic band mp 
As a result, if the initial soliton velocity is slow enough, the gap soliton, interacting with the perturbation cannot 
leave the region of interaction because its kinetic energy is smaller than the potential energy of the interaction 
Tks gives nse to gap soliton oscillations. In the present paper, we study the instability of gap 2n-pulse of self- 
mduced transparency m a resonantly absorbing Bragg grating. It is shown that initial problem for simple two- 
wave Maxwell-Bloch equations in real functions are reduced to modified sine-Gordon equation. This allows one 
to obtam an equation of motion to describe the evolution of stable oscillating gap 27t-pulse and imstable excited 
gap 2re-pulse, which decays to a steady soliton and perturbation. The oscillating pulse is physically stable 
because it does not decay, and is unsteady because this solution is within a region of oscillatory instability on 
phase-plane of equation of motion. Solving a boundary problem, we explam the physical nature of delayed 
reflection and delayed transmission of gap 2n-pulse, when an incident pulse forms the gap 2jt-pulse at low 
velocity near the boundary. => r      t- 

Let us consider the coherent interaction of light with one-dimensional resonantly absorbing Bragg 
grating consisting of periodically distributed thin layers of two-level oscillators. This model closely corresponds 
to a real structure of penodically arranged quantum wells with resonant excitons in semiconductor. Under exact 
Bragg condition, the problem of light-matter interaction in semiclassical approximation is described by coupled- 
mode two-wave Maxwell-BIoch (TWMB) equations [2] for the slowly vaiying envelope of electric-field 

amplitudes of the forward and backward waves E', the dimensionless polarization P , and the population 
difference density of two-level oscillators «: 

at+n^=p, a;-a;=p, p,=nin*+n-% n,=-p(n^+a-), (D 

where O" = 2r^(fi/ti)E-; 7^ is the cooperative time characterizing the mean photon lifetime in the medium 

preceding resonant absorption, fi is the matrix element of the transition dipole moment; 
x = x /cTg, t = t'/t^ me dimensionless space and time coordinates. 

Using the solution of the Bloch equation P = -sin^, where 0 is the Bloch angle, the Eqs (1) are 
reduced to the form: i\/ 

O^+O, =-2sin^,    O^-hQ, =0,    0,=n, (2) 

^ere O = Q+ -|- Q",     h = Q+ - Q". The second equation of Eqs. (2) yields 

hix,t) = -0^ix,t) + fix). ^[ 
Then Eqs.(2) gives the follovdng equation for the Bloch angle : 

0^-0„=2sm0 + f^(x) ^4) 

This is the modified sine-Gordon equation, the fimction /(x) is determined by the initial condition (3): 
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fix) = Qix,O) + 0,(x,O). (5) 

Thus, if the fields and population inversion are absent in a medium at ? = 0, i.e., Q(;c,0) = 0 and 

0(x,O) = 0, or if the steady 27t-pulse propagates through the structure and Q.(x,t) = -0^{x,t) [2], then 

f{x) = 0 and Eq.(4) is reduced to the exact sine-Gordon equation describing steady gap 27t-pulse. In general 

case of f{x) ?!: 0 , the gap soliton dynamics becomes more complicated. The second term in right-hand side of 
Eq.(4) describes the interaction of soliton of exact sine-Gordon equation with a localized perturbation and 
determines the dynamics of gap 27i-pulse oscillations and instability. 

In order to solve the Eq.(4) , we use a simple "energetic" method, which allows one to obtain an 
equation of motion for soliton of modified sine-Gordon equation in the case where its shape is close to the shape 
of exact sine-Gordon equation solution, i.e., the function f{x) is assumed to be small. Rewriting Eq. (4) in 

variables T} = v2 X,    T = '\J2t,    f = f/'Jl we get the equation in traditional form 

0^^ - e,,= sine+f;,(Tj). 

The corresponding 
j2 z'} , zj2 

Hamiltonial      density      function      for      Eq.      (6) is the 

(6) 

following 

H = 6^ l2 + 6fil2- f'6^+f    l2 + (\-COsO). Assuming the shape of unsteady solution of Eq. (6) to 

be close to soliton of the exact sine-Gordon equation, we write the desired solution for a 27r-pulse as 

^ = 4tan-'{exp[(-7 + ^(r))/Vl-w'(r)]}, (7) 
r 

where u{f) is the time-depending soliton velocity, i^(r) = Jw(r')c/r' is the coordinate of soliton center. 
0 

Since the  system is  conservative,  the  total  energy  of the  localized  solutions  is  integral  of motion, 

d{\   H drf) / dt = 0 , then assuming U to be small we find the following Newton eauation of motion: 

1    Pi   °° 
0.5i ; : 4rr=~^\^^oH7j-^)n?j)dn. (S) 

Overlap integral in right-hand side of Eq. (8) fixes 
potential energy of interaction of the kink-solution (7) 
with the perturbation. 

Let us take the perturbation in a simple form 
fin) - /oSech(;;),  which  coincides  with  the 

shape of exact 27t-pulse solution. Then Eq. (8) gives 
the following equation of motion of the pulse: 

0    ^   5 
Space c 

10 

^„=-U^,U = (fJ2)i^/sh^). (9) 
Equation (9) describes the motion of a unit mass 
quasi-particle in potential (/under action of potential 
force -U^ . Total energy of the particle (9) is 

u /2 + U = const, therefore finite motion is 
possible if the potential is attractive, /Q < 0, and the 
pulse velocity have to be sufficiently small on the 

potential well bottom |w((^ = 0)1 < -yj-fo (Fig.l(a)). The gap :^jr-pulse can oscillate but does not decay, it is 

unsteady but stable. An increase in the initial velocity leads to escape of the pulse from the potential well. If the 
initial condition (5) corresponds to positive /Q > 0, the potential of interaction U is positive and the pulse is 

repelled from the potential (Fig. 1(b)). It means that the pulse is unstable and can be described as excited gap 2n- 
pulse, since it decays to perturbation and steady soliton whose kinetic energy equals to the energy of excitation 
(potential energy of interaction). If displacement of the soliton is small compared to the width of 

Fig.l. Phase-plane of Eq.(9) for attractive 
potential U at ^ = -0.1 (a), and repulsive 
potential at^o = 0.1 (b). 
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Fig.2. Evolution of inversion n of initial gap 2n-pulse 
(flie gray scale is proportional to «), The initial 
conditions are chosen such that (a)_^=-0.4, the initial 
pulse velocity «o=0.2; (b) /o=-0.4, MO=0.55; (C) 

;o=0.07, Mo«0. The contour lines correspond to 
perturbation J(x,t) (3), The inset shows the 
mialytically (10)(solid line) and numerically (dashed 
line) calculated frequency of harmonic oscillations. 

O 200      400 
Time t 

600 

Fig.3. Evolution of inversion n of the mcident pulse 
in the structure. The incident pulse amplitudes are 
2.701 (a), 2.70063 (b), and 2.70062 (c). The contour 
lines in (e) show the perturbation^x,r) (3). The inset 

sho-^ the dependence of time delay tb on the depth 
of pulse penetration X. 

potential 4 «l and /o < 0 , then the soliton 

executes harmonic motion: 

4 = ^0 sin mr,   ap- = -f^ 16. (lO) 
The "energetic" method, we used above, is 

very convenient but approximate, because one does 
not take into account a change of kink shape. Thus, 
it is important to check our analytical results by 
numerical integration of Eq. (1) directly. Figures 2 
illustrate the dynamics of gap 2jt-pulse for 
attractive (a,b) and repulsive ( c) potentials U. We 
see a good agreement with analytical results 

although the taken values /^ and ^ are not too 
small. 

The analytical description of gap 2ii-pulse 
instability in an initial problem allovre one to 
explain dynamics of formation of gap 2ji-pulse near 
the structure boundary, which is a realistic physical 
process. In Fig.3 results of the numerical simulation 
for different values of incident field amplitudes Do 
are presented. If the incident field is large, the 
steady moving gap 2it-pulse is formed after 
nonlinear reflection of some part of incident field 
(Fig.3(a)). Fipire 3(b) demonstrates the delayed 
transmission of incident pulse. The corresponding 
unstable initial state is maifced by circle on phase- 
plane in Fig. 1(b). After time of delay, the excited 
gap 2n:-pulse decays to moving steady gap 27t-pulse 
and residual perturbation, i.e. small standing waves 
and inversion. If amplitude of incident pulse is 
chosen smaller, the influence of the boundary on 
the process of gap 2ii-pulse formation is very 
important. Due to the attraction, the pulse can not 
propagate into the structure and is reflected 

(Fig.3(c)). The value of time delay T^ of the 

mcident pulse, in this delayed reflection process, 
exponentially depends on depth of the pulse 
penetration and may be in two order of magnitude 
peater than the incident pulse duration. 

In summary, it has been shown that 
besides traditional moving and stending gap 2%- 
pulses, which are steady soliton solutions of 
TWMB equations, there b a class of stable 
oscillating and unstable excited gap 2ji;-pulses. The 
oscillations and instability arise because of 
interaction of slow gap 2n-pulse with localized 
weakly excited two-level oseillatore and small 
standing waves within photonic band gap. 

1. "Linear and Nonlinear Nanoscale Optics", Ed. by C. M. Bowden, M. Bertolotti, and C. Sibilia (AIP 2001) 
2. B. I. Mantsyzov and R, N. Kuzmin, Sov. Phys. JETP 64, 37 (1986). 
?■ «\??,!w,^ki;' M*"^' Pl^ys- R^^- Lett. SS, 160 (1987); C. Conti, S. Trillo, and G, Assanto, Phys. Rev. 
Lett. 78,2341 (1997). 

4. B. I. Mantsyzov, Phys. Rev. A 51,4939 (1995). 
5. F. De Rossi, C. Conti, and S, Trillo, Phys. Rev. Lett. 81, 1, 85-88 (1998). 
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We consider all-optical switching in the device shown in Figure la, which consists of two 
channel waveguides coupled by microresonators, all of which are Kerr nonlinear. We present 
numerical simulations that show that it is possible to use the channels as input ports, hence 
creating an optical AND gate based on a scheme similar to coupled gap soliton formation, even 
in the presence of linear and nonlinear loss mechanisms. The advantage of our AND gate scheme 
over earlier proposed schemes based on Bragg gaps is twofold''^: First, our gate is much shorter 
than those based on Bragg gaps; second, the threshold energy required for operation is much 
smaller than in a Bragg gap system. The basic operation of the gate is as follows. Forward 

travelling light in the bottom (top) channel guide can 
couple, via the resonators, to backward travelling 
light in the top (bottom) guide^'''. For simplicity we 
assume that light propagation is governed by the 
effective index Uefr, common to both channel guides 
and the resonator. We define the resonant frequency, 
cOr = c/(neffR) - the frequency at which one round-trip 
through the resonator corresponds to the accumulation 
of 27t of phase. Light with frequency at or near an 
integer multiple of (Or is highly reflected, because the 
coupling of light from one channel guide to the other 
is resonantly enhanced. In the presence of 
nonlinearity, light of high intensity will experience 
nonlinear phase accumulation through self phase 
modulation (SPM) and cross phase modulation 
(CPM). We consider the situation where one pulse of 
high intensity injected into either the top or bottom 
channel is reflected, despite its SPM. However, when 

pulses are injected into the top and bottom channels simultaneously, then the added phase 
accumulation due to CPM will be sufficient to switch off the resonance, so that the structure 
becomes highly transmitting. For our system, the coefficient describing CPM is twice as large as 
that describing SPM, whereas in schemes based on orthogonal polarization the CPM coefficient 
is only two-thirds of the SPM coefficient^; this makes our scheme more efficient than one based 
on polarization. 

To simulate device operation, we generalize a numerical technique used to investigate 
structures similar to the AND gate, but vdth only one channel guide^ In Figure lb we show one 
cell of the device. We assume that light can couple between the channel guides and the 
resonators only at the two large dots indicated in Figure lb, which we call the coupling points ' . 
We describe the coupling of the electric field using the self-coupling coefficient a and the cross- 
coupling coefficient K; thus, for example A3=aA4+iKAi and A2=aAi+iKA4. For simplicity we 
assume the that a and K are real so that to conserve energy we require <J^+ K^= 1. Away from the 

(b) 

z=0 

-™-—|g9*-   f^ yr **«**»4^ 

Ai ' Ai 

z=d 

Figure 1: (a) Schematic of the AND gate, 
(b) One unit cell of the AND gate. 
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coupling points optical propagation is described by the familiar nonlinear SchrSdinger equation^ 
modified to include the effects of SPM and CPM, quantified by the nonlinear index of refraction 
coefficient, na, and the effects of linear loss, two-photon absorption (2PA) and three-photon 
absorption (3PA), quantified by tti, Ui and as respectively'. In the presence of a positive 
(negative) nonlinearity, we expect the frequency associated with resonance to be slightly lower 
(higher) than Gk, since CDr was defined 
assuming linear intensity. 

We first consider CW 
illumination of the structure in the 
absence of nonhnearity or loss. We use 
neflpS.0,2jcR=26pm and d=16^mi, and 
consider structures with 1 and 5 units 
cells, apodized such that the first and 
last cells have a=0.99, and the middle 
cells have o=0,98 (the 1 cell structure 
has 0=0.98). This apodization helps to 
remove oscillations in the CW 
transmission spectrum of the device*. In 
Figure 2 we show CW transmission 
spectra for the 1 cell (straight) and 5 
cell (dash) structures, using vacuum 
wavelengths in the vicinity of 
^=1.529412nm, which correspontk to the 
51* resonance of the microresonators. 
Although the 1 cell structure is, indeed, 
0% transmitting at the resonant frequency, the range over which the transmission is =0% is quite 
small. By contrast, the 5 cell structure has a relatively large region of =0% transmission, and a 
sharp edge at which the transmission switches to =100%. Because of this sharp edge, longer 
structures are more effective AND gates, although loss is a limiting factor. 

We now simulate Gaussian pulses of lOOps fiiU width at half-maximum intensity 
(FWHM), earned at X,=1.529412nm. We assume that the structure is fabricated using 
Alo.i8Gao.82As, a material used in nonlinear waveguiding apphcations for its low loss, for which 
n2 = 0.00011cm /GW, aa = 0.05cm/GW and m = O.OScm'/GW^ are the appropriate nonlinear 
parameters . We use an intensity loss of IdB/cm (ai=0.23cm'i) in our simulations, which is 
consistent with the observed loss in straight-waveguides fabricated using Alo isGao gaAs. Losses 
m resonator stractures have typically been much higher than this, but they are primarily 
scattering losses, and are due to fabrication problems rather than the fundamental limit imposed 
by bending loss . The value of IdB/cm is significantly higher than the fimdamental bending 
loss . 

We simulate propagation in finite structures apodized as discussed above. To characterize 
device operation we introduce 7(Ip), where Ip is the peak intensity of the input pulse: This is the 
ratio between the energy transmitted by the device for a Gaussian pulse of peak intensity Ip in the 
presence of a sister pulse of the same form in the neighbouring channel, to the corresponding 
transmission of the same pulse in the absence of a sister pulse. Put another way, 7(0 gives the 
contrast between the "1" and "0" at the output of the structure for a given Ip. In Figure 3 we plot 

Figure 2: CW transmission spectrum for device with 
1 cell (solid line) and S cells (dashed line). The small 
dot indicates the resonant wavelength. The 
oscillations in the 5 cell spectrum are due to 
imperfect apodization. 
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Y(Ip) for a 5 cell (straight), 10 cell (dot) and 20 cell (dash-dot) structure; the maximum value of 
Y(Ip), Ymax, increases as the number of unit cells increases, but in all cases it occurs at Ip = 
20MW/cm^. The value of Ymax is largest for the 20 cell structure, but at Ymax the 20 cell structure 
has only 12% energy transmission vi^hile for the 5 and 10 cell structure the energy transmission is 
30%. This attenuation of the output is chiefly due to linear loss. Inset in Figure 3 we plot the 
input (solid) and output pulses (dash) associated with Ymax for the 20 cell structure. Although the 
peak intensity of the output pulse is attenuated, its shape is relatively undistorted. The pulse has 
experienced nonlinear compression to 35ps FWHM. The time separation between the input and 

Intensity (MW/cm ) 
40, 
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« 
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1— 

c 
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Figure 3: Constrast ratio, y, for 5 (solid), 10 (dot) and 20 (dash-dot) 
cell structures. Inset are the input (solid) and output (dot) pulses for 
the 20 cell structure with input intensity corresponding to the 
maximum value of y. 

output peaks is 188ps, which, since the structure is only 320nm long, suggests a group velocity 
of 1.7|ini/ps, which is 1.7% the delay expected in the absence of the resonators. This enhanced 
group delay occurs because the light was trapped in the resonators for a long time, so that the 
local intensity in the resonators was enhanced, and the effect of the nonlinearity was increased. 
This partly explains the low switching threshold required for the device . 
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Abstract: We report the modeling of a triply resonant, quasi phase matched, one cliip, integrated 
optical parametric oscillator. Using a novel iterative calculation scheme, we predict threshold 
levels, conversion efficiency, passive and active tuning behavior and bistability 
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1. Introduction 
This work focuses on the modeling of a proposed, triply resonant optical parametric oscillator in a qu^i phase 
matched waveguide device, incorporating several components integrated on a smgle chip. This device can serve as a 
compact, rugged, widely tunable source of coherent IR radiation for a variety of applications ranging from 
communications to spectroscopy. Through the confinement of the optical field, non-linear devices based on 
waveguided designs [l]-[3] offer high field intensities over greater interaction lengths than possible in other 
schemes. Furthermore, non-linear ferroelectric crystals like KTP or LiNbOj enjoy of both high second-order 
conversion coefficients and efficient electro-optic modulation properties, since both these efifect originate basically 
on a common t susceptibility temor. This fact allows the incoiporation of functions like parametric amplffication 
and phase modulation in the same chip device. ; 

Region I Region II 

Fig. 1. Schematic layout of a waveguided rmnolithic and independently tunable Quasi-Piase-Matched TRO (a), and its ftee-space propapting 
counterpart (b). 

By far, most work on OPOs as for nowadays has been concentrated in the Singly Resonant Oscillator fSRO) 
u ®?®;. f ^^ ^^^ ™P^y Resonant schemes (DRO and TRO) though attractive in terms of lowering pump 

thresholds, have been readily found to suffer some serious stability and control problems. As shown in this study the 
mtegrated waveguided and multi-path scheme proposed here can overcome most of these problems, since it allows 
mdependent and fast phase control of the light path of each individual field involved in the mteraction. Another 
physical effect playing crucial role in the overall function and stabilization of the device is the intensity dependent 
phase shift plienomenon typical of second order x<'> interaction. This phenomenon has recently received attention ^ 
responsible for 'self locking effects" [4] in OPOs. In this work we contribute a novel modeling approach aimed to 
achieve what one may call "pathway to stable solution". This approach is somewhat similar to that pioneered by Fox 
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and Li in the context of maser resonators. Similarly to that approach, the fields are tracked during each round-trip 
taking account for the diverse physical interactions taking place at each one of the device's components. In 
contradistinction to the method of Fox and Li, the method introduced here is based on active tuning of the resonator 
between round trips, so that the interacting waves will eventually settle to a stable steady state. The method's 
justification is not only based on its success to furnish the desired stable solutions but also is motivated by the fact 
that the device actually posses the physical mechanisms of phase tuning needed to reach those stable states. Within 
the algorithm we introduce the notion of interaction continuity as an alternative to round-trip self-consistency used 
in static resonators. 

2. Overview of the model. 
Figure 1 denotes schematically the waveguided device under discussion together with its free-space propagating 
counterpart. Analogies should be clear. The dicroic mirrors in the later case are replaced by wavelength dividing 
junctions [5], and both types are assumed to possess low losses. Electro-optic phase modulators in the monolithic 
case have the same role as adjustable mirrors etc. A central distinction however resides in the fact that in the guided 
case, propagation will induce different phase delays between the three interacting waves due to material and 
waveguide dispersion. The model accurately tracks the complex amplitude at different sections in the Integrated 
Optic device. Transition over the QPM amplifier section is accomplished by direct numerical integration of the three 
coupled non-linear differential equations, adapted to the waveguided case. Waveguide modes and propagation 
constants were numerically solved by finite difference method. QPM curves were thus produced taking into account 
both waveguide and material dispersion. Material parameters were chosen to correspond to Rb exchanged 
waveguides in KTP substrate. The mechanism for actively tuning the OPO was chosen as the tuning the pump laser 
in a range of about 5nm around 752nm. 

At first glance the three degrees of freedom (DOFs) in control, seems not to be sufficient to furnish stable CW 
operation over a continuous range of wavelengths. The three interacting waves are required to fulfill energy 
conservation (co(sign)+co(idler)=(o(pump)), three round-trip self-consistent conditions (standing waves) and QPM 
condition in a narrow range for each given pump intensity and wavelength value. In addition, the bi-directional 
amplification implies the demand that phase synchronization needed for efficient amplification should not be spoiled 
in the non-amplifying section (Region II) due to non-equal paths, dispersion etc. A condition of identical phases 
differences for the right and left propagating waves at the interface between Regions I and II (phase continuity) 
surely would ensure that the amplification process vAW continue for the returning wave as if the fields never left the 
QPM region I. Multiple choices exist thus for the utilization of the DOFs and we have evidenced that different 
choices would lead to solutions of different character and eventually to no stable solutions at all. Our choice for 
DOFs utilization, lead mainly by physical intuition was the following: 

1. The phase modulator of the pump was tuned to attain self-consistency (standing wave). 
2. The phase of idler and signal were adjusted for phase difference continuity with the pump at interface B. 

Changing phases at the boundary between Regions II and I for the left propagating field, resulted in varying the 
initial conditions for the QPM amplification. This implied varying the efficiency of energy transfer between the 
fields and thus the phase variation at section I is modified by the non-linear process. The external phase adjustment 
process is thus repeated for each round-trip until steady-state was attained. At steady-state the standing-wave 
condition was automatically fulfilled by both the signal and idler waves in all cases via the intensity dependent phase 
mechanism described above (self phase locking effect). A last remark concerns equalization of wave amplitudes for 
both wave directions at the boundary point B. Strict field continuity would require zero losses al Region II for all 
three waves. Simulations show that steady state is reached even if this condition is not strictly fulfilled. Generally 
however low and balanced losses are very desirable for efficient operation. This condition is imposed on device 
fabrication. 

3. Results 
The device studied provides a vast choice of results with interesting physical implications. They will be presented at 
the Conference site or published elsewhere. Here we show two examples of practical significance. Figure 2 depicts 
the output powers of the three interacting waves as a function of the pump wavelength for two cases. In the first the 
cavity was tuned according to the algorithm described above for each point at the graph. In the second case, the 
process was carried out only once, i.e. only one (central) cavity resonance point was set according to the tuning 
procedure, then the pump wavelength was changed without modifying the phase modulators' voltages. In the first 
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case, the signal and idler spanned 185nm and 245nm respectively at the ISOOnm region. Next we show the effects of 
threshold and slope efficiency for two cases (Figure 3). First the device was tuned with pump power at 500mW and 
then the power was gradually decreased to zero and increased again. The phase delay parameters remained constant 
throughout the simulation. P,h was found at about 300mW. Mostly, the output powere are the same when scanning 
the power up or down. In the second graph the device was tuned using all three DOFs for each power value 

scar^cftsrpurr^ wa^Isi^wftti ^se comcMm 
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Hg. 2 Output power for the different waves; pun^ [p] signal [s] and idler [i]. (a) K-tuning the device at each point, (b) no re-tuning. 
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Fig. 3 Output power for the different waves as a fimcti( 
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*ion of puinj power; (a) without »-tuning the device at each point, (b) with re-tuning. 

The differences in behavior for the two cases are drastic. The retuning process lowers the threshold pump power by 
one order of magnitude (from BOOmW to 30mW). In addition a bistability effect is apparent. 

4.Gonclusioii 
This study asserts the possibility of attaining stable steady-state operation in an Integrated Optic TRO This 
possibility IS strongly dependent on the choice and utilization of the available DOFs. We have also introduced a 
simulation method able to predict many of the complex phenomena observed in TROs. The method should be 
applicable to other types of waveguided optical parametric generators. 
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Abstract: We consider plane waves propagating in quadratic nonlinear slab waveguides with 
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complete gain spectrum for transverse modulational instability, including hitherto undescribed 
higher order gain bands. 
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With the maturing of the quasi-phase-matching (QPM) technique, in particular by electric-field poling of 
ferro-electric materials, such as LiNbOs [1], and by poling of polymers [2] and quantum-well disordering 
in semiconductors [3], the number of applications of quadratic nonlinear (or x^^') materials has increased 
significantly. Thus even complicated QPM grating structures are now commercially available in periodically 
poled LiNbOa (PPLN). It is therefore more important than ever to have complete knowledge of the efTects a 
QPM grating has on the properties of x^^^ materials. The most fundamental effect of a QPM grating, with a 
certain spectrum of spatial wave-vectors, is of course to allow noncritical phase-matching at all wavelength 
for which the wave-vector mismatch A/r between the interacting waves matches a component of the grating 
spectrum. Thus QPM gratings allow for efficient multiple wavelength second harmonic generation (SHG) [4], 
which may, e.g., be used for multiple-channel wavelength conversion [5]. 

In addition to providing effective phase-matching, QPM gratings have the basic effect that they induce an 
artificial asymmetric cubic nonlinearity (ACN) in the equations for the average field in the form of self- and 
cross-phase modulation terms [6]. This cubic nonlinearity appears in linear and/or nonlinear periodic QPM 
gratings of arbitrary shape [7], it can be focusing or defocusing, depending on the sign of the phase-mismatch 
[7], and its strength can be significantly increased (e.g., dominating the Kerr nonlinearity) by modulating 
the grating [8]. In continuous-wave operation the ACN induces an intensity-dependent phase mismatch, just 
as the inherent Kerr nonlinearity, with potential use in switching applications [9]. The ACN further explains 
a wide spectrum of novel fundamental properties of solitons [6, 7, 10] and modulational instability (MI) [11]. 
Importantly the ACN is a general effect of non-phase-matched wave interaction and as such appear also in 
homogeneous x^^' materials in the cascading limit. In fact, in this case the asymmetric signature of the ACN 
may be measured as the difference between the properties in upconversion and downconversion, since there 
is no effective x^^' nonlinearity with which the ACN must compete, as in QPM gratings. Such an experiment 
was just reported [12] and thus the ACN has now been confirmed both numerically and experimentally. 

The MI gain spectrum in general QPM gratings has a multipeaked structure of up to three fundamental 
bands with accompan5ang overtones [11]. The fundamental (long-wave instability) bands at low transverse 
wavenumbers is due to MI of the averaged field. For QPM with a simultaneous linear and nonlinear grating 
and/or with a nonlinear grating with a dc-value (as with QPM in multilayered poled polymers [2] and 
quantum-well disordered semiconductors [3]), the ACN is necessary to describe how these fundamental 
bands may disappear, making plane wave modulationally stable over hundreds of diffraction lengths [11]. 
The gain bands in the first overtone were surmised to be related to the inherent instability in homogeneous 
(non-phase-matched) x^^^ media [11]. However, an accurate description of the first overtone bands has not 
been found and the higher overtone bands have not been discussed at all. 

Here we study MI in 1-l-lD x^^' media with a purely nonlinear QPM grating with no dc-component, such 
as in PPLN slab waveguides. With this simple QPM grating the ACN is not necessary to take into account 
for an accurate description of MI [11]. We present the first analytical and numerical description of the 
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complete MI spectrum with all overtones. We show explicitly that the owtone series are caused by MI in the 
rapidly varying components of the propagating fields, which are in turn induced by the grating We derive 
approximate analytic expressions for the positions of the gain bands and compare them with exact Floquet 
results and direct numerical simulation, to find good apeement. : 

We consider a linearly polarized electric field propagating in a lossless x^^^ slab waveguide with a QPM 
gratmg under conditions for (the most efficient) first-order QPM and type I SHG. The normalized dynamical 
equations for the slowly varying envelopes of the fundamental Et(x, z) and SH Ei{x, z) take the form 

.dEi     1 d'^E dE2     1 d'^Eo 
+ l-Q^ ^^ElE^^^ = 0,    if^ + i^ + xmh-^^^ = 0, (1) 

where the x and z scales have been normahsed by Xo and ^o=fciA'|, respectively. The normalized wave- 
vecto^ mismatch is given by I3={k2 - 2h)Zo. The nonlinearity is periodic in z with Fourier expansion 
$u ^ r^S '^ exp(wK^), where 4=rfl„, (x is real) and the pating wave number K is defined to be positive 
1 he periodic QPM pating will force the same periodicity in the propagating fields. We therefore expand these 
m Fourier series also: E^(x, ^)=E„ w^x, z) exp {innz), Eo^ z)=En M^, ^) exp (innz - 0z), allowing the 
amplitudes w„ and t;„ to vary slowly compared to exp (mz). The residual mismatch is defined as B=B - SK 

where s=signO) for first-order QPM. Substituting all Fourier series into Eqs. (1) gives 

(ii - nK)w„ 4- ^4+m-l-sWj;,V| = 0, (L2 - nK)v„. + J^ dn-m-l+sWmm = 0, m 

where Lj - td^ + dj{2j) + (j - 1)0. This set of equations has plane-wave solutions of the form w;„ = 
Wnexp(tAz) vn = v„expi2iAz) [11]. To study MI we consider small perturbations of the plane-wave solu- 
tions: w„ = K + ^Wn(x, z)] exp (iAz), v„ = [v„ + At;„(a;, z)] exp i2iAz). Substitution into Eq. (2) gives 

(i'l - nK)Awn+ J2dn+m-i-s(viL^i + viAw%) = 0,    (ii - „K)AV,, -F 2 Y"4._„-i+atD„A«;j = 0,   (3) 
l,m 

where L'j = L.-jA. Writing the perturbations in the form Aw„(ar, z) = siP(z) exp (ira)+4'^*(^) exp {-iux), 

and At;„(a;, z) = sf'(z) exp iwx)+6it^*iz) exp (-ivx), one obtains finally a complicated linear matrix equa- 

tion for the transverse perturbations 4 = (Si^\ tf ^ 4'^ si^Y, which couples all Fourier components. 

To derive a simple result we consider nearly phase matched interaction with |K| ~ m > i in the for 
PPLN tpical square QPM pating, for which d„=0 for n even and 4=2/(t7rn) for n odd. The assumption 
|«| ~ |/3| » 1 IS essential, smce then |«;o|, \vo\ > |iD„^o|, |«„#o|. In this case the evolution of the perturbation 
m each component is to a good approximation decoupled from the other components and described by 

On 

0 

-ar. 
0 

c       0 
0     -c* 

e„      0 
-2c    0 ^n 

6n = MnS„, 

where a„ - -1, /2-A-n«, 6„ = din-sVo, c = d-.wj, and e„ = -vy4+p-2A-nK. Inspecting the diagonal 
terms of the MI matrix leads to the conclusion that gain bands in adjacent overtones (or n's) approximately 
differ m spatial frequency by ^K ~ y^. The four eigenvalues of M„ are given by 

A2 = A„. ± y/Al - B„,      An^i^nl ■4|cP-a? •e2)/2,    B^ = ia„e„,-2\cff-el\b,,\ (5) 

where |c|2=A(2A -1) and |6„|2=AV(2n - af. Any positive real part of an eigenvalue corresponds to MI 
with the gam ff„.(i/)=M(A„). Analysing the gain versus o„ and e„ reveals two gain bands around (1) o„=-e„ 
and (2) o„-0 For |6„|=0 the extrema of these branches lie at (1) o„ + e„=0 (the diagonal branch) and (2) 
a„e„ - 2|c| (the hyperbofic branch). For \bn\^0 the extrema remain close to these Unes. On the diagonal 
branch corresponding to i/^ = _8/3„« - 4A + 4/?/3, the gain is largest near a„=0, which corresponds 
to the fundamental n=0 Fourier component, or average field. The gain bands in the higher order Fourier 
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Fig. 1. Left (a-d). MI gain for A = 1 (dashed) and A = -1 (solid) calculated exactly by use of Floquet theory. 
The crosses and diamonds give the results of the approximate theory, Eq. (5) for (b) the n = 0 bands, (c) 
the largest of the |n| = 1 bands and (d) the largest of the \n\ = 2 bands. We have chosen K = /? = 672.31. 
Fig. 2. Right (a-d). Gain calculated by numerical simulation [(a) and dotted line in (b-d)] and by use of 
Floquet theory [solid line in (b-d)]. We have chosen K = /3 = 672.31 and A = -1. 

components (higher n or overtones) will thus be small. On the hyperbolic branch u"^ = -3nK. - 5A -j- 2/?± 
[{uK + ZA- 2pf + 16|cp]'^2. For n^Q the gain bands appear at v^ ~ -2A - 2Kn (corresponding to a„=0) 
and 1/2 ~ -8A -4Kn-|-4/? (corresponding to e„=0). Thus we have the structure of up to 3 gain bands in the 
average field (n=0), each with a set of equally spaced weak overtone gain bands (n =^ 0). 

The results can be compared with exact Floquet calculations [11]. For example consider K=672.31, A = ±1 
and ;8=0, corresponding to a particular PPLN crystal at exact phase-matching. Our analytic results give 
n = 0 bands at //=1.18 (A=l), and v=2 and 3.38 (A=-l), which agree with Fig. 1(b). In the first overtone, 
bands appear at i/ ~ V-2nK - 2A, which for n = -1 gives j/=36.64 (A=l) and j/=36.70 (A=-l), both 
agreeing with Fig. 1(c). Similar results appear for |n|=2 [Fig. 1(d)] and higher. In Fig. 1 we also show the 
gain profiles predicted by Eq. (5), which shows a very good match with the exact Floquet results. Direct 
numerical simulation [11] of Eqs. (1) with MI seeded by noise confirmed again our results (see Fig. 2). This 
research is supported by the Danish Technical Research Council (Grant No. 26-00-0355). 
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Compression of femtosecond pukes to a few optical-cycles duration by coupHng with an elec- 
tron plasma in solids is shoTO. Nonlinear dissipation induced by multiphoton-absorption, and fast 
temporal modulations induced shock-terms can, however, maintain self-guided propagation. 

PACS numbers: 320.7110, 320.5520 

Propagation of ultra-short laser pulses in gases as well 
as in solids has recently become a very active research 
field. L^er beams with a duration of about 100 fs and 
a maximum intensity less than 10" W/cm^ have indeed 
the amazing property of covering several Rayleigh lengths 
in transparent media, opening potential LIDAR applica- 
tions for, e.g., atmospheric propagation [1-4]. In glass, 
experimental observation of light channels was recently 
reported for an input laser of 160 fs duration and maxi- 
nium peak intensity of 10^^ W/cm^, for which the pulse 
is shortened to a two peak temporal profile [5]. Prom the 
nonlinear Kerr response of the medium, a light pulse with 
input power above the critical threshold for self-focusing 
(SF), first focuses at a finite distance. Beam collapse 
predicted in an idealized Kerr medium is then arrested 
by the formation of a defocusing electron plasma excited 
by the laser through multiphoton-ionization (MPI). At 
high enough powers, a dynamic balance between Kerr 
SF and MPI maintains the light channel through several 
focusing/defocusing cycles. In contrast, at powers close 
to critical, the dynamic interplay between SF and MPI 
can be stabilized along the propagation axis. In this sit- 
uation, plasma defocusing depletes the temporal profile 
of the light channel to a time slice having exactly the 
critical power for SF [6]. It has been numerically shown, 
that, in silica glass, a robust filament can indeed be cap- 
tured within one sharp leading peak [7]. However this 
structure was discovered in the scope of weak, even zero 
dissipative processes. 

Here, we wish to go one step beyond. First, we show 
that the formation of narrow solitary pulses is possible in 
solids. Second, we discuss the infiuence of multiphoton- 
absorption (MPA) on the propagation of such pulses. We 
display evidence that MPA may help in maintaining the 
self-guiding of temporally-compressed pulses. Since their 
leading peak results from a stringent pulse shortening 
to a few fs duration, we finally investigate the action 
of self-steepening terms used in previous models [6-8]. 
Theoretical arguments based on a self-similar modeling 
enables us to get a deeper insight in the dynamics of these 
fs pulses. 

We consider a linearly-polarized beam propagating 
in fused silica with central frequency WQ, wavenumber 

k — noh (ko = UQ/C), and laser wavelength AQ =790 nm. 
At the entrance face of the glass sample, the input beam 
profile is ^2Pi„/wul exp (-P/w^) exp (-t^/tf) with in- 
put power Pin = 1.5Pcr, beam waist wp = Ufxm, and 
temporal FWHM diameter r = %/21n2 tp =160fs. The 
critical power for self-focusing is P^r = Xl/2wnon2 ~ 2.2 
MW with ns = 3.2 x 10" cmVW (m = 1.4) correspond- 
ing to the nonlinear (Hnear) refraction index of fused sil- 
ica. Following standard models [2, 3, 7], the complex 
envelope e(r, t, z) of the electric field and the electron 
density p of the excited plasma evolve as: 

id,£ + ± T-' Vis - ^dU+km2 T (\ef£) 

5:^^-'"^> + S 
■|2if-2c _ '£ = 0 

dtp   =   (TK Pat  l£f^ (1-pJpat),   p < Pat 

(1) 

(2) 

where z is the propagation direction and t the retarded 
time (i - z/vg) with group velocity Vg. The trans- 
verse Laplacian (V|) term accounts for diffraction of 
axis-symmetric beams and k" = [d^u/dk^~'^\t^g = 340 
fs^/cm is the group velocity dispersion (GVD) coef- 
ficient. The following terms of Eq, (1) are the Kerr 
response of the material, the defocusing from the plasma 
density p excited by MPI, and multiphoton-absorption 
(MPA) with ^(^) = Kliuo<TKpat- The critical plasma 
density is denoted by pc and the background atom 
density by pat = 2.1 x 10^2 atoms/cm-^ = 11.75/>c. 
Band-to-band transitions are induced in silica from the 
gap potential Ut = 7.8 eV [7], yielding the number 
of photons K = 5 required for ionization. The MPI 
coefficient in Eq. (2) reads as VK = 1.3 x 10~^^ s"* 
cm^^'/W^. In addition we included deviations from 
the slowly-varying envelope approximation (SVEA) 
through the operator T = 1 + (i/uo)dt as proposed 
in [9, 10]. These temporally-dispersive effects refer to 
self-steepening for the operator T in front of the cubic 
nonlinearity and to space-time focusing for T'^ in front 
of the tran.sverse Laplacian. > 

Eq. (1) is solved by means of a split-step Fourier 
in time and Cranck-Nicholson in space scheme, and 
Eq.  (2) by a variable-step Runge-Kutta scheme [3]. To 
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with no MFA, and within the slowly varying envelope 
approximation {i.e. T = 1). We observe that the beam 
first self-focuses, then triggers an electron plasma. As 
expected for powers close to critical, SF is almost exactly 
balanced by MPI, so that the beam slowly relaxes to 
a waveform with intensity clamped around threshold 
/max ~ /3"'^V2/'c"2, where p""^"" ~ At CTK patlLy: IS Axed 
by the pulse time scale At. Inspection of the numerics 
confirms that the peak electron density forms a plateau 
which remains coupled with the beam along z. This 
equilibrium remains "stable" over two Rayleigh lengths, 
2o = TTWoHo/Ao = 1-25 mm. An attractor is promoted by 
a quasi-static balance between MPI, diffraction, and the 
Kerr response of the material, keeping the spatial size 
of the beam unchanged. The corresponding temporal 
profiles are depicted in Fig. 1(b). The coupling between 
light and electrons strongly shortens the pulse duration 
and only one leading peak survives at the time slice 

1/2 
located near < ~ — In ^Pi„/Pc, ir,, which contains 

the critical power for the self-focusing of Gaussian beams. 

In Figs, l(c-d), addition of MPA leads to dissipate the 
leading peak formed by MPI. However, it is clearly seen 
that MPA does not necessarily reduce the propagation 
range. Instead, dissipation of the first leading peak 
does not prevent the emergence of a trailing peak with 
comparable intensity, which maintains the propagation. 
Because MPI-induced temporal compression produces 
pulse durations which become of the order of a few 
optical cycles, it is natural to investigate the action of 
the operator T. Assuming a SF regime along which the 
cubic nonlinearity in Eq. (1) dominates over diffraction, 
we present here numerical simulations describing self- 
steepening only. In Figs, l(e-f), the pulse undergoing 
self-steepening and no MPA is shifted in time. This 
results into an optical shock that allows the pulse 
to self-focus again, which, on the whole, maintains 
the propagation range to some extent. Inclusion of 
space-time focusing, i.e., T~^ in front of the diffraction 
term of Eq. (1), also contributes to the establishment of 
an optical shock regime (not shown here). 

These dynamical aspects are now discussed through 
analytical arguments. For notational convenience, we use 
the rescalings r ->■ UIQV, t -> tpt, z ->■ 4zoz, and S ->■ 
y/Pcr/iTTultp. Eqs. (1) and (2) then take, at leading 
order, the dimensionless form 

+   -^^t[\^P\''^P-Vl^|J]=0 

IK-2 i, 

tpU)o 
(3) 

after a straightforward expansion of the T operator for 
an envelope frequency assumed smaller than WQ.   Here 

200   -100      0      100    200 
Kfs) 

FIG. 1: Numerical simulations of 160 fs pulses with moderate 
input powers P,„ = l.SPcr in silica glass, (a) maximum-in- 
time intensity / (solid curve) and electron density p (dashed 
curve) for Eqs. (1) and (2) with no absorption and T = 1. (b) 
Temporal profiles displaying evidence of pulse temporal short- 
ening at z = 1.4mm ~ zo (dashed line) and z = 2.4mm ~ 2zo 
(solid line), (c) Peak intensity and electron density of the 
same pulse undergoing MPA. (d) Related temporal profiles 
at z = 1.4mm (dashed line) and z = 3.2mm (solid line), 
(e) Same plots with MPA = 0 and self-steepening, (f) Re- 
lated temporal profiles at s = 1.45mm (dashed line) and 
2 = 2.91mm (solid line). 

the electron density p obeys dtp = T |V'P^' with T - 1.71 
X 10"^. The MPA normalized coefficient is i/ = 3.24 x 
10-^. The rescaled GVD coefficient 6 = 2zok"/t~ = 4.6 
X 10~^ is so small, that action of GVD is not meaningful 
for the present parameters. We therefore omit it. 

(i) MPI saturation: Let us first discuss the case with no 
dissipation and T = 1. In the SF stage, the beam enve- 
lope tends to collapse at a finite distance Zc, with a self- 
similar distribution V -^ \A(MT HO e''^//J(^,<) and 
phase S = /o du/R-{u,t) + R,R k'/4- Here <l> is chosen 
as the real stationary wave solution of Eq. (3) with power 
equal to 11.7, (, = r/R{z,t), and R(z,t) = R[zc(t) - z] 
denotes the wave radius that self-contracts as z -¥ Zc. 
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section ot the pulse ("time slice") and thus moves m time 

as Zc(t) ~ Zo 

and 0 ~ 0.63 
aPin/Pcr e-^* - ij with a = 4jr/H.7 

11, 12]. The central time slice is located 
at < = 0 and focuses at the minimum distance ^^(0) with 
i(0) = 0 and z{0) > 0. Importantly, i{t) reaches infin- 

lni/aP,„/P„      .  Be- ity as < -^ ±**, where t* = 

cause the time slices self-focus inside the narrow range 
m < |<*| < 1 only, we emphasize that, except in the 
vicinity of caustics located near ±t*, the temporal vari- 
ations in the beam radius are relatively flat in the inner 
domain <2 C 1 compared with c-^A't^ The electron den- 
sity thus behaves as 

p(r,i, z) ~ 
K Erf 

m^-[z4t)-z] ■ (4) 

At positive times, the slices neighboring < = 0 are 
defocused by the density front becoming maximum in 
this range. In contrast, at negative times, the leading 
edge of the central slice continues to self-focus. The 
self-similarity assumption holds, which we can repeat 
at each time slice unaffected by the electron density. 
Plasma defocusing then develops step by step until 
* ~t* where 4 reaches infinity. Near this instant,a local 
equilibrium results from the balance between SF and 
MPI. 

(ii) MPA dissipation: Multiphoton-absorption intro- 
duces pulse dissipation as d^P = -2i/flipf^dr. It 
acts at the instant when the pulse reaches its maximum 
intensity. At this time slice, dissipation decreases the 
beam power Pj„ to below critical over the physical 
propagation interval Az ~ In [P<„/Pcr]/^^ Jf-/ ~ 0.44 
mm. However, the power lost by the leading peak is 
here transferred from the front to the rear of the pulse. 
So, whereas MPA could be believed to shorten the 
propagation length of the self-trapped beam, it actually 
enhances it by exciting a trailing peak, which keeps the 
intensity clamped to its maximum |£||^^, before being 
dissipated in turn. 

(iii) Deviations from the SVEA: Contributions affected 
by the operators T and T'^ in Eq. (3) lead to power 
variations of the form 

ftP: 
^pwo J \2 '^' 

+ iVx^p   df, 

erences therein). Uonsidering tor instance a bell-sliaped 
pulse centered on < = 0, we easily infer that power will 
be transferred into the time region where dtlipf is nega- 
tive and thus create a leading spike emerging in the time 
domain t > 0. In the present scope, the narrow structure 
created as a leading peak located a.t t = t* is shifted 
to positive times, under the shape of a shock profile. 
The shape of this shock can be evaluated analytically. 
Self-steepening and space-time focusing thus distort the 
temporal profile of the pulse by creating a strong en- 
hancement of the trailing peak, which was earlier experi- 
mentally reported in [13] without MPI and clears up our 
numerical results. It is important to observe that these 
terms do not kill plasma generation. Instead, they move 
the pulse along time and enhance its intensity through a 
shock dynamics, which locally preserves MPI active. 

In summary, we have shown that ultra-short solitary 
pulses resulting from a quasi-static balance between MPI 
and SF can form in silica samples at input powers moder- 
ately above critical. While MPA and temporal deviations 
from the SVEA could be thought to dissipate the pulse 
energy and shorten the propagation range, they actu- 
ally enhance it by exciting other temporal slices through 
shock structures emerging along propagation. 
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1. Introduction 
Diffraction gratings are commonly used in 
integrated optics systems as frequency filters, 
Bragg reflectors, couplers, elements of 
multiplexing and demultiplexing devices and 
distributed feedback lasers. Traditional 
waveguide gratings have constant parameters 
and are sensitive for any production 
imperfections. Optically induced gratings are 
adjustable and therefore independent on 
fabrication errors and on the influence of 
extemal conditions. The grating created by two 
mutually coherent extemal waves interfering in 
a nonlinear material can be used for the same 
purposes as stable grating but obtained elements 
can be tuned in real-time by varying extemal 
waves parameters [1]. The grating created in 
photorefractive material does not require 
permanent illumination. It can be created by a 
short pulse of the extemal waves and last until 
the arrival of the next pulse which can renew or 
erase it [2]. 

The grating analysed here is induced in a 
single-mode planar waveguide made fi-om 
semi-insulating multiple quantum well (MQW) 
stmcture operated with an extemal electric field 
applied along the quantum well planes (Fig.l). 
TTie grating is created by two beams forming an 
interference pattern in the MQW stmcture. The 
light intensity is 

/ = Id(x,z,t) exp(-ax) [1 + m cos(Kz)],      (1) 

where IQ denotes the intensity' of the extemal 
beams at the boundary of the slab, a describes 
the absorption coefficient, m is the modulation 
depth and K is the grating constant. A high 
frequency light cause an interband excitation 
of electrons and holes. Free carriers move due 
to the drift and difftision and recombine to the 

donor traps. The resulting space-charge electric 
field causes the change of the refractive index 
due to the electro-optic effect. The refractive 
index grating can be used for frequency 
selective reflection, deflection or out-coupling 
of modes guided in the stmcture. Signals 
guided in the stmcture have frequencies below 
the absorption threshold and their influence on 
the grating can be neglected. 

cover -   Alo.24 Gai 76 As 0.5 \im 

film    -   MQW 1.05 ^im 

buffer - Al. 0.24 Ga 0.76 As 2 |im 

substrate   - GaAs 

Figure. 1 Cross-section of the waveguide. 

2. Dynamics of the grating 
The dynamics of the carriers can be described 
by equations based on a classical Kukhtarev- 
Vinetskii model [3], where transverse carrier 
mobility is neglected due to the high difference 
between longitudinal and transverse carrier 
mobilities characteristic for MQW stmcture. If 
thermal excitation of the carriers is not 
included, the equations for MQW planes 
perpendicular to the x axis and the electric field 
applied along the z axis take the form: 
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az 

j,,=eiL,n,E-n^k^T^ (2) 
02 

where He denotes the free electron and % - the 
free hole concentration. No - donor, ^+- 

ionized donor, Nj - acceptor concentrations, j^ 
- the electronic and /,, - the hole current 
densities, E - tihe total electric field (E = Eg + 
Esc, where E^c is a space-charge field and Eg is 
an external field), / - the light intensity, 
YeandYh - electron and hole recombination 
constants, fi^ - electron and fih - hole mobilities 
along the quantum wells, ^ - the vacuum 
permittivity, e - the effective dielectric 
constant of MQW structure, e - the elementary 
chaige value, fe -the Boltzmann constant and 
r - the absolute temperature. 

Time evolution of the space charge 
electric field in MQW structure is described in 
pur former paper [2]. The final value of the 
field is independent on light intensity and 
growing time of the grating is inversely 
proportional to the intensity. For example 
continuos external waves with intensity of 0.1 
W/cm^ need about 0.2 jis to create 90% of the 
final space charge field. ITie gr^ng Hfe-time 
after switching off the external illumination 
depends mainly on the material dark 
conductivit>' and in the absence of free carriers 
can be very long. 

3. Steady state grating 
Under the steady state conditions electric field 
can be  presented  as  a sum  of harmonic 
elements 

Efz)=Eo + mE, expfiKz )+m% exp(2iKz )+ ... 

where  Ei = (A-iB)/(C + iD) 

A=ED (Em - EMJ,     B = EO(EM, + EMJ, 

C =Eo /Eq (Euh - Eue), 

D = [ED' + Ei+ED(E^„, + EMe) \ 

+ EgfEuh + EMe+ED)J/Eg, 

EMe = rN/(4HcK),  EM,= rN/(4HhK), 

E, = eN7(2Ke), ED = (kBT/e)K,   %=% = j. 

The amplitude of the first order element have 
real and imaginary part describing an arbitrary 
ph^e shift between the space charge field and 
the intensity pattern. The dependence of the real 
part of space charge field amplitude on the 
grating space period, A = 2n/K, for different 
trap concentrations is presented in Fig.2. Higher 
order terms as well as phase shifted part of the 
field can be neglected [2]. The refractive index 
changes are given by M(E) = (-1/2) nis E?, 
where 5 is a quadratic electrooptic coefficient 
[4] and £ the total electric field. 

100 

Grating period [(tm] 
Figure 2 Amplitude of the first order space-charge 
field in the steady state in dependence on the grating 
period A for applied electric field intensity E„ = 10 
kV/cm and trap densities: MD= lO'" cm'^, 10'~ 
and 10"cnr. 

17        -S cm 

Gratings with different space periods can be 
used for different purposes like frequency 
selective reflection, deflection or out-coupling 
of modes guided in the structure 

4. Example 
A waveguide with photorefiactive layer 
consisting of 7.5 nm GaAs wells and 10 nm 
AlosGao.iAs  barriers  was  considered as  an 



NLMD13-3 

example. Wavelengths of external waves 
writing the grating (?iex=630nm) and guided 
modes reading it (^g=845nm) were chosen on 
the basis of the spectral dependence of the 
absorption and electro-refraction [2] presented 
in Fig.3. 

Q&l Q82 Q83 Q84 
X [urn] 

0,85 0,86 

Figure 3. Spectral dependence of absorption 
and electro-refraction. 

Absorption curves consist from Gaussian 
peaks for light hole and heavy hole absorption 
and continuum contribution from absorption to 
free electron-hole pairs (parameters taken from 
[6]). The refractive index change due to the 
electric field, AnE(A,), was calculated using 
Kramers-Kronig relations. The obtained value of 
the quadratic electrooptic coefficient, s, for A^ = 
845 nm is in the range of 7x10''^ cm^fV'. 

The grating constant, necessary to obtain 
reflection preserving polarisation type of the 
mode (TE or TM) is given by 

K = 2p cos(j), 

where j3 is a propagation constant and (p is the 
incidence angle of the guided mode at the 
periodic structure. The dependence of the 
refractive index grating amplitude on the 
external electric field Eo for the grating space 
period necessary for backward reflection (A = 
123 nm) and for reflection at 60 deg angle {A = 
245 nm) is presented in Fig.4 

5. Conclusions 
The results of calculations show, that a 
photorefractive grating in semi-insulating 
MQW single mode waveguide can be used as 
an optically controlled mode coupler with 
memory. The wavelength of coupled signals 

depends on the grating constant and can be 
varied during the work of the device. The 
grating does not require a permanent presence 
of the extemal waves. Pump pulses are 
necessary only for writing, refreshing or 
erasing of the grating. Because signal waves 
with low frequency do not destroy the grating 
the system may have an application as all- 
optical switching element with memory-. 

"a 
E 

c 

Pi 
10 20 30 40 

Extemal electric field [kV/cm] 

0 10 20 30 40 
Extemal electric field [kV/cm] 

Figure 4. Refractive index changes amplitude in the 
stead}' state in dependence on the applied electric 
field intensity Eo for different values of No-' 0,5 JO 
cm''; I-IO'^ cm'\ 210'^ cm''. Grating constants are 
A=123 nm (a) and A=246 nm (b). 
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Stimulated by the development of optical frequency 
comb generators b^ed on Kerr-lens modelocked fem- 
tosecond lasers [1,2], the absolute frequencies of several 
narrow transition Imes in cold atoms or single stored ions, 
such as H, Ca, Yb+ were recentty measured by phase- 
coherently linking optical signals to a cesium-clock con- 
trolled hydrogen maser [3-6]. This phase-coherent link 
is estabhshed via a frequency-comb generated by a fem- 
tosecond laser. In the frequency domain the femtosec- 
ond laser's pulse train corresponds to a comb spectrum. 
This comb is spectrally broadened to extend over the 
whole visible wavelength region and into the near in- 
frared. In our experiment this wm achieved in a micro- 
structure/photonic crystal fiber from Lucent Technolo- 
gies. This fiber has core diameter of 1.7 /im and its GVD 
ist zero at 780 nm [7], which is the center wavelength of 
the spectrum emitted by our Ti:Sa-laser similar to that 
described in ref. [8]. Its spectrum of some 170 nm width 
around 780 nm is broadened to extend from 500 nm 
to about 1100 nm, by passing approximately 30 mW 
through a 10 cm piece of the micro-structure fiber. Dur- 
ing the propagation in the fiber, the comb nature of the 
spectrum is not altered, only its spectral width is ex- 
tended. The result is an evenly spaced comb spectrum 
over almost the whole visible wavelength range and into 
the near infrared, where the individual comb mode TOJ 

has the frequency Vi = m,- x f^ep -I- Vceo- The last term, 
the so called carrier envelope ofiset frequency is due to 
different group and phase velocity delay in the laser cav- 
ity. It results in a collective shift of all comb modes with 
respect to the frequency origin. Any external optical fre- 
quency i/f is measured by detecting a beat note Ai with 
a suitable comb mode with the order number mj-: 

''i(t) = Vceoit)-l-miXfrepit)+Ai(t). (1) 

Absolute frequency measurements therefore necessi- 
tate determination of three radio frequencies and the 
knowledge of the order number rm of the comb mode 
the signal to be measured beats mth. However, a fre- 
quency comb can also be used to phase-coherently link 
two optical frequencies, i.e. measure optical frequency 
ratios rather than absolute frequencies. A schematic of 
the setup is shown in fig. 1. Three frequencies are mea- 
sured: Ai, As, and i/^eo, thus 
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FIG. 1. Linking two optical frequencies with a femtosecond 
frequencj' comb: real-time signal processing scheme; 

Two mixers remove the detected carrier envelope off- 
set frequency in real time. Therefore the frequency-ratio 
between the signals from these mixers, reflects the ratio 
of the order numbers of the comb modes the two stan- 
dards were beaten against, plus a residual arising from 
difi'erent A/s. 

In our experiment a special choice of frequencies was 
used to test the limits of the comb generator: Two fre- 
quencies differing exactly by a factor of two where chosen, 
so all deviations from this known factor recorded during 
the me^urement can be attributed to the me^iirement 
device. Such a set of frequencies is the ftmdamental of 
Nd:YAG (1064 nm) and its second harmonic (532 nm), 
which is generated from the same laser by frequency dou- 
bling in a nonlinear crystal. Both frequencies lie within 
the span of the comb, after it was broadened in the pho- 
tonic crystal fiber. 

An analysis of the difference signal vc = VA-^B gener- 
ated in a last mixer before the recorder gives the following 
result: 

^^ = 2.000000000000000001 X (1 ±7 X IQ-^^) 

The Allan standard deviation, showing how the instabil- 
ity of the measurement decreases with averaging time, 
is shown in fig.2. (Additionally it includes the data of 
a measurement of the ratio of the subharmonic of the 
output of a single-ytterbium-ion frequency standard [9]. 
Here the observed instabilities are much greater, because 
unlike in the experiment described above, the frequency 
noise of both independent standards enter the measure- 
ment.) 

vi{t) = Vceo(*) + mi X /„p(t) -(- Ai(t) (2) 

V%{t) = Vceo(t) + ma X frep(t) + A2(t) (3) 
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FIG. 2. Measured Allan standard deviation of two fre- 
quency-ratio measurements using the Yb"*" and Nd:YAG refer- 
ence frequencies (squares) and the second harmonic and fun- 
damental of a Nd:YAG laser (circles). The frequency insta- 
bility of a typical microwave reference (hydrogen maser) is 
included for comparison (dashed line). 

The observed deviation from the exact value of 2 can 
be considered as an upper limit of the uncertainty of 
the measurement principle, since technical noise contri- 
butions, for example fluctuating path length differences 
of the optical signals, could possibly be suppressed. 
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FIG. 3. Phase deviation A$ of the recorded signal as func- 
tion of time 

A typical phase record derived from the signal uc is 
shown in fig.3. It shows phase deviations between UA 

and i/B as an angle in a polar plot, while the third axis 
is used to show its evolution in time. The phase slope 
of roughly 1 rad per second corresponds to a frequency 
shift as low as 170 mHz at 563 212 670 MHz. 

In conclusion, we have demonstrated, that a spectrally 
broadened comb behind a micro-structure fiber can be 
used to measure frequency ratios with an accuracy of 
10~18 within 100 sec. This may be of interest in future 
experiments searching for drifts of the finestructure con- 
stant Q, where two different frequency standards with 
different scaling in a will have to be compared. 
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Abstract: Nonlinear interactions in coupled resonator slow-wave structures are investigated Ken- 
based phase modulation and wavelength conversion by four-vrave-mixing result strongly 
enhanced thanks to both the increase of the intra-cavity mean power and the interaction tune 
between propagating fields. 
©2002 Optical Society of America 

?*^'^ f™J!f f °^ Waveprides, (230.5750) Resonators, (050.2230) Fabiy Perot, (130.3120) Integrated optics 
Devices, (070.4340) Nonlmear optical signal processing. /       e- F" 

Generally the efficiency of nonlinear processes in typical nonlmear materials is extremely low. In order to obtain 
appreciable performances m passive nonlinear optical components, long devices (hundreds of metres for silica fiber 
or several centimetres for semiconductors) or high pump powers (several watts) are often needed. It is also known 
that nonlmear interactions, such m Kerr-induced phase shift [1] and frequency mixing [2], are greatly enhanced 
mside an optical cavity. However, the price to be paid is bandwidth reduction wheneve? a single resonator is used- 
therefore such resonating devices may not efficiently operate on optical communication signals, typicallv 
modulated up to several Gbit/s rates. On the contrary multiresonator structures, ah^ady known as filtertag and 
dispersion compensating devices [3,4], do not suffer from this band-gain trade-off and recently some applications 
have been proposed, such as tunable delay lines [5] and slow-wave electro-optic phase modulators [6] 

In this work we mvestigate the main nonlinear properties of Slow-Wave Structures (SWS) based on passive 
coupled optical resonator. We show as the efficiency of nonlinear phenomena may be substantially increased bv 
slow-wave propagation, leading to wide-band, low power devices for all-optical processing, such BS switching 
routmg and wavelength conversion. - ' 

Optical slow-wave structures may be realized in different ways (Fig. 1), for example by cascading partially 
reflecting mirrors mside an optical waveguide, by directly cascading a sequence of microring resonators or by 
mtroducmg proper defects in a photonic bandgap waveguide. All these structures possess a periodic passband- 
stopband spectral response and support waves with group velocity much lower than phase velocity Input-output 
impedance matchmg sectiom, consisting of resonators at suitably lower finesse, are required to avoid detrimeiital 
ripples withm the passband [3]. 
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Fig. 1. Some examples of direct-coupled qjtical resonator SWS: direct coupled Fabry-Peret SWS (a), direct counled 
mcronng SWS (b) and photonic band gap SWS (c). v /, F 
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If a sufficiently large number of equal resonators are cascaded, an optical pulse propagates through the SWS as 
in a periodic system. From the Floquet-Bloch theory we derived the width of each frequency bandpass of the 
periodic structure 

(1) „    2FSR . . 
B- sm 

n 
W' 

where the Free Spectral Range, FSR= c/2nod, is the distance between two consecutive resonant modes, «o is the 
group waveguide linear effective index, 2cl is the round trip of each resonator and / is the wavelength independent 
field coupling ratio between two consecutive resonators. An optical pulse well propagates through the structure only 
if its spectrum lies inside one of these frequency bands, otherwise it is strongly backward reflected. High spectral 
selectivity, required by modem WDM optical filters, is reachable by cascading only few coupled resonators [3]. 

Inside each bandpass the group velocity v^,,. is substantially reduced with respect to the group velocity Vg=c/no in 
an unloaded waveguide. The slowing ratio S^v^Vs^M defined as 

^_ V, _      cos(A-^)      . (2) 

where k=a>no/c is the wavevector in the absence of resonating structure . The group velocity assumes its maximum 
value v^,=c/«o / exactly at resonances, where the group velocity dispersion (GVD), mainly due to Pa, is minimum. 
Moving towards the band edges v^,„ ideally drops to zero, while GVD increases due to Pi- An optical pulse is 
differently delayed when either the coupling ratio t or the detuning from resonance are varied, thus adjustable delay 
lines based on SWS may be realized [5]. Moreover, thanks to the group velocity dependence on detuning, SWS may 
also be enployed in dispersion compensating devices. 

As a consequence of multiple round trips, the effective phase shift ^<,^ experienced by a propagating wave is 
increased from the single-pass phase shift (* by a factor d<l>cj/d^= S. Therefore, the efficiency of (electro)optic phase 
modulators may be strongly increased, since the same phase shift results from a lower index modulation. If such 
index modulation is induced by optical nonlinearities, the effective phase shift is further increased by the intra-cavity 
enhancement of the mean power P„ with respect to the input value ?„ by a factor dPJdPo = S. Therefore a gain 
factor proportional to 5"* is expected for both self-phase modulation (SPM) and cross-phase modulation (XPM) 
inside a SWS. 
When the input signal is tuned at the lower frequency side of the bandpass (anomalous dispersion), if SPM exactly 
balances the negative P2, an input pulse having the shape of the fundamental soliton may propagate undistorted. 
Fig. 2 shows two examples of pulse propagation obtained by using a time-domain numerical simulator we developed 
in order to accurately analyse linear and nonlinear pulse propagation in SWS. Because of the combined effects of 
second and third order dispersion, a weak gaussian pulse (Fig. 2a) detuned from resonance of -B/4 is strongly 
corrupted after few tenth of resonators, even though no reflected power is observed at the front end. On the contrary, 
a sohtary wave may propagate undistorted along a large number of resonator of the same SWS, in spite of the 
presence of a residual P3. 

Number of resonators Time [ps]      Number of resonators 

'   0 

Time [ps] 

Fig.2. Propagation of a weak gaussian optical pulse (a) and a solitary wave (b) through the same SWS when the detuning from 
resonance is -B/4 (anomalous regime). Pulse power is normalised to input power. 

When a strong pump and a weak signal are tuned at two different resonances, the frequency generation of an 
idler wave by four-wave-mixing (FWM) is observed at a third SWS resonance. The converted power depends on the 
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pimp power P the signal power P, and on the nonlinear constant y^m /cA^, tii being the nonlinear refractive 
mdex and^^. the waveguide effective area. Thante to the above discussed enhancement of both the interaction time 
and the mtra-cavity mean power, the converted power P,,„, for wavelength conversion in SWS is given by 

Pc^. = fPlP,z'sint (3) 

where ^_P~f/S is the mtra-cavity phase mismatch and M=2fyk-h takes into account the phase mismatch between 
interactmg fields. As a result, the conversion gain due to slow-wave propagation k proportional to S* Since the 
bandwidth decreases versus S, an accurate design of the device must be carried out in order to obtain a wide-band 
nigh eiiiciency wavelength converter. ' 

The maximum length of the device is limited by the phase mismatch Ap, which generally mcludes material 
dispersion, waveguide dispersion, SPM and XPM contributions. Since highly nonlinear materials are often highly 
dispersive, matenal dispersion generally dominates. Despite the maximum number of resonators is limited by AB 
converted power can be mcreased by cascading more than one nonlinear SWS uiterleaved by linear rephasing 
devices, m order to perform a qmsi-phase-matched multistage structure. Fig. 3 shows the performances of a quasi- 
phase-matched SWS havmg B=20GHz, FSR=200GHz and operating a wavelength conversion over 4THz The 
pump and signal powers are respectively lOOmW and lOmW. A more than 26dB conversion gain i^/4) with respect 
to an unloaded waveguide of the smm physical length is confmred by numerical time-donBin simulations Dotted 
lines mdicate the inversion of the power transfer from the converted wave to the pun,) wave in absence of rephasing 
at the end of the firet stage. Rephasing elements are required every 11 resonatore for AlGaAs and 237 resonatore for 
S1O2. 

In conclusion, coupled resonator SWS offer a way to realize extremely efficient nonlinear devices without 
introducing severe bandwith penalties. The detrimental effects of dispersion on pulse propagation are overcome by 
sohton-like propagation supported by SWS. Gain factor proportional to higher-orders powers of the slowing ratio 
are found for both Kerr-based modulation and FMW wavelength conversion imide SWS. Therefore SWS-based 
nonlmear devices are supposed to play a key role in ftiture all-optical processing. 

mber of resonators 

Fig.3. Performances of a quasi-phase-imtched slow-wave wavelength converter (B=20GHz, FSR=200QHz) for two different 
nonlinear materials (AlOaAsand SiOa). A lOOmW pump power and lOmW signal power are used. 
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Abstract: We demonstrate that near resonances, e.g. around the band gaps of Bragg gratings, non- 
solitonic pulses can propagate undistorted. These so-called peakons are stabilized by nonlinearly 
induced self-phase modulation, which shifts their frequency out of resonance. 
©2000 Optical Society of America 
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Integrability has largely determined our understanding of field evolution under the influence of nonlinearity. Every 
excitation of an integrable system finally decomposes into a number of solitons and into quasi-linear radiation. 
Unfortunately, integrability is a rare exception. However, it is common belief that also in non-integrable systems 
solitary waves mark the only fixed-points of an often-complicated field dynamics. Here we demonstrate that there is 
a third way for an initial excitation to evolve towards a stable object being neither a stationary solitary wave nor 
linear radiation. 

The basic prerequisite for our considerations is a conservative system with the following properties. First, 
dispersive broadening is due to the action of single resonances, which are well localized in frequency space. Strictly 
speaking, this is the more general case, because dispersion always originates from resonances. Secondly, we assume 
a nondispersive nonlinearity. It might also be generated by remote resonances, but not by those, which are the origin 
of the group velocity dispersion. These requirements are met in many optical systems. Here we restrict ourselves to 
an one-dimensional photonic crystal (Bragg grating), where resonant back-reflection occurs for frequencies in the 
band-gap. The nonlinearity is represented in its simplest form as a Kerr-like one. The scaled evolution equations for 
the forward M+ and backward u. propagating field envelopes read as [1] 

/f|-±^]M±+(|M±f + 2|t/^|^JM±+1/^=0. (1) 

The system (1) is known to be not integrable. However, there is a close relative - the massive Thirring model - 
where integrability is ensured by vanishing self-phase modulation. 

It is easy to show that linear wave propagation is prohibited in Eq.( 1) for the so-called gap |(n| < 1. Despite of the 
lack of integrability stationary bright solitary waves of Eq.(l) are analytically known as so-called gap- or Bragg- 
solitons [1]. They have two independent parameters, namely velocity v and frequency (o. Because bright solitons 

require evanescent tails to exist, the soliton parameters are bound within a circle v -i- O) < 1. Consequently the 
energy of a solitary pulse is limited, in our case to a value below Ji. Also the width of a Bragg-soliton cannot be less 
than a critical value of ~ 1.3. Hence, it is rather likely that an initial pulse does not fit to a soliton of this family, e.g., 
if it has a large amplitude or steep edges. We therefore launched a strong Gaussian-shaped pulse with energy of 
about n, a width of 0.2 and a carrier frequency just in the gap (co=0). The first resuh is the apparent stability of the 
field distribution (see Fig.l). 
It moves almost with the velocity of the forward propagating wave and the amount of backward propagating field is 
negligible. But most important, it maintains its overall shape. Only around its peak signatures of decay are observed. 
It seems that high gradients as they appear on the wings of the pulse promote stability. We follow this concept and 
launch a triangularly shaped pulse, which we call peakon, (see Fig.2a) like 

WQ V) - ^peakon 1- t-h 
"peakon 

for |r - roI < f^peakon and uo (0 = 0 Otherwise. (2) 

Note that Eq.(l) only requires a finite first derivative, but not necessarily a continuous one. 
Because a flat top is absent almost no decay is observed. The peak amplitude even oscillates around a final state 

(see Fig.2c) similar as stable solitary waves do. The outflow from the pulse rapidly decays to zero (see Fig.2d). 
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However, this pulse cannot be a solitary wave, because Bragg-solitons have completely different shi 

y 
,e 
e 
.e 

no 

the julse IS shifted out of resonance and the coupling to the backward propagating field is diminished Hence thi 
stabilization of the pulse is obtained in a completely different way. Whereas in conventional systems'th( 
nonlmeanty balances the dispersion here it allows the pulse to escapes from the linear back-reflection regime of th 
gratmg, while shifting its internal frequency. Outside the resonance the group velocity dispersion vanishes and no 
spreading can occur. Therefore the frequency within the pulse keeps on growing, while its shape remains stationary 
Provided that internal gradients are large enough, every pulse shape can be stabilized in this way. The intemai 
frequency of the puke increases linearly with the propagation distance, therefore providing a kind of internal clock. 

However, the coupling to the backward propagatmg wave permanently sustains. This is important, becaime all the 
light, which IS transferred to the backward direction, is lost. Even if these losses are weak they can finally destroy 
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the pulse. Therefore we are going to estimate the strength of the backward radiation. In the lowest order 
approximation the forward propagating pulse is almost only influenced by self-phase modulation It results m a 
stationary field shape, but in a varying phase as 

«+{x,r)s«o(?-x)exp j\ifi(t-xf(x + t) (3) 

_ where udf) is the field incident at x=0. Inserting Eq.(3) into the evolution for the backward propagating field 
yields r   f o     b 

. t-x 1   *     A 

u-{x,t)=- Jrfti«o(il)exp iNo(tlf (x + r)-« Jrfn1«o(tlf exp 5 

The total loss of the pulse is given by 

Q{t)= Um \u_(x,t-x'f ' 

Approximate solutions show that the outflow from a peakon, as it is defined in Eq.(2), behaves like 

2 2 
e(.\    ^peakon "peaton    .    ? 

peakon W " r"*- Smc 
^peakon 

{t-k) 

(4) 

(5) 

(6) 

Hence it oscillates and decays like l/t^ a fact that te well reproduced by numerical sunulations (see Fig 2d) 
Integrating Eq.(6) yields a finite value, which defines a critical energy E^. Depending on its width the energy of the 
peakon should by far exceed a value of 
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E, cnt .^w? peakon ■ (7) 

Peakons with energies much higher than that critical value will leave the resonance and will propagate forever. 
Note that according to Eq.(7) there is no lower threshold for the excitation of a peakon. In fact the peakon 
reproduced in Fig.2 has a total energy of 0.27, which is well within the energy domain of Bragg solitons. This is 
because its stabilization is based on its shape rather than on its total power. Hence also weak pulses can propagate 
undistorted, provided that they are short enough. 
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Fig.2 Evolution of a peakon during propagation through a Bragg-grating, a) amplitude distribution at ^=100 (dashed line: 
input profiel), b) distribution of the local frequency d/dx cp(.v) for different times ((^x): phase of the forward propagating 
wave), c) Evolution of the peak power during propagation, d) evolution of the outflow from the pulse in a logarithmic plot 

2 

Arbitrary initial excitations can therefore decay into Bragg-solitons, linear radiation and some steep field 
distributions similar to the peakons. The higher the initial gradients the more energy is converted into these "peakon- 
like" structures. Even if the field distribution is flat as on the top of a smooth pulse the field tries to adapt to a 
peakon-like shape, while increasing local gradients (see Fig.l). This scenario should change for an integrable 
system. In fact if self-phase modulation vanishes and we approach the integrable massive Thirring model the peakon 
disappears. However, this is by far a surprise, because the stabilization of the peakon entirely relies on self-phase 
modulation. Because the backward propagating wave is orders of magnitude weaker, cross-phase modulation cannot 
induce the required frequency shift. This gives us a quite intuitive explanation, why only the massive Thirring model 
is integrable. 

Up to now we have only studied pulses, which were launched with a frequency inside the band gap. They 
immediately leave the resonance due to the nonlinearly induced frequency shift. However, the local frequency shift 
growths monotonously, even if the pulse is launched outside the resonance. In this case a certain part of the pulse 
will always cross the resonance, while causing an outburst of radiation. Hence, while choosing a respective center 
frequency of the initial pulse, we can control outbursts of radiation within the sample. 

In conclusion we have shown that field distributions with high gradients can pass nonlinear ID photonic crystals 
almost undistorted. This result should apply to other physical systems with sharp resonances as well. 

[1] A.B.Aceves and S.Wabnitz "Self-induced transparency solitons in nonlinear refractive periodic media," Physics Letters A 141, 37 (1989) 
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We present a canonical Hamiltonian fomulation of MaxwelFs equations in the presence 
of a nonlinear polarization. We then use this formulation to derive pulse propagation equations 
m a three-dimensional photonic bandgap (PBG) material with a Kerr nonlinearity. We start by 
writing a Hamiltonian that is equal to the ener^ in the electromagnetic field^ 

= 0 

where r=(x,y,z), B' and D' are the components of the B and D fields respectively, and repeated 
indices are summed over; we have ignored magnetic effects in (1). The T's are defined via 
i3(r,r) = fo^(r,r)+p(r,r), where the foil polarization is given by* 

with r„'J-■ characterizing the n* order nonlinear effects. Usually the constitutive relationship 
gives P terms of the electric field, E, but for a canonical formulation in the presence of 
nonlinearity, (2) is more advantageous. By allowing the T's to depend on position we allow for 
an mhomogeneous dielectric, but the response is taken to be local in both space and time, which 
implies that any frequencies of interest are well below any resonant irequencies of the medium^, 
hi this limit the T's are invariant under a permutation of their Cartesian components. We recover 
the field dynamics with the equal-time commutation relations 

[D'(r,r),5^(rV)]=ifte*^(^(r-rt ^ 
.    ' or 

and the Heisenberg equations of motion, 

mf=[DM; mf=[BM (4) 
We now speciahze this formulation to consider a medium in which both the Hnear index 

of refi-action and the nonlinear susceptibility are periodic: n(r)=n(r+R) and 3C^^'(r)= x^^\r+R), for 
any lattice vector R. We adopt periodic boundary conditions, characterized by a volume V, and 
solve the nonlinear problem in terms of the Bloch solutions to the linear problem^ characterized 
by a band index, m, and a reduced wave vector, k. We expand a general B or D field as 
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D(r, 0 = Z «».u WD„,. (r)+«Iu (ODLU (r )> 
"'■^ (5) 

B(r, t) = Y, «„,k WB„„ (r)+al {t)Bl^ (r), 
mk 

where Bmk and Dmk are the Bloch functions of the medium, and where the amk(t) are mode 
amplitudes. The Bloch functions are normalized such that 

^   . (6) 
.DJr)-D„,„(r)_l 

where tOmk is the frequency associated a given m,k. In principal a solution (5) can include all 
m,k, but in pulse propagation experiments, values of k will typically be centred around a value 
k. We construct effective fields as Fourier superpositons of the mode amplitudes 

gAr,t) = :j^T.^..i¥'^-'^', (7) 
which, using (5) and (4), can be shown to have commutation relations 

[g.{r,t),8l{r\t)hs^„Ar-A (8) 
where, strictly speaking, the Dirac delta-function holds only in the limit where V->oo. 

We can now rewrite the the Hamiltonian (1) and the Heisenberg equations of motion (4) 
in terms of these g's, which would constitute an exact, canonical formulation of Maxwell's 
equations. To give an example of the usefulness of such a formulation, we consider the situation 
when the frequency content of a pulse contained entirely within one band (m) of the system, is 
well away from a photonic band gap of the system, and is sufficiently narrowly concentrated 
about k that it is reasonable to expand the frequencies in the pulse in a Taylor series, truncated 
after the 2"** derivative^. These approximations lead to an effective Hamiltonian 

H     =h\<(0—\Q-\ 21!L_£»L»1__ 2!!S ^^^i 

(9) 

'an'' nik 

J 
d^dU^,        (10) 

where the nonlinear coefficients are 

'^"        Jo ^ mk    mk    ffik    mk'    ~" J   O 7ih 

where dmk(r) is the portion of the Bloch function, Dmk(r), that is periodic with the lattice^ and 
where the derivatives with respect to k in (9) and (10) are evaluated at k=k . We note that J3Q is 
a vector quantity, while ^^ is a scalar. Using Heff with the commutation relations (8), and the 

equations of motion ili3gm/3t=[gm,Hefr], we find 

"m   _ _//y) Q_ "iiL        "'  J. "IK - m    J  

dt "* "'     dk'   dr'     2 dk'dk' dr'dr^    4Pi£, 
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This IS a nonlinear Schrodinger equation (NLSE) with a shock term added, which extends 
^r^IlfXf ^ ^'? of nonlinear pulse dynamics in 3D PBGsl The form of this shock term is 
slightly different that the shock term often discussed in the literature^ because we are working 
with effective fields that are Fourier superpositions of the mode amplitudes a„*(t). Were we to 
work with fields that were related directly to the Bloch functions of the medium/then tholl 
fields would give the famihar shock term; however, it is difficuh to use such fields to construct a 
canonical formulation of Maxwell's equations^. M our formulation, the interpretation of the 
shock term IS directly analogous to that of the familiar self phase modulation (SPM) terai- The 
SPM term descnbes an intensity-dependent phase shift; the shock term describes an intensity- 
dependent shift m the local group velocity of the pulse. This shock term will prove useful in the 
analysis of structures such as coupled microresonatorsl In these systems light can experience a 
veiy low group velocity dispersion, but a veiy high nonlinearity, so that shock effects should be 
visible expmmentally and relatively straightforward to separate from other propagation effects 

Jn addition to denving the shock term, we have used our method to develop a set of 
coupled mode equations that can describe PBG materials into which waveguiding layers have 
been grown hi such materials, light has been experimentally observed to have an extremely low 

Slftl'iT^ ' t'-n f"^T^'^t^S *»«ans that if the material is Kerr nonlinear, then the effect 
of that nonlmeanty will be enhanced . 

Finally, we note that our technique allows for a straightforward interpretation of the 
conserved quantities of the system. For example, for a system described by H^ff (9) we find two 
more conserved quantites: a momentum-like quantity, P, associated with the space translation 

X^^^.flT'"'" "' '""^ ^"^ °'*' '''''' ^^^^^' ^^ ' *^^"^^^^d chaise, Q, associated with 

c 3k'    lY'" dr'    ^- df J    ' 
(12) 

The quantity Q looks like the energy in the electromagnetic field, but comparing (12) to the 
effective Hamiltoman (9) shows that it is only equal to the lowest order portion of the full 
SM S.; definitions avoid the introduction of a free energy, or other inteq,retational issues 
that have arisen m the study of conserved quantities of nonhnear systems***. 

1. M. Hillery and L. D. Mlodinow, Phys. Rev. 30,1860 (1984). 
2. R.W.Boyd,M>«liHearOi?rto (Academic, San Diego, 1991) 
3. See. eg, N. W. Ashcroft and N. D. Mermin, felW S-tote P/ij..s»c^ (Saunders ^C^^^^ 
4. SureshPereira and J.E.Sipe, Phys. Rev. E 65,046601 (2002) gcrniiaaeipma, iy/6j. 
5. N. A. R. Bhat and J. E. Sipe, Php. Rev. E 64,056604 (2001) 
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We demonstrate numerically that it is possible to trap light in the structure shown in 
Figure la using four-wave mixing. We define two resonant frequencies associated with the 
structure: C0(o,i}=c/(neffR{o,i)), where "i" and "o" refer to the inner resonators (not shaded) and the 
outer resonators (shaded) respectively, and Ri and Ro are the radii of the inner and outer 
resonators. The quantity Ueff is a linear effective index of refraction, assumed to be common to 
all the resonators and the channel guides, furthermore the frequency dependence of neff is 
ignored; these assumptions simplify the presentation of the effect. The outer microresonators 
couple the channel waveguides, so that forward travelling light in the bottom (top) channel is 
coupled to backward travelling light in the top (bottom) channel'^ If light has frequency at or 
nearNcOo, where N is an integer, then the coupling is resonant, and a stop gap opens in the 
transmission spectrum of the structure^'l These gaps lead to the dips in the transmission 
spectrum of the structure shown by the solid line in Figure lb; the dotted lines in Figure lb show 
some resonances of the inner microresonators (which do not lead to gaps). Material parameters, 
used throughout this paper, are neff=3.0, 27cRr25nm, 27tRo=30nm and 0=0.98 for all resonators. 

To trap light in the structure, we inject 
a strong pump, and a weak idler beam with 
frequencies (Dp and cOi into the bottom channel 
of the structure. Neither pump nor idler 
corresponds to a resonance of the outer 
resonators, so that essentially all of their 
energy propagates through the bottom 
channel. However, we choose cOp and cOi such 
that they correspond to resonances of the 
inner resonators (Figure lb); this leads to a 
large build-up of pump and idler intensity in 
the inner resonators. Since the resonators are 
Kerr nonlinear, the build-up of intensity 
enhances four-wave mixing ' . This 
nonlinear process will produce light at 2(Dp - 
0), and 2o), - 0)p. We choose our parameters 
such that cOs = 2cOp - co, corresponds to a 
resonance of both the inner and the outer 
resonators, and hence any light generated at 
frequency cOs will be trapped in the structure 
by the outer resonators. 

To simulate this effect we generalize 

z=0 

^— 

^^^^ o 
Input 
port 

Output 
port 

100 

50 
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4.06 oVc 

Figure 1: (a) Schematic of the system. All pulses are 
injected along the bottom channel, (b) Transmission 
spectrum (solid line) of the structure, the dips 
correspond to resonances of the outer resonators. 
The dotted lines correspond to resonances of the 
inner resonators. In units of wavelength, the signal 
corresponds to roughly 1.5[jun. 

a numerical technique previously applied to a structure consisting of one channel guide coupled 
to microresonators . We divide the problem into two distinct parts: coupling between the 
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resonators and guides, which we assume happens only at discrete 'coupling points', and 
propagation of light. To describe the coupling, we introduce a self-coupling coefficient o, and a 
cross-coupling coefficient K. For simplicity we assume that these coefficients are the same for 
all of the resonators. On the leftmost resonator of Figure la we show a schematic of coupling 
between the channel and the resonators. The large dot indicates the coupling point. The fields 
are coupled • such that A3=oA4+iicAi and A2=CTAi+iKA4. To describe pulse propagation we first 
define a set of fields, A{p,i,s}(z,t), where the subscript indicates the pump, idler or signal, that are 
normahzed such that their square modulus represents the intensity in the pulse. We describe the 
evolution of these fiel(k using a set of coupled nonlinear equations^'*, 

K     1 dA 
dz 

■+■ ^ = %l^P. +2AAA;}-^{,, +a,\A^f +^3|4f K, 

dz    v„ Bt 
■=irk 4+44 U', , +2aJAj 1 2      p\ +3a,U \% (1) 

200 

pi 100 

where, Vg-c/nes, y{p,i.s}=0){p,i,s}n2/c, na is the nonlinear index of refraction coefficient, and where 
cci, 0C2 and as account for linear loss, two-photon absorption (2PA) and three-photon absorption 
(3PA) respectively, hi Equations (1) we have assumed that Ip »li and Ip »I^, where Tpi s} is 
the peak intensity in the pump, idler and signal respectively. As boundary conditions we set 
Ap(z-0,t) and Ai(z=0,t) at the bottom channel to be our input pulses of interest, and we assume 
no energy enters the system through the top channel, or through the bottom channel at ^L. 

We choose nonlinear parameters consistent with Alo.i8Gao.82As, a material used in 
nonlinear waveguiding applications for its low loss^ 
for which na = 0.0001 Icm^/GW, a2= 0.05cm/GW and 
as = 0.08cm /GW^ are the appropriate nonlinear 
parameters. We vaiy the value of intensity loss from 0 
to 2dB/cm (ai = 0.46cm'^), which is consistent with 
the observed loss in straight-waveguides fabricated 
using Alo.i8Gao.82As. Losses in resonator structures 
have typically been much higher than this, but they are 
primarily scattering losses, and are due to fabrication 
problems rather than the ftindamental limit imposed 
by bending loss^. The value of 0.7dB/cm is 
significantly higher than the ftindamental bending 
loss . We set the input pump and idler pulses to be 

. Gaussian with 20ps ftill-width at half maximum 
intensity (FWHM), with Ip = SOMW/cm" and \ = 0.5MW/cml In Figure 2 we plot the signal 
energy m the structure as a fimction of time, using linear losses OdB/cm (soHd line), 0.7dB/cm 
(dotted hne), 2dB/cm (dash-dot). The initial transient, lasting until about lOOps, is due to the fact 
that not all of the frequencies of the signal light are reflected by the resonators, so some energy 
immediately escapes: Disregarding the transient, about 90fl of energy is trapped; the half-life of 
the trapped Hght is lOOps when the loss is 2dB/cm, and 500ps with a loss of 0.7dB/cm. 
^       To remove the trapped signal light from the structure, we send a 20ps flush pulse, with 

Ir-500MW/cm , and with cof = %. We again use equations (1), but replace Ap with Af. It is 

Figure 2: Energy trapped in structure 
for linear loss OdB/cm (solid), 0.7dB/cm 
(dot) and 2dB/cni (dash-dot). 
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well-known^ that because of cross phase modulation (CPM), the frequency of the signal light 
will shift; this shift is proportional to n2(3lf/9t). The shifted frequencies will no longer be 
matched to the resonance of the outer resonators, and will leave the structure. In Figure 3 we 
demonstrate the efficacy of this technique when the linear loss is 0.7dB/cm. The solid line 
shows the signal energy in the system, building up exactly the same way as in Figure 2. At 

t=200ps we inject the flush pulse, which 
has two effects. Initially there is a 
transient, because the flush and signal light 
create light at the idler frequency, which 
can then be used to create more light at the 
signal frequency. However, after the 
transient, the signal light is flushed from 
the system in two stages. These two stages 
are as follows. The dotted line in Figure 3 
shows the intensity of the signal light that 
leaves the structure from the bottom 
channel at z=L. There is initially a sharp 
output peak, which consists of signal light 
that has been blue shifted by the CPM 
induced by the leading edge of the flush 
pulse^. After the sharp peak there is a 
small traihng signal pulse, which consists 
of light that has been red shifted by the 

CPM induced by the trailing edge of the flush pulse. 
Our scheme is similar to one presented earlier using fiber gratings , but has two main 

benefits: first, our structure is about 50 times smaller, but can trap similar amounts of energy; 
second, we have presented a method based on cross phase modulation (CPM) for removing the 
energy. 

Figure 3: Energy in the structure (solid) and output 
signal intensity (dotted). The energy is flushed out at 
about 200ps. Prior to that point it decays due to 
linear loss. 
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Abstract: Efficient tunable MIR-optical parametric fluorescence was demonstrated for the first 
time m a 80 mm long single mode Ti:PPLN channel guide of 31 pm domain periodicity. Up to 
several pW of MIR-power were generated using a modelocked fiber laser as pump source ^ 
© 2002 Optical Society of America 

J?Sf?.^nf M' (^.^°-^^*) Integrated opti<s devices; (130.3T30) Lithium niobate; (190.2620) ftequency conversion; 
(190.4410) Nonlinear optics, parametric processes 

Introduction 

The generation of optical parametric fluorescence (OFF) in bulk nonlinear crystals is a well-known method 
for frequency down-conversion of coherent laser radiation [1]. It is mainly used for spectroscopy in the near 
(WR) and mid (MIR) infrared. However, high conversion efficiencies can only be obtained in a pulsed mode 
of operation with very high peak power levels. 

Contrary to bulk configurations nonlinear integrated optical waveguides promise conversion efficiencies which 
can exceed those of bulk optical approaches by several orders of magnitude. Moreover, if quasi phase matching 
IS m^ m periodicaHy poled LiNbOa (FFLN) waveguides, the largest nonlinear coefficient das can be exploited 
and the spectral range of the OPF-emission can be adjusted by a corresponding periodicity of the ferroelectric 
p-atmg. 

In this contribution we report the first investigation of quasi phase matched tunable MIR-OPF around 3nm 
wavelength in long Ti:PPLN waveguides. 

Waveguide fabrication and experimental setup 

Single-mode channel waveguides for the Spm wavelength range were fabricated on a 86 mm long 10 mm 
mde and 0.5 mm thick Z-cut optical grade LN substrate. The guides were prepared by the indifflision of 
photolithographically dehneated 160 nm thick Ti-stripes of 18, 20 and 22 pm width oriented parallel to the 
crystaUopaphic X-axis. Subsequently, the periodic domain inversion was performed over a length of 80 mm 
using the electric field induced poling technique described in more detail in [2]. The periodicity of the domains 
Two?^"l^^'°^ *** 31.48 pm with duty cycles ctee to 1. The losses of these waveguides were inv^tigated 
at A-3391.3nm with TM polarized light using the low-finesse resonator method [3], Loss coefficients in the 
range 0.05-0.12 dB cm were measured. Afterwards, the end faces of the sample were anti-reflection coated 
tor tlie pump wavelength to suppress Pabry-Perot-resonances. 

The experimental setup consists of a pump laser, followed by a high power EDFA (33dBm) a mechanical 
chopper, a^coupUng optics, the Ti:PPLN waveguide parametric generator, a collimating lens, a Ge- and a 
dielectric filter to suppress the transmitted pump radiation and an HgCdZnTe-br an InSl>detector The 
pump laser is either an external cavity laser (ECL), tunable from 1520 to 1580nm, or an actively modelocked 
hber laser emitting pulses of 5.4 ps halfwidth and 20 mW average power at 10 GHz repetition rate- it is 
tunable from 1541 to 1564.5 nm. The amplified pump radiation of an average power of up to 2 W is chopped 
and coupled in TM-polarization into a Ti:PPLN waveguide. The generated signal and idler radiations were 
me^ured using a lock-m technique. A power calibration was obtained by comparing the response of the InSb- 
diode with a commercial power meter at A=1550nm and a subsequent extrapolation to the MIR wavelength 
range by the documented spectral response. The HgCdZnTe-detector was then calibrated by a comparison 
of Its response at A=3391.3nm with the signal obtained from the InSb-diode. For spectral investigations of 
tlie fluorescence radiation a standard monochromator was used. 
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Fig. 1. Measured (TA) and calculated (—) tuning characteristics of OPF from an 18 pm wide waveguide with 
a domain period of 31.36 jim as signal and idler wavelengths versus the pump wavelength in cw-operation. 
Selected spectral characteristics of the fluorescence are shown in the insets. 

Results 

Fig. 1 shows as an example the tuning characteristics of the signal and idler waves generated in an 18 pm 
wide waveguide of 31.36 jim domain periodicity. The coupled (cw) pump power was approximately 300 mW. 
The MIR-OPF was continuously tunable from 2760 to 3000nm (signal) and from 3360 to 3450nm (idler). 
A gap remained near degeneracy due to the limited tuning range of the pump source. Moreover, selected 
spectral characteristics are given as insets; they all have one pronounced sidelobe, probably due to waveguide 
inhomogeneities. The longer the wavelength, the noisier the spectrum is arising fi'om the weaker efFiciencies of 
monochromator and detector. All peaks become broader with increasing pump wavelength in good agi-eement 
with theoretical considerations [4]. A calculated phase matching curve shows excellent accordance with the 
measured results. In waveguides of larger domain periodicity the tuning characteristics shifts as a whole to 
the left reducing the gap near degeneracy. The same happens, if broader waveguides or higher temperatures 
are used. 

Experimental room temperature data for the total OPF output power (signal and idler) from the same 
waveguide are shown in Fig. 2 as function of the pump power (Ap=1550nm, As=2835nm, Aj=3420nm) 
(Note, that the given figures for OPF and pump correspond to the power levels at open chopper, averaged 
during the opening intervals in the pulsed mode of operation with the modelocked pump laser). The chopper 
duty cycle was changed from 1:1 to 1:9 to reduce OPF power fluctuations at high pump power levels probably 
caused by photorefractive effects. The OPF output power is a nearly linear function of the pump power in 
the quasi-cw-case; it rises up to 7.5 nW at 1725 mW of coupled pump power. In the pulsed operation with 
pulses of a peak power of 31W the average OPF power shows an exponential rise up to 32.5 nW at an 
average pump power of 1676 mW. The maximum conversion efficiencies can thus be determined as 4.3-10""^ 
and 1.9'10"^ for the pulsed operation, respectively. 

These figures are much smaller than expected from theory, which assumes excitation of the lowest order 
pump mode alone. However, selective coupling to the fundamental mode of the guide, which is multimode at 
the pump wavelength, is hard to achieve experimentally. Moreover, slight photorefractive effects can modify 
the spatial pump spectrum reducing the efficiency of OPF generation as well. 



NLMD19-3 

HJibner et al., Efficient integrated Ti:PPLN MIR-optical parametric generator NLGW/2002  Page     3 

a. 

- 

—r —1—.— 

• pu Ised operation 

ei- ■ cw -operation 

51  20 

1- • 
b o 
15 A" - • 
m 
S • 
1 

0 -m mf ,•, t 
 L 

•■     ■ ■ . ■ 

0,0 0,5 w %5 

coupled (average) pump power P (W) 

Pig. 2. OPP output power for pulsed and quasi-cw-operation as function of the coupled pump power averaced 
during shutter openings (Ap=1560nm, As=2835nm, Ai=3420nm) ' 

In another channel of the same sample an average OPF power of up to 2.4iiW was obtained at 1.75 W average 
pump power, resulting in a conversion efficiency of 1.4.10-6. However, the strong (stimulated) fluorescence 
was not stable and decreased rapidly with time. During 140 s the output signal dropped by 73% and the whole 
sample shimmered m an intense green light. A spectral characterization of this radiation showed two strong 

?Qun w^?™ *"** ^^^™' "^^sP^^ti^ely- They are due to non phasematched second harmonic generation 
^^  j 1 P™P *"** sum-frequency generation (SPG) of the pump with its second harmonic, resulting in 
third harmonic generation. Photorefractive effects induced by these shorter wavelength radiations could be 
the ongm of the strong decrease of the MIR-fluorescence power; they could be minimized by higher sample 
temperatures. J    a t- 

Conclusions 

For the first time MIR-OPF, generated in a Ti:PPLN single mode waveguide, has been studied in detail A 
large tuning range of 2760 nm < A„ A, < 3450 nm could be demonstrated with a small gap around degeneracy 
In a quasi cw-mode of operation up to 7.5nW of OPF power was obtained with about 1.7 W pump power 
In a pulsed mode of operation the average OPP-power increased to 33 nW, corresponding to a peak power 
of -0.6iiW. Even 2.4pW average output (-44pW peak power) was demonstrated in another channel- 
however, the emission decreased rapidly with time probably due to photorefractive effects. We are confident 
that operation at elevated temperatures will reduce these effects and improve in this way the performance 
of the device. Moreover, a tapered coupling section for the pump will guarantee the selective excitation of 
the fundamental pump mode alone; this means will also contribute to increase the OPF output A stronger 
stimulation (amplification) of the guided MIR-fluorescence will also result in a spectral narrowing attractive 
for spectroscopic applications. 
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Abstract: Temporal periodic modulation of the scattering lengtli in Bose-Einstein condensates is 
shown to excite subharmonic patterns of atomic density through a parametric resonance. The 
patterns are analogous to the Faraday waves excited in vertically vibrated liquids. 
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1. Introduction 

Spontaneous formation of spatial patterns occurs in many natural systems as well in laboratory experiments. The 
very essence of spontaneous pattern formation is that a uniform state loses its stability against spatially modulated 
states when an external control parameter is varied. The character of the instability, e.g. dominant wavelength and 
symmetries of the selected patterns, is purely an intrinsic property of the system, independent of- (or only weakly 
dependent on-) initial or boundary conditions. 

So far, no mechanism for spontaneous pattern formation has been suggested for the most recently created state of 
the matter, the Bose-Einstein Condensates (BECs). Although vortices and vortex ensembles were predicted and 
observed in BECs [1], such structures can not be referred to as spontaneous patterns, since they occur due to 
particular initial or particular boundary conditions (e.g. due to stirring of the condensate). In this sense vortex 
ensembles are reproduced from one state of the matter into another, but do not appear spontaneously, like the 
spontaneously occurring patterns in biological morphogenesis, Rayleigh-Benard convection, etc. 

We suggest that parametric excitation of a BEC can lead to spontaneous breaking of the space symmetry, and to 
the appearance of spatial patterns and quasipatterns. The parametric excitation can be obtained by a periodic 
modulation in time of the scattering length of the condensed atoms. Experimentally this can be achieved via the 
Feshbach resonance, where the variation of a magnetic field modifies the 5-wave interatomic scattering length. The 
nonlinear coefficient of low dimensional (ID or 2D) condensates can also be varied by modulation of the trapping 
potential along a spatial coordinate normal to the "working" space. 

In the framework of the mean-field model of BECs (usually described by Gross-Pitaevskii equation), the 
modulation of the scattering length of atoms leads to a time-dependent nonlinear coefficient. We show both by 
analytical and numerical calculations that the dominant wavenumber of the patterns arising from the parametric 
instability are selected by the excitation frequency through a dispersion-induced mechanism, and that the resulting 
patterns are of square, rhombic, and of eightfold symmetry, resembling the taxonomy of patterns observed in the 
Faraday instability on a free surface of a fluid undergoing oscillatory vertical acceleration. 

2. Model 

We investigate the parametric excitation of patterns in condensates by considering the mean-field Gross-Pitaevskii 
equation for the single-particle wave function \i/{r,t) in an external trapping potential V^^{r) assuming a two-body 

repulsive interaction periodically modulated in time: 

at 



where c(f) = 1 + 2acos(2(Df) is the nonlinearity hannonically modulated in time. We mainly study 2D ("pancalce") 
BECs, in which a strong trap confinement occurs in the z direction while in the transverse directions {x,y) weak 
confinement is realized by, e.g., a harmonic trap v^(x,y)=-l+^Gt^(x'+f)mth m^^«m. Since weare 

interested on the occurrence of pattern forming instabilities on a spatial scale much smaller than the size of the 
condensate, we consider the limiting case of a flat potential and choose arbitrarily f'«p(r)=-l .We also shown by 

numerical simulations that the pattern forming mstability found in the flat trappmg potential lunit persists under a 
more realistic weakly-trappmg harmonic potential. 

2. Patterns 

The linear Floquet analysis of (1) yields that for given driving frequency 2m the spatial modulation of particular 
wavenumbers grow. The most unstable wavenumbere are located around: 

k = k„=^-U^Ju^^ (2) 

Here the integer n = 1 (n > 1) represents the main (the higher order) parametric resonances. 
Numerical sunulations m the flat potential limit were performed to check the onset and evolution of the 

parametric instability of the homogeneous BEC state. Fig.l mdicates the growth of modulation: In the early stage 
the formation of a mam resonant ring in momentum space is apparent, which corresponds to transient quasipattems 
m physical space. In the further evolution higher-order resonance rmp appear in momentum space, which 
correspond to the higher-order resonances. On a long time scale one observes heating and eventual destruction of the 
condensate. 

Fig. 1, Transient pattenm as obtaiii«l by mmerical int^ration of (1) in a flat potential with periodic 
boundary conditions, with the intensity of the order parameter (particle density of condensate in physical 
space) in the upper row, and the spatial Fourier power spectrum (particle density of condensate in momentum 
space) in the lower row. Time increases from left to right 

3. Dissipative patterns 

In order to determme the intrimic symmetries of parametric patterns, we investigated weakly dissipative BECs 
smw the mclusion of dissipative terms in the equation, capable of describing damping mechanisms of trapped' 
BECs, can lead to the final selection of patterns with a well-defmed symmetry: 

.d^ 
i-£- = (1 -/T)(-V' -1+|r|'^+2acos(2co/)|r|' r (3) 



The damping y, ensures an evolution towards an equilibrium state in the absence of parametric driving. 
Numerical integration of (3) with small dissipation indicates that the formation of stationary spatial patterns with 
different symmetries is possible (Fig.2). For large frequencies of forcing, typical patterns are squares, or 
quasiperiodic patterns with eightfold symmetry, for moderate frequencies rhombic patterns are favored. The 
mechanism of symmetry selection is related with the matching conditions between the first and second order 
resonant wavevectors, and will be discussed. 

iI*J»*aM 

Fig. 2. Stationary patterns in dissipative BECs, as obtained by numerical integration of (3) in a flat potential 
with periodic boundary conditions. The driving frequency is o = 1.5 -^r for the left and middle pattern, and 
(0 = Q.S-7! for the right pattern. 

4. Nonlinear resonance 

Whereas the linear analysis of (1) and (3) yields a dispersion relation for standing waves of small amplitudes (2), the 
weakly nonlinear analysis shows that the resonant wavenumber depends also on the amplitude of modulation: 

k = K=^-\y/o\^ +^\y/X+{no)f (4) 

where I^J^ is the occupation of the spatially homogeneous (zero) mode. The zero mode depletes for increasing 

spatial modulation in both cases: because of the conservation of the number of particles in conservative case (1): 
\¥o[ ='^-\VmoX '^^^^"^^^ oiih-t conservation of energy in dissipative case (3): |^o(?)f = l-2|ii^„„d(0f • ^" ''o* 
cases the resonant wavenumber increases with growing spatial modulation, therefore the nonlinear resonance is of 
"focussing" type. Since the spatial nonlinear resonance of focussing type may be at the root for spatial solitons [2], 
we expect to demonstrate such spatial solitons in parametrically driven BECs too. We note, that the spatially 
localized patterns, so called oscillons are known in periodically shaken granular materials [3], the systems related to 
the Faraday systems, and consequently related to the parametrically driven BECs studied here. 

5. Conclusions 

In conclusion, we have shown that spontaneous formation of patterns, a very general phenomenon studied in 
different fields of nonlinear science, is possible also for the newly created state of matter, the BECs. Pattern 
formation can be achieved by modulation of the scattering length of atoms in the condensate, a mechanism that 
bears a close connection with the formation of spatial patterns on the surface of a vibrating fluid. We have been 
concerned up to now with 2D condensates, in which the dynamics occurs in the plane transverse to the tight 
confinement direction, and found squares, rhombi and octagons as typical patterns; patterns with more complex 
symmetries are expected to occur in 3D condensates. 

A nonlinear spatial resonance is also found, which gives hope of observing spatial localized structures in BECs. 
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The richness of spatio-temporal dynamics of light in 
nonlinear media has attracted much attention over the 
last decade. One of the many recent areas of interest 
is spiralling of self-localized beams of light, which has 
been stimulated largely by a series of experiments demon- 
strating spiralling of a pair of mutually incoherent light 
beams propagating in photorefractive materials [1-3], 
and in concomitant numerical modelling [2-5] broadly 
supporting these experiments. Later developments have 
also shown seemingly stable spiralling structures result- 
ing from azimuthal instability of a vortex beam within 
the potential created by a strong soliton field incoher- 
ent with the vortex [4,5]. These structures have been 
termed propeller solitons [4] or rotating dipole-mode vec- 
tor solitons [5]. 

Obtaining a rigorous and general analytical criterion 
for the stability of spiralling solutions in Hamiltonian 
models has, however, remained an open and important 
problem, which we approach and solve in this work. Res- 
ults presented below are rather general, but we derive 
them in the context of two coupled nonlinear Schrodinger 
equations (NLS) with saturable nonlinearity, which have 
well established spiralling solutions [3-5], and are be- 
lieved to provide a reasonable approximation to the non- 
linear interaction of incoherent beams in photorefractives 
[1,3,4]: 

{id, + dl + dl)Ei,,-f{I)E,,2 = 0, (1) 

where /(/) = 1/(1 + !),!= |Ei]2 + [Esl^, and z 
and X, y are, respectively, dimensionless longitudinal and 
transverse coordinates. We consider solutions which ro- 
tate with constant angular frequency w in propagation 
along z and change to a rotating coordinate system: 
Ei^2{x,y,z) = Fi,2(X,y,z)e*''i.=^ with X = xcos{u;z) + 
ysm{ijJz),Y = -xsm{ujz)+ycos{ojz). The wave-number 
corrections KI_2, together with w, parametrize the solu- 
tions of interest. Now Eqs. (1) read as 

[id, + wL + 9i + 5?.]Fi,2 - [KI,2 + /(/)]i^i,2 = 0,   (2) 

where L = -i{XdY - Ydx) — ide is the z component 
of the angular momentum operator, familiar in quantum 
mechanics, and 6 = arg{X + iY). 

By analogy with stability thresholds known for other 
multiparameter solitary waves [11], which in their turn 
stem form the seminal Vakhitov-Kolokolov criterion [12], 
we can already guess the expression for the stability 

threshold for such a solution (Fi,2 localized in X,Y and 
independent of z). This condition is 

Do = det 

I QPx    dfx,    Sfi. \ 

   dPi. 
dK2      8uJ 
ac    dL 

= 0, (3) 

\ dK\     SK2      du:   j 

where Pi_2 = IdXdY\F\;i^ are the independently con- 
served power flows of the two interacting fields and 
L = l-JJ dXdYfx J = E„=i,2 / / ^drde Im{F*dgFr,) 
is the orbital angular momentum integral.   Here r = 
ixX + iyY, J = En=l,2l^ni^xdx+tYdY)Fn-C.C.]/i2i). 

ix,iY,iz are the unit vectors along X,Y and z axes. 
The conservation laws 9,X = dzPi^2 = 0 follow dir- 
ectly from the Hamiltonian nature of our model com- 
bined with invariance of Eqs. (2) with respect to ro- 
tations in the (A", F)-plane and to the two phase shifts 
(Fi,F2)^(Fie*^SF2e*^^). 

To formally derive Eq. (3) and verify its applicability 
to the stability of spiralling solutions of Eqs. (1), we ad- 
opt the following approach: first, we prove, both analytic- 
ally and numerically, that stationary, w = 0, dipole-mode 
soliton solutions of Eqs. (2) can be smoothly continued 
along w; second, we derive an expression for the eigenval- 
ues governing stability of this solution and numerically 
verify change of stability at Do = 0; third, we discuss 
applicability and generalization of our results for other 
cases and models. 

-1.0 0.6 -0.4 0.0 

FIG. 1. Diagram showing region of existence and stability 
of the spiralling solutions in the (KI , K2) plane, for different 
values of w. Interchanging Ei and E'2, one can plot a sym- 
metric diagram in the region K2 > KI- Inset shows Do = 0 
lines corresponding to w = 0, 0.02, 0.03 and 0.04, which are 
plotted from left to right respectively. Do = 0 lines marked 
by arrows correspond to w = 0. 
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It has been previously ^tablished that stationary 

dipole-mode solitons and rotating dipoles [4,5], bifurc- 
ate from the scalar fundamental soliton solution, Fi = 
Ao(r = ,/WTY^), Fa = 0, for certain values of («i, K^). 

Linearization of Eqs. (2) near this soliton leads to a fac- 
torizable eigenvalue problem. The modes of the excita- 
tions of the Fi component are related to the eigenstates 
of the operator a| -|- af, - KJ - 1/(1 -|- A^), which has 
eigenfunctions of the form /m(r)e='=*'"*, TO = 0,1,2,.... 
Scanning the (KI, K2)-plane, one can show that the scalar 
soliton always remains stable, but that there are special 
lines, where eigenvalue corresponding to Fg eigenstates 
with a particular value of TO cross zero. That correspond- 
ing to TO = 1 marks the boundary line, (KI^, «2C), where 
dipole-mode solitons bifurcate from the scalar soliton, see 
Fig. 1, thus the weak Fa component of the emerging 
two-component solutions can be seen as a field guided 
by the strong Fi component. To obtain expressions for 
the bifurcating solutions we use asymptotic expansions 
Fi = Aoir) + Oie% F2 = €Bi(z,r,$)+ 0(€% where 
e < 1 measures distance from the bifurcation line. As- 
suming u ~ e^ one can show that eBi = /(r)(o+(2)e** + 
o_(^)e~**), where /(r) vanishes at zero and infinity and 
o-t obey 

:.idza.± = a±(a\a±f + 0\a^f) ± oja±. (4) 

The self- and cross-phase modulation constants a, (3 can 
be found only numerically. The term in w originates from 
I in Eqs. (2). 

The solution of interest to Eqs. (4) is: 

a^ — p^ ^ ' 

where «2 = (wa - K2C) ~ €^.   This solution exists for 
Ka > 0 and in the w-interval 

,K2(/3- 

13+a < w < 
13 + a m 

where 0 < (a - /?)/(« + p) <,!. For w = 0 it describes 
stationary, and, for w 7^ 0, rotating or spiralling dipote. 
At the boundaries of its existence (6) this solution is a 
vortex solution, with either a^^ or a_ equal zero. 

Thus we have demonstrated analytically that a 
spiralling solution is parameterized by its frequency w 
and, therefore, derivatives 4,Pi,2, d^L indeed exist. 
Note that equations analogous to (4) have been also de- 
rived in [4], but this link between the stationary and ro- 
tating dipoles following fi-om them was not discussed. 
Several other new and important consequences of these 
equations are presented below. 

To find spiralHng solutions arbitrary far fi-om the bi- 
furcation boundary we have solved Eqs. (2) with 5j = 0 
using a quasi-exact numerical technique based on a New- 
ton method. We obtained such solutions throughout the 

region bounded by the Unes KI,2 = KIC,2C and m = wa in 
the (Ki,Ka) plane, see Fig. 1. By symmetry, correspond- 
ing solutions with Fj and Fg interchanged exist in the 
mirror-image domain Ka > Kj. 

For Ki^a values far enough from Kic,ac, the Fi field de- 
velops two strong intensity peaks overlapping with those 
of the Fa dipole. In this region a spiralling structure can 
be interpreted as a dynamical bound state of two weakly 
overlapping single-hump vector soUtons [3]. Thus our res- 
ults indicate that the spiralUng soUtons found in [3] and 
the rotating dipole (or propeller) solitons [4,5] belong to 
the same soliton family. 

Having established existence of stationary solutions of 
Eqs. (2) parameterized by u and Ki^a we now consider 
their stability. Eqs. (4) predict that'both spiralling di- 
poles and vortex solutions are stable. However, these 
equations do not capture possible instabilities due to an- 
gular harmonics with |TO.| ^ 1 and are only valid ctee 
to (KicjKac). The straightforward method to study sta- 
bility of the spiralling solution Fi,a = Fis,as found from 
Eqs. (2), is to set Fi,2 = Fi,,2s(X,V) + (uifl(X, Y)e^^ + 
iwi^2{X,Y)e^' + c.c.) and linearize Eqs. (2) assuming 
that ui,a,wi,2 are small. The next step is to find the 
spectrum of the resulting eigenvalue problem Ju = Xu, 
where « =iui,U2,wi, Wif. The explicit form of of the 
operator J is too cumbersome to be presented here, and 
reliable numerical analysis of its spectrum is a formid- 
able computational problem in its own right. Therefore 
we will rely in what follows on a combmation of analyt- 
ical technique and direct numerical modelling of Ens 

We have undertaken extensive numerical modelling of 
Eqs. (1), initiaHzed with our computed spiralling solu- 
tions with small added noise. For various values of KI^ 

and w, we observe unstable behavior in the vicinity of the 
line «i = K2. The unstable d3mamics was monitored by 
plotting the z-evolution of the powers Pi 2 and angular 
momentum L, see Fig. 2. Any instability resulting in the 
radiation of energy leads to the decay of these quantit- 
ies, because we used absorbing boundary conditions on 
the perimeter of the computational window, where the 
solitonic field is negligible. Pig. 2 shows several such 
plots for Ka = -0.7 and several values of KI.   Pj^a, L 
are conserved for KI > 0.65, but, clmet to the line 
«i = K2, their evolution indicates shedding of radiation 
with suteequent stabilization at new stationary levels. 
Corresponding volume plots are shown in Pig. 3. 

We interpret this as an intrinsic instability of the 
spiralling solutions. Because wi^a and u parameterize 
a particular solution, not the system as a whole, they 
can change during the evolution of an unstable solution. 
Therefore, as Pi^. 2,3 illustrate, unstable spiralhng solu- 
tions with given values of Pi,2 and L can evolve into 
stable spiralling solutions carrying different powers and 
angular momentum, plus some non-solitonic radiation. 
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FIG. 2. z evolution of Pa and L. KI = -0.7. Solid, dotted, 
dashed and dash-dotted lines respectively denote, n,\ — —0.63, 
-0.670, -0.675 and -0.680. 

FIG. 3. Volume plots showing instability induced dynam- 
ics of l^^il (top) and \E2\ (bottom) for initial condition cor- 
responding to Ki = -0.68, K2 = -0.7, w = 0.04. One can 
observe an instability induced increase of the frequency to 
w ~ 0.065. Surfaces plotted correspond to |.Ei,2| = 0.5. 

By numerically computing the properties of whole fam- 
ilies of spiralling solutions we have been able to evaluate 
the determinant DQ given by Eq. (3). We find that it 
does indeed change sign at the onset of instability. Z'o 
is positive in the region where numerical modelling of 
Eqs. (1) indicates stable spiralling, and negative in the 
region where unstable dynamics is observed. We now 
prove that change of sign of JDQ is a sufficient condition 
for the existence of instability. To derive this criterion 
formally we solve the eigenvalue problem Ju = Aw, as- 
suming that |A| is a small parameter, and taking u as a 
superposition of the neutral (or Goldstone) eigenmodes 
of J [11]. These neutral modes can be found by apply- 
ing infinitesimal symmetry transformations to the soliton 
solution. In our case the two phase symmetries gen- 
erate the neutral modes u^^ = (-/mFis,0, i?eFis,0)^, 
^02 = (0,-JmF2s,0,i?eF2s,0)^, while the rota- 
tion symmetry in the (X,y)-plane generates ue = 
d0{ReFu,ReF2s,IniFis,ImF2sV. Thus we set u = 
Ucr = Ciw^i+C2W^2+C3tt9+0(|A|), where Ci,2,3 = 0{l) 
are some constants which can be found at higher order. 
Developing perturbation theory up to the fourth order in 
|A|, (analogous to the theory described in [11]) we have 
found that eigenvalues corresponding to Ucr are given by 
A2^ = -Do/Di + 0{\\cr\'^). The expression for Di is 
quite cumbersome, but can be deduced from the corres- 
ponding two-parameter formulae given in [11]. Provided 
Di is finite, our expression for A^^ formally demonstrates 
that spiralling solutions always have at least one unstable 

mode in any neighborhood of Do = 0. Direct modelling 
of Eqs. (1) indicates that Do = 0 marks the first in- 
stability threshold met as spiralling solutions are tracked 
in parameter space (see Fig. 1) from the bifurcation line 
{KIC,K2C), where they emerge towards the line KI == K2- 

Our expression (3) for Do is in fact a new generalized 
form of the Vakhitov-Kolokolov criterion [11,12], incor- 
porating the angular momentum integral. This is a direct 
consequence of the need to include the rotational mode 
ug in the derivation of DQ. The relevance of this neut- 
ral mode in our case can be seen by noting that Eqs. 
(4) are invariant with respect to the two phase shifts 
{a+,a-.) -^ {a+e''^-'+''^,a-e'^'-''''). The phase </.2 is the 
same as previously introduced for Eqs. (2), but the phys- 
ical meaning of tp is an angle of rotation in the {X, Y)- 
plane. The solution o± = 0, corresponding to the scalar 
soliton, is itself rotationally invariant. For the pure vor- 
tex solitons any change of ^ can be mimicked by a shift 
of (j)2 ■ Thus for these two classes of solution rotational 
symmetry is not broken and so the corresponding neut- 
ral mode is absent from their spectra. This can be easily 
verified by direct linearization of Eqs. (4). The dipole 
solution with both a± ^ 0, however, breaks rotational 
symmetry and therefore acquires an extra neutral eigen- 
mode, which in turn implies an additional dimension in 
the determinant Do- 

In conclusion, we have presented and proved a new 
form of the Vakhitov-Kolokolov criterion which incor- 
porates the angular momentum integral and is gener- 
ally applicable in Hamiltonian systems exhibiting break- 
ing of the rotational symmetry. We have demonstrated 
that this criterion correctly predicts instability thresholds 
for spiralling solutions of the saturable vector Kerr 
model, which describes recent experimental observations 
in photorefractive media. 
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Abstract:  We consider the oscillations and associated resonance of an 2D optical beam under 
periodic and random modulations of nonlinear refractive index. For random oscillations we 
calculate the mean growth rate for the beam width. Analytical results are compared with the 
numerical simulations of the full 2D NLS equation with modulated in space coefficients 
©2002 Optical Society of America ' 
OCIS codes: (190.0190) Nonlinear optics 

Recently propagation of 2D optical beams in the layered in longitudinal direction and homogeneous in 
transverse direction nonHnear media has been studied [1]. For rapid periodical variations of the nonlinearity 
of medium it was shown the possibility of stationary propagation of the beam. This is the analogue of the 
existence of DM soUtons in the dfepersion-managed fibers. 

The purpose of this communication is to analyze the propagation of 2D beams in periodic and random 
nonhnear media with a parabolic-index. This problem is also interesting for the analysis of dynamics of a 2D 
Bose-Emstem condensate in harmonic trap potential with oscillating in time atomic scattering length [2]. 

The equation governing the evolution of the slowly varying envelope of the optical field in the waveguide 
with quadratic transverse profile of the linear part of the refractive index and periodic modulations of the 
nonlinear part of index is in the dimensionless form 

iE^ + AE + V(x,y)E + n{z)\EfE = 0, (1) 

where V{x,y) = -(a;^ + y%n{z) = 1 + e(z); and for periodic variations e(z) = eosin(O^), for the random 
modulations the mean zero white noise model is assumed i.e. < c >= 0, < e{z)€{z') >= 2cP-6iz - z'). 

A number of methods can be employed to investigate the dynamics of a 2D optical beam under variations of 
the^nonhnearity of medium. One of the simplest to apply is the averaged Lagrangian approach. According 
to tins method we take the Gau^ian anzatz for the field [3]. 

uir,z) = A(z)exp(-^^+'-^i^ + m,)l (2) 

To derive the equations for the beam parameters Aiz),a(z),hi^),<f>{z) one should calculate the averaged 
Lagranpan L. The Euler-Lagrange equations for the functional Liz) lead to the following equation for a: 

«- + «=^= (3) 

where Q(z) = Q(l + e(z)),Q = 2-N,e = iV6o/(2 - N) and z -^ ^z. For the focusing nonhnearity n(z) = 
1 the variational approach predicts the critical threshold for the collapse Nc = 2,N = f lupdajdw/f^) 
compared with the exact value JVc = 1.862. ' J 1  1   •   »/v- JJ 

We comment that, if the initial condition is close to that of the ground state (Townes) soliton \N - N \-^ 
e < 1, then the modulation theory of [4] leads naturally to a modulation equation of the same form as the 
above, where agam the constant 2 is replaced by the critical value 1.862. The qualitative types of beha:%TOr 
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exhibited by the above equation do not, of course, depend on the exact values of the constants, since all such 
constants can be scaled out. 

We begin our analysis of the Eq.(3) by constructing the action-angle variables. Of course any two dimensional 
Hamiltonian system can always be reduced to quadrature, but the above system is particularly nice because 
the action-angle variables can be expressed in terms of elementary functions. First we note that Eq.(3) is 
Hamiltonian: 

ffo(«.,a) = ^ + [/(a),f/(a) = y-f^. (4) 

For A'^ < 2, Q > 0 the motion of the effective particle is bounded, and bounded away from 0 due to the "an- 

gular momentum" barrier ^. If the energy is E then the width oscillates between amin — y E - y/E"^ - Q 

and amax = \/E + SJE"^ - Q. The minimum of the potential [/ occurs at a-c = Q^^^, with a minimum energy 

of E = Uc — N/Q. When N >2,Q <0 there is no local minimum, and there exist solutions for which a —> 0, 
corresponding to collapse of a beam. The solution for Q > 0 is 

a{z) = ^JE+VE^-QSH^^ + A^)- (5) 

The action variable J is equal to: J = ^{E - y/Q). The bottom of the potential well, E = ^/Q, corresponds 
to J = 0. Since the energy is linear in the action, E = 2 J+v/Q, the frequency of the unperturbed oscillations 
is constant uj = dE/dJ = 2. This can, of course, also be seen directly from the solution given in Eq. (5). The 
Hamiltonian for the perturbed problem is given by H = Ho + e{z)V, V{a) = Q/(2a^). 

The perturbed equations of motion are given by dJ/dz = -e{z)dV/d0, dO/dz = 2 + e{z)dV/dJ. 

Let us consider perturbations €{z) which are periodic in space. For simplicity we discuss the case e{z) = 
sin(Qx), though this can easily be generalized. To analyze the resonances of the beam under such per- 
turbations we use the multiscale expansion method. We introduce the slow space Z = ez and assume a 
multiple-scales ansatz of the form 6 = e^^^z, Z) + ee^^\z, Z) + ..., J = J(°)(0, Z) -V eJ^^^ + eJ^^\z, Z) -f ... 
The solution to the evolution on the fast scale is obviously O'^^'^ =2z + ^,J = constant. At the next order 
we find the slow Hamiltonian, 

ff(TS>\-l- r sm(nz)dz  
^ '   '     2TTJO   (2J + Qi/2 + 2Ji/2(j + Qi/2)i/2sin(22 + *))' 

It is clear that we have a resonant response whenever ii = 2n, and the period of the perturbation is 
commensurate with the natural period of the waveguide. Note that, even though this is a nonlinear oscillator 
the period is independent of the amplitude. The effect of this is that there is no "detuning" from the 
resonant frequency as the amplitude increases. Of course when J becomes large and the width oscillations 
become significant we no longer expect the averaged Lagrangian ODE's to provide an accurate description 
of the dynamics of the beam width. The first (nontrivial) resonance occurs for fi = 2. In this case the slow 
Hamiltonian is given by 

jv cos(c^)J^/^ , . 
^   '^~      2(J-fQl/2)l/2Ql/2- ^   ' 

Note that the line # = -7r/2 in a phase plane is invariant under the dynamics, and along this line J evolves 
according to 

dz 2(J + Ql/2)l/2Ql/2- ^   > 

This solution corresponds to a resonant driving, where the variations in the scattering length reinforce the 
width oscillations. It is clear that for large z the action grows linearly, J oc t/2Q^^'^ and thus amplitude of 
oscillations grows like a ~ y/z. It is also clear from the phase portrait that all orbits for which $ ^ 7r/2 are 
asymptotic to the invariant manifold $ = -7r/2, so for generic initial conditions one expects that the width 
will grow like a ~ y/z. There is, of course, also the solution $ = 7r/2 in which the variations in the scattering 
length are anti-resonant with variations in the width of the beam, and act to damp the width oscillations. It 
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Pig. 1. (a) - Oscillations of the beam squared width at the resonant point; (b) - the energy of the beam 
width oscillations under random perturbation versus propagation distance z for a = 0.04 and JV = 1. 

is easy to see that when # = w/2 the action J goes to zero in finite distance. Since generic initial conditions 
are asymptotic to # = -^/2 the # = 7r/2 solutions are unlikely to be observed experimentally, though it 
is possible that they could be reaMzed with some kind of control. The graph in Pig.la depicts the beam 
squared width versus propagation distance for the ODE (dotted Hne) and PDE (solid line) simulations at 
the resonance point Q = 2,N =1. The agreement between simulations of the full PDE and ODE is very 
good for distances less than 30 or so, though for distances between 30 and 40 the oscillations in the energy of 
the PDE are smaller than the analogous oscillations of the ODE, probably due to radiative damping Next 
resonance occurs at fl = 4. Again it is easy to see that the line # = r/2 is invariant under the dynamics. 

For the investigation of the beam evolution under random modulations of the nonlinear refractive index 
an interesting quantity which can be calculated is the mean distance to achieve a given distortion. Prom the 
ODE point of view this problem is equivalent to the problem of the mean distance to achieve the given level 
of the oscillations amplitude in the effective potential. We obtain for the distance to pass from the bottom 
of the potential well where the action JQ = 0 to the state with the action J 

J = 
VQ(e« - 1) a^z 

2-e« 

or in the terms of the total energy 

E = 
^/Qev 

■ev m 
Prom the above it is easy to see that the expected distance for the width of the beam to grow to infinity - the 
mean distance for the beam to break up - is given by z* = 2ln2/<T^. In Fig. lb we compare the theoretical 
expression Eq.(9) (dash line) with numerical simulations of the full stochastic NLS equation (solid line) and 
ODE (dot line) with fluctuating scattering length in the case where a = 0.04 and iV = 1 0 The energy has 
been numerically calculated for the locahzed part of the beam wavefunction. We observe good agreement 
between the theory and nuinerical simulations for ^ < 80. 

Thus we have shown that the optical beam width in periodic nonUnear media with parabolic transverse 
profile of the refractive index has resonant oscillation and the growth rate of the beam distortion is found 
This result can be also applied to evolution of 2D BEG under <Mcillating atomic scattering length 
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Abstract: We present an analysis of the properties of dark spatial solitons when the paraxial 
restriction is removed. The results reveal modifications in the soliton phase period, width and 
transverse velocity. 

© 2002 Optical Society of America 
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Non-paraxial effects play a fundamental role in the dynamics of optical solitons in nonlinear media. In 
previous work, the effects of non-paraxiality on beam propagation in self-focusing media have been addressed 
using a scalar approach based on the non-paraxial nonlinear Scrhodinger equation (NNSE) [1, 2, 3] 

where ^, C and u are the transverse and propagation coordinates and the field amplitude, respectively, 
obtained from their unsealed counterparts x, y and E through 

z ,     \/2x ,.  ., HCU^LD 

LD UJQ V     '^o 

Wo is the waist of a reference Gaussian beam with diffraction length LD = kwll2, k = noujc, no is the 
linear refractive index and n^ is the Kerr coefficient, K = l/{kwo)'^ is a measure of non-paraxiality and the 
plus (minus) sign corresponds to the focusing (defocusing) case. Earlier studies uncovered the exact non- 
paraxial bright soliton solution, its detailed physical interpretation[l] and general analytical properties of 
the solutions of the NNSE[2]. This proved fundamental in the development and testing of new non-paraxial 
numerical techniques[3]. A full equivalence with the nonlinear Helmholtz equation has also been noted[4]. In 
this work, we present an extension of previous results to defocusing nonlinear media. 

Highly non-paraxial situations, defined in terms of the breadth of the angular spectrum, can arise in two 
distinct contexts[2]: (a) the intrinsic spatial bandwidth of a single axial beam and (b) in non-axial configu- 
rations where one or several narrow-band components propagate or interact at modest angles relative to the 
reference direction, or to each other. The first kind of non-paraxial scenario described is normally attributed 
to large field gradients and, for example, introduces a fundamental limitation to high order soliton solutions 
of the NSE[2]. It can also off-set the paraxial collapse of self-focusing beams in (2+l)D propagation[3, 6, 7, 5]. 
However, it has been shown that other mechanisms, such as polarization effects[5], can play a fundamen- 
tal role and make it more difficult to isolate effects due only to non-paraxiality. The second context of 
non-paraxial effects presents an, arguably more important, intrinsic limitation in the paraxial description of 
beams. Off-axis NNSE solitons have been shown to possess invariance under rotational transformation given 

^^ f =4.±ZL=      c = =^££^ (3) 
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and 

«(I,C) =exp ve : + 
VI + 2«F2     2K V      ^1 + 2KV^ 

1 c «'(r,c'), (4) 

where the rotation angle in the original (unsealed) coordinate system is gi%^en by sec0 = ^1 + 2KV^ In 
the appropriate paraxial limit, KV ^ 0, the well known Galilean transformation invariance of the NSE is 
recovered. These results, in conjunction with analytical paraxial techniques[8], have been used to predict the 
asymptotic behavior of non-paraxial solitonsp]. 

We report here the exact non-paraxial dark soHton solution of the NNSE: 

«(|,C) =Mo1^tanh 
««o 

c- «oF 

^ 4«u| • 2K«|F2 
+ iF\ 

X exp 4K«0 

(5) 

where wo is the background amplitude and F and A are real constants with A^ + F^ = I The case A = 1 
corresponds to the black soliton solution, whereas for 0 < A < 1 grey soliton solutions are obtained from 
(6). In the hniit K -^- 0 the general dark soliton solution of the NSE is obtained 

vii,0=uo{Atmh[uoA(^-uoFQ] + iF]exp[-m^C]. (6) 

By comparing the paraxial and non-paraxial solutions, equations (6) and (5), one finds that for the black 
sohton^c^e F = 0, a correction in the nonlinear phase variation is introduced in the non-paraxial solution 
as 4ft«5 IS mcreased, which proves to be a general result when non-paraxial effects are included [1] For grey 
sohtons both the soliton width and the transverse velocity are modified when the effect of non-paraxiality 
is included m the analysis. Whereas the soliton width is given by mA in the paraxial case, its actual value 
m the full non-paraxial framework is found to be 

Moreover, the transverse velocity of the grey sohton is modiied from its paraxial value mF to 

mF 
F = 

■v/l-4«;«|-2«;u|F2" 

(7) 

(8) 

In the paraxial case, dark soliton solutions of the type described in (6) exist for arbitrary values of the 
background intensity «§. This is not the case when non-paraxial effects are included in the analysis R-om 
equation (5), one finds that propagating solutions only exist for 4KU| < 1. Using the transformations (2) 
this condition can be written as 2^1 < m, where / = \Eof is the unsealed background intensity. Thus, dark 
sohtons can only be found when the nonlinear phase shift is slower than the linear phase term exp(-jkz) 
In the defocusmg case, the nonUnear phase is of opposite sign to that of the linear phase shift; this result 
can be interpreted as dark solitons only existing on top of travehing wave type background. Grey paraxial 
sohtons jm for any real value of the parameter F provided that A^ + F^ = 1. When non-paraxiality is 
accounted for, the value of \F\ is limited by the condition \F\ < \F\^„^ when 4K«| > 2/3, where 

(9) 

which reveals the physical limit imposed on the fastest possible transverse variation on the moving back- 
ground. ^ 

The generation, propagation and interaction of dark spatial solitons in the non-paraxial framework can be 
studied by usmg recently developed numerical techniques [3]. Figure 1 shows the propagation of two dark 



NLMD23-3 
unamorro-rosaaa et.ai., iNon-paraxiai oarK soiitons j\ijuvv/2uu:i  i^age     a 

0 03°°^ 

0 03°°^ 

Fig. 1. Evolution of a pair of dark soiitons with A = 0.2, «o = 10 and K = 0.001 under the NNSE assuming 
initial conditions corresponding to the exact non-paraxial dark soliton (top) and its paraxial counterpart 
(bottom). 

soiitons with parameters A = 0.2, UQ = 10, K = 0.001 and an initial (normalized) separation of 10 under the 
nonparaxial evolution equation (1). The top subfigure shows the field evolution when an initial condition 
corresponding to the exact nonparaxial soliton (5) is assumed, whereas the bottom subfigure shows the 
evolution from an initial condition corresponding to the paraxial soliton (6). In this latter case, the soiitons 
evolve to the actual shape given by (5) in a fashion similar to that found for bright soiitons [2]. 

This work has been funded by Junta de Castilla y Le6n, project number VAl 10/02. 
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We propose new planar X-junctions and multi-port devices written by spatial vec- 
tor solitons, which are competed of two {or more) nonlinearly coupled components 
m Kerr-type media. Such devices have no radiation losses at a given wavelength. We 
demonstrate that, for the same relative angle between the channels of the X-junctions, 
one can vary the transmission coefficients into the output channels by adjusting the 
polarizations of vector solitons. We determine analytically the transmission proper- 
ties of the proposed devices. 

©2002 Optical Society of America 
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Optical X-junctions and couplers are devices that have two waveguide 
channels with a weak interaction between them, so that they can swap 
signals after some distance^. In more general terms an X-junction or a 
coupler is a four-port device with two inputs and two outputs arranged 
so that the output signals depend on the parameters of the input sig- 
nals (e.g., wavelength) and some internal controDing parameters (e.g., 
coupling coefficients). 

It was suggested that two colliding spatial solitons, that are formed 
in a nonlinear Kerr-type medium, induce a change of refractive index, 
and this can be viewed as a linear X-junction or coupler^ (see Pig. 1)! 
Such a waveguide device can be permanently set after its creation in a 
photorefractive medium^. The transmission characteristics of the coupler 
depend on the soliton intensities, and on the angle of incidence between 
solitons*. On the other hand, the radiation ICBS^ are completely absent 
at a given wavelength. In this work, we extend the analysis of soliton- 
written devices to the case of vectorial, or multi-component, interactions. 
This extension allows us to increase significantly the flexibility of the 
device as the transmission coefHcients become multi-parameter functions 
of the angle between the channels and the two polarization angles. In 
previous works, only one of these parameters has been used. 

We consider the interaction dynamics of "vector solitons", which are 
comptBed of two or more incoherently coupled components in a medium 
with Kerr-type self-focusing nonlinearity Such solitons can be observed, 
for example, in photorefractive crystals^. The soliton evolution along the 
propagation direction can be modeled, in the parabolic approximation, 
by a system of nonlinear Schrodinger equations for the set of modes^ 
which are coupled through the change of refractive index. In the case of 
(1+1)-D spatial geometry, the normaUzed equations are 

z  Output 2 
4 

Output 1 

PIG. 1: Spatial distribution of refractive in- 
dex created by two colliding vector solitons 
with amplitudes n = r2 = 2, velocities 
/*i = —M2 = 1, and relative polarization an- 
gle tan-i(l/p-) = 5r/3. 

.^m    ,   IdH,, 
dz       2 9a;2 + Hx,z)lpm = 0, 
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where Vm is the normalized amplitude of the m-th component (1 < m < M), M is the number of components, z is 
the coordinate along the direction of propagation, and x is the transverse coordinate. We assume that the change of 
refractive index is proportional to the total intensity, 

M 

I{x,z)=Y.\i'm{x,z)\\ (2) 

Such an approximation is valid, in particular, for the description of photorefractive screening solitons in the low- 
saturation regime. 

It was demonstrated that Eqs. (1) are completely integrable by means of the inverse scattering technique (IST)^''^ 
and, therefore, any localized solution can be represented as a nonlinear superposition of solitary waves. Specificallj', 
the solution for N interacting bright solitons can be found by solving a set of auxiliary linear equations^, which we 
present in the following form, 

E\~^                "m'm ~T'KXnm^nlKXn'm'^nl „ fo\ 
2^  U„'m kn+k\  " -Xnme„. {6) 

Ti'=lm' = l " 

Here e„ = exp(/3„ +n„), /?„ = r„(x - n„z), 7„ = n„x + [rl - nl)z/2, k„ = r„ + iii„ are the complex soliton 
wavenumbers (r„ > 0 with no loss of generality), and the complex numbers Xnm are arbitrary constants. The A''- 
soliton solution of the original Eq. (1) is then obtained by adding up of all the Unm functions corresponding to a given 
component number m, 

N 

ll)m{x, Z) = ^^ Unmix, z). (4) 
n=l 

Finally, a linear soliton-written device is characterized by the refractive index profile that is fixed according to Eqs. (2) 
and (4). As a matter of fact, the functions Unm form a full set of localized modes of the corresponding hnear Eq. (1), 
if the laser frequency is not changed. Below, we use this property to calculate the transmission properties of soliton- 
written devices. 

We consider the situation when the input and output coupler channels are formed by well separated solitons. Then, 
solutions of Eqs. (3) can be expressed as decompositions over the profiles of individual, non-interacting, solitons, 

«^n,=I:^^„V'^ch{^,[a:-x±-M.•(^-^±)l}e^^^ (5) 

where the signs - and + correspond to the input (at z = z^) and output (at z = z'^) channels, respectively, and x^ 
define the soliton positions. 

In order to find the complex coefficients V^^p we analyse the properties of original Eqs. (3), . First, we note that 
only N modes are linearly independent, since 

N N 
EUn'mi        V~^     Un'm2 /f>\ 

k   +k*   " ^""" ^ k   + k*,' 
„'=1     " ^    "' n' = l     " ^    " 

for arbitrary n, mi, and m,^. Second, we use the fact that for well separated solitons |e„| > |e„/|, if Xn <. x„>, and 
obtain the following relations: 

M N       jj± 

S^{n,j) ^ 53 U^m,^{xnn,'r = 0, xt « xf,        St{n,m,j) ^ Y. fc^ffr = 0- 4 » ^. 

I^.^.MCfyr,.     c^.J-lll^^l^^.     2S?o,»,,, + c?[i.sJ(«-)]=o, 
P) 

where 

4=*= — R* — n   r* "^ T* /!='== 1    R^. = 0 
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Using these equations, one can calculate all the complex amplitudes XT^,., and the soliton shifts that are expressed 
through the constants Cf. Additionally, the input and output polarizations of vector solitons. can be found with the 

If       9 ?o ^^ ""*^ ^^^- ^® "°*^ *^** ™ ®*'^"®'" ^*"^^^^ **»« polarization rotation was only calculated for two-soliton 

A multi-port linear device can be conveniently characterized by 
the complex transmission matrix T. By definition. 

N ' 

^=:ETrfJ'^. (9) 

where F/= are the mode amplitudes at the input (-) and output(+) 
channels created by the soliton number j. On the other hand, 
according to Eq. (5), Af = U^^. should satisfy the relation (9) for 
arbitrary n and m, and these conditions can be used to uniquely 
determine the transmission matrix coefficients. 

We now apply the above general analytical results to the de- 
scription of an X-junction, which is created by two colHding vector 
solitons {N = M = 2). An example of refractive index distribution 
in such planar device is shown in Fig. 1. When only the first input 
channel is iUuminated, i.e. V^ = 0, then the power in the output 
channels can be found in a simple analytical form. 

0.1 0.2 0.3 0.4 
Relative soliton polarization angle, % 

0.5 

PIG. 2: Power splitting between the two out- 
put channels vs. the relative polarization an- 
gle tan^^(l/p^) of two vector solitons, with the 
wavenumbers being the same as in Pig. 1. 

^1    _ i/p    i2 p= = \Tn\ 

where 

iPi 

1 + W .+ 12 » 
SL = 111^2^12^ £2 

n' 
ra 1 \Plf 
ril-f-lp+p , (10) 

Fig. 2. The mmvmum cross-talk is observed in the case of scalar solitons. On the other hand, solitons with orthogonal 
polarizations create ^ero cross-tam intersections. By tuning the relative soliton polarization, it is possible to obtain 
aiiy d^ired power splitting in between the two extremes. For example, the junction shown in Fig. 1 has a 1:1 splitting 
ratio, despite the fact that the spatial distribution of the refractive index is asymmetric : ^       ^ 

In conclusion we have demonstrated that the X-junctions formed by colliding vector solitons in Kerr-tj^e media 
can be used as ideal single-level optical integrated circuits, that can share the signal in any desired proportion between 
output channels. We also found that it is pcKsible to construct zero cross-talk waveguide intersections. Such devices 
can be deigned to have no radiation losses at any given wavelength. The parametere of arbitrary soliton induced 
multi-port devices can be optimized using solutions of coupled algebraic equations. The latter can readily be obtained 
numerically using our analytic results. NA acknowledges support from the US Army Research Office - FE. 
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We demonstrate two-component generation of one or three dislocations by equally 
charged input vortices, and two or four ones by oppositely charged singularities. 
The vortex 3D trajectories are calculated when the beams interact due to fiequency 
conversion. 
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Attention of many researches is attracted to optical vortex creation, interaction and propagation in media with 
different nonlinear properties'-^. The number and position of created dislocations depend on the phase difference, 
amplitude ratio, and distance between the initial singularities. In quadratic media, dislocations can be transformed 
from one frequency to another. In particular, they can be converted to the second optical harmonic^"^ and to the 
sum frequency wave^. Recently, d3Tiamics of dislocations created by a linear superposition of two equally charged 
spatially separated vortices was investigated'^. 

We consider a more general case of three-wave vortex generation by two separated dislocations. In the presence of 
parametric coupling, each wave has its own vortex, and the one which is transferred from another component. As a 
result, new dislocations appear in the beam profiles. Depending on the amplitude ratio and phase difference between 
the input vortices, a different number of dislocations can be created. Necessary conditions for generation of the fixed 
number of new vortices are specified. 

In particular, a superposition of two equally charged vortices creates either one or three singularities. Fig. 1. On 
the other hand, either two or four singularities are generated by oppositely charged vortices, and these dislocations 
are located on hyperbolic curves. In case of parametric interaction between the input beams, the number of generated 
dislocations and their coordinates change along the propagation direction. We analyze the 3D dynamics of such 
dislocations in the cases of perfect phase matching, or large phase mismatch. The original analytical theory of 
coupled singularities is developed using a weak diffraction model. Numerical simulations of parabolic equations for 
the slowly varying beam envelopes are also performed. The excellent agreement with the analytical predictions is 
obtained. 

We study a three-wave interaction of diffracting op- 
tical beams with the carrier frequencies W3 = wi -h u'2 • 
At the input, vortex dislocations are superimposed on 
top of Gaussian beams. 

(x-x,.)^ + !/'i 
\mj 

Ajo = Ej [x - Xj + isign{m.j)yy^' e (1) 

• 

(a) (b) (c) (d) (e) 

FIG. 1: The interferograms of vortices generated by plus-plus 
dislocations nested in the two-component beams at different 
propagation distance: (a) the input, (b) buildup of two new 
dislocations, (c) three singularities, (d) two vortex disappear- 
ance, (e)again single dislocation. Data of numerical simulation. 

where Aj are the slowly varying amplitudes, Xj are 
the initial coordinates of field singularities, rrij are the 
vortex charges, and Wj are the beam widths. 

In the following, we study parametric interactions 
between the vortices nested in the sum-frequency (wa) 
and difference-frequency (w2) components under the 
presence of high-intensity pump wave with the fre- 
quency wi and amplitude Ei :§> £^2,3-   It should be 
noted that this amplitude relation is preserved at arbitrary distances in the nonlinear medium, as follows from the 
Manley-Rowe relations *. 

In order to reveal the characteristic features appearing due to the superposition of vortices in the sum- and 
difference-frequency waves, we consider the case of a very wide pump beam without dislocations, when mi = 0, 
wi > 1, and therefore Ai ~ Ei. If the propagation distance is smaller than the diffraction lengths of all 
the interacting waves, z < /d^   =  kjwy2, the diffraction terms can be omitted from the dynamic equations. 
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Then, the vortex dj-namics can be approximately 
modelled by only two coupled equations 

-gj = -mAsEte-'^'^^ 

COSq; 

-N, 

0,90    QM    0,S4    OJS    0.S8    1,00 

(2) 
where 7^- are the nonlinear coefficients, and Ak = 
h + ^2 - ^3 is the phase mismatch. Similar equations 
TOth Al: = 0 also describe two-wave interactions in 
gyrotropic media and photonic crystals. In ^rotropic 
media two orthogonal Hnearly polarized components 
are coupled ^. In photonic crystals two one-way prop- 
agating beams can be coupled due to Laue diffraction 
^°. Therefore, vortices transform from one component 
to the other one, and compUcated dynamics occurs. 
^ ^Eqs. (2) have an exact analytical somtion tor any component Uo, 
|^2ocos(r^) 4-»(AM2o-272^1^30)sin(r^)/(2r)|, where To = JjrmEi, F = [Ti + (Ak/2W/^ ~ 1/L , is 
the inverse beating length. Positions of new vortex dislocations (x, y) can be determined as zeros of the amplitade 
amSlii'3 w' assume, with no loss of generality, that x, = -x, = xo, and /?, = I3exp(i<p) is the Gaussian 
amplitude ratio. We compliment approximate analytical theory by direct numerical simulations of three-wave f2-H)D 
parabolic equations for the slowly varying beam envelopes ": 

PIG. 2: Left: parameter domains for generation of three vortices 
by plns-pliffi screw dislocations at xo = 0.5 (dark gray area), 
l/%/2 (gray), and 1 (crMshatched). Right: parameter domaiiw 
for generation of four vortices by plus-minus screw dislocations 
at Xo = 0.9 (dark gray) and 1.0 (gray). 

solution       for    ,  any 

-^+iDiA±Ai = -ijiAsA^e -iAkz 
, -^—h tD2A±A2 = az 

Ms 
dz 

ns^a^Ie-*^*^ ^ + iDsA,,As nMA^e ,iAkz 

(3) 
Let us first consider the superposition of equally charged vortices, m^ = mg = 1. Then, the generated dislocation 
coordinates should satisfy the relation 

a;cosh (4a;aro - In^) -f a;cos y. = XQ sinh (4ara;o - In^). (4) 
New     vortices 
through     the 

+ (y - XQ cot (f) 
Either     one 

a;§ sin ^ (p, 
or     three     vortices 

which    passes 
are     created. 

are placed on the circle x 
points (a;o,0) and (-a;o,0). 

depending on the beam separation at the input a;o, the 
amplitude ratio /?, and the phase difference tp. For a 
fixed beam separation, we use Eq. (4) to find the do- 
mains in the {(3,cos(p) parameter space where three 
vortices are generated, and present these results in 
Pig. 2(left plot). Inside the domain the topological 
charges of three vortices alternate as plus, minus, and 
plus. The domain has the extreme point of a beak 
type at cosy>ea; = 4a;| - 1 on the straight Une ^ = 1. 
The domain is invariant with respect to a symmetry 
transformation /3 -^ 1//3. 

In the case of Ak = 0, the amplitude ratio and 
phase difference are ^ = A» taniVoz), (p = tpo- v/2, 
where 0rn = (72/13)^^'^E3/E2. The typical dynam- 
ics of vortex generation is presented in Pig. 3, left 
panel. If the beam separation is supercritical, three 
dislocations can be genera:ted simultaneously [Fig. 1 
and Pig. 3(a)]. Vortex dynamics is modified for out- 
of-phase beams [Pig. 3(b)]. A middle dislocation ap- 
pears because of the diffraction-induced phase mis- 
match <pa = 8z[{D3/wl) -'(Dj/wf) - (Di/wf)] ~ 
0.056^;. We note that the analytical results are in good 
agreement with the results of numerical simulations. 

It should be noted that a behavior of dislocations at 
sum and difference frequencies differ one from another. 
For example, if /3„^s2 > ^m23, then three-vortex gen- 
eration starts eariier and stops later in the difference frequency component. Thus, three-vortex region is wider for 

PIG. 3: Spatial dynamics of the vortices xmder phase matching 
with I3rr, = 1 for (a) <p = IT/2, XQ = 0.7 , (b) y = «■ , a;o = 0.45, 
and under phase mismatch Afc = 10 with (c) <po = ir/2, a:o = 0.7 
for Pmm = 1, (d) Pmm = 2 . SoUd line corresponds to numerical 
simulation Eqs. (3), and dashed Une to analytical solution 
Eq. (4). , 
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/3m 23 = 1, the behavior of coupled vortices is same in both 

i (a) 
1 
1 

1 

,      ^ 

>»o.o 

initially weaker beam. In the degenerate case /3„,32 = 
components. 

In the phase mismatched configuration, the phase 
difference </? varies along the propagation distance, 
and spatial dynamics becomes more complicated. If 
the phase mismatch is large, \Ak\ > FQ, the am- 
plitude ratio and phase difference become P{z) = 
/?mm I sin(Afc2/2)I, ip{z) = ipo- 7r/2 - Akz/2, where 
l3mm. = {'^l2Ei/\Ak\){E3/E2) is the maximum achiev- 
able amplitude ratio along the propagation distance z. 
Strong penetration of the guest dislocation occurs if 
/?m,m is large. The vortex dynamics for Ak = 10 is 
shown in Fig. 3, right panel, for the superposition of 
out-of-phase beams, when three vortices are excited at 
the input, li (3mm. is small, two generated vortices move 
towards the central region, then merge and disappear 
[see Fig. 3(c)]. However, when /?„»„ is large, the middle 
vortex moves towards the host one, and they meet and disappear [see Fig. 3(d)]. 

Let us now turn to the case of two input vortices with opposite charges, ma = 1 and ms = 
created dislocations in weak diffraction model can be found from the following equations: 

(b) 

rt_L 
0.4        0.6 
rz/jt 

0.4        0.6 
rz/it 

FIG. 4: 3D dynamics of plus-minus vortex superposition in the 
difference-frequency wave with xo = 1, Ak = 0, Pm =1, and 
the phase difference (a) (f = 7r/2, (b) (f = 0.2. 

-1. The coordinates of 

xocosh{4xxo -Inf3) -xocosif = xsinh(43;xo - In/?). (5) 

The plus-minus dislocations excite either two or four vortices, which are placed on hyperbolas y'^+2xy cot <p-x^+xl = 
0. We derive the analytical expressions for the boundaries for domain in the parameter space, when four vortices are 
generated, and present examples in Fig. 2 (right plot). Such domains consist of two parts with ^ > 1 and p < 1, 
and an extreme beak-type point appears at at cos(pex = (4x§ - l)i/^/(2a;g). The four-vortex domain completely 
disappears for XQ < Xcr = l/V^. When cosyj < 0, only two vortices are excited for any beam distance and amplitude 
ratio. In the four-vortex domain the topological charges alternate as plus, minus, plus, minus. 

The typical examples of analytical theory are presented in Fig. 4. In the event that cosy> = 0 at the input two 
dislocations always appear [Fig. 4 (a)]. On conditions that cos^ = 0.99 four-vortex generation occurs [Fig. 4 (b)]. As 
cosine of phase difference change sign at the distance Zpj, = ■K/{2T), only two vortices are created at larger propagation 
distance. Contrary to plus-plus superposition (see Fig. 3) the vortex trajectories do not cross anywhere in Fig. 4. 

In conclusion, we have analyzed vortex interaction in the coupled wave beams. Under the conditions of weak 
diffraction, we have developed an analytical description of parametrically coupled vortices in the field of wide low- 
frequency pump beam. The theory was applied to analyze vortex generation by the separated screw singularities with 
either equal or opposite charges. We have found that either one or three, or two or four vortices can be generated in 
these cases, respectively, and calculated the corresponding parameter domains. We have determined the trajectories 
of coupled vortices along the propagation direction under the conditions of phase matching, and large phase mismatch, 
when the input vortices are positively charged. In this case, periodic transformation between one and three vortices 
can occur. We have performed numerical simulations, which confirmed analytical predictions. Our results can also 
be applied to the description of vortex interaction due to coupling between (i) the orthogonally polarized components 
in gyrotropic media, and (iii) the resonantly scattered waves in photonic crystals under Bragg-resonance conditions. 
In all these cases, each wave can contain its own vortex, and the other vortex which is transferred from another 
component. 
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Abstract:   Due to quantum electrodynamical (QED) effects there are nonlinear corrections 
to Maxwell's equations in mcuum. We show that stationary two-dimensional light bullets can 
form, which are unstable and exhibit the possibility of self-focusing collapse 
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Introduction 
According to quantum electrodynamics (QED), the non-classical phenomenon of photon-photon scattering 
can take place due to the exchange of virtual electron-positron pairs. This is a second order effect (in terms 
of the fine structure constant a = ^liwe^hc « 1/137), which in standard notation can be formulated in 
terms of the Euler-Heisenberg Lagrangian density [1,2] 

^EH = eo^ + C(4^^ + 7^^), (1) 

f'TX^ = 20«'^g^V45m|(r5, ^ = l(& - ^B% ^ = cE ■ B, c is the electron charge, c the velocity of light. 
Inn the Planck constant and me the electron mass. 

FVom the Lagrangian (1), we derive the general wave equations for E and B [3] 

and 

c2 dfi 

1 a^B 
c2 dfi 

-VE -/Uo 

V^^ = Ho Vx(VxM)-|-^(VxP) 

(2) 

(3) 

where the effective polarisation and magnetisation in vacuum due to photon-photon scattering induced by 
the exchange of virtual electron-positron pairs are given by (see, e.g., Ref. [4]) 

and 

respectively. 

' P = 2C [2(£2 _ C2B2)E + 7c2(E • B)B] 

M = -2c2f [2(£;2 _ C2B2)B -I- 7(E • B)E] , 

(4) 

(5) 

Light bullet solutions and optical collapse 
We consider propagation between two parallel conducting planes with spacing XQ (i.e., the region 0 < a; < a;o 
IS vacuum surrounded by the plates that, as a starting point, are assumed to be perfectly conducting) We 
assume that only one TE„o mode (n = 1,2,...) is present. To linear order, this gives the fields 

Br 

E, V 

—A COS I I exp[i(&z - ut)] + c.c, 

-ikA sin ( I exp[i(kz - ut)] + c.c, 

iwAsin ( '■ \ exp[i(fe - wt)] + c.C, 

(6) 

(7) 

(8) 
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together with 0 « w^/c^ - k^ - U'^-K'^/X^. Here c.c. stands for complex conjugate, and we have expressed the 
fields in terms of the vector potential araphtude .4, given by A = (0, ^,0), where 

^ = isin [^^ jexp[i(fcz-wf)] + c.c. (9) 

using the radiation gauge ((^ = 0). A nonlinear dispersion relation can be derived by inserting the linear 
expression for the fields into the right hand side of Eq. (3), taking the ^-component of the resulting equation, 
and separating into orthogonal trigonometric functions. From that equation the coefficients in the NLSE can 
be found. 

Assuming that the ampUtude A = A{t,y, z) is weakly modulated, dropping the tilde, we obtain 

where Vg is the group velocity and v'g the group dispersion that follows from the linear dispersion relation. 
The equations can be put in a more compact by changing to a system moving with the group velocity while 
rescaling the coordinates and the amplitude according to 

r = wi/2,    v=ijy/c,    C = y'^/^'p (^ - V) >    "~V ^^^A (11) 

Equation (10) then reads 
.da     d'^a     d'^a     , ,o       „ /^f^^ 

Restricting our analysis to the cylindrically symmetric case, such that a = a{t,p), where p^ = v'^ + ^~, we 
see that Eq. (12) becomes 

.da     I d  { da\     . ..,       . ,..^. 

There are no known exact solutions to Eq. (13), but approximate solutions can be found by means of 
variational methods. Using as trial function [5] 

aT{r,p) = F(r)sech 
[fir)! 

exp [i6(r)p2], (14) 

where the amplitude F is complex. Using Rayleigh-Ritz optimisation, we find that F, F* and b can be 
written as explicit functions of the width /(T), which satisfies the equation 

where 7 = 4(ln4+l)/(27C(3)) ~ 0.29, 7(r) = fHT)\F{T)\-' = /'(0)|F(0)P = h, and 7^ = (21n2+l)/(41n2- 
1) ~ 1.35, with the solution 

/M = /(0)/i + 7^(i-|)^'. W 

Thus, Eq. (16) shows that the stationary solution is unstable and collapses to zero width in a finite time when 
lo > Ic- Naturally this unbounded self-focusing will eventually be saturated by some kind of higher order 
nonlinear mechanism. However, this will not occur before an electric field level of order E ~ iScrit = ^o/^ is 
reached, which is the field strength when both our perturbative nonlinear calculation scheme and our starting 
expression, the Euler-Heisenberg Lagrangian (1), breaks down. For such extreme energy densities, higher 
order Feynman diagrams must be included in the QED description, and possibly the corresponding physical 
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effects may then counteract the collapse scenario, resulting in a saturated beam radius r^at ~ nnitEnm/E^it, 
where Ei^n and ri„it are the initial electric field and beam radius. 

A very interesting question from a principal point of view, would be whether it is possible to have fully 
three-dimensional QED-structures which do not require any guiding support. However, it seems that this 
issue cannot be addressed within a perturbational approach, and further research is thus required. 
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Abstract: We present a self-pumped phase conjugator originated by self-bending of the 
incident beam at A. = 515 nm in a BaTiOjiRh waveguide elaborated by three successive He^ 
ion implantations. Phase conjugate reflectivity reached is 28 %. 
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1.- Introduction 

The generation of the self-pumped phase conjugation (SPPC) with photorefractive crystal is a very active 
research topic since its first discovery by Feinberg [1]. SPPC is easy to be used for versatile applications 
because It requu-es no external beam or optics. Ligth paths inside the crystal in this conjugator form closed 
loops by total mtemal reflections at a comer of the cr^tal. Then by four wave mixing, the conjugate waves are 
generated. Barium titanate (BaTiOj) crystal is the first and the most often used material for self-pumped phase 
conjugation because of its high electrooptical coefficient r42 U  1600 pm/V. 
fa some of these papers two beams are injected to perform mutually pumped phase conjugator The phase 
conju^te reflectivy of U 20% at 488 nm has been obtained in a BaTiOj waveguide implanted with iT ions 
using this method [2,3]. 
fa the present study we report the SPPC fa a BaTiOjiRh waveguide. One beam is fajected peipendicularly to 
the tace of the sample and we use the self-pumped configuration for producing the phase conjugate. 

2. Main Results and Conclusion: 

The generation of self-pumped phase conjugate beam fa our waveguide results from the coupUng between the 
self bendmg beam and its reflection. The observation of self bending is carried fa the setup shown in Fig 1 An 
A-gon laser beam (X = 515 nm) is focused to a size of nearly 10 Jlmby a cylfadrical lens onto the front face of 
toe waveguide. The substrate used to realize the waveguide is a rhodium doped (1000 parts fa 10« fa the melt) 
BaTiOs crystal grown at FEE by the top seeded solution growth technique. The planar waveguide involved in 
,1 Iff^^ ^^^^ ^^ ^^^^ achieved using three successive He* ion implantations with the energies of 2 MeV 
1.9 MeV, 1.8 MeVatrespectively the doses of 5 X 10'*, 4 X 10", 4 X 10''ions/cm^ 

Argon Laser 
X= 514.5 nm 

BaTiOjrRh 

Dl 
Kg, 1.- Experimental Setup. The li^t is injected to the wave^de by a C^indrical lens, an the coupKng efficiency is 85%. 
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The self-pumped phase conjugated beam is turned aside by a beam splitter and sent to a detector Dl. A 
diaphragm is placed in front of Dl in order to select only the phase conjugate beam. As is expected when the 
beam is ordinary polarized we observe just the reflected beam (Fig 2a) and no phase conjugate beam. For an 
extraordinary polarized beam, the conjugate beam is created (Fig. 2b) via four wave mixing process [1]. 
It is important to remark that in our experimental configuration: 

>   A single input beam is injected perpendicularly to the c axis unlike as was done by W. Stephen et al. 
[3]. 

)*■   The counter propagation beam comes from the reflection of the bending beam, with the lateral surface. 
This means that there exists some area where the four wave mixing acts. 

Fig. 2. Images of the beam propagation through the waveguide and the self-phase conjugate beam observed on a screen 
in the plane of detector Dl (see Fig. 1). a) Incidsnt beam ordinary polarized, b) Incident beam extraordinary polarized. 

The kinetics of the phase conjugate beam can be adjusted with single exponential laws by this way we obtain the 
response time T. Its dependence in function of the injected intensity I is fitted according to the law I" and gives 
us the exponents x = 0.89 for the waveguide and x= 1.05 for the bulk. The maximum phase conjugate 
reflectivity observed in the waveguide is 28% (Fig. 3) approximatly 4 times higher than the value was reported 
by W. Stephen et al. [3]. For the bulk the phase conjugate reflectivity obtained is 10.3 %. This last value seems 
low in comparison with reflectivity usually obtained with BaTiOs. But in our experiment, just one pump is 
incident on the crystal and the second pump beam is generated via the internal reflections inside the crystal. So 
that we can not adjust the ratio of the pump intensity to optimize the reflectivity. Nevertheless, since the 
experimental conditions are identical for the waveguide and the crystal we can compare our resuhs. 



NLMD28-4 

30 

25 

20 

= 15 

10 

--\- 
■i 

-•—bulk 
-■— waveguide 

0 10 20 30 40 50 60 70 
Input power (mW) 

Fig. 3.- Dqjendence of the PC reflectivities on flie input beam power. 

80 

In conclusion we present a self-pumped phase conjugator in a BaTiOjrRh waveguide, obtaining a phase 
conjugate reflectivity of 28%. Under the same experimental conditions at a given input intensity, the response 
time in the guide is approximatly 7 times shorter than in the bulk and the reflectivity obtained in the waveguide 
IS tugher. ITiese first results are promising to realise with this guide phase conjugation at the near infi-ared 
wavelengths. 
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Abstract:Momentum method towards a study of multi-component spatial solitons dynamics in 
photorefractive media was developed. It describes both an excitation of the soliton intrinsic 
degrees of freedom associated with the oscillations of centres of gravity of the beams making 
up the soliton and soliton interaction with nonlinear interface. 
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1. Introduction 

In the present paper we consider vector spatial solitons in photorefractive medium in which nonlinear correction 
to dielectric permittivity is: 

£... =^—, (1) 
"'      1 + 5/ 

where s is the saturation parameter, / is the distribution of the total intensity in the beam. Further we shall 
suppose incoherent components of vector soliton. It means that the total intensity equals to the sum of intensities 

of each component: /=/,+ /j +... + /„,    T = 14'. I -In this case equations describing soliton components can 

be written in the form [1]: 

i^ + ^-Aj%+eM%-0,J=h2 ...n, (2) 
ox       dz 

where A, is relative phase mismatch parameter. In a stationary case o/ = Q and Wj = 4'j°'(z -Zj), where Zj is 

solitons centre of gravity. Distinctive feature of this state is that the centres of gravity of each component 
coincide with centre of gravity of the whole complex. In nonstationary case multi-component beam can form a 
bound state when amplitude of each component oscillates. One can guess that a similar excited state can appear 
when centres of gravity of components oscillate in the transversal direction. 

2. Description of excited states of vector solitons by momentum method. 

Momentum method describes electromagnetic beams in terms of average field characteristics—momenta [2]. 
First and second momenta are 

Pj = jljdz' Zj = ^zljdz (3) 

Pj has a physical sense of the energy flux in the component/ z. = z .iP. has the sense of the centre of gravity of 

corresponding beam component. Equations describing these momenta are: 

dx ' dx^      1 '     dz 

From the set of equations (4) one can obtain that the common centre of gravity moves along a straight line: 

= 0- (5) d\^d^^-" ■-" ■     '--^ 

dx'     dx' 

z,P,+z,P, + ... + z„P„ 

p,+p,+...+p„ 

To derive a closed system of equations we substitute in (5) some trial functions instead of 4*^. Since these 

functions are in the integrand, the result of integration is not sensitive to small variations of transversal soliton 
structure. It is natural to choose the trial function in the form of stationary solution ^pj"*. Let us consider a 
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particular case of two-component solitons. Transvereal shift between components A = z^ - z,, according to (5) 
is governed by the equation: 

(6) 

,,SdsJlM^I^(z+h')) 
dz (7) V{L) = -ldL'ldzI^{z+K') 

0 -oo 

is the effective reduced mass of the soliton. One can see that (6) aUows us to use a simple 
1 —      PP and p -     1^2 

mechanical interpretation: the same equation describes relative shift between two interacting particles with 
masses Pi and P, with potential of interaction V(A). Fig.l shows effective potential profile (b) for numerically 
calculated one-hump soliton with two identical components (a). The minimum of potential corresponds to lowest 
energy state of the soliton (ground state). 

Figure 1 

ff transvereal kinetic energy of the components is nonzero, the oscillations of the components take place (Fig Ic 
sohd hue). Dashed Imes represent numerically calculated trajectories of beams by means of Eqs (2) One can see 
that we have a good agreement as far as the period of osciUations is concerned. But decreasing of the oscillations 
IS not described by momentum method since it does not take into account radiation processes Fig 2 
demonstrates potential profiles (b,d) for two-hump solitons, transversal structure of which is shown on fig 2 a,c 
One can see that coaxial state of the components is unstable (fig. 2b) when the amplitude of the two-hump 
component is essentially smaller then the ampUtude of the one-hump one and it becomes stable when the 
amphtudes are commensurate (fig. 2d). 

-12-8-4      O 
 (b) 

Figure! 

3. Description of excited soliton interaction with an interface. 

Momentum method looks perspective in the problems of soliton dynamics in inhomogeneous media To 
demonstrate it we consider two-component beams mteraction with an interface (one-component beams 
mteraction with mterface was done in [3]) when Unear and nonlinear properties of the medium have jumps- 

A,2W=A,2+^A.2-1(2) 
-1(Z): 

1,2>0 

0,z<0 ;    e^(z) = s^(l)-(\ + Se^^-\(zi) 

It can be shown that energy flux in both beams is conserved quantity For the centres of gravity we have: 

(8) 
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P,^ = J(l + &^, • l(z))/,^^^dz-Se,, ■ /, (-z,)+ SAJ, (-z,ye,,(/, (-z,)+ /,(-z,))- 

9=:^.     ?/, . .„     „.^^^ 3^iv.(/) P,^=j(l + &^,.l(z))/,^i^rfz-&,,/,(-zJ+<yVa(-^2)-%i(A(-^,) + A(--^^       (^) av^ 
The further resuU we present are obtained using one-hump sohton structure shown on fig. 3a. Parameters of the 
interface are as follows: ^/i, ^ = -0,15; fe^i = 0-2, ^ = 0 ■ Using ordinary differential equations (9) we have 

got the following remarkable results: 

a) We have shown that excitation of the internal oscillations in the soliton takes place after soliton reflection 
from the interface (Fig. 3b) when the beam components have different masses. 

b) Soliton dynamics near the interface strongly depends on the energy of internal oscillations of the beam 
components. On Fig. 3.c soliton components was launched to the interface at the same angle (dzi,2/dx= - 0,18) 
and from the same position of the common centre of gravity. The difference is in initial relative shift between 
components A: (1) - A =0,532; (2) - A = 0,5; (3) - A = 0,528; (4) - A =0,12. hi dependence on the value of the 
shift reflection (1,2), transmission (4), stable (3) and unstable (1,2) surface waves excitation take place. 

c) We found separation of the beams (fig. 4b) at the angle close to the angle of the total internal reflection and at 
a large enough values of initial transversal shifl of the components (A = 2,5; dzi/dx = -0,18; dz^/dx = -0,33). 
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Figure 4 

((a) - trajectories of the beams without interface (bound state), (a) - the same with interface (beam separation) 

4. Conclusions 

We presented momentum method for the problems of multi-component solitons dynamics in photorefractive 
medium. This method makes possible the analytical description of internal degrees of freedom of vector solitons. 
Also it allows us to describe soliton dynamics in inhomogeneous media. As an example, the problem of the 
soHton interaction with an interface was solved. It is shown, that the beam dynamics depend on the intrinsic 
energy state of the soliton. hi dependence on the internal energy, the soliton can be reflected by the interface, can 
pass through, can be captured and, eventually, soUton components can be separated by the interface. 
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Abstract:  Effects of the film index of nonlinear-cladding optical waveguides are investigated      ^ 
numencallj^ The path of a beam winds between the film and the nonlinear cladding for larger 
him mdex, whereas soliton-like emission occurs for smaller film index 
©2002 Optical Society of America 
OCIS codesi (130.2790) Gmded wa.-es; (130.4310) Nonlinear; (190.4390) NcJinear optics, integrated optics 

Optical wavegmdes with third-order nonUnear dielectric media are attractive for their use of mrious signal 
processing applications such as switches, power dividers, limiters, scanners, and logic elements[l - 41 In 
design of nonhnear wavegiiide devices, to know excited guided wav«« is essential. In nl>st practica nonW 
wavepnde systems, a section of nonlinear waveguides is fabricated on linear films. Consequentlv nonS 
waveguides are butt-coupled to hnear waveguides made up of the same film. Guided mode fields of the linear 
waveguide are input fields to the nonlinear waveguide. ubuiineunear 

Launching of Gaussian beams or linear waveguide modes to nonlinear waveguides was analysed numericallv[5- 

It T>rweHr«f1      1   ^^  '*'*^'' f*'^ waves generate solitons whose .mgles of emission depend on the in- 
put power[6--8]. Aiigular scanning elements based on the emiasion of spatial solitons were proposedf6, lO-lll 

»SUte^^ ^fVrt""®- between adjacent waveguides by the transfer of spatial solitons was 
m.estigdted[6,12 - 13]  Soliton emission by launching of Gaussian beams or Unear waveguide modes has 
been treated as a standard problem to checJc the accuracy of mrious numerical methods[14 - 16]. 

n^'tTtrffi.'^T V^ ™8^We structure such as the index difference between the film and the linear 
part^of the mdex of the nonhnear cladding on the the evolution of excited fields have not been reported to 
the best of our knowledge. The index difference a.d the film thickness of nonlinear waveguide, may cause 
interesting effects on propagating fields that are not brought about in the case of linear wSeguides InThls 
paper, effects of the mdex difference of nonlinear waveguides are analy7,ed numerically The evolution of the 

irS :f Srir ff 'n fT.^VT' ^^^^^^ ^^^ butt-coupW hnear waveguides is asrmedto 
be not so high. The effect of lateral shift of a butt-coupled hnear wavegoiide is also analj^ed numerically In 
addition, the effects of saturation of the dielectric permittivity and hnear absorption are a«aJy.ed. 

We c|nsider fields of nonlinear-cladding planar waveguides at an optical wavelength of 0.515Mm. The TBn 
modal fields of a linear waveguide are incident on the end surface of a nonlinear waveguide. The refractive 

StLloi of" r' ^^^^rir^ filf thickness of a nonlinear waveguide are assifmed to betlnS 
n-n+r, f wHhThTT f' ^ T'T' f^'*'"^ ''''^" ^^^^-^g Kerr-tjT,e nonlinearities of index 
2 ~ r. it-i   2T      w "''*^''' ^^^''^ *^*' ""^'^ P"* °f "'^^'^ "0 is 1.55 and the nonlinear coefficient 
the filn Lrx { VtffiTT t ^"^ '^''^ ^"^ ^'^ " "^'^ °f 1-^6 «« **»« ^t'^'^dard case. The values of 
1 55 Tifindex n?  r' T T!,J"™^ ^^'^ **^« ^*«"'*«^'* ^"»"^^' ^»^«^««« '^^ «"bstrate index is 1.55. The index of a hnear waveguide cladding is also 1.55. The standard nonhnear waveguide and the linear 
^eguide suppcMrt^ a single mode. We assume an input power of 23W/m, in which sohton-like channels are 
not formed for the standard case. <""«» die 

The method of numerical analysis is based on the expmsion of local normal modes [9.16 - 181 Refractive 

renh.St      f- '^ 7 '"'^'ff ^"^ ^'^ *^*'^'*^ '°*"™'*y distributions. The nonlinear waveguide is 
Tl™dl! ""f T '"''■'^'•f ^'" ^^^«g^"de segments of length Az in the propagation direction. 
The modes of a linear waveguide with a graded index cladding are used as local nonnal models. The index 
profile of a nonlinear cladding approximated as multiple layers is determined by the intensitv distribution 
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Fig. 1. Position of the peak of the E y field as a function of 
are 1.555, 1.557, 1.5575, 1.558, 1.5.585, and 1..5C. 

in the cases of various film indices. Film indices 

of incident fields on the end surface of the segment [9]. Local normal modes consist of slow modes and fast 
modes of bounded waveguides corresponding to radiation modes and guided modes [17]. Amplitudes of local 
normal modes are obtained by mode matching at the interface of Az waveguide segments. It is expected that 
accurate numerical results can be obtained by the superposition of local normal modes, whereas solutions of 
local normal modes are required. 

The length of a segment is Az = 0.05/J.m, which is several thousandths of the segment length in the analysis 
of hnear waveguide y-junctions. The nonlinear cladding was divided into stepwise layers of a thickness of 
0.1/im. To reduce the number of the stepwise layers of a nonlinear cladding, a thickness of a nonlinear 
cladding was assumed to be from S^/m to 15/x7n as occasion demands. These thicknesses are more than thick 
enough to approximate the nonlinear cladding. A linear layer with a 1.55 index, which is the index of the 
nonlinear cladding of siiero intensity, was assumed as the upper part of the nonlinear cladding. At each Az 
segment, 30 local normal modes were calculated. The separation of bounds is 50/im with the bounds at .r = 0 

and X = 50/im. 

The values of the film index were varied from 1.555 to 1.565. The variation of the film index means changing 
the difference between the film index and the linear part of index no of the nonlinear cladding. In Fig.l, the 
position of the peak of the Ey field is plotted cis a function of z for various film indices. The evolution of 
propagating fields for some film indices is shown in Fig.2. In Fig.2, we plot the peak values of the input field 
cis the same value. The ratio of the peak value to the case of 1.56 is 0.923 for 1.557. The maximum index 
increase in the nonlinear cladding is 0.025 for a film index of 1.56. For other film indices, the mciximum index 
increase is 0.022 for 1.555, 0.025 for 1.557, 0.027 for 1.558, 0.025 for 1.559, 0.020 for 1.562, 0.015 for 1.565. 
Although these values of the maximum index increase are almost same, drastically different paths of beams 
are caused. 

For the film index greater than 1.558, the path of the beam winds. In the waveguide with a film of a 1.565 
index, fields are almost confined to the linear film including the peak of the Ey field. For a film index less than 
1.563 (1.558 < n/ < 1.563), beams penetrate into the nonlinear cladding, after which the beams return to 
the linear film. This movement of beams is iterative. In the nonlinear cladding, a change of the .T coordinate 
with respect to an increase of the z coordinate is slower than in the linear film. For a film with lower index, a 
beam penetrate deeper into the nonlinear cladding. Moreover, damping of the oscillation of path is faster for 
the lower film index. The winding path of a beam depends on the input power level as well as the difference 
in location between the input beam and the nonlinear modal field (NMF) [18]. Although waveguides are 
excited at a fixed input power level, similar effects to waveguides excited at a higher input power are caused 
by waveguides with lower film index. 

For the film index less than 1.5583, a beam is emitted to the nonlinear cladding. The lower film index in Fig. 
1 causes the larger angle of emission. The angle of emission depends on the film index. The increase of the 
a,ngle is decreased as the film index is decreased. For the waveguides with fixed film index, the higher input 
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^'^i|." ^y°^'^*'°" *>^ *« ^v field in the cases of various film indices. Tlie interface of a film and a nonlinear 
cladding (a; = 24.Bp.m) and the fllm-substrate interface (a; = 25.5p.m) are shown in dashed lines. Film indices 
are 1.56 (left) and 1.557 (right). ; 

power causes the greater angle of emission. We have possibihties that beam characteristics with high input 
power are obtained at medium power leirels by lowering the film index. 

In the case of a large index difference between the film and the linear part, of the index of the nonUnear 
claddmg, the path of a beam winds between the film and the nonhnear cladding or in the film  For the 
small index difference, a beam of the same power is emitted to the nonlinear cladding. On the other hand 
the change of the fihn thickness does not lead to drastic change in propagating fields. The lateral shift, of a 
butt-coupled hnear waveguide aifects the path of a beam. In the case in which the path is winding for mio 
lateral shift, the emission to the nonlinear cladding is caused by shifting the butt-coupled linear waveguide 
toward the substrate. The input beam travels toward the location of the NMP. After passing the location 
the beam is forced to turn back or emitted into the nonlinear cladding with an angle. The saturation of 
the permittivity of nonlinear media dec-reases the amplitudes of oscillation of a winding path or the angles 
of emission. The angle of emission as well as the oscillation of a winding path decays owing to the linear 
absorption of nonlinear media. 
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Abstract: The stationary evolution of two incoherently coupled beams of bi-Gaussian 
intensity profile propagating in a bulk Kerr or saturable medium is studied variationally. The 
stability is investigated on the basis of the Vakhitov-Kolokolov criterion and comparisons are 
made with numerical integration of the (2+l)D coupled NLS equations involved. 

SUMMARY 
The model which describes the evolution of two incoherently coupled beams 

propagating in a bulk Kerr or saturable medium is the following [the function 
/(|£',|, l^'j], Ct)^, 0)2) refers to the case of a saturable medium] [1]: 

.BE,   , ^      W#2| + o1^.|)      . ... 
IJC—^+A^E^-EA,...   . . = 0, (2) 

dz '[fi\E2\,\Ei, 6)2,0),) 

where £■;, E2 are the slowing varying beam envelopes, Ax =^x+^y,'/ and K are the squared 
frequency wave-number ratios respectively. Finally, the parameter (T {a>0) refers to the 
polarization of the interacting fields while y = 1 (y = -1) corresponds to a focusing 
(defocusing) nonlinearity. 

The variational method is applied with the following bi-Gaussian ansatz for the field 
envelope functions: 

f     y^ v^   ) 
E,{X,y, z) = a,(z)exp --^--^ exp(/<^,,(z))     / = 1,2, (3) 

1,   X;(z)    Y,. (z)J 

where, 

Z = {x- X,, (z)) cos(^, (z)) + iy- :Vo,- (z))sin(^, (z)) 

y = -{x- Xoi (z))sin(^, (z)) + {y- y^t )cos(^,. (z))     ; = 1,2 

Thus, we consider beams of elliptical cross sections with evolving semi-axes and centers as 
well as rotating, while colliding, with respect to a fixed reference system. 

For y = 1 the Lagrangian is real while y = -1 acquires an imaginary part as well. 
However, one in general can split the Lagrangian into a functional Lc corresponding to the 

1 
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"conservative" part of the dynamical system in liand and a non-conservative part LNC [2-5]. 
Integration over the cross section easily yields the following averaged conservative part of 
the Lagrangian: 

(ic) =-^of X,Y, sec(2#,)#,'-|fl|X2Y2 sec(2#j)#2'+ 

"^"i^'^i^i ^®^(2#i)-^a|X2Y2 sec(2#2) 

2 

£(2af(^,.Y,sec(2#,)-4) 

-5-(jro,-cos(5,) +Jo.sm(^)f+-^(jo,cos(e..)-Jfo,-sin(#,)f x2 Y/ 

2x5^'^'''^^^'^'^'^^ sec(id,) + X? cos2(#,,)(2sec(2^.)-l)- 

incr 
Y/sm^(2<?,))+ 

-af of exp(Q) 
XjXjYjYj 

^   f-^?((Joi -yo2)cos(2gi) + (X(„ -j-02)sin(2gi)y +'K\({y^, -JQ;)003(2^2) + (JCo] -JCo2)sm(2g2)f 

VxfY,2 +X^Yf +(xfY^ +XfY|)cos2(#, -#,) + lx?Xi + Y^YDsin^C^, -#,) ,   ^ 

^XfY,^+XiYf+^2y2^XfY|jcos2(e,-e,) + (x?Xi+Y2Y|>in2(e,-0,) ^ 

The variational equations yield a set of equations which represent a dynamical system 
evolvmg in z. The form of this complicated system for the case y = i is as follows: 

and 

g,ib„q,0,-0,) = Q k = l,2 

g{(4X2X2A) = 0 

where {bi }={a,,xo,,yo,,X,,Y,,0i,(p,} and {Ci }={a2,xo2,yo2,X2,Y2,e2,f2} 
As far as the case y =-1 is concerned additional terms enter in Eq. (5) due to the presence of 
the non-conservative force 0^c=2o| E,p Ea, namely the term 

2Rej dxjd^j^c 
dEl 

The dynamical systems in hand are investigated and the issue of the stability of the 
proposed ansatz is addressed in the framework of Vakhitov-Kolokolov criterion. 
Compansons of the results thus obtained are made with direct numerical integration of the 
sysyem(s) given by Eq, (1). 
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In a linear medium the simplest physically realizable spatial wave-packet is the gaussian beam, 
which spreads during propagation. Surprisingly enough, in nonlinear media it is replaced by m 
even simpler entity: the spatial soliton. The latter is the basic concept for understanding the 
interplay between diffraction and nonhnearity, and its universality is confirmed by the several 
and diversified media where it has been theoretically predicted and experimentally observed. [1] 
We propose a novel model describing spatial soHtons in nematic Mquid crystals, and supporting 
the recent expenmental investigations carried out on 3D solitons due to a re-orientational 
nonhnearity. Our approach immediately sets this new family of nonhnear waves in the 
framework of the recent results obtained for quadratic solitaiy waves, as well as for nonlocal 
media, and it permits to understand the basic mechanism of energy trapping and stabilization in 
the phenomena observed in undoped nematics. The model described hereby catches the 
underlying physics and generalizes in a substantial way previous approaches, hmited to an 
equivalent Kerr response [2], or neglecting the effects of an extemal bias [3]. 
For the sake of concreteness, we will refer to the geometry of the experiments reported in [4], 
where an extemal electric field detennines a rest value 0, of the tik angle of the molecute 
director in the bulk of the planar cell (see figure 1). Our approach, however, also holds when 
such a distnbution is obtained otherwise, for example in the presence of a magnetic field [5], 
The spatial distribution of the tih angle in the cell 0(Z), determined by the X-directed static (or 
low fi-equency) electric field E (rms value), is given by 

where K is the Frank's elastic constant (taken equal for splay, bend and twist), f^ is the low- 

frequency dielectric anisotropy and, for planar alignment, I vanishes at the cell boundaries (top 
and bottom along X, see figure 1). In the presence of an X-directed optical field of amphtude^, 
neglecting vectorial effects, the tilt distribution is altered due to a field-dipole torque. Taking $ 

as a slowly varying ftincfion and writing eiX,Y,Z) = eiX)+-WiXJ,Z) for the whole angle 

distribution, in the limit of a large (thick) cell we obtain the following equation (1*- order in ¥ )• 

with nl the optical dielectric birefiingence [6]. In deriving (1) we made the additional 
hypothesis that ^^ s ^/4. The latter is realized by an appropriate value of E, and provides the 
highest nonlinear response. 
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With regards to the Z-propagating optical field in the paraxial approximation, for a cell much 
wider than the beam waist, we get the corresponding Foch-Leontovich equation 

2ik~ + WlyA+Iloiksin(2^o )WA = 0 (2) 
dZ 2 

where k = k^ yjnl + n] sin(^o )^ , k^ the vacuum wavenumber and n^the refractive index "seen" 

by the X-polarized beam when ^o = ^. Equations (1) and (2) constitute the basic model for our 
analysis, and show the nonlinear interaction between the material response and the light field. 
After a suitable normalization, we can recast them in a dimensionless format: 

I—+\~^.a-a + ym = 0 
az^    ■ (3) 

The two parameters introduced in (3) are defined as 

2kKp    2^0 

with p the nonlinear correction to the wavevector k. As discussed below, a determines the 
degree of nonlocality of the medium, and € is expected to be small. 
Solitary-wave solutions are obtained from eqs. (3) by setting d.=0. For a a real amplitude, the 
soliton profile is determined by the system 

V^^,a-a + \ixi = Q 
1 (4) 

Equations (4) are the very same describing (ID and) 2D spatial solitons in quadratic media, with 
y/ playing the role of the optical second harmonic. Thus we establish for the first time an 
important connection between two rather different physical systems which, in the limit of the 
adopted approximations, turn out to support the same solitary solutions. 
With emphasis to 2D self-trapped beams, it is natural to wonder which mechanism inhibits 
collapse and filamentation. The question naturally arises when dealing with the stability of the 
spatial sohtons, and can be initially addressed assuming for simplicity e = 0. By letting 
a = 42a(p e" and rewriting eqs. (3) as 

l<2'P /I      12        1 if.^Kf=-T^^Br-'p=-(\<fU^^ '\i>\"yp, (5) 
with the last equality holding for large a (a condition satisfied when ^ is small). It is immediate 
to recognize the spatial nonlocality as the stabilizing effect. Indeed, when the beam shrinks, the 
term with spatial derivatives of the intensity counterbalances the Kerr-like term. As anticipated, 
a identifies the degree of nonlocality in the medium. When the smallness condition on ^ fails, 
the saturable nature of the nonlinearity does contribute. A rigourous analysis of these issues will 
be presented. 



NLMD32-3 

In conclusion, in this Communication we discuss a theoretical model of spatial solitons in 
undoped nematic liquid crystals, underlining the link with parametric simultons and nonldcal 
nonlmearities. The general properties of this new type of self-trapped beams will be discussed, 
mcludmg their stability and the comparison with the recent experiments performed in our 
laboratory. 

Applied voltage 

X                       f " 

^—  / 

^^^1-1-1,1,1; \0 
1 _= 

—^ 

Figure 1. Reference geometry, as employed for the experiments reported in [4], The Uquid crystal cell and the 
spatial distribution ofthedirectore and are sketched. 
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Abstract: Several soliton solutions of the complex quintic generalised complex Swift-Hohenberg 
equation (CSHE) are found analytically. These solutions exist for certain relations between the 
parameters of CSHE which are also presented analytically. 
© 2002 Optical Society of America 
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1. Introduction. Complicated pattern-forming dissipative systems can be described by the Swift Hohenberg 
(S-H) equation [1]. A classic example is the Rayleigh-Benard problem or convection in a horizontal fluid layer 
in the gravitational field [2]. Examples in optics include synchronously-pumped optical parametric oscillators 
[3], three-level broad-area cascade lasers [4] and large aspect ratio lasers [5, 6]. The latter admit the existence 
of transverse localized structures and phase domains [7]. Localized structures and their stability are of great 
interest for the study of any pattern-forming system. However, the equation used in optics, the generalized 
quintic complex S-H equation, has additional terms in comparison to the standard one. The main diff"erence 
between the S-H equation [8] and the previously-studied complex Ginzburg-Landau equation [9] lies in its 
more involved diff'raction term. Furthermore, these complications prevent us from analyzing the solutions 
easily. In fact, it was not clear that such solutions could exist at all [3]-[6]. In this work, we study the quintic 
complex S-H equation in ID and report various new exact solutions. 

The normalized (H-l)-dimensional generalized quintic complex S-H equation is: 

iipz + ji'tt + IV'P ^ + {h + is)i'tttt + {v - «»|V'|V = iH' + iMtt + if iV-lV- 

In mode-locked laser applications, z is the propagation distance or the cavity round-trip number (treated as a 
continuous variable), t is the retarded time, D (= ±1) gives the sign of the 2nd order dispersion, h is the 4th 
order dispersion, e is a nonlinear gain (or 2-photon absorption if negative) and 8 (usu. negative) represents 
a constant gain or loss. The band-limited gain (e.g. due to an EDFA, where the gain band may be about 
30 nm around 1.5 microns) is represented by j3 (parabolic spectrum shape) and s (4th order correction). We 
find exact forms for a range of solitons, including bright and dark cases, and both chirped and unchirped 
forms. They have various features which difi'erentiate them from solitons of the complex Ginzburg-Landau 
equation [10]. These first solutions can give some clues for analysing more involved solutions. 

2. Analysis. Let ip = f(t) exp[-i fi z]. This reduces the S-H equation to an ordinary difi"erential eqn. in /: 

fi/+ (f - m f'ii) + (1 - i^)\f? f - i^f + {h + '■«) /""(O + {^- '»l/i' / = 0. (1) 

We will show that basic [unchirped] bright and dark solitons exist, and that there are also chirped bright 
and dark solitons. 
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3.1 Bright soiiton If we take 

f=c'ysech{jt), (2) 

then we note that f"(t)/[t^f(t)] = 2T^ - l and that f""(t)/b^ fit)] = 5-28T^ + MT\ %vhere T = 
tanh{jt). On dividing through by /, it is clear that the coefficients of T" = tanh'^ift) for n = 0,2 4 can be 
set to zero to reduce the problem to an algebraic one and obtain the solution. From the n = 4 term' we find 
a consistency condition on the equation parameters: i^ = -hft/s. Thus c^ = 24s/fi (= -24h/i^) From the 
other terms we find j,c,etc and conditions we need to impose as constraints on the equation parameters 
Thence we can easily find 0,S, 7 and O. Note that , if e = 0 then we have 7^ = ifc, and so the solution 
simplifies to ^"' 

/ 
5 'sfi' ^VlOs ■' 

3.2 Black soiiton. If we take/ = C7tenft(7t), then we see that 

L, f"(t)/b'fm=2[T'-ii 
and that 

r'WbVW] = 8 [T^ - 1] [3T2 - 2]. 

Again, on dividing by /, it is clear that the coefficients of T" for ti = 0,2,4 can be set to zero to reduce the 
problem, and we then determine all the solution parameters. From the other terms we find the conditions 
we need to impose as constraints on the equation parameters. Thus 7 and c are the same as above and 

while 

0h = -(s + he) ^ei/^ - sD/2, 

' 4Qh ^     ^■ 

4.1. Chirped bright soiiton. This involves the function 

f = a{t)exp[Mloga(t)]; 

where a(<) = 7csecA(7t). With this form, the derivatives can still be written in a convenient wav For 
example, 

f"(t)/b^fm = -(cl-i)[i+id-2i)T^]. 

We need to find the roots of a 4th order polynomial in d: 

(fth+ sv){d*-35(fi +24) + Wd{vh-sn)i5-d^) =0. (3) 

Thus d depends on a balance of the highest order derivative (4th) and strongest nonlinearity and is quite 
different from that of the CGLE [10] or CGLE with an integral term [11] where d is determined by /3 and 
e. Isqn(3) provides insight into the chirpless (d = 0) case, as we see that d = 0 is a root of eqn (3) when 
/j,h + sv = 0. 1   \ / 

4.2 Chirped black soiiton Here f{t) = a(t)exp\i4logb(t)], where a(<) = r-ftanhift) and b(t) = 
7 sec/i(7#), and we proceed as above to find the solution. 

With this form, the derivatives are as follows: 

; f"ityb'f(m = -(d-i)(d-2i)T^-(2+3id). (4) 

and that 

f""(t)/[j^f(t)]= W + mid-15d^-hWil + id)(d-2i)^T^+(d-i)(d-2iUd-3i)(d-4i)T\   (5) 
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Again, we equate the coefficients of T" for n = 0,2,4 to zero. The quartic eqn. for d is the same as eqn.(3) 
above. 

5. Energy and momentum balance. As any other equation describing dissipative systems, the S-H 
equation does not have any conserved quantities. Instead, we can write balance equations for the energy and 
momentum. A study of the S-H eqn., using the energy balance approach ([10],[11]) leads to the evolution 
equation for the energy, Q: 

= /' 
Q =    /   U'l'dt 

dQ 

d( 
= 2 j [s\i,\'-^\^\'-s\M'+e\i'\' + fiH>\']dt. (6) 

By definition, the right hand side of this equation is the rate of change of the energy. The term with s 
here is new in comparison with similar equation for CGLE [10]. The form of this term reflects its role as a 
higher-order band-limited gain. For any stationary exact solution, we need the r.h.s. of eqn.(6), and also the 
rate of change of the momentum, to be zero. This provides a way of finding or checking solutions. Hence, 
using one of the exact solutions, we can find the result for the evolution of the pulse amplitude. For example, 
for the form of the bright unchirped soliton eq.(2), the energy balance condition is 

15<5+57^(2ec2 -/?)-F -{^(Sfic^ -7 s) = 0. 

It is easy to verify that the soliton given by eq.(2) satisfies this identity. Similarly, we can find the rate of 
change of the momentum, and thus constrain other possible solutions. The momentum is defined in ch.2 of 
[10]. The balance equation is also an important tool in studying the interaction between the pulses [10]. 

Conclusion. The solutions presented here are novel examples of exact solutions which exist for the S-H 
equation. As with the Ginzburg -Landau equation [10], they certainly do not cover the whole set of po!3sible 
solutions. In fact, they only represent a small subset of the range of soliton-like solutions. Other solutions 
have to be studied numerically, and this may require a considerable number of simulations. However, finding 
the exact solutions is an important step in analysing the laser systems with involved spectral properties 
which can be described by the S-H equation. 

NA acknowledges support from US AROFE. 
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Abstract: Anderson localization is the spatial localization of the waveftmction of electrons in 
random media. We suggest, that analogous phenomenon can stabilize the spatial solitons in optical 
resonators: the spatial solitons in resonators with randomly distorted mirrors are more stable, than 
in perfect mirror resonators. 
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1. Introduction 

The phenomenon of Anderson localization is well known m quantum mechanics, and in solid state physics It states 
that whereas the wave&nction of a quantum particle (e.g. of an electron) is delocalized (extended) for a 
homogeneous potential, then it can be spatially localized for a random potential. In particular the Anderson 
localization is believed to be responsible for the metal-insulator transitions in semiconductors with impurities      : 

The Anderson localization is usually investigated by solving the linear Schrodinger equation. Although some 
controversy still exists it is now generally accepted, that: 1) in l-dunensional system the localization is absolute (i e 
ocoirs for mfinitesimal dispersion of the random potential), and the wave-ftmction decays exponentially in space-'l) 
m 2-dimensional system the localization is weak (i.e. occurs only for sufficiently strong dispersion of the random' 
potential), and the wave-fanction decay m space follows a power law; 3) in 3- and more-dimensional swtems the 
localization due to a random potential is absent. 

We apply the concept of Anderson localization to bistable spatial solitons in dissipative nonlinear optical 
resonators (cavitons). There are different pictures for the formation of such spatial solitons m resonators- in one 
interpretation the soliton is a smgle spot of the stripe solution (m ID) or of hexagonal solution (in 2D) embedded in 
the tnvial zero solution, servmg as a background [1]. A bistability between the modulated state and the zero (dark) 
state is necessary for this interpretation. In another mterpretation the soliton is a small island of homogeneous 
nonzero solution embedded in the trivial zero solution [2]. The bistability between the homogeneous bright and the 
dark states of the radiation is necessary for this mterpretation. In both cases the dissipative soliton is stabilized m 
some parameter range (stability balloon) due to the balance between the gain, saturation, focussing, difiraction and 
resonator detunmg. '    ; 

The idea is that if the Anderson localization tends to localize spatially the solutions m the Imear sptems due to a 
random potential, then perhaps random potentials could provide additional stabilization of the spatial solitons in 
nonlinear optical systems. Also, if the solitons are weakly unstable for homogeneous potential (outside of the 
rtability balloon m the parameter space, but close to its boundary), then perhaps the random potential could stabilize 
the soliton. In the first case - due to the randomness of potential, the negative real parts of the stability exponent 
becomes more negative. In the second case -the small positive real parts of stability exponents cross the zero and 
become negatiw. 

We show such localization on a particular example of solitons m lasers with saturable absorber [1] The 
numerical mtegration of corresponding equations show an increase of stability of the soliton due to the random 
potentials. We also derive the determmistic (mean field) equations, perturbatively accountmg for the randomness of 
the potential. Also we seek for a general solution of the problem: we attempt to show, that generally the real part of 
the eigenvalue m a stability analysis of solitons is shiftmg towards negative values due to random potentials. 

2. Equations 

The linear Schrodinger equation, as used to analyze theoretically the Anderson localization is: 

-^^=W'Air,t) + iVir)Air,t) (1) 
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where  the potential   V{r)   is  a  random  ilmction the  stationary in time  and  delta-correlated   in  space: 

{Vir^)V{r^)) = cy5(r, -r^), with the dispersion a • 
The nonlinear optical resonators in paraxial approximation are generally described by a dissipative 

generalization of the Schrodinger equation: 

^^^ = N'Air, t) + i V(r)A{r, t) + N{AX-A) 
dt 

(2) 

the operator NiAy^A) corresponds to the gain, saturation, spatial frequency filtering and other possible dissipative 
effects occurring in nonlinear resonators. The first r.h.s term corresponds to the diffraction, and the second r.h.s term 
correspond to the mirrors of the resonator: the spherical mirrors result in a parabolic form of potential V{r), and the 
rough (scattering) flat mirrors correspond to the random potential. 

In particular we show here the Anderson localization of solitons for lasers with saturable absorber, where the 
dissipative part of (2) is given by: 

N(Ay'A) A 1-- «n (3) 

i.e. consisting of saturating gain, of linear losses, and of saturating losses respectively. 

3. Numerics 

We performed a numerical analysis in order to investigate the influence of the random potential on the stability of 
spatial solitons in 2D case. Fig.l shows the energy of the soliton depending on the gain parameter for the random 
and for homogeneous potential. Evident is a significant increase of the soliton stability area due to the random 
potential. The corresponding spatial distributions of the intensity of the light for random and for homogeneous 
spatial dimensions are given in Fig.l. Evident is the decrease of the overall size of solitons. 

Fig. 1. Energy of a soliton for homogeneous 
(open circles) and for random (filled circles) 
potential as obtained by numerical 
integration of the equations (2) (3), for laser 
with saturable absorber in 2 spatial 
dimensions. Note a significant increase of 
the stability range of the solitons due to the 
random potential. For comparison the 
intensity of the extended (delocalized) 
solution is shown both for homogeneous 
(small open circles) and for random (small 
filled circles) potential, corresponding to the 
stable upper branches. The zero solution 
branch is also stable up to Do=3.02 for the 
parameters used. 
The inset a) shows the stable spatial solitons 
for homogeneous potential ( CT = 0) for 
Do=1.96, and the inset b) shows the stable 
solitons for random potential (a *0)ior 
Do=2.01. Note the spatial distortion, and 
overall-decrease of the size of the solitons 
due to random potential. 
The parameters of saturable absorber are: 
/„ =0.29, a = 2. 

O-J:^--- 
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4. Analytics 

We use the general equation (2) with the general form of the nonlinear operator, and assume, that its localized 
solution m the presence of a random potential is: Air.t) = A,(Rj) + a(r,R,t) ■ ^ is a large scale coordinate 
(corresponding to the soliton width), and f is a small scale coordinate (much smaller compared to the soliton 
width). We linearize (2) with respect to small a{r,R,iy, we introduce an incoherent part of the soliton: 

b{R,t) = lr{r) ■ a(R,f,t)df in addition to the coherent part of the soliton 4(l,r); we eliminate the small scale 

coordinate, and we obtam a closed sptem of equation for ^^(^,r) and 6(J,^): 

db    f    ,     „,, 

at 

(4.a) 

(4.b) 

where 4 = DN(A)/DA is the linear stability matrix of the soliton for homogeneous potential. 
(4) is a determuiistic (mean field) equation system, accounting hi a perturbative way for the randomness of the 

potential through its dispersion a. We integrate (4) numerically for particular soliton supporting systems, and 
investigate the a -dependence of the soliton stability range. We also perform the linear stability analpis of (4) by 
Imearizing it around soliton solution, and investigate the dependence of eigenvalues on tr . 

In all mvestigated cases (includmg the laser with saturaWe absorber) the real parts of the eigenvalues decrease 
with mcreasmg a . This proves the role of the Anderson localisation for the particular sptems. However we hope 

vto demonstrate the corresponding shift of the eigenvalues, thus the Anderson localization also for a more general 
class of the soliton supporting systems. 

5. Conclusions 

Our numerical and analytical investigations lead to a somewhat counterintuitive resuh, that the spatial solitons in 
resonators with randomly distorted (randomly scratched) mirrors and randomly scattering optical elements should be 
more stable than the solitons m the resonators with the perfect mirrors and perfect optical elements. 
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Discrete solitons in nonlinear zigzag optical waveguide 
arrays with tailored diffraction properties 
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Abstract: We show that the discrete diffraction properties of a nonlinear optical zigzag waveg- 
uide array can be significantly modified, by exploiting the topological arrangement of the lattice 
itself. This introduces extended interactions (beyond nearest-neighbors), which, in turn, affect 
the lattice dispersion relation within the Brillouin zone. As a result, we demonstrate that new 
families of discrete soliton solutions are possible which are stable over a wide range of parame- 
ters. Our method opens new opportunities for diflfraction management that can be employed to 
generate low power spatial discrete optical solitons. 
© 2002 Optical Society of America 
OCIS codes: 190.5330, 190.4390, 190.5530 

Discrete solitons (DS) in nonlinear lattices are, by nature, self-localized modes that own their existence to 
the interplay between coupling and nonlinear effects. Solitary waves of the discrete nonlinear Schroedinger 
(DNLS) equation have been suggested in many diverse areas of science, such as, for example, in biology, in 
nonlinear optics, in solid state, as well as in dilute Bose-Einstein condensates. In optics, discrete solitons 
in nonlinear waveguide arrays have been suggested in 1988 [1] and have experimentally verified a decade 
later [2]. Several other issues, such as, DS dynamics [3] and their interactions [4] have been investigated. 
Regarding applications, it was recently shown that DS in two-dimensional networks of nonlinear waveguide 
arrays can be used to realize intelligent functional operations, such as, blocking, routing, logic fimctions time 
gating, etc. [5]. 

In this paper we investigate the properties of a zigzag array of coupled optical waveguides [Fig. 1]. We 
show that the discrete diffraction properties of such a nonlinear optical waveguide array can be significantly 
modified by exploiting the topological arrangement of the lattice. As a result of this band alteration, we 
demonstrate that new families of DS solutions are possible, which are stable over a wide range of parameters. 
These include 7r-out-of-phase bright DS in self-focusing media and vr-out-of-phase dark staggered DS in self- 
defocusing media. 

Figure 1 depicts an array of optical waveguides in a zigzag configuration. In this array, D is the distance 
between "nearest" neighbors and 6 is the angle between the lines connecting the nth element of the array with 
its neighbors (nil). Because of this new topological configuration, it is also essential that one also considers 
linear coupling effects between the nth site and its second-order neighbors (n± 2). From Fig. 1, these latter 
elements are separated by a distance Ds = 2£>sin(^/2). In normalized units the equation describing the field 
evolution in such as array is given by 

i—rr +AiM„ -I-aA2Mn + |Wn|^Wn =0, (1) 

where the operators Aj, {j = 1,2) are defined by the relations Aiu„ = u„+i + Un-i - 2w„, A2M,, = 
w„+2-f-w„_2 -2w„. Un = En/G is the dimensionless field amplitude, E„ represents the modal field amplitude, 
C is a normalized propagation distance with respect to the coupling length ZQ = 1/ci, G = y/2c-i/kon2 is a 
characteristic electric field amplitude, and a signifies the relative strength between the first and the second 
neighbor couplings, i.e., 

a = Ko{WD2/p)/Ko{WD/p) (2) 
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^ifl^'i*^'^''^''*"f'°"''^'^ ^ * ^""'="*'" °^ * f°''* *^*S "^Pt'cal waveguide array, and 
of the dispersion relation for a = 1,1/4,1. 

for Step index waveguides. In Eq. (2), p is the core radius, W = p{0^ - klnlf^m, p is the propagation 
constant and n,, n, are the core ant the cladding refractive indices, respectively. For demonstration let us 
assume that Ao = 15 pm, „, = 1.5, A = 2 K 10"^ p = 5.3 ^m, D = 15.9 ^m so that Da = 31.8sin(fl/2) 
m pm), V = 2.1, U =1.561, and W = 1.405. For this set of values Pig. 2(a) depicts the variation of a as a 

function of B as it can be obtained from Eq. (2). 

'^^m^+on^ ***t*^Pr'°" '■®^**'°" °^ *^*^ ^*g^«« nonHnear lattice we use the "plane wave" solution «„ = 
^gH*-+9«)^ where the wavenumber, fc, satisfies 

A = 2cosg + 2ocos2f+ J4^ -2(1+a), (3) 

T-ll^F^?? s, phase shift among successive sites and plays the role of "particle momentum". The 
shitted Iby 2(1 + a)] linear part of the dispersion relation, 2(cosf + acos2f), is depicted in Pig 2(b) for 
three different values of a, namely a = 0,1/4,1. Note that the first BriUouin zone is defined in the domain 
-TT < q < r. First, we would like to discuss the properties of this linear dispersion curve. The curvature of the 
dispersion relation characterizes the diffraction properties of the array More specifically, when the curvature 
of the dispersion relation \k"iq)] is positive (negative) the effective diffraction of the array is anomalous 
(normal), respectively. As we can see from Pig. 2(b), the dispersion curve attains a maximum at o = 0 and 
as a matter of fact, bright soUton solutions reside at this point with eigenvalues that he above this curve 
(in the bandgap). Each member of this family of bright solitons is characterized by the separation distance 
between the eigenvalue of the solution and the edge of the band. Furthermore, these solutions have altogether 
different properties depending on their position inside the bandgap. When the eigenvalue is relatively close 
to the edge of the band, the bright soliton solutions are broad (occupying many lattice sites), they possess 
a narrow spatial frequency spectrum, and, as a result, the long wavelength approximation of the dispersion 
relation IS valid. The soliton solutions with wavenumbers positioned very deep inside the bandgap represent 
highly nonlinear "defect" states occupying, in ^sence, 1 - 3 lattice sites. 

However, as clearly seen in Fig. 2(b), the properties of the dispersion diapam at the edge of the Brillouin 
zone (q= M) can be drastically altered for appreciable values of the second-order-coupHng strenc^th a In 
particular, for a's located inside the region [0,1/4) the second derivative of the dispersion curve k"M is 
always positive and, therefore, the lattice dispersion is normal. As a result, dark ir-out-of-phase DS solutions 
reside at the edge of the Brillouin zone for these values of a. In the case a = 1/4 the second-order dispersion 
IS zero and the first nonzero contribution comes from the fourth-order dispersion which happens to be 
positive. When a is above 1/4, the value of k"{-K) becomes negative, and as we will show a new family 
ot bright staggered soHtons in self-focusing arrays exists. We were able to identify two different types of 
staggered bright sohtons: (a) a symmetric mode, and (b) an antisymmetric mode. Figure 3 depicts a higMy 
confined, symmetric and antisymmetric DS solution as was obtained numerically using relaxation methods 
Between these two possible staggered solutions, the Hamiltonian of the symmetric mode is alwavs greater 
than the corresponding value for the antisymmetric mode (for a fixed value of the power and appreciable 
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Fig. 3. (a) symmetric and (b) antisymmetric 7r-out-of-phase bright soliton. 

(a) (b) 

Fig. 4. A staggered dark soliton at the edge of the Brillouin zone (a) centered on a site and (b) centered 
between two sites. 

values of a). As a result, the symmetric mode is transversely unstable. To study the stability properties 
of the antisymmetric solution, we numerically solved the associated eigenvalue problem. Our numerical 
investigation shows that above a certain threshold of the maximum amplitude these solutions are stable. 

The leading diffraction term of a staggered DS will be given by ^2 = cos 9 + 4a cos 2?. Interestingly enough, 
by appropriately selecting a the diffraction properties of the array can be significantly modified. For a = 1/4 
the second order diffraction is zero, while ^2 increases linearly with a. Thus, staggered discrete solitons can 
exist even in media with relatively small values of the nonlinearity. Following similar arguments, we anticipate 
that for values of a less than 1/4 staggered bright soliton solutions should exist. Again, two different types 
of dark solitons can be obtained; one centered on a site [Fig. 4(a)] and one centered between two consecutive 
sites [Fig. 4(b)]. 
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ABSTRACT 
Large nonlinear phase shifts can be achieved using cascaded and coupled microresonator systene even if the constituent 
material has large hnear and hvo-photon absoiptioa Proper design can maintain nearly constant intensity transmittance. 
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Materials with strong nonlinearity and high, constant transmittance are desirable for a varietj' of nonlinear 
optical processes and devices. Recent research shows that a single resonator can be used in a nonlinear Mach-Zelinder 
interferometer to significantly reduce the switching power [1] by increasing the nonlinear phase sensitivitj'. When taking 
material absorption into account, a ring resonator can facilitate a larger nonlinear phase shift and greater figure of merit 

than the constituent bulk material [2]. However, this arrangement produces a magnitude response that is non-ideal for a 
general-purpose phase sliifting element. Multiple resonators can be used in a serial cascade [3,4] or lattice arrangement 

[5] to further improve the nonlinear sensitivit)' while providing degrees of freedom to control tlie magnitude and phase 

response. 

As a first embodiment, we examine a simple modification to the serial-cascaded microring (CMRR) configuration - 

adding an extra output port on the top of the last ring. This modification facilitates an enhanced nonlinear sensitivity, a 

large saturating phase shift, and nearly ideal intensity transmittance characteristics even if the material itself has large 
linear and two-photon absorption. Tliis structure is shown in Figure 1, using five ring resonators in series [4], as an 

example. We assume tliat all the rings are perfectly optically isolated from one another. 

, lout 

lin 

Fig. 1 Five coupled microring resotwtors in a series cascade 

configuration (CMRR), shown on the left. Linear square 
magnitude and phase response as a function of number of 

resonators (right). The nonlinear phase shift at the output is the 
result of intensity-dependent detuning of the resonance. The flat- 

top square magnitude response results in a nearly cotistant 

intensity transmittance under detuning. 
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We can consider the overall structure as a two-port device, with one input and one output, as shown. The electric field 

ratio and phase shift of tlie output relative to the input are 

E,, 

t-aexp{+i<l)) 

1- taexp(+i<j)) 

N-l 
-r^^aexp(+/^) 

1- t^aexp(+i(p) 
A<j> = (A^-l)(Aa),)+J:T + - + arctan 

t^asin{<j>) 

1- t acos(0) 
(1) 

In the above equations, N is the number of tlie rings, r and t are the coupling coefficients between the cliannel waveguide 

and resonator related by r^ +t^ = 1; a is the attenuation, and a = exp(-aL/2); A«>, is the transmission phase shift 

after the light passes through a single side-coupled ring resonator, which can be expressed as 

A<I>, =jt+ij) + arctan 
tsm{<t>) 

a - f cos(0) 
+ arctan 

tasm{(p) 

l-tacos{(p) 
^ = ^^ + ^^'-=/SL + ^ln(l + 2/S^K/,A//)     (2) 
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where # B tte total single-pass phase shift accumulated in one ring which is the sum of tlie linear phase shift due to 
propagation and nonlinear phase shift due tlie optical Kerr effect, including linear and two-photon absoiption loss [2], 
^' =pL and ^« are tlie single-pass Unear and nonlinear phase shift respectively;        fi = 2m/X^ is the propagation 

constant in the material, n is the refractive index, and h is the wavelength in free space; K = «ft/2n,^ is the 

normalized TPA coefficient, ft is the TPA coefficient, n2 is the nonlinear refractive index; L^^ =(1-0-^)1 a is the 

effective interaction length due to Hnear absorption and L=50 jim is the circumference, which is tiie same for each ring. 

The ideal nonlinear phase shifting element will have a region of input intemitj' over which a phase change of at least 
Ji can be obtained while maintaining constant intensity trammiltance. In onier for anj' switcWng device based upon this 
element to be practical, the phase shift must occur under low input intemity. B^ed on these requirements, we determine 
the magnitude and phase response of the resonator system as a fimction of input intensity for different coupling 
coefficients. We also use the figure-of-merit (FOM) [2] as a criterion for comparison, where FOM>l is desired. Figure 
2 and fig. 3 are for Asoiption a of 1 cm'' and 5 cm'^ respectively. The TPA coefficient K=l and tiie coupling coefficient 
^ varies from 0.1 to 0.25 in fig. 2. By comparing fig.2 (a) with fig.3 (a), it is evident fliat the intensity transmittance is 
higlily dependent on the single-pass ring loss. Also, witii increasmg ^, U/I„ increases (because over coupling into tiie 
ring occurs) but tiie ph^e shift decreases. An input intensity naljn less tiian 10"^ produces a n phase shift for most cases. 

10' 

lO'"   , Itf 
Input intenaty nJ 

(a) 

10'° 10' 
Input intenaty n,l. 

(b) 
Fig. 2 Attenuation a=lcm-', (a) Intensity ratio and total phase shift ofCMRR; (b) FOM ofCMRR. 

It is important to compare the nonlinear resonator response to that of bulk, m shown in fig. 3 using a=5cm' for ijotii, 
and 1^0.2 for flie rii^s. The bulk material is taken to have a length of 120 [xm, which is about tiie same lengfli as tiie 
CMRR device. We calculated tiie intensity ratio U/Ii„, phase shift, and FOM for different TPA coefficients: K=0,0:i, 1, 
10. The figure shows tiiat the bulk material is much more semitive to K: with increasing K, U/I„ decreases and tiie 
phase shift decreases at high input intensity. On the contraiy, TPA has no significant effect on tiie CMRR if K is less 
tiian 1. The phase shift and FOM given by CMRR are botii much larger tiian tiie bulk material. 

The second embodiment consists of coupled microresonatois in a one-dimensional photonic bandgap lattice [5], as 
shown in fig. 4. The nonlinear response of tiiis structure is shown in fig. 5 in comparison to a bulk material indicating 
again tliat nonlinear sensitivity enhancement by more than an oider of magnitude is feasible. UnUke tiie ring resonator 
stractures, tiiis photonic bandgap microcavity array structure is suitable for the stu# of transverse iwnlinear propagation 
effects. Preliminary studies show tiiat tiie 1-D self-focusing threshold can be reduced by nearly an order of magnitude 
even tiiough tiie symmetiy of tiie stracture demands tiiat tiie rate of diffraction is enhanced over bulk. 
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Fig. 3 Attenuation a=5cm'', r^ = 0.2, (a) Intensity' ratio and total phase shift qfCMRR and bulk material; (h) FOM ofCMRR and bulk 

material for different TPA coefficienst K. 
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Fig. 4.   1-D photonic microcavity array structure (left) and linear square magnitude (solid lines) and pha,^e(dashed lines) response 

(right) for an array of three and seven (thick linestyles) microcavities. 
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Abstract:   We   characterise   the   intermixing   fabrication   process   by   examining   the 
photoluminescence spectra. Subsequently we adapt the process, which was initially developed for 
optoelectronic integration, to be optimised for the production of semiconductor superlattice 
waveguides for quasi-phase-matched frequency conversion. 
©2002 Optical Society of America 
OCIS codes: (190.5970) Semiconductor nonlinear optics; (190.2620) Frequency conversion; (160.4330) Nonlinear optical 

materials ^ 

There is an emergence of semiconductors as nonlinear optical elements for wavelength conversion as techniques for 
phase-matchmg are developed. III-V semiconductors have intrinsically large second-order optical susceptibilities in 
comparison to conventional ferroelectric crystals. However, of potentially greater advantage is the mature 
fabrication technology m GaAs and the possibility of direct integration with semiconductor diode laser sources This 
could ultimately lead to compact devices for flexible wavelength sources and ampMers (where the peak gain 
wavelength is determined by the post-growth fabrication rather than being specific to each material system) and for 
channel conversion in WDM using difference frequency generation.' 
/cur.^ ^ °°^®^ method of raing quasi-phase-matchmg was recently demonstrated for second-harmonic generation 
(SHG) usmg spatially resolved intermixmg to periodically modulate the second-order susceptibility.^ This recent 
development m quasi-phase-matching using intermixing exploits the larger absolute modulation in the second-order 

susceptibihty based on the bulk-like coefficients z'£ and zS rather than the far smaller taduced coefficients in 

asymm^ric heterostructures. The QPM grating is defined in the post-growth processing of a wafer grown mim 
standard methods and hence this phase-matching technique is compatible with integration of laser diode pumps 
With careful process optunisation, it has been shown that the impurity-free vacancy disordering (IFVD) quantum 
weU mtermixmg does not significantly increase optical losses. However, the SHG output power levels in this mitial 
demonstration were rather low and hence further characterisation and process optimfeation is required. 

A theoretical optimisation study has been performed on this quasi-phase-matching technique ^ It was 
concluded that (1) the 14:14 moholayer symmetric GaAs/AlAs superlattice used initially is close to optimal for 
maxunismg the modulation m the second-order susceptibility for applications in the telecommunications 1 55 um 
wmctow, (2) the spatial resolution of the disordering must be less than a coherence length regardless of the order of 
the QPM process and (3) coupling efficiencies can be improwd without compromising the nonlinear overlap 
mtegral by paddmg out the waveguide core with additional AlGaAs alloy layers. Furthermore, preliminary spatially 
resolved photolummescence measurements seem to indicate that in the initial SHG experiment the intermixing was 
only partial in terms of depth and extent. 

We report here a reassessment of the IFVD technique for producing QPM gratinp. The structure used 
comprised of 0.6 jim of a symmetric superlattice waveguide core made of 14:14 monolayers of GaAs/AlAs 
respectively. The lower and upper cladding were bulk Alo,6Gao.4As of 4 pm and 0.8 jim width respectively A lOO 
rnn GaAs cap ws used to cover the upper cladding. By addmg 0.3 m layer of bulk Alo ssGao 44AS on each side of 
the superlattice layer, the couplmg efficiency was observed to increase by over an order of magnitude The structure 
was nominally undoped grown by molecular beam epitaxy (MBE) on a semi-msulating GaAs substrate The 
standard process developed at the University of Glasgow for fabricatmg low-loss regions for integrated 
optoelectromc applications uses lithography based on the lift-off technique with a PMMA mask to deposit a pattern 
of PECVD and sputtered silica. As the initiation temperature for intermixing is dependent on the silica deposition 

* Current affiliation: Edward S. Rogere Sr. Department of Electrical and Computer Engmeering, Universitv of 
Toronto, Toronto, ON M5S3G4, Canada. f s & y 
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method, a rapid thermal anneal at the appropriate temperature results in a patterned bandgap shift in the 
semiconductor heterostructure. However, at the micron-scale feature size necessary for QPM, this fabrication 
process resulted in a contamination of the sample surface with PMMA deposits after the lithography processes were 
completed with a resulting detrimental affect on the photoluminescence efficiency after the rapid thermal anneal. 
Therefore we have adopted an alternate fabrication process of using UV3 as a mask to etch windows into the 
PECVD silica layer followed by sputtered silica deposition. 

1.0' 

0.8' 

(A 

£   0.4 
c 

0.2' 

0.0 

PL at 77 K for 14:14 ML GaAs/AIAs + 500 nm Si02 annealed for 60 sec 
■>—I—'— 

pecvd 750 
pecvd 800 
e-gun 750 
e-gun 800 

—1—I—I—1—I—1—I—1—|- 

640  660  680  700  720 740 
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-1 1—I 1—I r- 
760      780      800      820 

Fig. 1. PL spectra from superlattice under PECVD and e-gun deposited silica caps following a rapid thermal anneal for 60s at the 
temperature shown. 

We examine the silica deposition process for the intermixing suppressed region, particularly at higher 
anneal temperatures where we aim to fully intermix the regions capped by the sputtered silica. Figure 1 shows the 
photoluminescence spectra after a rapid thermal anneal from portions of the superlattice wafer, which have been 
completely covered with silica deposited using the PECVD and electron-gun processes. It can be seen that at these 
temperatures used, the shift in the photoluminenscence peak is inconsistent on the PECVD samples, with a red shift 
at TSO^C and a blue-shift of the major feature at 800°C. In contrast the e-gun silica deposition samples show a 
photoluminescence spectrum essentially identical to the as-grown material. 

We also investigate the dependence of the bandgap shift on the thickness of the sputtered silica layer. 
Figure 2(a) shows the photoluminescence spectra from superlattice with the given thickness of sputtered silica cap 
following a rapid thermal anneal at 650°C for 60s and figure 2(b) shows the blue-shift of photoluminescence peak 
for RTA temperatures of 650°C and 700°C. It can be seen that the spectra are inconsistent for the thinnest sputtered 
silica layers but for layer thicknesses >100 nm, the spectra obtained are uniform. It is therefore recommended that 
the sputtered silica thickness should be at least 100 nm. Currently, the recommended anneal conditions are 800°C 
for 60s, which is sufficient to complete the intermixing process under the sputtered silica cap, but such that there is 
minimal change under the e-gun deposited silica cap. 

In figure 3 we show a scanning electron microscope photograph of a rib waveguide fabricated by reactive 
ion etch in a QPM grating using the current recipe. Only segments which are aligned with the rib waveguide have 
been exposed to the sputtered silica, which requires precise alignment of the masks for each etching process. The 
processing associated with the intermixing leads to slightly different etch rates in the semiconductor wafer which is 
visible on top of the waveguide rib. 

In conclusion, by using photoluminescence as a characterisation tool we have re-examined the fabrication 
recipe for producing QPM gratings in semiconductor waveguides by intermixing. We have found that the demands 
of maximising the modulation of the second-order susceptibility and the micron-scale resolution requirements are 
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not satisfied by the standard IFVD recipe. It is found tliat the requirements can be met by (1) using a UV3 etch 
process m the lithography, (2) ming e-gun silica as an intermixing suppression mask and (3) ensuring that the 
sputtered silica thickness is at le^t 100 nm. s uwi me 

PL 77 anneal 650 for 60 sec, spt Si02 thickness: 

700 

Wavelength (ntn) 

Anneal for 60 seo, PL 77 

-1     ■     I     1—I—1—I—1—I—I—r- 

—I— 
200 

■ 6S0 
D 700 

100   160   200   250   300 

sputtred SI02 Thickness (nm) 

Fig. 2 (a) Photohiminescaice spectra from superlattice with the given thickness of sputtered siHca cap Mowing a rapid thermal 
ameal at 650 C for 60s. The photoluminescence spectra for e-gun deposited silica is shown for comparison which is essentially 

Identical to the as-grown spectra, (b) Blue-shit of the photoluminescence peak as a fiinction of sihca thickness for the 650»C 

anneal data presentai in (a) and also for an RTA ten^erature of TOO'C. 

F%. 3 SBM picture of QPM waveguide after the intermixing processing and reactive ion etching of a rib waveguide The 
intenmxmg-suppressed regions experience a slight additional etching in comparison to the intermixed regions. 

2 !' o /     °' *^- Caneau, R. Bhat, M. A. Koza, A. Rajhel and N. Antoniades, Appl. Phys. Lett. 68.2609 (1996) 
A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce. J. M. Arnold. C. R. Stanley J S 

AitchBon, C. T. A. Brown, K. Moutzouris and M. Ebrahimzadeh, Optics Lett 25 1370 (2000) 
^ D. C. Hutchings and T. C. Kleckner, J. Opt. Soc. Am B (2002). 
a P. Komlski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vogele, and C 

Rbtanley. C. C. Button and IS. Roberts, Appl. Phys. Lett. 72,581 (1997). 
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Abstract: The symmetry of the third-order susceptibility tensor elements is addressed for semi- 
conductor heterostructures. 8 independent elements are found for the normal sample geometry 
and coefficients for nonlinear refractive phenomena are derived. The change in dimensionality 
with intermixing is discussed. 
© 2002 Optical Society of America 
OCIS codes: (190.5970) Semiconductor nonlinear optics; (190.3270) Kerr effect; (160.4330) Nonlinear optical 
materials 

There is an emergence of direct-gap semiconductors as nonlinear optical elements. In particular, the ultrafast 
Kerr-type nonlinear refractive coefficient n2 at 1.55 /tm (half-gap nonlinearity) in AlGaAs is around 10^ 
times larger than in silica. The mature fabrication technology allows low-loss waveguides and complex device 
structures to be fabricated on centimetre-scale chips. Experiments have used this nonlinearity to demonstrate 
all-optical switching in directional couplers[l], Mach-Zehnder interferometers and X-junctions, spatial and 
temporal soliton propagation[2], polarisation coupling and laser mode-locking. 

The symmetry properties of x^^^ in bulk semiconductors with a zinc-blende structures are now well-understood. 
As the photon energies employed are a sizeable fraction of the fundamental bandgap, Kleinmann symmetry 
cannot be utilised, as it does in silica fibre. The cubic structure of the semiconductor also gives rise to an 
anisotropy of the nonlinear susceptibilities not evident in the linear susceptibility. Essentially for degenerate 
wavelengths there are 3 independent x^^^ tensor elements and hence 3 numbers are sufficient to completely 
characterise Rex^^^ at a particular wavelength including its polarisation dependence. Similarly another 3 
numbers are sufficient to completely characterise Imx^^^ (e.g. two-photon absorption) at a particular wave- 
length. Bandstructure calculations of nonlinear refraction in GaAs, with the inclusion of higher conduction 
bands which provide an anisotropy[3], are found to describe well the observed polarisation dependence of 
nonlinear refraction through the measurement of self- and cross-phase modulation in AlGaAs waveguides[4]. 
Propagation equations have been derived to describe the nonlinear phase-shift and polarisation coupling for 
an arbitrary propagation direction [5]. 

In heterostructures there is an additional breaking of symmetry which leads to an increase in the number 
of independent x^^^ tensor elements. The substrate orientation will determine the symmetry group of the 
resulting structure and hence which independent susceptibility tensor elements result. In table 1 the 8 inde- 
pendent x^^^ tensor elements are listed for the usual case of a [001]-grown heterostructure in a semiconductor 
with a zinc-blende structure. 

xxxx    zzzz    xxzz    zzxx    xzxz    zxzx    xxyy    xyxy 

Table 1. The indices ijkl corresponding to the 8 independent Xijfci(-'^. w,a)) ten.sor elements for a [001]- 
grown heterostructure in a zinc-blende structure. 

For weakly-guided waveguide propagation along an axis of high sjTnmetry, the third-order susceptibility 
produces the phenomena of self-phase-modulation, cross-phase-modulation and four-wave-mixing between 
the two polarisation components (here we neglect third harmonic generation which requires phase-matching). 
The nonlinear polarisation terms corresponding to these are dependent on the waveguide orientation. The 
usual configuration for a [001]-grown heterostructure is determined by the [110] cleaved facets and results in 
the nonlinear polarisation contributions listed in table 2 for monochromatic light of frequency WQ. 

£{uj) = - [ETES{OJ - wo) + E^EK^ + t^o)] + -z \ETM^[^ - i^o) + E\.^fb{^ -Y wo)] 
z ^ 

This table can also be used to provide the polarisation terms for bulk semiconductors by taking the equiva- 
lence between the direction indices x, y and z. 
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TU: SPM 
TM: XPM 
TM: 4WM 

pl«J(w) 

^60Xzzzz\ETMf ErM^iu — Wo) + c.c. 

l^oXzxzxlETBf ETMS(aj — Wo) + c.c. 

s^oXzzxx.Ef^E^j^fS((jj — Wo) +C.C. 

TE; SPM     Aeo ^^W ^ + 2xi.„ + x?4) |I?rBpi^BJ(w - wo) + c.c. 
TErXPM -      '- 
TE: 4WM 

460Xxzxz\ETMfETE^i(^ — WQ) + C.C. 
M ■g^0XxxzzEj.f^jE^jj,5{u} — UQ) + c.c. 

Ib^ble 2. The third order polarisation contributions for a [OOlJ-grown heterostructure with cleaved facets 
llie frequency ordering m the third-order susceptibilities is again taken to be (-w.w w\ 

1.9i mill  ^        >    >    /• 

0 4 e 12 16        ao        24 

Diffiislon length Lj (monolayers) 

Fig. 1   Calculated shift of the lowest, conduction and highest valence bands with disordering for a 14/14 
monolayer GaAs/AlAs superlattice. &        a •-•*/ LH. 

It can be seen that measuring these phenomena alone provides 6 values and another two measurements are 
necessary, mcludmg an out-of-plane propagatiuon geometry, if x^^) is required to be completely characterised. 

The post-growth process of quantum well intermixing can be used to modify the bandgap. The resulting 
modification to x^ ^ has been employed in the fabrication of low-loss regions in semiconductor integrated ol 
toelectromcs, and to x^^) for quasi-phase-matching in frequency conversion. Similarly x^^' can be modified^ 
and used to produce regions on a semiconductor chip with different nonlinear refraction coefficients which 
have, for example, been proposed for soUton emission. We also note here the increase in symmetry where 
the structure reverts to the bulk average alloy This is illustrated in figure 1 where the bandstructure calcu- 
lations based on a 14 band k-p model incorporating intermixing[7] are used to determine the the conduction 
band edge and the heavy- and light-hole valence band edges with increasing intermixing diffusion length 
demonstrating the restoration of the (bulk) valence band degeneracy. 

The reduction in the number of independent x^^' tensor elements provides a method to explore the in- 
crease m symmetry upon intermixing. For example the cross-phase-modulation coefficients between the two 
polarisation components will have their degeneracy restored as the heterostructure reverts to bulk material. 

The superlattice bandstructure model, incorporating anisotropy and intermixing and described in Ref [71 
provides the band energies and optical matrix elements to enable the nonUnear susceptibility tensor elements 
to be computed. We have previously performed this type of calculation for the second-order susceptibiUty 
to demonstrate the feasibility of using selective area intermixing for quasi-phase-matching. [8] Extended 
calculations for the third-order susceptibility tensor elements in superlattices will be addressed 
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Abstract: Original observations obtained in a BaTiOsiRh waveguide are presented. The self- 
bending of a guided beam caused by the strong photorefractive non-linearity is observed. The 
response time of the phenomenon is studied in function of the injected intensity. A comparison 
with the results obtained in the bulk material is conducted. 
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1. Introduction 

Barium titanate is famous for its significant photorefractive properties coming from its high electrooptical 
coefficient T42 = 1600 pmA^. In particular, this one confers to this material an excellent capacity to transfer energy 
from a beam towards another [1]. For a single beam propagating in the crystal, a small portion of the incident beam 
is scattered from inhomogeneities and impurities in the crystal. The remaining part of the incident beam interacts 
with these beamlets via multi-wave mixing. This leads to an amplification of the scattered light in the direction of 
the energy transfer [2]. For the first time to our knowledge, we observe this phenomenon in the configuration of 
guided optics. 

2. Experimental Setup 

The observations are carried out with the wavelength of an argon laser (X = 514.5 nm). The light is extraordinarily 
polarized to obtain significant amplifications. The beam is injected into the guiding layer by a cylindrical lens (F = 6 
mm), the coupling efficiency is about r\ ~ 85%. The substrate used to realize the waveguide is a Rhodium doped 
(1000 parts in 10* in the melt) BaTiOs crystal grown at FEE by the top seeded solution growth method. It is cut 
along its crytallographic axis with a size ofaixa2XC = 6x2x5 mm. All the faces are optically polished. The 
planar waveguide involved in the present study has been achieved using three successive He ions implantations with 
the energies of 2 Me V, 1.9 MeV, 1.8 MeV at respectively the doses of 5 10",4 10'^4 lO'^ions/cml The light from 
the output of guide is collected by a microscope objective and sent to a detector. A diaphragm is placed in front of 
the detector in order to select only the guided part of the output beam, the bending light is detected by another 
detector. The two detectors are connected to the computer. A CCD camera placed above the sample allows the 
observation of the beam paths in the guiding zone or in the crystal if the light is injected in the bulk. 

3. Observations and measurements 

Fig. 1 illustrates some of our observations. In the waveguide as in the crystal, the curvature of the incident beam 
appears clearly when the light is extraordinarily polarized, it does not appear in ordinary polarization. The direction 
of the beam deviation depends on the direction of the c axis. These observations are in accordance with the usual 
properties of photorefractivity. 
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Fig. 1 .Observations ofthe self-bending in the bulk crystal and in the waveguide. ■ 

An example of dynamics of the directly transmitted and the deviated beams is shown in Fig 2 The kinetics of the 
transmitted beam can be adjusted by exponential laws to deduce the response time. Its dependence in function of the 
injected intensity according to a law T gives the exponents x = 0.76 for the guide and x = 0.8 for the crystal These 
coefficients are m close agreement with our preceding studies undertaken in this same sample at X = 854 nm [3] 
However, at the time of this preceding study, we had not observed the beam-fanning in the guiding layer because the 
injection of the hght was carried out in a less effective way by prism coupling (i] ~ 15%). Let us underline that with 
the mjection with the cylindrical lens, the same bending eifect is observed in the same sample at X = 854 nm 
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Fig2. Dynamics of the transmitted output beam and bending 
beam in the guide 

Fig. 3. Response time versus the light intensitjf in the guide 
(squares) and inside the bulk (squares). The straight lines are 

numerical adjustments according to laws 1"^ 

4. Conclusion 

The self-bending of the light is observed at ^ = 514.5 nm and at ?^ = 854 nm for the firet time in a planar monomode 
wavegmde BaTiOjrRh fabricated by the technique of ion beam implantation. The photorefractive origin of the 
phenomenon is identified and characterized. This offers the possibility to achieve phase conjugation in the guide. 
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Abstract: We report an experimental observation of leaky substrate TM modes diffraction on a 
grating-like periodical structure formed by defects of waveguide layer. Appearance of such defects 
we explain by features of copper-doped helium-implanted optical LiNbOs waveguide fabrication 
process. 
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1. Introduction 

It is known that in photorefractive LiNbOs waveguides fabricated by proton and helium implantation the surfece 
damage can take place [1,2]. The cracks are the results of the mismatch of lattice constant between a strongly 
proton-exchanged (or helium-implanted) region near the surface of the waveguide and regions deeper in the 
waveguide where less exchange has taken place. Thus the long exchange and oxidation times lead to the change of 
crystal structure. In turn the defects induced by He"^ implantation have a non-point nature and might be assigned to 
large-dimension clusters, having a new crystalline structure with a very specific lattice vibration spectrum, and in 
case of tf implantation the lattice defects of point nature, inducing weak crystal disorder only, predominate[l]. 

It was also shown [2] that nascent cracks can form precisely oriented, stress-induced grating-like structures with 
irregular periods. As a result, the light of an excited mode can be diffracted into other modes and mode spectrum can 
be anomalously side-shifted out of the expected geometrical plane. 

Other experiments show influence of annealing processes on a waveguide surface destruction. It was found that 
long-time annealing of LiNbOs layer after the process of IT or He"" implantation results in the formation of the 
lithium triniobate phase in the samples and, with time, to destruction of their surface. Depending on crystal 
orientation the damages have linear or tessellated structure [3]. 

2. Experimental results and discussion 

In our experiments we used a sample that was formed on Y-cut wafer by three-sequential He-implantation and 
following Cu-doping by ion exchange at a temperature of 230°C for a 20 min. To increase the efficiency of helium- 
implanted waveguide it was annealed at 215°C for a 30 min. 

For investigation of waveguides properties of the sample the standard one-prism coupling method was used. 
Scheme of experiment is shown in Fig. 1. The focused TE or TM-polarized beam of He-Ne laser with wavelength 1 
= 0.633 |J.m is coupled into the waveguide throw the rutile prism. The direction of light beam propagation is a X-axis 
of crystal. 

On a screen 1 we have observed dark and bright m-lines of waveguide modes. Experimental investigation have 
shown simultaneously excitation of TE and TM modes on both TE and TM input polarization of light beam. Such an 
effect can be explained by an existence of described above grating-like structure in waveguide layer that may lead to 
diffraction of wavegide mode into other modes. On screen 2 we have observed leaky substrate modes. 4 substrate 
modes (always TM-polarized) are excited simuhaneously with excitation of waveguide modes. This modes have 
appeared due to non-diagonal components of dielectric permittivity tensor of bireiringent negative crystal. Part of 
energy of TE or TM polarized waveguide modes are transmitted to the ordinary wave arising in substrate. 

For all modes the excitation angles a" and outlet angles of substrate modes related to the flatness of waveguide 

0™' were detected (Fig. 1) and converted into effective refi'active indices. 
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«m = «p Sin 

/ 

A + arcsin »4<) 
/j 

(1) 

where «p is flie refractive index of the used rutile prism, m is order number of mode, and A the relevant prism angle. 

Using Eq.l we have calculated the spectrum of effective refractive indices for TM modes: nj = 2.243, n* = 

2.2262, «2 =2.1923, n^ =2.1803, and refractive indices of wafer: /j„ = 2.25and n^ = 2.\B. 

For input TM polarization the set of angles 0^"* is foEowing: ©f =20.29', 0* =28.16', ©'^ =40.38', 

@f =43.44'. This outlet angles are related with the light propagation angles in crystal by equation 

noSin0„ =sin0' (2) 

From ho-e ©0 = 8.65', 0, = 12.02*, 02 = 16.73', ©3 = 17.84', 
The effect of TM-polarized wave beaming from waveguide take place for modes with effective refractive indices 
satisfying to foUowmg proportion 

«„ =n„cos0. 

where Wo is refractive index of ordinary light wave. 
(3) 

screen 2 

Fig. 1. Scheme of is-iaitcoiqjlii^ mettod and experimental obKTvation of leaky a^ 

Furthermore among the ordinary leaky modes described above the substrate modes looking like diffiaction 
pattern were observed on a screen 2 (Fig. 1). Such type of diffraction can take place only in a case of existence of 
periodical structure m the waveguide layer. Periodical structure deflect part of energy of waveguide radiation from 
the mgle of total reflection. As a result the substrate mode appear. Adding of wave vectors of periodical gratine-like 
structure to flie wave vector of waveguide mode leads to arising of additional substrate modes closely located to 
each otherJFig. 2). This modes were situated before or between the lines of leaky modes over the range of outlet 

angles af"* from 5° to 28». For the zero-order TM-mode outlet angles a* for 22 fringes were measured- 21 75° 

n^^^^^!e^P!'!^^''''''^'°' ''■''"' ''■''°' ''■'''' ''■'''' ''■'''' ^4-04°' 13.58°: 12:36"; 
An equation binding effective refractive indexes of waveguide modes and period of structure can be obtained 

from the vector diagram (Fig. 2): 

*     2jt 

(4) 
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where n*^ is an eifective refractive index for waveguide mode of m order, i is a order number of grating vector, Ls is 

a grating period, ko is a wave number, a^ = arcsin(sin(a°"'}/ «„ ) is an angle of substrate mode propagation, and tio 

is a refractive index of wafer (refractive index of ordinary light wave). 

Fig. 2. Vector diagram. 1 - leaky substrate TM mode, 2 - leaky substrate TM modes forming a diflraction pattern, 3 - 
grating vector formed by periodical structure of waveguide layer. 

Using the measured spectrum of angles «; and set of equations (4) for «(, = 2.243, we calculated the value of 

grating period Z-x ~ 400 nm. Leaky substrate modes in addition had a periodical structure in transverse direction. We 
measured spacing between the diffraction maximums and evaluated the period of structure as Z-z ~ 100 |im. 
Changing of plate orientation by rotating it to 90 degrees (light beam propagate along the Z-axis) is leaded to 
generation of interference pattern along the m-line of leaky substrate mode. The period of diffraction grating in this 
case also equal I^ ^ 400 urn. Congruence of periods I^ at orthogonal orientations of waveguide allow us to make an 
assumption about linear character of grating-like structure with orientation of grating in the line of Z-axis. An 
existence of similar defect structure acqufred in a process of H:LiNb03 waveguides, with the same orientation of 
crystal, annealing was observed [3]. 

3. Conclusion 

The conducted observations and measurements show an existence of grating-like periodical structure in waveguide 
layer of investigated sample. To all appearance the grating have a complex structure, but the linear character of 
structure (with a period L = 400 nm) predominates. However, presence of orthogonal to described above linear 
structure interference pattern, corresponding to a periodical structure with another period (100 |im), bring us to make 
a conclusion about an existence of some kind of periodical substructures in a waveguide layer. Probably on a 
formation of such kind of grating-like structure different stages of technological process of waveguide fabrication 
(including He"" implantation, Cu-doping and annealing) were able to affect. Further investigation may help to 
determine relations between parameters of waveguide fabrication process and structure of waveguide layer damages. 

1. S.M. Kostritskii and P. Moretti "Comparative study of defects induced by proton and helium implantation in LiNbOj crydal," Radiat. Eff. 150, 
151-156(1998) 
2. F. Richerman, D. Kip, B. Gather, and E. RrSzig "Characterization of photorefractive LiNbOj waveguides fabricated by combined proton and 
copper evchange," Phis. Stat. Sol. A ISO, 763-772 (1995) 
3. V.A. Ganshin and Yu.N. Korki*ko "HiLiNbOs waveguides: effects of annealing," Optic Comm. 86, 523-530 (1991) 
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Abstract: We present femtosecond measurements of nonlinear refraction in periodically poled lithium tantalate by 

using spectrally resolved two-beam coupling. The sign and magnitude of nonlinear phase shifts induced by cascade 

quadratic nonlinearity and mtrinsic Ken-nonlinearity are measured. 

©2002 Optical Society of America 

OCKcode»:(190.7110)Ultrafastnonlmearoptics;(190.3270)Kerreffeet;(320.7100)Ultrafast measurement 

Introduction 

Cascade quadratic nonlinearity (CQN) generates large phase shifts of controllable sign [1]. Due to its 

non-resonant nature, its apphcation for ultrashort pulse evolution is promising [2]. The temporal dynamics of CQN 

phase shifts in type I phase mismatched conditions have been measured in femtosecond domain so far [3]. CQN 

with quasi-phase matched structure is attractive because of its large nonlinearity and po^ibility of domam 

engmeering. However the measurements of cascade phase shifts or their applications in femtosecond domain have 

not yet been reported. 

The intrinsic nonlinear index, ni, plays an important role in the spatial, spectral and temporal pulse evolution m 

many quadratic nonlinear wave-mixing processes with ultrashort or high-energy optical pulses. Accurate knowledge 

of «2 is particularly useM for designing ultrashort frequency converter and pulse shapere based on quadratic media. 

M. Sheik-Bahae et al. [4] has measured the nonlinear indices of important quadratic nonlmear materials by using the 

Kerr-lens autocorrelation technique. However % of lithium tantalate (LT), which is an important nonlinear material 

for quasi-phase matching (QPM) devices, have not been reported so far. It has large second-order nonlinear 

coefficient (15,1 pm/V). deep transparency mto the wavelength of 280 nm, and high photorefractive resistance. 

Here we report the femtosecond measurement of intrinsic Kerr nonlinearity and c^cade phase shifts in 

periodically poled lithium tantalate (PPLT) by xm& of spectrally-resolved two-beam coupling (SRTBC) technique [5]. 

Experiments and discussions 

SRTBC is a sensitive method for determining the sign and magnitude of the real and imaginary parts of i^\ It ii 

also useful for measuring the temporal dynamics of various kinds of Kerr-like nonlmearity, mcluding cascading 

nonhnearity This technique is based on the well-known pump-probe arrangement, followed by the spectrally filtered 

,s 
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transmittance measurement. Assuming that the electric field of the pulse is E(f) ~ exp(-/^/to^), the nonlinear 

transmittance as a function of delay rand detuning S= co-Ok {cOb is the center frequency of the spectrum) is [5] 

^(r,^) = -|exp(<y=r„V6)exp(-2rV3r„^)x[2AOsin(2^r/3)-<7cos(2^r/3)l       (l) 

Here AO = Iql^J. {y=4n)ujcn) is the nonlinear phase shift, q = pl^j., the effect of two-photon absorption, /pu, the 

pump intensity and L, the interaction length. We can obtain y5and ^by fitting the measured transient signal. 

The mode-locked Ti: sapphire laser supplied 5 nJ pulses of 80 fs duration and center wavelength around 800 nm. 

The probe beam power was made 10 times smaller than the pump beam by use of 10/90 beam splitter. The pump and 

the probe beams were noncoUinear, and the polarizations of the two beams were linear and parallel. The incident 

pump pulse is set to be 3.7 nJ, which corresponds to the peak intensity of 3.1 GW/cml While scanning the delay 

line, the transmitted probe pulse was analyzed spectrally with a spectrometer and a photo-diodes array 

Intrinsic nonlinear refractions of BBO and bulk LT are measured for first. The samples are 1 mm thick BBO cut 

for type I phase matching at 800 nm (9 = 29 deg.) and 1 mm thick bulk LT cut perpendicular to c-axis. The pump 

and probe beams propagates as ordinary waves. Figure 1(a) shows the measured SRTBC signals for LT (circles) and 

for BBO (squares) at the detuning of AX = -(-1.13a (a is FWHM of the probe spectrum). The fitting curves obtained 

by using Eqn.(l) are also shown as dashed lines. We measured the SRTBC traces at several positive and negative 

detuning points. Figure 1(b) shows the phase shifts obtained by fitting the traces for various detunings. From these 

results, we estimated the nonlinear index of LT to be relatively large, rii (LT) ~ 4 x «2 (BBO). By using the 

previously reported value of «, (BBO) = 3.65 x 10"'* [cm^AV] [5], we obtain n, (LT) ~ 14.6 x 10"'* [cm^AV]. 
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Fig. 1 (a) SRTBC signals of intrinsic tiz in bulk LT and in BBO. (b) Measured phase shift as a function of detuning for LT (blank) and for 

BBO (filled). Points represented by squares (circles) were measured with positive (negative) detuning. 

Next we measured the nonlinear phase shifts due to cascade nonlinearity in PPLT. The PPLT sample is fabricated 

by the usual lithography technique followed by the electric field application (~21kV/mm). The sample has thickness 

of 0.3 mm, interaction length (along x-axis) of 0.8 mm, and the domain inversion period of 3.1 |xm. The device is 

kept to be 180 '^C to reduce photorefractive effects. The pulses are polarized as extraordinary waves. We measured 

SRTBC signals for various phase mismatches by varying the center wavelength from 800 nm to 840 nm. Figure 2 

shows the measured SRTBC traces both for positive and negative phase mismatch conditions. In our definition, the 
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positive phase shift A#(> 0) is generated for negative wave-vector mismatch (M< 0), and vice versa. The signals 

showed apparent dependence on M, which confirms that the measured signals originate from CQN. The measured 

pliase shift of positive sign for M < 0 is larger than those of negative sign for M > 0. This should be due to the 

competition with intrinsic Kerr-nonlinearity. These measurements showed that CQN phase shift have clear 

dependence on M even m femtosecond domain and its magnitude is comparable with the intrinsic Kerr-nonlinearity. 

Because the CQN phase shift is degraded by the relatively large GVM at this wavelength, the CQN should be much 

more prominent under smaller GVM conditions, for example, at longer wavelengh. 
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' F'8-2 Measured SRTBCsigials in PPLT under positive and negative pliase mismatch conditions. 

Conclusions 

In conclusion, we have measured, for the first time to our knowledge, nonlinear refraction in periodically-poled 

lithium tantalate in femtosecond domain. Nonlinear phase shifts due to cascade quadratic nonlmearity and mtrinsic 

Kerr-nonlinearity have been measured by use of SRTBC technique. The results give important insight for designing 

ultrafast frequency converters, mode-lockers, and pulse compressors based on QPM devices. 
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Abstract: We will discuss the feasibility of an integrated parametric oscillator based on GaAs. Results on 
parametric fluorescence will be presented. Minimization of losses and mirror deposition are the crucial points 
for obtaining parametric oscillation. A threshold around 100 mW is expected. 
© 2002 Optical Society of America 
OCIS Codes: (190.4410) Nonlinear optics, parametric processes; (230.7370) Waveguides; (260.1440) Birefringence 

Efficient low-power compact sources of tunable coherent near and mid-infrared wavelength radiation are necessary 
for many applications, including communications, spectroscopy, and process monitoring. Optical parametric 
oscillators (OPOs) offer extremely wide tunability intrinsically limited only by material transparency. OPOs require 
only a single pump laser, and offer an energy conversion efficiency much larger than that of single-pass nonlinear 
interactions such as difference-frequency generation. Singly and doubly resonant integrated OPO's have been 
demonstrated in LiNbOs waveguides [1-2]. 

X 2400 

Xj>2|jm 

?^@lMm x,<2m 

%      1058 1059 1060 1061 
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Fig. 1. Measured parametric fluorescence signal vs. pump wavelength and fit with theory (dashed). Inset: PF 
signal vs. pump power at degeneracy. 

Gallium Arsenide has a very high second-order susceptibility (</effis in the range of 100-200 pm/V). This 
advantage, together with the possibility of integration with laser sources, makes this material very attractive for 
integrated nonlinear optics. GaAs, however, is not birefringent nor ferroelectric and thus the standard phase- 
matching or quasi-phase-matching techniques cannot be applied in a straightforward way. This had prevented the 
use of GaAs in quadratic nonlinear optics. 
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rJc/ATf' *° ^^^"™^^? ^J^is Ifitetion, the concept of form-birefringence was implemented in oxidized 
l!2!^2^.™^*^®^- ^t^, cntical step is the selective oxidation of AlAs, which is carried out at 400=>-500°C in a 

[3-4]. 
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One of the most excitmg possibilities with this new type of nonlinear material is the realization of an OPO on a 
OaAs chip. To this aim, we investigated the parametric fluorescence (PF) generated in such waveguides 151 The PF 
yield however, was hmrted severely by the high optical losses. This motivated a sptematic effort in improving the 
tfH^'^'J''^' l^f TH^ '''f* *° ""'^'^ of magnitude increase in the yield. The parametric fluorescence has 
been analyzed quantitatively, the tunmg curve has been measured (Fig. 1) and the "selection rules" on pump and 
signal polarization have been verified. A parametric fluorescence efficiency as high as 6x10"^ W/W has been 
measured m a 3-mm long waveguide [6]. This is comparable with what is obtained with periodically poled LiNbO, 
waveguides, that are much longer, typically [7]. »■ yyvmu umous 

From the analpis of tiie^ emitted PF spectra (Fig. 2) we have deduced some important parameter such as the 
normaltted conversion efficiency, scaled with the waveguide length, which is approximately 1000% cm'^W' We 
could also estmiate the effective interaction length, which w^ slightly shorter than the physical waveguide length 
thus mdicatmg reduced waveguide inhomogenity. cguiuc iwigin, 

.h !'^U^^A'^^^^^°^' ^^^«8»i<*«S' different transverse modes can be phase-matched and generate PF, provided 
that the addition^ selection rales associated with mode symmetry are respected. We observed up to 3 peaks 
associated to 3 different combinations of the modes TMoo, TMo,, TEJO TEoi (Fig 3) 

„,.tS?58l %T' ^1^ !'T."'T''f i* ^^^'^''' wavelengths using Fabry-Perot method and the scattered light 
to mw tf.t vT i1:^'"* ' '* ^ '^^ f* ^ '^'"^ ^'' encouragmg. The estimated pump power threshold k ablt 
ditol' Srs^ "^ ' '* *' ™^*^' '°^ ''''''■ ^"'^ *^ "°^ ^°^^^«d °° ^^^'^^ high quality 
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Fig 3. Multimode parametric fluorescence involving TMoc, TMoi (pump) and TEoo, TEoi (signal). 
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We experimentally demonstrate the formation of (1+1)D and (2+l)D solitons in 
photorefractive CdZnTe:V, exploiting the intensity-resonant behavior of the space charge 
field. We show that the resonance intensity is tunable, allowing soliton formation times as 
low as 10p.sec scales with very low optical power. 
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Optical spatial solitons and self trapping of beams have been investigated for almost four decades. Much 
of the progress in this field was made in the last 10 years, partly following the discovery of 
photorefractive solitons [1], which enabled solitons with very low power levels, as well as soliton 
experiments in bulk media. Photorefractive solitons, and the waveguides they induce, combine properties 
that suggest interesting applications, many of them are in optical communication. In general, however, the 
formation time of solitons in most photorefractive materials is rather long, determined by the dielectric 
relaxation time, i.e., inversely proportional to the product of the mobility and the optical intensity, and the 
mobility in photorefractive oxides is low (~1 [cmWsec]). In principle, photorefractive semiconductors, 
(e.g., InP), have a high mobility and could offer formation times 1000 faster than in the other 
photorefractives. However, the electrooptic coefficient in these semiconductors is tiny, which implies that 
solitons that are as narrow as ~20 optical wavelengths necessitate very large applied fields, making 
solitons in them almost impossible [2]. But, in some of these materials (e.g. InP and CdZnTe) a unique 
resonance mechanism enhances the space charge field by as much as 10 times the applied electric field, 
enough to support the self-trapping of a narrow beam. The resonant enhancement of the space charge 
field in soliton formation was previously observed in InP [3] and recently theoretically explained [4]. 
The resonant enhancement of the space charge field occurs in materials with both types of charge carriers, 
both being excited from a common trap level: one excited optically and the other excited by temperature. 
When a focused beam illuminates a biased crystal of this kind, and the beam intensity is such that the 
photo-excitation and thermal excitation rates comparable, the local electric field is highly enhanced. It is a 
resonant enhancement, although it is an intensity-resonance and not an atomic resonance. The enhanced 
electric field compensates for the smallness of the electrooptic coefficient and enables a sufficiently large 
change in the refractive index to support narrow solitons. Self focusing and solitons based on the 
resonance enhancement in photorefractive semiconductors was thus far demonstrated experimentally only 
in InP:Fe. This mechanism could facilitate narrow and fast solitons in photorefractives, but unfortunately, 
a new problem arises: the electron excitation rate is determined by temperature, so the value of the 
resonance intensity is prefixed and is very low (~30mWatt/cm^ at T=300°K), which inhibits the 
exploitation of the ability for short formation times. Increasing the temperature could offer some 
improvement as it shifts the resonant intensity to higher values, but most applications cannot afford 
temperatures much higher than room temperature. Furthermore, it is difficult to control the resonance 
through temperature because of its high sensitivity. All-optical control of the resonance is desirable 
because it is fast, easy, and very accurate. 

Here we demonstrate the formation of (I+I)D and of (2+I)D solitons in another photorefractive 
semiconductor material: CdZnTe:V, and show optical control over the resonance intensity, facilitating 
formation times of lOnsec with very low optical power. 

CdZnTe:V has a similar intensity-resonant mechanism as InP:Fe, with an important difference: the 
electrons and the holes exchange roles [5]. Electrons are optically excited by a \3/Jm  (or shorter) 
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wavelength/whereas holes are thermally excited. But, 
the holes can also be excited optically, by a 
~1.5/tf« wavelength beam [6]. We use this to increase 
(and control) the hole excitation rate considerably by 
uniformly illuminating the cr^tal with a lAijm 
wavelength beam ("background beam"). The 
background beam sets the resonance intensity to much 
higher values than temperature-driven resonance, 
thereby substantially shortening their formation time. 
Our experimental setup resembles that of Refs. [3], 
The CdZnTe:V crystal is situated on a temperature 
control device, stabilizing the crj^tal temperature to 
21''C. The soliton-forming beam comes from a CW 
936nm wavelength Ti:Sapphire laser. We cany out 
two sets of experiments, demonstrating (1+1)D and 
(2+l)D solitons. In both cases the beam is linearly 
polarized along the (no) direction and is propagating 
in the (iTo) direction, hi the absence of applied field, 
the beam diflftacts to ~3 times its input FWHM after 5 
mm propagation. For the background beam, we use a 
1.48/flM wavelength beam from a diode laser, which 
illuminates the crj^tal uniformly. The external bias field 

Pffffe 1: Observation of (1+1)D and (2+l)D self trapping in 
CZT. A ITum FWHM (1+1)D input beam (a) is self trapped 
with Eo=1.8 kV/cm (b). The peak intensity at the input fece of 
the crystal is 1.5mw/<rf. When Eo=0, this beam diffracts (c) to 
40nm FWHM. A circular 15nm FWHM input beam (d) is self 
trapped (e) with Eo=9.4 kV/cm. The peak intensity at the input 
ftce is SAtttwfctsf. When Eo=0, this beam difiracts (f) to SOum 
FWHM. f~ 

s applied along the (001) direction. 

m, 
cases. 

Typical results with (1+1)D and with (2+l)D solitons are shown in the upper and lower rows of Fig 1 
r^pectively. Shown are photographs and beam profiles of the input beams [(a),(d)], output soliton beams 
l(b),(e)] when the mtensity and apphed fields are adjusted to the appropriate values, and linear difflaction 
mm m the absence of applied field. The ID soliton [Fig. 1(b)] is at an apphed field EQ =1 8 kV/c 
and the 2D soliton of Fig. 1(e) is at Eo = 9.4 kV/cm, both with no background illumination, hi both 
the data clearly shows very nice undistorted narrow beams that are as narrow as the input beam. 
To illustrate the resonant self-focusmg behavior, we perform a set of experiments with all parametere kept 
constant and vaiying only the intensity. Typical results are shown in Fig. 2, showing photographs and 
beam profiles taken at the output face of the ciystal. All the data in this figure is without background 
lUummation, so the "natural" (thermal) resonance intensity is ~1.5mW/cm^ Figure 2 (a-e) shows 
expenments with the input beam of Fig. 1(a) and Eo = 6 kV/cm. The output beam in (a) is fer below 
resonance and it shows some fanning-like features (the intensity spread to the right). At higher intensities 
It self-focuses (b), until it forms a soliton (c) when the peak intensity is in the range 0.45-1 5 mW/cm^ 
The    reason    for    this 
somewhat wider range of 
intensities is the presence 
of fairly high absorption 
(2.2 cm"'), which means 
that the ratio between the 
resonance   intensity  and 
the intensity of the beam 
is    varying    throughout 
propagation.      At     the 
resonance   intensity  and 
slightly above it, the beam 
breaks   up   in   two   (Fig.   ;     Rfflre2: observation oftheself-focusing dynamics for (l+l)D(left) and (2+1)D (right) beai», as 
2d), as explained '^"^^of'nputintensity. Keeping the beams width and resonance intensify fixe4 the beams' 

mtensities are successively increased. The focusing effect increases with the intensity [(a-c) and (f- 
h)] until it reaches its majdimmi strength (c,h). Then, at higher intensities, the self-focusing effects 
decrease (d,i) until they are non-apparent (e j), 
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theoretically in [4]. The reason is that in this range the beam induces a waveguide that is shifted away 
from the beam center. As the intensity is fiirther increased (Fig. 2e), the induced waveguide moves fiirther 

away fi-om the beam, until it no longer affects 
the beam. The trend with a 2D beam is very 
similar: the beam displays fanning-like features 
at intensities far below resonance (Fig. 2f), 
solitons form at the proper intensity range (2h), 
and the beam is distorted at higher intensities 
(2i), until, at high enough intensities (2j) the 
nonlinearity no longer affects the beam. 

iBackground [W/cm^] 

Figure 3: The peak intensity of a soliton at 0.936nm as a function 
of the background intensity at 1.48nm. The inserts show the 
intensity of the 17nmFWHM soliton beam exiting the crystal at 
various intensities. 

Finally, we show how the background intensity 
determines the resonance. We carry out a set of 
experiments with the input beam of Fig. la, Eo = 
6kV/cm, and vary the value of the background 
intensity fi'om zero to as high as 54 mW/cm^ To 
isolate the control over the resonance, we vary 
the background intensity while keeping the input 
(soliton-forming) beam shape and the applied 
field fixed, and adjust the intensity of the input 

beam until a soliton forms. Figure 3 shows typical results with 2D solitons for various resonant intensities 
that are induced via the background beam. At the highest intensity point the resonance intensity is ~1000 
times higher than the thermal resonance intensity. This shows we can generate solitons in a wide range of 
intensities, by optically controlling the resonance accurately. We carry out similar experiments with a ID 
beam and the trend is very similar. The response time at the point of the highest resonance intensity is 10 
H,sec for a 17|xm FWHM circular beam -AS juWatt power (peak intensity -17 Watt/cm^). This response 
time is 1000 times faster than the response time of solitons of the same intensity in SBN, as expected 
from the 1000-fold higher mobility in CdTe. Yet we emphasize that to form solitons at this speed in 
CdTe, one must increase the resonance intensity from its natural (thermal) level by 10^ times, which is 
exactly what we did. We envision that in the near future, light emerging from ordinary optical fibers 
carrying (temporal) data will be used to form spatial solitons. The average optical power emerging from 
such fibers is a few mWatts, which when distributed across a lOtim FWHM circular soliton beam, can 
lead to formation times as low as 100 nanoseconds. 
In conclusion, we reported the observation of (1+1)D and (2+l)D solitons in CdZnTe:V which has a 
resonant photorefractive nonlinearity. We have shown how to control the resonance intensity of the 
nonlinearity by applying background illumination at wavelength different than that of the soliton. This 
enabled narrow solitons in intensities much higher than those inspired by the thermal excitation alone. 
Optical regulation of the resonance is a crucial step towards CZT-based applications, because it enables 
short response times, and because the system becomes temperature independent. We estimate that by 
using light beams emerging from ordinary optical fibers used for data transmission, we can form 
photorefractive solitons in CZT in within 100 nanoseconds. 
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A wavelength-division-multiplexed (WDM) dispersion-managed (DM) optical fiber system is one of the key 
components of current development of ultrafast high-bit-rate optical communication lines. High capacity of 
optical transmission is achieved using both wavelength multiplexing and dispersion management (see e.g. 
Ref. [1, 2]). A dispersion-managed [3, 4, 5, 6] optical system is designed to create a low (or even zero) 
path-averaged dispersion by periodically alternating dispereion sign along an optical fiber that dramatically 
reduces pulse broadening. Second-order GVD (dispersion slope) effects and path-averaged GVD effects cause 
optical pulses in distinct WDM channels to move with different group velocities. Consequently modeling of 
WDM systems requires simulating a long time interval. Enormous computation resources are necessary to 
capture accurately the nonlinear interactions between channels which deteriorates bit-rate capacity. Here an 
efficient numerical algorithm is developed for massive parallel computation of WDM systeuK. The required 
computational time is inversely proportional to the number of parallel processors used. This makes feasible 
a full scale numerical simulation of WDM systems on a workstation cluster with a few hundred processors. 

Neglecting polarization effects and stimulated Raman scattering and Brillouin scattering, the propagation 
of WDM optical pulses m a DM fiber is described by a scalar nonlinear Schrodinger equation (NLS): 

= iG{z)A, (1) 

where z is the propagation distance along an optical fiber, ^ is a slow ampHtude, ft, ^3 are first and second 
order group-velocity dispersions respectively which are periodic function ot z, a = (27rn2)/(Ao^e//) is the 
nonlinear coefficient, «2 is the nonUnear refractive index, AQ = 1.55/XTO is the carrier wavelength, A^fj is the 
effective fiber area, Zk = kza (k ^l,..., N) are amplifier locations, z^ is the amplifier spacing and 7 is the 
1<BS coefficient. 

Change of variable u = AtT !o °^'">^'' results in NLS with ^-dependent nonlinear coefficient c{z) = 
{z)exp{2i^G{z')dz'y. a 

1 i 
i'U'^-^l32{z)utt--l3i(z)uttt + c{z)\ufu = Q, (2) 

Assummg that the nonlinearity is small z^i = l/|pp > L, where I, is a dispersion map period and p is a 
typical pulse amplitude, one can express « in Fourier domain as a product of an exact solution of Hnear part 

of the Eq. (2) on a slow fimction ^(w, z): u{w, z) = #(a;, z) exp (iw^ g h(:z')dz' -h fw^ ^ h{z')dJ), where 

u{u3,z) = /^«(<,2:)e*^*A. ^ is a slow function of 5: on a scale I, (see reference [7, 8, 9]) which allows to 

integrate the Eq. (1) over the period L neglecting the slow dependence of ^ on x and get: 

^(w,(m-M)i) = ^(u;,mL) + i.R(|,a;), (3) 

where 

^(^'^) = (25r)2 / ^(^i!"^i)^(w2,TOL)-|*(W3,mi)A'(A, A3)*(a;i ^,^^-uj- W3)du;i«iw2dw3, 
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Fig. 1. A schematic of parallel computation algorithm. FFTi, FFT2,... represent FPT in first CPU, second 
CPU, etc., respectively. + sign means summation of the results of FFT in different processors. 

K{A,A3)=I dzciz)exp(^-Aj   M^W + ^^sJ   H^')dz'), 

A = wf + wf - w^ - Wg, A3 = wf + wf ~ '^^ ~ '^3> "^ i^ ^n arbitrary integer number. 

(4) 

Eq. (3) allows to find ^(w, (m + 1)L) from given ■^(a;,mL) and thus to recover u{t,z) using definition of 
■0. The main obstacle in numerical integration of Eq. (3) is the computation of integral term R{i), w) which 
generally require A'^^ operations for each iteration, where N^ is a number of grid points in uj or /-space. Here 
we introduce much more efficient numerical algorithm for calculation of R{IJJ,UJ). 

Using definition of A, A3 one gets from (4) : 

r(m+l)L 

R{i>,u^) = j^J dzciz)exp[--w^J^  ^{z')dz'--u,^ j^  ^{z')dz') j ^^'\uJumL) 

x^^^^(a;2,mL)V'^^^*(w3,»TiL)(5(wi + a;2 — ^3 — u!)duiidu)2du}3, (5) 

where ^'"^'(w, mL) = ip{uj,mL)exp (i^u)'^j^l32{z')dz'-\- ^uj^ j^ l3:i{z')dz'Y In ^space this expression takes 

the form 

/.(m+l)L 

J mL 
(6) 

where ^'^^\t,mL) = \^^^'>{t,mL)\'^-il}^'''>(t,mL) and G^''^ is an integral operator corresponding to a multipli- 

cation operator G(=)(#(=)(W, mL)) = exp f - ^w^ J~ l32{z')dz' - fw^ J^ I33{z')dz'^¥"'>{ij, mL) in w-space. 

It follows from the Eqs. (5), (6) that numerical procedure for calculation of R{A,u}) includes four steps: 

(i) The Backward Fourier Transform of ^'M^uj, mL) = iA(w, mL) exp ^fw^ J^ 02{z')dz' -f fw^ JJ j3^[z')dz'^ 

for every value of z {mL < z < {m + l)L). 
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(ii) A calculation of #(*)(«, mX) from ^W(t,njX). 

(iii) The Forward Fourier'n-ansform of *W(e,TOL). 

(iv) A numericalintegration (sunrnxa^tionl of c(z)exp(-lw^ J; fy(z')dz'-iw^ J^ fy^^^^ over 
« for every value of w. ^ 

The forward and backward Fourier transforms can be performed with the fast Fourier transform fFFT) 
which requires NLog^iN) operations. The steps (i)-(iii) need only a value of ^(t, mL) and these steps can be 
performed simultaneously in M processors (see Fig. 1), where M is a number of pld points for integration 
over z. Ihus the total computational time equals to time necessary to perform 2NLog2(N) operations in one 
processor. The step (iv) assume summation of the results of calculation in M processors. This summation 
can be eff«:tively implemented by simultaneous summation in M/2 pairs of processors, then by summation 
ot the results m M/4 pairs of processors etc. what totally requires a time which is equivalent to 2NLoq,(M) 
operation m one processor (see Fig. 1). ; J^\    j 

Numerical simulations of the WDM system were performed using both the split-step method for NLS (2) 
and using the numerical algorithm given by Eqs. (3) and (5) to demonstrate the accuracy of the proposed 
numerical scheme. Simulations were performed for 5 WDM channels (20 Gb/s per channel) over a topical 
transoceanic distance of 10^ km. The channel spacing was 0.6nm. The GVD periodically alternates between 
spans of standard monomode fiber (0^ = -20.0psykm, 13^ = dlps^/km, at = Q.miZ(kmmW)-\ 

length Li = mkm) and dispersion compensating fiber (^f^ = imMps^/km, 0^ = -OBps^/km a^ ^ 

QMmHkmmW)-\ length L^ = -^fujufhrn) so that the average GVD is zero. Fiber losses and 
amplifiers were not considered. However they can be easily included in the coefficient c{z\ A pseudo-random 
bmary sequence of length 20 was used for every WDM channel. The boundary conditions are periodic in time 
Ml bmary 1 was represented by an initially zerc^chirp Gaussian pulse (return to zero format) of lOps 
width and peak power \nf = 1 mW at the beginning {z = 0) of the fiber hue which is taken at the middle of 
standard monomode Jber span. The integration length L (see Eqs. (3) and (5)) is set to be equal to (ii + 
i.2 j/4; M - 2 ; and JV = 2". The resulting power distributions after propagating W^km obtained from both 
the spht-step and the proposed parallel algorithm differ in about 1% so the proposed numerical algorithm 
gives good numerical accuracy Numerical simulations were performed on usual workstation without use of 
parallel computations. The objective of this numerical example is to demonstrate the relative accuracy of 
numencal algorithm. Hardware implementation of the parallel simulation for numerical algorithm (3) and 
(5) is beyond the scope of this paper. ^ w     " 

One can conclude that the proposed efficient numerical algorithm allows to implement a numerical simulation 
ot fcq (1) m about M times faster than a direct numerical simulation of that Eq. by a spUt-step method 
(which requir^ 2M NLog^{N) steps for the same numerical steps along z and the same numerical accuracy) 
Ihe absence of communications between parallel processors during computation of FFT allows to implement 
T^!^hn?^*^? r'"''"®^ computation algorithm on workstation clusters. One can estimate that using of 
about 1000 parallel processors would allow a full scale numerical simulation of WDM transmission in optical 
hber on transoceanic distance (this estimate is made for 27 x 10 Gb WDM transmission given in Ref. [2]) . 
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Abstract:   Two quadratic nonlinear waveguides are immersed in a cavity suited for second- 
harmonic generation. The quantum equations are derived to calculate intensity correlation spec- 
tra and strong quantum violations of the classical limit is observed. 
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The x^^^-nonlinear materials have been the subject of various investigations in recent years. Using a cavity 
setup the weak nonlinearities can be resonantly amplified, and complex spatiotemporal behaviour has been 
predicted from a classical point of view [1]. Moreover, due the the quantum fluctuations of light many inter- 
esting non-classical behaviours have been reported, such as squeezed light and sub-Poissonian light [2], both 
theoretically and experimentally. The interplay between the classical spatial instabilities and the quantum 
fluctuations in the system has been investigated intensively lately [3], a study devoted to characterizing the 
mode interaction on a quantum level. 

We will focus on the case of second-harmonic generation (SHG), where the photons of the pump field 
(fundamental, FH) are upconverted in pairs to photons of the double frequency (second-harmonic, SH). The 
model we consider here consists of two quadratically nonlinear waveguides resonated in a cavity, taking a 
linear coupling between the waveguides into account. The question is how the coupling between the fields 
affect the cavity dynamics, and especially we will focus on the nonclassical behaviour of the system. It has 
been shown that in single waveguide SHG excellent squeezing is possible [4] and in the presence of diffraction 
strong correlations exist between different spatial modes in the presence of a spatial instability [5]. This 
includes correlations between the FH and the SH, as well as quantum violations of the classical coherent 
limit. In the present model the simple linear coupling across the waveguides also turns out to give strong 
nonclassical correlations, and since it is closely related to the dynamics of coupled atomic and molecular 
Bose-Einstein condensates [6] the results presented here should have widespread importance. 

Pump 

X -waveguides 

Fig. 1. Model setup: two waveguides A and B inside a cavity pumped by a classical field. 
We consider the setup shown in Fig. 1. Two x^^^-nonlinear waveguides immersed in a cavity with a high 
reflection input mirror Mi and a fully reflecting mirror M2 at the other end. The cavity is pumped with a 
classical field at the frequency wi and SHG is ocurring through the nonlinear interaction in the waveguides 
by generating photons of frequency a;2 = 2a;i. The coupling between the waveguides is assumed linear. The 
system is now described using boson operators Ai and Bi {A2 and B2) of the FH (SH) intracavity photons 
of waveguide A and B, respectively. Using the mean field approach a Hamiltonian is set up describing the 
operator interaction in the system including coupling of fiuctuations into the cavity from external modes, and 
this Hamiltonian is the basis for deriving the master equation. Using the quantum-to-classical correspondence 
an equivalent equation is derived describing the time evolution of a quasi-probability distribution, where 
the quantum mechanical operators are replaced by classical c-numbers. In some cases this equation may 
be modelled by a set of Langevin stochastic differential equations, which in normalized form read for the 
positive P quasi-probability distribution 

Ai =-^Ui + A\A2 - iJiBi + ^/¥riAi,in,       A\ = -^iA\ + AiAl + iJiB\ + ^WiA,in       (1) 



NLMD45-2 

Bache et al., Nonclassical statistics of intracavity coupled quadratic nonlinear waveguide... NLGW/2002  Page     2 

Al = -^^Al-liA\f + iJ^Bl 
Dt Bl = -jiBl + B1BI + iJiAl + V^BJ 

i2 = -72-42 - 1^1 - iJ2B2, 

Bl = -71B1 + B|B2 - iJiAi + ^/WtBu 

ft =-72B2 - ^Sf - iJ2^2, 

with the input fields consisting of both the external pump E and noise ternK g 

1 
B| = -72B|-^(51)2 + ^24 

(2) 

(3) 

:4) 

|^+SF>W/>/,„ = ^+4W,   F = AB 

«F,(<)eF,(*') 

The equivalent intracavity c-numbers to the bcMon operators are Aj <^ ij, it ^ ^t and B • ^ B • B^ ^ B^ 
71 and 72 are the FH and SH loss rates of Mi and % = jj/j^, and the FH and'sH coupling between the 
waveguides are Ji and J2, respectively, n, is a dimensionless parameter determining the strength of the 
quantum fluctuations. 

Using a linearized stability analysis the bifurcation scenario of the system is analyzed starting from the 
symmetric steady state. The symmetric state means that both waveguides have the same steady state 
solution, and the system may now become self-pulsing (Hopf) unstable, bistable or destabilize in favor of an 
asymmetric steady state. An example is shown in Fig. 2 which shows that self-pulsing solutions exist in a 
large area of the (Jj, J2) phase space, and also bistable solutions exist for large enough couphng strengths 

KMOO 

^ 2 

Pig. 2. Gray scale plot showing the thr«hold for self pulsing for 72 = 0.1. The grey area Is bistable in the 
steady states. 

The input fields dj,i„ coupled into the cavity through the input mirror are posing instantaneous boundary 
conditions for the output fields 

%out(*) = v^4-W-%inW,    d = A,B,    j^l,2. (7) 

The fields outside the cavity obey the standard free field commutator relations ' 

Using these relations we can now calculate the two-time correlations of the output field intensities N^^^^ = 

^j,out%out from the mtracavity c-number fields governed by the Langevin equations as foUowrs 

TAS__   ,  ..  ,TBK   ^^/_^   ,   ,,~  rAms A_ ~   rBtns  :.  rA(_s   ,   ~   jB, 
=    %i(¥)p+7*<lf)p)%)+4{7i//(0)±7*J,f(0),7,j/(T)±7fclf(r))p (9) 

using {X,Y) = {XY} - {X){Y). Both the intracavity intensities If = AJAj and the averages (■)p are 
calculated from the positive P Langevin equations. Fourier transforming the correlations (9) gives 

nAH = 2(7i(l/>p+7fe(lf)p) + 4/     dTe*--{7,j/(0)±7fcjf(0),7il/(r)±7,jf(r))p (10) 
J — OC 
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Pig. 3. Photon number spectra calculated in the linearized regime normalized to shot noise level (indicated 
by "SN"). 

The first term represents the shot noise of the measurement, i.e. the classical limit corresponding to the 
system being described by coherent states. The second part may now become negative, which can only 
happen for a quantum state that cannot be described by classical equations. Here, a quantum violation of 
the classical limit results in anti-bunching of the time statistics of the photons being measured, i.e. sub- 
Poissonian behaviour. 

Using a Unearized approach the correlation spectra may be calculated from the Langevin equations, assuming 
that the fluctuations are small compared with the steady state solutions. The spectra (10) are in the following 
normalized to the shot noise level so V{UJ) = 1 is the classical limit. 

For 72 = 0.1 strong violations of the quantum limit originate both from the self-pulsing instability and from 
the presence of a bistable turning point. The left plot in Fig. 3 shows that the difference of the FH in the two 
waveguides have strong noise suppression for nonzero w, and this originates from a self-pulsing instability. 
Also the sum shows strong noise suppression now at a; = 0, caused by the presence of the bistability; as 
can bee seen from Fig. 2 the parameters discussed here are very close to the bistable area. Almost complete 
anti-bunching has been observed just before a bistable transition. Setting 72 = 1 the self-pulsing instability 
gives rise to strong violations of the shot noise limit. Moreover, the nonclassical behaviour persists all the 
way up to the self-pulsing transition, cf. the middle spectra in Fig. 3 which is set very close to the transition. 
The sum of the SH fields from each waveguide displays strong correlations at w = 0. Also strong correlations 
are displayed by the difference of the FH fields from each waveguide for nonzero UJ. When 72 = 10 mostly 
self-pulsing instabilities are observed, and here the sum of the SH fields from each waveguide shows strong 
nonclassical correlations, while the difference displays excess noise, cf. the right spectra in Fig. 3. 

The results show that strong anti-bunching effects can be observed originating from a linear coupling across 
the waveguides. We will present numerical simulations to back up the analytical results, and discuss the 
possible applications of these observations. 
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1. Introduction 

Many nonlinear optical cavities have been shown to support transverse patterns with different symmetries (rolls 
hexagons, and also quasi-pattems) as well as cavity solitons (CS) [1]. The latter are particularly interestmg objects 
because of their potential use as memory bits in optical information processing systems [2]. However usual lasere do 
not fa 1 into the category of CS-supporting systems since, usually, such systems are either phase-sensitive and/or 
exhibit a bistabihty. Up to now two ways have been proposed for exciting CSs in lasers: the use of saturable 
absorbed [3], or the mjection of a monochromatic signal [4]. Also very recently two-photon lasers have been 
predicted to support CS [5]. 

Here we demonstrate theoretically an alternative way for exciting CSs in lasers based on the injection of a 
resonant bichromatic signal into the laser cavity. Differently from the previously suggested laser CSs. the ones we 
present here are based on the development of two dynamically equivalent laser field phases differmg by it Hence 
the reported CSs belong to the class of dark-ring cavity solitons, in which a bright spot with a definite phase is 
surrounded by an oppositely phased, spatially uniform light distribution, both phases being separated by a dark rmg 
These phases appear when the laser emission frequency locte halfway between the two injected signal components' 
which can be understood as a result of the competition between a (phase sensitive) resonant, degenerate four-wave 
mixing process -m which two injected photons (one of each signal component) are converted into two equal laser 
photom- and the usual (phase insensitive) stimulated emission process of free running lasers 

, ^P^!* frojn CSs other phase patterns (e.g. domain walls or labyrinths) are shown to form in the laser transverse 
plane. We fmd two generic types of phase patterns, which differ in the way the light phase varies between two 
oppositely phased regions. In the first type the phase abruptly changes by n along the line separating both regions- in 
these patterns the referred lines are dark and we speak of Ising-like patterns, in analogy with the Ising walls'of 
ferromapiets [6] In the second type the phase varies continuously and smoothly across the line, still accumulating % 
between both sides; m these patterns the referred lines are gray and we speak of Bloch-like patterns [6] 

As we show below the detuning between the central injection frequency and the free-nmning laser frequency 
selects the geometry of the observed patterns (domain walls, labFintte, or dark-ring CSs), as well m the iniected 
signal strength controls their Ising or Bloch character. 

2.Model 

We consider the standard Maxwell-Bloch equations [7] that model pattern formation in a single longitudinal mode 
two-level laser with injected signal, ii^ide a plane murors resonator, which can be written in dimensionless form as' 

d,P=-{l-iA)P + ir-N)E, (2) 
d,N=b[-N+ReiE*P)l (3) 

The complex fields ^ and P are the scaled envelopes of the electric field and medium polarization -i^ is 
proportional to the difference between the population inversion and its steady value in the absence of lasing and 
Ey IS the scaled complex envelope of the injected signal. o = K/y^ , and 6 = T||/YI , being K = CT/L the cavity 
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linewidth (c is the effective light velocity within the resonator, L is the cavity length, and T is the mirrors' 
transmissivity), and Yj^, and Yy the decay rates of P, and A^, respectively. The transverse Laplacian V^ = 92 + 32, 

where the spatial coordinates r = (x,.y) are measured in units of (YIC0L)-"2C, being COL the laser emission 

frequency; t is time measured in units of I/YI • Finally r is the usual laser pump parameter and the detuning 

A = (coc - ©A )/(YX + K) . being ©c (00^) the cavity (atomic) frequency. 
Eqs. (1H3) have been written in the frequency frame COQ = (YICOC + KO),^ )/(YI + K) of the on-axis, or plane 

wave {^^E = d E = Q), steady lasing solution in the absence of injected signal. Previous studies have considered 

pattern formation in model (l)-(3) when the injected signal is monochromatic, either as £■(„ = EQ exp(-/e/) [7,8], or 
as £■;„ =£'oexp(?fcc-i'e/) [9], with E^ constant. These represent an on-axis, resp. a tilted, injected signal whose 

frequency detuning from COQ is Y16 • Here we consider the case 

£(„ =£0 cos(a)Oexp(-/er), (4) 

which represents an amplitude modulated field of carrier frequency COQ + YI©. and modulation frequency YiW. 
Alternatively (4) represents a bichromatic injection formed by the superposition of two coherent light beams of 
frequencies COQ + Y16 ± Yx^, and equal amplitudes. In order that (4) be consistent with the uniform field and single 

longitudinal mode approximations that lead to Eqs. (1H3), both the carrier frequency offset Yi© and the 
modulation frequency Yi w must be much smaller than the cavity free spectral range a = 27K;/Z, = 27CK/r. Hence we 
must impose |e|,|co|« 27to/7'. Note however that the rhs of the inequality is much larger than o since f «1 is 
assumed in the uniform field limit, hence in fact there is almost no practical limitation to the values of 0 and co. 

In all this work we shall consider the positive detuning case A > 0 for which, in the absence of injected signal, 
the laser is off for r < TQ = 1 + A2, and switches on at r- r^ giving rise to the on-axis lasing solution [ 10,11 ]. 

3. Reduction of the Maxwell-Bloch equations to a driven, complex Ginzburg-Landau equation 

In order to gain insight into the basic pattern forming properties of the system, we undergo next a reduction of Eqs. 
(l)-(3) to a compact form that allows a simplified treatment of the problem. The reduction will be done, as usual [8- 
12], in the close to threshold regime r = TQ + t^t-j, being 0 <e«1 an auxiliary smallness parameter. We consider 
A = 0(eO), where a complex Ginzburg-Landau (CGL) equation describes the laser in the absence of injection 
[10,11]. For smaller detunings, say A = 0(e), the nature of the bifurcation changes and a complex Swift-Hohenberg 
equation is obtained [12]. As for the injected signal we consider F = 0{t'^) and co,6 = 0(e2), which correspond to 
a weak field almost resonant with the free running laser emission frequency. Finally, we introduce slow spatial 
scales {X = vc,Y = ty), and multiple slow time scales (7^. =e*r,A^ = l,2,...), and assume that the laser variables 

admit the expansion G{x,ya) = Y^^^^"G„{XJJ\J2'-)' G = E,P,N [10,11]. Upon substituting all previous 
scalings into Eqs. (l)-(3) and equating equal powers in e, an infinite hierarchy of equations is obtained which must 
be solved up to 0{z^). As usual, at this order a solvability condition must be imposed (in order to avoid unbounded 
solutions) which yields the searched equation. By undoing all the scalings the equation can be written as 

sd,U = iQU + o{\-iA)-^{r-ro-\U\^)U + lVm + EoCOs{oit), (5) 

where s = l + cj(l + /A)/(l-iA), and Uir,t) = e\piiQt)E{r,t). Eq. (5) is a CGL equation with direct ac-driving 
which, for EQ=0, reduces to the laser CGL equation derived in [10]. Interesting, ahhough cumbersome, analytical 
information can be obtained from Eq. (5). Hence we consider for simplicity the case o = 1 which, according to our 
numerics, represents most of the basic features of Eqs. (l)-(3). In this case the CGL eq. (5) can be written as 

a^f/ = (H + /v)f/-i-(l + /a)V2[/-|[/|V + /cos(2cox) (6) 

where T = ?/2, |j, = (r - /{,), v = 20, a = A-', / = (1 - /A)£o, and space has been normalized to VA . In the 
following we choose, without loss of generality,/as a positive real number since the phase of F has not been fixed. 

4. Ising and Bioch domain walls 

Let us consider now the limit of "strong" and "fast" modulation /,0)»1 in Eq. (6). By no means this limit is ess- 
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entiaVbut it allow® a clear understanding of the role played by the bichromatic injection. In fact, the numerics we 
show m Sec. 5 do not verify that limit, eventhough they are qualitatively described by the features we describe next. 

In the limit /=ti-iF, w=^-i 0/2, being 0 < ii«1 a smaltaess parameter, one can search for solutions to Eq. 
(6) in the form Uir,%)=Uo{r,T,x) + ^u,ir,T,%)+Oi^2)^ where T=n-H. At order n-i the solution reads 

«o (r, T,x) = (FJO) sin(Or) + iC/(r, %), The evolution equation for U is found as a solvability condition, which must 
be imposed at order x\f>. The searched equation reads: 

9tC^ = [(ti-2Y)+iv]C/ + (l + ia)?2[/-|C/p[/ + Y[/* , (7) 

where y=i(F/0)^ =jifi<af is aparameter capturing the effect of driving. The effect of driving is evidenced via 
the last, phase symmetry breaking term, which allom stable domam wall solutions. Outstandmgly, for a = v = 0 
Eq. (7) such solutions are analytical in one spatial dimension, and are known as Ising (i) and Bloch (B) walls [10]: 

i/j (x)=+VH - y tanh(^n - y x/Sl 

f/^{x)=±V|i-Ytanh(^x)±iVn-5ysech(^x). J 
The Ising wall (a dark Ime where U= 0) is stable for n/5 < y < p, and the Bloch wall (a gray line) is stable for 
0<y<n/5. At y=(i/5 anIsing-Bloch transition occurs. 

5. Numerics: Phase domains, labyrinths, and dar-ring cavity solitons 

Regarding the pattern forming properties of the system, a linear sability analpis of the spatially homogeneous 

solutions to Eq. (7) reveals that extended patterns arise with wavenumber k given by ak^ =v-j/-JT+a?' or 

ak2 = V - ^(^-2y)2+v2/Vl + a2 , depending on whether the trivial or the nontrivial solutions is considered. 
All previous analytical predictions were tested against the numerical mtegration of Eq. (6), and also of the full 

Maxwell-Bloch equations (1H3). A split-step mtegration technique w^ used on a two-dimensional grid of 
128x128 pomts with periodic boundary conditions. Numerics started from a spatially random distribution of the 
electric field U. In the absence of injection vortex ensembles spontaneously developed. Fig. (a). For negative or null 
detunings 6 Ising and Bloch domain walls were found as transient states, m iBual m two-dimensional systems Fig 
(b). Also labyrmthine patterns. Fig. (c), were found for positive values of v and a. Fmally, for detuning values 
between those for domam walls and labyrinths, dark-ring cavity solitons were found. Fig. (d). 

'   * *      ^\   f   s  = W ^       ^ f)   o 

;      W (b) (c) (d) 

Figure. Laser intensity dtoribution according to the ac-driven complex Ginzburg-Landau eqiiation (6) : 
Parameters are ft = 1, © =2jt, a = 10. Rest of parameters a»/= 0 (a);/=7, v = 0 (b);/= 7.5, v = 0.6 (c),/=10, v = 0.27 (d). 
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Abstract: A regime in which spontaneous formation of localized structures occurs is found for 
intra cavity second harmonic generation. Independent writing, erasing and moving of structures 
are numerically demonstrated. 
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1. Introduction 
Formation of localized structures (LS's) has been predicted and experimentally observed in many nonlinear optical 
systems [1]. Such structures, that are also termed cavity solitons, can form due to the interplay between nonlinearity 
and diffraction in driven-damped systems. Their search, beyond the scope of scientific investigation, is pursued 
because of their possible applications as all-optical storage elements, opening the way to all-optical signal 
processing and all-optical computing. Intra-cavity second harmonic generation (SHG) is one among the most 
interesting systems where LS's are expected. This stems from the fact that new materials (e.g. periodically poled 
crystals) have lowered the pump power necessary to reach SHG threshold to few mW and novel structures (e.g. 
monolithic micro-cavities) have been developed. LS's have been found under very different conditions, e.g. the 
existence of a bistability range between a homogeneous and a patterned solution [2] or between equivalent 
homogeneous solutions [3,4], however an exhausting study of possible conditions sufficient to observe LS has not 
been performed. Spontaneous structure generation in intra-cavity SHG has been the object of previous studies: in 
those papers [5] LS's have been found in the bistability parameter range between an hexagonal pattern and a 
homogeneous solution. LS's have been also predicted in the stability analysis of type II SHG but their properties 
have not been investigated [6]. In this contribution, a regime where spontaneous generation of LS's is identified; in 
such a regime control of one and more LS's is numerically demonstrated. Type II SHG has been also considered; 
this case is particularly interesting because the additional degree of freedom represented by light polarization should 
allow for independent setting and resetting operations, leading to parallel control of spatially distributed flip-flops 
[7]. In this work numerical evidence of polarization patterns and LS's has been searched for. 

2. Equations and stability analysis 

The equations governing the time evolution of intra-cavity fields (Ai,A2) in type I SHG can be found in [5]. They 
read: 

dA 
dt 

dA 
dt 

r, [- (1 + /A, )4 + iaX'A, + A^A' + E] 

(1) 

'- = r,[-{\ + iA,)A,+ia,'<7'A, + A^] 

where yi,2 are the cavity decay rates, Ai,2 the cavity detunings, ai,2 the diffraction coefficients respectively for the 
first harmonic (FH, Ai) and the second harmonic (SH, A2) fields. All coefficients, including the external pump 
uniform amplitude E (that can be considered real without loss of generality) and variables (time and transverse 
space) can be scaled m order to become dimensionless quantities. The trivial, homogeneous steady-state for this 
equation is given by the solutions of the equations Ai[|Aif/(H-iA2)-(l+iA,)]+E=0, A2=A,V(l+iA2). The complete 
stability analysis of this homogeneous solution can be found in ref [5]. Here we just recall only some results 
necessary for the purpose of explaining the observations presented here. In fig. 1 the stability diagrams, as a function 
of the SH detuning, for two particular values of FH detuning are given. The main difference between the parameter 
region of fig. 1 (left and center) is that in the latter the homogeneous steady-state is a multivalued function. In both 
cases the bifurcation (Re(?i)>0), at threshold, occurs for plane waves SA^^ =exp[/(r, •r)+;i/J. whose transverse 
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spatial wave vector is such that ^^ =|f^| ^ oand Im(X)=0. These conditions means that spatially dependent and time 

independent (Hopf bifurcation has a larger threshold as shown in fig. 1) structure formation can be expected. 
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Fig. 1. StaWlity aagraiM for A,=2 Oeft) and A,=-4 (center). Solid cur^^ 
Steady-state. Dashed curve is the threshold of Hopf instability. In the figuw on the left the input-output curve for the 
nonwgeneous steady-state solution is shown for Ai=-4. 

3. Patterns and localted Structures 

Numerical integrations of eqs. (1). startmg from a weakly perturbed homogeneous steady-state, presented in fig 2 
show different results as for the formation of LS's, dependmg on FH detuning. For the case A,=2 the fields fU,P is 
shown^because the SH pattern is similar) evolves toward the formation of a stable hexagonal pattern [5]- however 
for A,-4, the resulting self-organized structure is not regular but rather made of single spots, randomly distributed 
m the transverse section. ^    " ■' 

Fig^2, Spontaneous stmcture formation for A-2 (lefl) and A,=.4 fr#l). ,AC 's shov.^ as a fimction of the transverse 
spatial coordinates. All other parameters are the same. 

This seems a clear example of spontaneous formation of LS's; such a regime is different either from optical 
bistabihty [4] or from LS formation due to the existence of robust fronts between patterns and homogeneous 
solutions. In fact, the parameter range is not close to any of those situations. This interesting behaviour has not been 
predicted before for mtra cavity SHG and to our knowledge, there is not a clear expHcation. The resuhs presented 
here seem to indicate that it might be related with the presence of the homogeneous multivalued solution, since this 
IS the mam difference between the two regimes as it results from fig. 1. Intuition suggests that this parameter range 
and sptem are very suitable for LS formation. To explore more in detail the properties of such LS's additional 
numerical simulations have been performed; the scope is to demonstrate that LS's in this regime can be easily 
controlled. Fig. 3 shows that single LS can be switched on and off independently, by sunply shinme the 
homogeneom solution with in-phase or out-of-phase, tune and space limited pulses. In the figure the spacine 
between structures has been chosen close to the critical distance value 2jr/k,; this value proved to be the minimum in 
order to guarantee the stable writing of LS's; lower distances may result in LS annihilation. Data of fig 3 refer to a 
possible experiment, with a LiNbOs crystal (^^\rf^5pmlV) and a micro cavity (lOMm long); a single LS occupies 
about 90X90 m , the writmg time (from excitation to steady-state) is about lOOps. the writmg beam power (for 
switching on and off the LS) is about lOOmW. while the holding beam fe about lOW. Lowe^ powers could be 
attamed by using poled crystals or semiconductors. 



NLMD47-3 

Fig. 3. Snapshots of |Aip, at different times demonstrating independent switching on and off of LS's. On the top left the 
external pump (writing plus holding beam) is represented 

Motion of LS's occurs when the pump field is not homogeneous [8], e.g. a Gaussian beam. If the intensity gradient 
is large enough, collisions between LS's at the beam center result into annihilation. This effect seemingly hampers 
the real observation of LS's and their exploitation for the purpose of optical memories. Nonetheless the control and 
the localization of LS's could be attained by counterbalancing intensity motion with a phase potential of the external 
pump field E. In fig. 4 the effects, on a single LS, of the presence of a Gaussian phase variation of the input pump E 
are shown. 

Fig. 4. LS motion due to the phase gradient of the holding beam E, whose phase is shown on the left top. 

The LS tends to move at a velocity dictated by the phase gradient and to settle at the point of maximum phase. This 
runs demonstrate that LS can be controlled and moved through phase variations of the external beam. This is very 
easily attained by means of phase masks. Besides the fact that this behaviour could be exploited for making shift 
registers, the phase control also allows for a denser and better allocation of structures. Numerical simulations 
confirmed that LS's can be written and erased independently on top of a square lattice of pump phase maxima. 

4. Type II, localized structures 

Some numerical simulations have been performed for the case of type II SHG. Here, the instability of the 
homogeneous state can be of an asymmetric type, i.e. causes polarization symmetry breaking [9]. Such a bifurcation 
allows for the observation of different types of regular patterns (squares, hexagons etc.) as shown in the same 
reference. Search of LS, that has been predicted in ref [6] is undergoing and will be reported later. 

5. Conclusions 

In conclusion LS formation in intra-cavity, type I SHG has been studied. An interesting regime where LS's are 
spontaneously generated has been found. In such regime LS can be easily written, erased and moved. Experimental 
parameters for their observation have been evaluated. Polarization structures have been also observed for the case of 
type II SHG 
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Potential applications of localized stractures of light excited in externally driven optical cavities (cavity solitonsj in 
technology are of interest [1]. One such apphcation is the exploitation of individually addressable and steerable 
localized spots of light m externally pumped optical cavities [23]. These structures have been proposed as pixel 
elements for an all optical memory, parallel and image processing [4-6], with additional applicatiom emergmg for 
use m optical buffermg, solitonic CCDs, and for confinement and manipulation of small particles [7] This 
appUcational mterest has been renewed recently due to the observation of cavity solitons in semiconductor 
microcavities ( see [2] and references therein) which have diameters of approximately 10 urn, evolve on pico- 
nanosecond time scales, and have the ability to move transversely at speeds in excees of 1000m s"' [8] As forces 
between such structures must be controlled in the afore mentioned schemes, we provide a basis for assessmg and 
controlling cavity soliton interactions through both analytical and numerical approaches. In a two-level saturable 
absorbingrmg cavity [9,10], we analyze in detail stability and imtability properties of clusters of two, three and four 
structures. We develop a modified Bessel fijnction technique for analytical calculation of the expression for the 
mteraction potential between such structures and their response to external perturbations. This method has 
applicability going beyond the model under consideration. Qualitative differences between stability properties of 
tnangular and square cluster formed by localized structures are found which emphasize the role of diagonal 
mteractions m the latter. Localized structures in such clusters are shown to mteract through forces obeying a linear 
superposition prmciple. Separation distances obtained for equilateral triangular cluster are in very good agreement 
with cracked patches of hexagonal patterns [11]. Clusters with sufficiently low symmetry may exhibit spontaneous 
motion. Analysis of this mterestmg phenomena, and simulation results, are presented. 
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Photorefractive spatial solitons and their induced waveguides' liave been of great interest in recent years 
because of their dimensionality, wavelength sensitivity, and fixability. With these properties, they offer 
potential applications, some of which are truly unique''^: reconfigurable near-field optical interconnects, 
three-dimensional optical circuitry^ directional coupling''*, beam steering,' and frequency conversion^-'. ThJ 
most promising one is nonlinear frequency conversion. Since the conversion efficiency in x® processes is 
proportional to the intensity of the pump beam, one easy way is to use a focused beam. However, in bulk, 
diffraction reduces the conversion efficiency, because as the beam diffracts, (1) the intensity decreases, and (2) 
the beams acquire quardratic phases thus the phase-matching condition cannot be satisfied across the entire 
beam. Therefore, using waveguides for frequency conversion can largely improve the conversion efficiency 
Employing waveguides induced by photorefractive solitons not only increases the conversion efficiency but 
also offers flexibility, because the waveguide structure can be modified at will. For example, waveguides 
uiduced by photorefractive solitons offer much tunability: wavelength tunability in frequency conversion is 
achieved by rotating the crystal and launching a soliton in the new direction, or by changing the propagation 
constants of the guided modes by varying the intensity ratio and external voltage (without mechanical 
movements). 

In our earlier work*'* we demonstrated second-harmonic generation in waveguides induced by 
photorefractive solitons with improved conversion eflBciency and tunability. Here we are interested in optical 
parametric oscillators (OPOs). In an OPO, the threshold pump po^r is dependent on the signal gain per pass 
through the crystal. Here we demonstrate OPOs in waveguides mduced by photorefractive solitons, and show 
that by using waveguiding, the gain in increased for the same cavity loss, leading to a greatly reduced 
threshold pump po-w«r. 

cho pper 

■^3- 
Ar       Isolator 

Laser 

background 

N—resonator^^ 

Fig. 1 Experimental setup 

CCD Camera 
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Our setup is shown as Fig. 1. We build a doubly-resonant oscillator, in which the oscillation occurs at both the 

signal and the idler wavelengths. The oscillator consists of two concave mirrors with 2.5 cm radius and a 
nonlinear crystal. The mirrors are coated to obtain almost 100% transmission for the pump light, and high 
reflectivities for the signal and the idler beams. A 488nm laser beam acts as the pump and also generates the 
soliton. The beam is adjusted to match the fundamental mode of the cavity, with the minimum beam waist 
located at the input surface of the crystal. A chopper is put into the path of the pump to "chop" the CW pump 

beam into 150 |ls pulses with repetition rate of 67 Hz. The duration of the pulses is much longer than the 
response time of the nonlinear polarization excited by the pump beam, so for the parametric process it is 
essentially CW pumping, and the gain is related to the peak power of the pump pulses. On the other hand, the 
pulse duration is much shorter than the response time of the photorefractivity so the formation of the soliton is 
dependent only on the average power of the pump beam. Therefore, with the chopper we control the 
parametric process and the spatial soliton structure independently. The nonlinear crystal is a 

5mmxl5.8mmx5mm (axbxc) KNbOs crystal. All beams propagate along b-axis, and the external voltage is 
applied along c-axis. The pump is polarized along c-axis, while the signal and the idler are both polarized 
along a-axis. The crystal is also illuminated uniformly by a white light beam as necessary for the 
photorefractive screening nonlinearity. 

Pump beam 488nm        Signal beam 830nm 

Input 
without voltagel 

Output 
without voltage | 

Output 
with voltage 

i 
1 

0        lOOuni 
Fig. 2 Beam cross-sections profiles at input and output surfaces 

First we investigate the operation of the OPO without the waveguiding induced by the solitons, and obtain 
oscillation at threshold pump power of 84mW. Fig. 2 shows the cross-sections of the pump and the signal 
beams. The 488nmbeam is focused at the input surface of the crystal with a FWHM of 21 jim as shown in Fig. 
2a. It diffracts to 54 \im at the output surface (Fig. 2c). The minimum beam waist of the signal beam is also 
located at the input surface of the crystal with a FWHM of 28 ^m (Fig. 2b). At the output the signal beam size 
is 69 |J.m, (Fig. 2d). The signal and the idler wavelengths are 830.2 nm and 1186.4 nm at temperature of 40°C. 
The output signal peak power as a function of pump power is shown as Fig. 3. Then, we move the output 

mirror further away from the crystal a distance of/,/«, {?i is the crystal refractive index) and generate the 
soliton (turning the applied field on). We obtain oscillation, optimize the voltage and the intensity ratio, and 
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find the maximum output signal power. The beam profiles are shown in Fig. 2. The soliton at the output is 
shown m Fig. 2e, and the guided signal beam in Fig. 2f. Conparmg Fig. 2f and 2d, we can see the oscillator is 
operated with the guidance of the induced waveguide. The output signal power as a flmction of pump power is 
shown m Fig. 3. The oscillator with the soliton actually works with a threshold of 56mW, 33% lower than that 
of the oscillator without the soliton. We note that at the highest pump power, the output signal is slightly 
weaker than without the soliton. This is because on the reverse direction the signal and the idler transfer 
energy back to the pump beam, and the soliton waveguiding improves the efficiency of this reverse process as 
too. But this issue can be readily resolved by use of a singly-resonant oscillator or by a ring oscillator. 
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y- 

& 
<B   <j i c ^-\ 
m 

3    0 
O 

• 1   B^ 

f'Without 
soliton 

50 100 150 200 
Pump power @488nm (mW) 

Fig. 3 Output signal power vs. input pump po\wr 

In conclusion, we have demonstrated an optical parametric oscillator in a waveguide induced by a 
photorefractive soliton, and have shown that the threshold pump power is significantly reduced. This 
technique should work even better with skgly resonant OP(^ and it can substantially reduce the threshold 
pump power when very narrow solitons are employed. For example, if we use a soliton beam with a beam 
waist of 8 |lm and a 15 mm ciystal, we can reduce the threshold pump to only 3.5% of that for an OPO in the 
same nonlinear medium, using the same mirrors but without the soliton. 
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Abstract: We report on the up-converted emission of blue light from a novel organic 

stilbenoid compound (1, 4-bis(diphenylamino-styryl)-benzene) dopant in a PMMA fiber 

due to the two-photon absorption of 770 nm pulses from a Tittanium Sapphire laser. 

Summary: Considerable research is continually underway into materials and devices, which convert light 

from the IR to the visible and UV regions of the spectrum. Lasing by frequency up-conversion has 

advantages over other techniques such as harmonic generation or frequency mixing as no phase matching is 

required and thus waveguides and fibers can be used. We report on an all polymer fiber system, which has 

the added advantage of flexibility and low cost making it appealing for the construction of an up-converting 

blue laser. The fibers used were made from PMMA doped with 1% wt 1, 4-bis(diphenylamino-styryl)- 

benzene. They have a core diameter of 175(im, an outer diameter of 350|.mi. The novel compound is 

specifically designed and synthesized for the blue spectral region and has a high quantum yield. 
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The high intensity necessary to induce non-linear absorption was achieved ming -180 fs pulses from a 

mode-locked Titanium-Sapphire tunable laser. This pump was tuned to the relatively low loss region of 

PMMA at 770 nm to achieve maximum peak power in the fiber. In our experimental setup, the pump beam 

and induced fluorescence co-propagate in the fiber. The pump pulse duration and spectral width were 

180fs and lOnm, respectively. The beam was launched through an f=10cm lens into the cleaved fiber end. 

An IR filter was used to remove the remnant pump beam prior to detection with an Oriel gratmg 

spectrograph and Andor Technology CCD camera. The pump beam input power was me^ured usmg a 

photo-diode and the mduced fluorescence intensity and pump transmission were measured as a function of 

peak power in the fiber. At optimum coupling the two-photon induced fluorescence was readily observed 

at ~500nm. The spectrum for the fluorescence is shown in Fig 1. along with the absoiption and emission 

spectra of the dopant m dioxane. There is a noticeable red shift evident in the two-photon induced emission 

peak, which may be attributed to re-absorption in the fiber. Our study will open the door to the 

development of a compact blue polymer fiber source that can be pumped with a single chip of an 

inexpensive InGa.4s laser diode. 
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Spectra for absorption, spontaneous emission and up-converted emission. 
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untapered fiber on each side by .,5-mm-long transition regions. We numerically model the 
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propagation of intense femtosecond pulses through the tapered fiber with an extended nodinear Schrodinger 
SS including Kerr nonlinearity, self-frequency shift through Raman scattering, and up to fifth-order dispersion 
[6]. Propagation of 80-fs pulses centered near 1260 nm with varying energy content is considered in the simulations 

(Figure 2, top). 
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Fig 2   Comparison of numerical simulations (top) and experimental results (bottom) for: 750-pJ, 80-fs 
pulses at 1.26 nm (black) and 350-pJ, 100-fs pulses at 1.55 ^m (gray). The input spectra are shown as dotted 

Unes. 

A mode-locked Criforsterite laser provided 1.5-nJ, transform-limited, 80-fs pulses centered at 1 26 ^m [7^ 
Aproximately SQo/o of the available energy was coupled into the taper's input fiber, which was kept as short as 
possible to minimize the initial pulse broadening. The evolution of the continuum observed in the experiment with 
Lun hed puTse energy varying between 7 pJ and 750 pJ is presented in Figure 3. As the pulse energy is increased 
he specZm splits and most of the energy is shifted to higher and lower frequencies, which leaves the center of the 

Sectmrn largdy depleted (Figure 3, 375 pJ - 750 pJ). The observed features agree qualitatively and semi 
quantitatively ith the numerical simulations, and are consistent with ^^^'^^^'^ ffy'%'^^Y'^^^^^^^ 
ZDW The experimental spectrum corresponding to 750 pJ pulse energy is plotted in Figure 2 (bottom) for 
con^arison Xhe numerical results (Figure 2, top). The spectrum spans 700 nm at the points 20-dB from the peak 
SS continuum. As a control experiment, 100-fs pulses at 1550 nm from an Er-doped fiber laser were coupled into 
the samet^ered fiber. We obsemd no significant spectral broadening of the pulses at the highest coupled pulse 
energy of about 350 pJ, in accordance with the numerical simulations (Figure 2). 
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center of the input spectrum. 

In conclusion, we have demonstrated that a tapered fiber is an effective medium for generating broadband light in 
the near-iirfrared by the use of its second ZDW. Unamplified femtosecond pulses from a Cnforsterite laser were 
y ctrally-broadened to cover 700 nm from 1000 to 1700 nm. By changing the diameter of the tapered fiber's waist 
this method for contmuum generation about the second ZDW should be easily adapted to other wavelengths We   ' 
expect contmua generated this way to fmd application in high-resolution biological imaging sptems m well as in 
frequency metrology for telecommunications. 
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Abstract: We investigate tlie propagation of femtosecond pulses in microstractured fibers under 
conditions in which a supercontinuum is generated. We find that higher-order dispersion primarily 
determines the spectral envelope and that the spectrum contains a highly complicated underlying 
sub-structure which is highly sensitive to input fluctuations. 
OCIS codes: (320.7140) Ultrafast processes in fibers; (320.7110) Ultrafast nonlinear optics 

1. Introduction 

Small-core microstructured fibers (MF's) have drawn great interest due to their large effective nonlinearity and to 
their ability to shift the zero-dispersion point of the waveguide to wavelengths at which femtosecond Tiisapphire 
lasers operate. Such fibers allow for strong nonlinear interactions, as illustrated by recent experiments in which an 
extremely broad spectral continuum spanning from 400 nm to 1600 nm has been generated [i] at the output of the 
fiber. Such a coherent white-light source has proven useful for various applications including optical coherence 
tomography [2] and frequency metrology [3]. Although there have been numerous experimental and theoretical 
investigations [4] of nonlinear propagation near the zero-group-velocity dispersion (GVD) point of optical fibers, 
none of these studies have considered the operating conditions of these recent experiments in which the combination 
of relatively high-energy femtosecond pulses and tight mode confinement produces such a highly nonlinear 
interaction. 

We present a theoretical and experimental investigation of the nonlinear propagation of femtosecond pulses tuned 
near the zero-dispersion point of a microstructured fiber. We find that the spectral envelope of the generated 
continuum is determined primarily by the higher-order dispersion of the fiber. Specifically, we find that the 
interplay between third-order dispersion (TOD) and self-phase modulation (SPM) dominates the propagation 
dynamics and largely determines the extent of the blue edge of the spectrum and the relative lack of broadening to 
the red edge. In addition, we find that the spectrum exhibits a highly complicated sub-structure that is extremely 
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Fig. 1. Predicted spectrum (a) and corresponding temporal profile (b) of the transmitted light after propagating 
through a microstructure fiber near the zero-dispersion point. 
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Fig. 2. High resolution spectra for the same conditions (solid curve) as in Fig. 1 and \ 
for the same conditions but with an 0.1% higher input pulse energy (dotted curve). 

sensitive to input pulse energy. As discussed below, these predictions are confirmed via single-pulse measurements. 

In our theoretical model we employ the nonlinear envelope equation (SM, vAxich is valid for pulses as short as a 
smgle optical cycle, or alternatively, for spectral bandwidths that are comparable to the central frequency of the 
input pulse, we include all the relevant processes for such an interaction, such as Raman scattering and setf- 
steepening, we fmd that the spectral envelope of the generated continuum is prunarily determined by the higher- 
order dispersion of the fiber. An example of the generated contmuum spectrum under conditions similar to the 
expermients is shown m Fig. 1(a). The spectral envelope is very similar to that observed in experiments in which 
there IS a sharp edge at the blue side of the initial pulse at 800 nm and relatively long sloping tail to the red side We 
find that the amount of TOD determines the position of the blue edge of the spectrum, whereas the shape of the red 
side IS governed % the third- and fourth-order dfepersion. The input pulse undergoes significant pulse break-up as it 
propagates down the fiber [see Fig. 1(b)], resulting in the creation of sohton-like pulses out of the red-shifted part of 
the spectrum. In our simulation, we fmd that both Raman and self-steepening play relatively minor roles in 
determining the observed spectral envelope. As the amount of third-order dispersion is decreased, the blue edge 
moves to shorter wavelengths. However, above a certam input intensity, we fmd that the resulting blue edge of the 
spectrum does not shift significantly to shorter wavelengths, and thus we conclude that only by decreasing the third- 
order dispersion is it possible to increase the continuum bandwidth. The predicted spectrum is also found to exhibit 
substantial sub-structure which is very sensitive to the input pulse energy [See Fig. 2] and thus could play an 
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Kg. 3. Numerical average of single-shot measurements taken successively, where the dashed and 
dotted lines are two single-shot spectra taken seconds apart, and the soHd Hne is the average of four 
single-shot spectra. 
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important role in frequency metrology experiments. We believe that this sub-structure and these large fluctuations 
have not been observed in most of the measured spectra either due to insufficient spectral resolution or as a result of 
the spectra being an average of many laser pulses. 

This hypothesis was verified with series of measurements in which single-shot spectral measurements of the 
microstructured-fiber continuum were taken [7]. The output pulse from a Ti-Sapphire oscillator was amplified by 
an adjustable-rep-rate regenerative amplifier to -100 nJ per pulse, which was then attenuated to ~1 nJ for injection 
into 152 cm of a 2-nm-diameter microstructure fiber from OFS Fitel Laboratories. Using different amplifier 
repetition rates and camera exposure times, we could vary the number of shots in a measurement (see Fig. 3). 
Single-shot spectra were observed to exhibit significant substructure which was on the scale of 1 nm. Spectra 
acquired for different shots resulted in spectra that were completely distinct, although the spectral envelopes were 
similar. As multiple shots were averaged the spectrum evolved into a shape that did not change over time. 

Since third-order dispersion (TOD) primarily determines the dynamics that leads to the supercontinuum, 
manipulation of its magnitude and sign will play a crucial role in optimizing the shape and width of the spectrum for 
particular applications. For example, by changing the sign of the TOD, but keeping all other parameters the same, 
the red edge of the spectrum can be substantially extended whereas the extent of the blue edge is reduced. 
Generation of supercontinuum fiirther into the infrared could thus be achieved by operating at the long-wavelength 
second zero-GVD point [8] of these fibers. We believe that suitable designs of microstructured fibers offer the 
possibility of further increases in the total spectral bandwidth by reducing the air-filling fraction of the MF's and 
thus decreasing the TOD and flattening the dispersion profile. 
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Abstract 

We present new exact analytical solutions to the NLSE with gain in the anomalous dispersion regime 
corresponding to a compressing or spreading solitarj' pulses. These solutions have application in high gain 
nonhnear fiber amplifiers. 
© 2002 Optical Society of America 
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1. Introduction 

The one-dimensional nonlinear Schrodinger equation (NLSE) with gain, and its complex generalization the 
Ginzburg-Landau equation have a wide range of applications in nonlinear optics[l] and laser physics[2]. In 
contrast to the NLSE without gain, these equations are not integrable by the inverse scattering method and 
therefore they do not have soliton solutions in a strict mathematical sense. They do, however have solitary 
wave solutions which often have been called solitons. In this paper we present solutions to the NLSE with 
gain in the anomalous dispersion regime. These solutions propagate self similarly under the influence of 
nonlinearity, dispersion and distributed gain or loss, and constitute a new class of analytic solitary 
solutions which are appropriate for the description of pulse evolution in single mode fiber amplifiers, and 
describe a pulse which continuously spreads or compresses during propagation, but which maintains its 
shape. This solitary propagating regime has also been investigated numerically and has been found to be 
stable against small perturbations of the chirp and the amplitude, leading to the expectation that this 
solution will find application in high gain amplifier sj'stems. In the limit when the gain approaches zero, the 
amplitude reduces to the familiar hyperbolic secant fundamental soliton solution of the NLSE without gain, 
and the chirp tends to zero. 

2. Self Similar Solutions 

Recently, quite general results for the analytic solution of the NLSE with an arbitrarj' gain distribution for 
nonnal dispersion have been found using self similarit}' techniques [3,4]. In these papers asymptotically 
exact self-similar parabolic solutions for an arbitrary initial solitarj* wave profile have been found in 
high-power limit. We note that in the particular case of the NLSE without gain and the normal group 
velocity dispersion the asymptotic parabolic solution was first given in [5]. 

In this work we present the discovery of exact self-similar solitary solutions of the NLSE with distributed 
gain in the case of anomalous group velocity dispersion. 

The nonlinear Schrodinger equation with gain in the form used to describe nonlinear pulse propagation in 
optical fibres is given by: 

dz     2 ax I 

where t/^Cz.r) is the complex amplitude of the electric field in a co-moving frame, z is the propagation 
distance, T is the retarded time, /3 is the group velocity dispersion (GVD) parameter, y is the nonlinearity 
parameter and g(z) the distributed gain function. The function '\p{z,x) can always be written as : 

t/'(z,T) = I/(z,T)exp(i4>(z,T)), (2) 

where U and <i> are real functions of z and T. We look for self similar solutions of the NLSE assuming 
that the phase has a quadratic form: 

$(^,T) = a(^) + ZJ(r)T+c(^)T^ (3) 
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where wry is the width of the propagating pulse. 
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althou^ this ohiip ktenSes d^^^lffift      TU     ! '""*'" P"^'"' "™*"" '^^^ ««««r ehiip, 
analytSl solution i^S^SS^^ 
the Lect mitial a^Sf d^ ^^^^^ -»t pulse with 

simulations, the mpufpulsehas^iStW^tho?^^^^^^ 
amplifier is 10m (o = 0 1) and the nnh^.haJ        l      f  ^ of 0.5pJ, the cntical length of the 
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and ampUfication is reached in a real amplifier, the pulse evolution would be affected by higher order temis 

in the NLSE which are neglected in this analysis. 

We have also performed numerical simulations to determine the stability of the evolution of these 
soliy puls     'the presence of perturbations and non ideal amplifier gain profiles. The evolution is more 
sen t7ve to the initial chiip than L peak amplitude, but in both cases the addition of small amounts of 
"nH noise to the input^se ampLde and phase did not significantly affect the evolution. Indeed in 
both cases the pulses evolved towards the ideal form, indicating the stability of the solution. 

Previous attempts to investigate the nonlinear amplification of pulses in the anomalous dispersion 
redme u L constant gain by numerical simulation have shown that the pulse tends to break up into a 
eSpuTseTdue to L combined effects of self phase modulation and dispersion. This is m contras to 
h s tu tLn m the normal dispersion regime where numerical simulations indicated that a 1 pulses tend d 

to evowtto a parabolic shape Subsequent application of the techniques of self similar analysis explained 
this behaviour and indeed the parabolic profile is obtained in the high intensity limit no matter what the 

gain profile. 

L=2ni 
L = 8m 

Twe (p$) 
Tifn« (PS) 

Fie 1 Comparison of analytical sotoion (circles) with numerical simulation (solid line) for propagating solitarj- 
pulse in a distributed gain amplifier (o > 0) having a critical length of 10m. 

The Situation in the anomalous dispersion regime is quite different. If the gain is constant we do indeed 
find S s— on that the pulse evolution is very complex leadmg to multiple pulses -d significan P^^^^^ 
rstortion In the presence of the particular gain profile given in Eq 5 however exact self ^milar solut ons 
eXhL corre^d to the propagation of hyperbolic secant pulses with a linear chiip^ Since linear y 
cSed pulses can'readily be generated and compensated, these distributed amplifier systems may find 
significant application in high gain guided wave amplifiers. 
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msmmmsm 
mwmmmmm 
yields k': = -tllzn^X we have ~ ""'' "   '    * ^^^'^"" *' ^^^ °°"^'°^'»^ coefficient (which 

.du Djz) d^u 
2   a<2 + g(z)\ufu = 0. 

(1) 

centered at t . H' with t = (, m   „ tatesers aS T li hit ntt™ i „ " ™'        ' "' '^°™' " P"'* 
in.e.ta,.i„„*tt„ca.at,a.e.he\«n,sSS.r;r Vr. t^ 
tpTTmnrai nnoitiriTi +       f°° ji    o i,/nr   T,    .. . toj "u     J__Q "0  "•«. diiu iiic mean 

*fe(^;,*) 
V2wi(zj 

exp (f - fer)2 
,   ^iz) = 0+iC(z) (2) 

Where ^ is constant and CW = JiTi^Md^^ we find the timing shifts and ene^y change satisfy [4,7] 

; , n=-N/2m==-N/2 . 

(3) 
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^-=-2i\/ir'" dz. (4) ' g{z) (    [m'^ --\ n'^)d + 2inmC{z)   0 

where h, represents encoded binary data of the bit at / = kT which takes either 1 or 0, and A^ is the total number of 
the interactine pulses. Because of a random sequence of bits h u, A/o and AlV'o are random variables and thus Eq. (3) 
and (4) allow us to compute the mean value and the variance of M o and AH'o, which yields timmg and amplitude 
jitter. Timing and amplitude jitter are given by the variance of the mean temporal position of piilses and the no™ahzed 
energy variance respectively: a^ = {4) - {to? = HAto?) - (Afo)^ p' ^ ^^IvI^H -((">'- m')!^^'' = 
[((AWo)^) - {^WofyWl Since h,, takes the value 1 and 0 with probability 1/2, from (3) and (4) we have 

(» 

''0 

T,n, 

A y (On n + Q«."<52„>) + ^   E  '^m.n +  E PlQn..nAn„,r„ +        E       F2Qr.:,n:0.>.,n, 

" m/n m-iltrn m, 5^ni,m27^»2 
(6) 

Where all sums are taken from -iV/2 to iV/2, and pi = 3/16 or 1/16 if for each combination (n, jn-i, "2) there are 
3 or 4 distinct elements respectively among the sequence {n 1,2ni, ma, "2, mj + n^}, and p-j = 3/64 or l/b4 it tor 
each {mu m, rna, 712) there are 4 or 5 distinct elements respectively among {m 1, ni, mi + ru, m2, "2, m2 + n-2l 

As a model of a dispersion map, we consider a symmetric two-step profile composed of fibers having positive and neg- 
ative dispersion (±A) with equal length zJ2. The dimensionless map strength for this profile is defined as s = A^„/4. 
In this profile, when g{z) = 1 (i.e. lossless), we find P„ = Or,,,n = 0. This indicates that distributed amplification 
can be effective in reducine the intra-channel crosstalk since it can provide a more nearly lossless transmission line by 
compensating loss unifora^ly. Lumped amplification based on EDFA and distributed amplification based on backward 
Raman amplifiers can be modeled in the following way. The nonlinear coefficiem giz) for EDFA is given by 

g{z) = geeM-'2T{z-nza)\,   n.2„ < 2 < (n +1)2,,, (7) 

where 5.. = 2VzJ\l-ex^{-2Tza)] so that (<?) = 1, and Pis the dimensionless loss coefficient. For Raman amplifier, 

we have ,, ,      ^^ ro\ 
g{z) = gr exp {-2r(;s - nz,) + 5ilexp(2rp(2 - nza)) - 1]} ,   nza < z < {n + 1)2„, (8) 

where g, = 2r2„exp(-2rp^„)/ll - exp(-2rp.~a)], Tp represents fiber loss at the pump wavelength, and gr is 
determined so that (3) = 1- 

Numerical results In order to verify the analysis above, we compare the obtained analytical_result with ^rect nu- 
merical simulation of (1). The parameters used in the calculations are as follows: a = V27r, f3 - 1.0, i = t.6 
and z„ = 0.125. With the choice of i. - 3 ps, 1/ = 2.5 W'^km-i and P. = 1 mW (i.e. zm. = 400 km and 
/-" = -9 25 X 10-2 ps2/km) they correspond to the full-width at half maximum (FWHM) TFWHM -= O ps (mini- 
mum), the path-averaae peak power 1 mW, the bit interval t bu, = 25 ps (i.e. the bit rate 40 Gbit/s) and period 50 km. 
The number of interacting pulses are estimated as A^ = (2/M) \/l + («//?)' where M = ibit/rpwnM = 5 [5J. 

Figure 1 shows plots of timing jitter at and amplitude jitter p versus transmission distance in an EDFA and a Raman 
system when s = 30, corresponding to k" = ±21.6 ps^/km. The initial peak power is 2.72 mW for an EDFA system 
and 1 7 mW for a Raman system. Note that the comparison is made with the same value of path-average power (1 mW) 
in both systems The fiber loss at the signal and pump wavelength is 0.22 dB/km and 0.28 dB/km, namely V = 10 
and r„ - 12 5 respectively. As predicted from the model, both timing and amplitude jitter grow linearly with respect 
to disLce in an EDFA system. A Raman system is especially effective in suppressing timing jitter. As a^simple 
estimate in order to achieve the bit-error rate < 10-^ at and p must satisfy the condition at < OMtut - 1.5 ps 
and ^ < 1/6 = 0.167 by assuming that to and Wo follow Gaussian statistics [8]. The threshold required for error-free 
transmission is also plotted in this figure. 

The analytical model allows us to smdy how system perfonnance is limited by intra-channel pulse interactions de- 
pendinii on the value of map strength. Figure 2 shows the normalized growth rate of timing and amplitude jitter for 
various values of map strength obtained from Eq. (5) and (6) with Eq. (3) and (4). Timing jitter takes the largest value 
for moderate values of s (~ 15 - 20). For larger s, timing jitter decreases whereas amplitude jitter still remains to be 
a potential dominant cause of transmission penalty. 
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Conclusion   We have Judied system impact of nonlinear intra-charaielinteradions on high-speed dispersion-mam 
RZpulse transmission. Explicitfomulae to estimate timing and amplitudefittercau^^^ 
beenpresentedTimmg and amplitndejitter grows 
found that timmg jitter is a major limitation in system perfonnance for smaller values of mafsSh wteea' for 
Sf f    r'*. fPtode jitter can cause significant transmission impairments. Timing LSweS S 
tZtl    ft   "y.rf'^y'^g *««bnted Raman amplification with the same value of path-teSg pow^^^^^^^^ 
Rman amplifiers provide lower noise accumulation and allow a large margin to the input pLerSoll toher 
reduction of mtrB-chamiel crosstalk is expected by lowering path-average power without sacrificii^SN^fo 
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Abstract: Design of an all-optical circuit that perfonns modulo-A^ operation for packet forwarding without header modificatbn in 
optical networks is presented. Design considerations such as gain modulation effects and bit rate and pattern dependence are 

investigated. 
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I.   INTRODUCTION 

The rapid growth of the Internet is putting a strain on the bandwidth handling capability of electronic routers. The 
future Internet will rely on optical routers without the need for any optoelectronic conversion. Although optical 
technologies are playing increasingly important roles in wide and local area networks, current optical network 
elements still offer limited functionality compared to their electronic counterparts. Recently, a packet forwarding 
scheme without header modification for optical networks known as the key identification scheme (KIS) has been 
proposed [ 1]. In KIS, the path through the network could be chosen by computing a label (L) at the mgress node, 
\*ich is then used to make routing decisions. The computation of the label involves modular arithmetic which 
could be performed electronically at the edge nodes. The KIS simplifies processing in the optical core nodes by 
eliminating the need for header modifications. In KIS, by perfomiing a modulo-A^ operation on the same label in 
the network using different node-specific keys (N), the packets could be directed to the correct output ports of the 
traversed nodes. In this work, the design of a modulo-A^ optical processing circuit is presented. The performance of 
the bit serial processing circuit is optimized in the presence of differential gain modulation (DGM) and pulse-to- 

pulse interactions. 
II. THE OPTICAL CIRCUIT DESIGN 

A simple method to calculate the modulo-A^ result is by repeatedly subtracting the label by A''until the smallest 
positive number (remainder) is obtained. The most significant bit (MSB) is initially set as '0' so that an overflow 
could be detected when it becomes T. The mod-A^ result is then given by the subtracted answer (SUB) in the 
previous round before the SUB bits become overflow. By using TOADs [2] as logic gates, optical circuits could be 
constructed that perform logic operations and regenerative memory [3-5]. To perfomi subtraction, a bit serial full 
subtracter is realized by adding an inverting gate (NOT) in the fuU adder circuit [3]. In the subtracter circuit shown 
in Figure 1(a), the XOR gate produces the SUB bits, the NOT gate is used to invert the SUB bits, while the AND 
gate produces the CARRY bits. The circuit elements DELAY/) are optical delay lines, INPUT is the serial w!-bit 
input, CLK is a clock source (continuous train of 1 's), and the SUM/; combine optical signals. 

?4Q Clock 

"^1 I       DEL»Y 

a^3-xr Output Y       I Single-shot 
write input 

(a) (b) 
Figure 1 (a) Bit serial tiill subtraetor cireuh (b) Regenerath e memorj' module with single-shot write capability. 

In the XOR gate, we could either have 0, 1 or 2 pulses present at the control port. Since the phase shift {A^ is 
proportional to the control pulse energy, this should generate phase shifts of 0, Jt, and 2K, respectively. Looking at 

the transmission function (7) of the TOAD, 

T = -[l-cos{A(p)] (1) 

we see that for a phase shift of 2jc the transmission returns to zero and hence the device would be logically 
equivalent to an XOR operation (0+0=0, 0+1=1, 1+1=0). The regenerative memory module [4] in Figure 1(b) is 
used to store the final mod-A^ result. It consists of two TOAD gates with an optical delay line of length equal to m 
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SJSrrl'f f °tf^"P''t'°° "^^ *' '^°'^ ^ P^^ 2. The input LABEL contains the routing 
^omation („, brts long) tot ^ves the output port number after (L mod N) is computed. The function of the ea J 
TOAD p^te IS ™mzed >n the foUomng. The SUB RESULT pte gives the intennediate mod-iVresults (e.g. 10 

mod 3 gives 7, then 4. then 1). The FM5 ANS gate scam for the first overflow and activates the WmiE ANS 
iFnm 11 ^T f w "T^f r"'* "*** *' regenerative memory circuit. The SELECT bit pattern and 

CFcfe. Each subtraction cycle requires a maxmium of m munds to obtain an answer but 2 extra rounds are used in 
each cycle so that any amplitude modulation settles down before the next cycle begins. The CLEAR bit pattern 
toge&er with the CLEAR SUB and CLEAR CARRY gates clear the SUB and C^Y bte bdbre 21SS 
^^tactioncy:te.tteSCANMSB bit pattern a^^ 
overflow tte FLIP-FLOP pte operates in the following manner. If the MSB in the SUB bits is initially '0' to 
m.erflow)rts transmitted output foUows the SELECT bit pattern. When an '1' in the MSB (overflow) is dieted 
the ou^ut becomes mverted. The SUBTRACT-BY-N bit pattern periodically contains the bina^. rtoUs 

the SUBTRACT-BY^ bit pttem but flien becomes a continuous train of 'O's when overflow is detected, which 
subsequently stops all subtraction. The amphfiers (AMP«) are used to cancel the DGM effect which will S 
Ascussed in the next section. i, wmui wm oe 

Hpire 2 The modulo-iVoptlcal procesang circuit 

III. OPTIMIZATION 

wt'''^*T;^^",^^.'T'^*°''' "^"^ tovtements a simple analytic model of the TOAD [6], was used to 
S It ft^Tt'T' t"^- '''*^*® °^^' *•" "^ '^'^'^'^ -«° - obtained ^en tht XOR^te is 
b^d at 178mA ^e the other gates are biased at 173mA. The control pulses (LABEL, CLEAR and i;AN 
MSB) are assuned to be 400O while &e input pulses (CLK, SELECT, and ljBTR^CT-BY-N)^Ofl M 
rate should bekeptbdow 3.3GHz, correspondingtoaSOArecoveryhfetimeofSOOps, to mininLp^^^^ 

a signific^teffect on dewce performance. To consider the DGM effect, assuming a coupler ratio of 5050 the 
normalized transmission(2) and reflection(^)ofthe TOAD are given by: oi W.DU, me 

T(orR) 
go 

l + —\+-j=cos(AS) (3) 

m&e TOAD sees ttie unsaturated gain (g) while the counter clockwise pulse passes through a My saturated SOA 
1=1) M this wor^ase scenario, notice that .Aen the ^ difference is very large, no switching occurs iT:R = 

the SOAs are operated m Ml saturation, where DGM effects are sipuficant, mod-JV operation could still be 

could be usedto^bilize the signaloftheXORgate(shown by dashed lines in Fipi«2). Wen nlximuiiofM 
"" fT^\t^^\T fP°^*'« to ^-^hfe^^ i~d switching performance with a SOA nonlinearity index (««*) of 
caily 2 X 10   m. Therefore, we have used «,* = 8 x lO'^^m^ to increase the nonlinearity for better switching Ihe 
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XOR gate is now biased at 133mA and other gates are biased at 130mA. Initially, there are 17 amplifiers used to 
compensate for signal attenuation and the DGM effect, with the required gain of each amplifier given in Table 1. 
In Figure 3, the mod-A^ circuit failed to work when DGM is present but is rectified when the amplifiers are used. 
The maximum operating bit rate allowed was 2GHz for the original circuit without DGM. However, the optimized 
circuit with DGM present could operate up to 4GHz because of its higher nonlinear index. We also achieved mod- 
N operation in a more realistic case with smaller gain difference (10%) between the counter-propagating signal 
pulses by using SOAs with a nonlinear index of 2 x 10'-* m'. The circuit could further be optimized by reducing 
the number of amplifiers along the flow of the signal pulses, hence eliminating amplifiers 2,3,5,10, and 17. 

Table 1 Gain reqxiirenien of each amplifier. 
Amplifier number Gain 
1,4.6.7.8,9,11,12.16 52 

2.3,5,10,17 1.3 
13,14.15 40 
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(a) (b) W 
Rgure 3 Simulation results of the operation 0100 OOOI2 mod 00001100, for bits 496-513 (5" subtraction cycle). Differential gain modulation 
is: (a) not present (b) present (circuit not optimized) (c) present (circuit optimized). Both control pulses (Ught) and transmitted pulses 
(dark) from the SUB RESULT gate are shown. 

Although the maximum operating speed of the optimized circuit is 4GHz, which actually exceeds the SOA 
recovery rate, the regenerative memory module limits the overall speed to only 3GHz. Above 3GHz, the amplitude 
modulation grows with every circulation in the regenerative memory module until a stable but wrong answer is 
stored (Figure 4). Note that the degree of pulse-to-pulse interaction also depends on the bit pattern. For example, 
0000 10012 will have less pulse-to-pulse interaction than 0000 01012 or 0000 011 h. 

II..^. 

(a) (b) , W 
Kgure 4 Bit rate dependence of the operation 0110 OIII2 mod 0000IIOO2 during bits 720-760 (9"' subtraction cycle) showing amplitude 
modulation of the answer 0000 OIII2 (dark) in the regenerative memory module at (a) IGHz (b) 3GHz and (c) 4GHz. The control pulses 
(light) used to write the mod-A^ result into memory are also shown. 

IV. CONCLUSION 

In optimum switching conditions where differential gain modulation is negligible and pulse-to-pulse 
interactions do not occur, a modulo-iV optical circuit could be realized that gives excellent extinction rafio. We 
have also studied the operation of the circuit under the worst case condition of complete SOA saturation and 
shown that amplifiers could be used in the optical circuit to compensate for the DGM effects. The problem of 
DGM could also be solved in a fiindamental approach by using SOAs with large nonlinear index, which would also 
allow higher operating bit rates. 
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Abstract: A traveling-wave model of an all-optical switching device with feedback is developed to identify important dynamical effects 
for better prediction of device beliavior. Using a constant Ufetime approximation, an efficient heuristic model is aLso developed. 

OCIS codes: (250.5980) Semiconductor Optical Amplifier (200.4740) Optical processing 

I. INTRODUCTION 

Polarization 
selective coi 

Substantial work has been reported in semiconductor optical amplifier (SOA) based nonlinear loop mirrors known 
as TOADs [1] for all-optical processing such as demultiplexing, logic operations, and regenerative memory. The strong 
nonlinearity of the SOA compared to silica fiber allows shorter loops, thereby improving stability, minimizing latency, 
and enabling bit-serial processing. 

In the feedback TOAD configuration [2] (Figure 1), input signal pulses (I's) are injected into the loop, and 
amplified reflected pulses are fed back into the loop as control pulses. The feedback device has two stable modes of 

operation [3] - block mode, where altemating blocks of 1 's 
and O's are observed, and spontaneous clock division mode, 
where halving of the input repetition rate is achieved. In block 
mode, the device acts as an inverted circulating shift register. 
The clock division phenomenon arises from the combination 
of incomplete SOA gain recovery and memory of the startup 
sequence that is provided by the feedback. 

In this work, a traveling-wave (TW) model has been 
developed to identify important dynamical effects that have 
significant influence on the feedback device behavior. The 
computational efficiency of the TW model could be improved 
by using the integrated carrier traveling-wave (ICTW) model. 
Finally, the major dynamical effects were incorporated into an 
efficient heuristic model for performance study and device 
optimization. Simulation results from the ICTW model 
compare favorably with the heuristic model. 

Figure 1 The TOAD with a feedback coniigiiration. 

Feedback 
path 

II.  TRAVELING-WAVE MODEL 

In the traveling-wave (TW) model, the optical pulse shape is modeled as Gaussian. Usually, the signal pulses have 
substantially low energies so that it is reasonable to assume that only the high-energy control pulse causes any 
saturation in the SOA. Since only the control pulse influences the carrier dynamics, to save computation tune delayed 
versions of the carrier dynamics could be re-used to solve the traveling-wave equations for the signal pulses. By solving 
the traveling-wave equations [4] along the SOA, the inhomogeneous canier distribution in the SOA could be taken 
into account. It is important to use enough sections in the SOA model to accurately simulate the correct amount of 
differential phase shift per unit differential gain. Simulations show that using less than 10 sections in the SOA model 
results in the gain being overestimated while the phase shift is underestimated. Therefore, clock division could not be 
achieved because it requires a substantial amount of differential phase shift per unit differential gain. 

One of the main advantages of using the TW model is that the carrier dependence of the recovery rate could be 
taken into account. Strictly speaking, the instantaneous recovery lifetime if) is carrier dependent in the form of, 

'    '  '^^    A^+B,^N(z.t)+C,,^N(z.t/ 
where N(z,f) is the time and space-dependent carrier density while A„r, Brad, and C^g are the SOA recombination 
constants. We found it possible to obtain an accurate fit between the constant effective lifetime model and the carrier 
dependent lifetime model by using two different SOA bias current levels so that the initial equilibrium carrier levels are 
the same. The carrier recovery depends on the control pulse energy - at very low pulse energies, the carrier recovery is 
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fastest while at veiy high puke energies, the recoveiy is slowst. When the SOA is Mfy saturated (E » E ,) the 
qamer recovery k set to 80ps [3], where E is the control pulse energy and fi^ is the SOA saturation energy At E « 

t ^^nof?*"* ^^®*™^ ^^^^ *** ^^^^ *® ^'* ^* *' 72ps (Figure 2). Therefore, the effective lifetime changed by 
only lO/o for a wide range of pulse energy leveb. The efficient heuristic model inthis work is b^ed on the effective 
ufetime model. 

The behavior of the feedback TOAD is highly semitive to its phase dynamics compared to the case when it is 
smiply used as a demultiplexer. Simulations showed that when a long SOA (lOOOum) is used, there is a gradual phase 
change m a clockwise (CW) traveling continuoro-wve signal unmediately after the arrival of the control pulse If the 
clockwKe signal pulse sees this slow transition during the start-up phase dynamics, this may give a completely different 
device belmvior from the case of a short SOA This slope exists because the clockwise puke h^ fmite propagation 
May time do^ the SOA m the opposite direction to the control pulse. To better predict the feedback device behavior 
this effect B included in the TW model. 

In the TW moctel, differential gain modulation (DGM) between the counter-propagating signal pulses is taken into 
accourt. Smce the clockwise and counter clockwise (CCW) pubes are delayed in tune from each another, the pulses 
see different levels of pm. which lea* to poorer switching. In the presence of DGM, the TOAD transmission 
respome is plotted against the normalized differential phase shift (A^ in Figure 2. We assumed the woist-case 
scenario where the control pulse fully saturates the SOA so that the CCW pulse sees unity gain. By observing the 
followmg equation, J b        j sw 

TorR = glU(l+l)+J=cos(A0 (2) 

we can easily see that devices with high differential pm constants quickly lead to poor switching (approachmg TR = 
50:50) as it operates further away from m = t. The terms Fand ^ are the transmitted and reflected pube intensities 
respectively, and/is the input mtensity. ' 
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m, INTEGRATED CARRIER TRAVELING-WAVE MODEL 

Simulation showed that adequate accuracy could only be achieved if we use 10 sections or above in the TW 
model. In addition, at low repetition rates and long feedback paths, veiy large number of pulses must be shnulated 
before the stable mode of behavior could be reached. These conditions require excessive simulation tune making the 
TW model unpractical for device optimization purposes. To overcome thfc problem, the integrated carrier traveling- 
TOve model QCTW) model has been developed. This k similar to the approach in [4] but imtead of the single-pass 
gam, the spatially-integrated carrier (iV„,) is med, defined mN^= ^N(z,t)dz, so that the carrier-dependent lifetime 

could be included. Furthermore, the SOA internal loss (<%„), which was neglected m [4], is included here in the ICTW 
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model. For a given level of gain, it is found that smaller operating pulse energies could lead to clock division mode 
when internal loss is present [5]. The carrier rate equation of the ICTW model is given as, 

d^avg _JAz N„ 

dt qd 
1 + - 

a,,. 
^p(ra(N^.^ - N,Az) - a,„,Az) " l]^   ^^'^ 

ra(N^^/Az-No)-a,„,j 

where / is the current density, q is the electronic charge, F'xs the optical confinement factor, a is the differential gain 
coefficient, h is Planck's constant, v is the operating frequency, /„,(0 is the optical intensity, Az is the unit section 
length. No is the transparency carrier density, and r is the carrier dependent recovery lifetime. By using the ICTW 
model, only 3 sections are required to give the same converged result that is obtained from a 20-section TW model as 
showninFis:ure3. 
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i'"^^^^:^ ̂  
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J                        1 section - 
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"20    25   30    35   40    45    50    55    60 20    25    30    35    40    45    50    55    60 

lime (ps) lime (ps) 

(a) (b) 
Figure 1 Comparison between the (a) TW model (slow convergence) and ICTW model (fast convergence). 

Although the ICTW model is more efficient than the TW model, both models still required long simulation time. 
To perform device optimization, a more efficient model is required. The simple model in [2,6] has been refined by 
incorporating the major dynamical effects in a heuristic approach. The efficient heuristic model is based on the 
constant effective lifetime approximation, which was justified in section II. Simulation results show that the startup 
sequences leading to stable clock division for the ICTW and heuristic models are in good agreement. We also 
compared the block mode operation and results from the two models agree favorably. 

IV. CONCLUSION 

The feedback TOAD has two stable modes of operation that are sensitive to its startup dynamics. In this work, 
detailed models are developed that include traveling-wave effects and gain/phase dynamics. The traveUng-wave models 
could be used for an in-depth investigation of the device at a given operating condition while the efficient heuristic 
model is used for performance study and device optimization. 
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Dispersion-managed (DM) soliton is a periodically sta- 
tionary solution of the nonlinear Shrodinger (NLS) equa- 
tion having periodic coefficients of fiber's dispereion and 
nonlmearity, and owing to its various advantages it is a 
promising candidate for achieving a transoceanic high speed 
optical transmission system over 10000km with more than 
40Gbit/s/ch.' The compatibility of DM soliton with wave- 
length -division-multiplexed (WDM) transmission has been 
widely studied and admitted.^ On the other hand, intra- 
channel interactions between neighboring DM soHtons in- 
duce fatal time position shii^s,^'* resulting in degradation 
of bit-error-rate. Bi-soliton which consists of a couple of 
gaussian-hke pulses is also a periodically stationary so- 
lution of the NLS equation.^ Therefore, it can propagate 
for long distance without any distortion of its waveform 
due to intrachannel nonlinear interactions unlike a cou- 
ple of conventional DM solitons. From the fact, it is ex- 
pected that intrachannel interactions can be completely 
suppressed by employing novel coding schemes using bi- 
soliton. In this paper, we study interchannel interactions 
of bi-solitons in a WDM transmission system, based on 
direct numerical calculation of the NLS equation and the 
vanationaJ analysis with which a couple of gaussian pulses 
are used as a test fimctioa 

We briefly summarize bi-soliton solutions. The fundamen- 
tal equation which governs behavior of an optical pulse 
propagating in DM transmission line is given by:' 

the following parameters to characterize a DM system- 
map strength S = (\I3^\L^ + |/?2|£2)/4, accumulated 
dispersion B = (0,Li + ^sXa)/^, and the ratio of 
the length of anomalous dispersion fiber to DM period 
R = Li/Lp = Li/(Li + £2). Tm is the minimum iiiU 
width at half maximum (FWHM) of a single DM soU- 
ton. S, B, and R completely characterize a DM soliton 
m the transmission line. To find a bi-soliton solurion, a 
couple of gaussian pulses whose amplitude is adjusted'to 
a value with which a DM soliton is formed is launched 
into a DM line. In the specific parameter region where 
a couple of pulses propagate with slightly few time po- 
sition shift, we apply the numerical averaging method^-* 
to dig up the waveform of bi-soliton. For example, while 
an in-phase bi-soliton solution whose peak-to-peak spac- 
ing is three times of the FWHM of a sii^le DM soliton 
IS found at S = 2.3, B = -O.l, and i2 = 0.8,' an anti- 
phase bi-soliton with which the peak-to-peak spacing is 
two times of the FWHM is found at S = L9, B = -0.1, 
miR = 0.8. We wiU use these parameters in the rest of 
this paper. 

Power fmWl 
60 

Distance [km] 

5000 

.du     I3(z) d^u 
dz 2   a«2 4- |«p« = 0, (1) 

where u(z, t), z, and i are the complex amplitude of pulse 
envelope, propagation distance, and tune, respectively ^{z) 
is effective fiber dispersion and contains fiber dispersion 
fiber nonlinearity, and effects of loss and amplification, all 
of which are periodic flinctioiB of DM period Lp. Equa- 
tion (1) permits us to describe the effects of periodical 
variations of dispereion, nonlinearity, and damping loss 
by a single variable p(z) on the distance z which is meas- 
ured with the accumulation of nonlinearity. We assume 
0{z) has locally fixed values, i.e. P(z) = p^ (< o) for 
0 < ^ < 1^1/2 and Lii2 + L^ < z < Lp, and I3(z) = 
02 (> 0) for £1/2 < z < Li/2-i- L2, where ii and 
is are the lengths of anomalous and normal dispereion 
fibere within a DM period Lp, respectively. We define 
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Fig. 1. Collisions of (a) in-phase and (b) anti-phase bi-solitons in 
a 2-channels WDM transmission system. The channel spacing is 
Af ~ lOOfOHz], While the in-phase bi-soliton collapses at dis- 
tance of 4000km due to the collision, anti-phase bi-soliton com- 
pletely remains its waveform throughout SOOOkm propagation 



DM solitons in different channels in a WDM system have 
different group velocities and collide with each other while 
they propagate in a fiber. DM solitons are so stable against 
the collision that they continue to propagate with neither 
exhibiting instability nor waveform distortion, except small 
perturbation induced by cross-phase modulation (XPM). 
We here discuss the stability of bi-solitons against the col- 
lision in a 2-channels WDM system by solving Eq. (1) nu- 
merically. To carry out the simulation, we set DM period 
Lp to 50kni, path-averaged dispersion to 0.156ps/nm/km, 
and fiber nonlinearity to 0.3 x 10"^W'^ The minimum 
pulse width (FWHM) r^ of a single DM soliton is fixed 
to lOps and optimal peak power is calculated by the varia- 
tional method^ under given conditions. Fiber's loss is ne- 
glected for simplicity. With such parameters, (5, B,R) = 
(2.3,-0.1,0.8) with which in-phase bi-soliton is found 
leads to dispersion map as di = 2.34 [ps/nm/km] for 
0 < 2 < 20 and 30 < 2: < 50 [km], and ^2 = -8-59 
[ps/nm/km] for 20 < z < 30 [km], and similarly S = 
1.9 leads to di = 1.95 [ps/nm/km] and ^2 = -7-03 
[ps/nm/km] for anti-phase bi-soliton. A pulse ui in chan- 
nel 1 has the central frequency /i = /o [GHz], which 
is conesponding to wavelength of AQ = 1.55 [^im] and 
is initially positioned at <i = 0 [ps], while a pulse ws 
in channel 2 has the central frequency fo = /o + A/ 
[GHz], where A/ is the channel spacing. Figure 1 shows 
(a) in-phase and (b) anti-phase bi-solitons' propagations, 
where the channel spacing is A/ = 100 [GHz] and the 
bi-solitons in channel 2 is initially positioned at ^2 = 100 
[ps]. From Fig. 1, one can see that anti-phase bi-soliton is 
stable throughout long distance propagation after the col- 
hsion, while in-phase bi-soliton collapses after propagat- 
ing a certain distance. We note that anti-phase bi-soliton 
is also more tolerant to perturbation as ASE noise than in- 
phase one. Confirmation of the stability encourages us to 
employ anti-phase bi-soliton for high-speed WDM trans- 
mission systems. 

The XPM due to fiber nonlinearity causes residual fre- 
quency and time position shifts after the collision of DM 
solitons in different channels.^ It is known that the vari- 
ational method with gaussian ansatz considering only the 
XPM effect between different channels as a perturbation 
term is available to analyze DM soUton's dynamics. We 
here apply the method to the case of bi-sohton assuming 
that a bi-soliton consists of a couple of gaussian pulses 
and they behave independently each other without suffer- 
ing from intrachannel effects. Then a bi-soliton Un{z,t) 
in channel n (n = 1,2) can be written as follows: 

where u„x (A' = L, R) represents one of gaussian com- 
ponents of the bi-soliton in channel n, and A{z), p{z), 
C{z) are the amplitude, the inverse of the pulse width, 
and the chirp of each gaussian component, respectively, 
and they are common to any gaussian components. On 
the other hand, K„X(Z), Tnx{z), and Onxiz) are the cen- 
tral frequency, the central time position, and the phase 
of Unx, respectively, and we define the bi-soliton u„'s 
central frequency as K„{Z) = (K„L -I- K„R)/2 and the 
central time position as T„{z) - (T„L + TnR)/2. Con- 
sidering propagation ofu„x, we neglect intrachannel in- 
teractions between Uni and U„R and adopt interchannel 
XPM effect induced by W(3-n)L and W(3-n)fl indepen- 
dently. Then Eq. (1) reduces to 

Un{z,t) - Unl,{z,i)-\- UnR{z,t) (2) 

with 

Unxiz,t) 

rnx{z,t) 

•Pnx{z,t) 

^nX 
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yi(2)exp 

p{z){t-T„x{z)] 

C{z)_, 

4- i^nX 

.dUnX        M d-U„X        I ,2 

= -2 ||w(3-n)Z,|" + |«(3-n)fl|j "nX- (4) 

Applying the variational method-" to Eq. (4), we obtain 
a set of ordinary differential equations for the parameters 
p{z), Ciz), Knx{z), and Tnx{z) as 
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(5) 
where ATy = Tnx - T(3_„)y, F{x) = a;exp(-a;V2) 
and Eo = yj^A^/p is the constant energy of a single 
gaussian pulse u„x ■ By solving Eqs. (5) numerically, evo- 
lution of the central frequency and the time position of the 
bi-solitons for propagation distance can be analyzed. Fig- 
ure 2 shows variations of the central frequency /i [GHz] 
and central time position Ti [ps] of the anti-phase bi-soliton 
«i in channel 1 which appears in Fig. 1 (b). Solid curves 
are calculated by the variational method, and dotted curves 
by direct numerical calculations of Eq. (1). In both fig- 
ures, the results from the variational method agree with 
numerical results, and therefore the variational method is 
available for analyzing interchannel XPM effect not only 
between conventional DM solitons but also in case of bi- 
solitons. We can also see from Fig. 2 that residual fre- 
quency shift is very small since map strength S is so large, 
but residual time position shift 6Ti is large and it is a se- 
rious obstacle which might induce bit error. 

When we introduce bi-soliton to a WDM transmission 
system, the bit stream in a channel is a mixture of bi- 
solitons and conventional DM solitons.^ So we have to 
consider all kinds of colhsions, that is, colHsions between 

' (i) bi-soliton and bi-soliton, (ii) DM soliton and bi-soliton, 
(iii) bi-soliton and DM soliton, and (iv) DM soliton and 
DM soliton for ui and un, respectively. Figure 3 shows 
the relation between channel spacing A/ [GHz] and time 
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Fig. 2. The XPM-mdiicsd(a) central fiequency and (b) central time 
position shifts of an anti-phase bi-soliton which appears in Fig. 1 
(b). The solid curves and dotted curves are obtained by the varia- 
tional method and direct numerical calculation of the NLS equa- 
tion, respectively. 
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Fig. 3. Channel spacing Af versus residual central time position 
shift STi of «i after a collision with U2. Four cases should be 
considered as combination of signal formats in channel 1 and 2. 
The curves and symbols are obtained by variational method and 
numerical calculation, respectively 

position shift STi [ps] of «i after a collision with «2 for 
each case. The curves and symbols are obtained by the 
variational method and direct numerical simulation, re- 
spectively. As can be seen in Fig. 3, larger Af results in 
smaller 6Ti for any cases, because the propagation dis- 
tance in which ui and «2 are overiapping becomes shorter 
for larger channel spacing. A remarkable feature in Fig. 3 
is that cases (i) and (ii), (iii) and (iv) show almost the same 
results for time position shift 6Ti, respectively. So we can 
conclude that residual time position shift of a pulse in 
channel 1 depends only on the signal format of a pulse 
in channel 2. It is directly recognized from Eq. (4) be- 
cause UnR doesn't suffer from «„i and vice versa. For 
the channel spacing Af larger than 200GHz, the time po- 
sition shift STi is less than 2ps in any case and WDM 
bi-soliton transmission system is then feasible with using 
a properly chosen channel spacing. 

We have studied bi-soliton transmission in dispersion-managed 
WDM systems. We discussed robustness of bi-soliton against 
the colHsion with a pulse in different channel and showed 
that anti-phase bi-soliton is so stable that it could be ap- 
plicable to WDM systems. We also obtained some results 
about frequency and time position shifts caused by the 
XPM effect due to the colHsion. Direct numerical calcu- 
lation of the NLS equation supported that the variational 
method is available for the aialysis of the modulated cen- 
tral frequency and the time position shifts. We have also 
shown a remarkable feature in which the time position 
shift of a pulse in a channel depends only on the signal 
format of a pulse in the other channel. 

References 

1. N. J. Smith, F. M. Knox, N. J Doian, K. J. Blow, and I. Bennion, 
"Enhanced power solitons in optical fibres with periodic disper- 
sion management," Electron. Lett., 32, 54-55 (1996). 

2. H. Sugahaia, H. Kato, T. Inoue, A. Maruta, and Y. Kodama, "Op- 
timal dispersion management for a wavelen^h division multi- 
plexed optical soliton transmission system," lEEE/OSA J. Light- 
wave Technol., 17, 1547-1559 (1999). 

3. T. Yu, E. A. Golovchenko, A. N. Pilipetskii, and C. R. Menyuk, 
"Dispersion-managed soliton interactions in optical fibers," Opt 
Lett., 22, 793-795 (1997). 

4. T. Inoue, H. Sugahara, A. Maruta, and Y. Kodama, "Interactions 
between dispersion managed solitons in optical-time-division- 
multiplexed system," IEEE Photon. Technol. Lett., 12, 299-301 
(2000). 

5. A. Maruta, Y. Nonaka, and T. Inoue, "Symmetric bi-soliton solu- 
tion in a dispersion-managed system". Topical Meeting on Non- 
linear Guided Waves and Their Applications 2001 (NLOW2001), 
Clearwater, Florida, Paper PD4 (2001), and Electron. Lett., 37, 
1357-1358(2001). 

6. A. Marata, Y Nonaka, and T. Inoue, "Novel coding schemes us- 
ing bi-soliton to suppress intrachannel interactions in dispersion- 
managed system," submitted to IEEE Photon. TechnoL Left. 

7. J. H. B. Nijhof, W. Foiysiak, and N. J. Doran, "The averaging 
method for finding exactly periodic dispersion-managed solitons," 
IEEE J. Selected Topics in Quantum Electron.,«, 330-336(2000). 

8. V. Cautaerts, A. Maruta, and Y. Kodama, "On the dispersion- 
managed soliton," Chaos, 10, 515-528 (2000). 



NLMD58-1 

Towards nonlinear waveguide devices from conjugated 
polymers: Tuning of the materials properties and 

structuring 

A. Bahtiar, K. Koynov, C. Bubeck 
Max-Planck-Imtiliitc for Polymer Research, Ackermaimweg 10. D-5512S. Mainz. Germam- 

Tel +49 6131 379 316. Fax +49 6131 379 100. email: bahtiar@mpip-maiiiz.mpg.de 

M. A. Bader, U. Wachsmuth, G. Marowsky 
Laser-Laboratorium Gottingene.V.. Ham-Adolf-Krebs-Weg 1. 37077 Gottiugen. Germany 

Abstract: We prepared slab waveguides of the conjugated polymer MEH-PPV and demonstrate 
that fine-tuning of refractive index is feasible by control of molecular weight. Grating waveguide 
structures are fabricated by UV-laser ablation. 
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Conjugated polymers have been considered the most promising organic material candidates for high-speed 
photonic switching and all-optical signal processing due to their high third-order nonlinearity, fast response times 
and relative ease of waveguide preparation [1-3]. Materials such as polydiacetylenes and DANS have been 
investigated in detail with respect to their application in integrated optics [4, 5]. In particular poly(p- 
phenylenevinylene), PPV, and its derivatives have found considerable interest because of their large third-order 
nonlinearities and superior waveguide properties [6-10]. Recently, we have carried out a detailed study of several 
new PPV derivatives and have found out that derivatives like MEH-PPV are particularly promising solution 
processable photonic materials [9]. 

Materials properties like linear refractive index, low waveguide losses and possibility for sub-micron 
structuring are getting primary importance for the realization of nonlinear waveguide devices. We will show at the 
example of MEH-PPV that the synthesis parameters such as molecular weight M„ of the polymer have impact on 
important optical properties like refractive index and linear waveguide losses. Furthermore we will demonstrate 
structuring of the waveguides by laser ablation applying direct illumination of a phase mask [11]. 

Three different compounds of MEH-PPV provided by Prof. Hoerhold, Jena [9] (M„.=40000) and ADS, 
Canada (Mw=260000 and Mw=420000) have been studied. Ultrathin films (thickness around 50 nm) as well as 
waveguides (thickness around 1 |im) have been deposited onto quartz substrates by spin coating of toluene solutions 
of these compounds as described in detail recently [10]. 

In Fig. 1 the dispersions of the refractive index for TE (full symbols) and TM (open symbols) polarizations 
are plotted as measured by prism coupling in the MEH-PPV waveguides [8]. Obviously the birefringence is 
dependent strongly on the molecular weight. For comparison we have measured the TE refractive indices (solid 
lines) for the same compounds but in ultrathin film configuration by means of reflectometry [9]. The good 
agreement between the results of optical waveguides and ultrathin films shows that the origin of the birefringence is 
caused primarily by molecular weight. In Fig. 2a we have plotted the TE and TM refractive indices at ?L=1064nm 
versus molecular weight Mw of the polymer. The observed mcrease of the refractive index for TE and respective 
decrease for TM with the molecular weight can be explained by the degree of orientation of the polymer chains in 
the plane of the film. Evidently at large Mw the number of polymer chains parallel to the substrate surface increases 
(n(TE) increases) while the number of polymer segments perpendicular to this plane decreases (n(TM) decreases). 
In Fig. 2b we show the dependence of the waveguide attenuation loss coefficient ttgw on the molecular weight. This 
coefficient was determined for TEO and TMO propagation modes by imaging of the scattered light from the 
waveguide onto a diode array as described earlier [12]. The increase of otgw(TEO) for high molecular weight 
polymers is quite remarkable. Preliminary FTIR studies confirm that the preferred orientation of polymer chains 
parallel to the plane of the film increases with M^. 

The dependencies shown in Figs. 1 and 2 suggest an easy way of fine-tuning of both the refractive index 
and attenuation loss coefficients by proper choice of the molecular weight M^. 
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Sub-micrometer gratings have been fabricated in thin films of MEH-PPV on quartz substrates by UV photo 
ablation A 248 nm KrF excimer laser with a pulse duration of 20 ns was used to illuminate a phase mask positioned 
directly in front of the polymer film. Self-interference between the orders of diffraction of the phase mask created an 
interference pattern on the polymer film surface with a period equal to the phase mask period of 720 nm. Different 
grating thicknesses of up to several tens of nanometers have been generated applying fluences m the range of 
10 mJ/cm^ to 30 mJ/cml The number of pulses was varied from 30 to 140 to achieve homogeneous gratings. 

In Fig 3 a typical example of one of the generated gratings is given. In the left hand panel an AFM picture 
of a 720 nm period grating in a MEH-PPV thin film of a thickness of 570 nm is shown. It has been generated using 
40 pulses of a 20 ns KrF e^xcimer laser at a wavelength of 248 nm and a fluence of 19.5 mJ/cm . The gratmg area is 
of the size 1 mm x 1 mm. The right hand panel of Fig. 3 shows the surface trace of the grating structure measured 
with the AFM. Evaluation of the grating thickness gives a value of 40.2 nm, the grating period of 720 nm equal to 
the grating period of the phase mask and a homogneous grating structure are confirmed by the measurement. 
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Figure 3. AFM image and surface measurement of a typical grating fabricated in MEH-PPV by UV laser ablation. 

Our results suggest that MEH-PPV is suitable for the generation of well defined grating structures by UV 
laser ablation applying ^direct phase mask imaging. The sub-micrometer gratings shown here can be used for 
applications in integrated optics based on periodic structures in planar polymer waveguides. 

In conclusion, we demonstrate that fme-tuning of the refractive index of polymer waveguides can be 
accomplished by control of the molecular weight. Structuring of the MEH-PPV waveguides m order to fabricate 
gratings is feasible by means of UV-laser ablation. This allows easy control of relevant device properties of 
nonlinear waveguide devices in MEH-PPV, e.g. for all-optical switching based on Bragg reflectors. 
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Abstract- We observed the formation of discrete solitons in periodically poled Lithium Niobate 
(PPLN) waveguide arrays. Strongly localized dichromatic nonlinear beams were excited with fun- 
damental wave pulses at a wavelength of 1572 nm. 
©2002 Optical Society of America 
OCIS codes: (190.4420) transverse effects in nonlinear optics, (190.5530) pulse propagation and solitons 

The nonlinear dynamics of discrete systems is a 
theoretically well investigated field because of hs rele- 
vance in many areas of natural sciences. Recent ex- 
perimental progress in linear and nonlinear waveguide 
arrays established a new convenient laboratory for the 
observation of such discrete dynamics on a macroscopic 
scale. This should allow for the experimental verifica- 
tion of numerous theoretical predictions in the near fu- 
ture (for a recent review, see [ 1 ]). 

The nonlinear dynamics of a particular system is 
always characterized by an interplay of its linear and 
nonlinear properties. While the first experimental inves- 
tigation of the linear properties of waveguide arrays 
dates back to the early 70's [2] only very recently this 
field was revisited and a broader understanding of dis- 
crete diffraction and reiraction phenomena was estab- 
lished [3-7]. At the same time the experimental investi- 
gation of nonlinear effects started with the observation 
of discrete solitons in AlGaAs waveguide arrays exhib- 
iting a Kerr nonlinearity [8-11]. 

Simultaneously, the experimental investigation of 
spatial soliton formation, a prominent intrinsic localiza- 
tion effect in nonlinear dynamics, in different nonlinear 
environments progressed. Among them, especially sec- 
ond-order (x'^^-) processes provide a variety of interest- 
ing effects with a promising potential for practical ap- 
plications [12]. Furthermore, the maturity of techno- 
logical processes, like periodical poling to achieve 
quasi-phase-matching (QPM) upon quadratic interac- 
tion, has provided the experimentalists with the neces- 
sary materials for engineering applications [13]. 

It is therefore quite natural to focus attention on dis- 
crete soliton formation in x*^^ - waveguide arrays where 
there is already a history regarding theoretical studies. 
In particular, various kinds of discrete solitons with 
complicated stability properties have been predicted [1, 
14]. Here we present the first experimental evidence of 
discrete soliton formation in x'^' - waveguide arrays. 

Sample fabrication and characterization 
The experiments were performed in PPLN 

waveguide arrays consisting of 101 waveguides. Anays 
with different coupling strength have been fabricated on 
0.5 mm thick 4" diameter Z-cut LiNbOj substrates. The 
waveguides were defined by in-diffusion of 7 |im wide 
and 98 nm thick Titanium stripes. Thereafter, the mi- 
crodomain structure with a period of 16.8 jtm was ob- 
tained by electric field poling with a structured photore- 
sist on the +Z-side. The wafers were cut into samples of 
74 mm length and anti-reflection coated on the polished 
coupling facets. 

The final waveguides were single-mode in the spec- 
tral region of the TM-polarized fundamental harmonic 
wave (FH, JL~1550 nm) but multi-mode for the TM- 
polarized second harmonic wave (SH, X,~775 nm). The 
typical loss of the FH TM-polarized mode was deter- 
mined as 0.2 dB/cm. The waveguide modes are coupled 
in the anay due to the partial overlap of their evanes- 
cent FH fields. By producing arrays with a channel 
pitch of 14.0, 15.0, and 16.0 ^m the strength of the 
coupling was varied. In order to measure the character- 
istic coupling length, a single waveguide of each array 
was excited with a weak FH beam and the measured 
characteristic output patterns were fit to the theoretical 
Green's function of the array (see Figs. 1). To investi- 

FIG. 1. FH output intensity distribution for low power single 
waveguide excitation (Green's function) for different 
waveguide pitch and resxilting coupling length (half-beat). 
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FIG. 2. SH generation tuning curve at low and high tempera- 
ture in a PPLN test waveguide. The low temperature curve is 
shifted by 27.42 nm. 

gate the nonlinear properties of the waveguides, single- 
pass SHG me^urements have been performed in sepa- 
rate test waveguides on the sample using a wavelength- 
tunable external cavity diode laser. At room tempera- 
ture (20°C), phase matching with the lowest order SH 
TM-mode was achieved for X=1542.95nm. To prevent 
photo-refractive effects in the materialthe high power 
sohton experiments were performed at an elevated tem- 
perature of ~200°C, where phase matching was 
achieved for ^=1570.37 nm (see Fig. 2). 

Experimental setup 
For the soliton experiments a tunable ultra-short 

pulse laser source (Spectra Physics) was used. The 
source consisted of a mode-locked Ti-Sapphire laser 
(Tsunami) which was ampUfied by a stretched-pulse 
regenerative amplifier (Spitfire) and subsequently con- 
verted to the desired operation wavelength in a two 
stage OPG/OPA system (OPA-800C). This system pro- 
vided Gaussian pulses of 1.1 ps FWHM with a spectral 
width of 4 nm (FWHM) at a rqjetition rate of 1 kHz. 
The wavelength was set to 1574 nm. The input pulse 
energy was measured in front of the coated lOx objec- 
tive by which the beam was focused into a single 
waveguide. The coupling efficiency is estimated as 
20%. The output near field intensity distribution of the 
FH and the SH were recorded separately on a vidicon 
camera (Hamamatsu). The sample was temperature 
controlled at 200°C in an oven enclosing the whole 
sample. It was therefore impossible to monitor the 
propagating light along the sample. 

Experimental results 
When increasing the input pulse energy the meas- 

ured output intensity distributions show for all arra^ a 
self-focusing process where the output narrowed for 
mcreasing input energy, see Fig. 3. Beyond a well- 
defined input pulse energy the output is essentially lo- 
calized in a single channel, which corresponds to the 
shape of the input field, and can therefore be regarded 
as the formation of a most strongly localized discrete 
soliton. 

20000    40000    60000    80000 
Input pulse energy [pj] 

FIG. 3. FH output intensity distribution vs. input pulse en- 
ergy for arrays with different waveguide pitch. 

The narrowing of the output field intensity distribu- 
tion for an increasing input power is not a smooth proc- 
ess. The output narrows in a rather stepwise manner 
(see Figs. 3, 4 and 5). For the weakly coupled array 
(pitch: 16 nm) an increase in power results in a sudden 
collapse of the output to the final single channel soliton. 
For an increased coupling strength (pitch: 15 \im) we 
observed an intermediate stage where a rectangular out- 
put pattern is formed over a wide range of input ener- 
gies. If this is just some transient behavior or if it is a 
sign of the theoretically predicted rectangular soliton 
[15]  is not yet clear. For the strongest coupling 

0.7 nJ 

FIG. 4 FH output intensity distribution vs. input pulse en- 
ergy. The rectangular output state persist over a wide input 
pulse energj' range from 2.5 to 8.5 nJ (pitch = 15 pm). 
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FIG. 5. FH output width vs. input pulse energy for arrays 
with different waveguide pitch. 

(pitch: 14 urn) the stepwise decreases of the output 
width for increasing input energy is even more pro- 
nounced. As expected the necessary power for the exci- 
tation of the solitons increased with the strength of the 
coupling (see Fig. 5). 

The SH output field distribution in Fig. 6 is much 
narrower than the FH output for all input pulse energies. 
This was expected from the theory, since for low pow- 
ers the SH is most effectively generated at the input 
where the FH is still localized to a small number of 
waveguides. After its generation at the input the SH 
couples only weakly to the other waveguides because it 
is more strongly guided by the diffusion profile. There- 
fore already for moderate power levels we observe a 
collapse of the SH output to the single waveguide of the 
FH input. 

The measured pulse energies imply peak powers 
(power [W] « pulse energy [pJ] * 0.47) that are much 
higher than expected for cw-experiments. This discrep- 
ancy is due to the spectral width of the short pulses (~4 
nm) used which is much wider then the phase matching 
bandwidth of the 74 mm long samples (-0.3 nm). This 
effect compares to the previously reported short pulse 
experiments in nonlinear directional couplers [16]. 

In conclusion we reported for the first time the for- 
mation of discrete solitons in waveguide arrays with a 
second-order nonlinearity. The authors gratefully ac- 
knowledge support by the European Community (IST- 
2000-26005) and in the US by an ARO MURI and the 
National Science Foundation. 
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We analyze the beam propagation in modulated waveguide arrays, which consist 
of two types of alternating waveguides with different widths. Using"effective dtecrete 
equations, we identify the presence of the socalled Rowland ghost gap in the Mnear 
transmission spectrum, and consider the eifect of Kerr-type nonlinear self-action 
describing two distinct classes of discrete solitons: (i) conventional dtecrete solitons' 
and (ii) discrete gap solitons. We demonstrate that the gap solitons can be efficiently 
generated by Gau&sian input beams; both the soliton velocity and its propagation 
direction can be controlled by varying the input light intensity. 

©2002 Optical Society of America 
OCIS codes: 190.4390, 190.4420 

^Photonic structure with a periodic modulation of the refractive index can be used to precisely control propagation 
of optical puls^ and beams.   Wave localization is pmsMe inside the hand gaps of the lineai- frequency spectrum 
whereas dispersion characteristics are strongly modified near the band edges. Recent papers^^ reported fabrication of 
one^dimensiond structures consisting of a periodic array of planar optical waveguides, where the effective diffraction 
coefficient can be reduced to zero, and even made negative, being controlled by the input conditions and the array 

In comparison with homogeneous media, efficiency of nonlin- 
ear processes can be p-eatly enhanced in properly designed peri- 
odic structures. For waveguide arrays, where waves are primarily 
localized in weakly coupled waveguides, the effective diffraction 
can be reduced, further lowering the threshold for spatial beam 
self-focusing. It was predicted that diffractional spreading is sup- 
pressed for the special beams in the form of discrete solitons^, and 
these nonlinear localized waves possess many remarkable proper- 
ties*. For example, unlike their continuous counterparts, discrete 
solitons can propagate across an array at low powers, w^hile at 
high powers they become trapped by the discreteness to a single 
waveguide^'^, and this behavior is readily observed in ex'periment''. 
It was also demonstrated that discrete solitons can be efficiently 
routed through two-dimensional networks of coupled waveguides®. 
Similar concepts were also developed for coupled-resonator optical 
waveguides, which are created by arrays of defects embedded in 
photonic crystals^. 

In a number of recent publications^"'", it was suggested that 
the properties of discrete solitons can be modified by a periodic 
modulation of waveguides along the propagation direction. In this paper, we introduce another idea of the array 
engmeering and consider a bmary waveguide array composed of alternating "thick" and "thin" waveguides as illus- 
trated m Fig. 1. In such a structure, the effective refractive index experiences additional modulation, and therefore 
a Rowland ghost gap' appears in the linear spectrami^. Formation of solitons in such gaps was earlier studied in 
the context of superstructure fiber Bragg gratings", where the analysis was based on the coupled-mode equations 
aek>w, we demonstrate the existence of discrete gap solUons that display the properties of both conventional discrete 
and Bragg grating sohtons and rt^emble nonlinear locaUzed modes in diatomic lattices^* 

Propagation of wav^ in an array of weakly coupled single-mode waveguides can be approximately described^ by 
the discrete nonlinear Schrodinger equation (DNLS) for the normalized amplitude of the electric field E„ locaHzed at 
the waveguide with the index n, 

PIG. 1: Schematic of a binary array of waveguides 
with alternating widths. 

.dEn 
- A„£„ + (En-l + E„.+i) + ^„\EnfEn = 0, 
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where A„ characterizes the linear propagation constant of the mode guided by the 7T-th waveguide (which depends 
on its width), and 7„ is the effective nonhnear coefficient. For the analysis of the structure shown in Fig. 1, it is 
convenient to introduce the notation a^ = Eon, i>„ = Eon+i, A2„+i = -p, and Ao^ = 0, where the appropriate 
normalization of Eq. (1) is implied. In order to simplify the analysis, we neglect absorption and also assume that the 
nonlinear coefficients are identical, 7„ = 7. However, we have verified that the main conclusions of our study remain 
valid if 7„ are weakly modulated. With no loss of generality, we have p > 0, so that a.„ and b„ are the field amplitudes 
at the thick and thin waveguides, respectively. 

First we analyze the properties of linear waves character- 
ized by the Bloch wave number Kb, ^ 

an = yle'^^^+'^o",    6„ = Be'^'+''^'", (2) 

where f3 is the mode propagation constant. We substitute 
Eq. (2) into the linearized Eq. (1) (with 7 = 0), and obtain 
the linear dispersion relation that couples the propagation 
constant and the Bloch wave number, and yields the corre- 
sponding relation between the amplitudes at the thin and 
thick waveguides, 

Kb = cos-'{r)/2),    A = Be-'''»^^,/2^/l3,       (3) 

where 77 = 2 - /3{(3 + p). It follows that transmission bands, 
corresponding to real Kb, appear when /?_ < /3 < -p or 0 < 
f3 < I3+, where /3± = -{p/2) ± v^(p/2)2 + 4. On the other 
hand, the Rowland ghost gap appears for -p < (3 <Q, and 
it increases for a larger difference between the widths of the 
neighboring waveguides. A characteristic dispersion relation 
and the corresponding band-gap structure are presented in 
Fig. 2(a). This dependence is calculated for p = 2, since this 
value can be realized in experiments. For example, for a thin 
defect layer in a fabricated structure, which was studied in 
Ref.^^, the normahzed detuning parameter was p ~ 1.5. 

Using the dispersion relation (3), we calculate the group 
velocity, Vg = -2{df3/dKb), and the effective diffraction co- 
efficient, D = -A{d'^p/dKl). Characteristic dependencies of 
these parameters on the propagation constant 13 are shown in 
Figs. 2(b,c). In both transmission bands, there exist regions 
with effective normal and anomalous diffraction and a zero-diffraction point between them. 

Assuming that the medium has a self-focusing nonlinearity, bright discrete solitons can form when the effective 
diffraction coefficient is positive. We consider excitation of such solitons by an input Gaussian beam. 

FIG. 2: Characteristic dependencies of the Bloch wave 
number {Kb), group velocity {vg), and the effective 
diffraction coefficient {D) on the propagation constant /3. 
Gray shadings mark the transmission bands. The nor- 
malized detuning between the thick and thin waveguides 
is p = 2. 

En{z = 0) = Cexp [-(n - nQ)'/v^ -f iK{n - no)] (4) 

where no is the position of the beam center, v is the beam width, and K characterizes the inclination angle. Such input 
beam can be represented as a superposition of two modulated linear eigenmodes, whose eigenvalues /3i,2 correspond 
to the Bloch number Kb = COS~^[COS(2K;)], 

^2n(0) = (^1 + ^2) exp [-(2n - no)V^^^ + i^bn] , £2^+1 (0) = (Bi + B2) exp [-(2n + 1 - mf/v'^ + iKbu] , 

where the amplitudes Aj and Bj {j = 1,2) satisfy Eq. (3) at /? = I3j (with no loss of generality, we choose /3i > ^2)- 
For a wide input beam (i^ > 4), a ratio of the powers of two excited Bloch modes can be presented in a simple form, 

P2 1-^ 
1 + 6 

(5) 

where S = -^/l + p//3i. It is important to note that the two modes always have opposite gi'oup velocities and diffraction 
coefficients (see Fig. 2). 
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Let as first discuss the excitation of gap solitons with a 
beam which is incident at a normal angle, so that K = Kb = 
0, and ^1,2 = /?+,_. In this case, p < 1, i.e. the first (j = 1) 
mode is always dominant (for example, p ~ 0.15 for p = 2). 
As demonstrated in Fig. 2, at /3 = 0+ the effective diffraction 
coefficient is positive and, therefore, discrete solitons can be 
formed in self-focusing media. The properties of such soli- 
tons are similar to those existing in homogeneous waveguide 
arrays. 

In order to excite the stationary gap solitons in a self- 
focusing medium, one might attempt to use an input beam 
with K = 7r/2, so that Kb = n,/3i= 0, 02 = -p. In this case, 
the two Bloch modes have equal powers (p = 1), however 
one of them experiences self-focusing and another — self- 
defocusing, and in this situation an efficient generation of 
gap solitons is not possible. 

The optimum conditions for generating dkcrete gap soli- 
tons can be reaHzed when 7r/2 < « < ^, and ^(/Sj) > 0. 
Indeed, under such conditions p > 1, i.e. the second mode, 
which experiences self-focusing, is dominant. Moreover, the 
Bloch wave envelopes have opposite group velocities, so that 
they move apart in the opposite directioi^. In Fig. 3(a), we 
show that two beams are indeed generated at the input. The 
beam which moves to the right is localized at odd (i.e. thin) 
waveguides, and it transforms into a gap soliton. On the 
contrary, the other beam moves to the left, and experiences 
self-defocusing and broadens. 

Stationary gap solitons can be generated at higher input 
intensities. In this case, the soliton is not able to overcome 
the Peierls-Nabarro potential of the periodic structure, and 
it becomes trapped. At such high intensities, the two Bloch 
modes are initially trapped together, resulting in a periodic beating that can strongly affect the soliton formation 
process. Examples shown in Figs. 3(b,c) demonstrate that, depending on the input intensity, the gap soliton can 
remam m the center or even can shift to the left, in the direction opposite to the propagation direction of the input 
beam. If the mtensity is mcre^ed even further, then the gap soliton becomes cBcillatory unstable, similar to gap 
solitons m fiber Bragg gratingsi^. We illustrate the instability development in Fig 3(d)    " 

«nS ''tf °^"^i°''' ^* h»^«f "died the diffraction properties and nonlinear wave propagation in binary waveguide arrays 
with alternating waveguide widths. We have predicted the existence of discrete gap solitons and demonsfrated thek 
intriguing dynamics controlled by varying the input intensity. 
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1. Introduction 

The equivalent of diffraction occurs in arrays of weakly coupled waveguides. Similar to continuous systems 
discrete arrays can support stable solitons, which are fomed when an intensity-dependent, self-focusing mechanism 
IS present to counteract discrete diffraction [1], These discrete solitons form a non-integrable system and are 
expected to have many different properties when compared to their continuous counterparts. Their properties have 
been studied m Kerr and quadratically nonlinear materials and they ha%'e been observed experimentally in AlGaAs 
waveguide arrays [2-4], It has also been shown that the unique dispersion properties of such arrays should allow the 
observation of dark sohtons in such system [5], Although the case of vector solitons with two orthogonal and 
mutually incoherent polanzations has been investigated theoretically, only the scalar version (single polarization) 
has b^n observed to date [6], In this paper we report on the excitation of a dual polarization vector soliton and on 
the ability of controlhng the relative amplitudes of the polarization components by changing the relative input phase, 

2. Experimental Conditions 

In order to perform our experiment, we used an array of 2D AlGaAs waveguides. The sample (whose geometiy is 

^,^™iJi^'f: '^' "^"^ ^^■^™™ '"""S ^^'^ ^^ *°'*' of ^^oi^t 1.5dB/cm, The Ught source was a Spectra Physics 
OPA-8(»CP which produced l.lps FWHM pulses at a 1 kHz rep rate, with a maximum pulse energy of 65 nJ The 
1550 nm pulses were attenuated and split into two orthogonal polarizations. Their relative phase was adjusted with a 
precision delay line and measured interferometrically. Subsequently the beams were recombined and focused into 
the sample m order to excite only a single waveguide. The output was detected by a camera and the energies of the 
input and output beams were measured by germanium detectors. 
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Fig. 1,   The sample geometry 
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Fig. 2. Experimental Set-up (BS; 50/50 beamsplitter, PBS; 
polarizing BS, PF; polarizing filter, FA;VA: fixed; variable 
attenuator, PA: piezo-electric actuator) 
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3. Theoretical Considerations 

The equations in reference [6] can be modified as follows to describe radiation fields in the array: 

i-^ + Cjj^ (o„^, + «„_i) + (4,1 I a„ |- +/l^^ I ft„ I' )a„ + KJ}la„ exp[2/(A^ir + ^^^ - Ki)] = 0 
dz 

'•^ + Cm {b„.^ + K-d+ (^m \K\' +4i I «„ I')K + ^a^X exp[-2;(A;& + ^,, - ^^M)] = 0 
az 

Here a,, and bn are the field envelopes of the TE and TM polarized fields, PTE and PTM are the respective 
propagation wavevectors with AP = PTE - PTM, CTE and CTM are the coupling coefficients, and (|)TE - <t>TM is the initial 
phase difference between the TE and TM polarizations. The other terms X^^, 'k±and ?tab,ba are the self-phase-, cross- 
phase and four-wave-mixing nonlinear coefficients, respectively. For the case of AlGaAs the self- and cross-phase 
coefficients are almost equal and the TE and TM field distributions are quite similar. Hence, the coupling 
coefficients are approximately the same and AP is small [7]. 

Although we are not aware of any theoretical work in the literature on soliton solutions to these equations, we 
expect localized solitons to exist. Because of the four-wave mixing term, energy is exchanged periodically with 
propagation distance between the two polarizations, possibly accompanied by a periodic change in the soliton's 
width. However, as the self- and cross-phase coefficients are almost equal for the two polarizations, only a small 
variation of the soliton widths is expected during propagation. It is not known to date whether the system will 
bifurcate into truly stationary spatial solitons at high powers as in the homogeneous medium case [8]. 

4. Results and Discussion 

The first experiments were performed in order to verify the existence of strongly localized vector solitons in our 
sample. In Figure 3 we show the intensity profiles recorded at the output facet of the waveguide array for a TE 
excitation alone, for a TM excitation alone and for the two combined excitations. The TE and TM powers were set 
to have the same value. The combined output shows a strongly confined soliton, almost entirely localized into a 
single waveguide. 

alone 
TE: 650nW TM: 650nW 

together 

Fig. 3. The TE and TM polarized outputs from the waveguide array for single channel excitation of both the TE 
polarization and TM polarization individually, and then combined together at the input. The power given is the 
average power. 

Figure 4 shows the collapse of both a strong TM polarized component and a weak TE component as a function 
of the input TM power. The monotonic beam narrowing of the strong TM component as a function of the input 
power is similar to the case of a homogenous slab waveguide. However, in contrast to the homogeneous case, the 
weak probe beam sharply collapses into a strongly localized soliton just over a small range of intensity values. We 
also note that before the soliton is fully formed, the weak TE probe beam remains highly delocalized, instead of 
smoothly narrowing as in the homogeneous case. This may be due to the discrete nature of the system and merits 
further theoretical consideration. 

For these vector solitons the two polarizations are coherently coupled through the four-wave mixing term. As 
discussed above, there is a periodic exchange of energy between the two polarizations which will depend on the 
initial phase difference between the two fields. In Fig. 5 we show the dependence of the TE output polarization as a 
function of the relative phase between the TE and TM components at the input. The TE average power was fixed at 
350 nW and the TM power was increased. We changed the initial phase difference (t)TE-<t>TM from 0 to 4 7t using a 
piezo-electric actuator for each TM power level. Note that the changes ("drift") with increasing TM power in the 
position of the peak output TE energy relative to the phase difference axis in Fig. 5 is probably due to the hysteresis 
of our piezo-electric actuator. We observed for high powers periodic gain and loss for the TE output power with an 
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oscillation period twice that associated with the input phase difference because of the four-wave mixing term which 
vanes as exp[2i(#ra%M)]. 
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Fig. 4. Evolution of TE and TM output beam width 
(FWHM) and the ratio of power in the excited guide to 
the total output power. 

Fig. 5. Evolution of TE output power vs. TM input power 
and input TE/TM phase difference <|>TE-^M- 

In summary, we ob^ed for the first time highly localized, discrete vector solitons, consisting of two 
oraogonal polanzatwi^s. Due to the coherent coupling between the two components, a periodic exchange of energy 
with twice the penod of the relative phase at the input was obseired, in good agreement with the prediction of fol- 
wave-mixmg m the sample. 

This rese^ch was supported by an ARO MURI grant on "Solitonic Gateless Computing" in the US The 
collaboration between the American and the IsraeU partners was supported by the Bi-National Science Foundation. 
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Abstract:  We demonstrate that optical discrete solitons are possible in appropriately oriented 
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Wave propagation in nonlinear periodic lattices is associated with a host of exciting phenomena that have no 
counterpart whatsoever in bulk media. Perhaps, the most intriguing entities that can exist in such systems 
are self-localized states-better known as discrete solitons (DS) [1-4]. Over the years, DS have been a topic of 
intense investigation in several branches of science such as biological physics [1], nonlinear optics [2], Bose- 
Einstein condensates [3], and solid state physics [4]. In optics, DS have been predicted [2] and experimentally 
verified [5] in nonlinear waveguide arrays and most recently they were also shown to exist in chains of 
coupled microcavities embedded in photonic crystals [6]. Furthermore, it has recently been shown that DS 
are promising in terms of realizing intelligent functional operations such as blocking, routing, logic functions, 
and time gating in two-dimensional DS array optical networks [7]. Yet, to date, only a small subset of the 
plethora of interesting theoretical predictions has actually been demonstrated at the experimental level. This 
is partly due to the fact that such arrays have only been implemented in single-row topologies (on the surface 
of a wafer) using a particular self-focusing material system. Establishing two-dimensional waveguide array 
lattices in the bulk is an even more complicated task, since no technology is currently available to fabricate 
such structures. It is therefore important to identify highly versatile nonlinear lattice systems where such 
DS entities can be observed, especially at low power levels. 

In this paper, we show that optical DS are possible in appropriately oriented biased photorefractive crystals. 
This can be accomplished through the screening nonlinearity [8] in optically-induced waveguide periodic 
lattices that are established via plane wave interference. To do so, we exploit the large electrooptic anisotropy 
that is possible in certain families of crystals that, in turn, allows invariant propagation of 1-D and 2-D 
periodic intensity patterns. Our method offers exciting possibilities towards the observation of entirely new 
families of DS at mW power levels. Moreover we note, that our scheme offers considerable flexibility in the 
sense that the same photorefractive waveguide array (1-D or 2-D) can be of the self-focusing or defocusing 
type (depending on the polarity of the external bias [8]) with adjustable lattice parameters. 

V II IP IP ^ iP" IP w 
# ti # # # iH 4P 

HP IK" '5P' ^^ ^w '^P' ^ff 
••••••• 
§•••••• 
•••••fti 

X 
Fig. 1. A biased photorefractive crystal illuminated by a periodic intensity pattern created through the 
interference of plain wave pairs. 
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(a) 

^'1' 2J"^f *"* propagation of (a) an in-phase DS and (c) a staggered DS in a 1-D photorefractive optically ^ 
mducrf potential; (b) and (d) depict the diffraction dynamics of the field patterns shown in (a) and (c) 
r^pectively, when their intensitiw are considerably lowered. 

We begin our analysis by considering a biased photorefractive crystal as shown in Fig. 1, For demonstration 
purposes, let the crystal be of the Strontium Barium Niobate type (SBN:75) having length L and width W in 
both transverse dimensions. The SBN sample is externally biased along its extraordinary x-mis (crystalline 
c-axis) with voltage V. The refractive index along the extraordinary axis is n, = 2.299 whereas that along 
the ordmary (t/-axis) is m = 2.312. The relevant electro-optic coefficients of this crystal are raa = 1340 
pm/V and n^ = 67 pm/V and the wavelength of the lightwaves used is taken here to be Ao = 0 5 urn In 
this case an rc-polarized wave will see a refractive index n? = nl- nirssE,, while the corresponding ^for 
a rpolarized wavefront is given by no^ = 4- 4nAc, where E,,x is the external space-charge field under 
external bias. 

Next, we identify methods to establish optically induced waveguide lattices in the bulk of the photorefractive 
crystd where DS are expected to occur. Such stationary 1-D or 2-D array lattices can be photo-induced by 
penodic diffraction-fr-ee intensity patterns that result from plane^wave superposition (provided that the 
system is linear for the interfering waves). In the suggested configuration of Fig. 1, this is accomplished by 
linearly polarizing these plane waves along the ordinary y-axis (since ns « rgs) and, therefore, propagation 
along ^ IS essentmlly Unear. On the other hand, it is important to note that these same induced waveguides 
are htghly nonlmmr for extraordinary polarized waves because of the large value of rgg For example a 
one-dmiensional periodic intensity pattern J = Jocos2[fc2siii(0)ar] can be generated from the interference 
of two plane waves yEoexp[±ifc2sin(#)ar]exp[ift2Cos(#)^], where fe = hm, h = 2,r/Ao, and ±# is the 
angle at which these two plane waves propagate with respect to the z-axis. The spatial period of this array 
lattice IS i; _ Ao/(2nosm#). Using two orthogonal mutually incoherent plane wave pairs 2-D "crystals" 
can be estabhshed from a diffraction-free intensity pattern I = Io{cm'[k2mn{0i)x] + cm^kiammy)]} 
In addition, such 2-D (rectangular or square) structures can also be created by coherent superposition of 
four plane waves in which case I = Jo cos^ffea sin(#i)a;] cos^k^ smie,)y]. More complicated (hexagonal, etc.) 
nonlinear lattices can be generated by superimposing two or more mutually incoherent plane wave pairs at 
different angles. 

We first consider a one-dimensional array configuration. In this case one can show that the evolution dynamics 
of both the DS and the optically induced lattice fields in a biased photorefractive SBN crystal is governed 
by the following set of equations [9] 

^«2 + 2k"^'"' 
konh-ss 

EscU = 0, .    1 kon$,rm „ 
(1) 

?T Mo fls'^'" '^ *^® space-charge field given by [8], f?,, = Eo/(l+Iix))-(KBT/e)(dI/dx)/(l+I(x)) 
and J - |«| -|-|t,| IS the normalized total intensity with respect to the dark irradiance of the crystal la [81 KB 

n« fi^^l*^^™/°"1f *' ^ ^ ** temperature, and e is the electron charge, u represents the rc-polarized 
DS field that IS afl^ected by the strong rgg nonlinearity, and v is the y-polarized periodic field (evolving almost 
linearly) responsible for setting up the waveguide lattice. In addition, under a constant bias V, the following 
constraint holds true along i, F = /g^ iJgcda;. 

Using numerical relaxation methods, we obtained DS solutions in this system. The dj-namical evolution of 
these states is then examined by exactly solving Eqs. (1)) under a constant bias V. As an example let 
the dimensions of the SBN crystal be L = W = 6 mm. Let also the normahzed v field at the input be 
v = vo cm(irx/D}, where here \vof = 2.56 and 13 = 9 ^m. The periodic v field is assumed to cover the entire 
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Fig. 3. A 2-D in-phase DS in a biased photorefractive crystal. 

W xW input face of the crystal. The applied voltage across W is taken to be 325 V which corresponds 
to an Eo :^ {V/W)-s/l + vl = 102 V/mm and leads to a self-focusing nonhnearity. Figure 2(a) depicts 
the invariant propagation of a well confined in-phase DS when its normalized peak intensity |wo|^ = 0-36. 
In addition, our simulations indicate that the 1-D waveguide lattice, as induced by the v field, remains 
essentially undistorted over the length of this crystal. This discrete soliton entity is possible through the 
combined eff'ects of nonlinearity and lattice periodicity The diflfraction dynamics of this same field pattern 
when its peak intensity has been appreciably lowered is also depicted in Fig. 2(b). Evidently the beam 
expands considerably after 6 mm of propagation, thus reaflfrming the soliton nature of the state shown in 
Fig. 2(a). In addition to in-phase bright DS staggered dark solitons are also possible in this self-focusing 
system provided that the phase shift among sites is TT. By reversing the polarity of the applied voltage, the 
nonlinearity of the lattice becomes defocusing. In this regime, the induced waveguide sites are located on 
the dark regions of the \vf periodic intensity pattern. In such defocusing lattices, two families of DS exist. 
These are in-phase dark solitons (at the center of the Brillouin zone) and staggered (TT out of phase) bright 
solitons at the edge of the Brillouin zone [10]. As an example we will discuss here only the latter DS family. 
Figure 2(c) depicts the propagation dynamics of a staggered bright soliton. This DS solution was obtained 
numerically for |woP = 0.36, |voP = 4, D = 9 /im, and by assuming again that the v field covers the entire 
crystal. The applied voltage in this case is -182 V. As Fig. 2(c) demonstrates, the staggered soliton can 
propagate in an invariant fashion over the length of the crystal. Note that this particular type of DS solution 
cannot exist in the bulk and is purely the outcome of discreteness. At much lower intensities, this field 
pattern diff'racts considerably as shown in Fig. 4(d) since the nonlinearity is not enough to compensate for 
linear coupling effects. 

Similarly two-dimensional DS are also possible in optically induced photonic lattices in biased photorefractive 
crystals. As previously mentioned, such lattices can be established in the bulk by coherently superimposing 
two plane wave pairs. Figure 3 shows an in-phase two-dimensional bright DS in a square lattice with D = 
15 ^m, |woP = 0.13, and \vo\'^ = 3 as obtained using relaxation methods. 
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transverse motion opposite to initial beam tilts. 
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Stationary solitary waves, usually termed solitons. define fixed-points of the nonlinear evolution in otherwise non- 
mtegrable systems. However, arbitrary input field profiles usually do not match the soliton shape. Hence in most 
cases the mitial state is already perturbed. If energy conservation holds, or losses are small these perturbations may 
persist for a long time. They evolve as internal modes of the respective soliton, and can influence the dynamics of 
this ground state considerably. Here we theoretically predict and experimentally demonstrate that the joint action of 
quas^llnear modes and nonlinear losses can result in the virtual destruction of a discrete soliton, propagating in an 
array of optical waveguides. However, the now diffi-acting field still carries an imprint of the evolution prior to the 
collapse,, which leads to unexpected steering phenomena. 

To investigate discrete optical solitons we produced waveguide arrays from AlGaAs. The final sample consisted 
of 41 guides with a spacing center to center of 9 jim and an overall length of 6 mm. To reduce losses photon 
energies well below half the band gap of the material were chosen. At ^=1.53 jim the material has an almost ideal 
Kerr like nonlmeanty, no two-photon absorption and only mimimal three-photon absorption Details of the 
experimental set-up are given in ref [1]). The amplitude, width and angle of the input excitation could be The 
intensity distribufion at the output facet was recorded on an infi-ared camera. To gain some insight into the field 
evolution within the_samp]e we performed numerical simulations on the basis of the Discrete Nonlinear Schrodinger 
Equation (DNLS) with three-photon absorption included: 

'^+^nfa„+ia3^„fa„+C{a„+i+a„_i) = 0. 

Here a„ is the field amplitude in guide number n, which evolves in the z-direction. Energy transport between 

adjacent guides is mediated By a linear coupling of strength C=1.0mm-'. While r=3.6m^W^ and a3=10-*m-'w' 
account for the Kerr nonlmeanty and the three photon absorption, respectively. 

Although three-photon absorption can influence the evolution of the fields during propagation, it is still a weak 
perturbation. Therefore, we first study solutions of Eq.(l) in the absence of losses (a3=0). The DNLS is known to be 

non-integrabal, though it does possess stable bright soHtary wave solutions of the form a„{z) = a° &(piipz), which 

have a stationaiy field distiibution and a flat phase. Their total power increases, while their widfli decreases with 
growing wavenumber p. Hence, higher powers are required to generate narrower solitons. In contrast to its 
continuous counterpart, the nonlinear Schrodinger equation, the DNLS is not Galilean invariant and all stationary 
solutions travel parallel to the array. An arbitraiy excitation can be decomposed into the soliton state and a 

respective perturbation Ba„iz) as a„{z)=\tl+SaM^(i^). Parts of this excess energy are shed away, 

however, most of the energy remains attached to the soliton, which forms an effective waveguide It is useful to 
decompose this quasHinear radiation into modes or eigenstates of a linearized version of Eq.(l). In general stable 
discrete solitons have up to two non-trivial bound states [2], a symmetric and an asymmetric one. For the soliton 
powers which we are interested in both bound states have converged towards the continuous spectrum. Strictly 
speaking they are transformed into weakly radiating modes with an eigenvalue at the edge of the continuous 
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spectrum. For experimentally accessible propagation distances the resulting radiative damping is negligible. More 
importantly: Both modes have almost the same internal frequency X = +(p - 2C) and oscillate in phase. However, 

their influence on the total field dynamics is different. The symmetric mode induces breathing, where the 
antisymmetric mode mainly causes a wobbling around the center of gravity of the whole field distribution. 

-4-2024 
Waveguide 

Fig.l Linear modes of a discrete soliton with a total power of about 1200W (shadowed; discrete sotiton, ftill line: 
symmetric breathing mode, dashed line: asymmetric quasi-translational mode. For both linear modes only the localized 
field component is shown) 

By varying the three parameters: beam amplitude, width and tilt we can basically excite an arbitrary soliton with 
a chosen power distribution between symmetric and antisymmetric modes. Let us first discuss an excitation with an 
untilted beam, which is centered on the input guide (see Fig.2a). For symmetry reasons only a discrete soliton and 
the respective breathing mode are excited. Changes of the total power arise mainly from the presence of three- 
photon absorption, which is the dominant loss mechanism. Because it is highly nonlinear it influences the field 
propagation when self-focusing occurs. Here we choose a broad beam (13|xm), with an incoupled peak power of 
about 2000W. We note that for this particular width, the power injected is much higher that the value required to 
generate a soliton. A narrower soliton with higher energy is chosen to minimize the energy stored in linear modes. 
For symmetry reasons only the symmetric mode is excited besides the soliton. It destructively interferes with the 
center of the soliton. In this way the field in the array adapts to the broader and less intense initial beam. However, 
the excited mode oscillates around the soliton. Hence, after propagation distance of =1.6mm a phase shift of J: has 
accumulated and the interference with the soliton has reversed. Now the total intensity is increased in the center. 
Consequently the overall power distribution is narrowed and collapses almost into the central guide (see Fig.2a and 
2b). For the pure lossless DNLSE this kind of self-focusing would appear periodically (see Fig.2a). However, 
nonlinear losses growth tremendously in the focal point due to three-photon absorption and a lot of energy is lost. As 
a result the basic soliton state ceases to exist. It is virtually eliminated by the action of the linear mode (see Fig.2b). 

In contrast the internal mode is less affected by the three-photon absorption. In particular, the field stored in the 
wings of the internal mode is well conserved. However, the decay of the basic soliton state also has a dramatic effect 
on the internal mode. It has lost the effective waveguide, where it propagated and. therefore it radiates away. The 
field distribution emerging from the collapse point has two pronounced wings, which originate from the internal 
mode, however, it lacks power in its center, where the nonlinear absorption had its greatest effect. At the output 
facet we observe two well-separated maxima of the light distribution (see Fig.2b). 

We have now the unique opportunity to vary the power distribution between symmetric and antisymmetric linear 
modes by changing the tilt of the exciting beam. If we incline the beam, the incident field is no longer symmetric. 
Therefore, the amount of power stored in the antisymmetric quasi-translational mode increases. An excitation of this 
mode induces oscillations of the soliton around its stationary state. Note that the symmetric mode is still present and 
induces breathing (see Fig.2c). Consequently we observe an asymmetry of the output field due to the growing 
contribution of the quasi-translational mode. However, the observed shift of the output field is opposite to the 
direction of the tilt. This "antisteering" can be reproduced to a high degree by numerical simulations (see Fig.2d). 
The reason of this surprising behavior is related to the oscillation of the whole light distribution around the 
stationary state. Because both internal modes have about the same internal frequency, also the quasi-translational 
mode has accumulated a phase shift of approximately Tt, when the collapse and the subsequent decay take place. 
Hence, for this propagation distance any initial asymmetry is reversed. Therefore, the emerging radiation leaves the 
collapse region in a direction opposite to the initial tilt. We would like to emphasize that only the collapse makes the 
action of the internal modes visible. 

In order to probe these features experimentally we have monitored the output field while varying the incoupled 
power of the tilted input beam (see Fig.3a). Above a certain threshold a soliton is formed, which is locked to the 
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Abstract: We experimentally investigated beam propagation in an array of silica waveguides, 
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S!!ITH wf f .¥f'It ^5^*«™l"^a^« f^'^ently attracted a significant amount of attention. This interest was 
bro^Si fhriJ !Zrt\ r^fWl'"'^^^^'^^^^ °' ^''"'''' ''>"'''"'' «=^" P^°P^8^*« ^ discrete systems without 
w,iSf ^1^ Jstribution. C^tical discrete solitons in arrays of nonUnear waveguides are examples of such 
Ixpiri^P]        *"" Chnstodouhdes and Joseph [1], they have been recently demonstrated 

Discrete optical soUtons are, in many ^pects, similar to continuous solitons. Nevertheless, they present a number 
fiZ   ff."^t"g»'nf dynamical properties. For example, arrays of waveguides support both stable and unstable 
soton solutions   In these spten^, the difference in energy between these two types of sohtons called Peierls! 
Nabarro potential, accounts for the tendency of discrete solitons to lock to the waveguide dfa-ection at high powers 
If4°«^Srf. '■'',™°™'°*™" ^"^ '^^ '^^"^y' when excited in specffic wap. The sign and magnitude of 
l^^Sc f TF f ""^y' '"" *" engineered, with important consequences on the Imear and nonlmear 
properties of such discrete systems. «     woi 

All experiments in discrete solitons to date have been performed with AlGaAs waveguides. Here we discuss 
^^periments with arrays of sihca waveguides, which have anomalous dispersion at wavelengths above 1 3 um In 
these arrays we expect novel spatio-temporal effects, similar to the formation of light bullets in contmuous systems 

Let us consider first the case of a planar waveguide with a material exhibiting positive nonlinearitv and 
anomalous dispersion. At low energy, dispersion and diffraction tend to spread Ught in space and time However 
when the mtensity^is increased, the Kerr nonlinearity tends to compensate for both effects, leadmg to spatio- 
SX JrT?'°" f t' P'^-Sjnce the slab mode is confmed along the vertical direction, but it is fL to 
M^^fSefif^^^^' n ^"^T' ^T" ^^ *° ^'^P^'""^ ^*^P«^ ^'•'"S *he propagation dii^ction, this case 
m reterred to as 1+2 . Basic analysis of the propagation of a multidimensional pulse, involving the slowly varyine 
envelope approxmiation, predicts mstability of the pulse in this configuration. In other words, it is expected that^hf 
pulse contracts to a smgle point when the energy of the pulse is higher than a certain critical value. In a recent 
expenment [3 , we showed that multiphoton absorption and intraband Raman scattering counterbalance dispersion 

^^.^^^^^^^'^^ *^^* '--^' ^ '^ P-P^^-*^^ *^ ^^^- ^^^^ ^-^^ from 

conH^frffZ f^ """^ 1* one-dimensional array of waveguides, where the spreading of a spatial beam due to 
contmuous diffraction is replaced by discrete couplmg between neighbor waveguides. Aceves et al. [4] showed that 
evnW^ !?l f'''*' ^"^'f *°" *' '" ^^ii^^rmute energy among the waveguides in the array along with the 
evoution of the pulse m a smgle waveguide. The discrete nature of the structure effectively acts as a saturable 
ST^^ ^'v^ preverts the singular growth, in clear contrast with the case of a continuous waveguide. In the 
i^llT f P°^''' f *^> f * concentrates in a single guide, forming a 1+1 temporal soliton. Thf process of 
reducing the dmiensiona ity of the process at high powers should make spatio-temporal focusing I discrete 
geometry more controllable than in the continuous system. ui-ubmg m aiscrete 
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In this paper we present experimental evidence of such pulse compression in a nonlinear array of optical 
waveguides. The sample we used in our experiment consisted of 101 weakly coupled buried waveguides, fabricated 
in flame hydrolysis deposited silica. The core of the waveguides was made of germanium-boron doped silica. 

We used a Spectra Physics OPA 800 laser system; generating transform limited pulses with duration of 60 fs, at a 
wavelength of 1500 nm, resulting in peak powers of up to 20 MW inside the sample. The input spatial profile was 
varied in order to excite just one or several waveguides, and hence study different initial conditions. Results are 
presented here for both a narrow and a broad excitation. Let us consider the evolution of the spatial distribution first 
(Fig. 1). The respective low power profiles, recorded at the output facet of the sample, are shown in Fig. 1 a) and Fig. 
Ic). In particular, we note that for a single waveguide excitation, the field is spread to some 60 waveguides at low 
energy, but collapse almost entirely to a single waveguide at higher powers. When we inject a broader beam, the 
diffraction is much smaller at low intensity (Fig. Ic)), but again, the field exhibit the same single waveguide 
compression for higher energies (Fig. Id)). We recorded the autocorrelation of the temporal profile in both 
configurations. In contrast to the case of a slab waveguide [3], were the temporal profile was compressed by almost 
a factor of two, we observed only a small degree of temporal compression in the case of broad excitation (Fig. 2)), 
suggesting that the discrete structure of our sample counterbalances the tendency to spatio-temporal collapse. In 
particular, these discrete localizations appear more stable in time and space when compared to their continuous 
counterpart. 

In conclusion, we have experimentally investigated the spatio-temporal propagation of light pulses in arrays of 
nonlinear waveguides. The arrays, fabricated in glass, exhibit anomalous dispersion together with a positive Kerr 
nonhnearity. The spatial, temporal and spectral profiles were measured for different input conditions. In all cases, a 
significant spatial compression of the pulse was observed. 
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Fig. 1  Output profiles of the field intensity: a) narrow 
beam excitation, low power; b) narrow beam 
excitation, high power; c) broad beam excitation, low 
power; b) broad beam excitation, high power 

Fig. 2 Autocorrelation width of the output pulse in 
fiinction of the average output power, for a narrow 
input excitation (empty circles) and for a broad one 
(solid squares) 

References. 

[ 1] D. N. Christodoulides and R. I. Joseph, "Discrete Self-Focusing in Nonlinear Arrays of Coupled Wave-Guides", Optics Letters, D13, 794-796 
(1988). 
[2] H. S. Eisenberg, Y. SilbeAerg, R. Morandotti, A. R. Boyd and J. S. Aitchison, "Discrete Spatial Optical Solitons in Waveguide Arrays", PRL, 
81, 3383-3386 (1998). 
[3] H. S. Eisenberg, R. Morandotti, Y. Silbetberg, S. Bar-Ad, D. Ross and J. S. Aitchison, "Kerr Spatiotemporal Self-Focusmg m a Planar Glass 
Waveguide", PRL, 87, art. no. 043902 (2001). 
[4] A. B. Aceves, G. G. Luther, C. De Angelis, A. M. Rubenchik and S. K. Turitsyn , "Energy Localization in Nonlinear Fiber Arrays - 
Collapse-Effect Compressor", PRL, 75, 73-76 (1995). 



NLTUA7-1 

Optically-controlled photorefractive soliton arrays 
Jiirgen Petter 

Institute of Applied Physics, Darmstadt University of Technology, ' 
Hochsch-ulstr. 6, D-64S89 Darmstadt, Germany 
Tel. +49 6151 1631SZ Fax: +49 6151 1641Z3 

j-uergen.petterOphysik.tu-darmstadt.de 
Denis Ti-ager, Cornelia Denz 

Institut fur Angewandte Physik, WestfSlische WUhelms-Universitm Minster, 
Corrensstr. S/4, D-48I49 Miinster, Germany 
Tel. +49 mi 8333517 Fax:+49 2S1 8333513 

dtraeger@uni-muenster.de denzOuni-mvenster.de . 

Abstract: We present the creation of an optically-controlled array of photorefractive spatial 
screening solitons in a SBN crystal. Investigating the waveguide properties of each channel 
by a beam of different wavelength we find them to guide the probe beam independently A 
supplementary beam is used to influence the paths of the array-solitons and to effectively combine 
two channels using mutual attraction of solitons. 
©2002 Optical Society of America 
PCIS codes: "(190.5330) Photorefractive nonlinear optics; (230.T370) Waveguide 

1 Introduction 

During the last decade it was shown that spatial optical solitons in photorefractive media can easily be 
exploited for waveguide properties and that they may have a peat potential in providing a solution to 
tiie problem of all-optical routing and switching. Their properties of mutual interaction and their possible 
influence on their own paths make all-optical switching feasible. The creation of photorefractive solitons and 
their characteristics has been and still is studied thoroughly (see e.g. [1, 2, 3]). Then waveguide properties 
were shown 14] as well as their capabiHty to route or split paths of optical beams [5, 6]. While only few 
works studied the parallel propagation of several spatial solitons [7, 8], to our knowledge, none of these were 
performed for the special case of a photorefractive nonlinearity so far. 

In this paper we present the creation of an array of coherent solitons propagating in parallel through a 
photorefractive SBN-crystal [9]. A crucial point in such a parallel propagation is the anisotropic structure 
of the refractive index and therefore the asymmetric mutual interaction of the sohtons. Because of the 
nonlocahty of the electrostatic potential, the refractive index modulation induced by each single soliton 
reaches beyond its effective waveguide [10]. Therefore, depending on their mutual distance in the incoherent 
case, sohtons may repel, attract or even fuse, as shown in [11]. In the case of mutual coherent solitons their 
interaction becomes even more complex as their mutual phase may cause exchange of energy between them 
and annihilation or the creation of solitons my appear [12]. Beside the parallel propagation of several sohtons 
we exploit the mutual attractive force between coherent soUtons for the control of the channels in an array 
By the use of a separate beam located between two channels of the array we let two solitons fuse to a single 
output at the back face of the crystal. This demonstrates the potential of an all-optical control of single 
channels m a large photorefractive soliton array. Rirthermore we tested the waveguide properties of such an 
array using a separate beam of a wavelength that is not influencing the refractive index of the material Here 
we find that each channel guides the red probe beam with a high efficiency. 

2 Realization of a soliton array 

To create an array of solitons in the photorefractive crystal we used a setup similar to the one used in  f 101 
In our case the beam of an frequency-doubled Nd:YAG-laser emitting at A = 532 nm is not focused to the 
front face of a photoreferactive Sro.6oBao.4oNb206 (SBN60:Ce) crystal. Instead, the image of a spot array 
which IS imprinted onto the beam by a spatial light modulator, is imaged to the front face of the crystal' 
The crystal has dimensions of 5 mm x 5 mm x 20 mm, while the propagation always is along the 20 mm side. 

In a first step we examined the creation of the soliton array. A regular pattern of 25 spots with a diameter 
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Fig. 1. 5 X 5 waveguide array induced by photorefractive solitons. a) FVont face of tiie crystal where the 
spot-array is imaged, b) Interference patter due to linear propagation of the 25 beams, c) Array of 25 focused 
solitons. 

of 15 fj,m. and an intensity of f» 20 mW/cni^ each was imaged onto the front face of the crystal (la). In the 
linear case - without an applied electric field - the 25 beams diffract on their way through the crystal and 
interfere at the back face of the crystal, as depicted in lb. Applying the electric field of EQ = 2kV/cn%, 
the 25 solitons, each with a diameter of about 12 nm (FWHM), form from the interference pattern within 
several seconds. Due to self-focusing in this nonlinear material every beam caused by one spot of the imaged 
array forms it's own waveguide. This situation can be seen in fig. Ic. To obtain a propagation without initial 
mutual interaction we took care of the initial distance between the single channels to be just large enough 
to let the solitons not interact. 

To test for the waveguide properties of the channels of such a soliton array we used a seperate beam of a 
HeNe-laser to probe the single channels of a 3 x 3 soliton array. Since the photorefractive material is less 
sensitive to light in the red wavelength region, the induced refractive index modulation could be scanned 
with an even more intense probe beam without actually being influenced or erased. Positioning the red probe 
beam successively to the positions of the previously induced solitons on the crystals front face, we found the 
probe beam to be guided in each of the channels solely. 

3    Control of separate channels 

In a next step, we performed a controlled interaction between two channels of the array. To exploit the mutual 
attractive interaction between spatial solitons a third coherent beam causing another soliton is positioned 
between two adjoining channels. This third beam increases the refractive index between the two existing 
channels and causes all three solitons to fuse during their propagation through the crystal. To perform this 
control a separate beam of the Nd:YAG-laser was focused onto the front face of the crystal. This beam in 
function of a steering beam had an intensity of « 160 mW/cm^ and was positioned between two spots of the 
array imaged on the crystals front face (see inset of figure 2b). Figure 2a shows the back face of the crystal 
with the focused, but uncontrolled array. When the control beam was positioned between the central lower 
two solitons and the electric field was applied, the new soliton array formed. Due to the additional beam 
between the two lower central channels, the refractive index in between these channels is increased causing 
the solitons to attract and eventually fuse. Figure 2b shows the red probe beam guided in each channel of 
the controlled array separately. To obtain a picture of the complete array, every single channel was scanned 

Fig. 2. Optical control of a soliton array, a) The uncontrolled soliton array, b) The controlled array probed 
by a read beam, c) and d) The probe beam coupled into the central and the lower middle channel of the 
controlled array, respectively. The probe beam leaves the crystal at the same position. 
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separately. Afterwards, the nine inaividual pictures were added electronically. In this figure the fusion of the 
two lom^r rmddle channels is obvious. Therefore, the case of coupling the probe beam into the central or the 
lower middle channel on the front face of the crystal leads to piiding it into the same output. This also can be 
seen m figures 2c and d. Here the probe beam was coupled into either of the two channels alternatively but 
leaves the crystal at the same spot on its back face (the crosses mark the position of the exit of the channels 
m the uncontrolled array). This shows to our knowledge for the fir-st time the control of single channels of 
an waveguide array just by a beam of light. 

As shown in [7] for a Kerr-type material, also in our case the formation of larger soliton-patterns is not 
limited to symmetric figures or arrays. As an example, we imaged the pattern of the letters A and P as a 
spot array onto the front face of the crystal (figure 3a). Once the external electric field was applied the 
sohtons formed out of the interference pattern and clearly reproduced the image of the two letters (figure 

Fte 3Jmage processing with photorefractive solitons. a) Spot pattern at the front face of the crystal b) 

soSof btams '''*™ ** ^^^ ^^^ ^^^ °"''^ ^'•^^**'-''' ^^construction of the image with focused 

4    Conclusion 

We pr^ented to our knowledge the first control of an array of photorefractive sohtons by a separate beam of 
light. We were able to show that a stable propagation of several parallel solitons and therefore the formation 
of a waveguide array is pc^sible. Additionally we show that the all-optical control of single channels of 
such an array is possible by inducing a determined fusion of two channels, creating a Y-coupler within the 
waveguide array. Up to now all experiments were reaMzed with mutually coherent beams. In the case of 
mutually incoherent beams a more stable propagation of the beaoK can be expected. 
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Wave propagation in nonlinear periodic systems has recently been the focus of considerable attention. In 
these systems, the underlying dynamics are dominated by the interplay between the linear coupling between 
lattice points and the on-site nonlinearity. Indeed, a balance between these effects results in a self-localized 
state, better known as a discrete soliton [14]. Such examples occur in abundance, in all branches of science, 
such as biological [1] and solid-state physics [2], Bose-Einstein condensates [3], and nonlinear optics [4]. hi 
general, the dynamical behavior of these discrete systems differs substantially from that of their continuous 
counterparts. For example, in the optical case, a periodic array of waveguides is associated with a Brillouin 
zone that significantly alters its collective diffraction properties. This, in turn, leads to a host of interesting 
properties, e.g. anomalous ("negative") diffraction and diffraction management [5], and to in-phase and out- 
of-phase (staggered) [6] soliton solutions. Thus far, ID discrete linear diffraction and in-phase discrete 
solitons have been observed in semiconductor waveguide arrays [8]. Here, we report the first experimental 
observation of discrete solitons in an array of optically-induced waveguides. The waveguide arrays are 
induced in photorefractive crystals by interfering pairs of plane waves, and the solitons form when the 
screening nonlinearity is employed. We demonstrate both in-phase and staggered bright solitons in 1-D arrays 
and discuss recent experiments in 2D waveguide lattices. More specifically, the experiments with out-of- 
phase solitons constitute the first experimental observation of bright staggered solitons. 

In optical waveguide arrays [4-8], when light propagation is linear, a beam focused in one waveguide will 
spread to its neighbors (via discrete diffraction, or tunneling), with the intensity mainly concentrated in the outer 
lobes. When the nonlinearity is sufficiently high (e.g., at high intensities if the nonlinearity is Kerr-type), the 
nonlinearity suppresses the coupling between adjacent waveguides. The combined effects of discrete diffraction 
and nonlinearity lead to discrete solitons, as predicted more than a decade ago [4], and observed in 1998 [8] in a 
fabricated 1-D array of AlGaAs waveguides. In a recent theoretical work [9], we have shown that optical discrete 
solitons are possible in biased photorefiBCtive crystals. In this scenario, the photorefractive nonlinearity is utilized 
to optically-induce in real time waveguide arrays (either in ID or 2D) by interfering pairs of plane waves. Note 
that similar techniques have been suggested in Bose-Einstein condensates [10], but, as of yet, the nonlinearity of 
the Gross-Pitaevskii system (in BEC) has not manifested itself in discrete soliton formation. In constructing the 
optically-induced waveguide arrays in photorefractives, it is essential that the waveguides are as uniform as 
possible. Therefore, the coupling between the interfering plane waves (forming the waveguide arrays) must be 
eliminated, so that the interference pattern does not vary in the propagation direction. The "signal" soliton- 
forming beam, on the other hand, must experience the highest possible nonlinearity. To achieve these two, 
seemingly conflicting, objectives, we choose a photorefractive crystal with a strong electro-optic anisotropy, 
polarize the interfering waves in a non-electro-optic direction, and at the same time polarize the signal beam in the 
crystalline orientation that yields the highest possible nonlinearity. In this arrangement, two (or more) interfering 
plane waves polarized perpendicular to the crystalline c-axis will propagate mostly lineariy, while a signal beam 
polarized along the c-axis will experience both a periodic potential and a significant (screening) nonlinearity 

In our experiments, we use a 6mm long SBN-75 crystal, where r33 ~ 1340 pm/V and rn ~ 67 pmA^. The ID 
array is created by interfering ordinarily polarized light through a Mach-Zehnder interferometer. The signal beam 
is an extraordinary polarized beam that is coupled into a single waveguide. Voltage applied against the c-axis sets 
the photorefractive screening nonlinearity: it increases (with a nonlinear intensity dependence) the index contrast 
and creates a waveguide array, and also leads to localization of the signal beam. At the same time, the nonzero 
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Figure 2 shows similar results when the signal beam is incident at »n m„T. „r n <;70   vi. 
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200V 

600V 

lOOOV 

-200V 

-600V 

-lOOOV 

Figure 1. On-axis behavior as a fUnction of increasing 
focusing nonlinearity (positive voltage) through an 8.8 
|im grating. Crystal output and intensity profile for 
200V (A,B), 600V (C,D), and lOOOV (E,F). 

Figure 2. Angled probe (0.57°) behavior with 
increasing defocusing nonlinearity (negative 
voltase) through a 9.3 nm grating. Crystal output 
and intensity profile for-200V (A,B), -600V (C,D), 
and-1000V(E,F). 

+800V ■lOOOV 

Figure 3. On-axis and staggered solitons through a 7.8 
[im waveguide array. Crystal output and intensity profile 
for on-axis soliton at +800V (A,B) and staggered soliton at 
-lOOOV (E,F). Interferograms for the respective cases, 
showing in-phase behavior for the on-axis input (C,D) and 
out-of-phase behavior at the edge of the first Brillouin 
zone (G,H). 

Figure 4. Waveguiding in optically-induced two- 
dimensional array. (A) Induced array with major and 
minor separation distances of 40 nm and 13.5 ^.m, 
respectively. (B) Close-up of central waveguide 
region. (C) Waveguiding of plane wave input into 
central region. 
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Interaction of dissipative localized structures in nonlinear optics 
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Localized structures of light in optical cavities - cavity solitons - have attracted significant attention in recent 
years. This is largely due to some striking experimental observations [1-4] and the variety of complex and interesting 
nonlinear phenomena involved in their stability [5,6], interaction [7-10] and control [2,3,5,11]. The last aspect also 
gives some hope for potential application of these structures for optical processing of information. 

Problems related to cavity solitons can be naturally divided into two subcategories. One is related to the solitons in 
coherently pumped cavities, where phase of the intracavity field is locked to the phase of the external pump and the 
other is the solitons in the lasers with saturable absorbtion. Both systems exhibit phenomenon of optical bistability, 
which can be considered as one of the essential prerequisites for existence of the cavity solitons. 

Cavity solitons are typically excited by a localized address pulse of light [2,3,5] and therefore independent solitons 
can be created at arbitrary non-overlapping address locations. If, however, they are excited sufficiently close one to 
another, then they exert mutual forces due to overlap of their tails. Through these forces, cavity solitons can group 
themselves into geometrical configurations, which we will refer below as clusters. 

In this work we will report series of recent results on existence and stability of two dimensional clusters of cavity 
solitons. Focusing our analysis on the most interesting cases the 2D clusters which do not have analogs in the ID 
geometry, e.g. triangles and squares. This type of structure has been previously observed in optical cavities both 
experimentally [3] and numerically [13-15]. 

We develop a technique for calculation of the expression for the interaction potential, which has applicability 
going beyond the models under consideration. Considering clusters in the coherently pumped cavities, where the 
phase degree of freedom is eUminated, we, among other problems, discuss the qualitative differences between stability 
properties of triangular and square clusters, which emphasize the role of diagonal interactions in the latter. In the 
lasers, where, cavity solitons have the phase degree of freedom we have found variety of dynamical clusters, which 
can, e.g., move or rotate with strictly fixed velocities, and transform one to another and the influence of different 
instabilities. We also propose a theory, which can qualitatively explain recent experimental observations of the circular 
arrangement of dissipative solitons in the presence of the gaussian pump field [12]. 
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We present the first observation of cavity modulation instability and pattern formation with 

incoherent light. In addition, we also study, theoretically and experimentally, the evolution of patterns in 

a nonlinear cavity without resonant frequencies; a passive cavity for which beams from different cycles 

are mutually-incoherent with one another. ; 
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Pattern formation in optical cavities has been studied since lasers were discovered [1]. Patterns 
start when particular frequencies are selected from noise, because they experience higher gain, and, 
through the cavity feedback, stabilize to form a pattern. Examples include the formation of stripes, 
hexagons, spirals, vortices, shock waves, complex ring, and lattice-like features [for a review see Ref [2]]. 
These phenomena were observed in a variety of materials: laser gain media, photorefractive crystals, 
thermal nonlinearities, quadratic nonlinearities, and more [3]. What signifies cavity effects from one-way 
propagation, is the existence of a threshold for pattern formation and the existence of resonant 
frequencies. In cavities, pattern formation exhibits different features below and above the threshold. The 
patterns are also highly affected by the detuning between the frequency of the light beam and the nearest 
resonant frequency of the cavity. However, for all of the resonators studied previously, pattern formation 
is a fully coherent process, that is, the coherence length of the light is much larger than the cavity length. 

Here we present the first experimental observation of cavity modulation instability and 
pattern formation with incoherent light. In addition, we also study, theoretically and experimentally, 
the evolution of patterns in a nonlinear cavity without resonant frequencies. This is passive cavity for 
which beams from different cycles are mutually-incoherent with one another. 

Starting with the most interesting result, we construct a partially spatially-incoherent cavity by 
passing a laser beam through a rotating diffuser, and then circulating it in a ring cavity. The characteristic 
speckle size of the diffuser sets the spatial correlation distance of the beam. The nonlinearity in our cavity 
is an SBN:60 photorefractive crystal displaying the screening nonlinearity, in which, in contradistinction 
with previous studies in photorefractive cavities (see some of the references in [3]), there is no energy 
exchange between beams from different cycles in the cavity. In this cavity, beams from different cycles 
interact with one another through a nonlinear index change, An, that is a function of the sum of the 
intensities of the circulating beams, but does not depend on interference terms between beams of different 
cycles. Our cavity is passive, i.e., the coherence properties of the light cannot be altered by amplification 
(keeping in mind the Law of Brightness), although the local correlation properties highly depend on the 
evolving pattern. As found previously [4], at zero feedback the beam undergoes a breakup due to 
modulation instability. However, the modulation instability (MI) occurs only if the nonlinearity is above a 
certain sharp threshold. Physically, this threshold occurs when the nonlinear attractive tendencies become 
just large enough to counteract the diffusive tendencies of the spatially incoherent beam. Note that such a 
threshold at zero feedback does not exist in the usual coherent-beam MI; for a coherent beam, modulation 
instability (albeit small) is present even for arbitrarily small nonlinearities [5]. This MI threshold is of a 
very different nature than any cavity threshold, including in an incoherent cavity. Consequently, once we 
turn on the feedback, we expect to have two very different thresholds occurring in our system 
simultaneously: the first threshold comes about from the MI threshold, above which the self-focusing 
tendencies overcome the diffusive tendencies of the incoherent light and a pattern forms. The second 
threshold results from the cavity threshold, which is set by the cavity losses. Because the origin of these 
two thresholds is of so different nature, their interplay offers an interesting new physical regime to 
explore. 
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Figure 1: Intensity at the output face of the nonlinear crystal. The panel on the left shows 
the output when nonlinearity is off The middle panel shows the output when nonlinearity 
IS on, and above the modulation instability threshold, but the feedback is zero. The panel 
on the right shows the output when both the nonlinearity, and the feedback are on, and we 
operate in the regime above both the modulation instability threshold, and cavity threshold. 

Typical results of our preliminary experiments are shown in Fig. 1. The left panel of that figure 
shows that there are no patterns observable at the output when the non-linearity is turned off The middle 
panel shows the observation of the output when non-linearity is on, and above the modulation instability 
threshold, but there is no feedback; as we explained above, the output beam does show features but their 
visibility IS very small (because the nonlinearity is considerably weaker than that in the experiments 
presented m [4]). The right panel shows the result once we also turn on a significant amount of feedback. 
The features of the middle panel become much more pronounced. More significantly, these features 
become much more uniform in their distribution of sizes; this is a clear sign of the line-narrowing (of the 
spatial spectrum) which one expects to occur close to, and above, the cavity threshold. We are currently 
wOTking on the theory describing spatially-incoherent cavities, and it is already obvious that it will greatly 
differ from all known theories of pattern formation in coherent feedback systems, including those in 
smgle-mirror feedback, because for spatially-incoherent light the spatial correlation statistics plays a kev 
role. ^  ^ J 

,.„. -^^'^ we study a cavity which circulates a spatially-coherent light beam but in which beams from 
different cycles are mutually-incoherent with one another. We find, theoretically and experimentally that 
the patterns emerging in our incoherent cavity exhibit line-narrowing in the spatial frequency domain as 
feedback is increased. Theoretically, we analyze the interaction between an input wave T, with a wave 
<I> that went around the cavity loop once (Fig 2a). The governing equations in nonlinear Ker^ medium are 

oz     2d X dzZdx 
(1) 

where / (the total intensity) is | ¥ f+| * f. Assuming a weak feedback, and after some algebra, we find the 
field distribution m the spatial frequency domain (q) at the output of the nonUnear medium, to be 

¥Mz=L)«wMz=Q)m^g\L)l{l-€%KML))   ■ (2) 

Where ^E^ is the intensity fraction that is recycled in the cavity, and g, the growth rate, is equal 
I g| ^g /4-1 ¥(^ = 0) f . For f = 0, this relation converges to the known result of modulation instability 

in a system without feedback [5]. Notice that increasing the feedback s leads to line-narrowing of the 
penodic pattem m the spatial frequency domain. As the feedback is increased and reaches a specific 
(threshold) value, there is a particular transverse wavelength q for which Eq. 2 diverges. As the feedback 
approaches the threshold value, the linewidth becomes very narrow as the particular q dominates. These 
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y/^ \   as a function of the 

feedback. 

Experimentally, we use a 488nm laser beam with a coherence length much smaller than the ring 
cavity length. The beam is launched into the 5.5 mm long crystal, and covers its entire input face 
uniformly. Taking the beam exiting the crystal, we recycle a measured fraction of its intensity in feedback 
loop of the ring cavity. We use lenses in the cavity pass to image the output face of the crystal on the 
input face (1:1 imaging). The lens diameter is large enough to pass all the spatial frequencies in the 
system. We monitor the patterns at the output face of the crystal (using a camera) while increasing the 
feedback (starting from zero feedback) and keeping all other parameters fixed (especially those which 
influence the nonlinearity). The results are shown in Fig.3. The linewidth narrowing is very obvious in 
these pictures, as feedback increases. 

We compare the theoretical prediction and the experiments by plotting the measured spatial 
linewidth as a function of feedback intensity, as shown in Fig. 2b. Comparing the prediction to the 
experimental results proves that theory truly describes the behavior of the experimental system all the way 
from zero feedback to the threshold limit. Very close to the threshold and above it, the assumptions made 
in the theory are no longer valid. Experimentally, however, we obtain the functional line-narrowing 
behavior above the threshold value as well, all the way to the narrowest linewidth possible in our system. 

Our present work on patterns in a nonlinear cavity which has no resonant frequencies, can bridge 
the gap between pattern formation in cavities and in single-mirror systems. The characteristic behavior 
resembles the linewidth narrowing in laser systems. In general, this behavior characterizes systems 
undergoing a phase transition. We expect that other phase transition phenomena should exist in our cavity 
with no resonant frequencies, and that they will have intriguing implications in a way that is very different 
than in coherent cavities. For example, critical slowing down near the threshold should offer new and 
exciting features that are different than those observed before with coherent cavities. Furthermore, in the 
case of incoherent beams, the beams from different cycles are incoherent with one another both in space 
and in time. Yet, from such a perfectly disordered system, clear order emerges in nonlinear non- 
instantaneous cavities. The interplay of the two physically very different thresholds that are both present 
in the system at the same time presents a new exciting regime to explore. We are not aware of any other 
systems in nature that have this characteristic. 
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Figure Captions 

Figure 2: (a) The incoherent ring resonator (schematic), (b) Bandwidth of the spatial frequency power 
spectrum (FWHM) as a function of feedback intensity, for spatially coherent light. The experimental 
results below and above threshold are shown by the crosses. The theoretical results below threshold (solid 
curve) are based on Eq. 2 and the actual experimental parameters. The dashed curve above threshold is a 
guide to the eye. 

Figure 3: Experimental results, bandwidth narrowing while increasing feedback intensity, for spatially 
coherent beams. Shown are photographs of the intensity distribution in a specific region at the crystal 
output (left), along with the calculated spatial power spectrum (right), at various feedback values. All 
measurements are taken without moving the ciystal and without changing the nonlinearity. Bandwidth 
narrowing is obvious: the stripes become more sharp and regular with increasing feedback, and the spatial 
power spectrum goes from multiple peaks (at no feedback) to two isolated narrow peaks at'high feedback 
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Abstract: Spontaneously moving bright and dark spatial solitons and patterns are 
shown to exist in a nonlinear resonator. The motion is caused by thermal effects and 
arises through an instability of the stationary soliton. 
©2002 Optical Society of America 
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Stationary spatial solitons are a common feature of nonHnear optical cavity systems [1, 2, 3], As 
localised, addressable spots of light these "cavity" solitons suggest themselves as natural elements 
m aU-optical mformation processing and storage. It is known [4, 5] that parameter gradients, 
whether externally imposed or due to device inhomogeneities, induce sohton motion characterised 
by a purely position-dependent velocity This is important for the manipulation and control of the 
solitons. 

Here we demonstrate the existence of cavity solitons (both bright and dark) which undergo spon- 
taneous motion. These are investigated in an alternative model to that presented in [6, 7] which 
gives a resonable approximation of spatio-temporal dynamics within a semiconductor microcavity 
Our model of this nonUnear cavity describes the evolution of the optical field, the temperature 
of the nonlinear medium and the carriers which give rise to the nonlinearity Localised, field- 
mduced temperature changes create natural parameter gradients along which the soliton moves. In 
turn, translation of the soUton changes the temperature profile, in a self-consistent process which 
produces uniform translation (Figure 1). Moving soUtons appear through an instability of the sta- 
tionary solitons, when the thermal coupHng exceeds a threshold value. Using both numerical and 
semi-analytical approaches we derive an equation of motion and determine that the moving solitons 
emerge firom the stationary soliton through a supercritical bifurcation. We find that this leads to a 
position dependent acceleration of the structure and we note that this bifurcation has similarities 
to the Ismg-Bloch transition of References [8, 9]. The same temperature-induced gradients can give 
rise to spontaneously trai^lating patterns m well as isolated moving solitons. 

H 3 

Pig. 1. Left; Electric field (solid) and thermal profile (dashed) of a moving, dark soliton. Right: 
Space-time plot of such a moving dark soliton. 

We demonstrate interactions of moving soUtons, an example of which is shown in Figure 2. Two 
moving solitons approach each other, form a metastable bound state, undergo some complicated 
dynamics and are subsequently ejected. We also show the effects on the motion of soMtons of device 
mhomogeneities, where soUtons move in modulated landscapes. Finally we highlight novel applic- 
ations arising from these effects such as a soliton factory where moving soUtons are spontaneously 
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generated within an engineered defect, and move out onto the homogeneous background. A novel 
form of pattern disassembly can also be achieved when a spontaneously moving roll or hexagon 
pattern travels over a "bump" which splits the pattern into its constituent building blocks. 
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Fig. 2. Dynamical evolution of two colliding dark cavity solitons in 2D, with arrows indicating 
directions of motion. 

We refine the model further by adiabatically eliminating the dynamics of the carrier field. This 
"two-field" model is shown to yield the same phenomena as the more detailed model. 
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The investi^tions in the field of spatial pattern formation in nonlinear optical sptems' offer an approach 
to parallel optical information processing, by encoding information m the transverse structure of the field. 

The idea is of considering the transverse planes as a blackboard on which light spots can be written and 
er^ed in any desired location and in a controlled way. Optical patterns may display an array of light spots, 
but are unsuitable for this task because the intensity peaks are iBually strongly correlated with one another' 
so that they cannot be manipulated as independent objects. This task becomes possible, instead, using 
cavity sohtons (CSs)'', a peculiar type of spatial solitons which arise in a dissipative envu-onment. 

CS are generated in optical resonator contaming nonlmear materials and driven by a broad area, coherent 
and stationary holdmg beam. The device is operated under parametric conditions such that the output is 
basically uniform over an extended region. However, by injecting a located laser pulse one can write a CS 
where the pulse passes and the CS persists after the pulse, thante to the feedback exerted by the cavity. The 
CSs written in this way can be emed by injecting again pulses in the locations where they lie; in most 
c^es, these pulses must be coherent and out of phase with respect to the holding beaml 

Experimental observation of CSs in semiconductor microresonators is an important issue not only for 
fandamental physics but also for developmg application-oriented devices. Soliton-like structures have been 
reported , but a demomtration of objects that can be manipulated independently of each other has not been 
achieved yet. In thfe presentation we provide such a demonstration usmg broad area, vertical cavity driven 
semiconductor lasers slightly below threshold*. 
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Our experimental set-up is schematically shown in Fig.l. It consists in a large area Vertical Cavity Surface 
Emitting Laser (VCSEL, 150 |am diameter), operated as an amplifier, injected by a coherent field 
(wavelength 970 nm), generated by a high power edge emitting laser with an external cavity grating. Its 
wavelength can be continuously tuned in the range 960-980 nm. The intensity of the external field can be 
varied by using an acousto-optic modulator or a polariser. The VCSEL is a bottom emitter, fabricated in 
Ulm, as described in ref. 6. One of the electrodes is deposited on the top covering the whole transverse size 
of the laser. A full area «-type contact with a circular emission window is deposited at the backside of the 
GaAs substrate. The large distance between this ring and the active medium insures a better uniformity of 
the current than in the case of top emitter lasers. 

The demonstration of CS existence consists in generating at least two such structures at various locations in 
the transverse plane by injecting a control beam in different points and, subsequently, in erasing them 
independently of one another. 

Because of the gradient of the cavity length along the transverse section, on the left-hand side of the sample 
there is a patterned region (created by a modulational spatial instability), whereas on the right there is a 
homogeneous region (fig2a). As suggested by theory, we inject the control beam to the right of the line 
which separates the two regions and write the two spots (figs. 2b-g) which are subsequently erased by 
applying again the control beam with a changed phase (figs. 2h-k). The power of the holding beam is 8 
mW, that of the writing/erasing beam is 50 |xW. CSs persist throughout the observation time (> 1 min.). 
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Figure 2 Intensity distribution of the output field over a 
60 (ini X 60 nm region of the sample. The holding beam 
is always on, and all parameters are kept constant a) the 
writing beam (WB) is blocked; b) the 15 nm focused 
WB is switched on into the homogeneous region; it 
induces the appearance of a single high intensity spot 
(dark in the figure) in a limited region of space; c) the 
WB is blocked again, a 10 |im spot remains and it is 
stable; d) the WB is displaced in position and switched- 
on again. It generates a second spot; e, f) the WB is 
blocked again and the two bright spots coexist; g) the 
WB is positioned again on the first spot; h) the relative 
phase of the WB with respect to the holding is changed 
by 7t, and the upper spot disappears; i) the WB is blocked 
again, the lower spot continues to exist while the upper 
spot disappeared; j) the WB is switched on again at the 
position of the lower spot; k) the phase of the WB with 
respect to the holding beam is again brought to n and the 
second spot disappeared; 1) the WB is blocked, and the 
intensity distribution is identical to a). 

J I 

We performed numerical simulations based on a model especially developed to describe the 
microresonators under investigations, which not only showed an excellent qualitative agreement with the 
experhnental findings (see Fig.3) but, especially, they were functional in providing interpretation and 
guidelines to the experimental search. The main element of guide was the indication of the region where 
the writing beam has to be injected to form CSs, that is the part of the homogeneous domain close to the 
patterned region. The most important interpretation was the trapping role played by the thickness 
fluctuations in the sample. 

This work represents a clear advance in several scientific aspects. We developed a novel type of VCSEL 
with a broad area, small frequency gradient and good current homogeneity. We developed a model 
containing the most relevant ingredients capable to describe the spatio-temporal behaviour of the VCSEL 
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resonator. Using CSs we realised the first monolithic 2-bits all-optical information processor These results 
open a new frontier on the possibility of developing a practical device. 

37.5 75 112.5 150 x(}xm) 

-2.25 -2.00 -1.75       -1.50       -1.25       6 

Figure 3 Numerical traiKverse field intemity profile at regime showing two CSs in the homogeneous region 

The future development of these results requires to fiirther increase the number of CSs which can be 
simultaneously present, and to attain the possibility of inducing the motion of CSs in a controlled way To 
achieve these goals, it will be necessary to introduce appropriate spatial modulations in the holding beam 
and to fiirther unprove the homogeneity of the sample in the transverse plane. 
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Abstract: We show that the coupling between oscillating eigenstates and the translational mode 
causes solitary waves to move steadily, oscillatory or with irregular jumps. Theoretical results are 
compared with mmierical simulations for different dissipative systems. 
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Solitary waves (SWs) appear as localized excitations in most nonlinear environments. If translational symmetry 
exists in a Hamiltonian system or if Galilian invariance is present each resting SW is embedded in a family of 
moving ones. But, in general resting SWs are not trivially connected with moving ones. However, at particular 
points in parameter space moving SW can bifurcate from resting solutions via a nonequilibrium Ising-Bloch (NIB) 
transition [1]. In that case a symmetric SW destabilizes due to an eigenvector, which just passes the translational 
mode [1] and stable asymmetric moving SWs emerge. In this paper we identify a new kind of NIB transition, where 
motion is induced by the nontrivial coupling of the oscillating linear eigenstates of the SW with its translational 
mode. We apply our theory on two different nonlinear systems, namely polarization fronts in intracavity vectorial 
second harmonic generation (VSHG) and double hump solitons in the parametric driven Ginzburg-Landau equation 
(PGLE). 

In the case of VSHG the normalized equations for the two orthogonally polarized fijndamental harmonic fields 
Fi,2 (FHl, FH2) and the second harmonic field B (SH) read in the mean field limit as; 

ildj.+dl + Ap + i)F^, + Fl^B = E, [idj-+ l/2dl + A^+ir)B + F^F^ =0,     (1) 

where 3^ describes diffraction and / is the dimensionless time. A^ ^ denote the detunings of the Fabry-Perot 

cavity from the resonance condition at FH and SH frequencies, yis the ratio of the photon life times at the two 
frequencies and E is the constant input field. Besides conventional CSs VSHG also allows for stationary fronts 
solutions, which are symmetric with respect to a spatial inversion together with a mutual exchange of the two FH 
components (see inset of Fig. la). The PGLE 

d^F = {ju + iv) F + {S + ia) d].F -{e + ifi) \Ff F+yF' (2) 

is a widely used model in nonlinear science. In optics it is used to describe the action of an optical parametric 
oscillator. It is well known that single hump SWs of the PGLE may form bound states or double hump SWs [4] (see 
inset of Fig.2a). In order to develop a general theory we describe the two above models by means of the equation 

where M is a real vector, which defines the solutions of the system, iv is a nonlinear vector function, which 

depends on iJ and on a parameter set p. It also contains the spatial operator d\,. In what follows we assume that 

Eq.(3) allows for a stationary SW solution MQ (w |;. ^ = 0). Additionally the system shell be invariant with respect to 

arbitrary translations (7'^[t7|j(x)] = «oU +a)) and a parity transformation (P with P^ =/). For the PGLE P is the 

inversion P[u^{x)] = Uo{-x) [1]. For VSHG P includes the inversion but also a permutation of the FH field 
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components [1]. Our starting point is a symmetric SW u,{x), which obeys PMX)] = UoM■ Here we focus on 
symmetry breaking due to an oscillatory instability. We presume that the SW bears linear bound eieenstates e with 
complex eigenvalues A, with 3„w\,^- ie) = Ae, where dj> |-,, (. ) is the Jacobian of eq. (3). Eigenvectors are 

either symmetric (#[?] = i) or antisymmetric (P[a]=-a). We consider the rather common situation that two 
eigenvectors with opposite symmetry are least damped and have almost the same eigenvalue 

If the homogenous background of VSHG is close to a Hopf bifurcation (Fig. la), a continuous band of unbound 
eigenvectors with complex valued eigenvalues exists. Due to the potential induced by the SW bound oscillatory 
eigenvectors split off from that continuous band in an alternating sequence of symmetric and antisymmetric states 
The least damped eigenvector is typically symmetric and the next one antisymmetric. The eigenvalues of such a pair 
or eigenstat^ of opposite symmetry are almost equal (Fig. la). 
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Fig 1. Spatial biftrcation of polariation fronts in VSHG, Ar= -1.5. AB= 1.5. -p 0.55. £= 6.8) (a) Linear spectrum of a 
stationary, symmetric polarization front, inset: intensity profile of the fundamental fields F, .Fj, (b) Contour plot of the 
mtoBity of the second harmonic B - fall numerics of Eq.(l), Ml white Hne: position dynamics of the SW determined by 
m-(V), (c) ^tnmetrically oscillating and resting front (initial dynamics), (d) asymmetrically oscillating and moving front 
(final dynamics). j e e 

^ Another example is a double hump solution of the POLE (Fig. 3a). If the isolated solitons are already close to a 
Hopf bifurcation, the double hump solution owns two oscillating modes. They correspond to symmetric s and 
antisymmetric a linear combinations of the eigenstates of the initial single hump SW. If the two humps are well 
separated the eigenvalues of the bound state are rather close to each other (Fig. 2a) 

To investigate the evolution of the SW we perform a multiscale analysis around a critical point where 
Rel4J-Rel4J=0. The solution up to firet order oscillates as expected. It reads as 
M = «o + 5 S exp(ifi)r)+ A a exp(i <»?)+ c.c., where m = lm{X, ] = hn[4 ] and S and ^ are the amplitudes of the 

symmetric J and antisymmetric a Hopf modes. In second order a surprising resuh is obtained. Due to the coupUng 
between the oscillations and the translational mode the SW starts to move with a velocity v as 

v = -S A .{«o|9,Mg'.?)) 
+ C.C. (4) 

Here {.|.) denotes the conventional scalar product, where e^mi a^m& the translational and the adjoint 

translational modes (3„w I^Q,^ (eo) = 0, a„#+|j^^^ (ao) = 0 ). 

In third order we get two coupled ordinary differential equations for the amplitudes of the symmetric (S) and 
antisymmetric Hopfoscillations(^) as ^ '    " 

^TS = c;S-^^^\sf+f^\Af\s + g,A'S' + vh,A (5) 
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d,A = c^A + |rf, \Af + /, \sf\A + g^ S' A' + V/;, S, 

where c^^ ,d^„ ,f,^ , g,„ , h^„ are complex constants. According of the actual values of these parameters the 

system can evolve in very different ways. According to Eq.(4) the dynamics of .4 and S is transferred into a motion 
of the SW. Here we discuss some particular examples, which appear in the two model systems. 
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Fig.2. Spatial bifurcation of a double hump SW in POLE (2), n=-0.32, v=-l, a=l, 5=0.03, E=0, P=-2.5, Y=0.88), (a) Linear 
spectrum of a stationary, symmetric SW, inset: intensity profile, (b) Contour plot of the intensity, (c) symmetrically 
oscillating and resting SW (initial dynamics), (d) asymmetrically oscillating and moving SW (final dynamics). 

First we start with a symmetric resting front of the VSHG system (Eq. (1)). Here the symmetric Hopf mode is 
unstable (Refe) >0) and the front destabilize supercritically (Re(</j) < 0). In contrast the asymmetric mode is still 

linearly damped (Re(c„)<0). Therefore the front starts to oscillate symmetrically {{S ,A) = (±.^-C^ /Re(rf,), o), see 

Fig. Ic). But, if the amplitude of the symmetric oscillations exceeds a certain value it excites the other mode and the 
SW oscillates asymmetrically too. According to Eq. (4) the SW starts to propagate with a constant velocity v in 
either direction (see Fig.lb and d). A similar behaviour is found for double hump solitons of the PGLE. They 
initially oscillate symmetrically and are at rest (see Fig. 2c). After destabilization an asymmetric (Fig.2d) and 
moving (Fig.2b) localized structure is formed. 
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Fig.3. Contour plot of an irregular jumping SW in PGLE (2) (n=-0.32, v=-l, a=l, 5=0.03, e=0, P=-2.5, y=0.83). 

However, the interaction between the two Hopf-modes need not result in a regular motion (see Fig.3). If the 
growth of the unstable symmetric Hopfmode is not intrisically saturated (Re[rfj>0) the amplitude S increases 
exponentially fast. A large enough S excites the antisymmetric mode. Therefore the SW undergoes a position jump. 

After this both amplitudes (S, A) are brought down to zero due to nonlinear damping induced by the asymmetric 
mode (Re(^s)<0). This process can repeat in an irregular sequence. Hence, subsequent position shifts are weakly or 
not correlated and can have both signs (see Fig. 3). 

[1] P. CouUet et al., "Breaking chirality in nonequilibrium systems," Phys. Rev. Lett. 65, 1352 (1990), D. Michaelis et al., "Universal 
criterion and amplitude equation for a nonequilibrium Ising-Bloch transition," Phys. Rev. E 63,066602, (2001). 
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M>stract:  Nonlinear guiding induced by gradients of the pump beam intensity can drastically 
affect optical pattern formation. A specific example is the emergence of spiral and target patterns 
m a single-mirror scheme with sodium vapor. 
©2002 Optical Society of America 
OCIS codes: 270.3100, 190.4420, 190.3100 

Phenomena of spontaneous optical pattern formation are usually discussed in a homogeneous environment 
even If It is common that the finite extent of the pump beam might lead to pronounced effects [1, 21 It is 
also known that phase inhomogeneities and/or gradients may play an important role. They lead e. g to a 
drift motion [3 4, 5]. However, in most of these works only the phase profiles due to external optics are taken 
into account^ We demonstrate here that the spatially inhomogeneous nonlinear refractive index distribution 
created by the Gaussian envelope of the pump beam used in experiments can induce a significant guidance 
effect which totally alters pattern formation. In the specific example under study target and spiral patterns 
appear m a situation in which oscillating hexagons are expected for a plane wave input. 

The expernnental scheme is a realization of the single-mirror feedback scheme analyzed in [6] utilizing sodium 
vapor as the nonlmear medium. An expanded and spatially filtered cw dye laser beam tuned several GHz 
above the sodium Dj-hne is injected into a cell containing sodium vapor in a nitrogen buffer gas atmosphere. 
More than 90% of the transmitted power is fed back into the sodium cell by a plane mirror at distance d behind 
the vapor. By means of a CCD camera we observe the near field intensity distribution of the transmitted 
light (1-ig. 1). The technique of video sampling enables us to obtain slow-motion movies of the dynamics 
of structures as long as the time dependence is regular [7]. The nonlinearity of the sodium vapor originates 
from optical pumping between the Zeeman subievels of the sodium pound state by circularly polarized hght 
ihe magnetization induced by the piunping process interacts with an oblique dc magnetic field 

/ 
B 

^-0-042!HH-CCCD 
7 

HWQWNa + N2 L M 

Pig. 1. Schematic view of setup. HW: half-wave plate, QW: quarter-wave plate, L: lens (optionally)   M- 
mirror, B: magnetic iield. The beam radius of the laser beam is «o w 1.5 mm. " 

For suitable Chosen parameters we observe patterns consisting of several rinp which are called target patterns 
(1-ig. 2a). The rings move towards the center with a well defined speed and disappear there. At the same 
time new rings are constantly born at the boundary. For the same parameters rotatmg spiral patterr^s are 
observed, too (Fig. 2b). They also show an inward motion (Fig. 2c). The fact that the movement in the 
observed patterns is directed towards the center is intriguing since the movement of the well-known targets 
and spirals m chemistry and biology - with one very recent exception [8] - is directed outwardly [9]. 

A linear stability analysis of a microscopic model of the light-matter interaction yields the possibility of a 
Hopf bifurcation at a finite wave vector [10] which is related to a Larmor precession of the magnetization 
tor parameters close to the experimental ones, the predicted spatial wave length apees well with the pitch 
between the arms of the spirals. In addition the dependence of the oscillation frequency on the strength of 
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Fig. 2. Typical examples for the observed structures: a) target pattern 
diagram illustrating radial motion in the patterns. 

b) spiral pattern, c) Space-time- 

the magnetic field is in good agreement with theoretical expectation. This gives a strong indication that the 
appearance of the spirals is related to this Hopf bifurcation. 

Simulations with a plane input beam indeed yield time-dependent patterns in this parameter region but 
these are not targets or spirals but oscillating hexagons or states with an irregular, possibly turbulent, space 
dependence (see also [10]). In particular, these patterns show no directed drift movement. 

Hence we investigated the experimentally realistic situation with an inhomogeneous pump profile by numer- 
ical simulations. Fig. 3 shows the phase distribution of the transmitted beam after the sodium cell. The 
overall behavior is quite complex (cf. [11]). However, in the central region of the beam, in which pattern 
formation takes place, the distribution can approximately be described by a parabola, i.e. one expects a 
lens-like action of the medium. The drift direction induced by such a profile can be determined by a linear 
stability analysis if one assumes that the phase variation is linear in space. It turns out that the drift is 
indeed directed parallel to the gradient of phase. Furthermore, the appearance of inwardly drifting targets 
and spirals can be reproduced in numerical simulations using a Gaussian input beam. We remark that the 
spirals we observe bear some resemblance to the ones obtained in a liquid-crystal light-valve with field ro- 
tation [3], however, our system possesses rotational symmetry, i.e. the symmetry breaking from targets to 
spirals happens spontaneously. 
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Fig. 3. Phase distribution of the transmitted beam after sodium cell. Dashed: parabola approximating phase 
distribution in the central region of the beam. 

For an experimental demonstration of the importance of the phase profile a focusing lens is inserted in the 
feedback arm (Fig. 1). The focal power is chosen to be stronger than the focal power of the defocusing medium 
so that the phase profile of the beam has opposite curvature now. Again spiral patterns form (Fig. 4a). As 
the space-time plot in Fig. 4b shows the motion is directed to the perimeter in accordance with expectations. 

Summarizing we demonstrated that the nonlinear guiding due to a radial dependence of the pump field 
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Pig. 4. a) Outwardly moving spiral pattern in presence of a focusing phase distribution; b) according space- 
time-diagram. ^ ^ 

can qualitatively alter optical pattern formation leading to structures not expected in a plane input wave 
Control of the drift motion was implemented. We remark that localized states and stationary patterns - 
existmg m parameter region nearby - are also affected by the guiding, but drift in a direction opposite to 
trie oscillating structure. 
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Spatially localized structures in nonlinear optical cavities, including Kerr resonators, optical parametric 
oscillators, saturable media and second harmonic generation, have attracted a large amount of attention 
in the last years. In particular, the existence of localized structures (LS) in nonlinear optical cavities have 
been recently shown [1, 2, 3]. These narrow soliton-like structures exist for a quite broad range of values of 
the pump for which there is bistability between two equivalent homogeneous solutions. Here we show the 
existence of a novel kind of stable localized structures, the stable droplets (SD) which have a much larger 
size and which are in fact large stable circular domain walls connecting the two homogeneous solutions. 

The dynamics of formation of such localized structures is closely linked to the problem of the growth of 
spatial domains of different phases. As3Tnptotic domain growth laws have been established in the context of 
equilibrium phase transitions [4], where it is found that in systems with no conservation law domains made of 
equivalent phases grow as R{t) ~ t^^^, while for systems with conserved order parameter R{i) ~ i^/^. In non- 
equilibrium nonlinear optical systems the problem of domain growth has been addressed only very recently 
[1, 2]. For the systems considered here a growth law of the form R{t) ~ t^/"^ is found in a regime where 
labyrinthine patterns are form while in the regime of existence of the soliton-like structures, a large initial 
circular domain of one homogeneous solution embedded in the other shrinks following R{t) ~ y/R{0) - 7^'/^ 
with 7 > 0 [1, 2]. Here we will show that between these two regimes there is a new regime in which an 
initially small (very large) circular domain grows (shrinks) following the law R ~ —1/R+Rl/R^ until a SD 
of radius RQ is formed. 

We consider here two different models of nonlinear optical cavities: a vectorial Kerr cavity and a doubly 
resonant degenerate optical parametric oscillator. The mean field equations for a self-defocusing vectorial 
Kerr cavity are [6, 7]: 

aa -(1 - ie)E± + iV^E± + Eo- \i[\E±\^ + P\E^?]E± (1) 

where, E± are the circularly polarized field components, EQ the pump (a;-polarized), 6 is the cavity detuning 
(6 = 1), V^ is the transverse Laplacian and /? is related to the susceptibility tensor {(3 = 7). For EQ < Eu, ~ 
0.95 the homogeneous symmetric solution /+ = I_ (/± = |£'±|^) is stable [7]. At this threshold value a y- 
polarized stripe pattern is formed. For pump values above a second threshold , Eo ^ 1.5, there is bistability 
between two homogeneous asymmetric (elliptically polarized) solutions. 

The mean field equations for a phase matched degenerated OPO where both pump AQ and signal Ai fields 
are resonant are [2]: 

dtAo   =   ri-Ao + Eo-A'i] + jV^Ao 

dtAi    =    -Ai-ArAi+AoAl + iaS/^-Ai, (2) 

where P is the ratio between the pump and signal cavity decay rates (P = 6), Eo is the amplitude of the 
external pump field, Ai is the signal detuning (Ai = -1) and a is the diffraction parameter {a = 0.5). For 
EQ <l the zero homogeneous solution is stable. Above threshold a stripe pattern is formed. For pump values 
above a second threshold, EQ S» 1.56, there is bistability between two nonzero homogeneous solutions. 
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FIG. 1. Growth rate 7 for the vectorial Kerr (left) 
and DRDOPO (right). Vertical lines indicate from left 
to right Eo,i and Eo,2. The upper figures show, from 
left to right, snapshots of typical configurations in the 
labyrinthine, localized structures and coarsening regimes. 
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For both systeiTO, there are three dynamical regimes in the bistability region depending on the value of the 
pump Eo (Fig. 1) [1]. A regime oflabyrinthine pattern formation for EQ < Eoi,& regime of formation of 
localized structures for Eo,i < Eo < Eo,2 and a regime of domain coarsening for E02 < Eo (see fig. 1). A 
growth rate for a droplet (a circular domain of one homogeneous solution surrounded by the other) of the 
fomi 

m^-yiEoJ/R (3) 

was proposed in [1] and demonstrated later in [8]. 

In the regmie of labyrinthine pattern formation (Eo < Eo,i) 7 < 0, so a polarization droplet grows without 
limit as R{t) ftj * / . Eo,i can be identified with the modulational instability threshold of a flat wall connecting 
the two asymmetric homogeneous state [1, 8]. Both the modulational instability and the droplet powth 
indicate that the system prefers to have the longest possible domain walls, or equivalently the largest possible 
curvature. 

For £-0 > Eo,i, 7 > 0, so an initial droplet shrinks until it stops at a well defined value of the radius forming 
a LS called dark ring cavity sohton (DECS) [2]. The existence of the DECS can be understood as a delicate 
balance between the repulsive efi^ect of the oscillatory tails of the ID walls and the curvature effect that 
tends to reduce the circular domain walls. At ^0 = ^^0.2, the threshold for the domain coarsening regime, 
the oscillatory tails interaction became too weak to counterbalance the curvature effect. The radius of the 
LS calculated following Ref. [2] is shown in Fig. 2. For the Kerr, LS exist from EQ = Eoi = 1.5498 to 
Eo = Eo,2 = 1.7030, where the stable LS collides with an unstable LS in a saddle node bifurcation For the 
OPp there are two stable DECS with different radius corresponding to locking at the first or the second tail 
osculation. • 

Close to the point Eo,i where 7 vanishes nonlinear corrections to Eq. (3) must be considered [8] 

m = -ci(E-Eo,i)/R-cs/R^, (4) 
where cj > 0 and C3 < 0 are obtained from the nonlinear analysis. 

We find that the LS branch has a change of behavior at Eo = £0.3 (Fig. 2 ). This particular point correspond 
to the value of the pump for which the interaction of the tails become of the same order than the nonMnear 
correction of Eq. 4. For Eo,3 < ^o < £"0,2 the oscillatory tails interaction is dominant and the DECS 
IS characterized by having a larger intensity at the center than in the surrounding background (Fig. 3 
right). For £0,1 < EQ < Eo,z the nonlinear curvature effects dominate over the oscillatory tails interaction 
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FIG. 2. Radius of the localized structures as function of the pump for the vectorial Kerr cavity (left) and OPO 
(center). Vertical dotted lines indicate from left to right Eo,i and £0,3. The figure on the right shows the linear 
dependence of I/ZIQ with Eo close to the point jBo.i predicted analytically. 

FIG. 3. Spatial dependence 
and transverse section of a 
vectorial Kerr SD for Eo = 
1.5524 (left) and of a vecto- 
rial Kerr LS* for Eo = 1.6 
(right). 

leading to the formation of a stable stationary circular domain wall (SD) with a very large radius RQ = 
\/—cs/ci/ y^E - £^0,1- At the center the field takes the value of one of the homogeneous solutions (Fig. 3 
left). Depending on the value of the pump, the radius of the SD can be extremely large. In fact, the radius 
diverges at £0,1 as RQ ^ l/y/Eo - Eo,i (Fig. 2 right). 

When analyzing the dynamical evolution of a polarization droplet we find that the growth law (3), although 
accurate for Eo,3 < Eo < £^0,2 fails to describe the regime Eo,i < Eo < Eo,z. Prom (4) we find that the 
growth law of the form 

R{t)^-\/R + RllR^ (5) 

where i?o is the radius of the stable LS, is suitable to describe the dynamics in both regimes. An initially 
small (very large) polarization droplet grows (shrinks) following (5). Finally the growth (shrinkage) stops 
and the droplet becomes a LS of radius RQ. For the DRCS Ro is small, so if the initial droplet is relatively 
large, the term RQ/R^ is a minor correction which can be neglected and we recover the growth law (3). But 
in the regime of existence of the SD, Ro is large and the term RQ/R^ can not be neglected anymore. In 
fact, as Eo approaches J5o,i, the term RQ/R^ becomes dominant so that R{t) « l/R^ which implies that the 
radius of an initially relatively small polarization droplet increases with time as R{t) fa t}^^. 
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Abstract We have recently succeeded in transmitting an ultrafast OTDM signal which exceeds 1 Tbit/s 
over 70 hn with the adoption of nonlinear optical fiber devices such as soliton compressor, DI-NOLMfor 
pulse shaping, and NOLMfor Terabit/s demultiplexing. In this talk, key technologies for ultrahigh-speed 
OTDM transmission are described. 

1. Introduction 
With the recent maturity of WDM technology, 

high-speed OTDM (Optical TDM) techniques are 
becoming increasingly important for handling ul- 
trashort pulse trains for high-speed signal process- 
ing and for investigating the ultimate transmission 
capability of a single channel [l]-[3]. In this paper 
we describe progress on OTDM single-channel 
terabit/s transmission using nonlinear optical fiber 
devices. 

Figure 1 shows the progress in large capacity op- 
tical transmission experiments. Here N is the num- 
ber of channels corresponding to the number of 
wavelengths. Recently, many multi-terabit/s trans- 
mission experiments have been successfully dem- 
onstrated by using WDM techniques as shown in 
the left of Fig. 1. Another interesting way of realiz- 
ing such high capacity transmission, which is our 
target, is to undertake a single-channel ultrahigh 
speed TDM transmission using a femtosecond pulse 
train, as shown on the right side of Fig. 1 (N=l line). 
Recently we reported 1.28 Tbit/s transmission which 
is the highest speed to date for a TDM scheme [4]. 
In order to realize a 1 terabit/s OTDM transmis- 
sion, the pulse-to-pulse separation is 1 ps, there- 
fore, the pulse width must be shorter than 1 ps. More 
exactly, 200-400 fs is ideal depending on the trans- 
mission distance, which is the reason why 
femtosecond technology is so important for terabit/ 
s OTDM transmission. 

lucant. HH1 
I1M9I    I1H9) 

O-WDM 

O-TOM 

50 100 200 SOO 

Single Channel Bit Rate (Gblt/s) 

Fig. 1 Recent Progress in large capacity optical transmis- 

sion experinnents 

repetition rate that exceeds 40 Gbit/s. Hence it is 
important to generate a 10-40 GHz low jitter pulse 
train with a pulse width of 100-400 fs. Our approach 
is to use a regeneratively mode-locked fiber laser 
which can emit a 3 ps, 10 GHz pulse train. The 3 ps 
pulse is compressed to 100-200 fs using adiabatic 
soliton compression in a dispersion decreasing fiber. 
The unwanted dispersive waves (pedestal compo- 
nents) are removed with the DI-NOLM. 

The second is compensation of the total dispersion 

2. Key Fiber Technologies for Ultrafast OTDM 
Transmission 

In table 1, we list the key technologies for ultra- 
high speed OTDM transmission using femtosecond 
pulses. We have developed several novel fiber de- 
vices which operate in the pico-femtosecond region. 
The first key technology is the generation of 
femtosecond pulses, in which we employed the fol- 
lowing three techniques. We used pulse generation 
using a regeneratively mode-locked fiber laser, adia- 
batic soliton compression using a dispersion-flat- 
tened dispersion decreasing fiber, and pedestal re- 
duction of compressed pulses using a dispersion- 
imbalanced nonlinear optical loop mirror (DI- 
NOLM). Since it is difficult to generate a 
femtosecond pulse train directly from a mode-locked 
laser, external pulse compression is commonly used. 
In addition, the electrical modulation speed of digi- 
tal signals is currently limited to 40 Gbit/s, so it is 
impractical to prepare optical sources which have a 

(1) Generation of femtosecond pulses 
• Pulse generation using regeneratively mode-locked 

fiber laser 
• 'Pulse compression using Dispersion-Flattened, 

Dispersion-Decreasing Fiber (DF-DDF) 
• Pedestal-reduction of compressed pulses using Dis- 

persion-lmbalanced Nonlinear Optical Loop Mirror 
(Di-NOLM) 

(2) Compensation of the total dispersion of transmis 
sion line 

• Tliird- and fourtti-order simultaneous dispersion com- 
pensation using a phase modulator 

(3) Ultrafast demultiplexing 
• Wltrafast NOLM in which wall<-off between the signal 

and control pulses is reduced 

Table 1 Key fiber technologies for ultrafast OTDiVI transmis- 

sion using femtosecond pulses (Opitcal fiber devices play 

very important roles for high speed communication.) 
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Fig. 2   Experimental setup for 1.28 Tblt/s-70 km OTOy transmission with the use of 

novel nonlinear fiber devices 

of the transmission line, A dispereion compensation 
and dispersion slope compensation fiber are com- 
monly used to compensate for second and third or- 
der dispersions. It is also important to minimize the 
fourth order dispersion since the spectral width of 
the transmitted pulse is very wide. For this, we 
adopted an active dispereion compensation technique 

1.28 Tbitfs - 0 km (Pre-Chirped) 1.2811)itfs-70l<m 

Time   iep5'* 

(a) 

Time   1-eps/div 

(b) 

After Pdarizatlon Demulflplexing 

Fig. 3 input and output waveforms 

that uses a phase modulator. 
The third key technology is ultrafast demultiplexing 

using a walk-off free nonlinear optical loop mirror. 
Since the transmitted OTDM terabit/s signal is too 
fast to detect directly with a photo detector, down- 
conversion of the signal via demultiplexing with a 
NOLM, four-wave mixing, or electro-absorption 
(EA) modulator is required. We used a NOLM to 
demultiplex the 1.28 Tbit/s signal to 10 Gbit/s. 

3.    1.28 Tbit/s OTDM transmission 
The terabit/s OTDM experimental setup is sho-wn 

m Fig. 2, A 3 ps, 10 GHz regeneratively and har- 
monically mode-locked fiber laser at 1,544 jim was 
used as the original pulse source [5]. The advantage 
of this laser is its low jitter of approximately 100 fs, 
which is very important to realize ultrafast multi- 
plexing in the OTDM. The output laser pulse is in- 
tensity-modulated at 10 Gbit/s with a PRBS of 2'5-l 
and the pulse train was coupled into a dispersion- 
flattened dispersion decreasing fiber (DF-DDF) [6] 
and the DI-NOLM [7]. The pulse width at the DI- 
NOLM output of was 200 fs and the peak-to-pedes- 
tal ratio was larger than 30 dB [6]. 

We incorporated a phase modulation technique 
that enabled us to compensate for third- and fourth- 
order dispereion [8]. This pre-chirping unit is shown 
m Fig, 2(a), In this scheme, we deliberately intro- 
duce a certain amount of second-order dispereion, 
in which the sum of the second-and fourth-order dis- 
persion can be compensated for by a cosine phase 
modulation. The small third-order dispersion is com- 
pensated for by a sine phase modulation. This tech- 
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nique allows us to compensate for all the dispersion 
from the EDFAs and transmission fibers. 

Then, the pre-chirped 10 GHz pulse train was op- 
tically multiplexed up to 1.28 Tbit/s by using a pla- 
nar lightwave circuit (PLC) and polarization multi- 
plexing. It is important to note that due to the pre- 
chirping, the data signal at the input end was no 
longer in the femtosecond regime, but a short pulse 
was recovered after transmission. 

The transmission line was a 70 km-long single span 
fibre consisting of a 39.7 km-long SMF, a 4.6 km- 
long dispersion-shifted fibre (DSF), and a 25.1 km- 
long RDF[9]. The fibre loss was 17.6 dB. The dis- 
persion and dispersion slope of the RDF had oppo- 
site signs and nearly the same magnitudes as these 
of SMF. The DSF was included to compensate for 
the residual dispersion slope of the whole transmis- 
sion line. The third-order dispersion (dispersion 
slope) was as small as - 0.0023 ps/nm^ The total 
third-order dispersion including three wideband 
EDFAs was + 0.015 ps/nml The PMD of the RDF 
was 0.02 ps/ v^km and the total PMD was 0.05 ps/ 
y~ km. It is important to note that the accumulated 
fourth-order dispersion became as large as - 0.028 
ps/nm^ which is no longer negligible for the long 
distance transmission of a femtosecond pulse train. 
The second-order dispersion, which we deliberately 
introduced, was - 0.42 ps/nm. To compensate for 
all these dispersions, we use the pre-chirping tech- 
nique that we previously described. 

The transmitted 1.28 Tbit/s signal was converted 
into two 640 Gbit/s signals with a PBS, and then 
demultiplexed into 10 Gbit/s signals using a walk- 
off free, dispersion-flattened nonlinear optical loop 
mirror (DF-NOLM) [10]. The control pulse was gen- 
erated from a phase-locked loop (PLL) operated 
mode-locked fibre laser at 1533 nm. To obtain a 10 
GHz clock to drive the PLL fibre laser, we co-trans- 
mitted a clock light at a different wavelength, which 
was synchronized to the original 10 Gbit/s signal. 
The setup for generating the clock light is shown in 
Fig. 1(a). The same 10 GHz clock that was used for 
the pre-chirping unit. A 1542 nm cw light from an 
external cavity laser diode was modulated at 10 GHz 

with a LiNbO, modulator which was driven by the 
extracted 10 GHz clock. The 10 GHz clock and 1.28 
Tbit/s signal light were combined in front of the 
transmission fibre by using a fibre coupler. After 
transmission, the clock was optically separated us- 
ing two 1 nm optical fdters, and was injected into 
the clock extraction circuit. The recovered 10 GHz 
clock was used to drive the PLL fibre laser. We set 
the oscillation wavelength of the PLL fibre laser at 
1533 nm and the pulse width at 1.1 ps. 

Figure 3 (a)-(d) shows the input and output data 
patterns, (a) is the input waveform. Due to the pre- 
chirped dispersion compensation the 1.28 Tbit/s sig- 
nal is broadened. This signal changed into a clear 
1.28 Tbit/s signal after a 70 km transmission, as 
shown in (b). This 1.28 Tbit/s signal is separated 
into two 640 Gbit/s signals with a PBS, as shown in 
(c) and (d). We successfully obtained very clean 
640 Gbit/s signals. The pulse broadening after the 
transmission was as small as 20 fs. These 640 Gbit/ 
s signals were demultiplexed into 10 Gbit/s signals 
and each BER was measured. 

Figure 4 shows the received power at a BER of 
1x10'^ for the 128 channels after a 70 km transmis- 
sion. A BER of 1x10"^ was achieved for all of the 
channels at a received power of more than -21 dBm. 
The fluctuation in the received power for each chan- 
nel is attributed to the residual amplitude difl^erence 
between the signal channels, which were caused by 
imperfections in the PLC. 

This work has been done with T. Yamamoto and 
K. R. Tamura when the author was with NTT Net- 
work Innovation Laboratories. 
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MM^ We report the most complete measurements presented to date of Raman gain efficiency and noise figure for 

™     ;. 1 .? ^ ^""^ transmission windows {S-, C- and L-band). Such fiber characterization is 
pOTamount to the engmeermg and deployment of future terrestrial 40 Obit/s-based WDM transnmsion systems 
©2002 Optical Society of America 
OCIS codes: 060.0060, 060.2320 

Introduction 

The continuoiM increase in capacity of long-haul transmission networks has resulted in a renewed interest for distributed Raman 
an^Mc^ion (DRA). wMch offers both wide-band amplificatiou and significant improvement of optical signal-to^S™ co^^ 
to lump«l amphf>catron [1,2]. Stimulated Raman scattering (SRS) is a privfleged way to produce DRA in^ fiber Suse tt kta^c 
lo2,: W,f f?,> ^'^""Sl^ SRS has been know for nearly 30 years [3], the DRI implementation in the Md Inow r«S 
possible by the availabihtyofcost effective and reliable high-power pumps. MOW reuuerea 
A detailed Raman gain proffle of transmission fibers is required for an accurate modeling of broadband DRA generated by single or 

r^Sle a^'rlTrlf ", .^''"' ''™' ^''"" f'^- '''^ ^™ ^^ '^""^^ (« '' P**^ «l'««™^«i by thifibar ettectwe area (^^). GeOa and S1O2 concentration ratio influences also both magnitude and profile of Raman gain spectrum 141 In 

^itfi^r "" *'"' ^^"""^ " ^"""^"^ °" ^ P"°P '""' "^^"^ "^"^^ ^ ^™ *« distrluted'gS^Lf th^ 
In orda- to predict the differences in the generation of SRS in the various commerciaUy avaflable fibers, we have performed the 

r^F^lflW^Tir °' T Pf'^^^^^.^ G-««-type (SMF, Alwave™) and G.655-t„e (Ter^ht™, TrJewave-RS™ 
tW fit, fib«-s mthe fcee waveleng^ transm^sion windows (ie. S-, C- and L-band). In particular, we have measured and compared 
iXv^ WOHHT °f R^-^B^" «ffi«f f ^ ^^ figure. Our choice i^pr«sents a comprehensive set of modem fibers afready 
deployed worldwide in the earners'long-hairi transmission networks. 

Raman gate spectra measurewients 

IlXfjn'JltrS* ''I'^tf"** ^ ^^V- ^ °" '"'' ^^ "' ^^^''''^ " ^^^'^ **^*"^«l "^^^^ DRA scheme as folows. 
A consten 100-km fiber length was used for each fiber under test. The fiber was counter-pumped with a 300 mW CW Raman Fiber 
Laser (RtL) at etther As^= 1395 nm, Xc-ta.^ = 1455 mn and 4.j„„^= 1480 mn. The residue of the pump at the span end is deflected 
w a circulator. T^ random polarized RFL pump light provides a polarization independent DRA. A tZble EcEt^ ^t aTji 0 

So Jw f ?^ "*"i 'f1 ^^.^^^^'^^ *« R«°«° «°»11 ««°«1 gain dependence on wavelength. The RFL power was hmited to 
mRS^ Ji f ^^ft f''' *" "^ *^ 8"^^"*° °f ^'^'^^^ ASE and noi from double Rayleigh s^eri^g 
(DRS). Sphces were precisely cahtaed by the cutback method to measure accurately the pump power injected into eacf fiber undef 

Residual Piiinp Pump in 
1395 or 1455 or 1480 mn 

Signal in 
1440-1630 nm 

Fiber under test 

Calibrated splice. 

Circulator 

Calibrated power control 
for the signal 

1% 

Multiplexer 1455 /1550 nm 
or 

coupler 

Signal out 

Figure 1: Experimental set-up 
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The Gonioff measurements method [5,6] is chosen to cancel out any inaccuracy related to spectrally dependent attenuation of 
components, comiectors, splices and fiber itself. For each fiber, a reference spectrum is acquired at the "signal out" port, with the 
pump turned "off", and a second spectrum with the pump turned "on", all other conditions being unchanged. The difference between 
these two spectrums gives G„„/„y. The measurement accuracy was limited only by the power stability of the RFL (i.e. < 1%) and by the 
relative accuracy of the used OSA and power-meters. The fiber Raman efficiency Q was derived from G„„/<,(j-using the relation: 

Q = 
G. on! off 

P J 
with 

l-« 
"<^ff a„. 

(1) 

Ppunip, o^imp, Lejf and Lspa,, are the injected pump power, the fiber loss at the pump wavelength, the effective length of the fiber under 
test, and the length of the amplification span (here 100 km), respectively. 

Results and discussion 
Figure 2 shows the Raman efficiency spectra over the S-, C- and L-band for the fibers under test. Table 1 summarizes the 
corresponding CR and G„,^„^ peak values as well as NFe^ measurements. 

S-band C-band 

1440 1460 1480 1500 
Wavelength (nm) 

0.8- 

1520 1540 1500   1520   1540   1560 
Wavelength (nm) 

1580 1600 

L-band 

1530 1550 1570 1590 1610 
Wavelength (nm) 

1630 

Figure 2: Raman gain efficiency of Allwave™, SMF, Teralight™, Truewave-RS'^'^, and LEAF'^" fibers in S-, C- and L-band. 

The fiber presenting the highest Raman efficiency is Truewave-RS'^'^ (0.90 W'km"' in S-band, 0.73 W'kni'' in C-band, 0.66 W'km"' 
in L-band) because of it has the lowest Aeff. Then comes Teralight™ (0.89 W'km"' in S-band, 0.59 W'kni"' in C-band, 0.54 W' km"' 
in L-band) and LEAF''''^ (0.77 W'km'' in S-band, 0.56 W'km"' in C-band, 0.49 W' km"' in L-band) which have larger effective area 
(Aeff=65 Mm^ and A^ff^ll nm^ for Teralight™ and LEAF'^'^, respectively) than Truewave-RS (^^^=55 nm^). The Raman cross 
section of material constituting the fiber has also a large influence on SRS efficiency. The germanium (GeOj), used for increasing index 
of the fiber core, has a Raman gain coefficient substantially greater than that of silica (SiOj) [4]. Consequently, fibers weakly doped in 
GeOa such as SMF and Allwave'^"' have the lowest Raman efficiencies: 0.51 W'km"' in S-band, 0.42 W'km"' in C-band, 0.39 W' km" 
'in L-band for SMF and 0.56 W"'km"' in S-band, 0.44 W'km"' in C-band, 0.42 W' km"' in L-band for Allwave''''^. The increase of 
GeOj doping results also in both growth and broadening of the principal Raman efficiency peak (located at 13.3 THz of the fi'equency 
pimip) to the detriment of the secondary peak (placed at 14.5 THz of the fi-equency pump). Considering the results obtained over the 
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c-band, 0,652 fite (SMF and AUwave™) have a particularly pronounced secondary peak compared to G.655 fibers (TeiaHght™ 
md Truewave-RS™X The more highly GeO, doped fibers exhibit both clearly broader main and sn«other secondary p^ks 
Moreover, it can be obser^^ed that die G.652 fibere present a much larger and flatter Raman gain profile over al S-, C- and L-band.     ' 

Table 1: S-, C- and L-band Raman gain efficiency and noise figure comparison for P,„^ = 300 mW and P^= 0 dBm 

Fiber type 
1550 

Aeir 

nm Fiber pa 
D 

ps/nm/km 

rameters 
D' 

ps^nirf/km dB4m 

S-band 

CM 
Wr'km' dB 

Clpump 
dB/km 

C-band 

CM 
W-'kitf' 

NF^ CSpump 
dB/km 

L-band 

W'km-' 

0.42 

NF^ 

AHwave™ 80 17 0.07 0.27 0.56 -2.1 0.24 0.44 -3.2 0.22 -3.6 
SMF 80 17 0.07 0.51 0.51 1.8 0.26 0.42 -1.0 0.24 0.39 -1.0 

TeraLight™ 65 8 0.058 0.40 0.89 -0.7 0.27 0.59 -2.2 0.25 0.54 -2.0 
True^ve-RS™ 55 4.4 0.045 0.36 0.90 0.0 0.25 0.73 -2.2 0.23 0.66 -2.2 

LEAF™ 72 4.5 0.08 0.47 0.77 0.4 0.25 0.56 -1.6 0.24 049 -1 8 

CompmK)n of overaU Raman efficiencies values shows an increase trend from the L- to the S-band. The peak efficiencies obtained 
wifli 1395-nm pump are 0.90. 0.89, 0.77,, 0.56 and 0.51 Wkm"' for respectively Truewave-RS™, Teralight™ LEAF™ Allwave™ 
^d SMF whereas they are only 0.66, 0.54, 0.49, 0.42 and 0.39 Wkm"' when pumped at 1480 nm. This treM is expired by the 

f^r^ °°^ .®^* ^^^^ ^^ concerned, it can be noticed first that higher NP,, are measured in the S-band than in the C- and 
L-band. Tte situation is mainly due to increased pump losses when passing from the L- to the S-band. Indeed, higher pump loss 
mduc^s smaler distributed gain, which results in higher NF^. As an example, for the Truewave-RS™, the NF,, is in^ved by 2 2 dB 
from the S- to the L-band. The best overall NF,, perfomances have been obtain«i for the ABwave™ due to the lower pirn loss 
v^es for al three wavelength windows. The NF,, improvement is especially notable in the S-band resulting from the removdof the 
Off attenuation peak (^„^=0.27 dB/km for the Mwave™ instead of 0.51 dB/km for the SMF at As.,„„). Conespondingly the G ,. 
avadablemthe S-band is 11.8 dB for the Alwave™ and only 5.8 dB forthe SMF (for P^„^=300 m^ Ponomgty,      t<„^,^ 

Moreover d^ending on the fiber physical properties, the DRS effect and ASE accumulation can limit the maximum Raman gain 

T    r uTM '^^^' *^ "^™»™ P™P Po^er in the S-band was only about 300 mW and 400 mW for Truewave-RS™ and 
1 erahght   , respectively. In the C- and L-band, pump power can be increased up to 500 mW without degradation for any fibers. 

Conclusion 

Raman gain effio~ of recent G.652 and G.655 fibers over S-, C- and L-band have been measured and compared. We observ«l 

W ™T^^T ^ AS^ ^'^'' ?''' Raman gain efficiency. However, in the S-band, the gain really available is severely limited 
by DRS effect and ^E noise accumulation. On the other hand, the Allwave™ fiber is particularly advantageous for DRA m the S- 
toKi when compared to stantod SMF (in terms of G„,„^and NF,). These complete Raman gain profiles, efficiencies and noise 
measurements could be apphed for modehng the fiiture DRA-based terrestrial 40 Gbit/s WDM transmission systems 
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Abstract:   We report the experimental generation and characterization of a 160-GHz 
picosecond pulse train using multiple four-wave mixing temporal compression of an initial 
dual frequency beat signal in the anomalous-dispersion regime of a non-zero dispersion 
shifted fiber. 
©2002 Optical Society of America 
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Multigigabit-compatible transform-limited (TL) optical pulse generators are expected to play a key role 
for increasing the transmission capacity in advanced optical fiber communication network, as well as for 
optical signal processing. In this context, the nonlinear transformation of a dual frequency optical beat 
signal propagating in an optical fiber is an attractive method for applications in high-speed optical 
communications. The reshaping of the beat signal into well separated short pulses was previously 
demonstrated by several methods based on dispersion decreasing along the fiber length [1], soliton 
Raman self-scattering effect in dispersion decreasing fiber [2] or switching in a nonlinear fiber loop 
mirror [3]. Alternative approachs of step-like [4] and comb-like [5] dispersion profiled fibers, using 
segments of conventional fibers with different dispersion, have been proposed for the generation of high 
repetition rate sub-picosecond pulse trains. 

On the other hand, the propagation of a dual frequency signal in an optical fiber with constant 
anomalous dispersion may lead to a strong transfer of energy fi-om the pumps into a relatively large set of 
sidebands generated by multiple four-wave mixing (FWM) [6]. The creation of high-order sidebands 
along the fiber is then accompagnied by a strong temporal compression of the initial sinusoidal beat 
signal [6]. Our objective is to present the first experimental demonstration of generation and 
characterization of high repetition rate train of TL pulses thanks to the technique of temporal 
compression via multiwave mixing process in the strong-interaction regime. In particular, in our 
experiments a 160-GHz train of 1.27 ps TL pulses has been obtained at 1550 nm using a single piece of 
1-km-long non-zero dispersion-shifted fiber (NZ-DSF). The technique of frequency-resolved optical 
gating (FROG), adapted for high-repetition rate periodic pulse trains [7], was used to characterize 
directly the intensity and phase of the 160-GHz train generated from multiwave mixing interaction. 

The initial beat signal is obtained by simultaneous injection in NZ-DSF of two incident continuous 
waves of different frequencies, with parallel linear polarizations and equal power. The nonlinear 
propagation of such a beat signal was numerically analyzed using the split-step Fourier method for the 
extended nonlinear Schrodinger (NLS) equation [8], including higher-order effects such as third-order 
fiber dispersion (TOD), self-steepening and intrapulse Raman scattering. Figure l(a2) shows the 160- 
GHz sinusoidal input signal at 24 dBm average power evolving into compressed pulse train with 1.3 ps 
fiill width at half maximum (FWHM) pulses. The fiber length, where maximum compression occurs with 
minimum pedestal, is L = 2375 m. This length is relatively closed to the length for which the maximum 
conversion from the two initial waves into the first sidebands occurs (L = 2400 m), in good agreement 
with the prediction of Ref 6. At the central wavelength of the initial sinusoidal beat signal, i.e. X = 
1550.35 nm, the fiber is assumed to have 0.21 dB/km loss, an anomalous dispersion of 1 ps/nm.km, a 

nonlinear coefficient of 1.7 W'km" , a Raman response time of 3 fs and a TOD of 0.07 ps/nmlkm. 



NLTUC3-2 

These parameters are those of the NZ-DSF used in our experiments. Figure l(al) shows that the phase 
across the pulses is constant, which implies TL pulses. The phase difference between the neishborin? 
pulses IS n. The output spectrum, shown m Fig. I(a3), consisted of the two input frequencies that were 
used to generate the initial beating, as well as a cascade of equally spaced spectral hues that is 
charactenstic of the reshaping of the input beat signal into a train of well-separated pulses. At this power 
level, the multiwave mixing only slightly compressed the pulse from 3.125 ps to 1.3 ps to ensure no 
pedestal and TL pulses. On the other hand, as shown by Fig. I(b2), as the average input power is 
increased up to 30 dBm, the compression factor increases (FWHM = 364 fs) and the required fiber length 
decreases to L = 977 m, while the pulse quality is depaded due to appearance of a broad low-intensity 
pedestal component and a non-uniform phase across the pulses [see Fig. l(bl)]. The corresponding 
spectrum of Fig. I(b3) exhibits a slight asymmetry due to the effect of TOD. Therefore, numerical 
solutions of the extended NLS equation show that there exist a trade-off between pulse quality average 
power, pulsewidth, and fiber length. f      H      y>        s= 

SFJlJ^PUeER 

>,-20 
'm 
!I!40 

-5 0 

Time(ps) 

(a3) 

-1 -0.6 0 03 1 

Frequency detuning <THz) 

<b3) 

-2 0 2 
Frequency detuning (THz) 

Fig. 1. Results of numerical simulation of a beat 
signal transformation into a train of short pulses for 
an input average total power of (a) 24 dBm and (h) 
30 dBm. Fig. 2. Schematic of the experimental setup. 

For the expenmental demonstration of this technique, we have focused our attention on the case of 
generation of TL pulses. Figure 2 shows the design of the experimental setup. A dual frequency beat 
signal was synthesized from two cw 150-kHz-linewidth external cavity lasers (ECLl and ECL2) The 
wavelength space between the two waves was set at 1.3 nm in order to generate pulse train at a near 160 
GHz repetition rate. The center wavelength was fixed at ^ = 1550.35 nm, while the zero-dispersion 
wavelength (ZDW) of the NZ-DSF is XZD = 1536.5 mn. Both waves were combined by a fiber fiised 
50:50 coupler. The beat signal was then amplified to the desired average power level by an Erbium- 
fTi T^f PP^f'^I P^^^- ^ P*^^ modulator was used to suppress stimulated Brillouin scattering 
(bBb). The launched beat signal power into the 1-km-long NZ-DSF was set to 27.2 dBm The output 
fj^l^f 1^°?°^'°^' reshaping in the NZ-DSF, was characterized with an optical spectrum analyzer 
(UbA), a backpound-free second-harmonic autocorrelator and a FROG setup. 

Figures 3(a) and (b) show, respectively, the measured and retrieved SHG-FROG traces (128 x 128 grid) 
of the field after propagation through the 1-km NZ-DSF. The retrieval error was G = 0 0035 The 
correspondmg retrieved intensity and phase are shown in Fig. 3(c). The intensity profile shows reshaped 
pulse tram with remarkably no pedestal. The phase variation over the compressed pulses forming the 
train is also negligibly small, indicating that the pulses are nearly transform limited. The phase difference 
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between the neighboring pulses is n, in good agreement with theoretical predictions of Fig. 1. As shown 
in Fig. 3(d) the intensity profile corresponds very well to a gaussian function with 1.27-ps FWHM and 
2.4-W peak power. The extinction ratio between peak power and interpulse background is in excess of 20 
dB. As shown in Figs. 4(a) and 4(b) respectively, the spectrum and the autocorrelation that were derived 
from the retrieved pulse train (circles) are in excellent agreement with the independent direct 
experimental measurements (solid lines), confirming the reliability of the experimental setup. 

5     10    15 
DELAY (ps) 

2     3     4     5 
TIME(ps) 

Fig. 3. (a) Measured and (b) retrieved SHG-FROG traces of 
the generated pulse train at 160 GHz. (c) The solid line 
shows the retrieved intensity (left-hand axis), whilst the 
dashed line shows the retrieved phase (right-hand axis), (d) 
Least squares fit of the retrieved pulse shape (solid line) by a 
gaussian fimction (open circles). 
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Fig. 4. (a) Measured autocorrelation and (b) 
spectrum of the 160-GHz pulse train at fiber 
output (solid curves). The open circles show 
the autocorrelation and spectrum calculated 
from the retrieved intensity and phase, 
respectively. 

In conclusion, we have presented the experimental demonstration of multiwave mixing compression for 
reshaping of a beat signal into a high-quality train of picosecond TL pulses at 160-GHz repetition rate. 
We believe that this very simple technique has great potential as a high-quality source of TL pulses for 
dispersion-managed DWDM systems in fiiture telecommimication networks. 
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Abstract: Cross-correlation frequency resolved optical gating (XFROG) characterization of 
supercontinuum generation in microstructure fiber is studied using numerical simulations and 
experiments. The XFROG trace clearly reveals the signatures of dispersive wave and Raman soliton 
generation. 
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1. Introduction 

of ™f'°" of ultrabroadband supercontinuum (SC) spectra has been experimentally demonstrated by a number 
of research groups by mjectmg high power near-infrared femtosecond pulses into tapered or microstmct^releS 
[1-2]. Although some numerical modeling of SC generation has also been reported [3-4], a comparison between 
numerical smiulations and experiments has not been possible because of difficulties in accurately cLaSerShe 

S f™rfh«f«ir*;tTf ' '''^' ^. ^^»*'y' *^°"«^«^' cross-correlation frequency resolved S 
gatmg (XFROG) has allowed the first intensity and phase measurements of the generated SC to be carried out [5 61 
e^tenS-f^i?r 1 u'^T'' *^''' ^°° measurements with the results of numerical simulations usiig an 
extended nonlmear Schrodmger equation NLSE). The simulations allow several important physical orocesses 
responsible for SC generation to be identffied and, moreover, illustrate how the XFR^ tmLIS prSX^ 
mtuitive and powerfiil means of interpreting correlated temporal and spectral features of the SC. 

2. Numerical Simulations 

The extended NLSE is valid down to the three optical cycle regime, and includes quantum noise higher order 
MsfS;^?' '*"""''*'' Raman scattering [7]. The fiber disperaion was modeled over the rangSoSl 600 ^ 
Pulse propagation was smiulated for a 15 cm length of large air-fill fraction microstructure fiber with a^o 

atTo nm ?hf Ir', ^'''^^^f^'f^^f^'^^ distance for 30 fs FWHM, 10 kW peak power i^m pulL mjeded 
t™T" >n«al propagation m dommated by approximately symmetrical spectral broadentag and strong 

hf^ iroSTc'nmnf T "^""1'/"' ^^ "^'^''"^^ ^^^°"^^^ ^^^^^g'^ ^«™*™ -d is associated S fl^''^^^Pff\ff<'^P^^^ temporal features. In particular, the figure shows temporal pulse break-up the 
development of ultrafast temporal oscillations on portions of the temporal intensity profile! as well as the Snerat on 
of ^an sohton pulses which separate from the residual input pulse due to group velocity wlS [8] ThfS^^^ 
broademng mcrea^s mth further propagation, extending over an octave froSsSO-l 100 ^aUhe olurpl fft 

?*eTed A S B ^1^1^'*''' '"" "f ^'''\ ^* ""^™' ^*^""S "^^'^ *° ^°"«>^^« *»»« distmct Rinan sfliton labeled A and B with the correspondmg peate m the output SC spectrum. The figure also shows several other 
mterestmg features. For example, a portion of the output temporal intensity prol^ is shoL on rexpaMed 
tonebase m order to highlight the ultrafast oscillations which have developed during propagation Tteoscllatton 
frequency varies slightly across the profile, with the mean frequency estimated at^l 15 ISf Inoler SSwfof 
mterest IS the strong normal dispersion-regime peak DW around 600 imi on the spectrum. This p^k arirfrlm the 

^ZaSt^iUff '''T! ^"^ "!!*? '"^ **'^P"^^^^ ^^« generation [9], and I LSfested ta L tune-domam as a broad low-amplitude pulse on the Raman soliton trailing edge. 
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(a) Evolution (b) Fiber output (detail) 
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Fig. 1 (a) Spectral and temporal evolution in microstructure fiber of a lOkW peak power 30 fs input pulse 
injected at 800 nm. (b) Output intensity and spectrum shown in detail. 

These predicted spectral and temporal characteristics are in good agreement with previous experiments which 
have observed strong normal dispersion regime peaks [2] and distinct Raman soliton formation [10, 11] during SC 
generation. However, it is of more interest to consider how these features are manifested in the XFROG trace of the 
fiber output, as this permits a direct comparison with the results of more recent experiments. To this end. Fig. 2 
plots the calculated XFROG trace obtained from the spectral resolution of the sum-frequency generation (SFG) 
intensity cross-correlation between the generated SC and the 30 fs input pulse at 800 nm. The structure of the 
XFROG trace is compared with the SC temporal intensity (bottom) and spectrum (right) and we note that the 
spectral plot uses a nonlinear wavelength axis so that structure in the XFROG trace at a particular SFG wavelength 
can be directly related to the corresponding SC spectral component. 
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Fig. 2 Calculated XFROG trace with its   structure correlated with the intensity and spectrum.   Note the 
nonlinear wavelength axis used in the plot of the fundamental SC spectrum. 

The advantages of using a time-frequency XFROG measurement for interpreting the different SC features can be 
clearly seen from this figure. For example, the simple visual inspection of the XFROG trace allows the particular 
time and frequency domain signatures of the dispersive wave and Raman soliton components to be immediately 
identified and correlated. In addition, the parabolic group delay variation with wavelength (which reflects the linear 
dispersive characteristics of the fiber) is immediately apparent.  Even more significantly, since the portion of the 
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Sn? f ^ f ' ^^'""^ ^^ developed ultrafast oscillations is seen to be associated witli two distinct 
XFROG wavelength components separated by 115 THz, the origin of the ultrafast modulation can be physically 
mterpreted as a result of the beating between these components. Moreover, the fact that the corresponding 
components m the fondamental spectrum (at 679 mn and 917 mn) are distributed symmetrically (in frequency) about 
aTlSf mf Th°^™nn .**' modulation to be identified as a consequence of four wave mixmg about the 
fiber ZDW [12], The XFROG trace allows the origm of this modulation to be identified in a way which is not 
possible from exammmg the separate intensity and spectral measurements. 
3. Comparison with Experiments 

Several experiments have now reported preliminary XEROG measurements to characterize the intensity and ph^e 
of ultrabroadband SC spectra [5. 6]. Although uncertainties in the injected power and the fiber paramSuseTto 
these experiments preclude a detailed quantitative comparison with simulatiom, the numerical results above 
nonetheless allow several distmct features seen in the expermiental XFROG traces to be physically interpreted For 
example. Fig^3(a) (taken from Ref. 6) and Fig. 3 (b) (taken from Ref 5) show the measured XFR(Xi tmL obtained 
from two different experiments. Both XFROG tmces exhibit the expected parabolic variation of group delay with 
wavelength and. m addition, trace (a) clearly shows both the development of pulse breakup near zero delay, and the 
development of ashort-wavelengthdispersivewave on the pulse trailing edge. These effects can also be seen on the 
retrieved profile mtensity shown m Fig. 3(c). Trace (b) shows sunilar characteristics and, in addition, shows strong 
evidence for a Raman sohton component which has walked off from the zero delay position. 
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Fig. 3 (a) aiMCb): two different measured XFROG traces, (c) the retrieved intensity for trace (a). 

4. Conclusions 

Analyang SC generation via the XFROG trace allows related spectral and temporal features to be intuitively 
correlated and permits their physical origin to be readily identified.  Our simulations using a generalized NLSE 
predict dB met features in the XFROG trace which have been observed in several experhnents. We anricLate thai 
these simulatiom will find wide use in designing optimized SC generation experiments. 
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Abstract. We demonstrate over 60 % energy conversion on 20 nm bandwidth centered at 1568 nm 
in a two-pump fiber optical parametric amplifier. 
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1. Introduction 

Parametric amplification or wavelength conversion can be obtained from x'^^ or x'^^ nonlinear susceptibility. The 
mix of a strong pump wave with a weak signal wave into the nonlinear medium, amplify the signal and generates a 
strong idler at the output. Most attention have been focused on /'^^ based devices, where the pump energy that is 
transferred to the signal and the idler waves can be in excess of 90 %. Devices based on the x'-^^ nonlinear 
susceptibility have been less investigated. In a one-pump fiber optical parametric amplifier (OP-FOPA) [1] Marhic 
et al. obtained ~90 % pump energy transfer in an 11 km dispersion shifted fiber pumped with 200 mW cw power. 
The main limitation of OP-FOP As is that high energy conversion cannot be obtained over broad bandwidth, i.e., the 
efficiency is maximum for a particular signal wavelength where phase matching is most perfect [2] and reduces 
strongly for other wavelengths. In comparison, the two-pump FOPA (TP-FOPA) exhibits flatter and broader gain 
spectrum. The bandwidth in these devices is maximized when the two pumps are tuned nearly symmetrically to the 
zero dispersion wavelength of the fiber [2]. We demonstrate here efficient (65 %) energy conversion from the pumps 
to the signal and idler in a TP-FOPA. From our measurements we verified that high-energy conversion is obtained 
over 20 nm bandwidth with weak dependence on the signal wavelength. 

AySlSWmn 

PumB£ 

m\mStiZSmim 

jMCaMcQMbMMMjii^ 

Signal 

Figure 1. Two-pump FOPA configuration. PC: Polarization controller. BPF: Optical bandpass fiUer. 

2. Experimental setup 

The configuration of the two-pump FOPA is shown in figure 1. We used a 14 km Corning LS fiber with measured 
average zero dispersion wavelength Xo = 1567.9 nm, attenuation coefficient a = 0.053 km"', and nonlinear 
coefficient Y= 2.1 (W-km)"'. The cw pumps lasers, at wavelengths ^i = 1558.4 and X2 = 1577 nm, and the tunable 
signal at ^ were spectrally broadened by phase modulation at 840 MHz to prevent stimulated Brillouin back- 
scattering. Usually, only the pump lasers are phase modulated. However, since we are interested in maximizing the 
energy conversion, the signal would eventually become as strong as the pumps. For this reason we also passed the 
signal through the phase modulator. Our phase modulator has an insertion loss of 12 dB. To compensate for this 
excessive loss we used three EDFAs to amplify independently the three lasers. The band-pass filters were used to 
remove most of the ASE from the EDFAs that is also amplified in the TP-FOPA and would eventually drive this last 
into saturation. The two WDM couplers (each with 0.21 dB insertion loss) are of the type generally used to couple or 
decouple L and C bands. The 90/10 coupler combined the signal and pumps. The three lasers were linearly polarized 
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TOth parallel polarizations. Spectra were measured with an optical spectrum analyzer (OSA) with 0 07 mn 
resolution. ^      \  ^ •■j »»"" u.v/ ma 

4. Results and Discussion 

Figure 2(a) shows the spectrum at the input fiber with a signal at 1561.75 mn. The input powers were ff" = il.5 

dBm (=141.2 mW). Pf = 19 dBm (= 79.5 mW), and P/" = 7.5 dBm (5.0 mW). Following ref. [1] we calculated the 

conversion efficiency m = (If'"+If%,^,,,„/(ir"'+If"%,^„,^. This definition, which is actually the 

SffTilS'nff'.*" ' ^""f measure of conversion efficiency if the power diverted into the amplified noise and 
spurious FWM products can be neglected. Figure 2(b) shows the output spectra for the cases when the signal was 

turned off (dashed line) and turned on (solid line). With the signal off the output pumps powers were ^1""'= 17.4 

dBm (= 54.95 mW). Pf' = 16.85 dBm (48.4 mW). i.e. (If'" + Pf')..^«,„j- = 103.15 mW, while m the presence 

ofthesignalweobtainedand Pr'= 13dBm. if"' = 13.25 dBm, giving (Pr+ If"%>,„a,o„ = 40.85 mW. This 

represents a conversion of 60 %. Note in fig. 2b that the signal and the idler (P/"'= 15.2 dBm and /?"'"= 14 7 
dBm) are ~3 dB higher than the pumps, mdicatmg the high efficiency of conversion of our TP-FOPA Note also that 
the amplified noise and spurious FWM power is less than 1% of the pump lasers or the signal and idler thu 
validating the procedure to calculate the conversion efficiency from the pump depletion factor, finally ^fe that the 
signal gam IS only ~8 dB, high energy conversion is achieved for high mput signals, when the FOPA operates in the 

l™t1S°" ""^l ^'f'' ''"'t ^r'"^^''^ •" ^'^-' ^^«'« "« Pl°* the'conversion efficiency as'a Lctton of 
input signal power. As shown m fig.3, within the range of powers available in our experiment, the efficiency 

increases monotonically with Pf. The maximum achieved efficiency w^ limited in our experiment by the large 
insertion loss of the components in our setup. 

1556   1560    1564    1568    1572    1576 

Wavelength (nm) 
1556 1560 1564 1568 1572 1576 

Wavelength (nm) 

Figure 2. (a) Input qsajtrum. (b) Oulput spectra tot%, = 1561.75 nm. 
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We measured the conversion efficiency for several signal wavelengths between JLJ and Xi (18.5 nm bandwidth) 
and we always observed T| ~ 60 %. Figures 4(a) and 4(b) show two typical output spectra when for Xs = 1560 nm 
(65 % energy conversion) and Xs = 1566.5 nm (60 % conversion), respectively. In all cases we verified that 
amplified noise and spurious FWM products did not contribute appreciably to pump depletion. 
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Figure 4. Measured output spectra for (a) Xj = 1560 nm, and(b)Xs= 1566.5 nm 

5. Conclusions 

We experimentally demonstrated, for the first time, to the best of our knowledge, a two-pump fiber optical 
parametric amplifier having 60 % energy conversion over 20 nm bandwidth. The bandwidth and input signal power 
in our experiments were limited by the characteristics of the optical devices. On the basis of previous work [3] and 
the observed monotonic growth of efficiency with input signal power, we believe that even larger efficiencies and 
over broader bandwidths can be obtained with TP-FOPAs. 
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Abstract:. Numerical Simulations are used to Study spectral phase fluctuations and coherence 
degradation m supercontmuum generation in photonic crystal fibers. The spectral coherence is 
shown to depend strongly on the input pulse duration and wavelength. 
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1. Introduction 

Recent numerical modelling of supercontinuum (SC) generation in photonic crystal fibers (PCF) has provided an 
improved understanding of the important physical mechanisms underlying the observed extreme spectral broadening 
11-3]. However, an aspect of SC generation in PCF which has not yet been the subject of detailed theoretical study 
m the sensitivity of these spectral broadening processes to input pube noise. This is, nonetheless, a subject of much 
mportanre, m key optical metrology applications require highly coherent SC with low pulse-to-pulse fluctuations 
L4.5J. On the other hand, the noise properties of broadband spectra generated in standard optical fiber have 
previously been studied extensively in a telecommunications context, where spectrally-sliced SC have been 
proposed as dense wavelength division multiplexmg sources. Signfficantly, this previous work has shown that SC 
generation usmg femtosecond pulse pumping in the presence of noise can, in fact, be ^sociated with significant 
temporal Jitter and a poorly defmed spectral phase across the generated spectrum [6, 7]. In this paper, we present 
results of numerical simulations of SC generation in PCF which show that, for femtosecond pulse pumping m the 
anomalous dispersion regime, input pulse noise leads to large fluctuations in the spectral phase across the SC By 
quantifymg the phase fluctuations via the mutual degree of coherence, the influence of the input pulse wavelength 
and duration on the coherence is conveniently studied and the optimal experunental conditions for coherent SC 
generation are identified. 

2. Numerical Model 

Our simulations use a scalar generalized nonlmear Schrodmger equation (NLSE) [8] to model SC generation in a 
10 cm length of PCF with a zero dispersion wavelength at 780 nm and an effective area of 2 um^ The NLSE 
included the fiber dispersion over 300-1700 mn, m well as setf-steepening, Raman scattering and a 
phenomenological model for mput pulse quantum noise based on a one photon per mode noise seed with random 
phase. Fig. 1(a) shows the output spectral and temporal profiles for 5 different simulations performed under 
Identical conditions except for the initial quantum noise. The input field here was anlO kW peak power 850 nm 
150 fs sech pulse. The output spectra exhibit 20dB spectral widths spanning over an octave from 550-1100 nm in 
agreement with experiments. Several other important features are also highlighted. Nonlmear and dispereive 
mteractions lead to rapid temporal oscillation from modulational instability (MI) which seeds Raman soliton 
formation associated with the temporal and spectral peals A, B and C. As shown previously [6], SC generation m 
the presence of MI and Raman scattering can be very sensitive to noise, and significant spectral and temporal iitter 
from run to run IS clearly seen hi the figure. Figure 1(b) shows the average temporal and spectral profiles calailated 
trom a large ensemble of sunulations, clearly showing how the jitter leads to significant averaging of the fme 
structure observed m Fig. 1(a). In terms of the coherence properties, this jitter is also associated with shot-to-shot 
fluctuations m the spectral phase at each wavelength in the SC, and this quantffied in the bottom plot m Fig 1(b) 
Here we plot as a ftmction of wavelength, the standard deviation of the spectral phase calculated from the ensemble' 
and the figure illustrates the greater stability in the center relative to the edges of the spectrum 
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(a) Results from 5 different simulations (b) Ensemble average 
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Fig.l (a) Spectra (left) and temporal intensity profiles (right) fi-om 5 different simulations. The spectral plot also includes the 
fiber group velocity dispersion variation (top), (b) Results fi-om ensemble average showing the average temporal 
intensity (top) and the average spectrum and the standard deviation of the spectral phase (bottom). 

The coherence degradation can be examined more quantitatively by using a modified Young's double slit set-up, 
adapted from recent experiments quantifying SC coherence in bulk media [9]. Here, two SC generated from 
successive pulses in a pulse train from a femtosecond modelocked pump laser separately illuminate two slits. A 
spectral filter (or a grating) placed after the slits is used to examine the interference fringes generated at each 
wavelength in the spectrum. Since the position of the fringe pattern is determined by the phase difference between 
the two SC, variations in this phase difference due to jitter between successively-generated SC is manifested in the 
shot-to-shot translation of the interference pattern and a consequent reduction in the fringe visibility. In fact, this 
visibility provides a rigorous measure of the local SC coherence properties since it is directly related to the modulus 
of the complex degree of (mutual) coherence between the independent SC sources \gj defmed as: 

8S(^,t,-t,) 
{E](Kt,)E,(,X,t,)) 

^(|E,(X,t,)f){|E,(X,t,)f) 

We have calculated the degree of coherence |g,,| from an ensemble of 200 pairs of independently-generated SC 
obtained from input pulses with different random quantum noise. The top curves in Fig. 2 present results which 
show the output spectra and the degree of coherence for pulse injected at 850 nm, with duration ranging from 1 SO- 
SO fs. Although the spectral broadening in all cases is comparable, it is clear that the mutual coherence |g,j| « 1 
over a large range of wavelengths for the 150 fs input pulse, whereas Ig^l = 1 across the entire spectrum for the 
shortest 50 fs input pulse. 

The fact that improved coherence properties are observed with shorter pulses suggests that the decoherence is 
associated with Ml-induced spectral broadening processes which are more significant for longer input pulses where 
the broadening due to self-phase modulation is reduced. Further support for this interpretation comes from 
simulations studying the variation of the coherence properties over a range of different wavelengths. These results 
are shown as the bottom curves in Fig. 2. Here we see clearly that for an input wavelength of 740 nm in the normal 
dispersion regime where MI is completely inhibited, there is negligible coherence degradation. The generated 
spectral width of 350 nm at the 20 dB level is, however, significantly less than that obtained with the anomalous 
dispersion regime pump at 850 nm. 
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3. Conclusions 

The results above have several important implications. For frequency metrology, where coherent SC smnnine more 
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self-phase modulation and parametric generation near the zero-dispersion wavelength cannot be 
involved in the continuum formation. 
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Raman effect 

In view of their potential for many applications such as optical metrology' and high-bit rate communications, 
supercontinua (SC) have been the object of growing attention these last few years. In particular, several 
techniques have been recently demonstrated in specially-designed optical fibers that exhibit large nonlinear- 
ities and particular dispersion profiles [1-3,5,6]. For instance, SC with spectral extent of more than 1200-nm 
have been generated in photonic-crystal fibers (PCF) [2] and in tapered fibers [5]. It has been shown that the 
resulting spectral broadening was mainly due to the effect of self-phase modulation of powerful femtosecond 
pulses. Provino et al. and Coen et al. showed later that picosecond or nanosecond pulses can also generate 
broadband continua in a case where self-phase modulation is negligible [1,3]. Basically, the build-up of SC 
with femtosecond or longer pulses appears as an intriguing and complex fi-equency-conversion process and 
the physical mechanisms that are at play have been well understood only very recently by means of numer- 
ical simulations of an extended nonlinear Schrodinger equation including the Raman scattering [1,4]. In the 
picosecond and nanosecond regimes, the SC essentially results from a preliminary Raman-induced energy 
transfer from the pump to higher-wavelengths up to the vicinity of the zero-dispersion wavelength (ZDW) 
of PCF's, and a further merging of the wideband continuum through multiple four-wave mixing (FWM) 
processes. These techniques offer impressive results but they have the drawback of requiring special optical 
fibers and a bulky laser source in most cases. In this communication, we would like to emphasize that special 
optical fibers are not needed for ultra-broadband SC generation. To this end, we present experimental results 
performed in a standard long dispersion-shifted fiber (DSF) that demonstrate the generation of a spatially 
single-mode supercontinuum of more than 1100-nm with a spectral power density about 5 /uW/nm. We 
used 0.4-ns pulses at 532 nm from a compact passively Q-switched Nd:YAG microchip laser in a regime in 
which self-phase modulation and FWM near the ZDW cannot be involved in the SC generation. Instead, we 
show that the SC in our experiment results from an interplay between parametric processes with multimode 
phase-matching and double cascade Raman scattering that further evolves in a spatially single-mode SC. It 
is worth noting that attempts have been made to generate continua in standard telecommunication fibers 
in the past [7-9], but it is significant that there has been no experimental results showing a spectral extent 
equivalent to that obtained in PCF or in tapered fibers. 

The fiber used in our experiment was a 650-m-long DSF with ZDW at 1550 nm and cutoff at 1020 nm. 
The pump pulses were produced by a frequency-doubled, passively Q-switched Nd:YAG microchip laser at a 
repetition rate of 6.7 kHz. The mean power at 532-nm and pulse duration were 15 mW and 0.4 ns, respectively. 
The linearly-polarized single-mode output beam was focused into the DSF using a lOx microscope objective 
with a coupling efficiency exceeding 70 %. Finally, the continuum was recorded at the fiber output by means 
of an optical spectrum analyser and its dynamics was analyzed by tuning the launched power. 

Figure 1 shows the different steps of the continuum formation for increasing input powers. In Fig. 1(a), the 
pump power was raised above the Raman threshold and we can clearly see a strong first-order Raman Stokes 
band (Si) at 546 nm (^^=13.2 THz). Additionally, another strong Stokes wave called (Pp) and shifted by 
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Fig. 2. Modal distribution of the FWM spectrum for tlie pump P (a) and for tlie Raman Stokes wave Si 

5-nm from the pump was spontaneously generated through a multimode phase-matched parametric process 
which will be detailed below. This parametric wave Pp acts as a second pump and generates its own first-order 
Haman Stokes band Sp,, as illustrated in Fig. l-(b). This interpretation can be easily verified in Fig l-(c) 
that shows the occun-ence of a second-order Stokes wave Sp, at 563 nm generated from Sp,, which is ctee 
to the second-order Stokes wave S2 associated with Sj. 

Because of the multimode nature of the DSF in the visible, the wave Sp, is further assisted by FWM gain 
with a multimode phase-matching involving the first-order Raman Stok^ Sj as a parametric pump The 
mitial pump pulse at 532 nm (P) and the parametric pump (Pp) at 537 nm are thereby responsible for the 
generation of two simultaneous Raman cascades. In Fig. l-(d) in which the pump power was still increased 
the double Raman cascade merge by creating a wider hybrid Raman Stokes wave SH, that in turn generates 
higher-order bands SH,,3, thus leading to an ultra-broadband continuum of more than 1100-nm (see Fig. 1-e). 

Let us examine in details the different steps of the continuum formation in our experiment. First, because 
of the multimode nature of the DSF and its strong group-velocity dispersion at A=532 nm, the generation 
ot the wave (Pp) results from a well-known multimode phase-matched FWM process [10] To identify the 
modal composition of this parametric process, a cut back experiment in a 1-m long fiber has revealed that 
the interacting modes in the FWM process are the LPn and LPw. As illustrated in Fig. 2-(a) the pump 
is distributed m th«e two modes, giving rise to a LPQI anti-Stokes wave and a LPn Stokes wave This 
same modal distribution appears in Fig. 2-(b) for the second FWM process invohdng Si. Hence Sp that 
IS generated m the LPn mode results from the combination of parametric generation from Si and Raman 
gam from Pp. Note that we did not observe the anti-Stokes waves associated with P and Si in Fi^ l-fa-d) 
because they are absorbed by Raman effect. Staiting from the usual phase-matching relation [101 and by 
simply modeUmg the DSF as a step-index fiber, we calculated a frequency-shift of 5.7 nm for the Stokes wave 
f^irT'i fth measurements (the parameters are 2.8 ^m core radius, a core-cladding index difference of 
u.Uu54, P2=6.6.10 ^"s'^m"^). 
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Fig. 3. Modal distribution of the SC in the spectral domain, (a) Recorded with a CCD camera, (b) recorded 
with a classical camera. Far-field intensity distribution of the output spot without (c) and with (d) chromatic 
filtering. 

Then, the interplay of SRS and multimode FWM leads to the double Raman cascade. In the case of a 
simple Raman cascade, it has been shown in Ref. [8] that the spectral extent of a given higher-order Raman 
component S^ is typically two times that of the preceding Raman component SAT-I- Since two simultaneous 
Raman cascades initially appear in our case, we can except that this broadening process does account for the 
evolution from discrete Raman Stokes orders towards hybrid orders and subsequently towards the continuum 
generation. 

Besides, the spatially single-mode character of the SC is an important issue for applications. Figm-es 3 (a- 
b) depict the modal composition (along vertical axis) of the SC spectrum recorded after dispersion on a 
diffraction grating. The mixed-mode distribution shown in Fig. 3(a) for the discrete components P to SHJ is 
characteristic of mode coupling in long optical fibers [11]. Fig. 3(a) demonstrates that from SHO (A=652 nm) 
the distribution evolves towards the fundamental LPoi mode. Indeed, the SC which is formed from A=652 
nm up to 1750 nm is exclusively generated in the fundamental mode, as shown in Fig. 3(b). To verify this 
property, the fiber output spot has been filtered by means of a low-pass chromatic filter at 650 nm. Figure 
3-(c-d) shows the far-field spatial intensity distribution with and without the filter. The spot size reduction 
of the filtered mode as well as its homogeneous intensity distribution (Fig. 3-d) confirm that the SC is indeed 
single-mode. This interesting feature is due to a progressive modal filtering by the Raman gain and the 
transverse mode overlapping during propagation (see Fig. 3-a). 

To conclude, a spatially single-mode visible-IR supercontinuum exceeding 1100-nm has been generated in 
an usual dispersion-shifted fiber using a microchip nanosecond laser. To our knowledge, this is the simplest 
setup that allows one to generate such supercontinua in optical fibers. The SC features, the compactness and 
attractive cost of the setup present many advantages for applications such as spectroscopy, interferometry, 
optical coherence tomography, and microscopy. Also, as the SC dynamics relies on an original combination of 
various nonlinear processes different from those involved in photonic-crystal fibers, these results contribute 
to a further understanding of the complexity of continuum generation in fibers. 
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One of the goals of the extensive work in the field of transverse pattern formation in nonlinear optical 
systems' is the investigation of possible applications to optical information technology. A major result is 
that the problem of correlation among different parts of a global structure, which eventually would destroy 
stored information, can be overcome by generating spatial structures that are localised in space, 
individually addressable and independent one from the other. These structures, called Cavity Solitons 
(CSs)^'\ have been theoretically predicted in nonlinear materials inside a cavity driven by a coherent 
holding beam acting as an external input. 

Most interesting from the practical viewpoint, for miniaturization purposes, is the case in which the active 
medium is a semiconductor. In recent works'''*'' a number of phenomenological models have been proposed 
in order to describe the semiconductor material. More accurate models including a microscopic description 
of the optical nonlinearity have also been reported *''. For such models, existence and stability of CS have 
been theoretically predicted, both in active and passive configuration. The first clear and unequivocal 
experimental demonstration of CS in semiconductor devices has been recently achieved in^ 

Here, we want to study the role of thermal effects on semiconductor microcavities driven by an external 
coherent field. We evaluate their influence on the transverse spatio-temporal dynamics of the system and 
on the stability of CS, by studying thermally induced instabilities due to a combined effect of field 
diffraction, carrier diffusion, heating and thermal diffusion. We consider both the case of a bulk medium in 
a passive configuration, and the case of a MQW medium in an active configuration (that is, the device is 
electrically pumped, behaving as an amplifier). 

The most striking resuh of our analysis has been obtained in the active case. It is the discovery that, for 
extended parametric domains, the slow thermal dynamics induces a spontaneous travelling-wave motion of 
both spatial patterns and cavity solitons'. This result has been later substantiated by Firth and 
collaborators using a simplified model, which indicates the robustness of this phenomenon with respect to 
the details of the electronic nonlinearity. The analysis of "^ shows that the same phenomenon occurs, in 
restricted parametric domains, also for dark cavity solitons in passive systems. 

We included the thermal dependence in the material susceptibility by considering a nonlinear red shift of 
the semiconductor band-gap when increasing temperature. We also introduced a linear thermal shift of the 
cavity resonance which accounts for the linear refractive index change. A simple rate equation for the 
lattice temperature has also been introduced under the assumption, reasonable in the regimes of our interest 
(sub lasing), that the plasma temperature has a much faster dynamics than the lattice temperature, so that it 
can be adiabatically eliminated. In the frame of paraxial and slowly varying envelope approximation, and in 
the mean field limit, the system equations reduce to three nonlinear PDEs, describing the dynamics of the 
intracavity field, of the carrier density and of the temperature field. These dynamical variables evolve on 
very different timescales: microseconds for the temperature, nanoseconds for the carriers and picoseconds 
for the field . The presence of three very different time scales requires a heavy computational effort. 

In the passive case, we preliminarily decided to approach the problem by successive steps, the first of 
which was the reproduction of global, purely dynamical phenomena related to the role of heating, such as 
the Regenerative Oscillations (RO)" and the phenomena of switching point inversion. 

By considering only the coupling between carrier and temperature field we could show the occurrence of a 
dominant Hopf instability giving rise to RO. We could also conclude that, as opposed to what has been 
shown in fiuid dynamical models, carrier and thermal diffusions are unable, alone, to cause pattern 
formation or structure localisation. 
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As for the active case, we perfomed numerical simulations for both one and two transverse dimensions 
but the figures shown m this summary concern only the ID case, a physical situation appropriate to model 
the experiments on diode amplffiere carried out in Nice by Tredicce et. al. We consider a sample in which 
the active material consists of few GaAs/AlGaAs Quantum Wells, The device is pumped by an electrical 
current that causes a population inversion in the active material, so that the device becomes an amplffier 
kept a few percent below lasuig threshold. 

We have performed the usual Unear stability analysis of the homogeneous steady state; both Turing and 
Hopf instabilities are present, one or the other bemg dominant depending on the parameter choice We 
show by direct numerical integration of the dynamical equations that, for particular choices of parameters 
travelling spatial patterns arise. The existence of a travelling pattern is related to the presence of the Hopf 
mstabihty with respect to spatially modulated perturbations (MI). 

For the same values of parameters travelling CS can be obtained. We observe that a CS rapidly forms in 
the location of the address beam on the fast carrier time-scale (nanoseconds). Then, it persists there for a 
tune on the order of the thermal tune-scale (microseconds), and then it starts to drift. This mw CS 
behaviouris a feature of the thermal effects. 

With the help of Fig. 1 we can thus interpret this evidence: after the CS formation, it starts to dig a 
mmimum m the temperature spatial profile, because at the CS location there are less carriers and thus 
heating is reduced. When the temperature ui the minunum reaches a value such that the CS would be no 
longer stable, it starts moving, following the temperature gradient, i.e. towards larger values of temperature 

Intemity profile        temperature profile 

Fig 1 Grayscale plot of the tune 
evolution of the intensity CS profile 
(left) and the temperature field profile 
(right) after the switch on of a CS. 
White correqjonds to iotensity and 
temperature maxima. On the wrtical 
axis, time ranges from 0 to 1 /«. 
Sample width is 200 jum. 

The time scale of CS drifting is of several microseconds. This means that if we can operate faster than this 
timescale, thermal effects have no infiuence. In particular this is true for applications such as mformation 

where it remains fixed m the location where it has been switched on 
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Fig 2 Grayscale plot of the time 
evolution of the intensity CS profile in 
presence of a phase modulation in the 
holding beam. White corresponds to 
intensity maxima. Starting from left, 
progressively larger phase gradients in 
the holding beam are considered. 
The total integration time is of 12 /us. 
Sample width is as Fig. 1 
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Nonlinear optical effects may provide a way to perform all-optical parallel processing of images. Here we 
mvestigate the possibilities offered by Type II intracavity second harmonic generation. We show that injecting 
an miage m one polarization and a homogeneous field in the other, we obtain, according to the value of the 
latter, either the frequency and polarization transfer of the image or the possibility to enhance its contrast. 

Intracavity SHG 

The system TO are considering is sketched in Fig. 1. A crystal with a x^^) nonlinearity is placed in a cavity, 
formed by a perfectly reflecting mirror (right mirror) and a highly reflecting coupling mirror (left mirror) The 
quadratic nonlmeanty of the crystal allows photons of a given frequency 2a, to decay into pairs of photons 
wi and m with 2a; = a;i + u;^, as well as the reverse process of second harmonic generation. The efficiency 
of such a process depends crucially on the phase matching condition given by the longitudinal momentuin 

wf?ff . f' ^'T u ' ^ fS^"^'^**^ type " phase matching, for which the two fundamental photons 
have different polarisations, but the same frequency. 

In the SHG-setup, the cavity is pumped at the fundamental frequency, which means that there are here two 
pump fields ^1 and E, associated with the two orthogonal Bnear polarization states, which can be chosen 
independently This freedom gives a unique opportunity for designing optical devices with very various 
functions, as will be illustrated in the following. 

The temporal evolution of the intracavity fields, obtained by means of a standard mean fleld model is 
governed by tlie following nonlinearly coupled equations: 

dtB 

dtAi 

dtA2 

(-70 + i^o)B + iaoV'iB + ixAiA2 

(-71 + i£^i)Ai + iaiV\Ai +ix^|B + Ei 

(-72 + ii^i)A2 + ia2V\A2 + ixAlB + E^ 

(1) 
(2) 
f31 

m which ^1 and ^2 are the fundamental field envelopes associated with polarization x and y respectively 
and B IS the envelope of the second harmonic field. 70,71, 72 are the cavity decay rate for the three fields Ao' 
t'il the detumngs and OQ, oi, aa the diffraction parameters. The effects of diffraction come in through 
the differencial operator Vi acting in the transverse plane. Ej and £2 represent the pump field amplitude 
m each hnear polanzation state. ^ ^     *- F     ^c 
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Fig. 2. Second-Harmonic-Generation for an asymmetric pumping. The two intracavity field amplitudes {Ai 
(crosses) A2 (circles)), corresponding to the steady state solution, are plotted as a function of the pump 
field El for a fixed value of E2 = 5. The other parameters of the system have been fixed as follows: Ao = 0, 

Al = A2 = 1.0, 70 = 71 = 72 = l.O. 

Whereas the properties of this system have been mainly studied in the case of a symmetric pumping Ei = E2 
(see [1, 2]), we will focuss here on a diiTerent situation: we will assume that the signal to be processed, 
an optical image described by a spatially dependent field Ei(x), will be injected into the system in one 
polarization (say, the x polarization), whereas in the other polarization the pumping will be homogeneous 
in the transverse plane. We will show that the system presents different types of behaviour, depending on 
the relative value of Ei{x) with respect to Ea- 

Steady state solution 
The study of the steady state solution of Eqs. (1) for an asymmetric pumping provides a valuable insight 
into the properties of the system under consideration. The values of the intracavity fields Ai and A2 in each 
polarization state are shown in Fig. 2 as a function of Ei for a fixed value of E2. For small £1, the function 
Ai(J5i) is single-valued and takes small values while A2{Ei) is large. For Ei close to £'2, both functions 
Ai{Ei) and A2{Ei) become S-shaped, therefore the system displays bistability For Ei much larger than E2, 
AiiEi) and A2iEi) are again single-valued but now Ai{Ei) » A2iEi). The S-shape is in fact connected 
with the polarization instability well known to occure in this system for a sj-mmetrical pumping [1]. It 
gives raise to interesting properties of the system, which can be exploited from the point of view of signal 
processing. 

Image transfer (polarization and frequency) 
If the intensity of the signal in x-polarization remains always below the value of the y-polarized pump field 
(i.e. if £i(x) < E2), the steady state intracavity field Ai{x) never leaves the lower branch of the curve Ai{Ei) 
shown in Fig. 2, and follows in a quasi linear way the spatial dependence of the input signal. The interesting 
feature of this operating regime appears when the output at SH frequency is considered: as a matter of facts, 
the output at fi-equency 2w turns out to reproduce the spatial distribution of the input signal, as represented 
in Fig. 3. In this case, therefore, the device allows to transfer an input signal to an other frequency and 
polarization. 

Image regeneration and contrast enhancement 
If, on the contrary, the intensity of the signal in x-polarization is increased so that it locally exceeds the 
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oimnP for H,f;! T f '*"*'' "'^*''' **"^ dimensional case, with, as a dotted line, the value of the 
whS S,roHuci^ °^°"f P°'TT"- °." *"" "^""^^ "^"^ «""* distribution in the same polari^tion state, 
which reproduces the input signal only in the regions, in which the signal is above the reference value E^. 

pump Ea, the S-shaped dependence of AiiE,) comes into play: an immediate consequence is that above a 

tifvalf of'tf f',/f 1"*" ""' ""^"^ *** "^""P" *° '""^ "PP^^- b-"*' 1-dingl a sudden change i^ the value of the field At. This is precisely illustrated in Pig. 4, in which the spatial dependence of Lx) 
reproduce the input signal in the regions where E, {x) > E,, whereas elsewhere, a suppression of the siL 
transmission is observed. »       KK oit,iiai 

The threshold value, above which the jump to the upper branch takes place, occurs before the turning point 
- 6-3 For exampH ,n Fig. 4, the first two peaks that cross E^ = E^ do not cross the tm-ning point but 

nevertheless are amphfied. In fact, it is found to occure close to the point, where E^{x) = E^. This device 
could be useful to regenerate an image deteriorated by a noisy backpoung or to enhance the contrast in an 
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The stochastic dynamics of domain walls (DW) with oscillatory tails connecting two symmetric phases is 
analysed. In particular, we focus here on a stochastic model of an optical parametric oscillator (OPO) given 

by [1]: 

dtAo   =   T[-Ao + E-Al] + iad^^^Ao 

dtAi   =   -Ay + A^A\ + i1ad^:,Ai + ^(a;, \) 
(1) 

where ^o and A\ are the pump and signal complex fields respectively; T is the ratio of the pump and 
signal cavity decay rates; E is the amplitude of the external pump field; a is the diffraction coefficient. 
The stochastic term ^ represents local white noise, delta correlated and with zero mean value and variance 
(1^1^) = 21), where D denotes the noise strength. For simplicity, noise appears in the equation for Ai only. 
The addition of pump noise and detunings in (1) does not modify our results. 

Above the threshold for signal generation (.E > 1) and for D = 0, equations (1) admit the stable homogeneous 
steady state solutions A^ = \, A\^ = ±\/E- 1 and the unstable one A^ = E, Tlf = 0. It is possible to 
demonstrate [1] that there are no modulational instabilities for any value of E and T. In the OPO model (1) 
DW correspond to heteroclinic trajectories with oscillatory tails. These trajectories connect the two stable 
homogeneous states asymptotically for a: -4 ±oo by passing through the unstable solution v4J = 0, which 
defines the core of the defect (Ising walls). 

In the absence of noise pairs of DW lock at given equilibrium distances s = sj (j = 0,1,2,...) with Sj < Sj+i. 
A rich variety of stable locked states including cavity solitons at s = SQ is then obtained. Coexisting with 
these spatially localized objects there are stable multiple-DW solutions (see Figure la) with a flat spectrum 
in Fourier space (see shaded curve in Figure lb), typical of spatial disorder [2]. 

Fig. 1. a) Real part of the signal stationary solution showing a disordered distribution of defects, b) Power 
spectra of the signal field in the deterministic case (D = 0) averaged over 10* random initial conditions 
(gray shading) and spectra of the field for D = 0.282 averaged over 8 • 10* time steps (solid line). 

In the presence of noise defects are created in pairs and subsequently their dynamics follows a discrete 
random motion between the equilibrium distances Sj which terminate with the annihilation of the defects. 
We consider the stochastic dynamics in the ID transverse profile of the signal field by using T as control 
parameter. For small F the activation £a and deactivation Ea energies required to create and erase a defect 
pairs at the distance so are such that D <£ a'^^d, where D is the noise intensity. 
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We integrate (1) numerically for the parameter values S = 4, and o = 0.5. On reducing the decaj rate V we 
we able to increase the ratio between the frequency and damping coefficient of the spatial oscillations [1] 
Without loss of generality we start from a random initial condition. When a balance between pair-production 
and annihilation processes is achieved the density of defects along the lattice reaches an equilibrium value 
independent of the initial condition. In our simulations this is achieved after a long transient which depends on 
the noise strength, and is larger for smaller D. The defect dynamics is characterized by a discrete-like random 
walk among adjacent equilibrium distances s,-, which for small distance s may be represented by the transition 
Sj -^ sj±i whilst for large s it becomes a continuous brownian motion as the interaction between DW 
becomes weaker. A typical evolution of the real part of Ai is plotted in Figure 2 for T = 0.2 and D = 0 282 
At equilibrium, arrays of spatial soiitons of variable length replace the spatial chaos observed at 2? = 0 
liie spectrum of the transverse field in Fourier space averaged over a long time-series shows a pronounced 
peak at the wavenumber k = 2w/so (see solid line in Figure lb). We also provide the characterization of the 
stochastic process in terms of correlation lengths. 

E 

space 

Pig. 2. Stochastic time evolution of the real part of the signal field Ai for B = 4, a = 1  T = 02 and 
D = 0.282 o^er tmmients ham been discarded. ' 

In conclusion, we have shown that noise can suppress spatial chaos in a stochastic model of an OPO. We 

by for example, lowering the threshold for the onset of chaos, noise leads here to the formation of highly 
ordered structures. ^ 
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Generation of ultra-short optical pulses in CW-pumped cavities are mostly associated with mode 
locking in active media, such as doped fibers or solid-state lasers. The cavity contains not only a gain 
element (atoms or ions) but also a nonlinear element permitting self-phase modulation (SPM) or intensity 
dependent absorption. Spontaneous generation of a pulse in CW-pumped optical cavities without popu- 
lation inversion may also take place through the nonlinear three-wave counter-streaming interaction. It 
has been shown that the same mechanism, responsible for symbiotic solitary wave morphogenesis in the 
Brillouin-fiber-ring laser [1], may act for picosecond pulse generation in a quadratic optical parametric 
oscillator [2]. The resonant condition is automatically satisfied in stimulated Brillouin backscattering. 
However, in order to achieve quasi-phase matching (QPM) between the three optical counter-streaming 
waves in the x^^' medium, so that both signal and idler waves propagate backward with respect to the 
pump wave, a polarization inverted grating of sub-^m period is required. QPM second-harmonic (SH) 
generation for copropagating waves, in which the wave mismatch between the fundamental and SH waves 
is compensated with the assistance of spatial gratings of nonlinear or linear material constants, has been 
extensively studied [3]. If a grating with a sufficient short period is available, both waves traveling in 
opposite directions can be phase matched and the SH wave is generated in reflections [4]-[8]. Recent ex- 
periments of backward SH generation in periodically-poled LiNbOa [8] [9] and KTP [10] avoid the technical 
difficulty of a sub-/im QPM by using higher-order gratings. Studies of QPM SH generation by backward 
propagating interaction have been done and the stability analysis of the counter-propagating interaction 
in the cavity has been performed, showing complex temporal pattern formation and self-pulsing [11]. 

Here we investigate the opposite mechanism, i.e. parametric down conversion, with the pump at 2u>, 
and where the backward signal wave at u can spontaneously build up from quantum noise and is then 
amplified in the degenerate counter-streaming OPO. We perform the stability analysis of the CW-pumped 
degenerate backwad OPO by starting from the stationary solutions and following the procedure of Ref.[l]. 
The equations governing the QPM backward parametric down conversion without optical damping and 
dispersion, in dimensionless units are : 

{dt + d,)P= -S' (la) 

{dt-dr)s= PS* (16) 

with the boundary conditions for the singly resonant cavity 

P{x = 0,t) = l  ;    S{x = L,t) = VR Six = 0,t) (2) 

where P stands for the pump amplitude Ap at 2w, S for the signal A, (or idler At) amplitude at w, 
L for the cavity length, and R for the intensity feedback parameter of the singly resonant OPO for 
S. At zero phase mismatch and in the absence of dispersion we can look for the stability of the real 
problem [S* = S). The stationary equations admit two inhomogeneous solutions above OPO threshold 
Rthd = exp(-2i) : 

(a) for P2 _ 52 ^ 1)2 = const   ;   P,t{x) = D coth(Dx + 4>o)   ;   S^tix) = D/smh{Dx + <Po)      (3) 

(b) for 52 - P2 = £)2 ^ const   ;   P,tix) =-D tein{Dx + ,f>o)   ;   S,tix) = D/cos{Dx + <j>o)       (4) 

Let us look for the stability of such solutions by considering the time perturbative problem like in [1], 
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P(x,t) = P,t{x) + SP{x,t) = P,t(x) + X{x) expi-iut) (5) 

Six,t) = Sstix) + SS(x,t) = S,tix) + Y(x) exp(-iu,t) (g) 

where X(x) and Y{x) are the space dependent perturbations and w = w^ + m;.- the complex eigenvalue 
irequency yielding instability when Im w = wj > 0. From now on we will call P = P,Jx) and S = S t(x) 
Linearizing Eqs.(la,b) and introducing the pertinent variable U = Y/S, we obtain 

U" + (w^-2S^)U = 0     ;     X = -iwU~U' (7) 

with the respective boundary conditions 

U{L) = UiO)     ■     X(0) =-r(0) - «wf/(0) = 0. (8) 

Introducing in (7) the respective stationary solutions (3) or (4) for S we may integrate this linear inhomo- 
geneous equation, and conditions (8) determine the eigenvalue problem for w = w^ + jw,- For (Dx)^ < 1 
the mhomogeneous potential 5 has the simple form S'^ = {1^ D^)/(l + xf (where P^-S^ = ±£>2) and 
Eq.(7) admit solutions in terms of Bessel functions [12], since it takes the form 

with y = l + x, which solution is 

U = ^[CiJ4wy)+CiY4wy)]    ;     v^-1/4:= 2{1± D% (IQ) 

We have performed the analysis for case D = 0{^ = 3/2), for any x, and for D # 0 in the limit Myl » 1 
where an asymptotic expansion of Bessel functions (10) in terms of trigonometric angular functions is 
available [12J. It allows to analitically treat the interesting problem of the stability of the cavity modes 
Re u^inN/L (N integer). R-om (10), boundary conditions (8) and imposing solvability for anv couple 
(Ci, 62), we obtain the complex dispersion relation for w = Ur + iu>i 

A + B am{wL) + C cos(wi) =0 

A=(l + L)(u^ + a(a-l)u,) 
B = i{l + L)io^ - aLu^-i-a^{iu - 1) 

C =-(1 + L)u^ - iaLu^ - au(a - 1 - L) 

where a = {4v\- 1)/B=1±D\ One obtains a couple of equations for (w^, w^) which is solved by a two 
variable Newton method; its solution always presents instaUlty (Im w > 0). The omnipresent instability 
IS confirmed m the general case, beyond the asymptotic limit, by numerically solving Eqs (la b) Fie 1 
shows the growth rate Im « of the first cavity mode (N = 1) vs. the feedback rate R of the backward 
signal intensity for different OPO length L (and same pump input). 

This striking result about the unconditional instability of the degenerate backward OPO is not so 
surprising, since the solitary wave which is generated exhibits unlimited amplification and compression 
above threshold, and therefore it is able to collapse whatever the cavity length. Moreover, starting 
trom the stationary solutions, the time amphfication rate 7, of the generated signal wave modulation 
(corresponding to one pulse per round-trip, i.e. N = 1) is accurately given by the analytical value Im w 
ot l-ig.l, even for DL values not necessarily small. E.g. for L = 0.3, D = 0.8185 (DL = 0 2455) and 
R = 0.56 we obtain jt = 1.92 x 10"'* and Im w = 1.68 x lO"^. ; 

We know that the same equations governing the unbounded' problem of a dissipative signal wave 
backward propagatmg with respect to a CW pump wave do not have a stable attractor solution Indeed' 
we may perform an asymptotic Kolmogorov-Petrovskii-Piskunov (KPP) analysis of the undepleted linear 
problem [13J 114] m order to prove the non existence of such attractor. Therefore it is necessary to 
stop this singular behavior by taking into account an additional physical mechanism. Since the solitary 
wme generated becomes extremely steep and narrow when its amplitude increases, a linear saturation 
effect IS played by chromatic dispersion. The numerical behavior shows that the amplification of the 
so itary pulses is dynamically saturated by temporal modulation of the envelopes, yielding the dynamic 
solitary structure described in Ref.[14]. The saturation dynamics has been obtained for a set of diiferent 
pump intensities and cavity lengths.  Dispersion corresponds to actual (e-e) polarization interaction in 
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Figure 1: Instability growth rate Im w of the first mode Re u; = 2n/L vs. the signal feedback rate R of 
the degenerate backward OPO, for different cavity length L. 

LiKbOa at 100°C, namely 0.1131 psVm for the pump P at Ap = 0.775 jum, and 0.8930 ps^m for the 
backward signal wave S at A^ = 1.5.5 //m. The power requirement for backward OPO operation depends 
on the ability to achieve low-order QPM over centimeter lengths. Thus,e.p., for a first order QPM in 
LiNbOa the grating pitch is as small as AQPM = ^ir/K = 0.179 /*m. For a CW-pump field Ep = 0.725 
MV/m (i.e., a pump intensity of Ip = 100 kW/cm^) propagating in the quadratic x*^' material with 
the following values of the parameters: d = 20 pm/V, rip = 2.179, n, = 2.141, Vp = 1.323 x lO^m/s, 
Vs = 1.371 X lO^m/s, Vj = 1.359 x 10®m/s, the nonlinear characteristic time yields TQ = ((rpEp/2)~^ ~ 0.37 
ns, where ap = 2'Kdvp /XpUp is the coupling coefficient, and the nonlinear characteristic length of the cavity 
is A = VpTo = 5 cm. For L = i/K = 1 the solitary pulses are compressed until 7.5 ps before dispersion 
begins the saturation process. The dynamic solitary structure being deeply modulated, the central peak 
has about 5 ps width, while the whole pulse spreads over some tens of picoseconds. 

The analytical stability analysis of the degenerate backward quasi-phase-matching parametric decay 
interaction in a singly OPO cavity above threshold shows that the inhomogeneous stationary solutions 
are unconditionally unstable, whatever the cavity length and pump power. Starting from any initial con- 
dition the backward signal wave evolves to an unlimited pulse collapse. Taking into account dispersion 
we may saturate this singular behavior and obtain a new type of dynamic solitary wave. 

CM. and A.P. thank Katia Gallo for stimulating discussions. 
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Abstract: We show experimentally and numerically the existence of stable spatial 
sohtons in an optically pumped semiconductor microresonator. We demonstrate that the 
pimip substantially reduces the light intensity necessary to sustain the solitons and 
thereby reduces destabilizing thermal effects. We demonstrate coherent switching on and 
off of bright solitons. We dfecuss dilferences between pumped and unpumped below 
bandgap-solitons. 
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1. Introduction 

Spatial solitons in semiconductor microresonators [1.2] are self-trapped light beams which can form due to 
both transveree (e.g., self-focusing) and longitudinal (nonlinear resonance [3]) nonlinear effects These 
nonlmear effects can act in the same sense or oppositely, with the consequence of reduced soliton stability 
m the later case. Thus choice of nonlinear resonator parametere suited best for sustaming stable solitons is 
important. The best-suited schemes are unpumped microresonator excited above bandeap 141 and ooticallv 
pimiped microresonator excited below bandgap [5]. =-»• L j        F       J 

Here we pump a semiconductor microresonator optically in a range up to the lasing threshold and study 
formation of switched structures. We show experimentally and numerically the existence of the resonator 
sohtons m the pumped microresonators. We demonstrate that the pumpmg substantially reduces the light 
intensity necessary to sustam and switch the solitons (diminishing thermal problems as a side effect) so that 
semiconductor laser diodes are sufficient for sustaining solitons. We discuss differences between pumped 
and unpumped solitons below bandgap. 

2. Experiment 

We pump a bistable quantum-well (GaAs/GaAlAs) microresonator using either a tunable Trsapphire laser 
or a high power multimode laser diode. The pumped area of the lesonator is illuminated additionally by a 
focused beam from a single-mode laser diode that provides quite large Fresnel number (-100) and near 
resonant illummation of the resonator. The main control parametere in the experiment are the resonator 
detumng and intensities of the illumination and pump. 

Fig. 1. Intensity snapshots of typical structures observed in reflection from pumped (below transparency) 
semiconductor microresonator iUummated near resonance showing bright (a) and dark (b) soliton 
The illuminating beam from the laser diode has an elliptical shape (c). 

Observations are done m reflection since the substrate of the microresonator structure is opaque at the 
workmg wavelengths: dark switched structures in reflection correspond to bright ones in transmission and 
vice versa. Switched structures formed in the illuminated beam cross section were monitored in the plane of 



NLTUD5-2 

the microresonator in two ways: (i) A CCD camera with electro-optical shutter recorded 2D snapshots of 
switched structures, (ii) A fast and small aperture photo detector monitored local dynamics. 

3. Results and discussions 

Switched structures observed (Fig. 1 a,b) manifest themselves as resonator solitons: 1) they are of the 
size(~10 |im) expected for such solitons [1]; 2) they are round spots whose size and shape are independent 
on the intensity and shape of the illuminating beam (e.g., elliptical beam shape as shovwi in Fig. Ic); 3) they 
are robust against perturbations of the illuminating light intensity; 4) they are bistable, i.e. thay can be 
switched on (Fig. 2a) and off (Fig. 2b) by sharply focused address pulses. 

This soliton nature of the observed switched structures is supported by numerical simulations of the 
intracavity field structures (in 2D) using the model equations for the pumped semiconductor microresonator 

CD 

M 
E 

•55 
c s 

Fig. 2. Recording of switching-on (a) and switching-off (b) of a bright soliton. Vertical arrows mark 
the application of address pulses. Dotted traces: incident intensity. The insets show soliton and 
unswitched state in 3D representation. 

0.20 

b) 

jOB' 
■ y 
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Fig. 3. Results of numerical simulations of below bandgap (purely dispersive) solitons using the model 
equations [4] for unpumped (a) and pumped above "transparency" point (b) microresonator. Insets are dark 
(a) and bright (b) solitons. Shaded areas are domains of existence of resonator solitons. Areas limited by 
dashed lines are optical bistability domains for plane waves. 
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Mvm by a plane wave [4]. Fig. 3 shows typical examples of calculated resonator solitons below bandeap 
Bright solitons have a large existence range in the pumped c^e (Fig. 3b), dark solitons exist, though with 
smaller range of stability, in the unpumped case (Fig. 3a). Parameter domains of existence of resonator 
solitons are related to those of optical bistability for plane waves, are shown in Fig 3 

Analysis shows that increase of the pump intensity leads to shrmking of the resonator solitons' 
existence domain and shifting towards low intensity of the light sustaining the solitons (Such reduction of 
the sustaining light intensity was observed experimentally m [4]). 

When the pump intensity approaches the transparency point of the semiconductor material the 
resonator solitons domam of existence disappears. It reappears above the transparency point In the 
experiment we have quite strong contribution of the imaginary part (absorption/gam) of the complex 
nonhnearity at the working wavelength (854 mn). Therefore the transparency point is very close to the 
lasmg threshold so that inversion without lasing is difficuh to realize. 

Slightly above threshold we observe m presence of illumination structures (Fig. 4) remmiscent of the 
solitons m electrically pumped resonators [6]. 

a) b) 0 
Fig. 4. Intensity snapshots of typical beam structures at optical pump intensities slightly above lasine 
threshold (pump increases from (a) to (c)). 

4. Conclusion 

In summ^, optically pumped semiconductor resonatore are well suited for sustaming solitons below 
bandgap. (1) background light intensity necessary to sustain and switch resonator solitons is substantially 
reduced by the pumping and therefore destabilizing thermal effects are mmimired, (ii) above the 
transparency point only the dispereive part of semiconductor nonlmearity stabilizes a soliton, therefore the 
domain of existence of "below bandgap" (purely dispersive) bright solitons can be quite large Moreover 
optical as opposed to electrical pumping allows more homogeneous pumping conditions [7] This suggests 
that optically pumped resonators lend themselves more readily for localization and motion control of 
solitons then electrically pumped ones. 
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Abstract:   Effects of guiding filters on solitons in fiber links with periodical dispersion-slope 
compensation are numerically studied with regard to 160Gbit/s transmission. It is predicted 
that slope compensating links require narrower filter bandwidth and higher transmission power 
than do slope-free fiber links. 
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Soliton transmission control in frequency domain using narrow band filters is a well known technique to 
stabilize soliton pulse trains[l, 2, 3, 4]. The filters not only eliminate noisy dispersive wave outside the signal 
bandwidth but reshape the pulse spectrum. Stability of the spectrum reduces Gordon-Haus jitter[-5], the 
jitter of the pulse position induced by the amplifier noise through self-phase modulation. 

In ultra-high bit rate transmission systems of lOOGbps or above, group velocity dispersion (GVD) of fibers 
must be negligibly small to avoid pulse broadening. In such systems, the third order dispersion (TOD), or 
dispersion slope, becomes one of main factors that limit transmission distance. 

Elimination of dispersion slope can be achieved by several methods. One solution is the use of dispersion 
flattened fiber all along the link. However, propagation parameter of a fiber varies with its environment, hence 
precise control of accumulated slope can only be achieved by compensating devices periodically inserted in 
the transmission line. 

A question then arises whether the same guiding scheme as that of the ideal slope-free fiber link could 
be applied to the periodically slope-compensating fiber link. It has been known that the spectrum of a 
short pulse, whose central fi'equency is near zero dispersion frequency, can be split into two parts, one in 
the normal dispersion regime, and the other in the anomalous dispersion regime, and these two develop 
independently[6]. To avoid this spectral splitting, the bandwidth of filters must be narrower than the ideal 
case. Another consideration is that the accumulation of TOD and its cancellation in the compensating 
devices could automatically limit bandwidth of the transmitted spectrum as in dispersion managed links[7]. 
Then the spectral filtering must be more modest than the ideal case. The purpose of this paper is to 
numerically investigate optimal specification of guiding filters in a fiber link with periodical dispersion-slope 
compensation. 

Fig 1 shows a schematic of a transmission system assumed in the simulation. Bit rate is 160Gbps using 1.25ps 
F\VHM sech^ formed initial pulses. Wavelength dispersion D and dispersion slope D' in a transmission fiber 

160Gb/s 
1.25psFWHM   DBF 

sech^ 
2^-1PRBS 

TX Q[ 
40km 

Repeater 

OA 
DSF 

SC 

OH 
OBPF   i J ) 
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■0- 

DSF DSF 

SC 

^^ 

QOBPF       °\    SC        ( )     OBPF       °^    SC 

40km LcU    \^     '-' 40km        U^    ^\J    '-' 

Fig. 1. System schematic. TX; optical transmitter, RX: optical receiver, SC; dispersion-slope compensator, 
OBPF: optical band pass filter, OA: optical amplifier. 
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(DSF) are 0.005ps/km/nm and 0,07ps/km/nm/nm, respectively. The dispersion slope accumulated within 
one repeater spacing is completely compensated at the next repeater. Each repeater consists of a slope 
compensator (SC), an inline ampUfier (OA), and a Lorentzlan bandpass filter (OBPF). Slope compensators 
are smumed to be ideal; loss less, without nonhnearity, and no dispersion other than TOD. The gain of each 
amplifier is automatically controlled so that the average power launching into the following transmission 
tiber K retained to the average powder of the transmitter output. 

In what follows, polarization mode dispersion, intrapulse Raman scattering, and the fourth or higher order 
dispersion are all neglected. Then, spatial evolution of pulse envelope u(z,t) in a moving frame at a trans- 
mission distance ^ and a time * is described by the following generalized nonlinear Schrodinger equation, 

.du _    ,r   \ Ihd'^u     .0sd%       , ,.   . 
,    *i;--*r + yiF + *TaF-^W«' (1) 

where T is fiber loss ^2 and ^3 axe GVD and TOD, respectively, and 7 is nonlinear parameter. The parameters 
P2,m, and 7 are related with conventional parameters by 

2wc        ^      V27rc; 27r2c2^'    ^ ~ XA,g' (2) 

where A is signal wavelength, c is speed of light in vacuum, ^eff is efl^ective beam crosssection, and m is 
nonlinear refi-active index. 

In the present analysis^ eq.(l) is numerically solved by means of spht-step-fourier method with an initial pulse 
pattern ot 2 - 1 PRBS. liransmission characteristics are estimated by eye diagrams, from which Q values 
at the maximum eye opening are calculated. Available transmission distance is defined by the maximum 
transmission distance that keeiM Q larger than 7. 

Inline amplifiers are assumed to be phase-insensitive[8], and are modeled by a lumped gain plus a spontaneous 
emission noise. The ampUtude and phase components of the spontaneous emission noise are assumed to be 
white gaussian, and separately generated by using pseudo random numbers. 

Peak power of initial pulses is assumed 12.5mW, 15.8mW, 19.6mW, and 23.7mW, each of which corresponds 
to sohton order n of 1.6, 1.8, 2.0, and 2.2, respectively. Note that path average power of the system under 
consideration is 0.39 times transmitter output power. This means soliton order n of the input pulse should 
be 1.6 li the path averaged power is made equal to the power of the fundamental soliton. Other parameters 
are summarized in Table 1. 

Table 1. Parameters used in simulation. 

Effective beam crosssection gOpm^ 
Nonlinear refractive index 3.2x10-^6 ^jj^a^^ 

Signal wavelength 1550nm 
Noise figure of inUne amplifiers 6dB 

Repeater spacing 40km 

Pig.2 shows the available transmission distance as a function of the filter bandwidth. Fig.2(a) is the result 
for a system utilizing dispersion flattened fibers (ft = 0), whereas Fig.2(b) is for the periodically slope- 
compensating system. f j      ^ 

In dl cases, we can find optimum bandwidth of filters. Smaller bandwidth results in cutting-off of signal 
sidebands, while larger bandwidth results in increase of Gordon-Haus jitter induced by larger spontaneous 
noise of amplifiers. 

Comparing two figures, we find little difference in the maximum transmission distance, but clear difference 
m filter bandwidth and transmission power that gives the maximum, i.e., the slope-compensating system 
requires narrower filter bandmidth and higher transmission power. 
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Fig. 2. Available transmission distance as a function of filter bandwidth, (a)system using slope-free fibers, 
(b)slope-compensating system. Parameters are peak power of initial pulses. 

This result can be explained by the following discussion. During transmission of one compensation period, 
pulse shape is heavily unsymmetrized because of large TOD (note that TOD length of our system is only 
3.1km). One of two edges becomes steep or pedestal-associated with large chirp imposed, whereas chirp 
on the other edge is much smaller because of rather modest intensity variation. This unbalance of chirp is 
preserved even after the slope-compensation, which is essentially a linear operation without dissipation. In 
expectation of cutting-off high frequency component and of restoring symmetricity of the pulse spectrum, the 
filter bandwidth suitable for slope-compensating systems must be narrower than that for slope-free systems. 
Since the energy cut-off by the filter becomes larger, the required transmission power becomes higher. 

In summary, we have numerically investigated optimal specification of guiding filters in a fiber Unk with 
periodical dispersion-slope compensation. It has been predicted that the maximum transmission distance 
can be as long as that of slope-free fiber links but with narrower filter bandwidth and higher transmission 
power. 
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Abstract: The complex cubic-quiiitic Giiizburg-Landau equation (CGLE) lias a multiplicity 
of soliton solutions for the same set of equation parameters. Based on their analysis, we propose 
a conjecture for a stability criterion for solitons in dissipative systems 
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• Passively mode-locked fiber lasers can be modeled by the complex Ginzburg-Landau equation (CGLE) 
These devices generate ultra-short pulses which can be considered as solitons. The shape of these soUtons 
are fixed for any given set of parameters of the system. However, more than one solution can exist for the 
same set of parameters^ In fact, it is known [1] that, even in one dimension, solitons in dissipative systems 
appear n multiphcity^For eax:h solution, the shape, amplitude and the width are all fixed and depend on the 
parameters ot the CGLE. In some cases, we can observe up to five stable solutions in a given system [1] Each 
type of solution may be stable in a certain region of the space of parameters. The existence of multiplicity of 
solitons for the CGLE raises an important issue: are those soMtons stable? When we change the parameters 
of the equation, is it possible that a transition from stable to unstable soliton occurs? In other words what 
IS the stability^ criterion for solitons in dissipative systems? Up till now, we are not aware of any work which 
answers the above question. 

In the situation where a single transverse (or temporal) coordinate is retained in the analysis, the cubic- 
qumtic LjKjthkj reads as [2] 

.       D 
v.-+ j#« + |#r# = J# 4-je|#|2^-I-i/?^,„-I-,>|^|4^ _ ^|^|4^^ ^jj 

where D, S, (3, e fx, and v are real constants (we do not require them to be small). The CGLE aDolies 
as we mentioned to the problem of ultra-short pulse generation in passively mode-locked lasers. In this 
case, i IS a retarded time, z is the number of round trips, # is the complex envelope of the optical field 

' he dispersion coefficient, 6 gives ax;count of the linear gain, H describes spectral filtering or parabolic 
gam {fi>Q), e accounts for nonlinear gain/absorption processes, fx represents a higher order correction to 
the nonlinear amplification/absorption, and ,. is a possible higher order correction term to the intensity- 
dependent refractive index. ■ ' 

The numerical results for soliton solutions are presented in Fig.l. Fig.l(a) shows the peak ampUtude of the 
single pulse (SP) soliton branch versus e. This is the branch of soUtons with the "plain" or bell-shape profile 
which resembles usual aecft-profile solitons. The shape of the soliton continuously changes when we change 
e. As a result we have a "branch" of solitons. It extends from the threshold both up and down in ampHtude 
For every value of c above the threshold we have two SP soliton solutions. An interesting feature of the 
upper branch IS its spiraling, shown more clearly in Fig.l(b) and 1(c). We have studied the stability of the 
SP sohtons at every point of the solid curve in Fig.l with the main attention concentrated on the spiraling 
part of tlie curve In numerics, we used the linear stability analysis, described in detail in Ref. [3] and verified 
its results through direct numerical solution of the CGLE when the initial input is one of the SP solitons 
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Fig. 1. (a) Maximum SP soliton amplitude (solid curve) versus c. The shadow represents the values of the 
parameter e where SP soiitons of the upper branch are stable, (b) Maximum soliton amplitude versus c for 
SP soiitons at the top of the branch shown in (a), (c) Magnification of the curve shown in (b) inside the 
small rectangle. 

The stability analysis allows us to calculate the growth rates [g) for the unstable soiitons. The zeros of the 
growth rate g versus e curves give us the boundaries of instability. This way we were able to find which parts 
of the spiral correspond to stable soiitons and which parts do not. In particular, we found that the lower 
branch of the SP soiitons is unstable up to the threshold point in Fig.1(a). The SP soiitons are stable above 
this point. 

The growth rate curves calculated for SP soiitons in the spiraling part of the curve in Figs.l are shown in 
Fig.2(a). The curve with the larger growth rate corresponds to the outer part of the spiral which is shown 
in magnified version in Fig.1(b). The arc of the growth rate curve from e = 1.08 to 1.14 corresponds to the 
part of the spiral from point 4 to point 2. The lower part of the growth rate which gradually goes to zero 
at smaller e corresponds to the spiral from point 2 to point 1 and further away from the spiral. Between the 
different portions of the growth rate curve with the points ^r = 0, SP soiitons are stable. We have eigenvalue 
transformations from being purely real to imaginary at the edges of soliton existence where g turns to zero. 

The two bifurcations in the stability of soiitons located at points numbered 4 and 2 are qualitatively different. 
At point 4, the growth rate goes to zero and the next part of the spiral corresponds to stable soiitons. On 
the other hand, at point 2 the mode of instability changes but the soiitons remain unstable. Moving to 
the left along the branch for SP soiitons, the value of the growth rate monotonically decreases and below 
e = 1.02 the SP soiitons become stable up to e = 0.4 which is the absolute minimum point of the SP 
soliton existence. Turning down beyond this point, SP soiitons, which now become low amplitude ones, are 
everywhere unstable. This turning point is qualitatively similar to the point 4. 

The point 2 in the spiral is a special one. Although this is the point of bifurcation, the SP soliton is unstable at 
both sides of this point. What changes at this point is the mode of instability. Namely, using the standard sta- 
bility analysis for soiitons we can write the solution in the form ^(f, z) = [^o(<) + a/(0 ^'^P id^)] exp (-iojz) 
where i{>o{t) is a stationary soliton solution, a is a small parameter, f{t) is the perturbation function and g 
is its growth rate. Substituting this equation into Eq.(l), assuming that o is small and linearizing around 
the soliton solution we will get an equation for eigenfunctions f{t) and eigenvalues g. For details see e.g. 
section 13.7 of [4]. This equation can be solved numerically. This way we can find the perturbation function 
f{t). We have a bifurcation at point 2 where the mode of perturbation changes. Moreover, the eigenvalue of 
the perturbation transforms from being complex with imaginary part different of zero below the point 2 to 
be purely real above the point 2. Its real part is the growth rate g. The instability has purely exponential 
growth above the point 2 and it is oscillatory below the point 2. The oscillatory instability is related to the 
birth of pulsating soiitons [5] rather than to radiation phenomena. 

The points of local minima and maxima of the range of soliton existence in the spiral are the points of 
bifurcation. Depending on the nature of the modes of perturbation these points might be the turning points 
of stability. This conjecture is confirmed with further investigation. The small curve in the dashed rectangle in 
Fig.2(a) corresponds to the inner part of the spiral which is shown in Fig. 1(c). This small portion surrounded 
in dashed line is magnified in Fig.2(b). The smaller loop in Fig.2(b) corresponds to the innermost part of the 
spiral in Fig.lc. To establish the correspondence between the stationary solutions and its stability deduced 
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Pig. 2. (Left) (a) Perturbation growth rates versus e for SP solitons around tlie spiral, (b) Magnification of 
the portion in (a) enclosed in a dashed rectangle. 

Pig. 3. (Right) Energy of the soliton Q versus e for SP solitons. Stable solitons are shown by solid line and 
unstable sohtons by dotted line. The parameters of the equation (except c) are the same as in Fig 1 Two 
consecutive magnifications of the small parts of the curve enclosed in dashed rectangles are shown in the 
insets. . ° 

from this analysis, the stable soliton branches are shown m Fig.l(b) and 1(c) by sohd line These curves 
confirm our conjecture that local maxima and minima of e (i.e. the local edges in region of soliton existence) 
are the pomts where stability changes. The results of the stability analysis are illustrated in Figure 1(a) 
The shadowed area m this figure shows the values of e where SP solitons of the higher amplitude are stable. 
Ihe edges of stability are related to the local minima or maxima of c on the curve for the SP solitons An 
exception ,s the right hand side edge of the wide stripe around e = 1 where stability changes gradually In 
between both shadowed areas, any input tends to give place to a pulsating solution in agreement with the 
above results on oscillatory instability. 

The conjecture for soliton stability can be further refined if we plot as one of the parameters a measurable 
quantity, namely the soliton energy versus c. The energy, Q = /_-^ \i>o{i)fdt, has been calculated numerically 
for each point of the SP soliton branch. The value of Q versus e for the SP solitons is shown in Fig 3 Enerey 
mcreases to infinity while we move in along the spiral in Fig.l. The reason is that the width of the soliton 
increases indefinitely. The soliton becomes a composite structure consisting of the central peak and two 
tronts attached to it from both sides. 

Comparison with the above stability results shows that the parts of the curve in Fig.3 with negative slope 
are all unstable. More accurately, the solid parts of the curve in Fig.3 correspond to stable solitons and 
the dotted parts to unstable solitons. As we can see, the stability change happens at the local minima and 
maxima ot e vs. Q, i.e. at the local edges of soliton existence in e parameter. The point 2 is not an exception 
It represents a point of bifurcation as discussed above but the modes of perturbation on each side of this 
maximum are difierent. As a result, the soliton has different type of instability on each side of this point. 

Summarizing, we can formulate our conjecture for the stability criterion as follows. The local edges of soliton 
existence m e-parameter are the points of bifurcation where stability of solitons changes. Between the points 
ot bifurcation, the sohtons are unstable if the slope of energy versus e curve is negative. The opposite is not 
necessarily true, i.e. solitons might be unstable even if the slope is positive. 

The work of J.M.S.C. was supported under contract BFM2000-0806. The work is supported by the Austrahan 
Kesearch Council. 
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It is well know that in optical fibers with homogenous (i.e. constant) dispersion, stability ranges of bright 
and dark sohtons are limited to anomalous and normal dispersion regime, respectively [11. This statement 
needs to be modified, however, in fibers with alternating dispersion. Bright solitons are stable even in a 
small parameter range with normal path-average dispersion [2, 3, 4, 5, 6]. Very recently we showed that 
the correspondmg statement holds for dark solitons [7]: Their range of existence extends somewhat into 
the anomalous path-average dispersion regime. As a consequence, dispersion maps with low path-average 
dispersion can support either flavor of solitons only depending on which is launched. One wonders then 
whether there can be coexistence of both kinds, and if so, what kinds of interaction will take place and 
whether there can be bound states. We here report that we found a stable bound state of bright and dark 
solitons m a dispersion-managed fiber for either sign of path-average dispersion. 

While bound states between spatial bright and dark solitons have been reported before, the same for temporal 
sohtons of the smne frequency and polarization is a novelty. It is known that all two-soliton bound states 
m homogeneous fiber that are described by the Nonlinear Schrodinger Equation or the Complex Ginzburg- 
Landau Equation are unstable under perturbations [8]. As for bound states between bright and dark solitons 
Buryak et al. |9] considered a birefringent fiber where the two solitons propagate in orthogonally polarized 
modes. Ania-Castanon et al. [10] considers bound pairs of bright solitons in a dispersion compensation 
scheme mth fiber Bragg gratings but does not discuss dark solitons. In fibers with alternating dispersion an 
antisymmetric [11] and a symmetric bi-soliton solution [12] were reported. Here we will present a different 
interpretation of the antisymmetric solution as a bound state of a dark soliton centered between two bright 
solitons. ° 

Here is the core of our idea: In numerical simulation work on dark solitons one usually makes the pseudo-cw 
background of dark solitons as wide as possible, so that effects of its outer slopes do not perturb the dark 
soliton [13]. This creates considerable computational cost since the computational time window must be even 
wider. Here we turn this game around and make the background pulse so narrow that both its halves (on 
either side of the dark soliton) act as bright solitons in their own right. 

We start with a pair of Gaussian pulses, with the optical power dipping to zero in the middle between them 
At the zero, we let the electrical field undergo a phase jump of v. We then launch this structure down a 
dispersion-managed fiber. The value of dispersion alternates between normal (0+ > 0) for length U and 
anomalous (^_ < 0) for length L_. The path-average dispersion is 02 = (L_ 0+ + £_ 5_)/(L + L_) 
and the map strength is s = i\0^ - 0,\ L++ \0_ _ ft | i_) /^|. ^„ j^ the initial fuU width at half maximum 
ot the mdividual bright pulses. Propagation is calculated by the well know split step Fourier method. 

Looking for a stable solution we speed up convergence by applying the averaging scheme described by Nijhof 
et al. [2J. We fand that after some mild initial rearrangement, the structure propagates stably with both 
constant pulse separation and overall shape. The relative phase between the pulses remains stable at a value 
ot TT. m tig. 1 one can clearly see dips in the outer pulse wings which are typical for bright DM solitons The 
inner part of this structure evolves hke a dark DM soliton, the bright pulses behave like bright DM solitons 
Let us emph^ize that in a homogenous fiber the bright pulses of opposite phase would reject each other. 

We have repeated the simulation for various parameters and find that this structure is quite stable To 
farther test the stability and to find out what exactly causes it, we varied the input power of the pulse pair 
(see Fig. 2 trace a). For very low power, the bright pulse pair spMts quite rapidly due to dispersion. When the 
power IS increased soon the velocity of separation is reduced, and at some critical value it reaches zero. Upon 
further increase of power, the pulses keep hanging together. Quite obviously, nonlinear effects stabilize this 
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Fig. 1. Propagation of the compound soliton state displayed stroboscopically, shown for 260 nonlinear and 
31 dispersion lengths. The parameters of the map are 02 = -0.0.5ps^/l{m and s = 7.2 with respect to the 
half width of the bright pulses. The log power scale reveals characteristic intensity dips in the outer pulse 
wings. Due to the TT phase jump of the dark soliton the intensity vanishes between the two bright pulses. 

Structure against both dispersive effects and the tendency of opposite-phase pulses to separate. Remarlvably, 
the dark soliton in the center seems to "glue" both bright pulses together. 

If this interpretation is correct, the compound state should of course also exist in the normal path-average 
dispersion regime. For trace b in Fig. 2 all dispersion signs are reversed. For peak power below 0.3 W 
the structure is totally unstable, and there is no well defined peak position. In the power range between 
0.3Wand0.7W there are two distinct peaks rejecting each other. Above a threshold of 0.75W the same 
stabilization as above is observed. Of course the peak powers of either the bright or the dark solitons are 
different compared to the case of isolated noninteracting solitons. 
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Fig. 2. Half separation of the bright pulses after a given fiber length of 506 km, corresponding to 36 dispersion 
lengths, as a function of input energj'. The path-average dispersion of the map is |/32| = 0.01 ps^/km with a 
map strength of s = 12.9 and a nonlinearity parameter 7 = 3.510~' (mW)~^ The peak power of the fun- 
damental soliton in a homogeneous fiber with the same dispersion is 0.018 W. Trace a: anomalous dispersion 
j3+ =9.99ps^/km, 0- = -10.01 ps^/km. Ti-ace b: normal dispersion, all dispersion signs reversed. 
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R-irther research will show whether these soliton composites have a finite binding energy (so that one might 
speak of "sohton molecules"), and how they respond to various perturbations. We point out that stable 
bound states of solitons may play an important role in possible future non-binarj^ data formats. 
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Modulation instability (MI), due to the interplay between self-phase modulation (SPM) and anomalous 
group velocity dispersion (GVD) is a well known nonlinear effect, responsible for the break up of a CW 
beam into a train of ultrashort pulses and underlying the process of soliton formation in optical fibers. When 
two waves are simultaneously present, cross-phase modulation (XPM) can also lead to MI in both normal 
and anomalous dispersion regimes [1, 2]. The signature of MI is the development of symmetrical sidebands 
around the central peak in the spectrum of the optical wave. Because this effect is not easily observed in the 
CW regime, the first experiments were conducted with pulsed lasers [3]. However, the weak sidebands can 
be made detectable even in CW regime if amplified. In Raman fiber amplifiers, the Raman gain at frequency 
differences ~ 440 cm"^ can provide the necessary amplification source. The presence of both powerful pump 
and a signal wave in non-zero group velocity dispersion, provides the conditions for development of MI 
induced by XPM. In this study we have investigated the characteristics of MI in the presence of both Raman 
gain and two-wave coupling [4]. 

a) 

Fig. 1. Experimental setup for spectral characterization of fiber Raman amplifier; a) - forward-pumped 
scheme, b) - backward-pumped scheme. 

The experimental setups for the spectral characterization of the output of the Raman amplifier in both 
forward- and backward-pumped geometry, are shown in Fig. 1. The pump source used is a commercial 
Raman fiber laser (RFL) operating at 1497 nm, with a spectral bandwidth AA sa 1 nm at 1.5 W maximum 
power. The signal source is a set of narrow-band external cavity diode lasers (ECLs), continuously tunable 
over a broad wavelength range (1450 - 1650) nm and delivering powers up to 5 dBm. The schematics of a 
forward-pumped Raman fiber amplifier is presented in Fig. la. The pump and signal waves are launched 
into a single-mode fiber by means of a fiber coupler; both All Wave (25 km) and TrueWave (20 km) fibers 
were investigated in our experiment. The output spectrum is recorded by an optical spectrum analyzer 
(OSA) with a resolution of 0.1 nm. In the backward-pumped configuration, presented in Fig. lb, the signal 
is launched through the fiber's far end, while the OSA was situated on the pump side. The fibers used in this 
study both have attenuation of RS 0.22 dB/km and the mode-field diameters are A^fs = 87 ^m (AllWave) 
and Aef! = 55 /um (Ti-ueWave). The attenuation in each coupler is shown in Fig. 1 along with the optical 
field to which the value pertains. 

For the forward-pumped scheme in the AllWave fiber, the Ml-broadened spectra of the probe are shown in 
Fig. 2(a-c) with solid lines. They correspond to three different offsets from the pump frequency, respectively 
on the red side (Fig. 2a), the peak (Fig. 2b) and the blue side (Fig. 2c) of the Raman gain curve. In the 
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Pig 2 Modulation instability-broadened spectra after Raman amplification In 25 km of AllWave fiber (solid 
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the spectra from 20 km TVueWave fiber under the same conditions. 

following, the sideband with the lower frequency is referred to as the red sideband and the higher frequency 
one as the blue sideband. The frequency diflference between a sideband and the center probe frequency 
f/1t™4*° ^!u^^ ^^^f""^ frequency shift. For comparison, the results from the same experiment in 
the ItueWave fiber are shown with dotted lines in Fig. 2(a-c). In this case, no modulation instability is 
!,fw 'Z "^ *° expected when considering the dispersion properties of the IVueWaw fiber [51 The 
AUWaye fiber exhibits anomalous dispersion at both pump and signal wavelengths, hence both SPM- and 
XPM-mduced MI can develop. On the other hand, because the l^ueWave fiber exhibits zero-dispersion for 
the pump and anomalous dispersion at the signal wavelength, XPM-induced MI is inhibited fll The same 
fibers™^"* ^^^ counter-propagating puthp and signal beams (see Fig. lb) shows no sidebands for both 

It is clearly seen from Fig. 2(a-c), that the sideband frequency shift A grows when the signal frequency 
approaches that of the pump. This frequency dependence of the MI strength cannot simply be explained by 
the instantaneous mterplay between GVD and XPM and can only be explained by the finite response time 
T ot the Kerr nonhneanty. When taken into account, this time dependence modifies the well known coupled 
nonhnear evolution equations [6] for the slowly varying ampHtudes of the two plane waves with frequencies 
wi (pump) and wa = wi - ^ (signal) co-propagating in a Kerr-type nonlinear medium- 

Mi       1  Ml      i ^   g^Ai ai 
dz 

dAo 
a   ■ + — az      v„o 

Vgl       dt 

1  dA2 

m 

Y^i + ill {\Aif + «|^2P) ^1 - Y»7|^2p^i, 

= -Y^2 + % {\A^f + KI^IP) A-, -h ^^\A^fAi, 

K = — M£J1 1+P73-, i+PT? 

(la) 

(lb) 

(Ic) 

In Ek,s.(la - lb) vgi is the group velocity, ^i - GVD coefficient, a,- - linear loss, and 7, = »2a,,/(c^eff) 
- the nonhnear coefficient for the pimip {j = 1) and the signal (j = 2) waves. The two parameters « and 
V, defined m Eq (Ic), are referred to as the XPM coupUng coefficient and the twobeam coupUng gain 
respectively [4]. It is worth noting that, in the case of an infinitely fast nonlinear response (r -. 0) and finite 
pump-probe frequency difference S, the XPM coupling approaches the symmetry determined value « = 2 
while the twt^beam coupling gain vanishes. In the case of a finite response time, the XPM coupling has 
a frequency dependence of Lorentzian type with an offset, which determines the behavior of the sideband 
frequency shift A. 

The measured blue sideband frequency shifts are shown with full squares in Fig. 3a for different values of S 
The best Lorentzian fit A(5) = a+b/(l+S^T^) through the data points converges with a value r = 27 fs for the 
relaxation time of the nonlinearity Fitting the results from several independent measurements reproducibly 
yields the same value for r. Our measurements also showed, that the red and blue sidebands are always 
symmetncally positioned around the central signal fi-equency. Therefore, the presence of Raman gain does 
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Fig. 3. Spectral characterization of MI: a) - blue sideband frequency shift, vs. probe frequency offset 5 (the 
solid line represents the best fit, which yields value T = 27 fs for the relaxation time of the nonlinearity); 
b) - spectral power of the probe and sidebands showing the effect of the Raman gain on MI. 

not appear to influence the trend in the frequency dependence of the MI strength. Its effect simply manifests 
itself in amplification of the weak sidebands, which otherwise might not be observable. This last point is 
clearly illustrated in Fig3b. Actually, when plotting the spectral power of the sidebands and central signal as 
a function of pump power (not shown), the sidebands are found to experience greater gain than the typical 
Raman gain measured for the central signal frequency, thus providing evidence for the presence of MI gain. 

In the present experimental study we have shown that under specific conditions MI can develop in forward- 
pumped Raman amplifiers. The experimental evidence obtained enables us to conclude that the observed 
instability is not simply due to the instantaneous interplay between XPM and GVD, but also involves the 
two-beam coupling gain resulting from the finite relaxation time of the Kerr nonlinearity in silica. A more 
detailed theoretical analysis is being developed, which aims at bringing much needed clarity into the subtle 
dynamics of the processes qualitatively described in this work. 
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Abstract: Numerical simulations are used to demonstrate parabolic pulse generation in a 
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that the output pulse shape depends on the sign of the third order dispersion 
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1    Introduction 

In recent years self-similar parabolic pulses have generated considerable interest due to their ability to prop- 
agate in highly nonlinear media without sufi-ering the usual deleterious pulse distortions whilst maintaining 
their linear chirpjl, 2]. Parabolic pulses thus offer themselves to a wide range of applications in many ar 
eas of optical technology and particularly, as their Unear chirp facilitates efficient pulse compression, to the 
held of high-powered short pulse generation. Initial studies of parabolic pulse generation only considered 
their formation m optical fibre amplifiers with normal dispersion [3, 2, 4], and recently this work has been 
extended to examine the effects of the finite width of the gain spectrum [5]. This work has shown that 
the most efficient parabolic pulse generation occurs when the nonlinear effects are large enough so that the 
nonlmear propagation dominates over the dispersive propagation which requires a gain medium with a large 
gam bandmdth to support their growing spfectral width. 

In this paper we revisit the problem of parabolic pulse generation but this time employing a fibre Raman 
amplifier m order to exploit the broad Raman gain bandwidth [6]. Furthermore, as these amplifiers are not 
coniined to any particular wavelength, this opens up the possibility for the use of paraboHc pulses in optical 
communication systems whicli operate around 1.5/im. Commercial Raman amplifiers based on standard 
tore are available and are typically pumped via continuous wave sources operating at several watt power 
levels. In such a regime we expect that propagation lengths of the order of kilometers would be required for 
the pulse to become parabolic due to the small gain. As a result, it is questionable whether the nonlinear 
effects will be sufficiently large, and the dispersive effects sufiiciently small, to generate parabolic pulses 
efficiently. To over come this problem here we consider using a high power pulsed pump source and, to 
further enhance the nonlinear effects, a microstructured fibre with a large effective nonlinearity [71. This has 
the added advantage that the dispersion properties of microstructured fibres can be tailored such that they 
operate m the normal dispersion regime, necessary for paraboHc pulse propagation, at 1.5/^m. The results of 
our numerical simulations presented here show that parabolic pulse generation is indeed possible via Raman 
amplification and that these pulses can be efficiently compressed to the sub picosecond regime. 

2    Numerical Model and Simulations 

The refiractive index profile of the microstructured fibre we used is shown in Fig. 1(a) in which the core diam- 
eter is 1.1 ^m, leading to an effective mode area of 2.5 ^m^ and the dispersion profile shown in Fig 1(b) Such 
a fibre is similar to that used previously as a Raman amplifier [7] and although no-one has yet demonstrated 
microstructured fibres with normal dispersion at 1.5/im it should be possible to fabricate such fibres m the 
near future Given the modal properties of the microstructured fibre, pulse propagation can be described by 
the standard NLSE. Including the effects of Raman ampHfication the evolution of the pulses in our system 
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Fig. 1. (a) Fibre profile used in the simulations and (b) associated dispersion parameter D as a function of 
wavelength. 

can then be described by a modified form of the NLSE [8]: 

.5*     ^^d"^^     Jzd^^ 
+ 1- 

dz      2 dT^       6 5T3 -^{^^iro^)^iyi^')\^(^'^-^')f^^'^ (1) 

where /?2 is the GVD parameter, ^3 is the third order dispersion parameter and 7 is the effective nonhnearity 
of the microstructured fibre. We write the nonhnear response function as R (T) = (1 - /fl)<5 (T) + //?/!/? (T), 
assuming that the electronic contribution S (T) is nearly instantaneous and that the relative size of the 
vibrational (Raman) contribution hn (T) is determined by fa [6]. The field *, in comoving coordinates, can 
be expressed in terms of the amplitude Aj and the phase $_,, j = p, s, of the pump and the signal beams as: 

* {z, T) = Ap {z, T) exp [i$p (z, T)] + A, {z, T) exp [i$« {z, T)]. (2) 

where the signal field is downshifted in frequency by 13.2 THz from the pump beam corresponding to the 
peak of the Raman gain spectrum. An important feature of Eq. (1) is the inclusion of the time-derivative 
operator in the nonlinear term which is necessary to ensure that the photon number is conserved, and not 
the optical energy, so that the Raman interaction is described correctly. 

Our simulations consider the injection of a Gaussian signal pulse at 1.55 ^m with a 1 ps duration (fwhm) and 
a peak power of 5 W together with a 315ps (fwhm), 20 W super-Gaussian pump pulse at 1.45/im. The fibre 
parameters which were calculated from the refractive index profile shown in Fig. 1 are: 02 = 0.126 ps'^m"^ 
^3 = -0.001 ps^m~^, 7 = 0.041 W~^m~^, and the fractional contribution of the delayed Raman response 
fR = 0.18 [6]. The output signal pulse and spectrum are plotted in Fig. 2(a) after 20 m of propagation 
corresponding to a total pulse gain of ~ 25 dB. The top curves show the intensity profile, plotted on a log 
scale, together with the chirp, plotted on a linear scale, (solid lines), whilst the bottom curve shows the pulse 
spectrum. Despite the asymmetry in the output pulse, it is clear that this pulse displays the characteristic 
features of a parabolic pulse with a linear chirp including both the low intensity exponentially decaying wings 
and the oscillations on the spectrum [9]. Further confirmation is provided by the good agreement between 
the output pulse and the parabolic and linear fits to the intensity profile and the chirp, respectively (circles). 

Although some of the asymmetry in the output pulse can be attributed to the shape of the gain spectrum [6] 
it is, in fact, primarily due to pump depletion where the leading edge of the pulse experiences more gain than 
the trailing edge. This effect is significant because the signal intensity eventually exceeds that of the pump 
intensity and, due to the large gains necessary to amplify a pulse to the parabolic regime, it is a difficult 
problem to avoid. An important consequence of the effects of the pump depletion is that the formation of 
a parabolic pulse is highly dependent on the sign of the third order dispersion. We have found that when 
;53 < 0 then the asymmetry induced by the third order dispersion acts in the opposite direction to that 
induced by the pump depletion and thus can actually improve the quality of the output pulse. However, 
when i^s > 0 the effects of the asymmetries combine which destroy the linearity of the chirp and can lead to 
the pulse developing oscillations on a long sloping training edge. Such effects can be seen in Fig. 2(b) where 
the top curves show the intensity profile and chirp, plotted on linear scales, and the bottom curve shows the 
spectrum of the output pulse generated under the same conditions as that in Fig. 2(a) but this time with 
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A = 0.001ps3m-i. Although in standard single-mode fibres ^s is typically positive this is not necessarily 
the case mmicrostructured fibres. Fig. 1(b) shows a plot of D (= dft/dA) as a function of wavelength and 
clearly both the condition that ^2 > 0 (necessarj- for parabolic pulse formation) and ^3 < 0 are satisfied. 

To demonstrate the potential use of Raman amplified parabolic pulses for high-powered short pulse generation 
we considered the compression of the pulse in Fig. 2(a) via a simple Unear grating pair. As a result of the 

3    Conclusions 

In conclusion, we have used numerical simulations to demonstrate parabolic pulse formation in a microstrac- 
tured fibre Raman amplifier. The results have shown that the effects of pump depletion can be reduced 
with the appropnate sipi of the third order dispersion and that such values of ^3 are currently available in 
microstructured fibres. The ease with which these pulses can be compressed suggests that Raman amplified 
parabolic pulses offer an efficient source of high-powered short pulses unrestricted by wavelength. We expect 
mat they will hnd wide application in many areas of optical technology. 
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Abstract: The efficiency of supercontinuum generation in photonic crystal fibers is significantly 
improved by designing the dispersion to allow widely separated spectral lines generated by 
degenerate four-wave-mixing directly from the pump to broaden and merge. 
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Photonic crystal fibers (PCFs) [1] and tapered fibers [2] are promising sources for eflScient supercontinuum 
generation (SCG) due to their unusual dispersion properties and high effective nonlinearities. These fibers 
have similar dispersion and nonlinearity characteristics and they have the advantage that their dispersion 
may bemodified by a proper design of the cladding structure [3], and by changing the degree of tapering [2], 
respectively. Using femtosecond pulses a supercontinuum (SC) spanning one octave has been generated in a 
PCF, whereas impressive two octave SC has been obtained in a tapered fiber. The latter two octave wide SC 
was later explained to be a result of self-phase modulation (SPM) and direct degenerate four-wave-mixing 
(FWM) [4]. 

However complex high power femtosecond lasers are not necessary, - SCG may be achieved with picosecond 
and even nanosecond pulses. Thus Coen et al. generated a one octave SC in a PCF using sub-kilowatt 
picosecond pulses and showed that the primary mechanism was the combined effect of stimulated Raman 
scattering (SRS) and parametric FWM, allowing the Raman shifted components to interact efficiently with 
the pump [5]. Here we show how direct degenerate FWM can be used to significantly improve the eflficiency 
of SCG with sub-kilowatt picosecond pulses in PCFs, if the dispersion is properly designed. 

Improving eflSciency of SCG with picosecond pulses in PCFs using degenerate FWM. We study the SCG 
process numerically using the well known coupled nonlinear Schrodinger equations that describe the evolution 
of the X- and y-polarization components of the field for pulses with a spectral width up to 1/3 of the pump 
frequency [5]. This model accounts for SPM, cross-phase-modulation, FWM, and SRS. An initial random 
phase noise seeding of one photon per mode is included. 

We consider the same PCF and numerical and experimental data as in [5], kindly provided by S. Coen. Thus 
we pump along the slow axis with 30ps pulses of Ip = 400W peak power and pump wavelength Xp = 647nm. 
Our PCF has core area Acore = 1.94m^, dispersion D{Xp) = -iOps/{nmkm), zero dispersion wavelength 
Zi = 675nm, n2 = S-10~'^°m'^/W, and birefringence n^ - nj, = 1.9-10"^. The dispersion is expanded around 
the pump to include ^2 = 7.0ps^/km, p3 = 5.1 ■ lO'^ps^/km, ^4 = -4.9 • lO^ps'^/km, 13^ = 1.2 • lOVV'^'^. 
^e = -1-8 ■ 10^°ps^/km, and ^7 = 1.2 • lO^^ps'^/km. A uniform loss of O.ldB/m is used and the effective area 
is approximated with the core area, giving the nonlinearity parameter 7 = 2n2/{\pAcoTe) = 0.15(Wm)""^ 
We use the standard split-step Fourier method with 217 points in a time window of T = 236ps. In our 
longest simulation out to L = 3.7m the photon number is conservedto within 5% of its initial value. Due 
to our large spectral window (405nm 1613nm) we see in Fig.l(a) the emergence of FWM stokes and anti- 
stokes waves at the wavelengths As = llOOnm and Xas = 458nm for which the phase matching condition 
Ap = ^s+^as-2/3p-I-7/p = 0 is satisfied. The spectral window presented in [5] was narrower and thus A« and 
Xas were not observed. Prom the standard expressions given in [6] we find the maximum FWM parametric 
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gain to be twice the maximum SRS gain, which explains why the PWM stokes and anti-stokes components 
appeaar before the SRS components. The loss and walk-oif of the PCF gives the maximum distance £„„, over 
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Xf nml 
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^[nml 

17.4cm. b) Fig. 1. a) Phase-mismatch A^ and spectrum of the slow axis polarization component at L 
Same spectrum at L = 4.3CTO, 2.6m, and 3.7m. 

which nonlinear processes, and thus the SCG process, are efficient. R-om Fig.l(b) we see that after the F^¥M 
stokes and anti-stokes components are generated they broaden much in the same way as the central part of 
the spectrum around the pump. The merging of the spectral parts around A,., Ap, and A, would create an 
ultra broad spectrum as observed in tapered fibers with femtosecond pulses [2,4]. However, in this particular 
case the PWM stokes and anti-stokes lines are too far away for a merging to take place within the maximum 
length L^^^, i.e., before nonlinear effects become negligible. The wavelengths A, and A„, can be adjusted to 

1000    1100    1200 

Pig. 2. Original dispersion [5] (soHd line) and our modified dispereion (dashed line), 

be Closer to the pump wavelength Ap by a proper design of the dispersion. This will enable the FWM stokes 
Mid anti-stokes lines to broaden enough to allow a final merging. To show the effect we modify A, A, and 
^K^Jn u ^-O^^ /*f' ^4 = -2-5 • lO^psVfcm, and ^e = -3.25 • IQi V'/fem. The phase-matching condition 
C^P - 0 then gives A, = 850nm and A^, = 530nm. The eflect on the dispersion profile is to down-shift the 
zero dispersion wavelength to \ = 660nm and reduce the normal dispersion to D{\) = -4 ZhpsHnmhrn) 
as shown m Fig.2.   The numerical results shoTsoi in Fig.3 confirm our hypothesis. The FWM stokes and 
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anti-stokes lines are still widely separated, but now generated close enough to the pump to broaden and 
merge. The resulting ultrabroad SC is flat within 20dB and spans SlOnm (at -40dB from the flat part) in 
contrast to the original 230nm observed in [5]. 

1    Conclusion 

We have numerically considered SCG in birefringent PCFs using sub-kilowatt picosecond pulses. Our results 
show that by properly designing the dispersion properties and using the simultaneous broadening and final 
merging of widely separated pump and FWM stokes and anti-stokes lines the SCG efficiency can be signifi- 
cantly improved. Further investigations will involve the robustness of the process towards variations in the 
birefringence along the PCF. This work was supported by the Danish Technical Research Council (Grant 
no. 26-00-0355) and the Graduate School in Nonlinear Science (The Danish Research Agency). 
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jitter. & 
©2000 Optical Society of America 
OCIS codes: (060.4510) Optical Comniimications, (190.5530) Pulse prq>agation and solitons. 

1. Introduction 
The study of fiber transmksion systems with highly spectral efficiency represents an hotly debated topic 

nowadays^ A particular attention is dedicated to dispersion-managed solitons, and more ^nerally to chirped return- 
to zero (RZ) transmission formats, owing to their intrinsic robustness to noise and distortions induced by fiber 
nonlmeanty [1]. Appropnate design of dispersion map will be probably one of the fundamental issues for the 
incomuig generation of optical systems; specffically the basic prmciple of dispersion compensation is presently 
enriched of more sophisticated design requirements and challenges. Practical key rules that enable for limiting pulse 
mteractions or collision consequences in wavelength-division multiplexing (WDM) [2] have been recently 
translated into specffic map structures, pointing out the possible combination of time, and frequency domain 
multiplexmg to mcrease the overall spectral efficiency. Similarly, in the context of high-speed optical networks the 
promismg perspectives of all-optical wavelength converters (OWCs) envisage new potentialities for multi-chamel 
transmissions [3-4]. For instance (see Ref 5), mid-span spectral invereion has been successMly applied for reducmg 
the asymmetrical inter-channel Raman pin in a densely WDM optical link. However, the combination of OWCs 
and chirped pulses like DM solitons [6] may incur m severe limitations, whenever the shifting of carrier wavelength 
mcludes the mvereion of the pulse's chup, in presence of additional noise and losses [3]. 

In this paper we optimize the compatibility of DM-solitons with periodical OWCs, exploitmg their potential 
contnbute for third-order dispersion compensation and jitter reduction. 

2. Single pulse transmission 

The pulse propagation q(t,z) in a DM based fiber link can be studied by solving the so-called Nonlinear Schrodinger 
equation; we assume periodic coefficients both for the chromatic dispereion D(z) and for fiber nonlinearity -rfz) 
which accounts for distributed losses, periodical amplification and diff'erence among fiber cross sections- 

We have taken advantage of a variational method [6] under the assumption of chiiped Gaussian solutions as 
#,z)=4z)expt-/<z)r^-Hiq;z)r^], obtaining a prelimmary indication of the pulse dynamics. OWCs are here 
assumed as black boxes of full spectral inversion, where the optical conjugation (DC) of signals q«,(t z)=q- (t zf 
represents an ideal Umit, setting to zero the fi-equency shift. OCs have been ^sessed in the variational equations by 
mirronng the chirp as C„„.=-Ci„. Despite the presence of such chirp revereal condition, one can find that for 
optmiized system setups, OCs can be included in a dispereion map, leadmg again to a periodic evolution for the 
pulse parameters. For ease of discussion, let us suppose to refer, at the beginning, to an ideal lossless case, where the 
chirp-fi-ee conditions can be e^ily localized exploitmg map symmetries. The dispersion map is composed by 
10.1km of fiber with D=lps/(km nm), -pa-akm-'W"', combined with 19.8km of a compensating span 
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Fig.l. Left: chirp evolution: (dashed) reference case with C(z=O)=0; (thicker solid curve) a type- trajectory, (thin solid curve) a type+ trajectory. 
The periodicity C(z=0)=-C(z=40km) is ensured by OC at z=40km Inset: detail of the initial evolutions. Right: peaks, input conditions close to 
periodical solutions with OCs. Chirp sign distinguishes between type- and type+ ; circles highlight the three input conditions shown in fig. 1 ,left. 

[D=-lps/(km nm), 7^3.6km''W']; the dispersion map is symmetrically completed by including again a fiber span of 
10.1km [D=lps/(km nm), 7^2.2 km"'W"']. We assume a pulse power of 3dBm, and OCs are placed at the end of 
each map. Owing to the map symmetry, the input soliton chirp, without OCs, verifies C(z=0)=0. However, the 
application of chirp reversal elements allows the presence of periodical solutions, even for input chirps weakly 
negative (type - trajectory) or positive (type + trajectory). These additional solutions are sustained by the periodical 
effect of OCs, and examples of three different periodical trajectories are shown in fig. l,left. To focus a more precise 
discussion on this specific context, we represent in the width-chirp plane, the input conditions (z=0) of the 
variational equations that reproduce a closed orbit within a single dispersion map of given length L. An example of 
this input-map is shown m fig.l, right, where peaks identify input conditions close to periodical evolutions, and the 
chirp sign distinguishes between type - and type + solutions. However, when the lumped optical conjugation is 
repeatedly applied in the transmission link and the full NLS eq.l is numerically solved, the optical pulses may 
visibly undergo a progressive disruption. Indeed small fluctuations of chirp with respect to stationary solution, either 
caused by pulse interactions or non optimal input conditions, may be converted by OCs into a weak but cumulative 
pulse spreading. We find numerically that such decay of the pulse peak power may be limited when OCs are 
localized as close as possible to the chirp-free points, that is when the chirp inversion leads to the lowest pulse's 
distortion; similarly one can improve the system entailing a dispersion map that intrinsically minimizes the chirp 
perturbations induced by pulse interactions. 

3. System simulations 

Let us combine now dispersion management with the OWCs in presence of third order dispersion (TOD). We can 
develop in principle a macro-cell composed of several sub-blocks of fibers and OWCs (see fig.2, left). Within each 
sub-block, the compensation ratio is mainly managed interchanging different fiber types, while the action of OWCs, 
coupling wavelength conversion with TOD, may adjust the macro-cell average dispersion. The resulting macro- 
element can then be periodically repeated within the optical link. Consequently, a periodical hopping of the carrier 
wavelengths takes place when the optical signal crosses a sequence of macro-cells. In presence of TOD, the average 
dispersion Davg of a classical dispersion map at some specific wavelength may be mcompatible with DM-solitons at 
high bit-rate (either because Davg is too large or because it represents a normal dispersion regime [7]); in contrast, the 
average dispersion of a macro-cell can be redirected to a more convenient value with OWCs, and above all, can be 
potentially equalized at all wavelengths. The further presence of signal conjugation may lead to a reduction of 
timing jitter, without pulse distortions, owing to the special localization nearly at chirp free for OWCs. 

Interesting results can be found whenever TOD is partially compensated with special fibers [1]. We exemplify in 
fig.3 (left), a periodical evolution obtained from the variational method for a dispersion map whose details at 
1553.2nm are summarized in the tabular of fig2 (right). Here TOD is partially equalized employing dispersion 
compensating fibers (DCF) with reversed TOD [1], and the moderate bit-rate permits for low interaction forces and 
low chirp perturbations. The average power was of-0.96dBm, the amplifier spacing of 56.4km and the dispersion 
map design has been entailed for an input chirp-free condition. We show in the right side of fig.3, the numerical 
estimation of a 6 channels transmission at 20Gbit/s up to 60 maps (3384km) in presence of a weak amount of TOD 
(see the dashed line representing average dispersion). The different channels are here identified through their 
relative detuning AX from the reference wavelength of X=\ 553.2nm. 
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Fig.2 Lett: Schenrntic view of a macro-element composed of a  two-Wocte dispersion naps and an OWC that sw-aps the channel wavelengths 
Right: nap descnption. dispersion D [ps/(kmnn.)], TOD [ps/(kn,nm^)], loss [dB*m], effective core area A [jun^], segment lengh U [km]- 
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We have assumed all equal input pulsewidths and prechirps; note however that the closest matching for a DM 
sohton would be satisfied at X, and more strikingly, that at A^=-4mn the system crosses the average normal 
dispersion regime (shaded region) with consistent transmtasion penalties (see also Ref. 7). A reduction of penalties 
tor channels with unsuitable average dispersion can be found by imposing a periodical hopping of the carrier 
wavelengths from X-^ to X+AX with OWCs spaced of 1128km (see the doubled arrows of figrs right) In our 
numencal simulations each OWC combines an ideal OC stage and a lumped loss of lOdB that is compensated by an 
Erbium amplifier. Despite such additional noise (the amplifiers have a common noise figure of 45dB) the 
comparison of the two eye diagran^ of fig.3 (see the two insets), confirms the benefits of frequency hoppmg in the 
net normal average dispersion. Differently, when the average dispersion naturally enables for robust DM solitons 
the propagation may be negatively influenced by the introduction of OWCs (see the channels with ^X>0) 

In conclusion we found that periodically hopping the carrier wavelength at chirp-free positions one may 
equalize the impairments of third order dispersion, leading to a net improvement of the channels that naturally 
exhibit an unsuitable average dispersion for soliton-like transmissioiK. Additionally, the spectral inversion of OWCs 
may result effective m limiting the timing jitter, when the chiip distortion is controlled with an optimized system 
setup. ^ 
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Abstract: The problem of determining the solitons generated from symmetric real initial 
conditions in the Nonlinear Schrodinger equation is revisited. The corresponding Zakharov- 
Shabat scattering problem is solved for an example of a real double-humped rectangular initial 
pulse form. It is found that this real symmetric pulse generates moving soliton pulse pairs 
corresponding to eigenvalues with non-zero real parts. 
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The nonlinear Schrodinger (NLS) equation is one of the most fundamental nonlinear evolution equations in 
physics. For the case of a focusing nonlinearity, it can be written in the standard form: 

i^ + i0 + IV'l'^ = O, i,iO,x) = q{x) (1) 

The NLS equation belongs to the important class of equations which are integrable using the inverse scattering 
technique, of e. g. Ref. [1]. A particularly important result of this solution procedure is that the discreet 
eigenvalues of the corresponding eigenvalue problem determine the soliton content of the initial pulse. The 
soliton content of different pulse forms has been investigated in many previous studies and in general it has 
been found that the eigenvalues of symmetric and real pulses are purely imaginary (i. e. the soliton pulses have 
no velocity), cf Ref. [2], and that the number of soliton pulses in a given initial condition is directly related to 
the integral of the pulse. As will be demonstrated in the present work, this general picture is not complete. In 
fact, by analyzing the Zakharov-Shabat eigenvalue problem for a real double-humped symmetric box profile 
we show that the conventional expression for the number of solitons is correct, provided it is interpreted as the 
number of solitons corresponding to purely imaginary eigenvalues. However, in addition to these eigenvalues, 
there may also exist a number of eigenvalues, which contain both real and imaginary parts corresponding to 
symmetrically separating solitons. 

In the inverse scattering transform method for the NLS equation, a crucial step in the analysis is the 
Zakharov-Shabat scattering problem, where the initial pulse, q{x), plays the role of a scattering potential. 
The characteristic equation reads 

— = -iCvi + q{x)V2 

— = -q {x)vi + iC,V2 
as X -^ —00 (2) 

The asymptotic behavior of the solution as 3; -+ 00 is given by vi -^ a{C,) exi>{-iC,x) and v^ -+ 6(C)exp(i^a:). 
The discrete eigenvalues Cn are solutions of the equation a{C,) = 0 in the upper complex plane. The eigenvalues 
determine the soliton energy according to {rjk = I'mC.k) 

N N 

Es = 2i'£a-Ck = iY.'^k (3) 
fc=i *i=i 

whereas the total energy of the initial pulse, Ef, is 

Et 
/CO 

\q{:c)fdx. (4) 
-00 
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The conventional picture is that the number of soHtons in a real pulse is given by 

1    1 r'* 
^42 + ^L^W'^-. (5) 

where LarJ denotes the mteger part of the argument x. Moreover, for most real symmetric initial pulses 
considered so far, the eigenjdues are found to be purely imaginary. However, in the numerical studies of the 
influence of pulse shape and frequency chirp on optical solitons carried out in Ref. [3], there were indications 
that this picture is not complete. In the present work we will consider this problem in more detail and show 
that indeed the situation is more complicated than the generally accepted picture. 

Consider the case of a real double-humped initial pulse, which has constant amplitude A in the intervals 
xi < \x\ < xi. The corresponding Zakharov-Shabat scattering problem for this pulse can be solved by finding 
the appropnate solutions in the different regions where the potential is piece wise constant and then using 
the appropriate continuity conditions at the boundaries. This results in the following transcendental equation 
determining the eigenvalues (A = a;2 - :ci) H a-" "" 

^2gt4Ca,i ^ ^2 

cos^[A,/3?T?] 1+£ An-IA^WW-] - ^#= sin[2A^I^Tc^] = 0 (6) 

We emphasize that for a;i = 0,Eq. (6) reduces to the standard eigenvalue equation for a rectangular pulse For 
easy comparison with results obtained in Ref. [3], we use the amplitude A = 145.85. If a, = 0 01 and ^i = 0 
the initial condition corresponds to a single humped pulse. The corresponding transcendental equation hai 
one purely imaginary root in the upper complex plane, viz. C « i92.40. The total energj^ of this particular 
angle-humped rectangular pulse is E^ = 425.44 and the energj^ in the soliton part is E, = 4Im(C) = 369 6 
The remaimng part of the initial energy is contained in the continuous spectrum, which propagates in the 
form of dispersive waves. The number of solitons, according to Eq. (5) is JV = [1/2 4- 2AAM « 11 431 = i 
Thus, for this c^e, the result is in accordance with the classical picture. On the other hand, if we consider 
a double-humped pulse with Zi = 1.06 and x, = 1.07, the condition (5) persists and indeed only one purely 
imagmary eigenvalue is obtained (C « il.OO). Nevertheless, the eigenvalue equation (6) has a large number 
ot eigenvalues with non-zero real part, compare figure 1. 

^A 

-X2   -X^ 
150 

f^' ^;ii°S***"''''Tf ™<\*™8"'*' Pf se and its corresponding eigenvalue distribution in the complex plane 
(A = 145.85, xi = 1.06 and X2 = 1.07). '^     ^ 

It is interesting to note that in the case of the double humped profile, neither of the humps h^ enough energy 
to create a sohton on its own and consequently should start to decay as dispersive radiation. However, during 
the collision between the decaying radiation from the two humps, nonlinear effects are strong enough to create 
a large number of smaU solitons, one of them stationary, but all the others with symmetric and increasing 
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velocities. The eigenvalues form an inverted V-structure in the complex C- plane, with the apex determined 
by the (single) imaginary eigenvalue, which also has the largest imaginary part. When the amplitude, A, of 
the box profile decreases, the number of eigenvalues decreases and for A = Acrit « 78.54, the last (purely 
imaginary) eigenvalue disappears. We emphasize that this agrees with the threshold condition for soliton 
generation as predicted by Eq. (5). 

Since the eigenvalues in the double-humped case analyzed here have real and imaginary parts that are 
much smaller than the initial amplitude A, Eq. (6) can easily be solved approximately for the lowest order 
eigenvalues. When |C| < A, the purely imaginary root, C = irjo can be determined from 

cos^(AA) - exp(-4.TiT?o) sin^(>lA) « 0 (7) 

This directly implies that rjo « ln(tan(>lA))/(2a;i), which for the considered example yields T] « 1.03, in good 
agreement with the numerical solution. For the neighbouring pairs of complex eigenvalues, we can assume 
that the imaginary parts are close to that of the first purely imaginary eigenvalue i. e. C *« ? + ivo- Using 
this fact and neglecting terms proportional to T}/A, the eigenvalue equation reduces to simply 

exp{4ixiO « 1 (8) 

i. e. ^ « ±nn/{2xi). The first pairs of complex eigenvalues (Cn = ^n + irjo) are ^i « ±1.48 (1.44), 
^2 « ±2.96 (2.89) and ^3 « ±4.45 (4.33), again in good agreement with the numerical solution (given 
in parenthesis). 

In conclusion, we have analyzed an example of a real and sjmrimetric initial pulse which gives rise to soliton 
splitting. In other words, the corresponding Zakharov-Shabat scattering problem has solutions for which the 
eigenvalues have real as well as imaginary parts. 
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Abstract: Interaction of pulses in optical fibers is analyzed by solving the scattering problem 
associated with the nonlinear Schrodinger equation. It is show^n that two pulses without initial 
phase modulation can generate moving daughter solitons. 
©2002 Optical Society of America 
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Interaction of solitons in optical fibers results in a variation of a separation distance and even in a formation 
of additional solitons with small amplitudes ("daughter pulses"). Both these factors constrict the repetition 
rate, which is an important characteristics of optical communication systems. 

We consider the influence of different initial parameters to the soHton interaction. We show that nonlin- 
ear interference between pulses results in non-trivial dynamics. For example, depending on the separation 
distance, two pulses without initial phase modulation can generate a number of moving sohtons. It is also 
shown that the relative constant phase is also important for the interaction dynamics. 

The propagation of solitons in ideal optical fibers is described by the nonlinear Schrodinger (NLS) equation 

where u{t,z) is a slowly varying envelope of the electric field, z is the propagation distance, and t is the 
retarded time. As an initial condition the following profiles are considered: (i) two rectangular pulses «(«, 0) = 
QiB{t, -wi -1/2, -1/2) -I- Q2B(t, i/2, wj + L/2), and (ii) two sech-pulses u{t, 0) = Qisech[(* + L/2)/wi] + 
Q2sech[(t - L/2)/w2]. Here Qi and Qa are constant complex amplitudes, L is a separation distance, wj and 
W2 are the pulse widths, B{tMM = W -ti)-0(t-1^)], and #(t) is the Heavyside step function. 

It is knomrn that NLS equation is integrated by the inverse scattering transform method [1]. The number N 
and parameters of solitons are found fi-om the associated scattering problem [1]. The number N is equal to 
the number of poles A„ = i.„ + j^„, Im(A«) > 0, of the transmission coefficient l/o(A), while the amplitude 
and the speed of the n-th soliton are related to % and i/„, rrapectively, and n = 1,..., JV. 

We solve analytically and numerically the Zakharov-Shabat scattering problem with the initial conditions 
mentioned. We study how the difference between the parameters of pulses (wi ^ wa or Qi ^ Qa) affects to 
the interaction dynamics. The evolution of two pulses with the same width and intensity for the Manakov 
system, which is a vector generalization of the NLS equation, is considered in paper [3]. 

In the case of rectangular pulses the scattering problem is solved exactly so that the parameters of emerging 
solitons are found from the following equation: 

where/(A, fe, w) = cos(* w) - iAsin(fc w)/fe, % = (A2-I-IQj |2)i/2^ and i = 1,2. 

Recall that zeros, which are pure imaginary of /(A,fe,w) determine the number NSR and parameters of 
sohtons emerging from a single rectangular pulse of width w and amplitude Q [4], As known, NSR = 
int(|(5|w/7r-H/2), where int(a;) gives an integer part of X. 

The last term in Eq. (2) is due to the nonlinear interference. The role of this term can be seen studying a 
simple case, when two rectangular pulses produce one soHton at i^ 0 and two solitons at L -^ oo, eg 
Qi = Qa, wi = W2, and 7r/2 < Qiwi < 37r/2. The analysis of Eq. (2) shows that at intermediate L an 
appearance of A„ with Re(A„) ^ 0, or an existence of moving sohtons, is possible. The dependence A„(L), 
« = 1,..., 5, corresponding to such a case, is presented in Fig. la. There exists one static soliton at I < 0 6 
one static and two or four moving solitons at 0.6 < i < 4.1, three-soliton state and two moving sohtons at 
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Fig. 1. (a) - The dependence of An on the separation distance for two rectangular pulses, Qi = Qa = 2, w\ = 
W2 = 1- Solid (dashed) lines correspond to imaginary (real) part of An. Numbers near lines corresponds to 
n; (b) - Evolution of the initial condition 0.7 [sech(t + 2.5) + sech(f — 2.5)]. 

4.1 < L < 7, and even more moving solitons at L > 7. The results of the scattering problem were checked 
by numerical simulation of NLS equation (1). 

Similar d3Tiamics is found for different forms of initial pulses. The possibility to generate moving solitons by 
a pure real initial profile in the form of two sech-pulses is shown in Fig. lb. The parameters of the initial 
condition in Fig. lb are chosen such that it generates at z —> oo one soliton, if L — 0, and two solitons, if 
L -^ CO. For w(t, 0) = Qsechf an exact result of the scattering problem was obtained in paper [5]. In the case 
of two sech-pulses we solve Eq. (2) numerically. We should mention that interaction of pulses with frequency 
and time separations in wavelength-division multiplexing systems was considered in paper [6]. 

Thresholds for bifurcations of the eigenvalue distribution are found from the analysis of Eq. (2). Since new 
A„ penetrate to upper half-plane of A, crossing the real axes, Eq. (2) with real A is a set of equations for 
penetration points and threshold parameters. We analyse this set of equations in details for different pulse 
widths, amplitudes and a relative constant phase and find the corresponding thresholds. 

Therefore, we have shown that the interaction of pulses without phase modulation may result in a formation of 
static and moving solitons, and multi-soliton complexes. For moderate amplitudes, the nonlinear interference 
is important, when pulses are close [Ljw ~ 1 to 10) to each other. 
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Abstract 

We propose an efficient method for suppressing the soliton self-frequency shift in high-speed 
transmission lines by means of up-shifted filters. L 
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In 1986, Mitschke and Mollenauer [1] discovered an important phenomenon in ttie context of 
optical communications, called soliton self-frequency shift (SSFS), in which the stimulated Raman 
scattering (SRS) causes a continuous downshift of the mean frequency of short pulses propagating 
in optical fibers. The combined effects of SSFS and noise may lead to a loss of synchronism in a 
soliton bit pattern, and cause a strong transmission penalty in high-speed optical communication 
systems. In this research, we show that the impact of SRS can be effectively suppressed by use of 
filters whose peak frequency is appropriately up-shifted with respect to the transmission frequency. 
Very recently, we have demonstrated the effectiveness of up-shifted Gaussian filters for suppressing 
the SSFS [2], Here we explain the working principle of both the Gaussian and super-Gaussian 
up-shifted filters. The pulse evolution in optical fiber links may be described by the nonlinear 
Schrodinger equation (NLSE) with the Raman effect and filters as 

^z = -[i02{z)/2]^kt + nIVf V-- - (a72)T/- + F[^] + iipMm^)t, (1) 

where ^ is the pulse field at position z in the fiber and at time t\ a, p2{z) and 7 represent the 
loss, group-velocity dispersion (GVD) and self-phase modulation (SPM) parameters, respectively. 
The last term in Eq.(l) represents the SRS, with p = 0.18 and /i = 7.06 x 10~^, as typical 
values. We consider a lumped filtering characterized by a super-Gaussian transfer function T{u}) = 
exp[-(2"'ln2)(u; -u;/)2"7J3j'"], where Bj is the filter's bandwidth (BW). The parameter m is the 
filter's order (m = 1 corresponds to a Gaussian filter). The central frequency of the filter, W/, is 
up-shifted by Aw = w/ - wo with respect to the transmission frequency U)Q. One can obtain a more 
precise qualitative picture of the filter action by adopting the usual practice of approximating the 
lumped filtering by an equivalent continuous distributed filtering action along the line, defined by: 

2m 

fc=0 

?2m 

F\M =UY.[ CL ^^^""' {-if d'^P/dt" ] , (2) 

where C^ = n\ / (p! (n —p)!) and ^m = 2"^ \n2/{zfBf) represents the filter strength parameter. Zf 
is the filtering period, which we have chosen to be the same as the amplification period (ZA)- The 
term corresponding to k = 2m in Eq.(2), which does not depend on Aw, represents the non-shifted 
filtering action. To obtain a qualitative idea of the evolution of the pulse parameters we assume a 
Gaussian ansatz: t/j = xiexp\—('^/xl + ix4('^/2 + ix5( + ixe], where (^ = t — X2, and a;i,a;2, -\/21n2a;3, 
X4,/{2n)^x^/{2'K) and x% represent the pulse amplitude, temporal position, width, chirp, frequency 
and phase respectively. For instance, in the presence of filters of order m = 3, we get the equation 
for the SSFS rate: 

dxr,/dz = n + J^o + :F{ALj), (3) 

where 71 = V2'yrx1x'^'^, represents the SSFS rate. The term /b, which does not depend on Aw, rep- 
resents the non-shifted filtering action. Here, To = -CslffCe P^x^ + ^C| P'^xl + 3C^ Px^], where 
P = {xjxj + ^)/x\. The last term in the r.h.s. of Eq.(3), which arises only when up-shifted filters 
(USFs) are used, is given hy T ^ iz{P^[^Cl Aw] + P^ [fclAw^ - fClTsAw^ + f 0^4Aw] + 

P[ iC^Aw^ - CixgAw^ + |Cia;iAw3 - 2C^a^iAw2 + |Cia;|Aw]}. 



/ u^o!^o °°"-'*''^*^ ^^^^'' (NSFs) are used, the term ^o, which acts in the opposite direction 
to the bbFb rate U, will cause the pulse spectrum to be trapped near the carrier frequency wo 
However NSFs will not completely cancel the average SSFS without a strong filter strength'(ie 
a large |^, or a small filter's BW) that can destroy the desired dynamics. When USFs are used' 
the additional term ^ acts in the direction opposite to the Raman-induced SSFS. The presence of 
J- makes it possible to completely cancel the SSFS by simply tuning the central frequency of the 
filter, even with a moderate filter strength. Here lies the basic principle of SSFS suppression by up 
shifted filtering. The value of Au for suppressing the SSFS can be obtained by integrating Eq (3) 
with the approximation P(^) ~ P(0). We obtain the following equation for any filter's order m [3]: 

m. 

fc=i J ^ ^ 

where AX^R = g^ Tldz is the SSFS between two consecutive filters. For m = 1 (Gaussian filter), 
Aw = -NfAxm, where Nf = Bj/Bp represents the ratio between the filter's BW and the spectral 
BW of the input pulse, defined by Bp = v'2P(0)ln2. In short, we achieve SSFS suppression in fiber 
links as follows: First, we evaluate Axm by simply letting the pulse propagate without filtering 
over the distance zj, and we deduce Axm- Then we choose the desired value for Nf (or equivalent^ 
Bf), and solve Eq.(4) to finally calculate the value of Aw for suppressing the SSFS. 

Figs.l, which represent the pulse parameters after each amplifier, illustrate the action of NSFs 
and USFs in a dispersion-managed (DM) fiber line with 36 maps in one amplification period of 
ZA = Zf = 2bkm, and GVD: d± = ±3.5ps/nm/km. SPM: 7± = 0.002m-^ W'^. Losses- a± = 
0.22 dB/km. Here, the subscript +(-) refers to normal (anomalous) fiber sections. The input 
pulse (flx«J point) corresponds to unchirped Gaussian pulses of duration IMps (FWHM) and 
energy 0.0526pJ. As Fig.l (al) shows, NSFs cause the soliton ultimately to be trapped near a 
frequency wi(iV/) < WQ. This permanent frequency shift wi - OJQ, which appears clearly in Fig 1 
(al) for Nf = 2 (squares) and Nf = 3 (circles), can be reduced by a further decrease in the value 
of Nf hut It cannot be canceled completely without destabilizing the pulse propagation. Indeed 
Fig.l (c) shows that for narrow filters (i.e., small Nf) the slow dynamics move toward increasingly 
broadened and chirped pulses that do not necessarily correspond to the desired dynamics Figures 
2, which illustrate the action of super-Gaussian filters (with m = 3) in the same system as in Figs 1 
exhibit the same general features as for the Gaussian filters (Figs.l) except that super-Gaussian 
niters lead to substantially reduced slow dynamics, even for relatively small filter BWs Note that 
Figs.l (c) and 2 (c) are the phase diagrams of USFs, which we found to be same as for NSFs 

We can also clearly illustrate the effectiveness of USFs with the simulation of a bit pattern 
(011110101100100) propagation at 160 Gb/s, in the above mentioned line with an amplifier noise 
figure of 4.5dB, input unchirped Gaussian pulses of duration l.ddps (FWHM) and energy 0.0526 pj 
After solving the NLSE, we have evaluated the transmission performance by means of the Q factor 
Figures 3 (a) and 3(b), which we obtained with Gaussian and super-Gaussian (m = 3) filters 
respectively, demonstrate the effectiveness of USFs in high-speed long-distance transmissions, with 
excellent performance of stability of the pulse bit pattern over several thousands of kilometers   A 
comparison between Figs.3 (a) and 3 (b) clearly indicates a better quality of transmission with 
super-Gaussian filters. This is due to the fact that the filters with flat top (such as super-Gaussian 
filters) will have the tendency to extract energy mainly from the wings of the pulse spectrum 
which may be favorable for the pulse stability, when compared to filters with non flat top (such as 
Gaussian filters) which extract energy mainly from the central part of the pulse spectrum [3] 

To conclude, we have demonstrated that the disastrous impact of SRS can be effectively 
suppressed in high-speed long-distance transmission lines by utilizing appropriate USFs. ^" 
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FIGURE 1 - Gaussian filters. 
Gaussian filtering: m=1 
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FIGURE 2 - Super-Gaussian filters. 
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FIGURE 3 - Q factor vs distance for the line with (a) Gaussian filters, and (b) super-Gaussian filters. 
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Abstract 

We present an easy analytical method for designing dispersion-managed fiber systems with 
map strength of 1.65, where the transmission lines have minimal pulse-pulse interactions. 
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Dispersion-managed (DM) fiber system is one of the promising techniques that can be utihzed 
for high-speed communications. The first step in the design of any DM Une is to derive the fixed 
point. Nijhof et al [1] averaging method is the commonly used technique for finding the fixed 
point. Recently, we have reported an analytical method for designing the dispersion map for any 
desired input pulse width and energy [2], which is based on the analytical solution of the variational 
equations derived using a Gaussian ansatz. In DM systems, average dispersion and map strength are 
the parameters that define the stability of DM soliton. Map strength is defined by a S parameter: 

S = (L+/?+ - L.0^)/rl (1) 

where TQ is the FWHM pulse width at free-chirp point, /?+ (^_) and L+ (L_) respectively rep- 
resent the normal (anomalous) fiber dispersion parameter and length. Nakazawa et al [3], proved 
that the DM soliton propagating in average normal dispersion regime is unsuitable for high-speed 
long-distance communication. Malomed and Berntson [4] showed that DM solitons have stable 
propagation when S < 4.79 for anomalous average dispersion, S w 4.79 for zero average dispersion 
and 4.79 < S < 9.75 for normal average dispersion and no stable DM solitons for S > 9.75. Yu et 
al [5], have numerically found that DM solitons propagating in DM fiber lines with map strength 
S w 1.65 will have weaker pulse-pulse interactions. Hence, we like to investigate the effective- 
ness of our analytical method [2] for designing DM lines in practically useful S parameter range 
(0 pa 5 < 4). In this work, we present an easy way to analytically design the DM fiber system with 
map strength S ^ 1.65 where the transmission lines have minimal interactions [5]. 

To investigate the effectiveness of our analytical method, we use the following parameters: 
dispersions ^12.5ps/nm/km. (^±), initial pulse width (FWHM) varying from 12ps to SOps to 
achieve different S values, energy- 0.05 x ypnj^pj and nonlinear coefficient 0.002 l'K~^m~^ The 
other required input parameter is the maximum pulse width, for which we respectively considered 
different values for different input pulse widths in such a way that the final design will always have 
the same total map length Lr = L- + L..^ = 41.2 km. Keeping the same total length for all maps 
is not a constraint, but it is very much useful for deriving an important feature of the DM solitons 
propagating in map with S w 1.65, as we show below. Using these parameters we have analytically 
calculated the fiber lengths for various maps with different S values [2]. Then using the initially 
assumed respective Gaussian pulses in the averaging method [1], we derived the numerical fixed 
points. Figures 1 (a) and (b) respectively show the plot of the energy and initial width of various 
fixed points. In Figs.l (a) and (b), dashed curves represent the initial Gaussian energy and width 
used for the analytical design and the solid curves represent the energy and width of the numerical 
fixed points. From Figs.l (a) and (b), it is clear that the parameters of the numerical fixed points 
are very close to the initially assumed Gaussian pulse around the S value 1.65. This reflects the 
fact that the DM soliton profile is very close to the Gaussian profile when S Ri 1.65. Figure 1 (c) 
shows the plot between the maximum width and S value. In Fig.l (c) the solid and dashed curves 
represent the numerical and analytical results, respectively. Hence, the results presented in Figs.l, 
clearly prove that our analytical design procedure is very effective in designing the DM fiber line, 
and that the DM soliton propagating in dispersion map with 5 ?» 1.65 is very close to a Gaussian 
profile. From Fig.l (c), we find that the maximum pulse width (.Tsm) is minimum for S ?» 1.65. 
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Fig.l: Pulse parameters Vs S parameter. 

To get more insight into the minimum of asm, we introduce a breathing parameter: 

^ = »L/7-|- ^ (2) 

Figure 1 (d) shows the variation of the breathing parameter R for different DM hnes.  In Fig.l 
(d) the solid and the dashed curves respectively represent the numerical and analvtical results 
Substituting To expressed from Eci.(l) in Eq.(2), and then from the resulting equation, a^a^ can be 
written as 

^ xzm = ^RiL+0+-L_0_ys. (3) 

For a given DM line £+^+ - L_0_ is a constant [this is also true for the X3„^ curve in Fig.l (c) 
as ^_ = -£+ and LT is same for all maps]. Under this condition from Eq.(3), we can see that 
X3m oc s/R/S. Minimizing x^m with respect to S (i.e., dxzm/dS = 0) we derive 

R = ^0, (4) 

where SQ is the value of the S parameter for which x^m is minimum [sa 1.65, as Fig.l (c) shows] 
This is also clearly pointed out in Fig.l (d) BS the intersection of dotted horizontal and vertical 
hnes^ Ftom Eqs.(l), (3) and (4), we get a^amm = ^L+/^+-L_/3_, where x^m is the maximum 
widtti when R = So^ 1.65. For a Gaussian pulse, the FWHM TQ is related to xz^ (width at lie 
- intensity point) as TQ = ^j2M2xi_. Note that «3- is one of the input data required for our 
analytical design [2]. At S = So w 1.65, substituting Eq.(4) into Eq.(3), we get 

XZn = VTMTQ = \/1.65x21n2.'B3_. (5) 

Hence for analytically designing DM line with S w 1.65, we need only the minimum width {xz.) 
and energy (^o). The maximum width (aism) has to be calculated from Eq.(5). Also if we need 
to design a dispersion map with map strength S < 1.65 (S > 1.65), then we have to consider 
XBm < Vl.65 X 2 In 2 a?3- (»3m > ^1.65x21n2a;3-). 

To illustrate the usefulness of our analytical design of dispersion map with strength 5 ?a 1 65 
we have used the same fiber and pulse parameter values as in Fig.l, except the maximum pulse 
width, which we calculated from Eq.(5) and analytically calculated the fiber lengths We have 
derived the numerical fixed points with the help of the averaging method [1] and we essentially 
find that the fixed points energies, minimum and maximum pulse widths are exactly same as the 
one used for the analytical design. Figure 2 shows the plot between the S parameter and average 
dispersion for various maps, which proves that our analytical method for designing DM line with 
map strength S « 1.65 is very effective. 
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We can also show the effectiveness of our analytical design of dispersion map with S ?a 1.65, 
S < 1.65 and S > 1.65, using the simulation of a bit pattern (011110101100100) propagation in 
a single-channel transmission line operating at 40 Gb/s, with a periodic dispersion management 
using two types of fiber, with dispersions: ±lps/nm/km (for 5 ^ 1.65), ±0.595ps/nm/fcm (for 
5 < 1.65) and ±2.hps/nm/km (for S > 1.65), nonlinear coefficient: 0.002m~^W~^, fiber loss: 
0.22dB/km, coupling loss: 0.1 dB. With these input data we have analytically designed different 
DM lines for input pulse width: xa- = 5.3ps, energy ranging from 0.0125pJ to 0.0877pJ, and 
amplification length of 50fcm (the individual values of the fiber lengths are not reported here 
and will be published elsewhere). In the simulations we have also included amplifier noise figure 
of 4.5 dJS and a Gaussian filter of bandwidth 80GHz to reduce the timing jitter. After solving 
the nonlinear schrodinger equation, we have evaluated the transmission performance by means of 
the Q-factor. Figure 3 shows the Q-factor after a propagation distance of ~ 7000 A;m. In Fig.3 
solid, dashed and dot-dashed curves represent respectively the performance of DM lines with map 
strengths S ^ 1.65, 0.976 and 4.15, which correspond to the breathing parameters: R = 1.65, 0.64 
and 4. The horizontal dotted line represents Q=6, which corresponds to a bit-error rate of 10~^. 
The results represented in Fig.3, clearly show that transmission performance in DM line with map 
strength S « 1.65 is superior than other map strengths for various input energies. 

To conclude, we have presented a very easy and efficient way for analytically designing DM 
fiber lines with map strength around S ^1.65. Hence we believe that our analytical method will be 
very useful for designing DM fiber lines with S f» 1.65 without the help of any numerical procedure. 
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Abstract: The nonlinear effects amplitude jitter and ghost pulse generation can be suppressed 
by alternating the phaae of the bits. This is due to destructive interference between different 
contnbutions to the total nonhnear effect. 
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Introduction 
The properties of the retum-to-zero (RZ) modulation format in dispersion-managed (DM) communication 
systems have been thoroughly examined since this scheme is beheved to be one of the cornerstones of future 
systems. The large pulse overlaps occurring in these systems give rise to nonlinear effects via the Kerr 
nonlmeanty m the fibre, a process which perturbatively can be viewed as if every combination of two or 
three pulses give rise to timing jitter, amplitude jitter or ghost pulses [1, 2]. These effects will transfer energy 
either from the signal pulses to the empty bit slots or between the signal pulses. All bit slots are affected 
by many such processes driven by different combinations of signal pulses. We here show that the nonlinear 
ettects can be reduced by applying a phase shift, A^, to every second bit slot, Fig. 1. This affects the phase 
m the nonhnear processes, and the total nonhnear effect can be minimised by a suitable choice of Ad, It is 
also found that the dependence on A^ is periodic with a period w and symmetric about anv multiple of ir/2 
A discussion, based on a perturbation analysis, is given of the physical background to this.' The analysis has 
also been supported by numerical simulations. 

, I abs(A) 

pos.:   -2 

..|a(g(A) 

Fig. 1. Initial amplitude and phase modulation of a bit stream. The signal pulses are modelled as chirp-free 
Gaussian pulses. 

Theory 

7^1 °S°'J?u *' ^^f *' " '*'°"^'y °^^ 'y'*^'"' ^^^^ ^««" examined by the means of a perturbation analysis 
[6, 4, 6J, Ihe analysis is bs^ed on the nonhnear Schrodinger equation 

.dA 
''Tz 

§2m._     2     .a . 
2 dfi     ^'   ' ^ "' 2   ' (1) 

which includes the effects firom the second order dispersion, the Kerr nonlinearity and the attenuation in the 
fibre. In a strongly DM system the nonlinear effects are weak and the envelope, A, can be split A = Ai + A 
where ^, ,s the linear solution corresponding to 7 = 0 and A,, is the nonlinear perturbation. Inserting tils 
mto liq. (1) we obtain to the lowest order for the perturbation 

Mn 
2   fl*2  +*2   * -^\AifAi. (2) 
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For a pulse train Ai = Yl,.Ai,{z,t) = '£^f.A{zJ-kTo), where A{z,t) is a linearly propagating Gaussian 
pulse, To is the bit slot and k runs over the bit slots containing signal pulses. Inserting this expression into 
|^;|% and expanding we get source terms of the type A^A^A^, where Ar = A(z,t - rTo) etc., and the 
linearity of Eq. (2) guarantees that Ap is the sum of the individual contributions from these source terms. 
There are four types of source terms. The first type, lyl^f'^^r, gives self-phase modulation of the signal pulse 
Ar. Terms of the type |v4sp^r, i' # s, give cross-phase modulation of A,, and cause timing jitter [6]. In the 
present analysis we consider terms of the types A'^A^, r ^ s, and Aj.AgAf, r, s and t all different. Depending 
on whether their contribution add to a signal pulse or not, they cause amplitude jitter and ghost pulses 
respectively, effects known to degrade DM sj^stems. 

The contribution from A^A^A^ will end up in bit slot number i- + s - t [4]. Thus it can be predicted which 
source terms that contribute to the perturbation in a specified bit slot. We choose to study bit slot number 
zero which, for the time being, we suppose to be without phase shift. The condition that makes a contribution 
appear there \s r + s - t = 0. Phase shifting of the signal pulses is equivalent to multiplying the different 
source terms by complex constants. By assuming that all odd bit slots are phase shifted A(j) the contributions 
acquire the phase shifts listed in Tab. 1 relative to their phases when A^ — 0. All contributions in the zeroth 
bit slot are shifted either 0 or 2Acf), which explains why the dependence on A^ is periodic with a period t. It 
also means that we can sum the contributions into two phasors. The first consists of the contributions that 
are not affected by a phase shift and the second is the sum of those that are rotated 2A^, see Fig. 2a and 
2b. By optimising A^ destructive interference can be obtained and the nonlinear effects can be minimised. 

r s t = r + s V 
even even even 0 
even odd odd 0 
odd even odd 0 
odd odd even 2A(j> 

Table 1. The phase shift, f, of the contribution to the perturbation from a specific source term depends on 
whether r,s and t are odd or even. It is assumed that all odd bit slots are phase shifted. 

The amounts of amplitude jitter and ghost pulses are symmetric about any multiple of 7r/2, i.e., the phase 
shifts n7r/2 ± A(j>, where n is an arbitrarj' integer, give the same results. To explain this the phase dependence 
of the contributions in a phase shifted bit slot is examined. By assuming that all even bit slots are phase 
shifted the results listed in Tab. 2 are found for bit slot zero. The contributions unaffected by a phase shift 
in Tab. 1 are now shifted A(/>. However, the phase shift relative to the signal is still zero. The rotating phasor 
is shifted -A^, or -2A(^ relative to the signal, Fig. 2c. Thus the rotating phasor rotates in the opposite 
direction as compared to a non-phase shifted bit slot. When A(f> is a multiple of 7r/2 the rotating phasors in 
phase shifted and non-phase shifted bit slots are identical. The two cases A<j) = Q and A<f> = ir/2 are seen 
in Fig. 2a and Fig. 2d. Starting from a multiple of n/2 and adding a phase shift means that the rotating 
phasors will rotate in different directions in the two bit slots. However, when comparing adding a phase shift 
to subtracting the same phase shift the only difference is that the situation in the phase shifted bit slot has 
changed places with that in the non-phase shifted bit slot, and this will not change the average amplitude 
jitter or ghost power. This gives rise to the symmetry. 

a)\ 
\ 

rot.'' 

/Mm 
non-rot. 

Re 

non-rot. 
c) \ rot. 

\1 
Aim 

non-rot. 

Re 

non-rot. 

Fig. 2. a) The rotating and non-rotating phasors when A0 = 0. b) A pha,se shift A(/> gives a rotation 2Atf>. 
c) The situation in a phase shifted bit slot. The direction of rotation is changed, d) A4> = TT/2. All bit slots 
are identical. 
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r s t = r + s V 
even even even A<l> 
even odd odd A^ 
odd even odd A(f> 
odd odd even -A<f> 

Table 2. The phase shift, V, of the contributions in bit slot zero if all even bit slots are phase shifted. 

The rotating and non-rotating pli^ors are not identical in all bit slots. They depend on which contributions 
that ^ve rise to them, and this in turn depends on where the signal pulses are located around the bit slot 
The above symmetry argument can be applied to all pairs of bit slots, one phase shifted and one non-phase 
shifted interacting with identical surrounding bit patterns. The range of the interaction is approximately 
equal to the maxmium pulse mdth and this determines how many bit slots we have to account for It wiU 
always be possible to group the bit slots into pairs provided that the sequence is long enough With large 
pulse breathing the interaction range is longer and a longer random bit stream is needed to find matching 
pairs and see the mentioned symmetries. 

To verify the results stated here we have carried out a number of numerical simulations. We have found 
that the phase shifting can suppress the nonlinear effects and that a long pulse train is needed to see the 
symmetries [7]. We have also carried out system simulations checking the dependence on different system 
parameters, which also have confirmed the results stated here and shown that an increase of the Q-value is 
possible [8j. 

Conclusions 
In conclusion the phase alternation technique has been shown to be able to reduce the nonlinear effects in 
transmission hnks. The reason for this is that different contributions to the nonlinear effects can be made 
to counteract each other. It has also been clarified why Q(A#) is symmetric around points where the phase 
modulation is a multiple of w/2. 
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Abstract 

The evolution of optical solitons in the presence of amplification effects and nonlocal Raman response 
is investigated using perturbational analysis. The analysis reveals the existence of a soliton which acts as 
a global attractor in certain regimes of the amplification parameters. 

When entering the femtosecond regime in the context of nonhnear wave packets one has to account for 
both instantaneous and time-delayed Raman nonhnearities, due to the short duration of the optical pulses. 
In such cases one ends up with nonlinear Schrodinger (NLS-) equations extended with nonlocal terms. This 
has been done by several authors (see the references in [1]). 

In [1] topics like dynamical evolution of localized solution, the existence of travelling and stationary waves 
and modulational instability within the framework of nonlocal NLS model extended with amplification effects 
have been studied.   The model equation can be written as 

d,q = 9q+(b-^ \i] dU + pdU + {i + Sdt) [\q\^ q + e(H* \q\^) q (1) 

in this case. Here H * \q'^ denotes the convolution integral 

(H*\q\^){t) = j^    H{t-x)\q\\x)dx 

where the response kernel H {t) assumes the form [3] 

H{t) ^^^P sm 

0, / <0 
f >0 

The inverse timescale l/*i denotes the phonon frequency and 1/^2 the bandwidth of the Lorentzian line. 
Moreover, from [3] we have that these two timescales are related to the typical pulse duration time To 
through ii = ^"^^.J^ and i2 = ^^^- The parameter e is defined as e = ^, 0 < / < 1 and it measures the 
relative strength of the nonlocal delay effect versus the instantaneous response. The quantities involved are 
normalized and related to the physical quantities in the following way: The third order dispersion coefficient 

is given by ^ = 
6T0 UQ 

and the nonlinear parameters A'^^ and S as A'^^ = and S 2 
"wo To 

<o, 
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respectively. Here AQ is the carrier wavenumber evaluated at tlie carrier wavefrequency WQ through the linear 
dispersion relation, k'i and fef the second and third derivative with respect to the carrier wavefrequency 
respectively and c the velocity of Ught. q is equal to the envelope of the electric field normalized against 
the square root of the typical power density scale Po, N and ^/7. The temporal coordinate * is equal to 
the retarded trnle divided by the typical timescale To for the pulse duration, while the coordinate z appears 

as the longitudinal coordinate normalized against the dispersion length Tg/ kl . The optical ampHfication 

effects are introducwi by using a parabolic approximation to the gain - curve, represented by the two terms 
gq and bd^ q, where 6 = 0 (6 > 0) corresponds to infinite (finite) bandwidth of the amplifier. 

The power P given as   : 

\q\  {t)A (2) 

satisfies ill 
dP /*°°      -,       \s\   r°° -r-=2gP-2h \d,qf dt - LI,        ^ (A.) |F(fc)pdfe 

J—oa T      JQ 

Here F (A) and ip(k) are the Fourier transforms 

F(k)=   r lqf(t)expmdt  ,   i;ik)=.^^^M±3l 
*i+*i-*MfcT + 4*t«p2 (4) 

When omitting the nonlocal tern^ and the optical amplification effect in (1), the resulting equation poss<^ses 
a 1 - parameter family of traveUing wavepacket solutions termed Potasek-Tabor (PT-) soHtons Thev can 
be written on the form 121 . ^      J J 

fs (*, z) = 
cosh [B {t - Vsz)] 

exp [i (Kt - ujz) 

when the parameter identifying the solitons is chosen to be the Inverse soliton width B. Here the amplitude 
A, the velocity Vs, the fi-equency w and the wave number « is given as 

a-     2/3   2 = K + 3^K2 _ ^^2^   w = 1«2 + ^„3 l + 6/?«^2 
K = 

-2/3 
i\S\p 

The FT - solitons appear as an exact balance between the third order linear dispersion and the nonlinear 
terms, and it should be noticed that they cease to exist in the singular limit ^ -» 0. Notice that it is 
presupposed in the formulas (6) that j9 < 0 

Next, we study the evolution of the FT - solitons in the presence of weak ampMfication effects and Raman 
response by means of a perturbational approach. The starting point of this analysis is the power equation 
(3). Following the Ideas of soliton perturbation theory, we insert q = q, where q, is the expression for the PT 
- soliton (5) - (6) into the power equation. Doing this, we have also tacitly assumed that the dominant part 
of the solution consists of the soliton component, and that the non-soliton part is of order the perturbation 
parameters. 

We obtain 

dif 
dz = 4 ■ Ag • t] + £i, + Er ■ rj • I[r];i 

for ri and I [t], 0] given as 

(a;)    {xi-ny+r,$x'2 
dx 

(7) 

(8) 

respectively, with 0 as the numerical factor 

in)'- 
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Moreover, we have introduced the perturbation parameters Ag, £b and £r as 

Ag^K%-g ,  e,^''':Z     ^ -  s. = S^^IJ^. |/J|. (9) 

The parameters /\g and £b measure the optical amphfication effects while the parameter e^ accounts for the 
nonlocal Raman response. Notice also that £;,, Cr > 0 since / < 1 and h by assumption is positive, while the 
parameter Ag' may change sign. Hereafter we will refer to Ag as the shifted optical amplification parameter. 

The system (7) - (9) constitutes the basis for our further discussion. First, let us neglect the Raman - 
response, i.e. put Sr = 0. Then one can find closed form expressions for the modulated soliton amplitude A 
and the inverse width B of the PT - soliton by means of (6) and (8). The following features are apparent: 
For Ag > 0, the soliton width (amplitude) increases (decreases) monotonically with time, while in the 
complementary regime A^ < 0 the initial pulse relaxates towards a soliton state with width I/JB* and 
amplitude yl* as 

_ /6i/?iiAgi    i_ rT~ 

Next, let us include the Raman response effect. Also in this case we can characterize the dynamical evolution 
of the PT - solitons completely in terms of the shifted optical amplification parameter Ag: For Ag > 0 the 
soliton width will grow without bound, i.e., the pulse becomes broader and consequently the amplitude will 
decrease. For the complementary parameter regime Agi < 0 one can prove that there is a soliton acting as a 
global attractor for all PT - solitons. The amplitude A^t and inverse width B^t of this attractor satisfy the 
bounds 

A, > Ast >A+,  B,> Bst > B+ 

where A* and 5*  are given by (10) and A^ and B+ as 

^121^1 IAg| 1 ^   _   /6|Aff| 
+ ~Y   |5|      b    l + VTR  '      ^~Y     6     l + v/TT^ 

with 

where 
f  ¥  • TT^n for 0 < ^ < 2 

In addition, for broad pulses it can be inferred from the bound 

vr"     V [6) 
o<i[ir,0]< 

1152      T]' ,2 

for (8) that the Raman response has negligible influence on the wave evolution as compared with the optical 
amplification effects. We have initiated a direct numerical solution of the model equation (1). Preliminary 
results of this study confirm the results from the perturbational analysis. 
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Abstract: We investigate existence and stability of dissipative solitons in a transmission line 
with lumped ampMcation/absoiption introducing a matrix algorithm. Parts of the domain in 
parameter space where the background is stable exhibit Hopf instabilities 
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The concept of balancing the fiber nonlinearity with dispersion in ati optical transmission line directly 
leads to the soliton concept. Although solitons are very robust and stable structures, they are an 
Idealized model belonging to an integrable, conservative system. In reality fiber losses and 
amplification, which can be highly nonlinear and noisy if semiconductor amplifiers are used have to 

^^U T^. ^A^ ^^r *' f l!°*' 'y'*'"^ ^' ^'^^^^' ^'''^^^' ^d has to be described with models well beyond the Nonlinear Schrodinger equation. 
The system under consideration is driven by a semiconductor optical ampHfier (SOA)  which 

Sortefi^ nVl'^ 'fiK^^- \Tf^ ^^"''^'' <^^> *^^ ^'"^ incoiporated for noise reduction, as 
reported m [1,2]. The fiber exhibits losses, nonlinearity and dispersion, the effect of the latter we 
minimized by operating at the zero dispersion wavelength. Given that the amplifier as well as the 
ffll°rt'jS"^ a frequency shift and a spectral deformation of the signal, we use a bandwidth-limiting 
filler to stabdise the pulse. The expenmental setup is configured as a recirculating fiber loop thus one 
round trip corresponds to one passage ofamplifier, absorber, fiber and filter. 

In recent papers we have shown that in such a system stable structures, so-called dissipative 
sohtons, can emerge [3] being appropriate for transmitting signals over long distances Itey are 
|roboscop«^ly stationary and, in contrast to the canonical conservative solitons, their properties are 
fixed by systems parameters. To identify the solutions and to probe their stability we used an 
algontiun based on a simple rate equation model [4], which takes into account the order of elements as 
well as the taped nature (discreteness) of our system. ITius we did not make use of the vety common 
ansatz of avera^ng the element effects over one amplifier spacing (round trip) but rather described 
each element m the loop mdmdually. We restricted oureelves to a parameter space of the energy and 
the mean frequency of the dissipative soliton, neglecting changes in pulse shape and spectral width 

^8^ 

^ , ' 

^e^ 

^mj 

P(E,<D) 

f^^S t f^-^f^'^''^ ^^fo'- characterizing the soliton it is straightfor^^ard to use matrices as 
representatives of the various elements. ITie superecripfe "B","F","-" and "+" mark the filter, the fiber 
the absorber and the amplifier respectively. The multiplication of the matiices does not only allow for 
a proper representation of the lumped structure of the system but also for the specific order of the 
etenents. In order to reduce the equations of the elements to the energy-frequency parameter space 
md to amve at an analytic descnption we have to impose certain simpHfications, which are justified 
by the expenmental conditions, on our model. For the filter we assume Gaussian pulse - md filter 
shape. The system is supposed to be operated at the zero dispersion point and thus we can neglect any 
dispersive effects m the fiber compared to dispersion introduced by SOA/SA. Also, the fiber Ke^ 
nonlmeanty fells short behind tiie SOA/SA nonlinearities. Thus a single damping term may be used to 
charactenze the fiber. The SOA/SA energy gain/loss is mdependelt of the pdse shapefbut we do 
have to make the assumption of a symmetric pulse shape to establish an energy dependent frequency 
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shift of both elements. The change of the pulse shape is neglected too. The matrices of the absorber 
and the amplifier have the same structure since they stem from the same set of equations [3] and are 
nonlinear in their energy and frequency dependence. 

V>Vcrit 

,./'"'crt.=(l-^*')/(l-^'*') 

0 linear net gain 
r--^ 

0 20       40       60        80       100 

Time [ms] 

Fig. 1 Energy of solutions of the systems 
depending on the small signal net gain for two 
different ratios v of saturation energies 

Fig. 2 : Average power of a sol it on 
vs. propagation time. Abrupt 
changes of fiber loss during the 
propagation act as perturbations. 

As a main control parameter we use the linear, unsaturated net gain covering also the case of net 
losses, a region where noise accumulation is suppressed. We found that the pulses bifurcate fi-om the 
point of zero net gain. The ratio of saturation energies of absorber and amplifier has been found to 
govern the behaviour of the solution. For low saturation energies of the absorber there are solutions in 
the regime of net losses (subcritical bifurcation). On the contrary for high saturation energy of the 
absorber solutions to exist require positive net gain (supercritical bifurcation), where amplified noise 
destabilizes the solution. We have introduced an analytical criterion, which determines the bifurcation 
scenario for a given ratio v = £SAT/-^SAT of saturation energies of amplifier and absorber. The critical 
value depends on the small signal gain ho of amplifier (plus) and absorber (minus). As depicted in 
Fig.l for positive net gain the background is unstable which leads to a degradation of the pulse during 
propagation. 

The solutions in the region of net losses, shown in Fig.l as solid line, is of special interest and 
therefore the subject of our stability analysis. As our experiments have shown (Fig.2) there are 
relaxation oscillations if the system is perturbed. This was a hint to Hopf oscillations and instabilities 
which have been verified by BPM-simulation. 
Developing a linear stability analysis for lumped systems we have performed a systematic study of 

this destabilization scenario by using the Jacobian J of the propagation matrix P, linearizing the 
matrices around a solution (eo,(0o) and looking for the growth rate of a weak perturbation in energy and 
frequency (Se,Sa). This leads to an eigenvalue equation : 

yCdQ + Sea V«oy 
+ J 

ap(£,co) 
^8^ 

J = v«y 
^e^ 

V(Dy 

In fact we have found that the respective eigenvalues in the domain of interest can attain complex 
values indicating oscillations. Their magnitude can even exceed unity evoking a growing instability 
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(Fig.3). This was found to take place near the turning point where net losses are highest This is 
essential since here the noise suppression is strongest and the conditions are most suitable for pulse 
transmission. 

In Fig,3 a situation is depicted where a section of the upper branch, starting from the turning point is 
unstable (growth rate > 1, point c). ITie energy-frequency vector rotates a few times around the 

solution with increasing radius and 
finally converges to zero. Each 
point on the curve represents one 
round trip. For linear losses below 
the crossing point (point b) the 
oscillations of the perturbed 
system relax. Because the 
damping rate is small many round 
trips are required to achieve 
relaxation (compare with the 
experiment in Fig.2). If the grovrth 
rate is close to unity (point b) 
critical slowing down can be 
observed. The number of round 
trips is the same for every curve. 

The mechanism behind these 
oscillations was found to be the 
interplay of energy depependent 
frequency shift caused by the 
amplifier / absorber and a 
frequency dependent damping in 
the filter. 
The dependence of the region of 
Hopf instability on the ratio of 
saturation energies is shown in 
Fig.4.     One     can     see     that 
appro^hing the critical value for v 
the section of the branches become 

larger. TTiis implies the necessity of low saturation 
energies for the absorber. The dependence on other 
parameters like filter bandwidth or pulse bandwidth 
has been investigated and led to the conclusion that 
strong filtering can prevent instabilites effectively. 
In conclusion we foimd that in a recirculating fiber 
loop with lumped elements stable soliton solutions 
on a stable background may exist for net losses. In 
a domain of this very region Hopf instabilities have 
been found leading to signal degradation.    The 
instabilities can be prevented by strong filtering and 
small saturation energies of the saturable absorber. 
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[2] Z. Bakonyi et al., IEEE Photon. Technol. Lett 
12 (2000) 570 
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(1989)2297 
[4] V. Grigoryan, Opt. Lett. 21(1996) 1882 

, 1,1,1, 

m - / 

marginally stable 

8 - ( /^^ 

8- 

d) 

(       \ 
- 

\       (eo,<»o)   J 

* 1    •    1     '    1    • 

0 energy e [a.u.] ener^ e [a.u.] 

Fig.3 Growth rate \kf vs. linear net gain (a), b)-d) Evolution 
of soliton parameters after perturbation. Each point marks a 
round trip in the line, the arrows give the direction of time. 

-1.0 -0.6 
linear net gain 

-0.2 0.2 

rig.4 Domains of Hopf instability for 
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1 Introduction 

Whatever the future structure of in-line optical amplifiers, as lumped, distributed or hybrid configurations, 
the unavoidable nonlinear interaction of optical noise and transmitted signal, with distortion or squeezing of 
the noise spectral density, represents an important issue in dispersion managed systems [1]. Such dynamical 
interplay, ruled by the nonlinearity of optical propagation in fiber, has been initially studied by Carter 
[2] explicitly discerning whether the squeezing effect is induced by a continuous wave (CW) or by a single 
classical soliton. Indeed CWs may represent unstable solutions of the Nonlinear Schrodinger equation (NLSE), 
and exponential growth of weak perturbations in the spectral domain may arise in presence of modulation 
instabihty (MI). Differently, small perturbations superposed to classical solitons may undergo a squeezing 
effect in absence of MI, owing to the intrinsic stability of solitons. However MI in the soliton regime was 
reported in presence of soliton trains [3], and previously in Ref. 4, for special waveguiding structures. For 
periodically dispersion-managed (DM) systems, again the CWs may exhibit MI with peculiar dynamics [5], 
whereas for the single DM soliton regime, a hnear stability analysis (LSA) has been presented in Ref. 6, with 
specific attention to the soliton disruption in the average normal dispersion regime; an application of the LSA 
technique has been recently presented in Ref. 1 in the evaluation of the bit-error rate of noisy transmissions. 
In this work we apply the LSA technique to DM solitons, pointing out the role of average anomalous 
dispersion and the effect of neighboring pulses in the time domain, when elementary perturbations, that are 
superposed to DM solitons, undergo squeezing phenomena during their propagation. 

2 Analytical description 

Our starting point is the so called dispersion-managed nonlinear Schrodinger (DMNLS) equation, that has 
been derived through a multiscale approach by Ablowitz and Biondini [7], and with a different method by 
Medvedev and Turitsyn [8]. The DMNLS equation in the frequency domain, referring to normalized units 
like in Ref. 7, reads as: 

dTJ(~ ti\       11'^ /-t-oor+00 
i^^^f^^-d^Uiz,u)+ /      r(ij,U2)U{z,cj + u;i)U{z,u} + uj2)U*{z,cj + uJi+0J2)du)idi^2 = 0   (1) 

o^ ^ J—OQJ—00 

Where     r{x) = -^ j\ e'^^^'^dC     and     C(C) = / J^(C') - m'■ 

U{z,u), according to Ref. 7, evolves with a scale that is much longer than the single dispersion map length 
L (normalized to L = 1 in eq. 1), and more specifically, for DM soHtons, U{z,uj) = F(a;)exp[i2A'^/2]; r{x) 
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accounts for the dispersion map periodicity [7], and D(C% 6 represent the local and path average dispersion 
respectively. Following Refs. 2,3,4,6, one can assume I7(^,ca) = [F(uj) + uiz,uj) + iviz,w)]exp[izXy2l where 
« and V are small perturbations, often called in-phase and quadrature components. At the numerical level 
11], the dynaamcs of u(z,u) and v(z,u) can be calculated simply solving two times eq. 1 with different 
mput^condittons the former with Uiz = 0,uj) = F(w) + u(z = 0,a;) + iviz = 0,a;) and the latter with 
U(z - 0,w) - F{u), and finally applying a subtraction [1]. In our example we manage the local dispersion 
holding D = 2ps/(km ■ nm) for a span of 10.25fcm, then D = -2ps/ikm ■ nm) for IQMm and then again 
D - 2ps/ikm ■ nm) for 10.25fcm, conceiving a dispersion map oi6 = 0.05ps/(&m ■ nm). Assuming a common 
fiberjross section of BO^m^ and a soliton energy of 50/J (initial pulse width of 6Mps), we show in fig 1 
GR - 20Logio[|u(2r,w)|/|«(0,w)0 and Gi = 20Logio[|t;(^,w)|/|v(0,a;)Q. We neglect here the fiber losses and 
we assume u{z = 0, w), viz = 0, w) of constant value, as a reference initial elementary perturbation. 

c 
-2{ *.', 

-^.f;*-^.^ 

200 
D5 

S>/(2w) {01*1 zpmj -2o: 
<,>n&) is»n 

Fig. 1. Broadband deformation of an initiaJly constant perturbation induced by a DM soliton in tlie frequency 
domain: GR (left) and Gi (right); results have been calculated through the numerical solution of eq. 1. 

3    Linearization of the DMNLS equation 

Let us try now to exploit the solitonic nature of the stationary solution F(w) to clarify analytically the 
squeezing effect. Linearizing eq.^ 1 around a soliton solution F(w) we derive a consistent set of coupled 
equations for «, v as follows: 

J—ao dz Y^+r' dz -^u,u+ 
r+<x> 

-mm 
J—oo 

+ 2N^iOMu + Odi   (2) 

M 
/>+oo I : 

"^^^ " Jl}''^^ ~ "^'^^ ^^'^ + '^'^^^•^ +1 - wi)<A^i, iV,(a = jriuiOFiw + «i)F(a; + ^ + Ut)dui. 
mte that the nonlinear Kerr effect, now tailored by the stationarf Solution F(w), may induce a significant 
frequency-dependent coupling in eqs. 2, that is represented by the functions M^(C), N^i^). Observe that 
these fanctions are invariant in 3: and can be computed just one time before solving the linear system of eqs 
2, owing to the spatial invariance of the DM sohton envelope. Examples of numerical solutions of eqs 2 still 
m optimum agreement after lOOOfem with the results directly achieved applying the subtraction method in 
eq^l^e shown m fig. 2; note the different distortion when we change 5 = 0.1pa/(km • nm), in case A, to 
d - 0.025ps/(km ■ nm) in case B. The direct numerical evaluation of eqs. 2 and of MJ^) N^{^) results 
extremely time consuming whenever the frequency domain is numerically resolved into a refined discrete 
gnd. In the attempt to reduce the computation effort, for small energy pulses the DM soliton spectrum can 
be approximated with a gaussian function as F(a;) ~ AeiLp[-u,yB^]; consequently one may express new 
coupling functions M„(^) and iV^(0 as 

M.iO = A^jy I 
21B^ + %C{z) 

exp B'J- + 8a>g + f (2 - iB^Cjx)) 
dx 

NM) = ^f!Bsl^m>{-^^ + B^cH^)i+^4BH2. + ecM] I ^^ 
(3) 

Eqs. 3 may be useful in solving eqs. 2, replacing M„(C) and N^), under a farther warning: in addition to 
the perturbative limit, which was previously discussed, now we have explicitly assumed a Gaussian waveform 
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for F{u}) (Gaussian LSA, GLSA) limiting our analysis to low-power solitons. Nevertheless, for pulse's energy 
of 30/J we found that the GLSA agrees with numerical results obtained solving twice eq. 1 (see dashed 
curves and filled dots in fig. 3), even for long distances. Finally the same elementary perturbation may result 
differently modified when DM solitons are closely packed. Indeed, if we reduce the bit slot from T = 25ps 
{40Gbit/s systems) down to T = 20jjs, when transmitting a sequence 111, we notice in GR and Gj an evident 
difference from the single pulse case (we retain a moderate propagation distance so that the jitter is still 
negligible). We have applied the GLSA assuming U{Z,OJ) = F(w)(l + 2cos[wT])exp[«2:A^/2] and we have 
calculated similar expressions for M^j{^), iVw(Oi now dependent on the bit slot T. We present our results in 
fig.3 comparing the full numerical solutions of eq.l with the GLSA both for a single pulse transmission and 
for a sequence 111 with T=20ps. 

In conclusion, we calculated the dynamical evolution of small perturbations superposed to DM solitons 
applying a linear stability analysis to the DMNLS equation. We have improved the computational efficiency 
through the Gaussian assumption for the DM soliton and we have pointed out the eventual additional role 
of the patterning effect induced by closely adjacent pulses. 

Case A CaseB 

100 

0)/(2itf[GHzl (OI{2K) [GHZ] 
100 

Fig. 2. Perturbation dynamics in phase, quadrature after lOOOl^m. Right: (case A) with S — 0.1ps/{kTn-nm). 
Left: (case B) with i5 = 0.025ps/(fcm • nm). Solid line for the numerical results of eq. 1, dots for LSA solving 
eqs. 2. 
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Fig. 3. Left: GR{W) after 950km. Effect of a sinlge pulse (dashed curve for numerics through eq. 1, filled dots 
for GLSA) and for a sequence 111 (solid curve for numerics through eq. 1, empty dots for GLSA). Right: 
Gi(ui) after 950km. Effect of a sinlge pulse (dashed curve for numerics through eq. 1, filled dots for GLSA) 
and for a sequence 111 (solid curve for numerics through eq. 1, empty dots for GLSA). 
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Abstract:  We give theoretical interpretation for tlie recently observed phenomenon of 

inhomogeneous spectral broadening of BriUouin scattering in optical fibres. SBS spectral width 

and pin dependencies on numerical aperture and are shown to be in good agreement with 

experiments for both single- and multi-mode fibres. 

© 1999 Optical Society of America 

OCIS codes: (060.4370) Nonlinear qjtics. fibers; (290.5900) Scattering, stimulated Brillwin; (300.6170) Spectra 

The key parameter of a medium for SBS is the width of the Brillouin scattering spectral Ime T. It determines SBS 

gain g (g oc r') and so SBS threshold power/intensity (P^ - p), it defmes the buid-up time of scattering and the 

duration of transient processes, etc. Usually r is defined by damping of the acoustic wave due to viscosity. This is 

normaUy uniform in bulk media, resulting in homogeneous broadenmg of the Brilloum scattering spectrum III.    : 

In optical fibres, however, it is known that the Brillouin line is broader than the classical homogeneous width 111. 

Recently we provided first experimental evidence showmg this excess broadening to be inhomogeneous and a 

generic feature of waveguiding sptems 131. We have shown in /3/ that this phenomenon arises from the ability of a 

fibre (even single-mode) to guide a fan of beam directions withm an acceptance angle 26^ where 8^ = 

arcsin[(NA)/no„] is the complement of the critical angle, n^ is a refractive index of the core and NA is the numerical 

aperture of a fibre. Since the Brillouin frequency shift. FeCf), depends on the angle, f, between the momentum 

vectors of the pump and scattered radiation (FB(<P) = 2nvsin(<p/2)a 111, where v is the velocity of sound and % is the 

radiation wavelength) there k a range of FB'S within angle 29,. For every Fe(<p) corresponds a homogeneously 

broadened line. The Stokes spectrum, broadened by the waveguiding, is then the convolution of these Imes over all 

frequency components. 
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Here we show the dependence of FWHM linewidth of this inhomogeneously broadened spectrum (F) and the 

corresponding SBS gain (g) at maximum of the gain profile on the NA of a fibre are given by the expressions, 

T^.lr^+F^ 
[NAY 

and 
2CFXo,   - 

where go is the SBS gain for bulk silica, To = C¥^ is the homogeneous width of the Brillouin line, C is the constant 

of a material. 

Experimentally measured T in five fibre samples (three single-mode, one two-mode and one multi-mode) with 

different NA (from 0.12 to 0.24) are shown to be in good agreement with our theoretical expression given above (see 

Fig. 1). In Fig.2 we show the dependencies of g and P,h = G^S/gL on NA, where Gu, is the SBS threshold exponential 

gain, and S is the cross section area of the fibre core and L is the fibre length. Pth in this Figure is normalised to Ptho, 

which is the SBS threshold power in a fibre, taking the SBS gain coefficient as that for bulk silica. 

300 
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Fig.l 
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0.25 

Figs 1 and 2. Dependencies off (1), g and P,h (2) on NA for a fibre with n,.„ = 1.46 and C = 1.4 lO'dVlHz)-' 
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The experimental data presented (dots and squares) are the relative values of SBS thresholds at appropriate vato 

of NA in single-mode (dots, our measurements) and in multi-mode (squares, data from /4/) fibres. As seen there ii 

good agreement between calculated and measured dependence of SBS threshold on NA. Figs 1 and 2 show in th 

limit that the NA approaches zero, corresponding to the case of the bulk media, the values for linewidth. gain and 

threshold power for SBS asymptotically approach the values expected, those for which the SBS gain is 

homogeneous. 
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Abstract:   Random dispersion variations lead to pulse degradation in fiber lines. We discuss 
the validity of a finite-dimensional reduction of the nonlinear Schrodinger equation and derive 
an analytical formula describing pulse broadening induced by randomness. 
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Even though fibers can currently be manufactured to within very precise dispersion tolerances, small vari- 
ations of the dispersion are always present [1]. If optimized return-to-zero (RZ) pulses such as solitons or 
dispersion-managed solitons are used as bit carriers, these deviations from the nominal dispersion degrade the 
performance of the network and can lead to pulse disintegration [2]. It is therefore important to understand 
how these random variations influence pulse evolution and to be able to characterize this effect. 

The basic equation for studying pulses in optical communication lines is the cubic nonlinear Schrodinger 
equation 

iA,+d{z)Au^c{z)\A\^A==0. (1) 

The slowly varying electric field amplitude ^ is a complex-valued function that depends on the propagation 
distance z and retarded time t. Loss and amplification are included by allowing the nonlinear coefficient c to 
vary with propagation distance. Here, the dispersion d{z) = ddet{z) + dr{z) consists of a deterministic part 
dde%{z) and a small random part dr{z). For the random part, we assume white noise of strength D, so that 
its correlation function is given by 

(driz)dr{z'))=   Dd{z-Z'). (2) 

It has been shown [4, 5] that the core evolution of a dispersion-managed soliton is very accurately described 
by the first mode of an appropriately transformed Gauss-Hermite eigenfunction expansion, given by 

where the 1/e width T{z) and the chirp M{z) are governed by coupled nonlinear ordinary differential 
equations (ODEs): 

dT     ,j, ,,^ dM     d{z)     c{z)N^ ,., 

This system of ODEs can also be obtained from Eqn. 1 though a variational approach and a consideration 
of certain moments of the pulse [5]. In the case considered here, these ODEs are stochastic because of the 
random component of d{z). 

We first demonstrate that the solution of Eqns. 4 stays close to the solution of Eqn. 1 in the presence of 
random dispersion. We consider a typical deterministic two-step map ddet for dispersion-managed systems 
consisting of two fibers of the same length having highly varying local dispersion ±d\oc and a small average 
dispersion dav We take a dispersion-managed soliton As{t) as the initial condition for our PDE simulations, 
and the corresponding values of T and M of Eqns. 4 as the initial condition for the ordinary differential 
equations. For the PDE simulations, changes in pulse width can be described by the quantity 

AT= ft^\A\'^dt- ft^\As\'^dt, (5) 

where we make use of the fact that 1^4^(2, t)P is strictly periodic in z with the dispersion map period. In 
the deterministic case, obviously A = As and AT = 0. Making use of Eqn. 3, we find the corresponding 
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Pig. 1. Numerical comparison of the ODE simulations (solid line) and the PDE simulations (dashed li 
m the distnbuted-gain limit (c constant). The amplitude of the noise is 0.05. The other parameters 
iloc = 5, dav = 0.15, JV2 = 0.1 IT. 

nej 
er parameters are 

expression for the ODEs: 

:    AT = V^N^THz)-TLiz)). • (6) 

We have compared values of AT obtained by numerically integrating Eqn. 1 with Eqn. 5 and Eqns 4 with 
km- 6for various dispersion maps. Figure 1 shows very good agreement between these solutions for a typical 
map. This confirms that the ODE model given in Eqns. 4 represents a reasonable reduction of Eqn 1 for 
studying the influence of random dispersion on pulse dynamics. 

In order to obtain analytical results, we make use of the fact that nonlinearity is weak in physically real- 
istic dispersion-managed fiber Unks. Whereas the fast dynamics is governed by the local variations of the 
dispersion, the slow evolution is determined by this weak nonlinearity and a correspondingly small resid- 
ual dispersion. Jhe random fluctuations introduce a third small quantity, and we can exploit these small 
quantities to obtain approximate expressions for the perturbed evolution of the pulse width. 

To carry out these calculations, we write 

diz) = d{z) + ed^r + vdr(z) (7j 

where <l(^) is idjoc in the different fiber spans, and e and v are small parameters. We can then write T and 
M m expansions 

: ;, T = TG + fiTres + vTi,       M = Mc + fiM,^-j-vMi, (8) 

where To and MQ represent the Gaussian core of the dispersion-managed soliton, satisfying 

Ta. = Miz)MG,       MG. = ^. (9) 

The evolution of r,es and M,^ is then described at leading order by the corrections to this Gaussian caused' 
by a small average dispersion and weak nonlinearity, leaving Ti and Mi to account for the influence of 
random dispersion, with 

Tij = 44 WMG + 4diz)Mi, _ drjz)     Miz)Tt 
IE r 

This system of equations can be solved easily as it is equivalent (to the leading and first order) to 

T(z) = Ta^vTi,       jiz) = MG + vMi 

tm 

(11) 
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0.008 

Fig. 2. Numerical comparison of the numerical simulations (solid line) of the ODE with the PDE simulations 
(dots) and with the analytical model (dashed line). The amplitude of the noise is 0.05. The figure shows an 
average over 5000 realizations. 

Tj =4(J+J/dr)7, 72 
d+ vdr 

with the solution 
4„2 

r^{p) = -rl + -1-, p' = d{z) + udr{z). 

Prom this formula we can directly obtain the pulse broadening: 

AT- n R{z)' = d{z). 

(12) 

(13) 

(14) 

'ii&s:e,Wr{z) is a Wiener process derived from integrating white noise of strength D, and R{z) is the accu- 
mulated dispersion (made periodic by the zero mean of d{z)). We can compare this analytical prediction to 
numerical simulations. Figure 2 shows clearly that, for z not too large, the analytical results describe very 
well the behavior governed by Eqns. 4. Given the long range of agreement demonstrated previously between 
this system of ODEs and Eqn. 1, the influence of random dispersion on pulse width is accurately represented 
by Eqn. 14. 

In summary, we have successfully captured the effect of random dispersion on the propagation of disperion- 
managed solitons through optical fiber by reducing the original partial differential equation to a simple pair 
of stochastic ODEs. Not only are these ODEs much faster to simulate in computations, but we have also 
demonstrated that a quasi-linear analysis of these ODEs accurately describes the effect of randomness for 
reasonably short evolution scales. 
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Abstract: We derive field equations in frequency domain for describing spectrally broad pulses      : 
m nonlinear waveguides. Applying this model to supercontinuum generation in photonic-crystal 
rfonnoTf '"^fi'^S***' the influence of a frequency-dependent nonlinear term for realistic fibers 
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With thejmergence of photonic-crystal fibers (PCFs) [1] with tailorable optical properties there has been an 
appreciable progress m supercontinuum light generation experiments [2, 3, 4]. Different regimes of operation 
ha:ve beeii applied to generate a white-light continuum in the visible spectrum, so short pulses in the solitonic 
regime [4, 5] and longer pulses of moderate peak power where the interplay between Raman effect and four- 
wave mixing rules dynamics [2, 3]. These experiments rely on the modified dispersion properties on the 
smglemode operation and on small effective areas of PCFs. The theoretical description has to tke into 
account nonhneanty, the exact dispersion relation [2, 3], a frequency-dependent effective area (up to now 
only considered m a different context) [6] as well as the frequency dependent nonlinear refractive index 
because of the expected extreme spectral width. :  ' 

-4 -3   -2   -1012 

X coordinate [|jm] 

Pig. 1. Image plot of one component of the magnetic field and intensity contours of the mode of the POP 
at a wavelength of 400 nm. The contour spacing is 3 dB. 

The aim of this paper is to derive a model that takes these effects into account consistently Evidently 
he fi^equency domain is the natural choice to describe such highly dispersive svstems. Starting from a 

total field formulation [7] we derive evolution equations with a general dispersive nonlinear term describing 
a frequency-dependent effective area as well as a third-order nonlinear coefficient, m include the exact 
dispersion relation, four-wave mixing, and stimulated Raman scattering (SRS). For a symmetric fiber only 
one mode m the expansion of the electric field has to be accounted for becanse of monomode operation of 
FGFs over a wide wavelength range. The normalized equation for the modal amplitude a then reads 

da{Z,v) 
dz liS{u) - e{u)]a(Z, u 

p+A /.+A 

+iM(l -F«)£^ d«i J^ d«27(-«,«i,«2,« -tti -te}aiZ,ui)aiZ,U2)a*(Z,ui+U2 (1) 
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r+A r+A 
duiS{'Ui)a{Z.u - ui) /     dtt'2'fYi{—u,u - ui,u-2,'Ui - U2)a{Z,U2)a*{Z,U2 - ^ll). 

-A J-A 

Heie Z is the normalized propagation distance, e describes linear losses, ui are the normalized frequencies 
relative to the reference frequency ojo, p. and pLu are the nonresonant (four-wave mixing) and the resonant 
(SRS) contribution to the third order nonlinearity, respectively, 2A the total bandwidth of the optical field, 
S the Raman susceptibility and 6 = [i{uj) - /3(u-'o) - (w - uJo)h'g represents the quadratic and higher order 
corrections to the propagation constant of the linear fiber mode around the reference frequency WQ. The 
dispersive properties of the nonresonant and resonant nonlinear term are described by 7 and 7R, respectively. 
To make the equations numerically tractable w^e introduce a physically motivated model for the parameter 
7 dependent on four freciuencies to describe also nondegenerate nonlinear processes. We put into this model 
the results from simulations of different PCFs. Also the exact dispersion relation /3(a;) is taken from here. 

1.2 1.1 
9.5 iT 

wavelength X [pmj 

0.8 0.7 0.6 0.5 

6.5 li -I L. 1.430 
1.6    1.8   2,0   2.2   2.4   2.6   2.8   3.0   3.2   3.4   3.6 

frequency (B[10'V'] 

Pig. 2. Wavelength dependence of effective area for self-phase modulation (dashed) and cross-phase mod- 
ulation of A = l^tm (dotted) and effective index (solid) of the mode shown in F'ig. 1. The Raman shift in 
silica is WR = 0.083 X 10"s-l. 

Fig. 1 shows the field profile of a fiber similar to those used in recent experiments [3]. Fig. 2 shows the 
contribution of the fiber mode effective area to 7 and the variation of the effective index of the mode as a 
measure for 6{u>). We can recognize that for a 700 nm wide continuum the effective area of our sample fiber 
is altered by a factor of 1.4. Moreover, it is obvious that we have different effective areas for self-phase and 
cross-phase modulation, so for two phase-matched processes generating even the same wavelength (e. g. here 
A = 1 /um) we have different areas. The nonlinear optical coefficient of silica changes by a factor of 1.4 within 
the visible wavelength range [8]. This change adds constructively to the dispersive change of the effective area. 
At the same time the self-steepening factor (1 +^l) changes by a factor of 2.4 into the opposite direction. So 
at a first glance 7 seems to reduce the self-steepening and shock effect. Due to photon number conservation 
7 is only effective when the sum of it's four arguments vanishes. We investigated this behavior by calculating 
the modal profiles at different wavlengths and by looking at 7 at different frequency combinations in order 
to confirm the model. 

As a simple example Fig. 3 compares the spectrum of a propagation simulation of an injected fifth order 
soliton after half a soliton period. Here the inverse soliton temporal width was in the order of the Raman shift 
and Raman-induced pulse splitting occurs. Already after half a period we can clearly see that for the case of 
dispersive effective area the separated wing travels slower. We will show results of propagation simulations 
investigating the influence of these corrections in different parameter ranges and we will compare to the 
models without frequency dependence. 
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Pig. 3  Spectrum of the output after propagation of half a soliton period of an initial fifth order solitou 
^Iculated with constant efl'ective area (dashed) and with a frequency dependent one (solid). The normalized i 
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Abstract 

A new model for the active modulation of a modelocked laser cavity shows pulsetrains can 
be stabilized only if adjacent pulses are out-of-phase, whereas instabilities destroy the pulsetrain 
or give Q-switching. 

Compact sources of optical pulses near wavelengths of 1.55 microns are key enabling technologies 
for high speed fiber optic communication systems and interconnection networks. The primary focus 
of this paper is the development of an analytic model describing active modelocking. Significant 
strides have been made toward a complete description of femtosecond modelocking in soUd state 
lasers [1]. Additionally, passive modelocking in a fiber laser has been described with Haus' master 
modelocking equation [2], as a soliton system under perturbation [3], or with a variety of other 
specialized models. In contrast to the various descriptions developed, the model considered here 
characterizes the entire actively modelocked pulse train. This allows for the exploration of the 
stability and dynamics of the modelocked pulse stream which can exhibit instabilities not captured 
by the isolated pulse approaches of previous works. Thus, phenomena such as Q-switching in active 
modelocking can be observed and investigated within this framework. 

The nonlinear Schrodinger equation (NLS) governs the underlying wave behavior of an optical 
laser cavity exhibiting both chromatic dispersion and a weak Kerr nonlinearity. For active mode- 
locking, the physical effects of dispersion and nonlinearity are accompanied by a bandwidth limited 
gain and a periodic attenuation from the active modelocking element. The pulse evolution in the 
actively modelocked laser system is governed by the equation [3, 4]: 

.dQ     1 d'^Q    ,^,2^     . g{Z) {l+r-^-M{T-cn\ojT,k)) Q=0. (1) 

where the gain is given by g{Z) — 2go/{l + ||Q||^/eo) and all quantities have been normalized. 
The active modulation model of modelocking is fundamentally different from passive techniques 

whose nonlinear responses generate pulse shaping. Here it is the linear, time-dependent, periodic 
forcing M{T - cn^{T,k)) which results in stabilized pulses. This periodic forcing generates peaks 
and troughs in the gain as a function of the time T. Thus cavity energy will accumulate at the 
local peaks of gain whereas cavity energy will be attenuated at the local troughs in the gain. 
Similar to saturable absorption, this preferential localization of cavity energy gives the necessary 
pulse shaping required to form and stabilize localized pulses in a periodic wavetrain. To proceed 
analytically, we have generalized the normal periodic forcing given by cos^ uT [3, 4] to the Jacobian 
elliptic [5] cosine function cn^(wr,fe). Here 0 < fc < 1 is the elliptic modulus. In the limit fc = 0, 
the modulation reduces to a purely sinusoidal forcing as given previously [3, 4]. For values of 
k < 0.9 the potential is virtually indistinguishable from the sinusoidal modulation. However, as 
A; -^ 1~, the forcing becomes a series of well separated hyperboUc secant shaped modulations. This 
modulation is introduced not only for its mathematical generality and ease, but also because we 
can find exact analytic solutions to (1) with a constant gain parameter g{Z) = g =constant. 
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Figure 1: Stable evolution of the modelocking pulse train starting with initial noise. One period is 
considered with the parameters used being k = 0.999, g = 0.3 and r = 0.1. Note the formation of 
two pulses from this noise realization. 

Unstable in-phase pulsetrain solutions are characterized by the absence of a node between 
neighbormg pulses. Such solutions can be reprensented by the dn(r, k) Jacobi elUptic functions [51 
In particular, the in-phase solution is found to be of the form 

Q(^,r) = dn(r,fe)exp (2) 

where M = -2k^gr and T = 2k^r (1 - 1/k^) + 1/k^ + ^(2 - kyk'y2. The lack of a node will 
result m an unstable pulse train. 

^An out-of-phase pulsetrain is characterized by the presence of a node between neighboring 
pulses. Such solutions can be reprensented by the cn(r, k) Jacobi elliptic functions [51. In particular 
the out-of-phase solution is fotmd to be of the form ' 

QiZ,T) = kcn(T,k)e^ 
\~^' m 

where M = -2k^gr and T = l/2kH2k^ - 1/r - 1). The nodal separation is critical to the stabiHty 
ot the pulse trains, i.e. adjacent pulses need to be out-of-phase in order to have the possibihty of 
bemg stabilized. i- j 

^Figure 1 shows the evolution over T = 400 given a set of random initial conditions The 
pulse quickly settles to two modelocked pulses of the form (3) which are stable under further 
perturbation. The value of the elliptic modulus in this case is taken to be fc = 0.999 which results 
m well-separated peaks in the actively modulated gain element. Thus the governing equations are 
capable of modeling the start up dynamics of the laser from a noisy initial state. In addition to this 
stable evolution, Fig. 2 comiders the same solution with k = 0.5. The smaller value of the eUiptic 
modulus forces the neighboring pulses to have significant overlap. As is observed, this overlap 
leads to a destabilization of the exact solution. However, the evolution quickly settles to a qu^i- 
penodic dynamics where energy is exchanged periodically between neighboring peaks of the gain 
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Figure 2: Unstable evolution of the modelocking pulse train starting near the exact solution given 
by (3). One period is considered with the parameters used being k = 0.5, g = 0.3 and r = 0.1. 

This behavior is robust and persists under perturbation. Since the cavity is periodic, an output 
coupler produces a pulse stream for these quasi-periodic interactions which has the characteristic 
of Q-switching. In contrast to the out-of-phase solutions given by (3), the in-phase solutions of (2) 
all result in unstable solutions which decay to zero. 

The model predicts that only out-of-phase pulse train solutions can be stabilized. Under large 
perturbation, the pulse train is often stabilized to a two-pulse per round trip configuration. All 
in-phase solutions are unstable and are destroyed. Further, for the out-of-phase solutions, if the 
pulse spacing is not sufficiently far, then the nearest neighbor interactions can dominate and lead 
to Q-switching behavior. For short cavities, this Q-switching can result in quasi-periodic behavior 
of the pulse train. For long cavities, the resulting Q-switching is chaotic in nature. For specific 
pulse separations where k « 0.98, the out-of-phase pulse train is destabilized and attenuated to 
zero. These results are consistent with experimental observations of laser cavities modelocked by 
active modulation [3]. 
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Abstract:  Solutions of tlie nonlinear Schrodinger equation mdth gain, describing optical pulse 
propagation in an amplifying medium, are examined, A self-similar parabolic solution in the 
energy-containing core of the pulse is matched to the linear low-amplitude tails. The theoretical 
analysis reproduces accurately the numerically calculated solution. 
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Self-similarity techniques have been applied to study high-power pulse propagation in normal-dispersion 
fibres and fibre amplifiers. It has been sho^m that linearly chirped parabolic pulses are approximate self- 
similar solutions of the nonlinear Schrodinger equation (NLSE) in the high-intensity limit [1, 2]. Theoretical 
results have been confirmed experimentally [3]. The derivation of parabolically-shaped solutions in [1, 2] is 
based on the assumption that the linear dispersive term in the equation for the field amplitude is negligible as 
compared to the nonlinear- term, similar to the quasi-classical approximation in quantum mechanics. Though 
the central core of the solution has already been described in the literature for some physical problems [1, 2], 
a comprehensive theory that includes matching with the linear tails has not been presented yet. In this paper 
we present the results of a detailed analysis of the solutions of the NLSE with gain. We construct a quaei- 
classical self-similar solution with parabolic temporal variation, that corresponds to the energy-containing 
core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core 
through Painleve functions to the solution of the linearized equation, that corresponds to the low-amplitude 
tails of the pulse. The analytical solution proves to reproduce accurately the numerically calculated solution 
of the NLSE. 

Localized optical pulse evolution in an amplifying medium in the absence of gain saturation and for incident 
pulses with spectral bandwidths less than the amplification bandwidth can be described by the well-known 
NLSE with gain term [4]: 

#.-y#«+<^WV = i^i^. (1) 
We are looking for a solution of the form 

^{z,t)=a(z)F(ii,i)^''(')*', , (2) 

where new self-similar variables are introduced as { = </r(«), d»?/d3 = aa'^iz). These transformations yield 
coupled equations for a, T, C, and F: 

f=AC+f,        ^ = -2^2C,        {C,-20^C^)T'' = -Xaa\ (3) 

ii^ + (,^p + AaF__|^^.0,        c=H^, (4) 

where A is an arbitrary parameter, related to the pulse power. We separate F into a real amplitude A and 
a phase #, according to F(nS = A(n4)e*(n,&^ ^ obtain from Eq. (4) the "hydrodynamical" system of 
equations: 

(A%,^^^(A'^,), = »,       ., + -jL[^-(*.)■ -(A'+Xf) = 0. (6) 
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First, we consider a possibility of an approximate description of the energy-containing core. Let us define a 
parameter e as the ratio of the linear dispersive term to the nonlinear term in the second of Eqs. (5): 

€(r?,^) = i« 

C{T])A^ (6) 

High-intensity pulses are solutions for which the condition e <C 1 is satisfied. This condition corresponds 
to the so-called quasi-classical limit of Eq. (1). When such a condition is met, the linear dispersive term 
in the second of Eqs. (5) can be neglected, and so it is easy to find a self-similar solution with a parabolic 
distribution of the intensity: 

^(C) = [A(l-aP,        \i\<\,       ^{v) = Xv. (7) 

Time {ps) 

Fig. 1. Pulse evolution in the amplifier. 
Intensity profiles plotted on a logarith- 
mic scale in 0.5 m increments. 

Propagation dislance z (m) Propagation distance z (m) 

Fig. 2. Evolution of effective pulse width T(Z) and peak amplitude 
|'^(x,0)|. Solid curves, simulation results; x-marks, theoretical predic- 
tions for z > 2.5 m. 

Figure 1 shows an example of pulse evolution in the amplifier obtained from numerical simulation of Eq. (1). 
In this example we have modeled the propagation of a Gaussian pulse with a FWHM pulse width of 0.5 ps and 
an energy of 70 pJ in a fibre amplifier with length of 4 m, an integrated gain of 25 dB, a = 6 x 10~^ W~^ '-""^ 
and/?2 

m 
35 X10-^ ps^ m" [3], and we have considered a constant gain profile, g{z) = ga with ga = 1.44 m -1 

We can see that, as the incident Gaussian pulse is amplified to high intensity, it evolves into a parabolic 
pulse in the second half of the amplifier. The interesting feature emerging from Fig. 1 is that the asymptotic 
pulse presents a self-similar energy-containing parabolic core sourrounded by low-amplitude wings. These 
tails start developing on the pulse near the points t = ±r, i.e. in the region where the linear term neglected 
in the theory becomes important. Therefore the description of these tails requires a more detailed analysis of 
the pulse shape. Considering the asymptotic parabolic regime that occurs after some initial transition stage, 
here after a propagation distance of 2.5 m, we have compared the evolution of the pulse parameters from 
simulations with theory. Figure 2 shows the evolution of the effective width T(Z) and the peak amplitude 
\^p{z,0)\ obtained from simulations (solid curves) and from the solutions of Eqs.(3) and (7), calculated for 
2 > 2.5 m (x-marks). 

Fig. 3. Evolution of e as a function of distance z and normalized time ^, for —1.5 < C < 1.5 and z > 2.5 m. 

These results, similar to those in [2], show that the parabolic approximation for the pulse shape can describe 
the central part of the asymptotically propagating pulse in the amplifying medium. Our aim now is to include 
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m the description the pulse tails. For this purpose, first of all we have studied the evolution in the plane 
time-distance of the parameter c defined in Eq. (6). Figure 3 shows the evolution of c as a function of 
propagation distance z and normalized time ^ calculated from numerical simulation of Eq. (1) The variation 
of e IS shown m the asymptotic regime, starting from 2..5m propagation distance. The entire colormap is 
used for values ranging from 0 to 1. with values greater than 1 rendered with the same color associated to 
1. It is clear from Pig. 3 that the transition of e from values < 1 to values > 1 occurs in a narrow region 
around the points f = ±1, and this is in agreement with our intuitive expectations. One may also see that 
m the asyinptotic regime the transition region does not move with distance (being presented in self-similar 
variables). On the basis of these results we define three regions on the ^axis. As the problem is symmetric 
m f we can limit our considerations to the semiaxis ^ > 0. Region (I), 0 < f < 1 - Ai, corresponds to the 
central part of the asymptotic pulse, where e « 1. Region (III), C > 1 + A^, corresponds to the pulse tails, 
where 6 » 1. Finally region (11), 1 - Ai < ^ < 1 + As, is a transition zone, where e « 1. The size of the 
transition zone is parametrized by Ai, Aa < 1, We introduce two diiferent A-intervals for the (left and right) 
regions around the point f = 1 because of an obvious asymmetry of the solutions relative to this point. In 
each of the regions we construct an approximate solution of Eq. (4), or equivalently of the system (5), at 
fixed n.We then match the solutions at the boundaries. Here, we only outline the procedure and we present 
the mam results of the analysis. In region (I) we consider the quasi-classical solution specified by Eqs (7) 
In region (III) we neglect the nonlinear term in the second of Eqs. (5) and solve the corresponding linearized 
system. The quasi-classical parabolic solution in the central part is then matched to the linear one through 
the small intermediate transition region. Following [5], the equation for the field amplitude in the transition 
region can be reduced to the second Painleve equation (Pn). The asymptotic behaviours of the Painleve 
transcendents and the connection problems for the Painleve equations have been considered in many works 
(see e,g. [6J). Here, by using the asymptotic results for P„ we solve the amplitude matching problem The 
construction of the solutions is completed by matching the phase of the field. 

The solution of the matching problem has been com- 
pared with the numerical solution of Eq. (1). An exam- 
ple is given in Fig. 4, that shows the amplitude A of 
F as a function of f, for 0 < f < 1 -|- Ag, at the final 
distance in the amplifier. The dashed curve represents 
the numerical solution, while the solid curve represents 
the solution of the matching problem. The parabolic 
solution (7) is also plotted for Aj = 0 (dotted curve). 
The values of Ai,2 used in Fig. 4 are Ai = 0.2 and 
A3 = 0.15. It can be seen that there is a good agree- 
ment between the analytical and the numerical results. 
As the inset clearly shows, the difference between the 
analytical and the numerical curves is, in fact, of order 
of Af 2, and this is consistent with our expectations, 
since the lowest order terms neglected in the analytical 
treatment are 0(Af 2). 

Pig. 4. Variation of the amplitude 4 as a function of { 
at the amplifier output. Dashed curve, numerical solution; 
solid curve, solution of the matdiing problem for Ai = 0.2 
and ^2 = 0.15; dotted curve, parabolic solution for Ai = 
0. Inset: numerical solution and solution of the matching 
problem shown on a linear scale. 

In conclusion, we have examined solutions of the NLSE with gain, that governs optical pulse propagation in a 
fibre amphfymg medium. Quasi-classical solutions with a parabolic temporal profile in the energy-containing 
core have been analysed theoretically and numerically. We have presented matching of the parabolic solution 
to the linear low-amplitude tails of the pulse. The theoretical analysis has been shown to reproduce accu- 
rately the solution obtained from numerical simulation of the NLSE. 
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Abstract: Bi-soliton is a periodically stationary pulse propagating in a dispersion-managed 

(DM) transmission system. We propose novel transmission line coding schemes in which binary 

data are assigned to single DM solitons and bi-solitons to reduce impairments arising from 

intra-channel interactions. 
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Dispersion management is an essential technique to achieve long haul and high speed optical fiber transmis- 

sion system. For a high speed system in which the bit rate is more than 40Gbit/s. intra-channel interactions 

play an detrimental role to extend the transmissible distance even in a single channel case. Bi-soliton'^l 

which is a periodically stationary pulse propagating in a dispersion-managed (DM) transmission system has 

a preferable feature for high bit-rate system because it is not affected with time position shift due to intra- 

channel interactions. In this paper, we propose novel transmission line coding schemes in which binary data, 

are assigned to single DM solitons and bi-solitons. By using these schemes, impairments arising from intra- 

channel interactions can be drastically reduced. We also show that anti-phase (antisymmetric) bi-solitont^' 

can be more densely packed in time than in-pha,se (symmetric) bi-soliton'*l 

The optical pulse propagation in a DM system can be described by 

.du     d(z) 9^i/       , ,,  ,o       ^ ,.,, 

where M(3,*) represents the complex envelope of electric field. fi{z) is fiber's group velocity dispersion and 

s{z) is fiber's nonlinearity including the variation of optical power due to fiber's loss, z is the transmission 

distance and t is the retarded time. Here we consider a sj-stcm in which both fi2{^) and s{z) arc periodic 

functions of z with their period L. Only for simplicity, we consider a system in which d{z) = ii\ and s{z) = si 

for \z - nL\ < Li/2 (< L/2) and 0iz) = 3^ and s{z) = S2 for ii/2 <\z- nL\{< L/2) where L = ij -fZ-a 

and n is an integer. We introduce the following three system parameters, the path-averaged dispersion B, 

the map strength S, and the ratio of accumulated nonlinearity in the fiber of si to the total accumulated 

nonlinearity i?, which characterize the dispersion map completeh''^!. 

B = {ihLi + (hL2)lTl ,     5 = (|A|Li -1- \ih\L2)lrl ,      R = s,L^I[s,U + S2L2) . (2) 

where r^ represents the pulse's minimum FWHM in the period L. In the symmetric dispersion map, r^ is 

observed at z = nL. 

As we have shown in Ref.[l], in-phase bi-soliton can exist around 2 < 5 < 2.7 and 0.75 < i? < 1 for B = -0.1 

and the pulses spacing ts = STW- Figure 1 shows the evolution of waveform along the transmission line when 

the amount of input consecutive gaussia.n pulses are changed from 1 to 4. System parameters, S = 2.3, 

B = -0.1, and B = 0.8, under which both DM soliton and in-phase bi-soliton can exist are used. As one 

can sec, 3 or 4 cosccutive pulses are affected with time position shifts and finally collide. Transmission line 
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coding schemes in which consecutive pulses more than 3 ai-c excluded therefore should be designed to applj 

the bi-solitoii to high bit-rate transmission system. \% define the code I in which binai-y data, T and '0' 

arc directly assigned to a pulse and a space respectively. In the code II, the binary data arc firstly converted 

to one of three symbols, '00', '01', and '10', and then '0' and T in each symbol arc converted into a pulse 

and a space respectively By using the code II, the amount of consectivc pulses is 2 at most. 

For the width of time slot *, = 4T^[S] with the code I, the bit rate is 0.25/r„[bit/s]. Since the amount of 

symbols is 3 in the code II, the information content per sj^mbol is logjS = 1.585[bit/symbol]. Adopting 

in-phasc bi-soliton of *, = 3r™ in the code II, the symbol rate is l/6r„[symbol/s] and the bit rate is then 

0.264/r„[bit/s]. This fact means that the bit rate of the proposed code 11 is 1.05-fold larger than that of 

the code I. Let us compai-e these coding schemes with a concrete coding table shown in Table 1. Binary 

data of three figures are assigned to two symbols of the code II and the information content per symbol is 

l.Sbit/symbol. For the width of the time slot *,= 4r„ in the code I and 3T™ in the code II, both of the 

bit rates arc the same. Figure 2(a) shows the evolution of the waveform using the code I for the system 

parameters, S = 1.65, B = -0.1, and R = 0.5, with which in-phasc bi-soHton docs not exist. For the "initial 

input, binary data of 15 bits, '010110010001111', are directly conwtcd to chirp-frcc gaussian pulses and 

spaces. Pulses' time position shifts induce the bit error after 200 periods transmission. Figure 2(b) shows 

the case using the code II for S= 2.3, B = -0.1, and B= 0.8. In this case, the smne binary- data arc 

replaced to the symbols, '00101000001000011001', according to Table 1, the symbols arc then converted 

to chirp-frcc gaussian pulses and spaces. Any time shift^ docs not observed and stable pulse transmission 

is achieved for long distance. Generally speaking, the strength of interactions between neighborng solitons 

increase exponentially for narrower pulse spacingM. While the interactions occur between neighboring pulses 

of U = 4T„ for the code I, 6r„ for the code II because the interaction induced time shift docs not occur 

in bi-soliton. This is the reason why the interactions can be drastically reduced by using the proposed 

code II. Tb reducing the interactions in the code I, B and/or the peak power of input pulse should be 

reduced. In the code II, B and the peat power of input pulse can be kept large ^^-duc and the signal-to- 

noise ratio can be impro^^cd. For packing the data more densely in time, anti-phase bi-soUton can be used 

because it exists for the system parametci-s, S = 1.9, B = -0.1, R = 0.5, and *, = 2T„,. Figure 3(a) shows 

the evolution of the waveform using the code III whose phases arc modulated as 'SSOSOSSSSSOSSSSTTOSSJT'. In 

the sequence, 's' means a space. This is corresponding to carrier suppressed retum-to-zero (CS-RZ) signal 

format. Interactions between neighboring in-phasc pulses of t, = 4T„ induce the collision in this case. Figure 

3(b) shows the case using the improved code IV whose phases are 'ssOsTrsssssOssssjrOssir'. In this code, not 

only the neighboring pulses of *, = 2r„, but also pulses of t, = 4r„, aie anti-phase. Any time shift does^ not 

observed and densely packed transmission is achieved for long distance because the neighboring pulses of 
*s = 4:Trrj also form an anti-phase bi-soliton. 

In conclusion, we have proposed novel transmission line coding schemes using the ad%^ntage of bi-soliton. 

It is eftective for the system %vhose bit rate is over 40 Gbit/s in which the intra-channel interaction play the 
detrimental role to extend the transmissible distance. 
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Binary data Code I Code II 

000 '0 '0^ '0' '00 '00' 

001 '0 '0' '1' '00 '01' 

010 '0 T '0' '00 '10' 

Oil '0 T'r '01 '00' 

100 1 '0' '0' '01 '01' 

101 •1 '0' T '01 '10' 

110 1 T '0' '10 '00' 

111 T T '1' '10 '01' 

'10 •10' 

Table 1. Sj-mbol assignment for l^inary 

data of three figures. 
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(b) using the code II. 

Fig. 2. Evolution of bit sequence in a long haul transmission. 
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(a) using the phase modulated code III. 
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(b) using the phase modulated code IV. 

Fig. 3. Evolution of bit seciucnce using anti-phase bi-soliton. 
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INTRODUCTION 
The radiation of continuous mode-locked lasers in the time domain is a sequence of short light 

pulses. The radiation spectrum of such lasers is a set of equidistant modes. This property is given by the 
condition of exigence of the mode locking regime. It has been found experimentally that Av (distance 
,n « M"; *^« "^^J^bonng modes) is the same in all parts of the spectrum with an accuracy not worse than 
; . ^^" ^ff°*'y ^ separate direction on the applications of broadened by use of optical fiber discrete 
femtosecond laser radiation spectrum was formed in high-precision spectroscopy. This effect is especially 
important considenng frequency synthesis processes and absolute frequency measurements in all 
wavelengh ranges [W]. Special interest in tapered fibers is due to the high transformation effectiveness 
along with relatively low laser power required for spectral broadening and general experimental simplicity 

In spite of the fact that microstructure (or holey) and tapered fibers are widely used now to broaden 
the spectrum of femtosecond lasere, they have been poorly investigated. The broadening takes place 
owing to nonlinear mteraction between radiation modes. There exist several nonlinearities in the fiber 
Their contnbution to the process of interaction of modes has also been little investigated. Optimai 
relations m the fiber configuration are not clear. The influence of the fiber on the increase of noise in the 
spectrum of passing radiation has not been investigated. It is not clear with what accuracy the equidistant 
character of frojuency components after the fiber is preserved. This can take place because teer modes 
have fuiite width, and after transformation in the fiber their shape changes non-symmetrically These 
t^toi^ determine the maximal achievable accuracy of measurements of schemes with the use of fibers 
We experimentally investigated the shape of the envelope of the spectrum of output radiation for tapered 
fibere vercus the waist diameter (Fig.l). We investigated fibere with waist diameters of 2 jim 2 5 iim and 

^It • . P^'^'^etere of input radiation are as follows: the central wavelength is 810 nm, the spectrum 
width is 20 nm, the pulse duration is 40 fs, and the average power is 200 mW. Typical characteristics of 
the spectrum envelope - long-wave maximum for all fibers, 2.5 fl m fibers have no central maximum but a 
number of short-wave maximums can be observed in conti^t to 2^m and 3 //m fibers that have an 
intensive maximum oh the laser radiation wavelength and practically no short-wave maximums. Thus for 
the 2.5^m fibers unlike 2//m and 3 flm fibere a strong energy pumping from the laser radiation 
frequencies to the broadened spectrum edges was detected. Figures with double curves show dependencies 
tor two different tunings of the input radiation relative to the fiber axis. 

There are two general approaches to the ultrashort pulse train spectra theoretical investigations First 
considers the ultrashort pulse train in fiber as a multi-mode field. This approach ^sumes the solution of a 
self-consistent system for propagation of the discrete spectral components in fiber. While it permits to get 
some important qualitative understanding, exact analytical solution is impossible and thorough numerical 
analysis needs a tremendous calculation efforts and resources. The second approach consider a pulse train 
spectrum as a resuft of the pulse train Fourier transfom. This approach usually is the most effective 
because it permits to perform a numerical calculations in accordance with statistical methods 
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Fig. 1. Power distribution at the output of tapered fibers 

Our investigation based on the compilation of both approaches. We consider theoretical models, 
which describe self-phase modulation, dispersion, phase cross-modulation etc. with experimental results 
on given pulse train and fiber parameters processes of pulse train spectrum formation along with spectral 
distortions. 

Spectral broadening in optical fibers is associated with an influence of the self-phase modulation 
(SPM) [6]. While SPM is a nonlinear effect and its significance can be estimated by comparison of the 
nonlinear length LNL with the length of fiber, spectral broadening is proportional to the relation L/LNL. For 
the the experimental tapered fiber (L » 60mm) and pulse train of 500 mW average power, this relation is 
about 10\ thus, the measured broadened spectrum was about 90 THz. Dispersion parameters were small in 
comparison with nonlinear characteristics and condition LNIA-D « 1 was true, (here I^ - dispersion 
length), thus for the general consideration of the single pulse propagation, dispersion effects could be 
neglected, however considering a pulse train with amplitude and phase fluctuations, it is important to 
solve a general pulse propagation problem. Figure 2 shows the result energy spectrum obtained by 
numerical solution of propagation problem for a sequence of 10^ femtosecond pulses with experimental 
parameters and intensity fluctuations of 10"^ level along with experimental results. The typical feature of 
SPM effect is an oscillation structure with high peaks on the edges and number of peaks is close to the 
broadening coefficient. However, intensity and phase fluctuations along with the influence of dispersion 
effects smooth over the oscillation structure as it can be seen on figure. 

Investigation of the tapered fiber influence on the noise pedestal of intermode beats was made for 
the 1st and 10th harmonics for different broadened spectrum ranges and for the fiill spectrum with 
different resolution and power of the input radiation. Processing of the spectrum permitted to divide phase 
and amplitude noises and to estimate the transformation level of the amplitude noise into phase noise in 
various conditions. For experimental conditions it was shown that tapered fiber increases insignificantly 
noise pedestal and transforms the amplitude noise into the phase noise. 
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Fig. 2. Energy spectra of the femtosecond pulse train. 
Solid line - experiment, d^h line - theory, the nonlinear length LNL - 0.6 mm. A - taper diameter d = 2 /fw, zero- 
GVD wavelength XD = 680 nm; B - d = 2.5 /im, l^ = 790 nm; C - d = 3 //w, 51D = 900 nm 

. Investigations of the intermode frequency stability at different averaging times were carried out at 
the mput and output of the tapered fiber. The experiments has shown that after the passage of the fiber the 
mtermode frequency stability decreased slightly due to increase in the phase fluctuations. The short term 
stability (averagmg time of 10 s) at the fiber output was two times less than that at the input. The long 
tem stability (averaging time of 1000 s) practically did not change. Series of experiments in order to fmd 
out a possible influence of the spectral interval of measurement on the stability was carried out in the 
tollowing way: the broadened spectral range was divided by use of light filters into two subregions and for 
each subregion an average value of measuring frequency on the fiber output was obtained The 
^periments has shown that the intermode frequency stability does not depend on the broadened spectrum 

Thus, a perspective of tapered fiber usage in precise optical frequency synthesizes and 
temtosecond optical clocks was demonstrated. 
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The optical fiber is an ideal tool for studying the dy- 
namics of nonlinear interaction between pulses, and here 
in particular the wavelength-shift induced by cross-phase 
modulation (XPM) in an ultrashort pulses pump-probe 
configuration. So far, significant wavelength shifts in the 
visible and near-infrared have been demonstrated and 
modeled [1]. To demonstrate fiarther the potentiality for 
all-optical switching and mux/demux applications, it is 
relevant to quantify the importance of the probe time- 
profile reshaping. To the best of my knowledge the pres- 
ent contribution is the first to present and discuss the 
autocorrelation traces of blue- and red-shifted femtosec- 
ond probes. In comparison to the picosecond regime, 
some particularities of the variations of the wavelength 
conversion as a fiincfion of the initial relative time-delay 
are depicted and interpreted in terms of pulse trapping 
across the fiber zero-dispersion wavelength (ZDW) [2]. 

Experimentally, the pulse pair was synthesized by fil- 
tering the spectrum of a Kerr-lens mode-locked 
Cr''^:forsterite laser delivering pulses 110 fs fiill width at 
half maximum (FWHM) at the central wavelength of 
1256 nm, 84 MHz in repetition rate [1]. Filtering was 
performed with two slits mounted as to allow for varying 
the pulses spectra in position and width. The pulse syn- 
thesizer consisted of a diffraction grating 600 rules/mm 
and a reflector. These two elements were positioned on 
both sides and in the focus planes of an achromatic dou- 
blet of a focal length of 250 mm [1]. The reflector was 
constituted by two parallel mirrors, one of which could 
be moved along the optic-axis to vary the pump-probe 
relative delay without any significant misalignment of 
the synthesizer. Carefial alignment was found to be criti- 
cal for the maximization of the wavelength-conversion 
amplitude. The pump central wavelength was 
Xp=\256 nm, with an energy of 280 pJ per pulse and a 

duration of 340 fs. A generally occurring feature of solid- 
state lasers is the existence of sidebands of the emission 
spectrum. One of which was used as a probe. Its spec- 
trum was centered on Xj.'=l'i01 nm (see fig. la) with a 
spectral width of 4.49 nm FWHM, a width of 460 fs 
FWHM, and a pulse energy of about 550 nJ. The laser 

beam was injected into a 9.8 m-long standard single- 
mode fiber with a ZDW of 1293 nm and an effective 
cross-section of 2.26x10'" m^. A background-free sec- 
ond-harmonic generation (SHG) autocorrelator was used 
for the observation of temporal reshaping. Careful opti- 
mization of that instrument was necessary to detect low 
peak power pulses. A high-pass high-slope filter at 
1293 nm was used to block the pump radiation. 
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Fig. 1 : Spectra of the pulse pair before (a) and after propa- 
gation without non-linear interaction (b), with a blue-shift (c), 
and with a red-shift (d) of the probe pulse. The structure on top 
of the propagated pump is due to the spectral filtering with a 
slit. 

The fiber GVD parameter D(A) was measured by syn- 
chronously injecting a pair of slightly detuned pulses, of 
equal peak power and width, and satisfying the condition 
LNL»LD, where LNL and LD are the nonlinear and disper- 
sion lengths, respectively. The group-time mismatch was 
plotted after the autocorrelation trace as the two wave- 
lengths were varied across the laser spectrum. 
jD(Ap)and D{Xj) were found to be -0.76 ps/km/nm 

and 1.9 ps/km/nm, respectively, and to vary linearly 
between these two points. 
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The initial pulse-pair spectram is in fig. la. Fig, lb de- 

picts the propagated pulse-pair for a complete time mis- 
match where pump appears spectrally broadened by the 
interplay between self-phase modulation (SPM) and 
GVD. According to the initial relative-delay setting, a 
blue or red shift is observed, as shown on figs. Ic and Id, 
respectively, producing well-contrasted spectra and a 
wavelength-conversion range as large as 26 nm. 
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Fig. 2: Probe wavelength conversion as a function of the ini- 
tial relative initial delay, which is positive when the probe lags 
the pump. 

This wavelength shift was observed to increase with the 
injected pump power. The stmctures on the pump spectra 
of figs, lb, c and d are due to the filtering with the slit of 
the synthesizer. Figs. Ic and Id exhibit a probe residue 
that accompanies the shifted spectrum. This is can be 
explained by the different initial time widths of the pulse 
pair not allovwng complete overlap and thereby leaving a 
small part of the probe remaining unshifted. This feature 
has been found to disappear when the two pulses were set 
to the same initial width. XPM-induced spectral broad- 
ening is visible on figs. Ic and Id. 

The variations of the wavelength conversion with re- 
spect to the initial relative delay are shown in fig. 2 and 
deserve ftirther attention, bi the present experiment the 
probe travels faster than the pump, and hence a maxi- 
mum blue shift should be obtained when the probe just 
catches up with the pump trailing edge at the fiber end. 
Neglecting the pump broadening for the sake of simplic- 
ity, the corresponding relative delay for a maximum blue 
shift is approximated by ST + T^p/2, where ^Jis the 

group-time mismatch over the fiber length / and T^p is 

the pump half-width at 1/e-intensity point. Conversely, 
the maximum red shift occurs when the probe interacts 
with the pump leading edge, which is for a relative delay 

-Tf^p/2. Therefore the relative time-delay difference for 

a complete red-to-blue shift is ST-T^p. 

The group-time mismatch can be expressed as 

yielding ar=1.42 ps and 1.23 ps for the GVD values 

indicated above for a complete blue-to-red relative-delay 
difference. 

By conhist, fig. 2 shows a fiiU flip from blue to red for 
a relative-delay variation of only 0.79 ps. This small but 
significant discrepancy can be explained by the recently 
demonstrated pulse trapping mechanism across the ZDW 
that reduces the group-velocity mismatch by XPM [2]. In 
ref [2], however, the probe is significantly reshaped, in 
opposition to the results presented below. 

In the picosecond regime, the wavelength-shift varia- 
tions have been predicted and demonstrated to be sym- 
metrical with respect to the zero-delay point [3]. The 
curve of fig. 2 shows some asymmetry with a lower, 
longer negative lobe on the blue-shift side. This is so 
XPM is affected by the pump SPM-GVD broadening that 
also expands the walk-off length. The pump and probe 
dispersion lengths are LDP=5.9 m LDT=40.2 m, respec- 
tively, and the pump nonlinear dispersion length is 
LNL=0.17 m. Furthermore the blue-shift amplitude might 
be affected by the pump-probe polarization mismatch 
arising from the pump self-induced nonlinear birefiin- 
gence. 

The previous evaluation of the group-time mismatch 
8r allows computing the walk-off length according to 
the prescription 

T 

where T„ is the half-width of the longest pulse, namely 

the probe. With the present parameters one obtains 
X^ =1.8 m. 

A set of autocorrelation traces is presented on fig. 3. 
The time width of the outgoing non shifted probe is 
640 fs FWHM (fig, 3a), assuming a deconvolution factor 
of 1.55. The ratio of the time-bandwidth product to the 
Fourier limit is 1.6, indicating a non-soliton propagation 
regime, despite the anomalous GVD. The 
blue-shifted pulse trace reveals a small time expansion 

to 660 fs (fig. 3b), probably due to nonlinear interaction, 
but no significant reshaping is observed. The trace of the 
red-shifted probe represented in fig. 3c indicates a small 
but perceptible reshaping. The lower part of the autocor- 
relation trace is broadened, as a sign of time-profile re- 
shaping. The width is increased to 720 fs. 

Thus the probe is more perturbed on a red shift tiian a 
blue shift. One explanation to this is that the red shift 
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takes place just after the fiber input. As a result, the 
probe travels almost all along the fiber length under a 
comparatively higher GVD, whereas the blue shifted 
probe gets through the waveguide under a comparatively 
lower GVD. 

In conclusion, the autocorrelation traces evolution of 
low-energy, ultrafast probe pulses has been observed after 
nonlinear interaction with a copropagating pump pulse 
along a standard single-mode fiber. The probe pulse is 
shown to undergo a small reshaping, even for spectral 
shifts that allow complete, well contrasted femtosecond 

and acoustic unbalances and does not rely upon polariza- 
tion effects. 

Because of their superior nonlinear index and low dis- 
persion parameter, air-silica fibers optimized for the 
1300 nm spectral region would allow expanding the fre- 
quency-conversion amplitude and reducing the switching 
pump power, thus opening access to the laser-diode 
power range. 
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Fig. 3: Auto-correlation of the propagated but unshifted probe 640 fs FWHM (a). The width of the 
same probe after up- conversion is 660 fs (b) and 720 fs after down-conversion, (c). 1 div=1.2 ps. 

switching. The variations of the wavelength shift with 
respect to the pump-probe time-delay are influenced by 
pulse trapping across ZDW. 

The simplest way to increase the shift amplitude is to 
increase the pump power. But the SPM-GVD-induced 
broadening of the pump represents a limit beyond which 
the two spectra would merge. This limitation is of course 
stronger for a blue shift than for a red shift. When the 
pump power is increased further, other effects such as the 
so-called frequency-jump would appear [4]. 

The features presented here obviously demonstrate the 
suitability of the colliding pulses scheme to wavelength- 
based ultrahigh bit-rate all-optical switching systems. In 
opposition to interferometers often used for XPM 
switching, this scheme is non resonant, fi-ee of thermal 
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Abstract:    An anti-guiding structure is shown to assist spatial soliton dragging logic gate 
A weak beam easily breaks the balanced symmetry of a pump propagating in an anti-guide 
allowmg very efficient optical switching. More than an order of magnitude improvement over 
previous spatial dragging gates is possible. : 
©2002 Optical Society of America 

OCIS codes:   Pulse propagation and solitons; (190.5530), Optical computing; (200.0200) 

Spatial soliton dragging logic gates were studied extensively in the past [1]. These gate were shown to 
satisfy nearly all the requirements [2] necessary for building a logic gate including: gain (or fan-out) greater 
than 2, cascadability logical completeness, phase insensitivity, and level restoration. These properties are 
necessary for optical logic gates, although not sufficient to make a practical gate technology For example a 
practical gate should have low switching energy and low average operational power (sum of average pump 
and sipial powers) per device so that a number of devices can be operated simultaneously. Increasing the 
device length typically decreases the switching energy for optical switches. In this article an anti-guiding 
scheme IS presented which allows low switching energy without requiring a long device length The key 
Idea of symmetry breaking in an anti-guide was recentfy investigated [3] [4], but is here advantageously 
combined with the spatial soliton dragging geometry Most optical switching schemes require a phase change 
ot the order of TT. By using symmetry breaking, the anti-piide switch allows an order of magnitude smaller 
nonlmear phase change in order to produce a logic gate with comparable performance to the conventional 
spatial dragging gate. = 

Figure. 1(a) shows a schematic of a conventional soliton dragging logic gate (left) in comparison with an 
anti-guide assisted logic gate (right). These gates are based on self-phase and cross-phase interaction in a 
Kerr material. In the conventional dragging gate, in the absence of the signal, the pump travels straight 
through the spatial aperture, resulting in logic «high". In the presence of an orthogonally polarized signal 
beam traveling at an angle to the pump, because of cross-phase modulation, the two beams interact and form 
a bound pair that travels at an angle to the original pump direction. In this case the two beams miss the 
aperture which results in a «low" logic level output. In order to have high intensities, the signal and pump 
are confined Imearly by a slab waveguide in the orthogonal ^-direction. The switching energy is minimized 
by using short pulses for the pump and signal and operating near the zero dispersion wavelength so that 
withm the device length, propagation dose not modify the pulse width noticeably. Alternatively operation 
m the anomalous dispersion regime would allow spatio-temporal soHton switching [1]. 

The^ahti-guide assisted spatial soliton dragging gate uses the same geometry as a conventional gate and 
m addition, a smooth symmetric index profile is incorporated in the core of the waveguide Figure' 1(b) 
shows an example refi-active index profile along the x-direction. This index gradient is tailored so that it is 
anti-guidmg at low intensities and weakly anti-guiding for high intensity narrow sohton-hke beam Linear 
propagation at low intensity results in beam spreading out from the center of the index channel When an 
intense nonhnear pump beam is closely centered (within about 1% of beamwidth for the gate presented here) 
m the anti-guide channel, it can overcome the anti-guide, resulting in longer confined propagation than a 
hnear beam. However, if the pump beam has a small angle then it drifts away from the center of the channel 
and refracts away into the cladding. Switching in the anti-guide assisted soliton dragging gate utifizes this 
marginal stability of the pump beam inside the channel. Logical "high" operation corresponds to the pump 
beam traveling m the channel and out tteough the pinhole, in the absence of a signal. However due to the 
anti-gmdmg, a small fi-action of the pump beam is lost. In the presence of a tilted, overlapping signal beam 
a small sideways shift of the pump is sufficient for the structure to assist the dragging thereby refracting 
both the beams away, resulting in a logic "low" output. This gate requires, for the same performance as a 
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Fig. 1. (a) Comparison of spatial soliton dragging logic with a logic gate based on an anti-guide 
enhanced symmetry breaking dragging interaction. The solid lines show the trajectories of the pump 
beam in absence of the signal beam. The dashed lines represent trajectories during Interaction. The 
refractive index structure (shown in (b)) allows the signal to break the pump symmetry thus aiding 
the dragging interaction. 

conventional dragging gate, a smaller device length or lower switching power. Or alternatively for the same 
device length, substantially larger gain is possible. 

The 3-D structure is guiding along y and weakly anti-guiding along x. The propagation of the slowly varying 
envelopes for the orthogonally-polarized pump and signal, is given in the dimensionless coordinates (^ = 
kox , C = koz ) by the coupled evolution equation. 

2iA2^ + A2^^ + 

^^^ + ^^(|Ai(OP+A|A,(C,C)0 Ai 0, 

2An(0  ,  2n(e) + 
rio 

(|A2(0P+A|Ai(C,C)H Ao    =   0. (1) 

Where the pump (Ai) and signal (As) are dimensionless and normalized by J^. Here, n^ is the nonlinear 

refractive index, no is refractive index at channel center, and An(^) = n(^) - no. The ratio of cross-phase 
to self-phase modulation A is | for hnear polarizations in an isotropic media. Split-step Fourier beam 
propagation is used to study nonlinear propagation with this equations. Although they are not actually 
eigenmodes of the anti-guide sech profiles are used for the numerical simulations. 

uo = _1 l_ 
sech 

4« 
(2) 

The pump is chosen as a symmetric homogeneous soliton (^i = 0 and r\ = 1), while the signal has same 
width but lower power (r = ^, is device gain) and travels at an angle 6*2 = 1.5°. The refractive index 
variation used is, 

n(0 - AAT 
1 + 1 

l + exp(-(e-^o)/^B)     l+exp((^-fCo)/CB) 
-\-no. (3) 

The parameters A A'', ^o iE are the index change, edge position (half-width) of the anti-guide, and the 
steepness parameter respectively. Regions in parameter space (^o, ^B, iw and device length Ls) that allow 



NLTUD29-3 

Yellampalle et.al., Anti-Guide SS Logic 
NLGW 2002/2002  Page     3 

signal 

pump 
conventional dragging 

1 
(a) 

signal 

pump 
anti-guide assisted dragging 

25Zo 

I ...... 

iavertar langfh =   15 2o   '^^ 

- .—^ _ _ _   no Btnietura      \ 

Bmall s^al gain =19.7 
Urge signal gain =8.S 

NM^ =0.034     MM^ ~O.Qm 

h =0.004     /, =0.105 

(b) 
I 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 
normaltzed input ^gnal energy 

(c) 
fjVo-^^ w ™^'?® 11 ""^ °* ^'^"-guWe. Pump-to-signal ratio of r = 16 requires approximately 
16 (2Zo) for resolvable dragging, (b) For the same ratio r, a clearly resolvable spatial shift of the 
pump IS seen within 16Zo, for tlie anti-guide, (c) l^ansfer characteristics of a high gain inverter 
with a gate length of 15Zo (r = 10 for an anti-guide, r = 2 for a conventional gate). 

90%, pump transmission through an aperture of width 2.4^^„ are identified, and the maximum pumpwidth 
IS used for gate simulations. For smaller pump widths lower gain is obtained and for larger pump widths 
the on state transmission is lowered. For other kinds of smooth edged index profiles or pump shapes 
quahtatively simillar results were obtained. For the simulations results presented here, the parameters used 

were. AiV = 0.08, & = 1.25C™, & = 12e„, & ^ 8.75^m, AQ = LS^m, FWHM = 15.7^m, and Zo = =^ = 
0.747mm. "       2   — 

Figure 2(a) and (b) shows simulation of switching of a strong pump beam by a weak signal (r = 16) The 
conventional homogeneous dragging gate results in a negligible beam shift in 25Zo of propagation Whereas 
for the same parameters, in the presence of an anti-guide, the new gate results in complete switching within 
K Itl , P"f P, W°«^*«« tl»e index p-adient, linear inhomogeneous propagation assists and shifts 
both the signal and the pump to the higher index cladding. The dynamics of the signal beam are similar 
to the pump, after some initial dissipation, due to mutual trapping: In the absence of the signal beam the 
pump K undeviated but is seen to slowly dissipate energy to the sides and approximately 90% of pump is 
transmitted m the «on" state. When the tilted signal alone is present, since it is not a sohton, it diffracts 
withm about 2Zo a,nd negligible output is produced. 

The transfer characteristics of the two inverter devices [5] are compared for a gate length {U) of ISZn 
m figure 2(c). The anti-guide assisted gate yields a transfer curve with a very low switching threshold of 
on y ^ of a sohton power for the same device parameters yielding an order of magnitude improvement 
Alternatively devices with fixed gain and variable length can be compared. For a gain of 16, the conventional 
gate length is approximately 162(2Zo) [1], which is approximately 20 times the gate length when an anti-guide 
IS present giving an order of magnitude improvement in gate length. Smaller gate length requirement implies 
smaller phase change needed for switching which allows additional material optimization in the presence 
of absorption. Thiis, more than an order of magnitude improvement in the device performance is expected 
using an anti-guidmg structure in a spatial soliton draggmg gate. 
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Abstract 

Stimulated Raman scattering with a Bessel pump beam in hydrogen gas 

shows conical or axial Stokes emission. Selection of the gain-guided Stokes 

modes is due to gain suppression in phase-matched Stokes-anti-Stokes cou- 

pling. 
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Bessel beams are quasi non-diffracting beams which have been used for the in- 

vestigation of stimulated Raman scattering. The radial field distribution of a Bessel 

beam corresponds to a Bessel function and is propagation invariant^'^. The inten- 

sity distribution of a Jo Bessel beam has a central maximum which is surrounded 

by dark and bright rings. Bessel beams can be considered as a superposition of 

plane waves, the wave vectors of which he on the surface of a cone with half-angle 

t?p^'2. This property allows the generation of anti-Stokes light under very broad ex- 

perimental phase matching conditions where the wave vectors of the pump, Stokes 

and anti-Stokes light are non-coUiriear and do not necessarily lie on a platie^. It 

has been demonstrated that depending on the experimental conditions the Raman 

Stokes Hght is emitted either as a conical mode^'^ or an axial spot-Mke mode^'^. We 

did show that for small cone angles of the Bessel pump beam the Stokes mode is a 

gain-guided mode of the central maximum of the Bessel beam^. 

In order to clarify the origin of the different types of Raman Stokes emission we 

now investigate experimentally and theoretically stimulated Raman scattering with 

a Jo Bessel pump beam with cone angles between 0.7 and 4,5 mrad in hydrogen gas 

over a wide range of pressure between 5 and 50 bar. Numerical solutions of the non- 

hnear wave equation for the Stokes field show, in addition to the guided modes of 

the central maximum, the existence of further sets of modes which are gain-guided 

modes of the outer rings of the Bessel pump beam. Similar modes are observed as 

analytical solutions to the simpUfied model of a fiat-top intensity distribution for the 

central spot and first ring of the Bessel beam, similar to a concentric arrangement 
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of a regular fiber within a hollow fiber. 

We demonstrate that the selection in the competition of the different gain-guided 

modes is not due to the cut-off of a mode, but due to gain suppression by Stokes-anti- 

Stokes coupling. In the region of exact phase matching of the conical Stokes and anti- 

Stokes modes, i. e. where simultaneous longitudinal and transverse phase matching 

occurs, the Raman gain of the conical mode is substantially reduced, allowing the 

spot-like mode to dominate. As a consequence, a guided mode of the first Bessel 

beam ring and central peak is observed experimentally when the ratio pl'd'p of the 

hydrogen pressure p and and the cone angle dp of the Bessel pump beam is smaller 

than a certain critical value. 
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Abstract: Numerical simulations and experiments have shown the possibility of exciting spa- 
tially trapped beams in PPLN slab waveguides with pulses significantly shorter than the tem- 
poral walk off between PF and SH, with only FF at input. 

1    Introduction 

Cascaded xP): x^^^-parametric interactions of intense light signals in materials with quadratic nonlinearities 
offer a rich variety of phenomena [1]. Among other things, x^^^ cascading processes have received considerable 
attention because they can yield strong nonhnear refraction effects at relatively low power levels \2 3 41 In 
order to fully exploit the possibOities offered by x^^) nonUnear optics, the research has been driven in seeking 
new materials with high second order nonlinear coefficient and/or towards phase-matching techniques to 

In this paper we consider the interaction of a fundamental wave (FF) and a second harmonic one (SH) 
at frequency wo and 2u,o respectively We investigate, through numerical simulations and experiments the 
possibihty of exciting spatially trapped beams in periodically poled lithium niobate (PPLN) slab waveguides 
with pulses of few ps, with only the PF (A = 1548 nm) at input. We present a detailed analysis of the spatial 
and temporal behaviours of these self-trapped optical signals. 

2    Numerical modeling and experimental Set-Up 

In a slab waveguide the electric fields E^ and E,, at co and 2a;o respectively, propagating in the z direction, 
can be written as Ei(x,y,z,t)=l(W(y)wix,z,t)e-m^o)'+-ot))+ ^^^^j ^nd E.{x,y,z,t)=UV(vMx z t) 
e-.W2.o).+2.ot)) + ,.,.)^ ^th W(y) and V(y) the mode profiles at a,o and a.o in the giiiled dimension 
w and » the slowly varying envelopes. Averaging over the QPM periods, at the lowest order w(x, z,t) and 
t;(ar,^,*J obey the non-linear coupled equations: '      '' 

Hz   ^^-ar-l-aF + 2i::a;^+2;^7|Fp^--*«-^^^'" = o (i) 

where p represents the propagation constant, jS' the inverse poup velocity (3" the inverse group-velocity 
dispersion; n is the refractive index, M = 2/?.„ - ft,^ + Ks, where Ks = 2^/A, x^^' = 2/7rx(?, , is the 
nonlinear coefficient. By means of a finite difference vectorial mode solver the hnear propagation properties of 
the slab waveguide are obtained, once the fabrication parameters of the specific waveguide are provided We 
thus determine the mode profiles, p^„ A.„, A„, /?Lo, K, and /S^o- Finally, using a finite difference beam 
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propagation technique, we solve the coupled nonlinear wave equations. Experiments have been performed in 
a 58 mm long Ti:PPLN z-cut waveguide with a poling period of 16.92/«m. An all-fiber laser system delivered 
4 ps pulses (FWHMI) at 1548 nm with a spectral width of 1.7 nm with up to 6 kW peak power at a repetition 
rate of 20 MHz. The laser beam has been shaped in a highly elliptical spot for an efficient coupling in the 
waveguide sample; we obtained a gaussian beam with a spot of Wox = 76/xm along the non guided direction 
and of Woy = 3.9/L(m along the guided dimension. Under these conditions the crystal length corresponds to 
3.2 times the FF diffraction length and 4.8 times the walk-off length between FF and SH. Spatial profiles of 
the output at FF were recorded with an IR camera and also scanning a magnified image of the output with 
an InGaAs photodiode for a better accuracy. 

3 Results 

We investigate the possibility of exciting spatially trapped beams in one transverse spatial dimension, with 
pulses that are significant shorter than the temporal walk off between FF and SH waves. Experiments and 
numerical simulations were carried out varying the phase-mismatch conditions (in particular the temperature 
T of the crystal) and the input pulse power, keeping fixed the temporal and spatial widths of the FF injected 
pulse. We measured the spatial profiles of the FF output beam versus the input intensity at different phase 
mismatches. In fig. 1 we compare typical measured and calculated normalized output profiles in the linear 
and the nonlinear regimes. In the linear regime the output beam profile had a width Wx = 246/tm which 
corresponds to the diffracted input beam {wox = 76y;xm) after 58 mm of propagation along the waveguide. By 
increasing the incident intensity the nonlinear self focusing balances the effect of diffraction. In fig. 2 we report 
the spatial output profile width versus the injected intensity, for a fixed phase-mismatch. Qualitatively similar 
trends are observed over a wide range of phase-mismatch (ISTT < AfcL < 707r). Appreciable self trapping 
could be achieved for sufficiently large phase-mismatch and for input intensities that are the lower ever 
reported in x^^^ nonlinear optics. 
Typical FF and SH pulse temporal envelopes, when nonlinear self focusing balances the effect of diffraction, 
are shown in Fig. 3 (on the left). Despite a strong walk-off, the pulse at FF and a consistent contribution 
at SH overlap in time and lock together; condition that is necessary to guarantee an appreciable cascading 
self focusing effect. On the contrary, when the nonlinear effect does not balance the spatial diffraction, 
we note that the pulses do not overlap in time and lock together. This property has also been revealed 
experimentally by means of cross-correlator traces. The calculated output FF temporal profile envelope 
remains nearly gaussian: we reveal that a small self-steepening effect, due to the locking with the SH, occurs. 
In figure 3 (on the right) we report the measured intensity autocorrelation FF trace and in the inset the 
numerical simulated autocorrelation trace that agree with the measured one. 

4 Conclusions 

In conclusion we have proved the possibility of exciting spatially trapped beams in PPLN slab waveguide with 
pulses of few ps, significantly shorter than the temporal walk off between FF and SH waves, with only FF 
at input at 1548 nm. A numerical and experimental study has been carried out to determine the influence 
of the phase-mismatch and of the pulse power on the trapping effect. It is shown that, for short pulse 
excitation, beam trapping requires a sufficient large phase-mismatch. The temporal effects accompanying 
the self trapped propagation have been presented. 
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NLTUD32-1 

Ultrafast temporal reshaping of picosecond pulses 
based on quadratic spatial soliton generation 

C. Simos, V. Couderc and A. Barthelemy 
Iiistitiit dc Recherche en Communications Optiques et Microondcs. UMR 6615 

Faciiile des sciences de Limoges. ]23 Avenue Albert Tomas, S7060 Limoges Cedex, France 
Phone:+3i 555 45 75 30 Fax: +33 555 45 72 53 

E-mail: coudercv@.ircom.uniiim.fr 

Abstract: We propose and demonstrate the use of quadratic spatial soliton generation 
together with a spatial filtering of the optical beam, as an efficient mean for the 
realization of ultrafast temporal reshaping of optical pulses. We show that the device has 
an intensity-dependent transmission similar to the one of a saturable absorber and we 
numerically investigate the parameters for optimum temporal filtering. 
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1. Inroduction 

Quadratic spatial solitons have been observed experimentally in various crystals (KTP, LiNbOs, LBO), in 
conditions for second harmonic generation or parametric generation/amplification, in bulk crystals as well 
as in planar waveguides [1-4]. They consist of strongly coupled fundamental and second harmonic fields 
that propagate locked together in a single beam without experiencing the usual diffraction effects. The 
extensive theoretical and experimental research of their basic properties during the last years opened new 
fascinating perspectives for realizing elementary logical operations and ultra fast all-optical switching. By 
using soliton interaction, or soliton fusion and dragging, many types of all-optical processing devices have 
been proposed [5-7]. 

In this communication we propose and demonstrate the use of the most standard quadratic spatial 
soliton generation for performing a temporal reshaping of laser pulses. By means of spatial soliton 
generation combined with a spatial filtering of the output beam, pulses can be cleaned up from pedestal of 
low intensity and may be shortened in time. This kind of processing is particularly interesting for high bit 
rate optical communication links where it could achieve all-optical reshaping of distorted pulses at very 
high speeds (exceeding 100 Gbits/sec). 

2. Principle of operation 

Generation of spatial solitons with feasible crystal lengths in existing bulk quadratic (or cubic) nonlinear 
materials, requires the use of pulsed lasers because of the high intensity threshold (at the GW/cm^ scale) of 
the soliton regime. To avoid crystal damage and thermal effects, mode locked laser sources delivering 
picosecond pulses are used. Typically, these pulses have gaussian or hyperbolic secant temporal profiles. 

Incident 
beam 

Incident      Spatial     Diffracted     Transmitted 
noisy pulse    soliton        energy     reshaped pulse 

Fig. 1: (Left) Schematic drawing illustrating the spatial 
filtering implemented to select the spatial soliton beam at the 
output of a quadratic nonlinear medium. (Right) Intensity- 
dependent transmission and temporal selection of the device. 

Transmitted 
reshaped pulse 
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Therefore, only the fraction of power of each incident pulse that is higher than the power threshold for self- 
guided propagation is actually trapped and propagates as a spatial soliton. The low power parts of the pulse 
both m tune and space, behave linearly and undergo diffraction inside the crystal. Let as now consider a 

contains only the high power temporal part of the input pulse and the overall system (nonlmear propagation 
medium and aperture) acts as a saturable absorber with an ultrafast time response (Fig.l). 

3. Experimental demonstration of the temporal selection of the device 

f 1 TlfAfrl^P'™®''*' *° demonstrate the above proposed principle. We used a Q-switched. mode- 
,„7!      ;       .^®'' ^^'f delivered 63 ps pulses (FWHMI: full width at half maximum in intensity) at 
1064 nm. L^er beam was focused to a circular spot of 26^im diameter (FWHM) onto the entrance face of a 

an RG820 filter, the transmitted pulse was characterized using background free autocorrelation At low 
mtensity free diffraction of the input beam was observed. For peak input mtensities higher than about 

?S^t5Afifl*"*°f.!*"^'?**°° of theoutput pulse recorded fwrn taput^pe'^ tensity of l?GW/cSat 

autocorrektion trace of the mput laser pulse. The autocorrelation of the pulse narrowed from 90ps at input 
to 50ps after spatial filtering of the soliton, thanfa to the rejection of the low mtensity parts of each pulse. 

u 
2% 

1/1 

■08 

-0.4 g 

i 
1-0.2 "^ 

100     150 -50       0        50 

Time (ps) 
Fig. 2: (a) Experimental evolution of the output beam width (dots) versus the peak input intensity. Beam width and 
mtensity are normateed to the soliton diameter and soMton threshold respectively. Sold line is a numerical it of the 
e^enmaital curve. Itotted Ime represents the numerically calculated intensity-dependent transmission of the device 
after spatial ffltenng of the spatial soliton. (b) Background free autocorrelation traces of the laser pulses (circles) and 
of pulses measur«i after nonlinear propagation and ffltenng of the solton part (triangles). The numerical curve of 
the autocorrelation of the filtered pulse (solid line) is in good agreement with the experimental data. 

4. Numerical simulation: determination of the parameters leading to optimal filtering 

In order to verify the validity of the experimental results we numerically simulated the behavior of the 
entire device (nonlinear cr^tal + aperture). We calculated the intensity-dependent transmission by the 
overlap mtegral between the circular aperture and the mcoming beam pattern supposmg that the beam 
always kept a gaussian transverse distribution even in the soliton reghne. The transmission computed m 
that way is plotted with dashed Ike in Fig. 2a and is sunilar to the one of a saturable absorber material For 
the given peak mtensity of 12 GW/cm^ corresponding to our experimental conditions, we calculated the 
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filtered pulse profile as the product between the input pulse 
(assuming a gaussian temporal profile) and the nonlinear 
device intensity-dependent transmission. In order to 
compare numerical and experimental results we plotted in 
Fig. 2b (solid line) the autocorrelation of the calculated 
output pulse. There is a good agreement between the 
simulation and the experiment and it shows that our model 
gives a satisfactory description of the behavior of the 
quadratic spatial soliton based device. 

The model has been used further to derive the condition 
for a stronger shortening and therefore for a more efficient 
filtering. The results are reported in Fig. 4 as a set of curves 
showing the evolution in width of the autocorrelation of the 
output pulse with respect to the input pulse peak intensity. 
In the situation considered here, a shortening as large as 
about 50% can be obtained for an optimized aperturing. It is 
worth to note that the minimum pulse width is obtained for 
an input intensity slightly lower than the intensity threshold 
for soliton trapping. Further increase of the intensity leads 
asymptotically tends to the one of the input pulse. 

5. Conclusion 

i/i s 

Fig. 1: Width of the filtered pulses 
autocorrelation, after normalization to the laser 
pulse autocorrelation, versus their peak input 
intensity, normalized to the intensity threshold 
for soliton propagation, for various diameters 
d of the spatial filter, w^ denotes the soliton 
beam radius at \l^ of the peak intensity.. 

to enlarge the output pulse whose width 

We proposed and demonstrated the use of spatial soliton propagation in a quadratic nonlinear material as a 
mean for achieving temporal fihering of the most powerful part of an optical pulse. In contrast to other 
kinds of saturable absorbers, the proposed scheme offers a broad flexibility. Changing the input beam width 
w, permits to adjust the intensity threshold for self-trapping which scales as w'"* [8] and corresponds to the 
maximum transparency of the device. The transmittance variation can be adjusted by changing the ratio 
L/LD, i.e. propagation distance L divided by the diffraction length Lo=Kvi^/%?, with a transmittance at low 
power scaling approximately as (L/LD)~^ SO the device can perform either a weak or a strong filtering with 
a high contrast ratio. In addition, it has the advantage of a very fast response time, limited only by the group 
velocity mismatch between fundamental and second harmonic radiation, which is independent from the 
power threshold for bleaching (in contrast to other kinds of saturable absorbers, where the intensity 
threshold for a high transmittance scales as the mverse of lifetime of the upper level and thus a fast 
response time thus leads to a high intensity threshold). In the present scheme based on a 2cm-KTP crystal, 
pulse widths as short as lOps can be used. Finally it must be pointed out that the proposed device should 
not be considered as a pulse compressor, because other techniques might be found more efficient for that. 
The investigated device is better suited to perform reshaping of short pulses and background noise 
suppression. Beyond its potential use as a reshaping device for long distance communication links, the 
same set-up could be used in high power laser chain for increasing the contrast ratio of short laser pulses 
after the amplification stages. 
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Collisions between solitons are perhaps the most fascinating features of soHton phenomena 

because the mteractmg self-trapped wavepackets exhibit many particle-like features [1]. Solitons 
collisions have been extensively studied theoretically, both for the integrable (1+1)D Keir case 
[2] and for the more general case in saturable nonlinearities (see [1] and references therein) 
bohton colhsions can be classified into two categories: coherent and incoherent interactions 
Coherent interactions occur when the nonhnear medium responds to interference effects taking 
place where the beams overlap. Such collisions occur for all nonlinearities with an extremely fast 
time response (the optical Kerr effect and the quadratic nonhnearfty). In materials with a long 
response time % (e.g., photorefractives, Hquid ciystals, and thermal nonlinearity), coherent 
collisions occur only if the relative phase between the beams is stationary for a time longer than 
t [3]. M such media, if the relative phase between the beams varies much faster than % then the 
contnbution of the interference terms is averaged out and the surviving terms (in the ionUnear 
^ange of the refractive index, M) depend only on the sum of the intensities of the beams [4] 
This latter case is generally referred to as incoherent colhsions [1,4]. The interaction between 
two solitons can be described through the "Newtonian forces" they exert on one another For 
coherent interactions, this force depends on the relative phase between the soHtons. For example 
two solitons launched in parallel attract (repel) each other if the relative phase between them is 
zero (X) [1,2,5]. For incoherent interactions, on the other hand, the interference terms do not 
contribute to An (as the relative phase between solitons varies much faster than %) Thus the 
incoherent force between bright solitons in  self-focusing media is always attractive   is 
mdependent of the relative phase between the solitons, and is weaker than the force in a coherent 
interaction [4,6]. Thus far, all studies on optical soliton collisions have dealt with solitons 
propagating in the same general direction. 

Here, we study theoretically the 
interactions between soUtons that propagate 
in opposite directions (Fig. 1), Such 
colhsions display new features, among them 
(i) the interactions are insensitive to the 
relative phase between the solitons, and (ii) 
the collision involves radiation loss even in 
ideal Kerr media. 

P(x,g=0)   B(X,FL) 

Fiqire 1: Interactions between qjatial solitons that 
propagate in opposite directions. 

The basic difference between this new scheme and the traditional "co-propagation 
configuration" is the relative propagation directions of the earner waves. Consider a coherent 
mteraction between two soHtons in both schemes. The solitons interfere and give rise to a grating 
m An. For co-propagating solitons, the An grating is periodic in the transverse direction (x) with 
a penod much greater the optical wavelength %, thus the interacting solitons go through veiy few 
(~3) grating periods. On the other han4 for counter-propagating collision the An grating is in the 
propagation direction (z) and its period is - %I2; hence the interacting solitons go through many 
(-10) penods. Consequently, the interaction in the counter-propagation scheme is strongly 
affected by the grating: Bragg scattering and grating effects play a dominant role. Second, in the 
new scheme, the relative phase between the solitons, and hence the dominant term in the soliton- 
sohton force vanes periodically along the propagation axis on a scale much shorter than the 
sohton propagation scale (the soHton period). Thus, all the effects depending on the relative 
phase between solitons oscillate many (~10') times over one soliton period. Hence, the effective 
force between the solitons is independent of their relative phase. 
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Consider two counter-propagating beams in one transverse dimension (Fig. 1). Within the 
paraxial approximation, the envelope amplitudes of the two stationary counterpropagating 
beams, F and B, obey the following set of coupled MLS equations [7]. 

0 + t§+h-V|S|-'(7-f/,)]F=.O 

(1) 

where ^ and I, represent, in dimensionless units, the transverse and longitudinal coordinates, 
respectively, and the parameter h equal to one (zero) for coherent (incoherent) interaction. The 
extra nonlinearity term in coherent interaction is a consequence of the induced index grating due 
to the interference patterns. 

Counter-propaeating 
1   Forward 1 Backward 
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counterpropagating (a,c) forward and (b) backward solitons. 
(d-f) Incoherent interactions between the counterpropagating 
(d,f) forward and (e) backward solitons. For comparison, 
interactions between coherent [in-phase (g) and rc out of 
phase (h)], and incoherent (i) copropagating solitons. 

Consider first the 
interactions in a configuration where 
two such beams are launched from 
two opposite planes ^=0 and ^=1 
[Fig 1(a)]. The beams are launched 
parallel to each other with a 
transverse spacing (between peaks) 
of ^=7.5. Simulation of the 
coherent interaction between these 
parallel counterpropagating beams is 
shown in Figs. 2(a-c). For clarity, 
we present the forward beam (Fig 2a 
and 2c) and the backward beam (Fig 
2b) in separate plots. Figures 2(d-f) 
show an incoherent interaction 
between the same beams. For 
comparison, we simulate the same 
beams in co-propagating scheme 
(Fig 2(g-i)). Figures 2(g) [2(h)] 
shows a coherent interaction in 
which the relative phase between the 
launched beam is 0 {%]. Figure 2(i) 
shows an incoherent interaction. 
Clearly,    the    outcome    of    the 
interaction between the beams in the counter-propagating scheme is very different than that in 
the co-propagating scheme, in both the coherent and incoherent cases. First, in the co- 
propagating scheme, the mutual force between the solitons is proportion to - COS(A<1>) [5], where 
A<I> is the relative phase between the solitons, hence the interaction can be attractive (Fig. 2(g)) 
or repulsive (Fig. 2(h)). In contrast, in the counter-propagating case the relative phase oscillates 
on a scale much shorter than the soliton period, thus the relative phase does not play any role. 
Specifically, varying the initial relative phase between the launched solitons does not affect the 
interaction. Moreover, since the dominant coherent term in the mutual force, which is proportion 
to -COS(A^), is averaged out, the force between the counter-propagating beams is dominantly 
the incoherent term [6], which is always attractive and weaker than the coherent term. The 
second major difference between the counter- and co-propagating cases has to do with radiation. 
The coherent interaction in the counter-propagating scheme radiates (Fig. 2(a,b)), which implies 
that this system is nonintegrable. On the other hand, the incoherent interaction between the 
counter-propagating solitons does not radiate [Figs. 2(d-f)]. Finally, we notice that a portion of 
the forward beam couples into the region where the backward beam is propagating. In the 
incoherent interaction, the forward beam gradually tunnels into the backward soliton region, 
hence the forward intensity at the backward soliton region increases monotonically (Fig 2(f)). 
This behavior represents directional coupling (resonant tunneling). For coherent interactions the 
dynamics are more complex, as the intensity coupled irom the forward beam to the region 
"under" the backward beam oscillates [see the sidebands in Figs. 2(c)], and, in contradistinction 
to the incoherent case, light does not accumulate in the "sidebands". The explanation is as 
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Backward 

follows. The Bragg reflections of the backward beam serves as an extra source to the forward 
beam propagating at the backward soliton region. But, the forward beam under the backward 
sohton region is propagating slower than the original forward beam. Hence, the relative phase 
between the onginal beam and its sideband is alternating, and subsequently, the energy transfer 
(through tunneling) between these beams is alternating as well. 

Finally, we investigate colhsions at 
angles close (but not equal) to 180" [Fig. 1(b)]. 
We launch two beams from planes ^=0 and 
^=48 that initially propagate at a 
(dimensionless) angle of 6=26.5**. The coherent 
and incoherent interactions are shown in Figs. 
3(a,b), 3(c,d), respectively. The incoherent 
collision is ftilly elastic, and merely leads to a 
lateral displacement, resembhng colhsions of 
co-propagating solitons. Coherent collisions 
[Fig. 3(a,b)], on the other hand, are different, 
and lead to radiation, 

Eaas^: Coherent (a,b) and incoherent (c,d) 
interactions between abnost-counter-propagating 
solitons. 
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Abstract: We present results of semianalytical and numerical study of transversely two- 
dimensional spatial and spatio-temporal solitons in a laser with a saturable absorber. We 
demonstrate axially symmetric and asymmetric rotating solitons with wavefront dislocations of 
different order. 
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1. Introduction 

Localized structures of coherent light in passive (driven nonlinear interferometers) and active (laser schemes with a 
saturable absorber) systems present an interesting class of dissipative solitons promising for applications in optical 
data processing (see [1] and references therein). Solitons in both passive and active systems have a discrete spectrum 
of their parameters. Nevertheless, there are important differences between these two types of solitons connected with 
the absence of holding radiation in laser schemes. Recently detailed study of laser solitons was performed for 
various scheme dimensionality, especially for one- and three-dimensional schemes [ 1 ]. 

The two-dimensional schemes are of the most interest for real laser experiments, on the other hand, are much 
simpler for the analysis and numerical simulations as compared with the three-dimensional case. The goal of this 
report is to give a systematic presentation of types and features of two-dimensional laser solitons in the case of fast 
nonlinearity of both gain and absorption. We study vortex solitons characterized by cylindrically symmetric 
intensity distribution and different topological charge. We analyse their linear stability and scenarios of their 
destabilization, and demonstrate the appearance of asymmetric multihump rotating solitons. 

2. Initial equations 

We consider a wide-aperture class A laser with a saturable absorber. The equation for the dimensionless electric 
field slowly varying envelope E in the mean-field approximation has the form [1,2] 

at 

Here t is the time normalized by the cavity relaxation time, A^ =VI = 9'/av^ +9Vdy' is the transverse Laplacian,x and 
y are transverse coordinates normalized by the width of the effective Fresnel zone. The diffusion coefficient d 
depends on relaxation parameters of the active and passive media and is assumed to be small enough. The nonlinear 
function XT) of the field intensity /=|£'|^ describes fast saturation of gain and absorption. Aftet neglecting 
frequency detunings, this function becomes real and takes the form 

/(|£f) = -l + —^—-r ^. (2) 

where g^ and a^ are small-signal (linear) resonance gain and absorption, b is the ratio of saturation intensities for 

gain and absorption. In our numerical simulations we fix the following values of the parameters: «„ = 2 , b = \^. 
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3. Solitons with cylindrically symmetric intensity distribution 

Solitons with such a symmetry are characterized by an integer value of azimuthal index, or topological charge »i: 

Jx^ + v^ (3) 

where a is the frequency shift with respect to the frequency of transversely homogeneous lasing. The amplitude 
^(r) IS determmed by ordinary differential equation 

d~A    1 dA    »r 
-+ +■ —-+-^^ + - 

dr      r dr    r 1 + [ia + fi\Af)U^Q, (4) 

with natural boundary conditions 4r)~r'« for r^O and A{r)-^Q for r ^ oo. The frequency shift a plays the 
role of a spectral parameter (eigenvalue) and has a discrete spectrum. This shift and corresponding amplitude radial 
profiles A(r} have been found numerically for different m and g^ (a control parameter). In order the solution (3) be 
stable it is necessary that the total linear absorption be greater than the linear gain for a weak field 

/(0)=-l + go+ao<0. (5) 

Sifficfent stability conditions have been found by Imear stability analysis. To this end we mtroduce small 
perturbations m by the relation 

E = {A(r)^SA{r,f,f)]&x^{imp-iM), (6) 
where (r, f) are the polar coordinates, and seek the solution of hnearized Eq. (1) in the form 

SA(r,f,t)=a{r)ex^ianf+ft)+b*(r)ex^-ianq>+Y't\   <»» = 0,1,2,... (7) 

The growth rate of perturbations is determmed by the real parts of the eigenvalues y. If Re y < 0 for all the 
eigenvalues, except for those corresponding to the so-called "neutral modes", the locaUzed structure is stable We 
have found the eigenvalues y numerically taking mto account the symmetry properties of Eq. (1) and the existence 
of a number of "neutral modes" with zero eigenvalue y = 0. 

4. Semianalytical calculations 
Laser soliton with regular wavefl-ont (w = 0) is stable even without diffijsion (rf = 0) m a the interval 
2.094 < t„ < 2.1162 . However, vortex solitons are stable only for rf > 0. For rf ^ 0 all these solitons are unstable 
with respect to perturbation harmonics with &! = 2 . This leads to the appearance of two maxima of the field 
mtetisity distribution. For rf > 0 and fixed m, there are several types of stable solitons differing by the number of 
osculations in then intensity profile (Fig. 1). 

Fig. 1. Transverse distribution of intensity I(x, y) (wired sutfece (a) and surface relief (b)) of an excited vortex soliton 

with »J = 1; diffiision coefficient d = 0.06 , gain go = 2.129776 , and frequency shift a = 0.06576 

For the "round-state" solitons with « = 1,2, the stability intervals are given in Fig. 2. With the increase of gain 
sohtons are destabilized by the growth of perturbations with &i = 0. Smce the imaghiary parts of the crlical 
eigenvalues are nonzero, this tastability corresponds to the Andronov-Hopf bifurcation. With the decrease of pm 
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solitons lose their stability due to the growth of perturbations with Sm = 2 for m = 1 and with Sm = 3 for m = 2. In 
the latter case the field intensity has three maxima. 
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Fig. 2. Dependencies of the growth rate   Re y on the small signal gain coefficient  gj,   for pertuAation's azimiithal 

harmonics <S« = 0,1,2,3 (given near the curves) for ground-state vortex solitons with ff) = 2 (a) and 3 (b); rf = 0.1 

5. Numerical simulations 

Direct solution of Eq. (1) by splitting method using the fast Fourier transform algorithm provides the information on 
the nonlinear stage of perturbation growth, scenarios of solitons' destabilization and on the resulting structures. The 
scenario of soliton destabilization depends on the soliton topological charge m. For solitons with m = 0 saddle-node 
bifurcation takes place with the decrease of gain. This instability leads to the decay of the field {E-^0 at with 
time). Subcritical Andronov-Hopf bifurcation appears with the increase of gain and results in the growth of 
perturbations with &i = 2 . At the first stage of the growth process the soliton exibits temporal oscillations, but 
finally cylindrically asymmetric two-hump (with two nearly equal intensity maxima) soliton is formed that rotates 
with a constant angular velocity. There are hysteresis jumps with variation of gain between symmetric and 
asymmetric solitons. 

For solitons with m >0 the scenarios of destabilization are different. In the case of «; = 1, the symmetric soliton 
coexists with the two-hump soliton near the lower gain stability boundary. At higher gain the symmetric soliton is 
transformed into a rotating soliton with a single pronounced intensity maximum. For m = 2, the symmetric soliton is 
transformed into a two-hump soliton with the decrease of gain. At another boundary of its stability interval, i.e. at 
higher gain, the stationary symmetric soliton is transformed into an oscillating symmetric soliton that starts to rotate 
when the gain is ftirther increased. An example of a stable three-hump soliton arising after destabilization of the 
symmetric soliton with /;; = 3 (low-gain domain) is given in Fig. 3. Some other localized structures and scenarios of 
their destabilization can be generated by varying parameters values. 

Fig. 3. Transverse intensity distribution for rotating triple-hurrped laser vortex; g   = 2.0869 
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Abstract: We show that discrete solitons can be navigated in two^imensional nonlinear 
waveguide arrays. This can be accomplished by usulg vector interactions between two classes of 
solitons - signals and blockers. Disrete solitons in such two dimensional array networte exhibit a 

; rich variety of functional operations, e.g. blocking, routing, logic flmctions, and time-gating 
©2001 Optical Society of America 
OCIS codes: 190.5530,200.4560 : 

Discrete solitons are possible in several physical settings such as for example biological systems [11 
nonlinear optics [2] solid-state physics, and Bose-Einstein condensates [3]. In optics discrete solfons Jl were 
first predicted m nonlmear coupled waveguide arrays [2] and subsequently observed in AlGaAs sptems [41 In this 
latter case discrete solitons exist due to the balance between the effects of discrete diffraction (that results from the 
coupling between successive waveguides) with that of material nonlinearity. Optical DS differ from their bulk 
counterparts m several important ways. For example, a unique property that arises from the discrete nature of 
waveguide-arraj^, is that of reversed diffi-action that allows dark DS in self-focusmg media [5] 

In this work we show that DS propagating in two-dimensional waveguide array networte can provide a rich 
environment for all-optical data processing appUcations. We demonstrate that such arrap can effectively act like 
sohton wires along which these self-trapped beams can travel. In addition, by using vector/incoherent interactions 

at the network junctions, these soliton signals can be routed at will along specific pathways. Therefore, this family of 
soli om can be navigated anywhere within a two-dimensional network of nonlinear waveguides We beein our 
analysis by assummg that all waveguides are identical, regularly spaced, and separated from each other by distance 
D. To Illustrate our results, let us assume that the cladding refractive mdex is n, =1.5, the linear mdex difference 

between core and cladding is 5 = 3x10"^ and that the wavelength used is X„ = 1.5 jun. The effective core radius 

of each waveguide is 5.3 Mm and the distance between them is D = 15.9 Mm • These parameters result m a Imear 

coupling constant of c = 0.279 mnj-' between nearest neighbors. In addition we assume that the material is Kerr- 

evolv?aLSdin'T°"' "^^"^ interactions between two fields. In this case the two fields (propagating along z) 

au   1 
az    2k 

r:,2 

v 

a^u  a^u , k8f(x,y)^^ knA 
n„ 

|uf+|vf^ = ( (la) 

.av   1 
az    2k ax^ "^ ay^ ^ |vf+|uf)v=( (lb). 

where U and V are the normalized field envelopes of the two optical fields, k = 27cn„ / X^, and the scaled function 

f(x,y) represents the linear refractive index distribution of this waveguide array. The term n^Ij represents the 
maximum nonlinear contribution to the refractive index at the origin. 

Usmg numerical relaxation methods we obtain discrete soliton solutions for a single row of waveguides As 
an initial tria^^function we use the discrete soliton solution obtained from coupled mode theory [2]. We isolate two 
classes of solitons: (i) moderately confined solitons. or what we here call signals, and (ii) strongly confined beams 
or Mockers. A signal beam ,s shown in Fig. 1(b). The maximum nonlmear change, required to support this self- 
trapped state IS AnNL=4.6xlO-^ For signals, the maximum field amplitude at each lattice site follows a 
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hyperbolic secant function. The blocker beams used here are described approximately by a defect-like state of the 
form »P(n) = TQ exp(-|n|D / x ^) and require a nonlinear refractive index change of An ^L "= ^ ^ ^ ^ ' • ^ simple 2D 

network along with a signal DS are shown in Figl. 
1 

^0    0   50 

Figl. (a) A simple 2-D network of waveguide arrays, (b) A signal discrete soliton. 

Next, we set a signal DS in motion in a network involving two array branches intersecting at an angle of 
120° or    90°.    This    is    done   by   initially   imposing   a   linear   chirp    on   the   beam   profile,    i.e. 

Mfn =*PoSech(nD/X(,)exp(i7n), where in our example 7 = 0.6rad. As a result the soliton slides along the 
waveguides with a speed of 1 lattice site per 4.2 mm of propagation. After passing the intersection the soliton moves 
to the upper branch. This motion occurs with almost no change in the soliton intensity and shape, i.e. the array 
behaves like a soliton wire. The loss after traversing the intersection is of the order of 1% and 5 %, for a 120° and a 
90° bend, respectively. 

Next we mvestigate how discrete solitons can be routed or blocked at network junctions using vector 
interactions. Fig. 2(a) shows a Y -120° degree junction involvmg three array branches. A DS of the blocking type is 
positioned at site A, right at the entrance of the lower branch. A signal soliton is then set in motion from left to right 
with 7 = 0.6 rad, starting from position B. The two solitons are mutually incoherent. Our simulations show that the 
signal is routed along the upper branch in an elastic fashion. Fig. 2(b) depicts the intensity of the signal at 
z = 5.68cm (after passing the intersection). In all cases, the blocker always remains in its pre-assigned position. The 
transmission loss (after the junction) is in this case 2 % and is due to minor reflection and leakage losses to the lower 
branch. Our results show that a signal DS can also be routed at an X-junction with a 96% efficiency provided that 
two blocking beams are used at the pathway entries. 

-150 
X(Mm) S(iim) 

-250 

Fig2. (a) A 120 degree Y-junction, (b) a DS signal after passing the intersection, (c) a time-gating arrangement. 

Finally, we have found that time-gating functions are also possible in such networks. Fig. 2(c) shows a T- 
junction with a blocker placed at the intersection. A signal DS (S), which is incoherent with the blocker travels from 
right to left. In this case, another signal DS (G) arrives before S and pulls up (by one slot) the blocker discrete 
soliton, just in time to allow S to pass through the gate. 

Animations of the processes described in Figs. 1 and 2, as obtained numerically after solving Eqs.(l), 
can be viewed at vyww.lehigh.edu/~edc2/ . 
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Abstract: We show that reflection losses suffered by discrete solitons along sharp bends in two- 
dimensional waveguide-array networks can be almost eliminated. Analysis indicates that this can 
be accomplished by appropriately engineering the comer site of the bend. Our analytical results 
are verified using numerical simulations. 
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In recent years, discrete solitons in nonlinear lattices have received considerable attention in many branches of 
science [1]. In optics, nonlinear waveguide arrays provide an excellent system where these entities can be 
experimentally studied and possibly used for all-optical applications [2,3]. In this latter context, discrete solitons 
(DS) are self-localized states that exist due to the balance between linear coupling effects and material nonlinearity. 
As previously noted in several works, the discrete nature of these systems can lead to a host of new effects that have 
no counterpart whatsoever in the continuous/bulk regime [2-4]. 

In a recent study we have shown that DS in two-dimensional networks can be used to realize intelligent 
functional operations such as blocking, routing, logic ftinctions and time gating [5]. More specifically, this class of 
solitons can be ail-optically navigated in 2-D array networks - a property highly desirable for optical routers. In this 
case, a DS can move transversely along any pre-assigned path and thus the array behaves like a soliton wire. Bends 
(like that of Fig. 1(a)) are essential elements of such DS networks. In general a soliton tends to loose power when it 
encounters a bend due to reflections. This becomes particularly problematic when bends are used in cascade. Thus 
reducing bending losses in such array networks is an issue of importance. 

In this work we show that reflection losses occurring along sharp bends can be minimized by appropriate design. 
Analysis indicates that this can be accomplished by modifying the properties of the comer waveguide. 

Let us consider a moderately confined DS (extending over 5 to 7 lattice sites) in a regularly spaced nonlinear 
waveguide array. In this regime, its envelope profile is described by T^ = ^^ sec h(nD / x „)exp(ianD), where D is 

the distance between successive waveguides, n = 0, ±1,... is the number of the waveguide site, Xg is related to the 
DS spatial width, and a describes the phase tilt required to make the soliton travel along the array. We also assume 
single-mode, step-index-like waveguides of core radius 5.3 |lm. For demonstration purposes, let the cladding 

refractive index be rij, =1.5, that differs from that of the core by an amount 8 = 3x10"'. In this example, the 

wavelength is X-Q = 1.5 umand the distance between waveguides is D = 15.9 |lm. For this set of parameters, the 

linear coupling constant between adjacent waveguides is c = 0.272 wm"'. In this case, the evolution of a discrete 
soliton in this Kerr nonlinear array is governed by: 

.dU       1    (d^U   d'U^ 

dz    Ik^n^ dx'     VJ 
+ k,Sf{x,y)U + k^jlMu = 0 , (1) 

where U is the normalized DS field envelope, yl^, is the maximum nonlinear index change induced by the soliton at 

the origin, and f (x, y) represents the two-dimensional index distribution of the waveguide array. A DS is obtained 

numerically using relaxation methods with yip = 4.6x10"'. When we launch such a soliton along a 70° bend (like 

that shown in Fig. 1 (a)) with a phase tilt of a D = 0.6 rad, the DS looses 38% of its energy after traversing the bend 
(after 7.4 cm of propagation). 
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To identify the source of these losses we employ the formalism of coupled mode theory. To do so we use 
the equralentphotomc circuit of the bend, shown in Fig.l(b). For the sake of generality, we assume that the 
wavepnde at the comer is dtfferent from the rest, i.e. there is a defect at the site n = 0. The propagation constant for 
this site differe from the other waveguides by Ap. Let us also assume that the coupling constant between the 
waveguides n = -1 and n =1 is K. It follow from coupled mode theory that the field amplitudes at every site 
(except n = -1,0,1), are described by i{da„ I dz) + c(a„,, + a„_,) = 0. On the other hand, for n = -1,0.1, the optical 
fields evolve according to: 

»-j-*-+ Jfa, + c(Oo + a_2) = 0 

. da, 
»-j^ + *"a_i + c(ao + fl^) = 0 

az 
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Figl. (a) A waveguide anray bend consisting of idirtical elen»nts, (b) the unfolded photonic equivalent circuit, (c ) the intensity profile of a 

discrete sohton after traversing a 70° bend when the comer site has Ijeen apprqjriately engneered. 

By considering a forward, backward, and a transmitted wave, we can then obtain the field reflection and 
transmKsion coefficients. Analysis mdicates that the bend reflection losses can be totally eliminated when: 

c 
K c J 

1 +—cos 
c 

(«D) 

1- - 

(3) 

For example, for the set of values used in the sunulation and for 6=70^ and aD = 0.6 rad, Eq.(3) suggests that 

the reflection losses can be ehminated when A^/c=-1.91. This requked change A^ at the comer site can be 
achieved by either modifying the core refractive uxdex or by altering its radius. By keeping in mind that 
A^ = Ao^Mi = the core refractive index at the corner site must be modified by an amount tm^ ^tk^lk^ so as to 

minimize reflections. In this example, the required index change happens to be An^ = -127x10"*. In this c^e we 
find that a discrete soliton can traverse the bend with less than 1.1% losses (as opposed to 38% before the bend was 
engmeered). The output intensity profile of the DS beam (shown in Figl(c)), indicates that the DS has remained 
practically invariant after the bend. Similar results were also obtained for a 90» bend, where this time the required 
linear index change at « = 0 is AM^ = -2.24x10-^. In this case the reflection losses were found to be below 0.65%. 

In conclusion, we have demonstrated that by appropriate design, reflection losses suffered by DS along 
storp bends m two-dmiensional waveguide-array networks can be almost eliminated. This can be achieved by 
mtroducmg a defect site at the bend comer. ■^ 

Animations of the processes described in Fig. 1, as obtained numerically after solving Eq.(l), can be 
viewed at Wftw.lehigh.edu/~nie2/ . j »ug ^HA^^H *-<IU ue 

References: 



NLTUD36-3 

1. A. C. Scott, Philos. Trans. R. Soc. London Ser. A 315, 423 (1985). 
2. D. N. Christodoulides and R. I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides". Opt. Lett. 13, pp. 794 - 

796 (1988). 
3. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison. "Discrete spatial optical solitons in waveguide arrays", 

Phys. Rev. Lett. 81, pp. 3383-3386 (1998). 
4. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchinson, "Self-focusing and defocusing in waveguide arrays", 

Phys. Rev. Lett. 86, pp. 3296 - 3299 (2001). 
5. D. N. Christodoulides, and E.D. Eugenieva, " Blocking and routing discrete solitons in two-dimensional networks of nonlinear 

waveguide arrays", Phys. Rev. Lett., November 29, (2001). 



NLTUD37-1 

Self-focusing of Ught mediated by cubic nonlinearities 
in potassium titanyl phosphate 

Silvia Carrasco, Hongki Kim, and George Stegeimn 
CMEOUSchool of Optics. University of Central Florida, Orlando, Florida, 32S16 

LluisTorner 
UniversitatPolitecnimdeCatahmya, Dept of Signal Theory'and Comrnmncations, OmU Barcelona, Spain 

Abstract: We report our observations of tlie self-narrowing of light beams mediated by 
dommant dissipative Kerr nonlinearities in a bulk KTP crystal. Observations agree 
with comprehensive numerical investigations. Drastic differences between up and 
down-conversion processes are uncovered. 
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1. Introduction 

The impact of competing quadratic and cubic nonlinearities on optical soliton has been 
extensively studied (see, for example, [l]-[2]). In the usual case of seconfl harmonic (SH) generation at or 
near phase matching between the fundamental frequency (FF) and second-harmonic (SH) interacting 
waves, the quadratic nonlinearity is dominant in the known materials that are transparent at optical 
wavelengths and thus the cubic effects are very small and correspondingly difficult to observe 
exp^mientolly. In contrast to this case, we report here observations conducted in a physical setting where 
the Kerr effect becomes dominant versus the quadratic one, modifying strongly the well-known beam 
evolution mmedia where only quadratic nonhnearities are significant. Two-photon absorption (TPA) was 
also present, and its effect on the solitons was analyzed numerically (see [3]-[4] for the impact of TPA on 
one dunensional soUtons supported by pure Kerr nonlinearities in planar waveguides). 

A suitable configuration for our purposes occurs when the quadratic effects are made small for 
example m a crj^tal with a large Poynting-vector walk-off or when the quadratic effects are reduced by 
operatmg at large wave vector mismatch between the FF and the SH. Such conditions occur, for example 
m potassium titanyl phosphate (KTP) cut for a Type II oeo interaction in the YZ plane In such 
configurations, the walk-off angle between the two, orthogonally-polarized FF waves amounts to a large 
1.8 . Jn addition, the quadratic nonlinear coefficient involved is small, i.e. der=1.8 pmA^ These effects 
combined permit an unambiguous study of the importance of cubic effects in KTP. Notice that because 
of the huge existing walk-off, the FF(e) diverges rapidly from the FF(o), making quadratic soliton 
generation, even the  walking" type, impossible at powers below the damage threshold. 

2. Numerical Simulations 

To perform the simulations, we have considered standard cw (2+1) equations for a Type II oeo 
mteraction, mcluding quadratic nonlinearities, Poynting-vector walk-off TPA, self-phase and cross-phase 
modulation, and dif&action aU acting on the three interacting waves. 
^.„ ^ physical grounds, it is very important to note that firom MaxweU equations, tiie SH beam 
diffracte two tunes slower than the FF beams, while at the same time the strength of the effective cubic 
norimeanties is two times larger at the SH wavelength than at the FF, even if the material's Kerr 
nonlmeanty is the same at both frequencies. This is an indication that the impact of the cubic temB is 
expected to be much stronger in down-conversion than in up-conversion processes, an expectation Mly 
contumed by the expenmental observations discussed below, hi the simulations shown here we took the 
wlues of fee Kerr and TPA coefficients reported in [5-6]. Simulations performed with different values of 
ttiese coefficients show that the precise value of these coefficients does affect the evolution of the optical 
beam^, but we verified that the main results discussed here hold for judicious variations of the 
coefficients around the values reported in [5-6]. The cross phase modulation coefficients in KTP are not 
known, and hence we also studied the impact of the assumed value for this coefficient. Fully (3+1) 
simulations for the long pulses used in the experiments (-20 ps) were also carried out 
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Fig. 1 summarizes the outcome of our numerical findings. In down-conversion processes, the SH 
beam self-narrows due to the large cubic nonlinearity. The FF(o) beam which is co-directional with it 
narrows too, presumably by cross-phase modulation. Both beams feature a clean shape for reasonable 
values of the input power. On the contrary, in up-conversion processes, the SH breaks up due to TPA, and 
the FF(o) only narrows a bit. In either case a weak FF(e) beam is generated, that walks off the FF(o) (and 
SH) and diffracts. 
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Figure 1: Simulations: Output beam waist of the FF(o) (filled circles) and SH (open circles) beams 
as a function of input intensity of the SH (a), and of the FF (b). Dotted line: input beam waist. 

Figure 2 illustrates the typical output beams that are obtained in the simulations for up and 
down-conversion processes at a given input intensity. Notice that the FF(e) and FF(o) in down- 
conversion, and the SH in up conversion, are very weak because of the low efficiency of the frequency 
generation processes. 
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Figure 2: Simulations: Slices of the input(dashed lines) and typical output beams (solid lines) of the 
FF(o), FF(e) and SH beams in down (top) and up (bottom) conversion. 

A key point to be addressed is whether the self-focusing of the SH and FF(o) beams predicted by 
the above simulations in down conversion processes is a purely Kerr-TPA effect, or the quadratic 
nonlinearity plays also a role. This question is answered by Fig. 3: One concludes than the self-focusing 
experienced by the SH beam does not depend on the phase-mismatch existing between the interacting 
waves; thus, it is to be attributed solely to the cubic nonlinearity. However, the simulations suggest that 
the self-narrowing of the FF(o) beam is a combination of quadratic nonlinearity and cubic cross-phase 
modulation. To be concrete, simulations suggest that when the strength of the cross-phase-modulation 
factors is assumed to be large enough, the quadratic nonlinearity does not play any relevant role; 
however, for weak cross-phase-modulation, self-narrowing of the FF(o) is only predicted to occur near 
phase- matching, an indication that the effects is due to competing cubic and quadratic effects. 
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Figure 3: Simulations: (a) Output beam waist for down-conversion at and far from phase- 
matcUng. (b) Output beam waist of the beams for a fixed total intensity but different fractions of 
power on the FF(o) input signal. 

3. Experimental Results 

,„.. '^^^^Periments were conducted with input Gaussian beams (beam quality factorM^~l 1-1 2)at 
1064 nm from an EKSMA Nd:YAG laser delivering 25 ps pulses at a 10 Hz repetition rate. The input 
beamprofile was focused into the input face ofthe 10 mm KTP bulk crystal cut for phase-matching in the 
YZ plane Figure 4 summaries the salient points ofthe observations. A very good agreement with 
numerical expectations is clear. For example, when only SH light was present at the entrance ofthe 
crystal, we observed astrong focusing of both SH and FF(o) beams at and outside phase-matching In 
contrast when only FF(o) was input, the output SH broke-up and the FF(o) beam diffracted A 
comprehensive summary ofthe observations will be presented at the conference 

(a) (b) (c) 

Mput Power (GW/cm^ Input Power (GW/cm^) Fraction of power in FF(%) 
Figure 4: Experiments: Output beam waist ofthe SH, (a), and the FF(o), (b), versus input power on 
.      fi^, ". down conversion configuration; (c) Output beam waist versus fraction of power in the 
innut h hint fnr a fi-rinl fntol Innnt i^ta,^^tt,, ^r ■^in-nri 1 ^ input FF(o) for a fixed total input intensity of 33GW/cm* 

4. Conclusions 
We report our observations ofthe self-narrowing ofthe FF(o) and SHbeams in downK^onversion 

processes m a bulk crystal of KTP cut for phase-matching in the YZ plane. We attribute the narrowing of 
the bH beam to the dominant Kerr nonlinearity. The competition between the existing quadratic 
nonhnearity and the cubic cross-phase modulation effects are responsible for the narrowing ofthe FFfo) 
beam. Br^k-up ofthe SH was observed in up-conversion schemes, consistent with simulations 

Z^rltT'"'^^^^ supported by an ARC MURI, and the Commission for Scientific Exchange 
between the USA and Spam. ; * 
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Abstract: We investigate the inverse of a spatial modulational instability process which results 
from cross-phase modulation in a mediated four-wave interaction between two noncolinear beams 
crossing in a self-defocusing Kerr media. 

Modulational instability (MI) is a common and important nonlinear effect in which a continuous wave 
breaks up into periodic, localized wave packets. Its long-term dynamics can lead to Fermi-Pasta-Ulam (FPU) 
recurrence, in which a nonlinear system returns to its initial energy configuration rather than thermalizing[l]. 
Interest in MI has increased since the recent experimental observation of FPU recurrence of nonlinear optical 
pulses in optical fibers[2]. MI in the spatial domain is known as beam filamentation and is a four-wave mixing 
process in which the phase matching is provided by cross-phase modulation[3, 4]. 

Recent experimental work has demonstrated the existence of a connected spatial effect, photon-photon 
scattering in the presence of a Kerr nonlinearity[5]. In this experiment, two counter-propagating beams 
"collide" in a rubidium vapor cell and photons scattered at ±90° from the beam axis are observed to be 
correlated in time, while photons are other angles are not. These results suggest a momentum-conserving 
photon-photon scattering process mediated by the Kerr nonlinearity. 

In this paper we discuss a related process, in which the two "colliding" beams are in a frequency-degenerate, 
nearly-collinear configuration. Normally this configuration generates high-order diffracted beams, used for 
dephasing time measurements. We predict that a different kind of four-wave mixing process should be possible 
with this geometry, in which two photons of the noncollinear pump beams are absorbed and two collinear 
signal photons are generated in the direction of a bisector line between the pump beams. We will demonstrate 
that through a phenomenon similar to weak-wave retardation [6], phase matching is possible even if all four 
waves have the same frequency. We conclude by identifying this process as the inverse of the process that 
generates standard beam filamentation. 

We begin by calculating the nonlinear polarization component in the direction of the signal beam, P4. For 
simplicity we assume that this process will be stimulated, introducing a small seed field £3 in the direction 
of the bisector line (see Fig. 1). The polarization of the signal field is 

PA    =    ^xflA\EA?E, + 2{\E^\^ + \E2?\-V\E^?\)E, 

+EiE2Elexp{i{iki -\-k2-ks-k4)-z)- (wi - wj + W3 + ^4)/} (1) 

where x^xxxx is a component of the third order nonlinear susceptibility tensor and Ej are the fields associated 
with the pump {j = 1,2) and signal {j = 3,4) beams. The first term in this equation represents self-phase 
modulation (SPM), the second cross-phase modulation (XPM) and the third four-wave mixing. For a weak 
signal beam, SPM is negligible. The XPA'I terms from the pump beams are large and play an important 
part in the four-wave mixing process, while the XPM term from the signal beam may be neglected. The 
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Pig. 1. Wave-vector configuration for weak-wave advancement. 

exponential foux-wave mixing term indicate that in order for this polarization to efficiently transfer energy 
into the signal field E4, there must be energy conservation and phase matching between the different wave- 
vectors associated with each field. 

In the degenerate case of equal frequencies, this phase matching appears difficult to achieve. However the 
signal waves experience a decrease in the refractive index generated by the XPM term associated with the 
pump beams assuming a negative nonlinear Kerr coefficient (the self-defocusing case). This difference in the 
refractive index is given by: 

4no 
(3)   1 
3CXXX1 ilEif + \E2\ (2) 

where no is the linear index of refraction. Consequently, there exists a shortening of the weak-wave momentum 
vector by Aft - -|An|wo/c, an effect which we call weak-wave advancement in analogy with "weak-wave 
retardation   m the case of the self-focusing sign of the Kerr nonlinearity[6]. For a certain parameter range 
weak-wave advancement allows phase matching between the four wave vectors. In this range, this four-wave 
mmng process should tramfer energy to the weak signal beam as efficiently as its counterpart. 

todin ^ ^ ^^ calculate the evolution equation for the signal field E4 in the paraxial and plane wave limits, 

afi 
-~ = i4jP(E4 + 0.5E|e*(^^-^*=)^) (3) 

where 7 - 6w\k4x^^l^/nl P is the pump beam power and Ak = |% -h 4 - 4 - k^ In the self-defocusine 
case this equation has an exponentially growing solution for the parameter range 

0<Ak< 67P 

with an exponential gain of 

: 9 = ^/'-ih^r - hP)Ak - 0.25(Afe)2 (5) 

The signal beam gain is plotted against the collision half-angle in Pig. 2 for several values of jP. 

We recall that weak-wave retardation in degenerate four-waw mixing is responsible for transverse modula- 
tional mstabihty and resulting laser beam filamentation in the spatial domain[4]. This behavior ta also in 
agreement with the idea that time domain modulational instability may be thought of as a four-wave mixing 
proems where the fiber nonlinearity provides phase matching between the different fieldsm. In modulational 
instability m the time domain, a CW beam breaks up into a periodic pulse train with the simultaneous 
appearance of associated spectral side bands[8]. We conjecture that a time-domain version of the weak-wave 
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Fig. 2. Normalized signal beam gain as a function of collision half-angle. 

advancement Kerr-mediated four-wave mixing effect described here should also exist. This time analogue 
effect should occur in the propagation of light at two different frequencies WQ + J7 and WQ - H through an 
optical fiber in the normal dispersion regime. These two optical frequency components correspond to the 
noncoUinear pump beams in the spatial case discussed here. As a result, a stationary signal at the frequency 
Wo should be obtained, corresponding to the bisecting signal beam in the spatial case. 

In conclusion, we have discussed a new four-wave mixing process mediated by the Kerr nonlinearity, and 
related this process to a different, inverse kind of modulational instability. We believe that this nonlinear scat- 
tering process could be at the heart of an experimental realization of a photonic Bose-Einstein condensate[9]. 

We thank M. Trassinelli and J. Garrison for helpful discussions. This work was supported in part by the 
ONR. JMH thanks the support from Instituto do Milenio de Informagao Quantica, CAPES, CNPq, FAPEAL, 
PRONEX-NEON, ANP-CTPETRO. 
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Abstract 

Nonlocal interactions in the mean-field theory for Bose-Einstein condensation can destabilize 
nonlmear wavetrain solutions for a condensate trapped in standing light waves. The dynamics 
and stability are considered for arbitrary interaction potential. 

The inherent complexity of the dynamics of N pairwise interacting particles in quantum mechan- 
ics often leads to the consideration of simplified mean-field descriptions. However, the simplified 
models can often neglect important physical effects which are present in the N particle descrip- 
tiom Our specific interest is m the pairwise interaction potential between atoms in a Bose-Ei^tein 
condensate (BEC). So although we impose symmetry restrictions on the particle wave function [1] 
we do not unpose any functional form ^sumptions on the pairwise interaction potential in oto 
inean-field description [1, 2, 3]. We consider the trapping of a BEC in a standing-light wave For 
this case we can construct exact solutions for the mean-field particle wave function for arbitrary 
mter^tion potential, which is an improvement on the canonical Gross-Pitaevskii description [2, 3] 

The dynamics of N identical pairwise mteracting quantum particles is governed by the time- 
dependent, JV-body Schrodinger equation 

where mi = (xa, Xis.Xis), * = t(jci, X2, X3,..., XN, t) is the wave function of the iV-particle system, 

^ = Ei=i (5|,i + ^xii + ^is) is the kinetic energy or Laplacian operator for JV-particles, W{xi- 
xj) is the symmetric interaction potential between the i-th and j-th particle, and VixA is an 
external potential acting on the i-th particle. 

The Hartree-Pock approximation (as used in [1]) for bosonic particles uses the separated wave 
iunction ansatz 

^ = i>l(Xut)M^2,t)---i>NixN,t) (2) 

where each one-particle wave function fixi) is assumed to be normalized so that MxiMlxi))^ = 1 
Smce identical particles are being considered, 

:     ti='>p2 = ...=ipN = i>, (3) 

enforcing total symmetry of the wavefunction. Usmg a Lagrangian reduction with the above as- 
sumed ansatz allows us to take the variationaJ derivative with respect to i,{xi) which results in the 
tiUler-Lagrange equation 

.^dip(x,t) h \30^ t J ft /'Cx> 

dt~ ^ ~2;;^^^(^'*) + ^W^(«'<) + iN- m{x,t) /     W(m - y)my,t)fdy. 
J — OQ 

(4) 
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Here, x = Xi, and A is the one-particle Laplacian in three dimensions. Note that the Euler- 
Lagrange equation (4) is identical for all i{}{Xi,t). Equation (4) describes the nonlinear, non-local, 
mean-field dynamics of the wave function il^{x,t) under the standard assumptions (Eqs. (2) and 
(3)) of Hartree-Fock theory [1]. The coefficient oiip{x,t) in the last term in Eq. (4) represents the 
effective potential acting on ip{x,t) due to the presence of the other particles. 

At this point, it is common to make an assumption on the functional form of the interaction 
potential W{x - y). This is done so as to render Eq. (4) analytically and numerically tractable. 
Although the qualitative features of this functional form may be available, for instance from ex- 
periment, its quantitative details are rarely known. One convenient assumption in the case of 
short-range potential interactions is W{x - y) = K6{X - y). This leads to the Gross-Pitaevsku 
(GP) [2, 3] mean-field description: 

in^^=-^^^ + m?^ + v{x)^. (5) 

where /? = (iV - 1)K reflects whether the interaction is repulsive {^ > 0) or attractive (/3 < 0). 
Although the Gross-Pitaevskii description is commonly accepted as the mean-field description for 
BECs, the assumption on the interaction potential W{x - y) is difficult to justify physically and 
restricts the validity of Eq. (5). The considerations leading to Eqs. (4) and (5) are well known. 
They are included here since one of our aims is to emphasize the differences between two mean-field 
theories: one for which the interaction potential is given by a delta function, and one for which 
we assume arbitrary pairwise interactions. The limited validity of the GP equation leads us to 
reconsider Eq. (4), without imposing conditions on W{x — y). 

Although many BEC experiments rely solely on harmonic confinement to trap the condensate, 
we consider the situation of an external standing-fight wave potential within a confining potential [4, 
5]. This standing-light wave pattern is generated by the interference of two quasi-monochromatic 
lasers in a quasi-one-dimensional configuration. The rescaled governing mean-field evolution (4) in 
the quasi-one-dimensional regime is given by 

dxl)       1 aV 
I-     ~ R{x-y)\'>P{y,t)\^dy+V{x)i>. (6) 

-oo dt        2 dx"^ 

Here a = ±1 is the sign of the interaction potential W{x - y) at close range. Thus, a determines 
whether the close-range interaction is repulsive (a = 1), or attractive (a = -1). In other words, 
a = sign(o), where a is the s-wave scattering length of the atomic species. Depending on the 
species, a is either positive or negative, so that both signs of a = sign(a) are relevant for BEC 
applications. With these defintions, R{x - y) is the rescaled interaction potential, which is positive 
at close range and Jf^ R{z) dz = 1. The external potential which models the standing light wave 
is given by 

V{x) = Vos\n'^{kx) (7) 

where k determines the wavelength of the periodic potential. 
The nonlocal, nonlinear equation (6) with the periodic potential (7) admits a one-parameter 

family of exact solutions. These solutions are found using an amplitude-phase decomposition of 
the form 

tp{x,t) = r{x)exp[i6{x)—iut] . (8) 

Then r{x)^ = A sin^ x+B where B is a free parameter, A = -Vo/a/3i, tan(^) = i/l - Vo/aB/3i tan(fca;), 
u = {Vo + fc2)/2 + aB - Vb/2^1, and ,0i = /f^ R{z) cos{2kz)dz. This can be verified by direct 
substitution, using the addition formula for cos(2(j/ - x) + 2x) and the fact that R{x - y) is even. 
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Figure 1: Evolution of the exact solution for (a) local (a = 0) stable dynamics and (b) nonlocal 
(o-= 0.005) unstable dynamics. ; 

Note again that aside from eveness, no mathematical assumptions on the interaction potential 
R{% - y) were made in obtaining this family of exact solutions. The solutions to GP theory are 
e^ily recovered by letting R{z) = S{z) [5]. 

In experiments, only stable solutions are expected to be observable. Likewise, unstable solutions 
whose onset of mstabiUty occurs on a timescale beyond the lifetime of the experiment may be 
observed. Of primary concern in this work is the stability of the condensate under the influence of 
nonlocality. To explore this, we consider the simple interaction potential 

Rix-y) = 
%/2 '.Tra'' 

exp   - (x - yf 
2^2 (9) 

where <T determines the localization strength of the potential. In the Umit a ^ 0, tliis interaction 
potential reduces to the Dkac delta function leading to the GP equation. Thus the parameter a 
allows us to perturbatively explore the efiects of localization. 

LocaUzation has a critical effect on the stability of exact solutions. In particular, the nonlocal 
contribution destabilizes an otherwise stable local solution. Figure 1 iUustrates this phenomena 
by considermg exact, repulsive solutions to Eq. (6) for both local (<r = 0) and nonlocal {a 5^ 0) 
evolutions. The local evolution is observed to be stable under perturbation whereas the nonlocal 
evolution quickly destabilizes. This suggests that the nonlocal contribution in the repulsive con- 
densate results in a destabilization mechanism. Thus the simple GP mean-field approximation fails 
to capture a crucial aspect of the physical dynamics. Within the context of our model we explore 
the stability and dynamics of the condensate with the nonlocal contribution which is critical in 
determimng the experimentally realizable behavior of the condensate. 
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With the growing demand generated by the Internet there has been a growing interest in the use of all-optical 
switching and logic elements [1]. In this paper all-optical AND and XOR gates have been designed in a single 
device based on the Kerr-like non-linear effect in AlGaAs. The device is comprised of two different elements, a Y- 
junction and a nonlinear directional coupler connected as is shown in fig. 1. 

Cc8Ei> C^T" 

\  / 
Inputs 

Figure 1. Left: Wafer structure. Right: Optical Device. 

The device is based on an AlGaAs wafer with three layers with different concentrations of aluminium. The 
lower cladding has 24% of Al, which gives a refractive index of 3.3123 according to the Adachi method [2]. The 
guiding region has a concentration of 18% of Al and a refractive index of 3.3426. The upper cladding has the same 
composition as the first layer. These provide a light waveguide that confines the light in the 'y' direction. The 
physical thickness of the layers is 4.0 |xm, 1.5 \ixa and 1.0 ym respectively from bottom to top. This configuration 
gives a mono-mode waveguide for a wavelength of 1.55 Mm. The top layer presents rib waveguides to create the 
boundaries that give shape to the Y-junction and the directional coupler. In order to determine the core and cladding 
refractive indices (n^ = 3.3298, HO = 3.3255) the rib waveguide is analysed by the effective-index method [3]. The 
width of the rib (4.0 urn) is selected for a mono- mode waveguide for a TE polarisation. The Y-junction is used as a 
two input port device and the nonlinear directional coupler as a switching element. 

Non-linear directional couplers have been demonstrated to be good elements for switching [4]; this is a two 
parallel waveguide device with the same refractive index surrounded by lower refractive index material. It works as 
a coupled system in which a single light beam launched into one of its waveguides, called 'bar', is transferred to the 
second waveguide, called 'cross', at the coupling distance (Lc). When the power of the input beam is high enough to 
change the refractive index of the waveguide, (this due to the third order nonlinear effect n = n<, + n2l), the system is 
decoupled and the light transition is reduced or completely cancelled, consequently the light goes straight through 
the bar waveguide. In this way the switching operation is achieved [5]. 

In order to control the light intensity of the input beam, we use the Y-junction to combine two light beams in 
phase to create a beam of high intensity. In this way, the absence or presence of light in either one of the inputs or 
both, produce different outputs which are interpreted as the AND, (bar waveguide or port Y), and the XOR, (cross 
waveguide or port Z) logic operations. 

The whole device was simulated by the Beam Propagation Method (BPM) [6] and proved that the device 
makes two different logic operations. Figure 2 shows the device operation. 
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(a) Simulation of A = 1, B = 0, 
outputs Y = 0, Z = 1 

(b) Simulation of A = 0, B = 1, 
outputs Y = 0, Z = 1 

Figure 2. 

(c) Simulation of A = 1, B = 1, 
outputsY = l,Z = 0 

r  4. rt! v™ ' '1*''™°'' "T °°r'*°" ^ *°™ '"" ""^ *™« '=""»'« '"= '»»= "P'rations presented in table 
Jf tte SS fu:XS-tXr-" " ™"'-"-''>'' -^"^ ^«.« '^ P-""' «> --« -y Of .he input Signals 

Table 1. Logic operations made by the device. 

A B Y z 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

A B Y Z 
1 0 0 1 
1 1 1 0 

Y = AANDB 
Z=AXORB 

Y= B 
Z=NOTB 

i„d„f^*'*P"^^? ^u ^^ ?^- **'' P*"'*'^ *"* ^^'^"^^ *^** *^ «=°"Pl^S '^"gt'i is not the same due to the mitial phase induced inherently by the Y-junction. ^ 

h«« l^^ Y-junctioii has been used as a combinmg element mainly in Mach-Zehnder Interferometers. In this both 
branches contam light beams of the same amplitude and combine them with the same or different ph^e to modulate 
the   amplitude   of   the   output   beam.   In   the   all-optical   logic   gate   it   is   different   because   the 

™ If rT ^^   ™ f'y °''^ °^*^ ^'^P"* ^"" '"" *^° of *« fo«r possible input combinations. In these 
c^es, the hght expermients an abrupt change where the two branches join together and the width is doubled as 
there is no light m the other brmich to compensate the phase shift, it suffers a dramatic change in its phase and a new 
Zt« S' f . , ™r^« ^*1^ decreases the second mode spreads out of the waveguide, and the first mode 
bounces on the lateral boundaries causmg a beatmg in the light beam as shown in fig 3. 

le.o 

0.0 0.8 0.3 0.6 

z [mm] 

Figure 3. Light beating in the Y-junetion. 

l.O 
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This light bouncing affects the coupling distance of the coupler, preventing the achievement of an optimum 
design and performance. We will describe, in the future, different phase compensation techniques. One of those is to 
introduce a microprism in each one of the Y-junction arms just before the taper [7]. 

Conclusions: Although a light beating is introduced by the Y-junction, producing a slight shift in the coupling 
starting point, we have demonstrated the possibility of designing all-optical AND & XOR logic gates in a single 
device and also the possibility of using this as a NOT gate. 

This work is supported by CONACYT (the National Council for the Science and Technology of Mexico, LSS- 
135237). 
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Abstract:   Nonlinear beam shaping is observed in the far field of an intense resonant beam 
traversmg a sample of cold rubidium atoms. Numerical simulations indicate the significance of     : 
tlie dispersive action of neighboring lines. 
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The tremendous success of optical cooling and trapping technology make samples of cold atoms of fairly high 
optical density readily available. First experiments indicate that huge optical nonUnearities might exist in 
these sainples [1]. However, apparently not much work was done on effects of the optical nonlinearities on the 
spatial shape of the transmitted beam. Investigations on this subject appear to be particularly interesting 
smce the atoms might be forced to move in an altered spatial profile of an intense beam if they are cold 
enough (see e.g. to [2]). This might yield new self-organized states of the coupled light-matter system As a 
starting point we are investigating in this contribution beam shaping due to nonHnear beam propagation in 
a sample of cold rubidium atoms. F   F 5 ui 

In '"'"^^V^^f^^f^^^^^^f^ medium is a laser-cooled gas of Rubidium atoms (resonance wavelength 
A = 780 nm, hnewidth FWHM V = 6 MHz). The experimental setup has been described previously [31 We 
prepare our atomic sample by loading a magnet<>optical trap (MOT) from a dilute vapor of Rubidium 85 
atom (magnetic gradient VB «. 7G/cm, loading time tioai ^ 0.7sec). Six independent trapping beams are 
obtamed by sphttmg an initial laser beam slightly detuned to the red of the trapping transition (power per 
beam 30mW, beam FWHM diameter 2.8cm. Rubidium saturation intensity J,„, « 1.6mW/cm2 |« _3r) 
The repumper is obtained by two counterpropagating hmms from a free running diode laser tuned to the 

i^A transition of the D2 Hne. Fluorescence measurements yield N ^ IQS atoms corresponding to 
a spatial density n , «. 2 x 10^ cm'^ at the center of the cloud (gaussian proffle, FWHM diameter « 7nmi) 
The velocity distribution of the atoms in the trap has been measured by a time-of-flight technique to be 
Vrms ~ 10 Cm/s. 01 

To observe the transmission of the intense probe beam (linear polarization) we alternate a transmission 
measurement ph^e with a MOT preparation phase. During the transmission phase, the magnetic gradient 
the repumper and trapping beams of the MOT are switched off (residual power per trapping beam 0 2t,W) 
Ihe resonant optical thickness of the sample, measured by transmission of a very weak probe beam is 18 

rri     ■   ■ ^«-^l-^S'=''**™««° ^'^^ of setup. L lenses for adjusting beam parameters of input beam and far field imaging 
Ihe injected beam has a Gaussian profile and is focused in the cloud (beam radius 74Mm). The observation 
IS done m far field in the focal plane of a / = 300 mm lens by means of a charge-coupled device camera with 
a dynamic range of 14 bit. Data taking starts at 2 ms after the switch off of the trapping beams and the 
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CCD image is integrated over 100 /xs. 

Fig. 2 shows a sequence of images obtained for increasing input power if the input beam is tuned to the 
F=3—»-F'=4 transition of *^Rb. The difference between the transmitted beam after interaction with the 
cloud and the input beam without the cloud present is displayed. For low input power the beam is strongly 
absorbed. Correspondingly the transmission is reduced for small wave numbers (Fig. 2A). In the wings, at 
higher wave number there is already some indication for an enhancement of transmission indicating the 
onset of beam shaping effects. Increasing the power the areas with an enhancement of transmission move 
closer to the center (Fig. 2B) until there is actually an enhancement of transmission around zero wave 
number (Fig. 2C) For a saturation value of a few hundred the spatial Fourier spectrum of the transmitted 
beam is characterized by an enhancement in the center surrounded by a ring with reduced transmission. For 
the highest investigated power the ring starts to break up again (Fig. 2D). The origin of the intermediate 
symmetry breaking is not clear but is probably due to some astigmatism in the input beam. 

K K 

Fig. 2. Sequence of patterns obtained for increasing input power. Light grey denotes that the transmitted 
beam is less intense than the input beam, dark grey the opposite (denoting an enhancement via green to 
blue. Power levels: A) 6.9 /xW, B) 23 /iW, C) 92 fiW, D) 460 ^W. 

For the sequence of images displayed in Fig. 2 the total (i.e. the spatially integrated) transmission of the 
sample increases from 0.2 to nearly 1 (Fig. 3). If the enhancement of transmission occurs for zero wave 
number the transmission if greater than 0.9, i.e. the sample is strongly saturated. 

1,0 

0.8 

o   0,6 

0,2 

0        200      400      600      800     1000    1200    1400 

s (saturation parameter) 

Fig. 3. Total transmission of the Rb sample in dependence of the saturation parameter s. s is calculated for 
the electronic transition. The dashed line is the theoretical prediction. 
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Under the experimental conditions the optical nonlinearity is a complicated mixture of contributions arising 
trom electronic saturation, optical Zeeman pumping and hj-perfine pumping and the strength of the respective 
contributions are not clear, yet. Hence, for a first treatment, we restrict modeling to a rate equation describing 
a generic saturable nonlinearity. The stationary solution is given by 

where P denotes the pump rate proportional to the intensity of the light field, 7 the relevant relaxation rate 
and t« denotes a normahzed population difference. The stationary solution is used to determine the complex 
dielectric susceptibility x = XUn(l- w) which enters into the beam propagation code. 

For resonant excitation, i.e. allowing only for absorptive effects, numerical simulations yield beam shaping 
phenomena and the possibility of some small enhancement of transmission for some high wave numbers but 
no enhancement for the zero wave number. These results motivate the consideration of dispersive effects 
trom neighbonng hues as possible origin of the observed beam shaping. 

The closest line is the P=3^F'=3 transition, which is 120 MHz (about 20 homogeneous linewidth. FWHM) 
at the low frequency side of the P=3--F'=4-transition. Since the F=3^P'=4 is driven resonantly and is 
essentially saturated we neglect it in a first approximation and perform numerical simulations assuming a 
strong blue detuning of 20 Unewidths. It turns out that already for P « 7 one obtains an enhancement of 
transmission for zero wave number. This maximum is surrounded by a ring with a reduction of transmission 

^1% TaaT'l PT'^f ^"^ ^" '*"* '"^°"™* ^"^ ^^^ nonresonant transition should differ by a factor of 
aoout m = ibUO also the absolute power scaling is not unreasonable. 

To summarize we reported nonHnear beam shaping in a sample of called Rb atoms. The results indicate that 
one has to consider the contributions of several hyperfine transitions due the high light levels involved. 
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Abstract: We study the interaction between spatial solitons in weakly nonlocal Kerr materials. 
The weak nonlocality may reduce the interaction and cause in-phase soUtons to separate and 
out-of-phase solitons to attract. 
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Let us consider a phenomenological model of nonlocal nonhnear Kerr type media, in which the refractive 
index change An induced by a beam with intensity I{x, z) can be represented in general form as 

Rix'-x)Iix',z)dx', (1) 
-00 

where the positive (negative) sign corresponds to a focusing (defocusing) nonlinearity and x and z denote 
transverse and propagation coordinates, respectively. The real, localized, and symmetric function .(a;) is 
the response function of the nonlocal medium, whose width determines the degree of nonlocality. For a 
singular response, R(x) = S{x), the refractive index change becomes a local function of the light intensity, 
An(/) = H(x, z), i.e. the refractive index change at a given point is solely determined by the light intensity 
at that very point. With increasing width of R{x) the hght intensity in the vicinity of the point x also 
contributes to the index change at that point. In the limit of a highly nonlocal response Snyder and Mitchell 
showed that the beam evolution was described by the simple equation for a Unear harmonic oscillator [1]. The 
influence of nonlocality of the nonUnear response on the dynamics of beams was illustrated for the special 
logarithmic nonlinearity, which allows exact analytical treatment [2]. 

While Eq. (1) is a phenomenological model, it nevertheless describes several real physical situations. Possible 
physical mechanisms responsible for this type of nonlinear response includes various transport effects, such as 
heat conduction in materials with thermal nonUnearity [3,4, 5], diffusion of molecules or atoms accompanying 
nonlinear light propagation in atomic vapours [6], and drift and/or diffusion of photoexcited charges in 
photorefractive materials [7, 8]. Nonlocal effects have been considered in discrete nonlinear lattices where 
the excitation extended over few sites results in appearance of higher order dispersion terms in the continuum 
limit [14, 15]. A highly nonlocal nonUnearity of the form (1) has also been identified in plasmas [9, 10,11,12] 
and of many body interaction processes in the description of Bose-Einstein condensates [13]. 

Even though it is quite apparent in some physical situations that the nonlinear response in general is nonlocal 
(as in the case of thermal lensing), the nonlocal contribution to the refractive index change was often neglected 
[16,17]. This is justified if the spatial scale of the beam is large compared to the characteristic response length 
of the medium (given by the width of the response function). However, for very narrow beams the nonlocality 
can be of crucial importance and has to be taken into account. For instance, it has been shown theoretically 
that a weak nonlocal contribution arrests collapse (catastrophic self-focusing) of high power optical beams 
in a self-focusing medium and leads to the formation of stable 2D (diffracting in two transverse dimensions) 
solitons [11, 12, 18, 19]. On the other hand, a purely nonlocal nonlinearity leads to formation of so-called 
cusp solitons, which, however, are unstable [9]. 

Some of the consequences of nonlocality in the nonUnear response have been observed experimentally. Suter 
and Blasberg reported stabilization of 2D solitary beams in atomic vapors due to atomic diffusion, which 
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carries excitation away from the interaction region [6]. Also, the discrepancy between the theoretical model 
ot dark sohtons and that observed experhnentally in a medium with thermal nonlinearity has been associated 
with nonlocality of the nonlinearity [16,17]. We investigate the interaction of ID beams in a weakly nonlocal 
nonlinear media with response of the general form (1). We start with the paraxial wave equation describing 
propagation of a ID beam with envelope function ^ = ^(a;, z) and intensity J = /(« z) = \^{x z)f 

idzip + ^dli) + ^n(I)i} = 0. (2) 

For weak nonlocality, Fig. 1 (b), the response function Rix) is narrow compared to the extent of the beam, 

(a)     ^' R<x'-x) 

V 

(b)          r. R{x'-x) 

V 
Ox          X* Ox        .X' 

W              A^x'-x) 

I<x')/      |\|      ' 

/ft       \ 

/   I(x')| 

Ox         x* Ox           X' 

Pig. 1. Different degree of nonlocality. 
so we can expand J(ar', z) around the point x* = x to obtain 

where the nonlocality parameter 7 > 0 is given by 

7=5/     Rix)x^dx, 
^ J-00 

(3) 

(4) 

f/ ^'?f/%'^^ have assumed that the response function is normalized, JZ^Rix)dx = 1. Note that for 
U(x) - d(x), 7 = 0 and Eq. (3) describes the local Kerr nonlinearity. For weakly nonlocal meda 7 < 1- is a 

TiStio™*^'' ^"'*'*'*"*"S ^"f^)' 8i^«" ^y E^- (3)> into Eq. (2) gives the modified nonlinear Schrodinger 

»5^^+|e2^±(W'+7CW')# = o. (5) 

The weak nonlocality appears thus as a perturbation to the local nonlinear refractive index change This 
perturbation m of negative sign in the central part of a beam, where it serves to decrease the refractive index 
change. Hence, even for very narrow and sharp intensity distributions, the resulting self-induced waveguide 
will be wide and a smooth fimction of the transverse coordinates. 

The soUton mteraction behavior for local nonUnear r^ponce is well known to lead to attraction of in-phase 
«)litons and repelhng of solitons with phase difference equal to TT- out-of-phase soUtons. This behavior can 
be e3q>lained m terms of changes of the nonUnear refractive index. As it is seen from Fig. 2, in the case of 
tully local nonUnearity, the nonlinear refractive index, (1) is directly proportional to the total intensity of 
the two overlapmg solitom. This leads to bigger Fig.2 (a) or lower Fig. 2 (b) values of the refractive index 
for the re^on between the two solitons, than in the case if a single soliton propagation is assumed. This can 
explam why m-phase solitons attract, and out-of-phase repell. In order to change this by weak nonlocaUty 
the sign of the nonlocal parameter 7, should be properly chosen. The sign of the nonlocal contribution to 
the nonlmear refractive mdex, is determined by the sign of 7 and the sign of the derivative of the total field 
Ammg compensation of the attraction or repelling, 7 has to be negative for in-phase-soUton interactions and 
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positive for out-of-phase. In this way the nonlocality can compensate the increased or decreased nonlinear 
refractive index due to the soHton overlap. Fig. 2 reveals a possibility by chosing proper sign and value of the 
weak nonlocahty to find interesting properties of sohton interaction in nonlocal media. Reduced interaction 
due to thermal nonlocality was recently reported in [25]. In this case the decrease of interaction due to loss, 
should be carefully distinguished from the nonlocal nonlinear effect. 

Y=0     dot 
y= -^.1 dadi '■ 

y=-i) .2 dash-dot 

-5 -3 -1 . 3 6 r 
(a) X (b) 

Fig. 2. The total nonlinear refractive index   (3) for different values of 7 and in-pha.se (a) and out-of-pha.se 
solitons (b). 

1    Conclusion 

We have shown that due to weak nonlocality, one can change the nonlinear refractive index aming reduction 
of Kerr type soliton interaction. Further investigations will involve variational and numerical investigations. 
This work was supported by the Danish Technical Research Council (Grant no. 26-00-0355) and the Graduate 
School in Nonlinear Science (The Danish Research Agency). 
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Abstract:  We  study the processes  of formation of dark photovoltaic spatial soliton in 
photoefractive LimO.mTo waveguide. The 2-D distribution of the optical field is considered 
to deiine the nonlinear change of the refractive index 
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OCIS codes: (190.5330) Phrtorefiactive nonlinear optics 

1. Introduction 

Sel^action of Hght b^s in photorefi-active nonlinear waveguides can be observed at ve^^ small light power hi 
LiNb03 photovoltaic defocusmg nonlinearity leads to existence of dark spatial solitons which were observed both 
m bulk crystal and planar waveguide [2]. To determine the conditions of the soliton formation for different 
waveguide modes it is nessesery to take into account 2-dimentional distribution of optical field in guided layer 
In this report we define the parameters of input beams to propagate of solitons for diff^ent modes of the 
waveguide formed by sequential diffusion of titanium and iron in Z-cut of LiNbOj. 

2. Theory 

E{x,y,z,t)= Ejnz (2)^(^,j)exp(IAK,„JC - imt)^ c.c. , (i) 

where c.c. denotes the complex conjugate value, k = In/Xis a wave number, A is the wavelength for the free 

tSt\Z^ ^, T' ^"^T^' "" *' f' f""'^' '^^^'^^^ '°'^"'^' ^^'-y^ ^'^ ^-('^ "« *« «™Pl""de shape of a hjt team and tiie normalized cr^s distribution of an optical field in waveguide mode, respectively We assume 
that ordinary and extraordinary refractive indexes are dependent on transverse coordinate z, caused by impurit^! 
diffasion m the wavegmde substrate, and the nonlinear changes of ones have two components caused 4 electro- 

neix,y,z) = n,^ +M^,iz)+M^{x,y,z), 
(2) 

(3) 
^ere n^, and n^e are the refractive indexes of the substrate. 

The wave equation in paraxial approximation is descrited by: 

d^     2kn„ ay2 

where space-average nonlinear change of refractive index is 

A{x,y)= -ikM^(X,y)A{x,y) , (4)! 
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J El.{z)^neix,y,z)dz 

An^'(x,y)=^  (5) 

0 

In the waveguides formed by diflfiision of titanium and iron in LiNbOj the photovoltaic mechanism of 
photorefractive effect is predominant and photovoltaic current has only z component: 

jf=^,,iz)\A(x,y)fE„,(z), (6) 

where E„r is real fimction. The fact that the fiinction A(x,y) is more smooth then E„.(z) leads to charge distributes 
only along z-axis. So the -x- and.v- components of electric field are negligible, and the space charge field is: 

a^(z) + Bj,i(z)El,(z^A{x,y)\' 

in the case of TM modes. Here ^333 are the components of photovoltaic tensor, (J^ is the dark conductivity, and 

Bpi, is the photoconductivity coefficient. 

The charge carriers excited by light field are redistributed in a space due to the photovoltaic effect, and then 
they are trapped in dark regions by deep traps, that forms a space charge electric field Esc- This field modulates in 
Z-cut of LiNbOs crystal the extraordinary reiractive indices n^.s via the electro-optic effect; 

^fh=--nlr^iE,, , (8) 

where I'ss are the components of the electro-optic tensor. 
We calculate the distribution E^/z) for different modes, modeling the waveguide refractive index profile by 

dependence of «(z) = n^ +An ■ ch~^{z) . 

3. Results 

In the numerical calculations we have used the inequality (Td})^ph\-^i^>y)\    and the parameters of our 

LiNb03:Ti:Fe waveguide: P33 /Cj =3.1m/Afor TM6mode.   It is found that the necessary conditions for 

dark 
soliton formation are not only the width of a dark notch but also the forms and the width of input beam. Best 
results are for Gaussian or rectangular form of the input beam with half-intense width about 120 |im. The half- 
intense width dark notch is 10 |im. In Fig.l the propagation of Gaussian beam of half-intense width 120 ^m and 
width of dark notch 8 pm in crystal of 5 mm length is presented. 
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Fig, 1. Gaussianbeamofwidlh 120 ^mwithdaik notchof width Sjim. 

In the ex|»iments the planar wavepide formed in Z-cut of LiNbOs sample was used. The dimensions of the 
wafer were 16x20x3 mm along the X, Y and Z axes of the crystal, respectively. The waveguide was produced by 
dittusion of a 40-nm-thick vacuum-deposited titanium layer at lOOO^C during 6h in an air atmosphere The 
phooreiractive properties of this waveguide were enhanced using the additional Fe-difiiision from a film with 
thickne^ of-50 nm at the same diffusion conditions. This planar structure supports 7 TM modes at the 
wavelength A=0.63 |im that was used in the experiment. 

In conclusion, we have cmsidered the necessary conditions for formation dark solution in the waveguide 
formed by sequential diffi^ion of titanium and iron in Z-cut of LiNbOj. 

References 
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Abstract: We have observed the self-trapping of a laser beam in a liquid crystal thick 
sample. This propagation mode, which can be assimilated to a spatial soliton, is due 
to a thermally induced index change, especially strong for nematics. We show here 
that the non-locality of the thermal effect insures the stability of the soliton. 

Summarv: 

A few years ago, we have described the self-trapping of a narrow laser beam 
escaping from a single-mode fiber into a dye doped nematic liquid crystal (DDNLC) 
sample. We have shown that it was possible to obtain a stable 2D+1 spatial soliton on 
4 to 5 diffraction lengths in this medium. We have explained this effect by 
considering the strong thermal non-linearity exhibited by the LC when a small part 
of the laser beam was convert to heat by absorption by the dye (0.1% in weight in the 
LC)[1]. 

In the case of laser-heating induced refractive index change, the process may not be 
exactly described by an intensity-dependant refractive index change of the form 
An=n2l. This non-locality, commonly connected to the thermal diffusion process, has 
been predicted to stabilize spatial solitons [2]. We report here on experiments 
performed to estimate the non-locality of the photo-thermal non-linearity and to 
establish the link between this non-locality and the stability of the soliton. 
In order to measure the shape and the width of the thermally induced index profile 
by a laser beam, we have studied the interaction of two self-focused counter- 
propagating spatial solitons, parallel to each other (figure 1). We have obtained an 
experimental index profile, allowing to quantify the non-locality of the thermal 
effect giving rise to a spatial soliton. 

Figure 1:   Mutual interaction between 
cotmter-propagating self-trapped beams 

in nematic liquid crystal 
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In a second part, we report on experimental results concerning the tuning of the 
non-locality of the thermal effect. When the laser light is chopped (pulses about 1 
ms), the spatial soUton becomes unstable. M this case, we have also measured the 
index profile by the method of mutual deOexion of beams described previously and 
we have checked that this profile was narrower than in the CW case, revealing 
experimentally the link betweai non-locality and stability. We discuss tlien the 
possibility to use tunable non-locahty to induce strong self-waveguidine in DDNLC 
samples. 

Keywords: Spatial soliton, nematic Hquid crystals, non-locality 
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Abstract:   We investigate numerically the dynamics associated with the instabilities of multi- 
component spatial solitons in photorefractive media. The instabilities can lead to the formation 
of swinging structures, giving evidence of the oscillatory nature of the instabilities. 
© 2002 Optical Society of America 
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In the field of spatial optical solitons, vector solitons have recently attracted great interest [1]. Vector solitons 
consist of several mutually incoherent light beams - or components - that jointly induce a waveguide in a 
nonlinear medium, such that each of the light beams is an eigenmode of the waveguide. Thus the beams 
self-trap and propagate without changing their intensity profile. 

The main reason that makes vector solitons interesting is the fact that, in contrast to scalar solitons consisting 
only of a single light beam, some or even all of the components can be higher modes of the waveguide. Thus 
the structure of vector solitons can be quite complex, eventually exhibiting several maxima or points of zero 
intensity [2]. As a consequence of this complexity it is difficult to predict whether a given vector soli ton is 
stable or unstable [3], and in many cases it can only be determined by using numerical methods. 

In this paper we will be concerned with the instabilities of vector solitons consisting of a groundmode and 
two perpendicularly aligned dipole-modes. In order to obtain results that are suitable for an eventual exper- 
imental verification, we use a numerical model for our calculations, that describes the nonlinear properties 
of electrically biased photorefractive crystals very accurately. The propagation of the envelopes Ej{x,y,z) 
of the light beams is given in paraxial and slowly varying amplitunde approximation by: 

d,Ej --WlEj ^ nd,^Ej, (1) 

where 7 is a material constant giving the strength of the nonlinear effect of the crystal. 

The nonlinearity of the crystal is contained in the term d^^ on the right hand side, where $ is the electric 
potential inside the crystal, which is found to solve the equation [4]: 

V^^ + Vln{l + I)V^= Ee^tdx\n{l + I) (2) 

Here I{x,y,z) = T.j\Ej{x,y,z)\'^ is the total fight intensity and Eext is the strength of the electric field 
applied to the crystal. Furthermore we have chosen the coordinate system such that the x-axis is parallel to 
the externally applied electric field, and the z-axis points in the direction of propagation of the light beams. 
Equation (2) is both anisotropic and nonlocal. This has some important consequences on the propagation 
behaviour of light, that are confirmed by experiment [5]. 

To obtain solitary solutions to the propagation equation we make the ansatz: Ej{x, y, z) = aj{x, y) exp(iAjz). 
The Xj are the propagation constants of the single components. With the above ansatz the set of equations (1) 
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and (2) can be solved numerically by using a relaxation technique. The values chosen for the A,'s determine 
the powers P,- of the smgle light beams. Pig. 1 shows the power of the single components as a function of 

tjtTTr r^*f"*^ ^f f« f P<>1« in x-direction, while keeping the other two propagation constants 
toed In Fig 1(a) and (b) we also show two examples of the investigated vector solitons in a contour plot 
For all the pictures Aj = 0.20 and Aa = 0.13. In (a) A3 = 0.03 and in (b) A3 = 0.14. 
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H^'ftZ^'' examples of the investigated solitons and the dependence of the power of the single components 
on the propagation constants. P, stands for the power of the groundmod^beam, P^ for the dipJe in^ 
direction and Ps for the dipole in x-direction. i me uipoie in y 

It appears that stability properties of the soliton family depicted in Fig.l vary with the value of the propaga- 
tion constant A3. Under numerical propagation the sohtons with A3 < 0.06 were shown to be stable, whereas 
they become unstable for h^her A3. The effect of a weakly excited unstable mode on the propagation of a 
vector sohton can be described by the expression H   F s 

• ^3i^^V,z) = iaj(x,y) + 8{x,y)exp(0z))exp{iXjZ% (3) 

where the (positive) real part of ^ is the growth rate of the unstable mode. If the imaginary part of 3 # 0 
one speaks of an ^dilatory instability s      j F   t ui p ^ u 

For a A3 slightly above the onset of instability, we expect that the real part of/3 « 1 for all unstable modes 
which makes It easier to control the decay of the soliton by exciting one of the modes. In Fig. 2 we show 
the propagation of a soliton with the propagation constants Ai =0.2, Ag = 0.13 and A3 = 0 1 In order 
to see the effect of the unstable modes breaking the symmetry of the soliton with respect to the y-axis we 

Z^^r^rnt. fTl'fl **ri soliton solution by making the right beamlet of the Lrisoktal 
dipole 1% stronger and the left beamlet 1% weaker. In the pictures it can be seen that in the early stages of 
the propagation energy is transferred from one beamlet to the other and then back again, thus giving clear 
e^^dence of the oscillatory nature of the instability It is remarkable that the oscillations persist even in the 
later stages of the propagation, when the structure consisting of the gi'oundmode and the two dipote has 
disappeared and evolved into an elongated structure consisting of a triple-humped, a double-humped and a 
nodekss beam where the triple-humped beam has developed out of the horizontal dipole, one beamlet of 
which sphts m half. The motion of the elongated structure as it propagates reminds roughly of the swinging 
dynamics of a hnear 3-atom molecule, thus manifesting the particle-Uke properties of sohtons. We could 
observe two full oscillations of these swinging dynamics before the structure decays further. Recently a verv 
similar scenario could be observed in numerical calculations using a mathematical model representing a local 
and isotropic saturable nonhnearity [6]. i- e, » 

One factor that niight make it difficult to observe the above described instability and subsequent dynamics 
experimen ally IS the fact that it is not the only unstable mode of the soliton. In our calculates we oteerved 
the instability breaking the symmetry of the horizontal dipole always in combination with another instability 
breaking the syimnetry of the vertical dipole. 

For a slightly different kind of unstable propagation behaviour a very good apeement between theory and 
experiment can be observed. In Fig. 3(a-b) we demonstrate numerically found unstable propagation of the 

whTeir^rwt f 7''\ ^' 1°-'' ""^ ^^ = ^^ = °-l«- ^'S-^(^) «hows the stationary sollon solution 
while Fig.3(b) shows its structure after propagation over 5 diffraction lengths. It is evident that the instability 
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Fig. 2. The dynamics of the decay of a soliton with propagation constants Ai = 0.20, As = 0.13 and 
As = 0.10, that has been Initially perturbed in the component of the x-dipole. The upper row shows the 
total intensity, the lower row the intensity of the x-dipole. The number indicate the propagation distance in 
diffraction lengths. 

breaks the symmetry of the soHton and leads to its disintegration into a set of three beamlets that fly apart. 
Fig.3(c) shows experimental results obtained in a 20mm long electrically biased SBN-crystal. The upper row 
of (c) shows the result of the single components propagating through the crystal, the bottom row the result 
of a simultaneous propagation. It can be seen here as well that one of the beamlets of the horizontal dipole 
splits in half. But in contrast to the case of the solitons that evolve into an elongated swinging structure 
as described above, here the groundmode-beam isn't strong enough to hold the developing triple-humped 
structure together. Instead the groundmode-beam gets split as well and each of the three beamlets moving 
apart takes a bit of intensity of the groundmode. 
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(c) HI 1 B BH 
Fig. 3. The decay of a solitons into three beamlets that move away from each other: (a) shows a soliton 
with Ai = 0.25 and A2 = A3 = 0.16, (b) shows the result that is obtained when numerically propagating 
this soliton for 5 diffraction lengths, (c) experimental pictures: The upper row shows the result of the single 
components propagating through the crystal, the lower row shows the result of a simultaneous propagation 
of the three components. 

As the power of the fundamental mode (component) is rather weak, this instability scenario is very similar 
to that of a vector soliton consisting of only two orthogonal dipoles, discussed in Ref.[2]. In that case the 
instability also leads to a breakup of the soliton into a set of three beamlets flying apart.. 

In conclusion, we studied theoretically and experimentally the stability properties of three-component pho- 
torefractive spatial solitons. We found that although these solitons are rather robust they may develop 
symmetry breaking instabilities for parameters outside the stability domain. This instability often exhibits 
oscillatory behavior. Our numerical simulations showed that increasing the power of the fundamental com- 
ponent of the vector soliton can stabilize the solitons. 
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1. Introduction 

^*Ll£l? wave-vector mismatch value a whole family of quadratic spatial solitons exists. Each soliton family 
member has its unique spatial mtensity profile for both, the fundamental (FD) and the second-harmonic (SH) part 
[1,2]. For a positive wave-vector mismatch value one specific member of the correspondmg soliton family is 
evolvmg from each mput condition. However, the soliton formation is an increasing oscillatory process for input 
conditions with fiel^ that do not match the finally formed soliton fields. The oscillatory soliton formation procelsl 
nrt directly correlated to the diffraction length of the input beam and it may take tens, tondreds or even SSI of 

^MZ^""^" ^°' *' 'T^ *" ''"I' '°^"' "* '^^ '^'' ° ^°"t°««- Therefore, in order to characterize quadml 
SSm It 1  °f^^^^^^ "^ Tt^^^' °^^"***' ''"Sths it is advisable to prevent the transient oscillations of the 
;,ff?o ^TS ^ the sohton with the correct power, beam width and phase of both of its components, the FD and 
the SH. This IS especially important when the beam evolution inside the sample is not observable (low scatterme or 
sample housed m m oven) and the soliton observation is restricted to a measurement of the input and output beams 
solon! ' "''" ^^"^ oscillations inside the sample, not every naLw outpuispotTa 

Here we report on the excitation of different wide ID quadratic solitons for different positive phase-mismatch 
nrilL'lifth'"''^?^ T^ '^^'^Tu"?'*' '^* waveguides and the quantitative measurement of the mtensity 
profiles of their FD and SH part. The SH part of the soliton was generated in a specially designed 1-cm-long OPM 
region with a non-untfomi distribution of the QPM period at the waveguide beginning. This SH seeder worte well 
ISr ItT 'Iff 1?°''*'^^ wave-vector mismatch values and powere. With a laser pulse-duration for which the 
SHG walk-off length is comparable to the sample length the interpretation of FD and SH intensity patterns measured 
at ae waveguide ou|ut only may mislead. Spatially resolved measurements of the spectra of the FD and the SH 
™ f S f^- ^lk«t°^f non-soliton SH radiation and the soliton-part SH. Within the 20% measurement 
accuracy of the mtensity profiles good agreement between experimental observation and theoretical description was 

2. Samples and experimental conditions 

SlttT"^°f ^;?J'*''""' °*'**'^*^ *^'^'*^' a planar waveguide was fabricated by m-diffusion of a 70-mn-thick 
titanium %er for 8.5 hours at a temperature of lOeO'C. For phase-matching SHG between the FD and the SH TMo 
Snfntlf ^^ rr^ was wntten in the sample by electric field polmg with an effective periodicity growing 
smoothty m the first cm of the sample from 17.4800 pm to 17.6333 m and keeping its value comtant over t£ te 4 
mmJfW^i Tl»e t^orre^ondmg calculated phase-matchmg wavelength distribution along the sample is shown 
m Fig. 1. With non-colmear SHG m two crossed beams the local phase-matching wavelength was measured with a 
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cw wavelength-tunable laser diode. The comparison of results of these measurements with the theoretically expected 
values in Fig. 1 is evidence for a very well fabricated QPM grating. The decreasing phase-matching wavelength at 
the sample end is due to a temperature drop of a few degree at the oven end. The measured tuning curves are very 
well reproduced by theory with the actual measured phase-mismatch profile taken into account. Because 
measurements even at mW excitation power level were not reproducible at room temperature in every detail the 
sample was heated in an oven to prevent index inhomogeneities due to the photorefractive and pyroelectric effects. 
Above sample temperatures of 150''C neither photorefractivity nor pyroelectricity was observed. 
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Fig. 1. Left: Phase-matching wavelength in a non-uniform QPM grating. Experimental values are measured at a sample 
tenperatures of 100 and leS'C. Theoretical values are corrected for +4.5 nm due to uncertainties in temperature-dependent 

Sellmeier equations and waveguide characteristics. Right: Measured and calculated SHG tuning curve with measured 
phase-mismatch profile. 

The high-power measurements were performed with a NaCl color center laser with 8.5-ps-long transform limited 
pulses with a repetition rate of 76 MHz and up to 200 mW average power. The wavelength is tunable between 1400 
and 1650 nm. For a further reduction of the average power a 1:20 chopper was used. The input beam was shaped 
with cylindrical lenses and focused with a lOX microscope objective onto the input surface of the waveguide. The 
output surface was imaged with a 5X microscope objective onto a vidicon camera. The video camera was carefully 
linearized and scaled for absolute power measurements. Additionally FD input and FD and SH output powers were 
measured with power meters. The wave-vector mismatch was adjusted with temperature varying between 180 and 
235°C. All high-power measurements were done at a fixed wavelength of 1587.8 nm. 

3. Output beam width versus power 

For different wave-vector mismatch values at temperatures between 180 and 235°C we launched gaussian beams 
with beam waists between 60 and 150 jim with the waist position exactly at the waveguide input. The output beam 
was monitored and its full width at half maximum (FWHM) is plotted versus the pulse peak input power. 

I 

Peak Input Power [W] 

Fig.2 . Output beam width versus power for different wave-vector mismatch Apt in units of ?t. The vertical lines show the 
input beam width and the low power diffracted output beam width. 
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We verified that the output beam width narrows smoothly from its low power diffracted beam width to a value that 
IS equal to the mput beam width for higher power. Fig. 2 shows typical results for a 100 jun wide input beam. The 
power for which the width of the output beam becomes for the first time equal to that of the input beam k the correct 
^r'/^u u^ P^'^P^f *f» °f a soliton with this width. Numerical simulations confirm that the beam at this power is 

Sosest ^.emll,'^ Jn "^"Tf- f""®"' °^ I' ^'""'''^ P'^^'^" ^^°"« *« propagation and therefore the one that 
wSi^^T K , °' ^?"' P^^"" *' °"*"* "^^y '^^"■"^ «^«« °^o^e (dependent on the input beam 
width) bu the beam is strongly oscillatory and does not settle down to a narrower soliton in the 5-cm-sample leneth 
The simulation also confinm that the SHG generator in the chfrpedQPM region works well. ' 
4. Soliton families 

Fig.3 shows K) and SH intensity profiles of those members with a 100 ^m wide FD beam of 3 different soliton 
families. For the rebtively large wave-vector mismatch of 8.1,1 the soliton evolves from an input beam with 115 W 
peak power. The SH beani profile is proportional to the square of the FD beam profile and the power ratio between 
FD and SH component is 99:1. The soliton at 20SX is therefore clearly a quadratic soliton in the "Kerr limit" of the 
nfS w Tf SSf 1x5'°''''° phase-matching at aOg-C (ApL=4.1,i) the soliton evolves at the lower peak power 
of 85 W. The ro to SH power ratio is 97:3. This is still a "Kerr-Uke" soliton with only -3% of the power in the SH 

tte "S fS II^H " rt^ '^^^\^'^Vno^ *" f.^"''" °^*^ ^ P^°*"^l« "dicating a small deviation from the Kerr-lmiit . Vety close to phase-matchmg aiO'C a soliton-like beam forms at only 55 W peak input power with 
a power ratio of FD to SH of 73:27. The SH carries already -27% of the total power. The sl TdThe TO 

Seff-Snir ^ ' *"^ ^ ^"^^'**'*' '""*''" ^''^ "' ""'*1"^ P™P®"*^' ^^''^ '^^o* ^ studied in 
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Fig. 3   FD and SH intemsity proffles of different soliton members with the same width of 100 um for the ro n^ 
second TOW the normalized FD and the SH are centred, the square oftheFD is also shown. 

mmtlT^!t^f^T^f^^, P"*^? ^^^'^^ ^'^^ ^ ^"'^ *" S" "« *''°^»y *=°"^Pa^«d With cw-calculations Of 
solitom of different families. For large phase-mismatch values the agreement is very good while for smaller phase- 
mismatch some SHwalks-off. This non-sohton SH and the SH soliton part are nrt distmguisLblet^he camera 
picture which disturbs the SH profile measurement. Measurements of the FD and SH specte o?tte fu put bSms 
help to separate the two SH parts. For large wave-vector mismatch values the SH spectnim correspond to the TO 
spectrum and walk-off is negligible. Closer to phase-matching new SH spectral components which do not belong to 
te quadratic soliton arise due to intra-spectral SHG and the SH output beam is a mixture of soliton and radiafion 
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Internal oscillations of (2+1) dimensional fundamental solitons in a saturable nonlinear medium 
is studied. Internal modes both with and without angular dependence are discovered. The effect 
of angle-dependent internal modes on the soliton visually appears as a rotation of the perturbed 
soliton.   OCIS codes: 190.0190, 190.5530 

Spatial solitons are under intensive study these days 
due to their novel physics as well as application poten- 
tials. In a saturable nonlinear medium, fundamental 
solitons are linearly stable in any spatial dimension^ . 
Interaction aild collision of fundamental solitons in a sat- 
urable medium have also been studied to some extent^. 
There is also a large body of work on vector solitons in 
saturable media. 

Internal oscillations of stable solitons are important for 
at least two reasons. The first reason is to understand 
long-time dynamics of solution behaviors. It is known 
that the solution generally relaxes onto fundamental soli- 
tons with oscillations plus some radiation. Thus this 
oscillating fundamental-soliton state needs detailed ex- 
amination. The second reason is to understand collision 
dynamics of fundamental solitons. If robust internal os- 
cillations exist, solitons during collision can temporarily 
store some of the translational energy in these internal 
oscillations, and retrieve this energy after the collision. 
This energy exchange mechanism can induce very com- 
plex collision structures such as window sequences and 
even fractal structures^. So far, the only piece of work 
on internal oscillations of solitons in a saturable medium 
is by Rosanov, et al."* for (3-M) dimensions. Even that 
work is not complete as only radially-symmetric inter- 
nal modes were examined in detail. In fact, radially- 
asymmetric internal modes also abound, and they can 
induce more interesting evolution dynamics to the un- 
derlying soliton, as we will see later in this paper. 

Here we comprehensively study internal oscillations of 
(2-1-1) dimensional fundamental solitons in a saturable 
medium. We show that both radially-symmetric and 
angle-dependent internal modes exist at high soliton 
powers. Internal oscillations induced by these inter- 
nal modes are very robust. Furthermore, when angle- 
dependent internal modes are excited, the visual effect 
is that the perturbed soliton is rotating. 

The model for (2-M) dimensional solitons in an 
isotropic saturable nonlinear medium is 

iU,-hA±U 
U 

l + \U\^ 0, (1) 

where U is the complex amplitude of the light beam, z 
is the propagation distance, and Ai is the transverse 

Laplacian (all quantities are non-dimensionalized). Fun- 
damental solitons in this system are of the form 

[/(r,(9,^) = ^r)e''^^ (2) 

where (r, 0) are the polar coordinates in the transverse 
plane, ui is the soliton frequency, and function u{r) is 
single-humped (bell-shaped). The equation for u(r) is 

1 
+ -Mr 

r 
■ uiu — 

l + v^ 
= 0, (3) 

with the vanishing boundary condition u —^ 0 as r —^ oo. 
It is also obvious from Eq. (3) that Ur at r = 0 must be 0. 
These fundamental solitons are very easy to determine 
by numerical methods (such as shooting). It turns out 
that physically meaningful solutions (with finite mass) 
exist only when -1 < w < 0. The solution at u) — -0.1 
is shown in Fig. 1. 

Next, we investigate the internal modes of fundamen- 
tal solitons. Internal modes are discrete eigenfunctions 
of the linearization operator linearized around the soli- 
ton. To determine these modes, we write the perturbed 
soliton solution as 

U{r, e, z) = e'"^ {«(r) -|- ^„(r)€'<'^+"'" + ' '•'n{r)e-'^'' 
z + ne)\ 

(4) 

where u{r) is a fundamental soliton, {<pn,'<Pn) are small 
perturbations, A is the eigenvalue, n is an integer rep- 
resenting the angle dependence of the disturbance, and 
"*" represents complex conjugation. When Eq. (4) is 
substituted into (1) and higher order terms in <^„ and 
i^n dropped, the eigenvalue problem is 

1 / n' 
l>nrr + -<f>nr—\ i^ + ^-\ 7 +  /i    ,      2\2 r \ r^      (l-\-u^y 

1 
(t>n + (1 + n^y :i>n - 0, 

(5) 

^nrr + -V'nr- I U. - A + ;j:^ + ^^ _^ ^^y l/'n + 
(1 + V? 

jK =0. 

(6) 

It is easy to check that the square of the above lineariza- 
tion operator is self-adjoint, thus the discrete eigenvalue 
A is either purely real (internal mode), or purely imagi- 
nary (unstable mode). As fundamental solitons are sta- 
ble, purely imaginary eigenvalues of this operator can 
not exist, but internal modes do. 
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In the following, we exhaustively search for all internal 
modes (purely real eigenvalues A) of fundamental soli- 
tons. In such cases, eigenfunctions ip„ and ^„ are both 
real. The boundary conditions for these internal modes 
are : 

#Or(r = 0) = ^Or(r - 0) = 0, 0, (7) 

^„(r = 0) = #„(r = 0) = 0,    n#0, (8) 

and i)„ -f 0, <Pn ^0, r-* oo. When -1 < t4) < 0 and 
r > 1, both equations (5) and (6) become a modified 
Bessel equation whose solutions are 

(9) 

(10) 

where /i is a real parameter. Our strategy for finding all 
internal modes is the following. At each integer n, we 
make a large parameter mesh in the two-dimensional h 
and A plane. At each {h, A) mesh point, we numerically 
integrate Eqs. (5) and (6) starting from a large r value 
to zero. Due to the boundary conditions (7) and (8), at 
each n, we check if the target functions ^or(r = 0) and 
i>Or(r = 0) (for n = 0) or <f>„(r = 0) and #„(r = 0) (for 
n ^ 0)'s zero-level curves in the (^,A) plane intersect or 
not. If they do, then the intersection gives an internal 
mode. If not, then no internal modes at that u and n 
values exist. After an intersection for internal modes is 
found, we then use the shooting method to determine 
this internal mode to very high accuracy. 

Carrying out this strategy, we have discovered that 
both radially-symmetric (n = 0) and angle-dependent 
(n ^ 0) internal modes exist. For example, at w = -0.1, 
internal modes with n = 0 and 2 are shown in Fig. 2.' 
Internal modes with n = 1 and 3 are also found but 
not shown. We have also traced the entire families of 
internal modes by varying frequency w. The eigfenvalues 
of these internal-mode families with n = 0,1,2 and 3 
are summarized in Fig. 3. Internal modes at higher n 
values were also discovered, but they are very close to the 
continuous spectrum, thus will not be considered. Three 
features of internal modes in Fig. 3 are noted below. 
The first one is that internal modes with n = 0 and 2 are 
farthest from the continuous spectrum. Thus radiation 
damping of such modes should be the slowest. In other 
words, internal oscillations caused by such modes should 
be most robust. The second feature is that internal-mode 
eigenvalues go to zero when u approaches 0~. Note that 
the power of fundamental solitons increases with w, we 
see that internal oscillations of high-power solitons are 
more robust. The third feature is that these internal 
modes disappear when the soliton power is low. 

Next, we numerically study the dynamics of funda- 
mental solitons under the perturbation of these internal 

modes. We just consider internal oscillations induced by 
modes n = 0 and 2, as those oscillations are most robust 
(see text above). First, we examine internal oscillations 
caused by the n = 0 mode which is radially symmetric. 
For simplicity, we take our initial condition as 

£/(r,#,2r=0) = (l + e)«(r,w). (11) 

which is radially symmetric. Here e < 1 is a constant 
perturbation parameter. Obviously, this initial condition 
will only excite the radially-symmetric internal mode of 
n = 0 (and some radiation). Starting from this initial 
condition, we have simulated the original equation (1). 
The simulation results with c = 0.2 are displayed in Fig. 
4. We see that indeed, a very robust amplitude oscil- 
lation is excited. This oscillation frequency is approxi- 
mately 0.2, which is close to the n = 0 internal-mode fre- 
quency (which is 0.2187). To examine radiation damping 
of these oscillations, we show the radial solution profile 
|l7(r)| at three distances in the right panel of Fig. 4. 
Remarkably, the radiation emission from these internal 
oscillations is extremely small (almost invisible). Thus, 
we can expect these oscillations to last for a very long 
distance. This finding is consistent with that for (3-H)D 
solitons*. 

Below, we examine internal oscillations caused by the 
n = 2 mode. Here we take the initial condition as a 
superposition of the fundamental soliton and the n = 2 
internal-mode perturbation, i.e., 

U(r, 0, e = 0) = «(r, w) -|- e {#2(r)e^'* -|- Mr)^-^'^}    (12) 

according to equation (4). In this case, the solution is 
angle-dependent. Simulation of Eq. (1) starting from 
the above initial condition shows that the internal oscil- 
lation induced by the n = 2 mode is also very robust. In 
addition, the effect of this internal-mode perturbation is 
to prolong the fundamental soliton in one direction, and 
the evolution of this internal oscillation visually appears 
as a rotation of the perturbed state. To illustrate, we 
select w = -0.1 and e = 2 in the initial condition (12). 
The fundamental soliton and the internal-mode eigen- 
functions can be seen in Fig. 1 and Fig. 2(b). Note 
that since the amplitude of the fundamental soliton at 
w = -0.1 is about 10, thus e = 2 in Eq. (12) is still a 
small perturbation to the fundamental soliton. With this 
initial condition, the simulation results at five distances 
are displayed in Fig. 5. As we can see, the fundamental 
soliton under this n = 2 internal-mode perturbations ap- 
pears to rotate counter-clockwise. This is an interesting 
and distinctive visual feature of internal oscillations of 
solitons in (2-1-1) dimensions. 

In conclusion, we have investigated internal oscilla- 
tions of scalar (2-1-1) dimensional fundamental solitons 
in a saturable nonlinear medium. Internal modes both 
with and without angular dependence have been found. 
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Internal oscillations caused by these modes are very ro- 
bust. In addition, the internal oscillation caused by 
angle-dependent internal modes visually looks like the 
perturbed soliton is rotating. 
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Fig. 4. Evolution of the fundamental soliton with 
w = —0.1 under radially-symmetric perturbations. The ini- 
tial perturbed state is given by Eq. (11) where e = 0.2. 

z=0 Z=10.3 z=20.6 Z=30.9 z=41.2 

Fig. 1.     The fundamental soliton u{r) with w = —0.1. 

Fig. 2.      Internal modes of the u = —0.1 fundamental 
sohton at w = 0 and 2. 

1 w o 
TO 0.8 ■ 
c 

fee 
0) 

■D 
O0.4 

ro 
E0.2 
o *- c 

0 
-1 

Fig. 5. Evolution of the fundamental sohton with 
u> = —0.1 under n = 2 internal-mode perturbations. The 
initial perturbed state is given by Eq. (12) where f = 2. 
Here contour levels 1:1:10 of the solution \U{x,y,t)\ at five 
distances are shown. 
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Abstract: Wedemonstrateexperimentdlytheexistenceofsingle-componentmultihumpspatialsol^^^^ 
ma dye-doped nematic liquid crystal planar cell. The low absorption obtained at the working wavelength 
ot 890 ran allows us to observe soliton propagation over lengths in the centimeter ranee 

'   ©2002 Optical Society of America ° ' 

SC"!OMSIX'2OP1«"'^^^^^ 

Laser soliton beams have already been studied in a large variety of coniiguratioiB and materials for both their inn- 
damental mterest and their potential apphcations in light-controlled devices and, more particularly, in reconfigurable 
op ical interconnects. Among the nonlinear materials considered in the literature, liquid crystals have attracted only 
^^^m^^^^^^^^^^M^ilQ'to lO'l timesthenonlinearityofglasf.Thenonlinearitymliq- 
uid crystals (beside therma effects) is of reonentational nature, non local and strongly polarization dependent, which 
leads to a nch phenomenology that h^ yet to be investigated experimentally. After the pioneering work of Braun 

f r^l strong beam self-focusing has been demonstrated in nematic liquid crystals [1], several authors have 
Mgated the possibility to propagate soliton beams in this material either in cylindrical (capilaries) [2] or in planar 
^Tl ^ ^. ''' f*'' ^"'°*'°° ^^ ^^"^ **^°*"^ to the reduction of the thermal contribution to the nonlinearity 
and to the reduction of the required optical powers. Dye doping was used in Refs. [2] to enhance the reorientation^ 

norimeanty while the authors ofRef[3]resortedtoahybridfieldpolarizationtechnique.Inboththese works howev^ 
sohton propagation was observed only over short distances of the order of hundreds of micrometers. The situation has 
been improved sigmficantly in the work of Ref [4] by applying an external static electric field to the hquid crystal cell 

of the n^oMes from the light field m the nematic phase of the crystal (i.e.. to traverse the Fredericks transition) 
Ehmnation of the Frfedencks threshold therefore leads to a significant increase of the effective nonlinearity of the 
liqmd crystal, n this way so iton beams were observed with milliwatt powers over propagation distances of the order 
of the inilhmeter, which niakes hquid crystal solitons closer to apphcations. As regards applications, the authors of 

tto'colstote tte Sn       ^°'''™*^ *° ^'^^ ' *'"' ''^"'* ^^ ^'* ^^^ "™^ *° *' light-induced waveguide 

In wr communication we present the study of soliton propagation in nematic liquid crystals at near infrared wave- 
lengths, closer to the spectral regions of relevance to optical telecommunications. Our purpose is two-fold On the 
orie hand, consrdenng an applied viewpoint we show that soliton propagation lengths can be further increased at near 
ST4 T^ ^^ f ?^ °*^' ^""^ considering flmdamental aspects of soliton research, we demonstrate 

the existence of a new kind of optical soliton. The new soliton is composed of a self-guided higher-order mode in 
a way analog to the multimode (or multihump) vector solitons studied in Kerr-like materials. For their fundamental 
mterej. multimode vector solitons have attracted a great deal of attention these last few years [5,6]. In their standard 
form these solitons ar« composed of two components which is the reason why they are called vector solitor^ They 

themselves through self-and cross-phase modulations. It is the confining effect of the fundamental mode that allows 
for the confinement of the hrgher-order mode that in isolation can by no means be self-guided because of the natural 
repulsion existmg between its lobes of opposite phase. This phenomenology is due to the locality of the nonhnearity 
consKtered up to now for the study of higher-order mode solitons (in general, theory is developed for Kerr-like non- 
hneanties. satoting or not) [5]. In liquid crystals, however, the nonlinearity is fun^^ 
Kerr-hke nonlmeanty and, in particular, it is inherently non local. McLaughlin et at have predicted that, owing to 

the non-locahtyoftheirnonlmearity.Mquidciystals can sustain single-component higher-ordermode solitons [7] The 
existence of such solitons can be easily explained from the fact that, thanks to the nonlocality of the nonlinearity the 
multihump intensity distnbution of a higher-order mode induces a smooth guiding potential that is able to guide the 
mode rtself We present m our communication an experimental demonstration of the existence of such sohtons 
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Fig. 1. CCD camera images of (a) the diffracting beam and (b) the corresponding flindamental sohton beam obtained at a power 
of 3 mW with an initial width of 3 /xm and with an applied voltage of (a) 0 V and (b) 1.25 V. In (c) we plotted the intensity beam 
profiles extracted from image (b) at 0.205 cm, 0.365 cm and 0.476 cm. 

We Study soliton beam propagation in a planar cell of nematic liquid crystal in experimental conditions similar to 
those of Ref. [4] with some improvement. The E7 nematic liquid crystal is doped with methyl-red dye at a weight 
concentration of 0.8%. The doped liquid crystal is inserted by capillarity in a 75jum-thick planar cell made of two 
glass plates stuck together on the edges by ultra-violet hardening glue containing calibrated glass spacer balls. The 
inner faces of the glass plates are coated with indium-tin-oxyde layers that can be used as electrodes to apply the static 
electric field necessary to overcome the Fredericks threshold (Note that in practice the applied electric field is not 
static but oscillating at low frequency in order to avoid charge accumulation). The indium-tin-oxyde layer is covered 
by a thin layer of rubbed polyimide whose purpose is to align the molecules along the desirable (rubbed) direction. 
Additionally, this layer gives a pre-tilt angle of 2 degrees to favor homogenous molecular orientation and, in this way, 
to avoid crystal dislocations. Along one of its edges the cell is not closed by glue but by a thin glass plate placed and 
glued perpendicularly to the hquid crystal layer in order to provide a polarization preserving input window for the 
laser beam. A rubbed polyimide layer covers the inner face of the input window to reduce at best the inhomogeneities 
(dislocations) at the beginning of the laser beam propagation. These conditions provide us with a very high quality 
liquid crystal exhibiting a very strong non-thermal nonlinearity, which is ideal for the study of soliton propagation. 

Another significant improvement has been obtained by working in the near-infrared region where the absorption loss 
of the dye-doped liquid crystal is lower than in the visible wavelength range. Our laser source is a Ti:Sapphire laser 
operating at 890 nm. Our measurements showed that the absorption coefficient at this wavelength is of 0.5 cm "', 
which is half as large as its value measured at 633 nm (He-Ne laser). This improvement allows us to consider soliton 
propagation lengths in the centimeter range with milliwatt powers. 

The Ti:Sapphire laser beam is coUimated by a 20x microscope objective to a waist of xo = 3 /xm corresponding to 
a diffraction length of LD = kxl = 90 fim. A lOx microscope objective and a CCD camera are used to visualize 
the laser beam inside the cell thanks to the light scattered by the liquid crystal. Fig. 1 shows typical examples of 
beam propagation. Fig. 1(a) illustrates beam diifraction obtained at zero bias voltage (no self-guiding) while Fig. 1(b) 
shows soliton propagation with the same initial conditions, i.e, a power of 3 mW but with a 1 kHz ac bias voltage 
of 1.25 V. As can be seen, due to the reorientational nonlinearity the beam keeps its width up to half a centimeter of 
propagation. Such a long range self-confinement is possible, in spite of the loss, owing to the nonlinearity saturation. 
At high power, at the beginning of the propagation, the nonlinearity is saturated and the induced waveguide profile is 
almost insensitive to power variations. In this way, the induced waveguide keeps its shape unchanged until the power 
decreases and reaches to non-saturated regime of nonlinearity This process is clearly illustrated in Fig. 1 (c) that shows 
the beam intensity profiles measured at propagation distances of 0.205 cm, 0.365 cm and 0.476 cm. These profiles 
have been normalized so that their full-width-at-half-maximum (FWHM) can be easily compared, which allowed us 
to check that the beam FWHM is conserved over a distance in excess of half a centimeter. However, one can see 
in the long range profiles, the appearance of large noisy wings due to the progressive slackening of the nonlinearity 
saturation that induces gradual modifications of the induced waveguide profile. Note that a propagation distance of half 
a centimeter represents no fewer than 50 diffraction lengths. In the absence of bias voltage, this low-power self-guiding 
process does not occur because the Fredericks transition is not reached (Fig. 1(a)). This result is an indication of the 
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n^t n^^'^.'T^ T"^? °^ ^^ fl ^^""'^^ ^"^ "^^ ^^ ^' corresponding higher-orfer mode solitoti beam obtemed at a 
power of 2.25 mW and with an apphed voltage of (a) 0 V and (b) 1.25 V. 

negligible role of thermal nonlinearity in our experiment. 

Due to the quality of the liquid crystal cell, the effect of the inhomogeneous region close to the input window is min- 
inuzed and the transient propagation regime is strongly limited, as can be seen in Fig. 1. This provides us with ideal 
conditions forthe study of higher-order mode solitons. We studied the iirst-order mode soliton by generating the corre- 
^onding one-node antisymmetric transverse field distribution by means of a simple ^-phase step plate placed before 
the coUimatmg microscope objective. Fig. 2(a) shows the linear propagation of the antisymmetric field distribution 
Due to Its antisymmetric nature the beam undergoes a strong diffraction. As can be seen in Fig. 2(b), this diffraction 
can be compensated for by the reorientational nonlinearity of the hquid ciystal to form a single-component first-order 
mode sohton. In this example the beam power is 2.25 mW and the apphed voltage is 1.25 V. The rather long transient 
observed before the formation reveals that we did not optimize the initial condition as regards the beam width How- 
wer, aiter the transient, the double-hump beam propagates almost unchanged over more than 2 mm, which confims 
ttie existence of higher-order mode soliton in liquid crystals predicted in Ref [7]. 

In summaiy. by means of a high-quality liquid crystal cell based on several improvements (such as the inclusion of a 
pre-tilt angle at the cell boundaries to avoid dislocations at best) and by operating in the near-infrared spectral region 
for which liqmd ciystal losses are weaker, we have demonstrated soliton propagation over distances in the centimeter 
range with powers less than 3 milliwatts. These favorable experimental conditions aUowed us to propagate single- 
component higher-order mode solitons. As for multimode vector solitons in photorefractive media [8], this result 
could^be e^ily generahzed to the simultaneous self-guided propagation of several superimposed higher-order modes 
m order to pave the way towards the experimental realization of soliton beams made of incoherent hght in Hquid 
cry St Els, 
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Abstract: Light beam propagation in twisted nematic liquid crystal layer is analyzed 
theoretically. Reorientation nonlinearity induces self-focusing and moreover changes the 
direction of light beam propagation. It is worth to underline that creation of solitons and 
switching of their direction requires milliwats of light power. 

Nematic liquid crystal is an excellent medium for nonlinear optics with nonlinear phenomena 
arising from molecular reorientation or/and thermal effects [1,2]. Nematic liquid crystals are also 
very interesting media for optical spatial solitons creation. Experimental results demonstrated that 
light beams of only milliwats could be self-trapped at distances of a few millimeters [3]. Usually 
the planar or homeotropic texture in layer structures [4-5] and axial in capillaries [6-8] were used. 
In this paper twisted nematics configuration is analyzed. Light beam propagating in such medium 
diffracts and due to the structural anisotropy propagates at some angle to the direction of the 
input light [9-10]. 

Optical nonlinearity due to the 
reorientation process causes that for 
higher hght intensities the light beam is 
self-focused and additionally changes 
the direction of propagation. The light 
beam propagating in a layer filled with 
twisted nematic hquid crystal (see Fig.l) 

taken    into    consideration.    The 

X    I 

is 
electromagnetic field with dominating Ey 
component of the electric field is 
assumed. In nonlinear case the liquid 
crystal molecules are forced to reorient 
in the yz plane. This case is described by 
electrical permittivity tensor: 

"^^ twisted 
""   nematics 

a o e D o r^ 
Fig. 1 Schematic drawing of twisted 

nematic liquid crystal layer 
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where A£=e||-ex is an optical anisotropy, e,.=no^ is an ordinary and e||=«/ is an extraordinaiy 
electnc permittivity, and 0 is an orientation angle measured as an angle between the liquid ciystal 
molecules axis and the j;-axis. In this medium the Maxwell's equations for monochromatic 
electromagnetic waves have the form: 

kh„. + 

m. + 

d' e yy + ■ -+ 

d'  e 11    ''' 
.2   •   -S..2   •   -si +—-+—   ° +■ y^ 
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a^ e y^ 

dz'e. 
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ZZ    1 

ve„. 

jy -1 
e 

E.. 

Ey> 

(2) 

(3) 

where e^b are the components of the permittivity tensor (1) and ko=m/c is the wave vector. 

The distribution of the orientation angle 6 is calculated from the Euler-Lagrange equation in the 
torm considered for the twisted nematic liquid crystals [2]: 

d^e . ^^e    £nAe -+ 
<&'    dy^    4K. 22 

2£^£,cos2e-|^^f-|4f^in2e]=0, (12) 

where ^22 is an elastic constant corresponding to the twist deformation. In the absence of the 
electacal field, the onentation angle in twisted nematics is a linear fimction of jc co-ordinate- 
e«- 6(0)+ Ae xfd, where Ae<iti2. hi this work we assumed Ae=re/2 and two different boundary 
conditions: symmetrical with e(0)=-,^4 and e(d)=m, and asymmetrical with 0(O)=O and 

Fig.2 Light beam propagation in asymmetrical configuration of twisted nematics waveguide- (a) 
for the hnear case; (b)-(e) for increasing light power in the presence of nonhnear 
reonentation. 
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Propagation of light beam in twisted nematics was investigated by using the numerical Beam 
Propagation Method with the TE-polarized Gaussian beam in the input plane. Numerical results 
were calculated for liquid crystal layer with refractive indices «o=l -52 and «e=l -69 surrounded by 
glass plates with refractive index nc=1.45 and for the wavelength ?i=842 nm. 

In the symmetrical configuration light beam propagates in the center of the nematics layer 
because in this region the initial orientation creates the largest value of the refractive index. 
Reorientation of Hquid crystals increases refractive index in the middle of the layer and the light 
beam is self-focused. Light propagates along z-axis and its direction is not modified by 
reorientation nonlinearity. Different behavior is obtained in asymmetrical configuration. In the 
linear case the light beam propagates down in the xz plane (going to the larger value of the 
refractive index), and walk off in the yz plane (due to the structural anisofropy). Nonlinear 
reorientation changes the direction of beam propagation and induces self-focusing (of the beam). 
However, the nonlinearity in thick samples can lead to the unstable propagation. Stable self- 
trapped beams exist in the waveguide structure. Results presented in Fig.2 were obtained for 
waveguide of thickness d=5\im. The reorientation nonlinearity supports self-focusing and 
changes the direction of light beam but also can induce splitting the beam into two or more 
components propagating in different directions (as in Fig. 2e). 
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Abstract. We investigate photorefractive spatial soliton formation in iron-doped barium-calcium titanate 
In this matena with both photovoltaic and screening nonlinearity, we observe bright and dark spatial 
solitons, as well as the propagation of self-trapped bright rinp. 

Since the (iiscoveiy of photorefiactive spatial solitons [1,2], these non-difftacting beams have often been 
considered as components for the buildup of all-optical networks. Furthermore, in the last years the 
torefront of general soliton research has shifted to optics, in particular to various forms of spatial solitons 
Until now steady-state bnght spatial solitons have been observed in BTO [3], SBN [4] InP-Fe [5] KNbOJ 
[6], KLTN [7], and BaTiOa [8] ciystals. Barium-calcium titanate (BCT) [9,10] is a new promising 
photorefractive crystal and an alternative to BaTiOj. It is much easier to grow and does not have any phase 
transition within the temperature range from -120 °C to 100 °C. This ci^tal also has slightly larger 
electrooptic coeffic^nts r,3 ~ 20 pm/V and x^ ~ 130 pm/V compared to BaTiOa. m this contribution, we 
mvestigate photorefractive spatial soliton formation in kon-doped BCT. We observe, for the first time to 
our toiowledge the formation of bright and dark spatial solitons as well as the propagation of self-trapped 
bnght nngs m this material. ^ ^^ 

Samples of the congruently melting composition Bao,23Cao.77Ti03 have been grown in the crystal- 
growth laboratory m Osnabruck. The dimension of our sample that is doped with 290 ppm Fe is 5x5x5 
mm . On both faces normal to the c-axis of the ciystal, electrodes are prepared with silver paste The light 
propagates along the a-axis m our experiment. Depending on external parameteis, in our BCT ciystals sSf- 
tocusmg as well ^ self-defocusing can be achieved. This may fiirhter enable us to study the couphng 
between coupled ofdark and bright solitons in the same parameter ranee. 
Tu    .  ^^I *'?I**H ^^''^ ^ significant photovoltaic effect which leads to self-defocusing of light beams 
The strength of the photovoltaic nonlinearity can be scaled by changing the intensity of the input beam In 
a r^ent series of expenments we have shown that this mechanism leads to the formation of dark solitons 
m BCT see the figure below. Here a dark spot evolves in the center of the Gaussian input beam and 
propagates without spatial diffraction tbrniwh thf. ^^mpU 

Dark soliton formation in a BCT crystal. A: output 
beam on the crystal's endface directly after 
switching on the light beam (t = 0). B: output beam 
on the endface in the steady-state (t = 80 s). In the 
center of the beam a dark spot evolves that does not 
change its shape during propagation. No external 
electric field is applied to the sample. 
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At the same time self-focusing of a bright beam can be achieved in BCT by applying an external electric 
field parallel to the ferroelectric c-axis. Therefore, in this material both, bright and dark spatial solitons, can 
coexist in the same parameter range. An example is given in the figure below. For low intensity of the input 
beam (A), the drift of electrons in the external field ('screening') dominates while photovoltaic effects are 
small. Thus a single self-trapped beam (B) is observed at the output face of the sample. However, when the 
intensity is increased, self-defocusing dominates in the center part of the beam, and the Gaussian input 
profile evolves to a donut-like beam (C) of similar transverse dimension. By using samples of different 
length we proved that, after some distance from the input face with its purely Gaussian intensity profile, 
this beam propagates stable in the sample as a self-trapped beam. Such a beam might be regarded as a 
stationary state of coupled dark and bright spatial solitons. Furthermore, for slightly different experimental 
parameters also more complex beam shapes form spontaneously, e.g., the trefoil-like structure in (D), 

I surrounded by four bright i 

Soliton formation in a biased BCT crystal. A: input beam profile on the entrance face of the 5 mm-long sample. 
The beam width (FWHM) is about 12 |im. B: output beam profile for low input intensity (30 mW/cm^) with an 
appropriate electric field applied along the ferroelectric c-axis. C: output beam profile for higher input intensity. A 
donut-like beam with a dark spot in the center appears. D: For slightly different parameters than in C the donut 
breaks into a trefoil-like stracture. 

These first resuks indicate that the coexistence of dark and bright solitons is due to a different intensity 
dependence of the two involved mechanisms. Therefore, this effect may be used to create ensembles of 
dark and bright solitons in the same parameter range. Theoretical modelling of this type of combined 
photovoltaic and screening nonlinearity is currently in progress. 
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For sufficiently low temperatures, a Bose gas experiences a transition 
into a Bose-Einstein condensate, characterized by a macroscopic occupation 
of the ground state of the system. The development of efficient cooling and 
trapping techniques for neutral atoms led in 1995, to the first observation 
of BEC in dilute alkali gases in ^^Rb [1]. This remarkable achievement has 
been followed by BEC experiments in various other elements. The BEC has 
become during the last years, one of the most active and fruitful research 
areas of modern atomic physics, constituting an interdisciplinary field, which 
finks atomic physics with various other research areas, like quantum optics, 
condensed-matter physics, and very especially nonlinear physics. 

The BEC constitutes a macroscopically occupied matter wave, but con- 
trary to the traditional atom optics phenomena [2], which are basically 
single-particle, the BEC optics is, due to the atom-atom interactions, in- 
herently nonlinear, being called nonfinear atom optics (NLAO). In particu- 
lar, the BEC dynamics at very low temperatures is provided by a nonlinear 
Schrodinger equation (NLSE) with cubic nonlinearity: 

ih^^^P{f,t) = l-^V' + V{f^ + ^mf,t)\'^^ (1) 

also called Gross-Pitaevskii equation, where ip is the BEC wavefunction, V 
denotes an external potential, and m is the atomic mass. The interparticle 
interactions are described by the s-wave scattering length o. If o > 0 the 
interactions are repulsive and condensates with an arbitrary number of par- 
ticles may in principle be stable, resembling the case of defocusing nonlinear 
media in nonlinear optics (NLO). On the contrary spatially homogeneous 
condensates with a < 0 are absolutely unstable with regard to local col- 
lapses. The situation changes in the presence of a trapping potential, since 
for a number of particles below a critical value, the condensate is stabilized if 
the negative pressure caused by the interparticle attraction is compensated 
by the quantum pressure imposed by the trapping potential [3]. 
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Several remarkable experiments have been reported in NLAO, as four- 
wave mixing [4] of matter waves, the generation of dark-solitons in media 
with a> 0, and the observation of the condensate collapse in gases with 
a < 0. A dark soHton in BEC is a macroscopic excitation of the condensate, 
which is characterized by a local density minimum and a sharp phase gradient 
of the wavefunction at the position of the minimum. The shape of the dip 
does not change due to the balance between kinetic energy and repulsive 
atom-atom colHsions. These soHtons have been created in very elongated 
condensates by means of the so-called phase-imprinting method [5], which 
consists of applying a given phase to one part of the condensate, by shining an 
appropriate laser pulse on it. Apart from their creation, several other aspects 
of the solitoh physics in BEC have been recently investigated, in particular 
the dynamics, stabiUty and dissipation of solitons in very elongated but not 
ID geometries, and at finite temperature [6], Additionally, in the recent 
years, the development of trapping techniques has allowed the creation of 
multi-component condensates, formed by trapping atoms in different internal 
(electronic) states. The physics of multicomponent soMtons in BEC has been 
also recently discussed [8], and resembles recently observed phenomena in 
NLO [9]. 

The equivalent of the wave collapse studied in nonlinear physics, is pro- 
duced for gases with a < 0 with sufficiently large number of particles. Re- 
cently, new techniques have been developed to modify the value and sign of o 
by means of Feshbach resonances [10]. In particular, condensates with a > 0 
are created, and then the sign of a is reversed. After this change of a, the 
condensate undergoes an implosion (collapse) followed by the ejection of rela- 
tively hot atoms ("bose-nova"). This process can be understood by means of 
a NLSE with a quintic damping term [11], and resembles the analysis already 
performed in homogeneous systems in nonhnear physics [12], 

There are other scenarios in which the nonlinearity could lead to interest- 
ing phenomena in BEC. The recent success in creating ultra-cold molecular 
clouds opens fascinating prospects to achieve BEC in trapped gases of het- 
eronuclear molecules. In a sufficiently high electric field, these molecules 
interact via dipole-dipole interaction, and the equation which governs those 
systems is a NLSE as above, but with a nonlocal nonlinearity [13]. An- 
other system which attracts a growing interest concerns the mixtures between 
atomic and molecular condensates, where the equivalent of second harmonic 
generation can be obtained [14]. 
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Photopolymerizable resin is lately one of the most attractive materials for 

manufacturing optical microdevices and complex three-dimensional(3D) structures. We 

have been studying the photofabrication of 3D micro-nano structures with 

photopolymerizable resin for micro-nano photonic devices and micro-electromechanical 

systenK(MEMS). In this presentation, I will show several photqjolymerization processes 

and micro-nano fabrication method based on single-photon and two-photon absoiptions. 

First, a nonlinear process of single-photon photopolymerization is introduced. 

Figure 1(a) shows a polymerized micro-fiber structure, which is "self-grown" automatically 

when a laser beam is focused in photopolymerizable resin[l]. The photopolymerizabl 

resin used here is SCR-500, which is polymerized with single-photon absoiption by the 

irradiation of UV or blue light hi the experiment, we used a He-Cd laser (X = 441.6 nm) to 

polymerize the resin, hi the case of Fig. 1 (a), the average power of the input laser beam and 

the numerical aperture (NA) of focusing objective lens were 0.15 mW and 0.5, respectively. 

The length of the fiber mcreased in proportion to the exposure time and reached several 

hundred nm after 2 s, however, the diameter of the fiber kept a constant value of 3 jim. 

This self-growing phenomenon is caused by the increase of the refractive mdex of the resin 

by photopolymerization. hi the case of SCR-500 resin, the initial refractive index of 1.53 

increases to 1.55 with the polymerization reaction. Higher refractive index of polymerized 

resin formed locally from the focal point produces the self-focusing effect, and then, 

incident laser light propagates in form of spatial optical sohton, which gives rise to the 

micro-fiber structure.   When two laser beams are launched simultaneously in flie resin and 

e 
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two self-growing fibers are collided each other, the two fibers can merge to form a single 

fiber[2]. The merging occurs under the collision angle between the two fibers smaller than 

9°. We also observed the growth of multiple-fibers by choosing high NA and high power of 

incident laser beam [Fig. 1(b)]. These phenomena are applicable to microfabrication of 

optical waveguides and optical components[3]. 

Figure 1   Self-grown micro-fiber structure in photopolymerizable resin. 

(a)single fiber structure and (b)multiple fibers. 

Photopolymerization by two-photon absorption shows different property from that 

of    single-photon    photopolymerization. In    the    experiment    for    two-photon 

photopolymerization, laser beam of a Ti:Sapphire laser, whose wavelength and pulse width 

are 780 nm and 150 fs respectively, was tightly focused in the same resin used in the 

previous experiment[4,5]. The resin absorbs the UV and blue light, as mentioned before, 

but does not absorb the infi-ared hght by single-photon absorption. Only in a small volume 

at the center of the focus spot, the resin can be polymerized by two-photon absorption. As a 

result, the shape of the polymerized structure is a small 3D "dot" as shown in Fig. 2(a). 

The size of the polymerized volume can be smaller than the diffraction limit due to the 

quadratic dependence of two-photon absorption probability on the photon density[7]. 

Moreover, there is a threshold-type nonlinearity in photopolymerization reaction caused by 

reactive oxygen molecules and some other radical quenchers contained in the resin, which 

kill photo-induced radicals. So the photopolymerization occurs only at the light intensity 

exceeds a certain threshold. By tuning the input light intensity slightly above the threshold, 

a nano-dot of 120 nm diameter can be produced even though the wavelength of the laser 

light is 780 nm. 

By scanning the focus spot in the photopolymerizable resin in three dimensions, 

3D complex micro-nano structures can be fabricated.    After scanning the focus spot. 
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non-polymerized resin is removed by ethanol to get the 3D structures. Figure2(b) is a 

statue of a bull[4], and Fig. 2(c) is a micro-spring of 150 nm thick polymer wire[4,6]. The 

spring constant of the micro-spring is about lO'^ N/m, and the spring works m solution. 

Because of the capability of subwavelength and 3D fabrication, we have also been studying 

any other appMcation of two-photon process in opto-electronics[8] or biological field, such 

as 3D data storage, micro-nano surgery of biological cells, and so on. 

(a) 

120 mm 

Figure 2  SEM images of (a) a 3D dot with the size of 120 nm obtained with 

two-photon photopolymerization, and (b)a stetue of a bull and 

(c)micro spring, fabricated by scanning the focus spot in three dimensions. 
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Self-growth of micro-fiber structures and spatial optical soliton propagation based on 

single-photon photopolymerization, and nonlinear property of two-photon 

photopolymerizaiton which gives rise to three-dimensional microfabrication with 

sub-diflfraction hmit spatial resolution are introduced. 
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Abstract: Ultrahigh-speed aU-optical wavelength conversion has been demomtrated using a rare- 
earth doped crptal ^ a proof of principle. The observed switching time is two orders of 
magnitude shorter than the carrier lifetime for on-resonance transitions. This demonstration shows 
a brealrthrough m the Ti lunitation of current switchmg technologies. 
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1. Introduction 

..I,- J^® "J<=''easJng demand of information communications has been attracted in the study and development of 
comtiT 'P*f ^r'^'T ''""r'^' communications networks. To process mass data traffic Sfiber^plc 
communications optical mvelength converters are extremely important under the enviromnental condition of 
wavelength divjsion multiplexing. Of the most widely used methods in wavelength conversions are four-wave 
mixmg, crossjh^e modulation, and difference frequency generation.'-^-^ These methods, however, simply rely on 
rwl*?hTvTf •^'''^'^'' "'^ wavelength. In general the nonlinear coefficient for off-resonance tmnsilons 
Hnir^f tS . high drivmg source is needed. Another method of optical switchmg is using resonance frequency. 
fZT^^n^ t^^ Tf "" the resonant transitions is limited by the carrier lifetime or population relaxation 
time. To mcrea^ the switchmg speed, mtei^ubband transitioiB are also applied.* In the experimental demomtration 
of op ical switchmg usmg mtersubband transitions, however, the extmction ratio is not high, and the output power 

In this paper we present a new method based on dark resonance.^ The dark resonance is well known 
£^Hf °" "" t^ absorption is cancelled at line center due to destructive quantum interference. This 
absorption cancellation ,s called electromagnetically induced transparency (BIT) in optically dense media « 
Recently sunilar on-resonance wavelength convereion method was proposed by using BIT ^ The BIT based 
wavelength conversion is based on absorption cancellation so that the medium must be highly absoiptive to generate 
high extmction ratio. However, because of using transparency and absoiption difference, the mput power must be 
iTk ™1 saturation level. In our method, nondegenerate four-wave mixing processes a?e uL to enhSice 
dark resonance coherence. The conversion efficiency is highly efficient when the signal is weak owing to high 
pumping power.* Unlike the ref. 7. the wavelength converted signal can be amplified^ This amplSIn of le 
mput signal gives a great advantage to practical applications. 

2. Dark resonance based all-optical wavelength conversion 

Figure 1 shows a basic energy level diagram of an optical medium for dark resonance based all-optical 
wave ength conversion. In Fig. 1, cBz is an input signal to be switched and the m^ is a switched signal through 
wavelength conversion processes. The ©. m needed to create dark resonance with (D^, and (DP is a probe to detect the 
dark resonan^ The energy between input and output signal is AE. Thk type of nondegenerate four-wave mixing 
processes with dark resonance has been well studied theoretically and experimentally.^'''^:" A unique characteristic 
ot the dark resonance based nondegenerate four-wave mixing processes is the fact that the four-wave mixing 
generation m Fig 1 can be amplified owing to the energy transfer from the probe to the switched signal  The dark 
mSZ'!ir^ ^ f'^lu- ^""^'"^^ r*^®' t^°-Photoii coherence, when the lights are incident into the optical 
medium with an angle. This gratmg formation is as f^t as Rabi frequency applied. The decay tune of the dark 
resonan^ is also as fast as the two-photon coherence decay time, which is the phase ctecay time between the energy 
levels |1> and |2>. Here, it should be noted that the decay tune of the moving gratmg is a major factor to determine 
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the switching time in the four-wave mixing processes. Moreover, the phase decay time between |1> and |2> is 
independent of optical transition properties of |1>-|3> or |2>-|3>. Therefore, optical wavelength conversion based on 
dark resonance is independent of the optical population decay time. 

FIG. 1. Energy level diagram for wavelength conversion based on dark resonance enhanced nondegenerate four- 
wave mixing processes. 

3. Results 
Figure 2 shows an experimental results of the proposed idea based on Fig. 1 for three consecutive pulses. 

The obtained data in Fig. 2 is for wavelength converted signal (OD by using dark resonance enhanced nondegenerate 
four-wave mixing processes. Here, ©2 is an incoming signal to be switched. Each optical pulse width of the laser 
beams is 10 ^^s. As seen in Fig. 2, the switched signal follows the incoming modulation frequency of 100 kHz with 
modulation depth of 50%. The optical medium used in Fig. 2 is a rare-earth Pr''^ doped ¥28105 (PriYSO). The 
optical transition frequency of Pr:YSO is -606 nm, and the Ufetime for that transition is -200 ^is (relaxation rate 
r (=l/27cTi) is -1 kHz).'^ The switching bandwidth of the wavelength conversion processes in Fig. 2 is two orders 
of magnitude wider than the population relaxation rate of the optical medium of Pr:YSO. Therefore, the repetition 
rate of the optical switching for the wavelength conversion in Fig. 2 is a breakthrough in the Ti limitation of current 
on-resonance optical switching technologies that can never be shorter than the lifetime. 
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FIG. 2. All-optical switching: wavelength conversion. 
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n A /AI^'A^"*®"**^' applications of the present demonstration, III-V semiconductor quantum wells such as 
GaAs/AlGaAs are considered. In GaAs/AlGaAs multiple quantum wells, coherence between heavy holes (hh) and 
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Abstract 
A reorientational nonlocal nonlinearity governs 3D-spatial solitons in undoped nematic liquid crystals. 
We demonstrate solitons, their attraction and interlacing, outlining the role of nonlocality in time and in 
space, in agreement with a simple model. 
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Spatial solitons have been demonstrated in a variety of media exhibiting different kinds 
of nonlinearity, including Kerr, parametric and photorefractive responses.[l] Using 
planar cells with a voltage bias, we have recently demonstrated the generation and 
propagation of (2+1) dimensional optical spatial soHtons in undoped nematic liquid 
ciystals, taking advantage of their reorientational nonlinearity in the principal plane of a 
positive uniaxial.[2] Such solitons correspond to light trapping in actual bell-shaped 
refractive waveguides, both in the cases of coherent and partially incoherent 
excitations.[3] Therefore they are able to trap and guide co-polarized signals at 
different wavelengths and low powers, paving the way to all-optical interconnects and 
their reconfiguratioh,[4] 

Because of the spatially nonlocal response characteristic of the liquid-crystalline 
medium, these 3D solitons are stable and can undergo long-range interactions, i. e., they 
can interact even at separations exceeding their transverse extension. In fact, the 
refractive index perturbation -due to an intense beam and corresponding to a soliton- 
can diffuse from the excitation region and overlap with the index well of another soliton 
in its proximity, causing the two solitons to perturb and attract each other. 
Using the standard Frank's formalism and Maxwell equations, the initial stage of the 
mteraction of two identical solitons propagating along z is simply described by: 

m- d^A 
BA 

U(A) 

where m is a form parameter (the effective mass) dq)ending on the power of the 
solitons, and A is the norinalized distance between them. The interaction can be 
described by an attractive potential t/(A)=-e-^' irrespective of the solitons' relative 
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phase, as expected on the basis of an intuitive understanding of the nonlocality and its 

role. [5] 
A typical set of stationary results with Ar+ laser light at 514nm is reproduced in Fig. 1. 

0.1   0.2 0.3  0.4 0.5  0.6  0.7  0.8  0.9 

z[mnn] 

0    0.1   0.2 0.3 0.4  0.5 0.6 0.7  0.8  O.t 

z [mm] 

Figure 1 Attraction of two identical beams in a biased liquid crystal cell. The photos show green light 
propagating in the plane (y, z), after launching two Gaussian beams (10|jm waist) in z=0 with a 28|im y- 
separation and a 5° relative angle: (a) linear behavior; (b) weak attraction between solitons each of power 
2.8mW; (c) stronger attraction at 3.6mW; (d) crossing and interlacing at input powers of 4.5mW. 

A case of soliton-soliton attraction leading to complete interlacing is shown in Fig. 2, 
obtained for 3mW Gaussian beams launched in parallel and separated by 1 l^m at the 
input interface. Notice that the longitudinal period decreases as the solitons keep 
reducing their transverse momenta. 

Figure 2 Interlacing of 3mW solitons launched parallel to one another at 1 l^m separation in z=0. 

Furthermore, since the nonlinearity of the liquid crystal is relatively slow, this temporal 
nonlocality results into the evolution of pairs of solitons as they progress towards a 
steady-state. Snapshots of the real-time evolution of a typical interaction between 
identical solitons are displayed in Fig. 3. The two Gaussian inputs, initially diverging 
and diffracting (Fig. 3a), turn into diverging spatial solitons (Fig. 3b) and, after a few 
seconds, attract and fuse due to the collapse of the interlacing behavior (Fig. 3c). 

In conclusion, the specific nonlinear response of nematic liquid crystals features 
incoherent soliton interactions through nonlocality and reorientation, paving the way to 
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the realization of light controlled logic gates and all-optical guided-wave devices for 
signal processing/readdressing. 

r^^^^^ii (b) 

M=10s 

Figure 3   Interaction of two 3mW-spatial solitons launched in z=y=x=0 with a relative angle of 2 T in 

Stt'^ni?£ ITK?^^ ^°!!ff' *ff P°'^' f ^"'"'^ ^* ^'^^' W, Is (b) and 10s (c) after excitation. In (c) the sohtons, established m (b), collapse and merge for z > 0.6mni. 
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Abstract: We experimentally imestigated the non-planar interaction of two quadratic spatial 
solitary waves in a bulk crystal. We have obtained repulsion, fusion and spiraling by controlling 
tlie phase relationship between tlie input fields at the fundamental frequency and/or their direction. 
Influence of polarization imbalance, intensity and phase mismatch was observed. 
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1. Introduction 

In 1995 W. Tormellas et al. demonstrated experimentally the generation of a spatial soliton in a second order 
nonlinear media [1]. Interactions of multicolor spatial solitons have already been numerically and experimentally 
studied [2-8]. B. Bourliaguet et al. reported in 1998 experimental resuUs on the interaction between two 
two-dimensional quadratic spatial solitary waves with type II phase matching in a KTP crystal. They proved that 
solitons interact either in a quasi-elastic or in an inelastic fashion, depending on the velocity of the collision [2], 
Later on, G. Leo et al. investigated and demonstrated numerically the control of spatial solitary waves interactions in 
a collision sense, including the case of parallel input directions, through power imbalance. They obtained 
coalescence, steering, crossing or repulsion effects [7]. All the above results applied only to planar collisions (2D 
case). Actually, three-dimensional interactions between quadratic spatial solitons have been only theoretically 
studied either by numerical simulations or by analytical models [4-6]. In the most characteristic work V.V. Steblina 
et al. analyzed the three-dimensional interaction between two parametric solitons and predicted phase controlled 
non-planar beam switching in a bulk x^^^ medium, leading to soliton scattering, spiraling and fusion [5-6]. Analysis 
was based on an analytical model derived from a mechanical approach that provides a physical description of soliton 
collisions in terms of interacting effective particles. This behavior was in accordance with the one predicted by 
direct numerical resolution of the equations of propagation. 

In this communication we present, for the first time to our knowledge, experimental observations on non-planar 
interactions leading to scattering, fusion and spiraling of two solitary waves in a type II KTP crystal. All the 
phenomena were phase-controlled and repetitively observed. Moreover, we discuss the influence on the interaction 
of several experimental parameters such as phase mismatch, total iiput power and intensity imbalance between the 
ordinary and extraordinary components in each input beam, 

2. Experimental layout 

The experiments (Fig. 1) were performed with a 
Q-switched, mode-locked Nd:YAG laser which 
delivered 45ps pulses at 1064 nm. A Michelson- 
type interferometer with a polarization beam 
splitter cube as an input/output element split the 
fundamental beam in two separate beams with 
perpendicular polarizations. The distance 
between the beams and the relative orientation 
can be modified by the misalignment of one of 
the interferometer arms. Polarizing components 
served to adjust tlie total power as well as the 
intensity sharing between the two output beams 
which are then focused by means of a telescope 
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to 28 urn spots onto the entrance face of a 2cm long KTP crystal cut for Ij-pe IISHG. A half wa^^e plate adjusted the 

SL?T- f *' "f'"* f'f- ^ °*'" *° ^^^^ *^ ^^ ° phaJ^tching and generate it WeS« 
SrSjt fTf'.'" *' tr''^"' °^ *' *"'*^'"* "^^^ So A« t«'o quadratic spatial solitary wavS were 
excited with only tlie fundamental frequency components at the input of the ctystal. Two CCD camei^ connected to 
an unage acquisition system were used to record simultaneously and to analy^ the near- and far-field patterns of the 
beams after their propagation tlirough the nonlinear ci^^stal, A glass plate (PI) introduced in the trajertory of one of 
flie beanK al owed to changing the phase difference between the two input wa.^es. Phase mismatch was controlled 
by the ctystal onentation. Sp^ial attention must be given in the fact that in all tlie experiments presented here tlie 
hvo sohtaiy waves crossed tte nonlinear costal without overlapping. This clearly proves a three dimemionJ 
iniClaCtlOIl. 

3. Phase controlled interactions between quadratic spatial solitons 

The firet experiment was perfomed with the crystal oriented at exact phase matching for one of the two beams The 
angle beta^een the two incident waves at the input face of the nonlinear medium was set to 0.24= in the xOz plane 
and 0.81  m the yOz plane. This orientation corresponds to a pliase mismatch of 0.757t for the second beam. The 

separation distance between the two beanK on 
(b) .,..--. (a) 

Scattering Fusion 

Fig. 2: Output near field patterns (output face of the crystal) corresponding to 
the combination of 3 recordings: one with SI done, one with S2 alone, one 
with S1+S2 simultaneously launched into tlie crystal; (a) scattering, (b) fusion. 

the input face of tte ciystal was equal to 43nm 
in the Ox and Oy directiora. 

Under the above-mentioned condition, we 
have observed both attractive and repulsive 
effects according to the phase relationship 
between the two input beams. In the c^e of a 
repulsive interaction (Fig. 2(a)), the angular 
deviation of the solitons due to the mutual 
scattering was 0.22° (xOz plane) and 0.2° (yOz 
plane) for the soliton SI and O.P (xOz plane) 
and 0.006° (yOz plane) for the soliton S2. The 
increase of the total relative angular separation 
between the two soUtons was of 133% and 23% 
of the input angles in die xOz airi yOz planes 
respectively. A tilt of the plate PI modified the 
ph^e relatioiBhip between the two input beana 

(a) 
Scattering 

j .    , piBusc reiauoiBnip oeiween me two iirout tieatn*? 

^^S^If.t^Tt'^ "^^ f*''^'^°"' '^^*"S *° *^ '^^*°" °f ^ ^- ^"tons m^ il4eS pjation (Fig. 2(b)). A continuous tdt of the plate PI permits the repetitive transition between a repulsive interaction 
(scattenng) and an attective one (fusion). Once the phase difference was fixed, both phenomena (sc"g or 
fusion depending on the phase difference) were repetitively reproduced being stable on shot to shot. Moreover it 
appeared tlmt tte baiycentre of the two solitons moved during the interaction, breaking the coffision symmetn.' A 
similar phenomenon has been previously obseired by G. Leo and G. Assanto during nmnerical simulations of 2D 
collisions [8] and was attributed to tiie intensity imbalance and tiie presence of spatial walk-off. 

In a second step we have looked for the observation of spiraling interactions by slightly modifying tiie relative 
orientation of the incident beams. After adjustments, die angle betwL die two beaL IsIqZuToM^ le Sz 

(u\ P*™®  ^^  ^'^^°  "I  the  yOz  plane.   The 
^.\. separation distance of tiie two beams on tiie 

bpiralmg input face of tiie ciystal was equal to 39nm 
(j^z plane) and 25}im (yOz plane). The 
separation distance between the two solitons at 
the cross points in the nonlinear crystal was 
lOSjim in the Ox direction and 31nm in AK Oy 
duBctioa It is worthy of note that this new 
configuration is extremely close to tiie otte 
reported above. Similarly to the previous case, 
we obrerved botii repulsive and attractive 
behavior owing to the phase relationship 
between the two input waves. The repulsive 
interaction gave birth to a scattering effect timt 
created an angular deflection of 0.098° in die 
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Flg3: Output near field patterns (output face of tlie crystal) corresponding to 
the combination of 3 recordings: one with SI alone, one with S2 alone, one witli 
S1+S2 sinwltaneously launched into the crystal; (a) scattering, (b) spiraling. 



NLWB2-3 

xOz plane and 0.14° in the yOz plane for tlie soliton S1 and of 0.33° in the xOz plane and 0.16° in the yOz plane for 
the soliton S2 (Fig. 3(a)). On the otlier hand and in contrast with the previous configuration, tlie attractive interaction 
tliat was established when appropriately adjusting the phase difference between the input beams, gave birth to a 
spiraling between tlie two solitaiy waves (Fig. 3(b)). The deflection angles were two times larger than for tlie 
scattering effect (SI: 0.18° (xOz) and 0.58° (>'0z); S2: 0.94°(xOz) and 1.2° (yOz)). The spiraHng behavior was 
reproducible and stable on shot to shot. It is important to notice tliat the initial conditions leading to fusion or 
spiraling were very close to each other and the relative orientation between the two input beams was extremely 
critical. Few microns of translation of one of the two beams led to fusion between the solitons. Like previously, the 
collision symmetry was, in each case (spiraling and scattering), not conserved. 

Finally, we note that presented data concerning the modification of the soliton trajectories have been extracted 
from far-field recordings. These recordings confinn that beyond the change in output position of tlie two self- 
trapped beams, there were an actual change in propagation direction. 

4. Influence of several experimental parameters: Intensity, phase mismatch and polarization imbalance 

In a first step, we investigated the influence of the total input intensity on tlie collision. The input conditions 
(transverse positions and orientations of the two beams) were close to the previous situation. Tlie relative phase was 
adjusted so as a repulsive interaction between the sohtons was estabhshed. A simuhaneous and equal increase of the 
input intensities of the two beams did not modify the nature of tlie interaction, which remained repulsive. 
Nevertheless, the deflection angles of the sohtons were reduced in both planes. A similar dependence of the 
interaction strength on the total intensity of the beams has been numerically observed by G. Leo and G. Assanto [8] 
for the case of a 2D collision. They showed that the increase of input intensity' led to a self confinement of each 
soliton and a modification of tlie fiision position in the non Unear crystal. Tlie case of repulsive or attractive 3D 
collision has not been deah with. 

In a second step, we studied the behavior of the interaction when an intensitj' imbalance is introduced between 
the (e) and (o) components of each input fundamental beam. The total intensity', the direction and the position of 
each incident beam were unchanged. We recorded the positions of tlie two soUtary waves on the output face of the 
crystal versus the polarization imbalance (51= -62), which is defined by 5=(le-Io)/(Ie+Io), le and lo being the 
mtensity of the ordinary and extraordinaiy components in each incident fundamental frequency beam. We observed 
a continuous change of the positions of tiie two solitons in both planes. It was possible to change the nature of the 
interaction and to see the transition between repulsion and attraction. A similar behavior has previously been 
numerically predicted by G. Leo et al. in 1997 [7] in a bulk crystal for the case of a 2D colhsion. Finally, by 
modifying the overall phase mismatch we observed a transition between repulsive and attractive regimes. 

5. Conclusion 

We have experimentally investigated 3D mteractions between two quadratic solitons generated by a type II SHG in 
KTP ciystal. We showed that the nature of the collision can be attractive or repulsive according to tlie phase 
difference between the input fundamental beams. We determined the initial conditions, leading to fusion or 
spiralling of the solitons in the case of an attractive regime. The amplitude of spatial switcliing was measured in 
each case. We observed the non-conservation of the input symmetry in all experiments due to the presence of spatial 
walk off. The impact of soliton intensity', polarization imbalance and total phase mismatch was also invesrigated. 

Acknowledgments: We thank A. Sukhorukov and Y. Kivshar for fruitful discussions and for their encouragement to 
perform these experiments. 
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1    Introduction 

The theoretical prediction and experimental observation of the dipole-mode vector soliton (DMVS) in a 
saturable nonlinear medium (1, 2] has stimulated further investigations in the field of self-focusing of multi- 

h^r^'flT'^'f : ■^''?'" "^ ™l«-«omPonent solitary waves consist of mutually incoherent optical 
beams of Afferent geometries that jointly induce a multi-mode waveguide structure in which they propagate 
selt-consistently as eigenmodes. J t-   f &   ^ 

Among various possible configurations of beams with different geometries it is particularly the dipole-mode 
vector sohton that display a surprising robustness. It consists of a bell-shaped Gaussian beam and a double- 
tamped beam with a ir-phase shift across its transverse plane. It has been predicted on the basis of a model 
for an isotropic saturable nonlinearity [3]. However, the experimental investigations were carried out with a 
DC electric field-biased photorefractive Strontium Barium Niobate (SBN) crystal that exhibits an anisotropic 
and non- ocal refrac ive index modulation [1, 2], This anisotropy is of crucial importance for the generation 
of optical spatial sohtons since it breaks the symmetry of the system. As a consequence, all self-trapped 
optical beams exhibit no circular symmetric shape but an elliptical one in this particular medium. Recent 
mv^tigations [4, 5 have revealed that even in case of the anisotropic photorefractive model [61 DMVS can 
exist. Whereas m the isotropic model stable solutions exist for any arbitrary orientation of the dipole-mode 
beam, the anisotropic model allows only one specific kind of DMVS to be stable. This class of solutions is 
characterized by the orientation of the dipole-mode beam. In order to be stable the dipole axis has to point 
m the vertical direction, perpendicular to the appUed electric field. A second cla^ of solutions exists with 
the dipole axis pointing in the direction parallel to the electric field, but this was already shown to be of 
quasi-stationary t3^e [4]. 

2    Dipole-mode vector solitons displaying angular momentum 
Here, we investigate the dynamics of the DMVS in a more general way With the help of the spht-step 
HMvf T ^^ the appropriate equations [5, 6] numerically and demonstrate the evolution of the 
DMVS dunng propagation through the nonlinear material. When the dipole beam is launched at a certain 
angle with respect to the vector soliton's stable orientation, it starts to wobble around the vertical axis 
Here we give an experimental proof of this behaviour by recording the exit face of the the photorefractive 
crystal while changing the dipole beam's initial orientation. Figure 1 illustrates the result of our experimental 
investigations, a sketch and detailed description of the setup can be seen elsewhere fll. The top row deoicts 
the input mtemity distribution of the dipole component and the bottom row displays its corresponding 
intensity distribution after propagating simultaneously for 20 mm with a mutually incoherent Gaussian 
beam m the biased photorefractive crystal. As depicted in the frames (a)-(h) we successively rotate the 
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Fig. 1. Experimental results of the propagation (bottom row) of a DMVS for different initial orientations 
(top row). FVames (a)-(h) illustrate the scenarios for different input angles of the dipole-component. In all 
cases, the Gaussian component is present but not shown here. 

axis of the dipole clockwise at the input face of the crystal. When the crystal is not biased, its nonlinear 
effect almost vanishes, the two lobes diffract linearly, and no change in the dipole's orientation is detectable. 
In the nonlinear regime, when the external voltage is turned on (bottom row), the dipole beam becomes 
the constituent of a DMVS and rotates towards it's stable orientation along the vertical axis. The induced 
'angular momentum.' is so large that the dipole lobes even overshoot their stable vertical orientation while 
propagating and end up in a counterclockwise orientation at the exit face of the crystal. The effect becomes 
most distinct in Fig. 1(d) where the angle of rotation can be determined to almost 90°. As the dipole is 
turned further, the two lobes of the dipole align along the stable vertical axis which was referred to as a global 
minimum in [4]. In Fig. 1(h) finally, the two lobes are exactly horizontally aligned and represent a class of 
quasi-stationary solitary solutions. Nevertheless this state is unstable with respect to small perturbations, as 
can be seen from Fig. 1(g) where the initial orientation is tilted by an angle smaller than 2° (upper row). The 
dipole clearly rotates and ends up in its prefered vertical position (bottom row). Our experimental pictures 
underline clearly our numerical results. We would like to emphasize here, that this rotation occurs solely 
due to the anisotropic properties of the photorefractive nonlinearity. The two dipole lobes are 7r-out-of-phase 
and possess no initial 'transverse angular momentum' thut could stem from a screw-like phase distribution 
like the recently observed 'propeller soliton' [7]. The wobbling motion is somehow characteristic for soliton 
interaction in anisotropic medium and has been observed earlier for the case of a multi-humped optical beam 
derived from the decay of an optical vortex [8]. 

3    Vector soliton collisions 
The outstanding robustness of the DMVS motivates further investigations towards soliton collisions. In fact 
we will show that a DMVS even remains self-trapped when interacting strongly with a mutually coherent 
Gaussian beam. Since the composed light-structure remains in its entity it could be referred to as a m-olecule 
of light, a composite state of two simple beams, atoms of light. Again, we investigate this interaction numer- 
ically and experimentally. A typical experimental behavior is illustrated in Fig. 2. The frames (a)-(c) show 

Fig. 2. A Gaussian beam colliding non-centro symmetrically with a dipole-mode vector soliton, that starts to 
rotate in the transverse plane. Top row: formation of a dipole-mode vector soliton, bottom row: interaction 
with Gaussian beam.(a),(d): input profiles; (b),(e): output profiles after 10 mm of propagation when all 
beams are present, and the contribution of the dipole-mode to the total intensity (c),(f). 

the formation process of an ordinary dipole-mode vector soliton. The incident dipole structure is shown in 
Fig. 2(a), and the total intensity distribution after 10 mm of simultaneous propagation of both, the stabi- 
lizing Gaussian and the dipole-mode beam forming the DMVS is given in Fig. 2(b). Fig. 2(c) depicts the 
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contribution of the dipole component to the total light intensity given in (b). Comparing Figs. 2(a) and fc) it 
IS obvious that the dipole beam does not spread in the vertical direction but remains trapped in the presence 
of the Gaussian beam. The dipole and the Gaussian component have a total power of IMuW and 0 %aW 
respectively. In a second step, in Pig. 2(d) we have an additional Gaussian beam of 1.6pW incident on ihe 
crystal s front face while keeping all other parameters constant. This beam is coherent to the dipole beam 
and m the Imear regime (when the voltage is turned off) its trajectory points towards the upper dipole lobe 
at a very small angle (< F) as indicated by the arrow. The third, mutually incoherent stabiUzing Gaussian 
component with a total power of 0.9/.W^ that traps the dipole is not shown here. When the external electric 
field IS raised to F = 2MV/cm, the DMVS forms as in the upper row, but the relatively intense additional 
beam forms a solitary light structure as well and collides non-centrosymmetrically with the dipole compo- 
nent^ This collision caus^ the DMVS to rotate clockwise. Fig. 2(e) depicts the total light intensity at the 
exit face of the crystal. The uppermost peak is the scalar soliton that induces a rotational transverse motion 

mA/o ^^ r. ^!f*" f "*« shown in the bottom section of Fig. 2(e). The dipole component of the 
DMVS IS resolved m Fig. 2(f). Comparing Figs. 2(f) and (c) one can easily detect a rotation angle of 30° 
The Gaussian component that traps the dipole beam in order to prevent a separation of the two lobes is 
not shown here but a remarkable change in its orientation as also clearly visible, as it always adapts to the 
shape and orientation of the dipole mode beam. Our experimental results are confirmed with corresponding 
numerical simulations based on the anisotropic model. 
We were able to demonstrate that a linear momentum of a scalar sofiton can be transfered into angular 
momentum of a vector sohton through an inelastic collision process. Since our experimental system and 
the th«>retical model are inherently anisotropic we do not expect that the dipole-mode soliton continues to 
rotate m a clockwise direction when propagating further in the nonlinear material. According to numerical 
simulations for much larger propagation distances we reveal that the dipole component merely propagates 
m its typical twisting motion through the crystal [8]. As already mentioned above, dipole-mode solitons can 
exist for every abitrary orientation in an isotropic medium and therefore a collision with a scalar soliton can 
induce much larger rotation angles that exceed even 90°. Since a horizontal orientation of the dipole lobes is 
unstable m our amsotropic system the illustrated rotation angle of 30° is a clear evidence of the momentum 
transfer process taking place in the crystal. 

4    Conclusion 

In conclusion, we demonstrate rotational effects of dipole-mode vector solitons in an anisotropic medium 
that exhibits a non-local and self-focusing nonlinearity. We give an experimental evidence that these specific 
solitons are oiJy stable when the dipole axis points in the direction perpendicular to the externally applied 
electric field. Deviations fi-om this orientation lead to a rotational and twisting motion of these robust type of 
vector sohton. Further on we show that this kind of motion can also be induced by a non-centrosymmetrical 
collision with a scalar sohton. This new phenomenon in the field of (2-H)-dimensional spatial optical soHtons 
underlines the particle character of self-trapped light structures that may now be interpreted as 'mokmles 
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Abstract: We study, theoretically and experimentally, multicomponent spatial solitons in 
nonlinear saturable (isotropic and anisotropic photorefractive) bulk media. We find numerically a 
family of the three-component dipole-mode solitons and demonstrate their stability in a wide 
range of the input parameters. We also observe the formation and stability of these spatial solitons 
in experiment with photorefractive strontium barium niobate (SBN) crystals. 
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Introduction. Recent progress in the study of spatial optical solitons and their interaction, as well as the extensive 
experimental demonstrations of stable self-focusing of light in different types of nonlinear bulk media, has opened a 
road for the development of novel concepts for controlling optical beam diffraction and designing new all-optical 
devices for light switching, routing, and storage [1]. Many novel fundamental concepts in the physics of spatial 
optical solitons suggested recently are associated with the vectorial beam interaction and multicomponent optical 
beams that mutually self-trap in a nonlinear medium [2]. Such composite multimode solitons can have a complex 
structure and, in many cases, their total intensity profile exhibits multiple humps [2-4]. 

In a bulk medium, vector solitons exist in different forms and, as was recently shown for two-component self- 
trapped beams, many types of multipole vector solitons can be predicted and analyzed for an isotropic and 
anisotropic media with saturable nonlinearity [5]. Recently, an important generalization of this concept to the case of 
N-component two-dimensional vector solitons was suggested for an example of threshold nonlinearity [4], In 
particular, Musslunani et al. [4] predicted the existence of multihump composite solitons that carry different 
topological charges (spins) and, therefore, can provide exciting possibilities for spin-dependent interaction of self- 
trapped optical beams. More recently, based on the concept of the dipole-mode solitons [6], we have described 
theoretically novel types of composite solitons consisting of dipole components [7]. 

Here, we study the formation and stability of several types of multicomponent spatial solitons. First, we show that 
spatial solitons carrying a nonzero total angular momentum described in Ref [4] experience a symmetry-breaking 
instability. Then, following Ref [7], we describe stable multicomponent solitons consisting of two orthogonal dipole 
components. We find the families of these solitons in the case of isotropic and anisotropic media and show their 
stability in a wide range of the parameter space. 

Isotropic nonlinearity. First, we consider the propagation of N mutually temporally incoherent optical beams with 
the slowly varying amplitudes Ej(x,y,z) (j=l,2,3...) in an isotropic saturable nonlinear medium, described by the 
normalized equations: 
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where Z|Ej|- is the totalhght intensity. To describe multicomponent vector solitons, we will look for stationary 
sokitions m the fom E,.(x,y,z)=Uj(x y)expC-iAj2), where A,j is the propagation constant of the j-th component and 

Ea nl I wSlffi 7^'°Pf-.^"^l: f«"°^"8 R«f- ^' - study multi-component radially synmetricloluLT^ 
S?iiL w r i fimdamental (,=1) component has no nodes but other components carry different topological 
charges. We fmd numencally the whole family of these solitons and study their stability numerically It apS 
that, provided that the total angular momentum is nonzero, all such multicomponent vortex-like soS 4demo a 

n«f f t"^ '"'**''*^ '""^ '''^"'"* ^*° ' '^"°^*'«^ of fundamental solitons. This instability is siLfar to L 
mstabihty of a two-component vortex-mode soliton which, after break-up, forms a dipole-mode vector soliton [6] 

Hg. 1. Families of the three-con^nent dipole-nwde solitons in an isotropic medium, (a) an exanple of the soliton 

solution; (b) total and partial powers vs ^3 at fixed 3li=l and ^=0.5. 

™Lf "^''"^'J^^/™^ *'^^^'l''^^'^"y symmetric solitons with zero total angular momentum are more robust and 
propagate over the distance of thousands diffraction lengths. However, being mitially perturbed a (three-componS 
ohton display mstabihty for which the fundamental beam retains its ring-like structure but two vortex Smponen 

(of the opposite charges) transform into a structure resembling two perpendicular dipoles. Although TmmmSl 
soliton consistmg of two orthogonal dipoles was shown to be unstable [8], it appears that the preSe S 

S^tSf If'f K? T'^'T •="" '**"^ *^ '''^'^'- ^"**««d' *'^ has been'l,nfirmed by ou^ericS simulations. The stabilization effect can be explained by the physics of the soliton-induced waveguides smce two 
crossed dipoles represent vectorial guided modes of a light induced waveguide. Usmg a relllSSSue we 
were able to find the whole families of the three-component vector soliton! consisting^of a todamentaS'Id 

ZtJlTATf f '"'T*' T"^ '''^""°"'' '""'-^ ^ P^g-1W- The sohton falily ranges from the sotei^ 
dominated by the fundamental mode to the solutions in which one mode dominates [see Fig 1%)] 

Numen<jl propagation of these solitoi^ revealed that they are stable over a wide range of their parameters In 
particular, the solutions showi m Fig. 1(b) are stable for ^3 <0.7 and unstable otherwise. A typical mstabilitv 
scenano mvolves breakup of the soliton mto a fundamental soliton and the so-called »ropelter*o/iSrie?otS 
dipole-mode vector soliton. We expect that the vibrational degrees of freedom of the'^cSStf S^^^^^^^ 
usually ^sociated with long-lived soliton internal modes, should manifest themselves in the rich dynamics of oliton 
collisions, Bs IS known from the study of a two-component model. uynamics 01 soiiton 

Photorefractive nonlinearity. The theoretical analpis of the three-component solitons presented above is restricted 

0 toonS^LThf f °' "f "'^ "''"• °" *^ ^*'" '^^"^' *^^ P'^°*°-fr-ctive crptal which are feqSyud 
to demonstrate the formation of various types of spatial solitons, exhibit strong anisotropy in thek nonlinear 
response. This anisotropy has been shown to significantly affect properties of the sllitons anlLfr inSaSTsT 

^cS^n moSmf°l1fv''"''"°"^^^^^ '" photorefractive nonlinearity, we consider thelo^l^ 
Anderson model [9] which takes into account the most important properties of photorefractive nonlinearity and in 
particular, its amsotropic nature. By solving the corresponding stationary propagation and materiaf erulionT we 
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found classes of three-component localized solitons with two perpendicularly oriented dipoles and a co-propagating 
nodeless component. Our simulations show that these solitons are stable in a wide range of the soliton parameters. 
An example of such soliton is shown in Fig. 2(a). Because of the anisotropic nature of the PR medium nonlinearity, 
the stable stationary modes exist in such a geometry that their dipole components are oriented in two fixed directions 
- along and perpendicular to the biasing DC field. 

Experimental results. We study the formation of three-component dipole-mode solitons experimentally using a 
SBN photorefractive crystal and an experimental setup similar to those described in Ref 5. Two mutually incoherent 
light beams (wavelength of 532nm) derived from the Nd:YAG laser were transmitted through microscope glass 
slides to imprint desired n phase jumps across the beams. In this way two perpendicularly oriented dipole 
components were created. They were superimposed and combined with the Gaussian beam and subsequently 
focused onto the input facet of the 10 mm-long SBN crystal. The outgoing light intensity distribution was monitored 
by a CCD camera. In Fig. 2(b) we show an example of the experimentally generated three-component soliton. The 
initial powers in the fundamental, and both dipole beams were 2 mW, 2.2 mW and 1.8 mW, respectively. Top row 
of this figure shows the initial intensity distribution of the constituent components while the bottom row shows the 
intensities of each component after 10 mm of propagation through a biased photorefractive crystal. It can be clearly 
seen that the light beams self-trap and they form a stable vector soliton. The parameters of this experimentally 
observed soliton are very close to the numerical example shovra in Fig. 2(a). 

(a) 

. Total ,   ,2 
intensity lu, I 

(b) 

lu, lu,l 

. Tota] 
intgnsit^^ lu,f lu,f lu/ 

B B H 
« # 

• 

t ♦ 1 

Fig. 2. Three-component spatial vector soliton in a photorefractive nonlinear medium (a) numerically found soliton 
solution; (b) experirtKntally observed imilticomponent soliton: top row - initial intensity distribution; bottom row- 
intensity after 10 mm of propagation in biased photorefractive SBN crystal. 

Conclusions. We have shown that a self-focusing nonlinear medium supports novel types of composite spatial 
solitons. In the case of three components, such solitons consist of a fiindamental and two orthogonal dipole 
components corresponding to the modes of a self-induced waveguide. The solitons are found to be stable in a wide 
range of their parameters. We have observed the formation of these novel solitons in experiment with 
photorefractive SBN crystal, with a good agreement with the theoretical predictions. 
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Propagation of Spatially and Temporally Incoherent Light and 
Modulation Instability in Non-instantaneous Nonlinear Media 

Hrvoje Buljan, Antonio Siber, Marin Soljacic, and Mordechai Segev 

Several years ago, Mitchell et al. [1] have experimentally demonstrated the existence of partially spatially 
incoherent solitons in non-instantaneous nonlinear medium. Subsequently, solitons made of light emitted 
from an incandescent bulb, i.e., solitons made of both spatially and temporally incoherent light were demon- 
strated by Mitchell and Segev [2]. These experimental results have started the avalanche of experimental and 
theoretical studies of incoherent light propagation, modulation instability, and the formation of solitons. 

Several theories formulating the propagation of incoherent light in non-instantaneous nonlinear media have 
been proposed [3]. Three most accurate and formally equivalent theories: the coherent density function theory 
[4], the modal theory [5], and the mutual coherence function theory [6] have been developed. One of the key 
assumptions that was made in deriving these theories is that the light is quasi-monochromatic. Therefore, 
these theories are not capable of describing the experimental demonstration of "white" Ught solitons reported 
in Ref. [2]. Here we present a theory suitable for the description of "white" light self-trapping [2], and use 
it to predict the modulation instability of "white" light in non-instantaneous nonlinear medium, thereby 
extracting its most interesting features. 

To develop the a theory, we make the following assumptions/approximations: (i) The light propagates in the 
dispersionless nonlinear medium that responds only to the time-averaged intensity /; the index of refraction 
is n(/)^ = n^ -h 2noSn{I). (ii) We study the propagation of light (in the z direction) in a temporal steady 
state, dSn{I)/dt = 0. (iii) The relative increment of the nonlinear change in the refractive index is small 
over a few wavelengths AQ, leading to V(V • E) ~ 0; AQ denotes the central wavelength within the power 
spectrum, (iv) The light is linearly polarized, and propagates paraxially along the z direction; the electric 
field is written as 

1    f°° 
E{x,y,z,t) = j^j     dwE^{x,y,z)e'*'-'-'^' (1) 

where k^ = now/c, and approximately \d'^E^Idz'^\ < \k^dE^/dz\. (v) The time response of the material 
Tm, » w^^ where wo denotes the central frequency within the power spectrum. 

The statistical properties of the light can be described by the mutual spectral density B^{vi,r2,z), eval- 
uated at two points {va = Xo i -f Va j, « = 1,2) from the same cross-section of the beam. Under the 
assumptions/approximations above, B^{ri,v-i, z) is shown to evolve according to 

^-;7^[Vii-Vi2]B. = —{<5n(/(ri,^))-<5n(/(r2,z))}SUri,r2,^). (2) 
oz       Zku, no 

Equation (2) is an integro-differential equation since the time-averaged intensity is /(r, z) = l/2ir J^ dwB^{v, r, z). 

This theory is utilized to analytically describe MI of "white" light, and analyze its features in dependence 
of the statistical properties of the beam. We study one-dimensional system; the mutual spectral density of 
the uniform beam sS°^(jo) is for each frequency w a real-valued, bell-like shaped function of the coordinate 

p = xi-X2 (e.g. Gaussian). The half width at half maximum of JSlfV) is the spatial correlation distance 
for frequency w: /s(a;). The functional dependence ls{uj) is modeled by /^(a;) = 2TI/KO{U)), where K'o(a;) = 
Ko\l -V s{u} - a;o)/wo]; the parameter s determines whether Isiuj) increases or decreases with w. 

Summary of the most interesting results is as follows: (i) We first recover the most important result from 
the temporally coherent MI analysis [7, 8]. For white light MI to occur, the nonlinearity must exceed a 
threshold imposed by the degree of spatial incoherence. The threshold increases with the decrease of the 
spatial correlation distance. 
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iJ' Tjie nonlinear gain coefficient a as a function of spatial wavenumber a. The plots correspond to 
widths of the power spectrum Ac^/o-o = 2%, 5%, and 10%; The arrows indicate the increase of Aw The 
tower insert shows the spatial correlation distance h(w); the solid (dashed) curves correspond to s = 1 2 
(s = —1.2), r^pectively. . ' 

(ii) Spectral density directly affects the stability of the beam, and can stabilize or destabilize the beam 
depending on the fmictional dependence of the spatial correlation distance on the temporal frequencies 
Ihis m significantly different from all previous studies of incoherent MI [7, 8], where the spectrum of the 
light had no effect on the MI process. In order to show this, small perturbations at the incident plane of 
the crystal are described as a superposition of modes. The modes are sinusoidal spatial modulations of 
transverse wavenumber a. The instability of a modulation is described by a gain coefficient g(a): the mode 
(and hence the whole beam) is unstable if Re g(a) > 0. Figure 1 shows the gain coefficient g(a) as a ftinction 

of transverse wavenumber a for SfV) chosen to be a Gaussian in both w and p variable, for three different 
spectral widtte: Aa;/a.o = 2%, 5%, and 10%, and for two different types of 4(a,) dependencies. The insert in 
i-ig^l shows the dependence of the spatial correlation distance l, oil the (temporal) frequency w For s = 1 2 
s - -1.2), h decreases (increases) with increasing spectral width, and the maximal gain g„,^^ decreases 

(increases) with the increase of Auj. We find (numerically) that there exists a critical value s,ru > 0, such 
toat for 5 > scrit (s < scrit), the beam is stabiMzed (destabiHzed) by the increase of its spectral width Au 
Thus, the spectral width directly affects the MI threshold, although the influence of the temporal incoherence 
ot the beam on the (m)stability is not as critical as the influence of the spatial incoherence. 

(iii) Rrom the studies on incoherent MI in temporally-coherent systems, we know that each temporal fr^ 
quency has its own maximally destabilizing perturbation[7, 8]. But simply projecting this r^ult to temporally 
and spatially incoherent MI may erroneously lead to the thought that in the linearized (low-visibility) regime 
each fi-equency constituent of the beam would create its own pattern, with periodicity corresponding to its 
own maximally destabilizing spatial modulation. But the physical reality is different: MI in temporally and 
spatia ly incoherent wave systeim is a fundamentally fully collective effect: all frequencies participate in all 
spatial modulations, thereby determining the growth rate ^(a) corresponding to each spatial modulation a 
Consequently, they collectively determine the perturbation with the highest gain, ff(a^„,), and collectively 
participate m this perturbation, which prevails when z becomes sufficiently larger than 5(a„,„,)-i Physi- 
caUy, this occurs because the propagation of all temporal frequency constituents of the hght is entangled by 
the unique index of refraction "seen" by all of them. Mathematically, this follows from the integro-differential 
character of the evolution equation (2). 

(iv) Closely connected to previous result, we point out another intriguing effect of white light MI- since 
different temporal frequencies tend to be modulated at different spatial periodic perturbations, the spectral 
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Fig. 2. Relative spectral density A^{amaT)/A^i^{Qmax) evaluated at the spatial wavenumber of highest gain, 
oimax- Diflferent graphs correspond to different dependencies of the spatial correlation distance U on the 
frequency u>, shown in the insert. The parameter s that defines IS(IJJ) is S = —1.2, 0.0, 1.55, and 1.9 (bottom 
to top). 

density of a particular spatial modulation is not a simple replica of the spectral density of the incident beam, 
but is determined also by the dependence of the spatial correlation distance on the temporal frequency. To 
demonstrate this feature, consider a beam with spectral density constant in the frequency interval [WQ - 
ALJ/2,U}O + Aw/2], and zero otherwise. The width of the spectrum is ^ = 10%. Fig. 2, displays the 
relative spectral density [call it A^{a,riax)/AuJoi'^rna:c)] corresponding to the maximally destabihzing spatial 
modulation amax' Different plots correspond to different dependencies /^(a;) (see the insert in Fig. 2). To 
summarize this important result, we find that the spectral density of any periodic perturbation adjusts itself 
in such a way that it is commensurate with the periodicity. 

In summary, we have formulated the theory governing the propagation of spatially and temporally incoherent 
light in a non-instantaneous nonlinear media, predicted the existence of modulation instability of such a beam, 
and extracted its features. We have shown that the temporal power spectrum directly affects the strength 
of the instability (nonlinear gain), and that the increase of its width can destabilize or stabilize the beam. 
We have shown that MI of such a wave packet is fundamentally a collective effect in which all the temporal 
frequencies together participate in determining the spatial modulation of the highest gain. Consequently, the 
spectral density of the perturbation adjusts itself in a true collective fashion. 

Spatial Solitons, Springer, 
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Abstract: In a parametric down-conversion scheme, a wealc seeding can sliift a periodic 
array of optical beams by half of its transverse period as the result of the spatial solitons 
excitation and the fractional Talbot effect. 
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Up to date, the possibility to use more than one parametric spatial soliton to perform all-optical logical or 
computational tasks was investigated in systems with less than a few tens of solitons. Two-soliton 
coUisions could be used to build phase- and intensity- dependent optical switches [1.2], while focussed 
vortex beanK wave mixing were shown to excite regular sets of solitons whose number is determined by 
simple algebraic rules [3]. Recently, blurred digital unages with up to 15 pixels were reconstructed by 
means ofthe soliton excitation process K well [4]. 

However, the possibility to exploit the features of large periodi 

.    - • —" i.»»»uw, lu covii uuici Lt,Jj. ^^n me otner nand, a pe 
propagating linearly expenences exact wave-front reconstruction only at discrete periodic propagation 

prdT;:i,s™TXt^ssr"^^^^^ 
By keeping mfflind this Mea as a guideline, we developed a new all-optical switch, which exploit the 
tos of both the Talbot effect and the soliton propagation regime. In particular, we focussed our 
TTT f. T'°^ ™''°' '^''* ^^- ^" **°«^^ propagation, after one Z, the input pattern is 
reconstructed exactly, while a propagation distance of ZT/2 leads to the same intemity profile of the input 
plane but shifted by the half of the transverse period of the pattern. The basic concept of the switchTfto 
S ^^°°-'f ^^f quadratic crystal with a spatially periodic pump whose 2^/2 coincides with the crystal 
length. By surtable conditions, it is possible to excite the solitons in first few mm of propagation thus 
providing at the output the same periodic structure of the input [4,5]. If that soliton excitation process is 
quenched (e.g. by reducing the pump intensity, or by stopping the seeder beam), the linear propagation 
regme of the pump m restored and the output pattern will be shifted by one half of the period respect to that 

An exaniple of the device operation is given in Fig. 1, where the results of a numerical simulation of 
degenerate parametric amplffication with a periodic pump are pres 

hnear crystal pumped with an intense high frequency pump (m,) and seeded with a weaker sub-harmonic 
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beam (C0s=C0p/2). The crystal length was set to match exactly the ZT/2 length for the chosen array period. 
The pump intensity was chosen such that its intensity is not high enough to trigger a soliton spontaneously 
from the quantum noise fluctuations. Both pump and seed beams are focussed at the entrance face of the 
crystal together. The seeding beam has a beam waist twice as large than that of the pump, thus providing 
the same divergence for both beams. The switch effect is clearly evident by comparing the pictures of the 
seeded and unseeded configurations. 

Fig.l Output pump profiles as calculated by the numerical code. Output with no seed (a), and with injected seed. The 
area corresponding to two periods of the array is shown. Pump peak intensity at input: ySGW/cm"*. Seed peak-intensity: 

0.75GW/cm^. Simulated crystal length: 22 mm. The transverse spatial period of the array is 85 urn. All other 
parameters are similar to those employed in the experiment. 

A sketch of the experimental unplementation of the optical switch is depicted in Fig. 2. The millijoule 
infrared output of our 10 Hz, 1 ps, Nd:glass laser system (TWINKLE, Light Conversion) is split on two 
channels by'means of a beam splitter. The second harmonic of the most intense channel, generated in a 1.5 
cm long KDP crystal, is used as a pump for the parametric amplifier. The pulse energy in both pump and 
seed channels is regulated by means of a XI2 and linear polarizer arrangement. A dichroic minor is used to 
recombine the pump with the infrared channel, whose optical path length can be adjusted by means of a 
delay line. To transform efficiently the pump and seeder beams into a periodic pattern of several hundreds 
of narrow focussed beams we used a micro lenses array. The focal plane of the array is imaged by means of 
a telescope onto the input face of a LBO crystal cut for type I non-critical phase-matching (9=90°, ^=(f). 
We performed experiments with both a 22 and a 30-mm long non-linear crystal, the best results being 
achieved with the last one. The 30-mm long crystal is heated to a temperature of \5%X in order to ensure 
phase matching between the pump and the seeder beams (of 527.5 nm and 1055 nm wavelength, 
respectively). The knaging telescope has a magnification of 0.93, in order to have a transverse period of 
about 100 Mm, which matches with the ZT/2 equal to the crystal length. Finally, a CCD-based imaging 
system allows us to record the output face of the LBO crystal in either wavelength. 

i''     Pol, 
Telescope Imaging Syslem 

OUnpol   V7^ 

U2< 

KDP    /fr y MicroTenses array 

Delay line 

From TWINKLE laser 

Fig. 2 A sketch of the experimental set-up. 
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In figure 3.a, a small portion of the output pattern of the pump beam in the unseeded case is shown When 
the seed is allowed to mix with the pump (Fig.3.b), a soliton is formed in the position of the intensity 
niimma of the unseed pattern (dashed reference frame). At the same time, the intensity of the local maxima 
ot the unseeded pattern drops (continuos line reference frame). The achievement of the soliton reeme is 
inferred from the observed mutual self-trapping between the harmonics, and the resuhs of the numerical 
simulation. About the switch characteristics, the overall energy of the pump was fixed to 300 uJ while the 
seeding beam carried about 15pJ. At the center of the dashed line reference frame, the ratio between the 
switclied-on and the switched-nff hffam n^aV intt^noMac jt, i   TU„ ^;^        , .   ,    _ 
pc 
wit] 
tO: 
ac 
ei 
pa 
or 
lenslet array; 

^'^'4;^^* experimental output pun^ beam profile without (a) and with (b) injected seed. The filter set in front of the 
CCD camera is the same in both pictures. OveraU input energy, pump 300 nJ and seed 15 jiJ. The picture window 

dimensions are 540x505 nm. 

In summary, we have demonstrated the possibility to combine the linear characteristics of a periodical light 
stracture with the features of a muhi-soliton array to arrange an all-optical switch, which could be operated 
at 1 Hz rates We beheve that could open new perspectives m the application of spatial solitons to photonics 
and m the physics of many-soliton environments. 
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Pattern formation and modulation instability in fully coherent systems have been investigated extensively in the 
past two decades. In the last few years, however, the observations of solitons made of spatially-incoherent (or weakly- 
correlated) light beams in several material systems'"^ have led to the theoretical and experimental discovery of 
modulation instability and pattern formation in incoherent systems as well. In 2000, Soljacic et al.^ predicted that 
a uniform distribution of spatially-incoherent light in a self-focusing medium will undergo Incoherent Modulation 
Instability (IMI, see fig. la), giving rise to intricate patterns. However, IMI occurs only if the strength of the nonlin- 
earity is above a well-defined threshold; a threshold that is set by spatial coherence of the beam. If the nonlinearity 
is below the threshold (i.e., the beam is too incoherent), the intensity will remain uniform as all perturbations are 
suppressed. Shortly after, IMI and the presence of this threshold were indeed demonstrated experimentally^. 

A recent study^ has investigated the long-term evolution of the pattern evolving from IMI and has shown that, in 
non-instantaneous nonlinearities the pattern evolving from IMI is actually an ensemble of soliton-like filaments, which 
interact with one another through long-range attractive forces. After a fairly short propagation distance, the IMI 
pattern forms an equally-spaced array of incoherent solitons. Following a long enough propagation distance, however, 
the pattern forms clusters (aggregates) of fine-scale filaments - clusters of solitons^. However, these facts are all that 
is known at this point on pattern formation in such nonlinear weakly-correlated systems, and many fundamental 
intriguing questions are still open. For example, there is no knowledge on whether (or not) the clusters of solitons are 
the final (equilibrium) stage in the evolution or just a transient and the system evolves into a different state. It is also 
not known whether an equilibrium state for this system actually exists, or perhaps this system continues to evolve. 
Furthermore, it is very difficult to even characterize these stages in the evolution of the system, as all its features are 
randomly distributed: the intensity structure exhibits random clustering of filaments, and the correlation statistics 
depends on the local coordinate. Unlike coherent pattern formation, for incoherent systems the phase "internal degrees 
of freedom" add much complexity. Unfortunately this extra feature of correlation statistics (incoherence) is hard to 
measure. Interferometry-based coherence measurements are difficult to perform, especially when the pattern feature 
size, and the coherence length are comparable, and indeed the correlation statics of incoherent solitons or of the IMI 
process have not been measured experimentally thus far. 

Here we find the final equilibrium state of evolution of the patterns evolving from modulation instability in incoherent 
(weakly-correlated) nonlinear wave-systems. We develop a global measure of spatial coherence which can be easily 
measured without interferometry. Then, given the initial conditions we find analytically a relation between the pattern 
intensity profile and the average correlation distance. 

We search for a global measure which characterizes the pattern as a whole and not a specific point in it. The 
conventional definition of the coherence length is given by'^: Ldxi) = / |/Z(.TI,X2)P dx2 where /X(.TI,X2) is the nor- 
malized (mutual) correlation function. Given a point xi, point x whose distance to xi exceed Lc is no more phase 
correlated with x^. There are several problems with this definition. For one, it is not local, but much worse than 
that it frequently diverge for many physical scenarios such as localized statistics {^{xi,X2) y^ /J-ixi -X2) ) or when 
the statistics is periodic in the xx - X2 coordinate. For IMI, the statistics is typically both localized and periodic (see 
the second paper in"*) . 

We begin by defining a measure of coherence which is based on the diffraction angle of the incoherent beam. A beam 
of incoherent light diffracts not only due to the finite extent (width) of its envelope, but also due to its incoherence, 
that is, the phase fluctuations upon it. The diffraction angle of a coherent gaussian beam (width=it;) is: 

e = 2/{kw) (1) 

For a general coherent beam, the diffraction angle is the second moment in the transverse momentum space. Using 
either one of the methods commonly used now to describe incoherent solitons and IMI, namely, the coherent density^ 
the modal theory^, or the radiation transfer theory^", incoherent light is described by a collection of coherent elements 

* Electronic address: msegevStx .technion. ac. 11 
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(bundles or modes) which are mutually incoherent with one another. We therefore find the average diffraction angle 
foUowmg a logic similar to that of a general coherent beam: unuaciion angle 

< >to*=Eft/^'i%( dS 

SrL1iiLtrnfntr/cT 1 T^ ^fr ^F'"' = '^ ™^ ^'^'^ '' the norma&ed (like in Quantum Mechanichs) courier tiansiorm oi the coherent beam #j(a;) 

To^'trttthf'^ ftf *H*f *' f*'"''*y ^"^"^ information on both the envelope and the correlation statistics. 
To extract the contribution of the statistics, we subtract the diffraction angle of a totally coherent beam t whose 
intensity profile is the same as that of the incoherent beam. We define: J' '"^ oeam w wnose 

< r >stat=< r >tot -<0^>e 

where 

<r >. -I #^|*(#)Pd#: 
ax 

%{Xj dx 

{Inorm IS the normalized total intensity!). 

Next, In analogy with (1) we define the   owrope correlotwn dfstanceas: 

< Ic >= 2/(ks/< #2 >,,„^) (4) 

This definition is free of the problem described eariier. In the same way we define the feature size as 

<h>^2/{k^/7WJZv) 

far Md irteSitv f °^?!J^^!^ '^'fff ^^en though it can be measured by calculating second moment of the 
fh. ... Jn!f ^ ^ , ""\ ^l^ 11 >^™' ^^ ^°"^^ ""^^ ^ '•^l**^ " to the conventional notion of coherence in 
the coordmate space: i.{x,,x^). For delocalised statistics, i.{x,^x^) = ^( ,3 -.1) = ;,(A.), it can be shown S 

< ^^ >s«ot= -M(A.'c)5««p(Aa;) |Aa;=o 

For the more general localized statistics we first calculate the effective delocahzed statistics according to: 

Me//(Aa;) =  / ii{xx,xi + Aa;)J„orm,(a:i)da;i 

(5) 

(6) 

and then use Eq (4) & (6) to get the correlation distance. 
Next, we find the relation between the average correlation distance tod the intensity profile of the evolvmg IMI 

Po tSxt ctrthrZ^r"'' *^\"^-"*-*" -^ —ved i.e. E, = ff, (, and Jlesignate initi:raM InaT) i<or ine is.err case tne Hamiltoman can be wntten as: 

ff=|Q<^'> .o^-\| Pdx 

\.mLl H f/.2f;citu\it^ri^i'fl.=r, **" °°""™' ^ ""■ °'™ '^* ™ "»*"°"" '"^ 

^'"*=t ^m+ I Ijdx) <r > en« 

-1/2 

(8) 

1/ is the intensity of the output pattern. We point out that all that is needed to evaluate < 4 > is F and the 
mtensiy profile at the output face. In figure la we show evolution of a pattern through incoherenf modulatton 
instability (above), along with the ratio between the average correlation disLce and the ^"agSurrske t a 
function of propagation distance. The inserts in this figure show two very distinct stages: thfSmSon of a quasi 
periodic array of filaments (left) characterized by dominant harmonics of a specific spftial fi-equency (tL frequency 
of the highest gam4), and the formation of clusters of solitons (right). As shown in this figure 4 find S the 

oSulLtf th ' T^ i cha.-a.terized by the appearance of sub-hirmonic spatial frequencii, Tthe final tg 
of evolution of this system. In principle, the spatial coherence can actually increase or decrease with z compared to 
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FIG. 1: The evolution of spatially incoherent wide beam above the pattern formation threshold is shown in (la). First only the 
frequency of highest gain appears as seen in the Fourier Transform (lb), then, higher harmonics emerge and narrow filaments 
form (F.T. not shown here) and finally the clustering effect takes place with the appearance of sub harmonic frequencies (Fig 
Ic). Figure (Id) show that after long term evolution the ratio between the feature size and the average coherence length is 
roughly unity. 

the input face. This effect is due to momentum exchange between the fields and the medium in the repeating collision 
processes. However the ratio between the average feature size and the average coherence length is roughly unity , and 
it remains unity (on average) throughout propagation. 

In conclusion, have shown that the pattern evolving from modulation instability in nonlinear incoherent wave 
systems reaches an equilibrium "steady state" evolution when its average correlation distance equals its average 
feature size. To do that we have developed a new useful global measure of coherence which does not necessitate 
interferometric technics to be measured. Finally, we have shown that the average correlation distance can be found 
solely from the intensity profile, assuming only Hamiltonian conservation. 
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Abstract: The evolution from diffraction, to single and then multiple quadratic soliton 
generation, and finally the onset of modulational instability were observed for wide 
fundamental beams in both birefringence and quasi-phase matched LiNbOj slab 
waveguides. 
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1. Introduction 

The early work of Sukhorukov and colleagues showed that waves parametrically coupled via the second 
order nonlinearity x'-^^ can be mutually self-focused, and form quadratic solitons.[l]Subsequently, Trillo 
and co-authors showed that plane waves in quadratically nonlinear media are unstable and break-up into 
periodic structures. [2] Each of these regimes have been demonstrated experimentally in slab waveguides, 
soliton generation by inputting fundamental beams of the appropriate width and peak intensity for 
solitons, and beam break-up with very wide (mm width) input beams. [3-5] Furthermore, the spontaneous 
generation of multiple solitons has been predicted to occur at intensities higher than for single soliton 
generation and below those required for modulational instability (MI), but has not been observed 
experimentally yet.[6,7] In fact, all of these phenomena are caused by the same mutual self-focusing 
predicted originally by Sukhorukov and colleagues.[l] In this paper we report experimental evidence of 
some of these phenomena, and find smooth transitions between the different regimes. 

2. Experimental Details 
We have studied nonlinear beam evolution in two different LiNbOs slab waveguides. Five cm long, 
periodically poled slab waveguides were fabricated by Ti:indiffusion in a 2-cut A'-propagating LiNbOa 
crystal with a quasi-phase-matched (QPM) period of 17.63 nm. Operating at the temperature of 180 "C to 
avoid photorefractive effects and a fundamental (FW) wavelength of 1580 nm resulted in a large positive 
phase mismatch. The 20 ps, TMo polarized, input beam with a waist cOo of -74 pm (FWHM = 1.17ft{,) 
was obtained from an EKSMA Nd:YAG pumped BBO optical parametric generator-amplifier (OPG- 
OPA) system. The laser beam had a small asymmetry to one side of the peak (not in evidence in 1(a) 
below). Combinations of circular and cylindrical lenses were used to couple the highly elliptical beams 
into the waveguide. The output beam profiles were recorded with a camera. 

The second waveguide was a 47 mm long, 8 pm thick Y-cut ^-propagating, titanium-indiffused 
LiNbOa slab waveguide with > 50% coupling efficiency. A 180 pm wide elliptical beam, wavelength of 
1.32 |jm, was obtained from a home-made Nd:YAG-OPG-OPA laser system. This had an inherent 
asymmetric beam profile and much lower peak energy than the EKSMA system. The FW was a TMo 
waveguide mode and the second harmonic (SH) a TE] mode for the birefringent phase-matching used in 
this case, which required an operating temperature of «340''C. 

3. Experimental Results 
Typical experimental results observed at the output facet of the QPM waveguide are shown below at 
three input power levels. The input beam diffracts to 220 pm at low powers, (a), (b) shows single soliton 
generation. At increasing intensities the output beam exhibited multiple soliton generation. For each case, 
multiple shots of the laser led to identically the same envelope, to within the laser power uncertainty. 
This reproducibility was observed for the data taken until high input power levels were reached. That 
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case, (c), exhibits the characteristics of modulational instability. The Icey point there is tliat the output 
pattern is not reproducible from shot-to-shot and the pattern is no longer centered on the input beam. 

(C) 

800 0 400 800 

^*^^tx ^ ^^^ "^^^ ""P"* ^^**®^ "°^5 ^"^ °"*P"* (solid hne) for a QPM slab waveguide at low 
powere. (b) Output just above the single soliton threshold, (c) Three output beam profiles at the same 
mput power for high mput powers. 

The intensity region between (b) and (c) above was probed with a 180 m wide elliptical beam in the 
bu-efrmgence phase-matched sample. This wide input beam made it easier to identify multiple soliton 
generation. Typical results are shown below. For multiple laser shots the reproducibility at the output was 
good, for examp e see 0)). The input beam, (a), shows a small asymmetry. The input beam has generated 
wo so itons m (b). This was verified by "propagating" the beams numerically over distances much 

longer ttan the samples and notmg that indeed two solitons emerged from this pattern. Three solitons are 
generated m (c) Note that the cw simulations are in good agreement with the position of the 
expermiental peate although there is a background present in the experimental data due to the pulsed 
nature of the expermients. The key difference between these results and (c) shown above is that the 
centroid of the peaks tracfa that of the mput beam. Because the nonlmearity accessed here is d,, = 5 1 

fn'^irf""  S : ^^ ^f^ u' *^ *^™ '"""P^"' *^« ^*«"^>"«s "««ded for the onset of modulational 
instability would be much higher and were not attempted to avoid sample damage. 

-200 

Figure 2 

200 -200 200 -2D0 

(*> Asymmetric mput beam profile for the birefringence phase-matched waveeuide fb) 
Expenmental two soliton generation (solid line) and cw simulations (dashed line), (c) Experimental th 
sohton generation and cw simulations (dashed line), (b) shows three experimental curves as well as th. 
simulations (dashed line). 

hree 

_    In summary, we have observed a variety of new beam distortion phenomena which occur when a hieh 
'^I'S if? ^ ^fT ^ IX< -active medium near a phase-matching condition for second harmonic 
generation below and above the onset of MI. 

,„^BfJ«'^"^'' "^f "FP^"*** ^y ^" ^^ ^U^ o«" Solitonic Gateless Computing", by the EU- 
IST/FET program "ROSA", and the Commission for Scientific Exchange between the USA and Spain. 
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Abstract 
We review several applications of microstructured photonic crystal optical 
fibers that incorporate active materials infiised into the air-holes. The 
tunable optical characteristics of the materials combined with the unique 
structure  of the fiber enable a number of functionalities  including 
reconfigurability, tunability and enhanced nonlinearities for various fiber 
device applications. 
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1. Introduction 
Microstructured photonic crystal optical fibers (MOFs) have generated increased interest 
recently because they provide extra degrees of freedom in maniplating optical propeties of 
light such as dispersion, nonlinearity and birefingence of optical fibers [1-4]. For example, 
strong waveguide dispersion and enhanced nonlinearity can be obtained in a MOP that 
comprises a small silica core surrounded by closely spaced air-holes [4]. Similarly, enhanced 
birefringence can be achieved in such fibers, particularly in fiber designs that incorporate 
ellipitcal air-holes or asymmetrical distributions or air-holes [5]. 

In this paper we show that MOFs also provide a platform for a new class of optical 
devices. In particular, the air-holes allow for the infusion of active materials yielding novel 
hybrid all-fiber optical devices that exhibit desirable properties, such as enhanced tunability, 
dramatic nonlinear interactions, compactness, and intrinsic low insertion loss [6]. In these 
applications the active materials provide tunabilty, and enhanced nonlinear interactions, and 
the core region can incorporate a doped region allowing for the inscription of grating 
structures. These devices exploit index tunable materials as well as electrically driven 
microfluids to manipulate and switch mode propagation. We review several examples of such 
tunable devices including, tunable resonant fihers, variable optical attenuators and an 
approach for introducing strong birefringence into MOF by infiasing index tunable materials 
into specific air-holes. 

Polymer 
Silica   Polymer 

Fig. 1. (a) Scanning electron micrograph of the MOF with single layer of air-holes in the 
cladding and polymer infiised in one of the holes, (b) Schematic cross-section of the 
asymrrBtric waveguide. 
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2. MOF waveguide design and characteristics 
Fig. 1 summarizes the principle of tlie tunable MOF where selected air-holes can be infused 
with mdex tunable materials [6] and/or electrically driven microfluids [7]. The MOF has a 
photosensitive germanium (Ge) core with diameter -gjun and A =(n,- n,)/n, -0.35%, where n, 
and n2 are the refractive indices of the Ge core and the silica respectively [8]. Fig. 1(a) shows 
a single layer of air-holes, each of diameter ~40|im, incorporated in the cladding of the MOF 
m a hexagonal geometric distribution. Interaction between the propagating mode and the 
tunable cladding region can be achieved in two different ways: excitation of a cladding mode 
by a long-penod grating [9] or by tapering the MOF to a reduced outer diameter so that the 
fundamental mode leaves the core region and expands mto the cladding [10,11] The latter 
approach provides a robmt device architecture for manipulating light propagation m the MOF 
and low splice loss to conventional fibere by collapsing the air-holes first and then flising the 
fibere together. ^ 

Fig. 2 shows a schematic diagram of the tapered MOF. In the waist of the tapered MOF, 
the length is 1 cm, the outer diameter size is 30|im, the mner cladding region is ~8 |xm and A 
~, j^j. (-30%) IS large where n, and n^i, are now the refractive indices of the silica- 
claddmg and air, respectively. Light, which initially propagates in the Ge core, spreads into 
the cladding as it propagates into the taper region and is guided by total internal reflection at 
the sihca/air-holes interface in the waist of the MOF. Infusion of tunable materials mto the 
air-holes m the waist changes the boundary conditions at these interface. 

Polder 

125nm 

Calculated mode      (   i 
fields along the waist 

-—^^'•iisai 

T 

® Polymer 

Fig. 2. Schematic of all-fiber variable attenuator based on tapered MOF w-ith polynsr infused 
m the waist, the mset shows refractive indices of the polymer and silica dependence on 
tenperatuie. Also the iMde field profiles are shown at different positions along the length of 
the waiste region of the MOF. with polymer  (npoi=1.434) at  0cm, 1cm. and  2cm along the 
waist. 

3. Photonic Device Applications. 

Active materials, such as polymer or fluids can be infused into the relatively large ak-holes 
of the grapefimt MOF. Fig. 3(a) shows one end of the fiber immereed m a reservoir of 
material and sealed on the other end where vacuum is applied. The material then can be 
mtroduced into the air-holes of the fiber m shown in Fig. 3(b). The material can be liquid 
acrylate monomer mixture (viscosity -30 centipoise), infused into the air-holes at a rate of 
0.03 cm/sec and UV-cured for about 15 minutes to form a polymer with a desired refractive 



NLWCl-3 

(a) 
filling 

Feservoir 

L 
' vacuum 

line 

>—< 

[(b) 

Matenal 

hi^^ 

3. (a) Schematic drawing of material (polymer) infiised in the air-holes of the MOF. (b) Picture 
showing material in the air-holes of the fiber, (c) Refractive indices of the polymer and silica. 

index. Switching and modulating the index profile by displacing fluids to overlap with the 
modal field also allows for dramatic change in the optical properties [7]. To break the 
symmetry of this waveguide, we can selectively fill certain air-holes with index tunable 
materials, such as acrylate based polymer [12]. 

4.£nhanced nonlinear interactions 
Tapered MOF provide an ideal structure for demonstrations of dramatic nonlinear effects. 
Laser pulses at 1.3 |xm generated by a femtosecond Ti-sapphire pumped optical parametric 
oscillator were free-space coupled into the un-tapered portion of the MOF and then 

propagated through the taper. As shown in Fig. 
4 tunable self-frequency shifting solitons can 
be generated over the important 
communications windows from 1.3|J,m to 1.65 
\im with input pulse at 1.3|im [10]. As the 
light propagates through the MOF the light is 
continually shifted towards the red due to 
intrapulse Raman scattering, which transfers 
the energy of the high frequency part of the 
pulse spectrum to the low frequency part, we 
observe 60% of the input photons being self- 
frequency shifted. These dramatic results are 
possible because the fiber exhibits a large 
anomalous dispersion over a wide wavelength 
range. 

Wavelength (nm 

Fig. 4 Output spectra for different peak intensities 
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Abstract: We demonstrate that spatiotemporal discrete solitons are possible in nonlinear 
photonic crystal structures. Analysis indicates that these states can propagate undistorted along 
a series of coupled resonators or defects by balancing the effects of discrete lattice dispersion 
with material nonHnearity. • 
©2002 Optical Society of America 
OCIS codes: 130.4310, 190.4390, 190.5530 

w!h™' 7"'^^' are artificial microstructures in which the refractive index is periodically modulated at a 
len^h scale cornparable to the wavelength of operation [1]. For specific crystal configurations, this index 
periodicity can lead to a complete photonic band-gap (in a certain range of frequencies), thus, inhibiting 
wa^ propagation m all three directions [1]. As it has been noted in several studies, the pLenc^ of gaps to 
the macroscopic dispersion relation of such periodic structures introduces a number of novel features that 
can be exploited to control tJie propagation of light. In this respect, photonic crystals are highly promising 
m terms of integrating useful optical components such as waveguides, couplers, cavities, filters, etc., on the 
same substrate. Recently a new type of an optical waveguide that involves a periodic sequence of coupled 
high-Q resonators has been proposed [2, 3]. In these latter systems, waveguiding is accomplished via %ht 
hoppmg or tunnehng among successive microcavities that effectively act like defects within the crystal, 

!!; !!;i^*^7' ^^f <f'*hat spatiotemporal discrete solitons can propagate undistorted along a chain of 
coupled nonlinear high-Q cavities or defects that are embedded in a photonic crystal structure Such states 
noIZtt%L uf r ^,*»*»f.^between the effect of discrete lattice dispersion with that of material 
nonlmea ity. These self-localized entities are capable of exhibiting very low group velocities, depending on 
the muphng strength among successive microcavities and in principle they can remain immobile like frozen 
bubbles of bght. In addition, this class of solitons can be effectively navigated along any pre-assigned path in 

ltT^TrTr"'"''T"^'- ^'''^''^ "^ °P*'"*^*' '^^' *^^"«P« «ffl««"«y ^hen they encounter sharp bends will be also discussed. ^ 

sT4-l?tnrr?''' by considering a periodic sequence of identical coupled high- microcavities or defects, 
similar to that shown schematically m Fig. 1. In principle, these defects can confine light in either two- o^ 
three^dimensionaJ geometries provided they are surrounded by an appropriate photonic band gap structure 
The distance between succ^sive resonators (or primitive cells) is D and the material is taken here to be 
Kerr nonhnear^ Rirthermore, we assume that each cavity/defect is singl^moded, oscillating at an eigen- 
frequency aj. The electromagnetic mode of each resonator in isolation, is given by E = Eo(r)exS-S 
and H = Ho(r)exp(-.-c.o*) where Eo(r) and Ho(r) represent the cavity eigenmodes. Evidentl^ becTus 

\ 

eSu^i>UUn°^ microcavities or defects embedded in a photonic crystal structure. The distance between 
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f 

Fig. 2. Temporal discrete soliton propagating along a nonlinear chain of coupled resonators at a group speed 

of proximity, a finite coupling exists between successive defects. Let us assume that the presence of the 
other cavities around a particular site perturbs the total permittivity from e to e'. In general, the per- 
turbed fields E' = E'o{r,t)expi-iujot), H' = U'o{r,t)e\p(-iuJot), obey V x EJ, ^ Mo(«woH^ - dUydt) and 
V X Ho = e'i-iLJoE'o + dE'o/dt). By appljang the divergence theorem on the quantity V- (EJ x HQ + EQ x Hg) 
and by using Maxwell's equations we obtain the Lorentz reciprocity relation: 

Sds-iElxH'o + E'oX HS) - Jlj dv Lo(£' - £)K EQ - eEJ 
dt 

-/xoHJ at (1) 

Since EQ and Ho represent bound modes that vanish at infinity, the surface integral of Eq. (1) is equal to 
zero. Next, we express the perturbed fields as a time-varying superposition of the cavities' bound states, 
e.g. E'o{r,t) = ^am{t)Eom and Ho(r,f) = J]«ni(*)Hom where the eigenfunctions Eom = Eo(r -r™) and 
Hom = Ho(r — Tm) are localized at the lattice points. If we let in Eq. (1), Eo = Eo„ and HQ = Ho„, and 
by keeping in mind that the material is Kerr nonlinear {v? = n§ + 2non2\E\'^), we then obtain the discrete 
nonlinear evolution equations: 

i-Tj^ + ^Cmnflm+7|a„pa„ =0, (2) 

where the linear coupling coefficients Cmn and the self-phase modulation strength are given by 

Cni.n ~- 

u;oJJJdv{E'-E)E*o„.Eo„. 

///dt;(Mo|Ho„P + e|EonP)' 

2non2£oiJoJjjdv\E, On\ 

///dt;(Mo|Ho„P-h£|EonP)' 
(3) 

If we now consider only nearest-neighbor interactions (as for example in a straight chain of resonators), 
Eq. (2) takes the form: 

i--rf- +Awo„c(oTO+i + am-i)+7|aii|^a„ =0. (4) 
at 

Au = Cmm. represents a small shift in the eigenfrequency WQ arising from the presence of neighboring cavities. 
As a result, the effective eigenfrequency of each resonator in this chain is WQ = wo-Aw. In addition, c = 7r/2rc 
(measuring in inverse time units) stands for the coupling strength between successive sites where TC is the 
time required for one cavity to completely couple its energy to its neighbors (in the linear regime). 

Equation (5) describes the evolution dynamics of the optical field in a nonlinear chain of resonators or 
microcavities. It has the form of a discrete nonlinear Schrodinger equation that is known to exhibit discrete 
soliton (DS) solutions. It is noteworthy pointing out that,'so far, in nonlinear optics, the only other system 
that happens to support (spatial) DS states is that of nonlinear waveguide arrays [4]. However, unlike their 
spatial cousins [4, 5], the DS reported here are by nature spatiotemporal entities. T?he dispersive properties 
of this lattice become apparent if one considers the linear dispersion curve of Eq. (5). This can be obtained 
by using the discrete plane wave solution, exp[i{Q.t-Kxn)] at low amplitudes, where x„ = nD and Q, K are 
its angular fi-equency and wavenumber respectively. In this case one readily finds that 9. — 2ccos{KD) -f Aw 
which, in turn, describes the photonic band structure of this lattice within the Brillouin zone. In general, 
Eq. (5) does not exhibit closed form solutions. Yet, in two limiting cases (for broad and highly localized 
pulses), this equation can be accurately treated analytically. For example, for broad enough solitons, the 
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* • a 9       ^--*;j 

Pig. 3. Three-dimensional pathway of coupled resonators, 

so-called long-wavelength approximation can be employed. The optical field profile of a moderately confined 

tr^Z       T " 1°"" ^t^"^^«-»y - Fig- 2- In principle, the soliton group velocity .. can be ve^L 

L t^e ^ "—' '"*"'""*' 'I'f ; = °' "■ " *^^ P^«"^ *if' ^ = 0' the group velocity .^ = of and 
thus the DS becomes m essence immobile (frozen light). On the other hand for 0 < g < n/2, when the lattice 

tm27rc >Sut"th*'" '"nf -^Pr-g-t- -* -e = 2cDsin(,). ForV= 4 the dispersSni: 
normal (foi c > 0) and thus immobile 7r-out-of-phase dark solitons are expected to exist. Similarly, when the 
nonlmearity of the cham is of the defocusing type, dark solitons are allowed at , = 0 and staggerrd bright 

tog ^ ^/2 IS also of mterest smce to first order the dispersion is close to zero, thus allowing dispersion 

Sodef^tT "rt T- d-P™"^" propagation in the linear regime [7]. In addition, to the weakly or 
moderately locahz^ discrete sohton states, other considerably more confined solutions if Eq. (4) areLo 

iwether d?ff ^t " !^' "' ^"'"'^ '*^"*°"^ " ^^^°°'«*^ ""^ "^^'^h™- d«f-t ^t^^ hat have 
SiL f "?f r"'P"* P"P''*''' **"'""'" °f Peierls-Nabarro effects. In this case, the discrete field 
distribution (m self-focusmg systems with q = 0) has approximately the form a„ « aoexp(-|n|D/^o). 

fnT^tr/'"''^'^- """I *** »«"«« that this class of solitons can be navigated along any pre-assigned path 

cour^ld rT T'?"''"*- ™' '**^' "'^""P^*' *=°"*^ <^*=«"^ '" ^ thre^dimensional Lin of nonlinear 
TifmTtf ^T'''''"'^ ^^^onnded by a photonic crystal), as depicted in Pig. 3. As it has been shown 
L« 1 f ? *^''^' '" '"''^ * *''''**' 'y'**^"* ^"'^ ^^^"^ *he soliton traverses a sharp bend. This is 
oroc^. v/t fh TH"^ f'"^^ ^t"^" '^' *"'° *^ """"d *he corner plays an important role in this 
process^ Yet, these bending losses can be essentially ehminated by appropriately engineering the comer site 

llunt A1 ift^T?' '"''r '' f'^' ''''' '' accomplished by slightly detuning the cLer stte by an 
amount Ml m the effective eigenfrequency of the resonator according to 

4Q_     ffl[l + fcos(g)1 
c i-cir 

«>mp"Stton of trj T       "T '""'^ **' °''""''* '^y "*^^^ *=h*"e'"g *»^« **™«--- - the index composition of the niicrocavity. In conclusion, we have shown that temporal discrete soUtons can propagate 
along a chain of nonlinear coupled resonators or defects that are embedded in a photonic crystal structure 
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Abstract:    Two-period quasi-phase-matching schemes might make it practically possible to 
engineer the averaged effective competing nonhnearities governing beams in quadratic materials. 
We show that the bandwidth for soliton generation is broader than in homogeneous structures. 
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We consider beam propagation under type-I second harmonic generation (SHG) conditions in a lossless 
quasi-phase-matching (QPM) x^^^ slab waveguide. The slowly varying envelope of the fundamental wave 
(FW), El = Ei{x,z), and its second harmonic (SH), £'2 = E2{x,z), are[l] 

0, ■''^^■''''^^+di.)Eh^^^^O. 
dz 4 dx'^ (1) 

The normalized wave-vector mismatch is introduced via the real parameter P = fciw^Afc, where Ak = 
2fci - k2, and wo is the beam width, and /ci,2 are the linear wave numbers of the FW and SH, respectively 
The scaled transverse coordinate, x, is measured in units of WQ and the propagation coordinate, 2, is measured 
in units of 2ld where la = ki(vl/2 is the diffraction length of the FW. As depicted in Fig. 1 the spatial periodic 
modulation of the nonlinearity d{z) consists of a primary grating, d^^\z), and a superimposed secondary 
grating, d^'^^z). 

2lt/K, 

iFUUUinJinjL- 

(nun 4 4 

2lt/K, 

/% t   I 1 f=- 

». = / 

4  1 

Fig. 1. Left figure: The square two-period QPM grating. Right figure: Peak splitting in the two-period QPM 
grating. Dashed peaks indicate the location of the I'st order peaks in the one-period case. 

We expand d{z) in a Fourier series d{z) = '£,d[^hxp{ikKiz) x J^d?^ ^Wi^lK2z) where the summations 
are over all {k,l). If we assume the grating functions to be square, only the odd harmonics enter into the 
expansion, d2i+i = 2/i7r(2/ + 1) and ds; = 0. KI and K2 are the spatial grating frequencies pertaining to the 
primary and secondary grating, respectively. The effect of the superimposed period is to split each peak of 
the original one-period QPM grating into an infinite family of peaks[2]. As shown in Fig. 1 peaks appear 
at all spatial QPM frequencies TUKI + nK2, where m and n are the QPM orders related to the primary and 
secondary grating, respectively. 

By applying the asymptotic expansion [3, 4] technique we have established a perturbation theory describ- 
ing the propagation of the averaged fields in this two-period QPM system. We make the transformation 
El (a;, z) = w{x, z) and E2{x, z) = v{x, z) exp [iez), where e = /? - mKi - n^a, is the residual phase mismatch 
assumed to be small. The functions w;(x, z) and v{x, z) are assumed to vary slowly on the scale given by the 
QPM periods and can be expanded in the Fourier series. For the averaged fields IUQ and VQ of the Fourier 
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series we arrive at the following governing set of equations, 

, .dwQ     1 d'^WQ 

dz 
.dvQ 

^ dz 

i2>. 

1, 

0, 

Id'^v 
4 dx IJ- - c«o + JJWQ - 27|wo|^vo = 0. (3) 

In real crystals, the doiimin lengths Ai.a = ,r/«i,2 vary according to some statistical distribution. With this 
m mind we can show [5] that the averaged nonlinearities for I'st order QPM, i e m = ±1 and n = ±1 «nd 
square grating functions are given by ' 

»? = -sign(mn)-,    T,=-^(i _8/^2)(sign(m)/Ki+sign(n)/«2), (4) 

Equations (2-3) were first derived in [3]. They have the same form regardless of the specific type of grating 
^ and 7 merely given as sums over the Fourier coefficients of the p-ating. Whole families of soUtons exist 
whose properties are by now well known [6, 7]. Engineering of the nonlinearities with QPM have been shown 
to be feasible m [8], although the grating considered was practically unrealizable. With two-period QPM we 
can bring the system close to phase matching by choosing one of the periods in the order of the intrinsic 
phase mismatch m lithium niobate |/?| ~ 103), ^he second period can the be exploited to tailor the residual 

t^n^^t^lrr V ?' ^^"' tw<.period QPM offers is the extra degree of freedom necessary 
to engineer tlie averaged nonlinearities in real systems. 

0 10 
Residual phase mismatch, e 

20 

Fig, 2. Soliton content for sech input PW as a function of tlie residual phase mismatch e = /?-«,- «, 

SSment^-th. f^1,7 P"'^.^\'»f *»*'^ ^^f (^ *«-»). The discrete points are the outcome of numerical 

torn Smitw N  4"? '" " r .*;"'^ *Z ^* ^^^ "y" T"^ '^'''^ *"<* '»°"«» "»^ -« -t™*tes trom the hmrtmg NLSE for a pure quadratic model and for a model with cubic terms, respectively. 

fr.^V^'tf "^"iT* *ir^f nonlinearities addressed to be of potential practical importance, they have to 
impact the observable soliton properties, including their excitation conditions. In Fig. 2 we show the behavior 

MtfJpM r *°" T'"*^?' '?' '' ^ "^"^ "^ '""^ ^-•^'^^' Ph-« ™'™«** fn a two-pTriod strnS 
»d cXl T"''" t%nl^-^''^''^- ^" ^^""^^ " ^^ ^'Snal, with a sech-shape, and no SH seeding 
and calculate how much of the initial power, P,„, is bound in the soliton which eventually forms We 
propagate until a steady state has emerged and then we collect the power in a window wide enough to 
enclose substantiaUy all the soliton. Typical values are propagation until . = 10^ and collection of po4 in 
a window of x = ±10, but these values were adapted whenever needed in order to capture always all the 
soliton pow«-. Simulations where carried out in the actual two-period QPM structure. The bandwidth of the 
SC for sech inputs can be estimated by using the Zakharov-Shabat scattering equations associated with the 
l+l)-dimensional nonlinear Schrodinger equation, NLSE. With cubic terms, i.e. for system (2-3) one gets 

the ffitimate ' J \     JJ "'»^ e'^i'O 

SC~ '■/ 

n'^Pir 
^/WK.-xH^ 

V  +7^ 

In the figure we compare the SC for the twoperiod structure with the SC for the corresponding homogeneous 
pure quadratic case, i.e. we launch the FW power P,„.,,„ = rf^P^ in a homogeneous crystal and plot SC as 
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a function of intrinsic phase mismatch (with no QPM the residual and the intrinsic phase mismatches are 
one and the same). The bandwidth for the two-period structure is found to be wider than the bandwidth in 
the homogeneous case. This effect is entirely due to the induced averaged cubic nonlinearity, which is easily 
seen from (5), i.e. Tj^e/C??^ + 7e) < e. 

In Fig. 3 we plot the soliton content for the (KI, K2) = (195,13) case, but now we scan mismatches not only 
around the {m = n= l)-peak but also around the (m = 1, n = -l)-peak. 

185 200 215 230 
Intrinsic phase mismatch, p 

Fig. 3. Soliton content for sech input FW as a function of intrinsic pliase mismatcli /? with (KI,K2) = 
(195,13). Input power is Pi„ = 50. The discrete points are the outcome of numerical experiments; the full 
lines in between are only to help the eye. The dashed curves are estimates from the limiting NLSE. The 
vertical lines located at /? = 182 and ^ = 208 indicate the m = 1, n = -1 and m = n = 1 peaks, respectively. 
The dashed vertical line at /? = 195 indicates the location of the peak in the absence of a second period. 

One observes that soliton generation around the (m = l,n = -l)-peak takes place within a narrower 
band of mismatches and is less efficient than around the {m = l,n= l)-peak. This is because the average 
nonlinearities (4) are nonlinear fiinctions of m and n and hence they change their relative strengths at the 
two peaks. We remark that one finds soliton generation around other peaks than the (m = 1, n = ±l)-peak. 
For example, in the (KI,K2) = (195,13) case we observe a band (not shown in the plot) around e = 39 
corresponding to the (m = 1, n = 3)-peak. However, soliton formation in this band is much less efficient than 
in the (m = l,n = ±l)-band and therefore we did not include it the plot. Similarly, other bands with higher 
QPM order also exist but one has to launch correspondingly high powers to excite solitons. 
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Abstract: Single-mode rib waveguides at botli pump and second harmonic wavelengths were 
fabricated with low-loss polymere. We investigated the qmsi-phase matching charactertoics, and 
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1. Introduction 

IffiS ^^^' 1 °"t °^^*' ^% ^^^""^ '"^ '^°"'*™'* «P*i*=^' «^™«« '=o°«««s (OXC) in wavelength-division 
tte oxr l^f Tf ^'- ^'^T^ multi-channels routing architecture has recently been proposed to sImpTfy 
the OXC that tondles the large number of WDM channels.[l,2] Cascading diffei^nce frequency generation mpG) 
fZZSM ""ff''' *' new architecture due to their novel feature' multi-channeb conStS-speS^ 
Inl Tr!    ^^^'^ ^'^"sParency. These have been demonstrated with periodically poled LiNbOa wa^gldefp ll' 

febri^tfo^/'"'^'''' ^'^i ^''^'' T'''''^'' '=°""«*'^ ^^^« P^°™*«^g f^^ta'-^^ °f a low corafdt eal 
JiS f ■ fTf' r'''^'''""' "^"^ ^ conversion efficiency, fiber-to-fiber insertion loss, and photochemtea^ 
stability have to be further unproved for real applications = *i u pnotocnemicai 

^^,i!?r/^>J'^-'*T''P^l''"""'*'^'** ^^^^^ P'^^Smer waveguides, pump and second harmonic(SH) waves have to be 
guided with smgle-mode to mamtdn an enough field overlap between the two waves. A core thickness sarisSne 

clad polymers are usually several tmies of lO'l A coupling loss between the optical fiber and the waveLle 
becomes vety high due to the small vertical mode size in the thin waveguide, thus, it is difficuJ trSfS 
conversion efficiency with the waveguide of the small core thickness. ®    ^ 
In this work, we proposed a rib waveguide structure to reduce the coupling loss of the pump beam and fabricated 
tte snigle-mode QPM waveguides through an alternative electric contact pding and a reaS iS be^^cwS A 

SwtratlSSrrw^^^^^ f'^r. "**' °^'' chromo?hores(PEI-DASS) and Zmttue polyacrylate polymer(UFC170) were used as low-loss core and clad, respectively. We measured the sinde-mode 
guitog modes for the pumpCl.55 I, ps fiber laser) andthe generated SH waves, the fiber-t?fto in ertiof toss of 9 
dB at the pump wavelength for a periodically poled waveguide length of 1 cm, effective interaction lenih of 7 5 
mm, and the normalized SHG conversion efficiency of about 1Z10"^ %/(W-cmi "^^eracrion lengtn ot 7.5 

2. Waveguide design and fabrication 

The several material properties were measured (Table 1) for waveguide design. In the core material develonment 
we mainly considered the optical loss at the SH wavelength for conversiol efficiency LllhfglistrSS 
ISer w! ¥ '"' fr'r f *'' '''^'^ chromophores during waveguide fabricate   taadlTo„,r^^M 
polymer was designed that have the same order ofconductivity with the core polymer for efficient poling. 
Table 1. Tlie measured material properties for the 0PM waveguide fabrication 

Parameter            Refractive        djs (pmAT)    Absorption.     Planar waveguide        T (D) 
        '"dexTM        peakfnm) lossfdB/cm) 

PEI-DASS           JfcJHgn^      9(1.55 D)           380               1-80 (1.55 D) 
 1.615 (0.78 D) '^ ^  3.80 (0.78 D) ^^^ 
UFC170 lil^^^-^^^) . . 0.28(1.55 D) 

1.505 (0.78 D)      :      ■ - ni^m^sm 
"^ T f 

i«-6um-^     ^3.1 pm    ^   ^      Clad(UFC170) 

Core (PEI-DASS) 

3.6 (im   Ck(l(UFC170) 

•^'^•"^W'^^. \ \ i'^ziz k \ \ \\ K ^ \ \ VXW?^ Ct(10mn)-Au(100nm) 
,i i i «  i I I tJ 1 i t $ i « t i I. j < i I I I I j j i 
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(a) (b) 

Fig. 1. (a) Rib waveguide structure, (b) A microscope image of the core layer after the QPM pohng and thick 
straight line in the grating center is a photoresister pattern for the waveguide etching. 
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Fig. 2. (a) Effective index of the slab waveguide as a function 
of the core thickness. In the rib waveguide structure, the 
waveguide side is etched by At to get the effective index 
contrast of ANeff for the SH wave, (b) Guided single-mode 
image of the pump beam, (c) Generated single-mode image of 
the SH beam by the pump beam. 

The designed rib waveguide as shovra in Fig. 1(a) confines only one mode at both pump and SH waves by radiating 
higher order modes laterally into slab modes. In the type of rib structure, the single-mode condition does not require 
a thin core layer. For thicker core thickness, it is still possible to find one mode guiding condition by taking a proper 
etching depth. The etching depth in the structure was determined to get sufficient beam confinement in the lateral 
direction. As shown in Fig.2(a), the effective index contrast ANetr (the difference between the effective index of the 
etched slab region(2.1 C) and that of the un-etched region((3 D)) of 0.0035 was required to keep the single-mode 
condition at the SHG wavelength. In the case of the pump wavelength, single-mode guiding condition was also 
satisfied with the effective index contrast of 0.0086. Although the 3-D slab waveguide can support higher order 
modes these are difficult to propagate through the rib waveguide because the effective index of the first higher order 
mode in the 3-D slab region is lower than that of the fundamental mode in the 2.1-D slab region. It means that the 
higher order modes supported by the 3- D slab region will be coupled into the fundamental mode of the 2.1-D slab 
region. 

The rib waveguides were fabricated by ion beam etching in oxygen. After the core coating, these were periodically 
poled with an electric field of lOOV/D for 5 min at 160 D. Several waveguides with the QPM periods from 20 D to 
30 D with a step of 0.5 D were made to find the phase matching period at the 1.55 D pump wavelength. In order to 
investigate the core pattern of the periodically poled region, we took a microscopic image as shown in Fig. 1(b). It 
shows a uniform grating period of 21 D and small surface deformations. The scattering loss of IdB due to the 
periodic poling was estimated by comparing the fiber-to fiber insertion losses between the periodically poled 
waveguide(9 dB) and the un-poled waveguide(8 dB) for the waveguide length of 1 cm. The guided mode profiles 
were shown m Fig.2 (b) and (c), which were taken by CCD camera through a lens imaging of the output beams of 
the waveguide. It shows that the pump and SHG beams are guided with the expected single-mode without the higher 
order modes excitation. 

3. QPM SHG properties 

The SHG experiments were performed with a ps fiber laser. It has the pulse wddth of 5 ps and the repetition rate of 
20 MHz with the maximum average power of 2 mW. Figure 3 shows the phase matching curve by tuning the pump 
wavelengths. The QPM period of 22.5 D was phase matched at the center wavelength of 1.5565 D with the FWHM 
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Abstract: We demonstrate for the first time second harmonic generation from 1.536 |im in a 
buried planar waveguide fabricated by an annealed and reverse proton exchange in a two- 
dimensional (2D) nonlinear photonic LiNbQ crystal. 
©2002 Optical Society of America 
OCIS codes: (230.7390) Waveguides, planar, (190.4390) Nonlinear optics, integrated optics, (130.3730) Lithium niobate 

1. Introduction 

Nonlinear frequency conversion in 2D quadratic photonic crystals is significantly enriched with respect to the ID 
case due to the possibility of phase-matching simultaneously several parametric interactions in the 2D plane [ 1], 

The first example of a 2D nonlinear photonic crystal (NPC), with a constant refractive index and a spatially 
periodic nonlinear susceptibility, was demonstrated in Lithium Niobate by an extension of the electrical field poling 
technology used to fabricate ID x^^'gratings [2], to two dimensional hexagonal patterns (HeXLN)[3]. Several bulk 
experiments have confirmed the potential of HeXLN crystals for multiple harmonic generation (red, green and blue) 
and Second Harmonic Gsneration (SHG) with an enhanced tuning range [3,4]. In addition other researchers have 
demonstrated simultaneous wavelength interchange using a NPC [5]. 

In these early experiments the conversion efficiency was relatively low (particularly in the case of high harmonic 
generation). Several approaches can be taken in order to increase the quadratic efficiency in 2D NPC. One consists 
in resorting to a planar guided-wave configuration to increase the field intensities and also to improve the modal 
overlap compared to the bulk case. Moving to a planar geometry at the same time preserves all the versatility and 
peculiarities of the 2D NPC structure associated with the availability of multiple reciprocal lattice vectors and the 
possibility of implementing non-collinear interactions. 

In this paper, we present what we believe to be the first demonstration of quadratic interactions in a planar 
HeXLN waveguide fabricated using the technology of annealed and reverse proton exchange. 

The waveguide generates simultaneously noncoUinear second, third and fourth harmonic beams. Here we briefly 
discuss our first results concerning essentially the SHG response. Ultimately we hope to use the SHG response to 
characterize the waveguide parameters. For example, information about the effective index of the waveguide can be 
obtained by comparing the angles at which SHG is emitted in the waveguide compared to the bulk. 

2. Fabrication 

The 2D NPC was fabricated by periodically poling a z-cut 500-|Am thick, congruent LiNbQ crystal with an 
hexagonal pattern in the x-y plane. First, we deposited a thin layer of photoresist onto the -z face on which we 
defined photolithographically the hexagonal array with a spatial period A= 18.05 |im. The pattern was then 
transferred to the sample by applying an electric field via liquid electrodes on the + z faces at room temperature [3]. 
The HeXLN structure and its orientation with respect to the crystal axes (x,y,z) is sketched in Fig. la. 

The planar buried waveguide was fabricated after the poling, via the sequence of proton exchange, annealing and 
reverse proton exchange [6]. The initial proton exchange (PE), performed at 160PC for 31 hours, yielded a proton- 
rich layer on top of the crystal, corresponding to a high retractive index, low-nonlinearity surface planar waveguide 
for the extraordinary polarization. The PE waveguide was then annealed to let protons diffuse into the substrate, 
creating a deeper, graded-index waveguide. Finally, a Li^ rich layer was re-created at the surface of the annealed PE 
waveguide by a reverse proton exchange (RPE) in a eutectic melt of LiNGj, KNO3 and NaNOj. 

The process conditions were chosen to allow the realization of a nonlinearity-preserving buried planar 
waveguide, which is designed to be single-moded (TMQ) at wavelengths around 1.53 |xm. The buried waveguide 
structure is sketched in Fig. lb. 

Lastly, we polished the + x faces of the HeXLN waveguide allowing a propagation length of 14 mm through the 
crystal in the x axis direction. 
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njz) 

Fig.1: a) structure of the LiNbO, hexagonal domain pattern (HeXLN) in thex-j plane, b) sketch of the HeXLN and of the 
buned wavegmde c) typical structure in depth (z) of a buried waveguide made by PE + anneali^ /wE to piMinl 
SSS"*"'!? ,*°fr Pfto'^rich layer (HLi,.NbO,), On the right, sketch of the extraordina.; index profllfof th! : 
buned waveguide (thick hne), along with the profile of the surface waveguide before the last RPE step (thin iL) 

3. Experimental setup 

i!?Kf ^tS""**' '"*"? "'f *° characterize the response of our buried HeXLN waveguide is schematically shown 
in Fig. 2 The soiree for the experiments was an all-fiber amplifier chain seeded by an externally modulated laser 
d«>de dehvemg 5 ns pulses at 1.536 nm, with adjustable repetition rates (1 -500 kHz) and peak powers (up to 

In order to avoid photorefractive effects, the HeXLN waveguide was placed in a computer controlled oven 
(matntamed at temperatures beyond lOOOQ. The oven was mounted on a rotation stage, to allow adjusting o^le 
pump incidence angle. => j       s        >- 

len Jffn^n*' tl 'f^'on "®^* '"f f" T^^g^'^e, we first shaped the laser beam into an ellipse with a cylindrical 
lens (focal length: /= 20 cm) and then focused the elliptical beam through aspherical lens (lOX objectL) The 
resultmg s^t size of the 1.536 m pump at the waveguide input was 5.6 nm x 80 ^im FWHM. We measured a 36 % 
coupling efficiency mto the planar waveguide. The inset of Fig. 2 shows an image of the intensity profile of the TMn 
mode at 1.536 pm, collected at the waveguide output with an IR camera. 

AMPLIFIED 
FIBER 

SOURCE 

"© f 
HeXLN 

WAVEGUIDE 

■4 rs-s 

•a 
ks) field profile 

at the waveguide ouput 

Hg. 2. Experimental setup used to measure fte response of the HeXLN waveguide The source consists of a rw dinrip 
totheoutputofwhichisexterndlymodulatedandamplifiedby thecascaderfseveraffSrli^S^^^^^ 
shows an «nage of the intensity of the TMo mode at the pump wavelength (^). taken at the waveguide output 

4. Quadratic response 

The quadratic response of 2D nonlinear photonic crystals is very rich. Although our HeXLN waveguide generates 

l«c rr rf •' ' '""' ^' **'''"''i* wavelengths and at different angles with respect to the fimfameftal beam 
direction the firs measurements we made concern the SHG, which in itself can provide information on both the 
linear and the nonlinear properties of the device. 

crvll Wh"^ *' !^f^ T''^"^ *^i'** *^°"''*''" *=°"P'"** ^''^^' »"to *e waveguide or into the bulk of the 
crystal When moving from the waveguide to the bulk the angle that the SH was emitted at was observed to change 
and at the same time an increase in the generated red and green light was apparent 

It is worth TOntioning that the HeXLN period we used in these preliminaiy experiments (18.05 jim) is meant to 
maximize the efficiency of SHG in the bulk with a pump at 1.536 jim propagating along the x axis. Therefore our 
expenmental conditions do not correspond to the optimum for SHG in the buried waveguide, due to the fact that its 
djspo-sion proper^es ^ffer from those of the bulk. Nevertheless, by letting the fundamental beam propagate slightly 
off the X axis, we could still exploit the same reciprocal lattice vector used in previous bulk experiments (i.e Qo) to 
generate red and green light in the waveguide although at angles different from the bulk quadratic interaction 
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The SHG response of the waveguide can be studied by varying several parameters such as the infrared pump 
power, the temperature, the incidence angle. As an example, Fig. 3a shows the internal SHG conversion efficiency 

OUTx (risHG'"'™'"), calculated as the ratio of the average powers of the SH at the output (P2C0 ) and of the fundamental at 
the input of the waveguide (PM™), as a function of Po,"^, for a given pump incidence angle. Fig. %, on the other side, 
shows a typical SHG temperature tuning curve of our waveguide. Its asymmetry is to be attributed to the fact that, 
due to thermal expansion of the oven, the vertical position of the input beam changes with respect to the waveguide 
as the temperature is varied. Namely, in the case of fig. 3fo, the peak at 138''C corresponds to SHG from the 
waveguide. The "shoulder" at lower temperatures corresponds to the beam getting into the bulk, while the rapid 
decay of the SHG signal at higher temperatures corresponds to the beam getting into the upper cladding (air). 

A better insight into the properties of the waveguide would be provided by a systematic study of the SHG 
angular response and of the SHG temperature tuning curves. We are at present pursuing this objective to the aim of 
further optimizing the structure towards the realization of true "device". 
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Fig. 3. a) SHG internal efficiency (r|sHc'"™") as a function of the average power at \, coupled in the waveguide (Pm"^ 
measured for a given pump incidence angle at a 1 kHz pulse repetition rate and b) generated SH average power at the 
output measured as a fiinction of temperature. 

7. Conclusions 

In conclusion we have fabricated the first planar buried waveguide in a HeXLN crystal and explored its quadratic 
response, by studying experimentally the SHG fi-om a 1.536 |xm pulsed pump. The SHG response in itself is very 
rich and can provide useful information on the properties of both the 2D nonlinear grating and the waveguide, which 
would allow a further joint optimization of the waveguide and 2D NPC for maximum efficiency. 

Although these are only preliminary results and margin is still left for optimization, the guided-wave 
configuration appears well suited to fully exploiting the capabilities of HeXLN for both telecommunication and 
fundamental physics. 
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Bistabllity In Photonic Crystal Defects 
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"^itST^f ®"^'^'f' ■''®°'"y ^"'' computational experiments to demonstrate optical bistabllity in a 
Iht tt^fnJn"^"' ^^^""^^ crpta devices. Lengths of our devices are smaller than the waveteS o1 
light, they can operate wrth only a few mW of power, and can be faster than 1ps 
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T(ai=pI!!Lfp^JSn/3^^^^ °'  ^^^=0-2581(2m)/a and  a  Lorentzian transmission  spectrum: 
♦h ^"SL  ,1"^^ ^ r/ff+r«^flhEs) i, where Pour and P„ are the outgoing and incoming powers resoectivelv and ri<, 
the width of the resonance. We obtain a quality factor 0=^,^^27=557 respectively, and ris 
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which we call fhe nonlinear feedback parameter is roughly a constant of this non-linear system. Moreover, the value of 
«• does not change as we add more rods to the Vails" that separate the cavity from the waveguides, thereby 
increasing the Q of the cavity, x-is a measure of efficiency of the non-linear feedback of a given system: the larger the 
ic, the more efficient our system is. 

We define two more useful quantities: S=(aj^es-e^)lr'^^ the relative detuning of the carrier frequency from the 
resonance frequency, and PO=2I(3Q^K) is a "characteristic power" of the cavity. With these definitions the dependency 
between Pou/ and PIN^ becomes: 

■* OUT 

pS 
1 

1-f- 
rps 

^OUT/ 

(2) 

-s 

This cubic equation can have either one or three real solutions for Pou/, depending on the value of the detuning 
parameter S. The bistable regime corresponds to three real solutions and requires a detuning parameter S>' 3. By 
Eq.(2), this tells us the minimum power needed for bistabilrty: Pb.min=Pioo%= • 3Po. The physical interpretation of the 
non-linear feedback parameter is now apparent; 1I(KQ^) is a measure of the characteristic power needed to observe 
bistability in the cavity in question. 

prN(f?) 
5 10 15 

2 3 4 

PfN(Vn2) 

5 ,6 

Figure 2: Plot of the observed Pou/ vs. P// for the device from Figure 1, when S=3.8. The circles are 
points obtained from numerical experiments. The line is our analytical prediction, which clearly matches 
the numerical experiments. 

To check our analytic theory, we obtain K=99.9n2lAo from a single non-linear run, and together with the 
knowledge of Q and CORES, we obtain POUT^(PIN^) for ^3.8 which we plot as the green line in Figure 2. Our analytic 
theory is seen to be in an excellent agreement with the numerical experiments. The "middle" hysteresis branch (the 
dashed line in Figure 2) is unstable - any tiny perturbation makes a solution on that branch decay either to the upper or 
to the lower branch. 

We can use our 2D simulations to immediately predict behavior of a similar system, implemented in 3D [2]. 
Assuming that the Kerr coefficient is f\2=1.5*10'''^m^lW, (a value achievable in many nearly-instantaneous non-linear 
materials**'), and that the carrier A(f=1.55^m, the minimum power to observe bistability is Pb,min=119mW. This value is 
many orders of magnitude lower than in other small all-optical ultra-fast switches; the reason for this is two-fold. First, 
the transverse area of the modes in the system of Figure 1 is only • ^AJ3f; consequently, to achieve the same-size 
non-linear effects, we need much less power than in some other systems that have larger transverse modal area. 
Second, since we are dealing with a highly confined, high-Q cavity, the field inside the cavity is much larger than the 

Please note that in our notation, n2=cnH£cfi2, where HH is n of our high-s material. 
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SLl°ff5 *^® "^"'t- *^'^ ^^PPe"s because of energy accumulation in the cavity. In fact, from the expression for the 

'te power Po, one can see that the operating power falls as 1/Q'  expression tor the 
lit in systems other than PCs. so we fiynsnt hinh.n ^o,,;*;^^ :„ 
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<-(2) 

<-(4) 

tjf^vl'' ^l^'^** ff .W fo"" a channel-drop photonic crystal device that we use to demonstrate optical 
bistabilrty. here exhibiting 100% resonant linear transmission from port (3) to p^rt (4) The dSL S 

Sly''' '''     "" '" ^^' '■ ""^ "^^' *'" '^'9^ '"^^^ '°^' ^^ having anIistaLneoul K^^^^^^^^ 

h^ ?hL?J    TS""":"? 'i"™"'' ^^=P«"™ly. and ^Is the width of the reLnance. Consequertrthis s»tem c^^^^^^^^ 

ih^f «.V ^ ' *      wougn port (2). Taf^j-f-T^f^; no power ever exists into port (5). Because of this one can think nf 

n.rtn.rtc^if'''■^"^' °"® ""! ^®. "^'"9 *h^ P°^^ <3> ^"d/o"" (5) as the inputs, and the ports (2) and/or (4) be used as thP 
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