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ABSTRACT 

This thesis utilizes field data from the Fraser River Estuary, a highly stratified system 
located in southwestern British Columbia, Canada, to investigate the nature of mixing 
processes in a highly stratified environment, and to extend two-dimensional hydraulic 
theory to a three dimensional environment. 

During the late ebb, a stationary fi-ont exists at the Fraser mouth. Although densimetric 
Froude numbers in the vicinity of the front are supercritical in a frame of reference 
parallel to the local streamlines, the fi-ont itself is oriented such that the value of the 
Froude number is equal to the critical value of unity when taken in a frame of reference 
perpendicular to the front. This observation presents a robust extension of established 
two-dimensional, two-layer hydraulic theory to three dimensions, and implies similarity 
with trans-sonic flows, in that a Froude angle can be used to identify critical conditions in 
a manner similar to the Mach angle. 

Mixing processes were evaluated at the mouth during the late ebb using a control volume 
approach to isolate mean vertical entrainment processes from turbulent processes, and 
quantify the vertical turbulent salt and momentum fluxes. Observed turbulent dissipation 
rates are high, on the order of 10"^ m^s ^ with vertical entrainment velocities on the order 
of 2x10"' m-s"'. Mixing efficiencies, expressed as flux Richardson numbers, are 
confined within a range from 0.15 to 0.2, at gradient Richardson number values between 
0.2 and 0.25. These results are consistent with previous laboratory studies, but represent 
energetic conditions that are several orders of magnitude higher. 

In the estuarine channel, the variability of mixing processes was investigated through the 
tidal cycle using control volume and overturn scale methods. Spatially, mixing was 
observed to be more intense near a width constriction on the order of 25%. Temporally, 
more dominant mixing was observed during ebbs, due to increases in both vertical shear 
and stratification. Mixing is active and important throughout the tidal cycle, and was 
found to be the dominant process responsible for removing salt from the estuarine 
channel during the ebb. 
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Chapter 1 

Introduction 
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1.1     The Physical Significance of Estuaries 

The discharge of fresh river water represents a significant source of nutrients, 

sediments, pollutants and other terrestrially derived material to the world's oceans (Yin et 

al, 1995; Caspers, 1967; Sommerfield and Nittrouer, 1999). During its journey to the 

sea, the fresh river discharge first interacts with ocean water within an estuary situated at 

or near the river mouth. Because very different water masses are colliding within an 

estuary, estuaries can often be characterized by strong gradients, of which the most 

dynamically important are density and velocity. Strong gradients of dissolved and 

suspended constituents such as nutrients, pollutants, and suspended sediment are also 

typically present, and it is the ultimate disposition of these components that provides 

much of the motivation for understanding the local physics. 

The nature and intensity of the mixing processes within an estuary are driven, to a 

large extent, by the dynamically important gradients of density and velocity. Shear 

instabilities resulting from perturbations in the velocity profile large enough to overcome 

the ambient density stratification provide the primary mechanism for turbulence 

generation and mixing (Thorpe, 1973). At the seaward end of the estuary, the density 

difference between the discharge and the ambient coastal water has been greatly reduced, 

but the brackish residual that remains can continue to persist in the coastal ocean and be 

carried great distances, sometimes on the order of 10^ to 10^ kilometers, as the plume 

forms a coastal current (Yankovsky and Chapman, 1997). Eventually, through the action 

of external forcing mechanisms, such as wind and wave action, the signal of the plume is 

diluted by mixing with ocean water (Fong, 1998; Lentz, 2001). 
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The physics of the estuarine region are responsible for setting the initial conditions of 

the coastal current, ultimately affecting far-field transport and the dilution and 

distribution of fresh water and river borne material. The use of numerical models to 

understand and predict the physics of coastal currents is promising, however an unportant 

boundary condition for these numerical models must represent the conditions at the river 

mouth, which can only be assessed through an understanding of the local physics. 

Specifically, initial values of plume velocity, width, depth, and density are important 

parameters that represent the integrated product of smaller scale physical processes 

within the estuary. It is these values that would need to be passed to a numerical model 

as boundary conditions for a coastal current. Accurate prediction of these parameters has 

been a goal of estuarine research for at least fifty years (e.g., Stommel and Farmer, 1952), 

although a satisfactory predictive capacity has yet to be established. 

This thesis focuses on field observations fi-om the Fraser River Estuary, a highly 

stratified estuary in southwestern British Columbia, Canada, m an effort to understand 

both the physics of mixing processes in highly stratified environments, and the factore 

controUing the hydrographic structure of an estuary, particularly the estuarine front. The 

thesis addresses specific mixing and hydraulic control processes which are critical for 

fixing coastal current boundary conditions. 

A second motivating factor for the present study is the relevance of the general 

principles of fluid dynamics observable in estuaries to a broader range of both basic and 

applied problems. Similar flows and fluid dynamics are important in a wide range of 

fields that includes oceanography, meteorology, and engineering. The physics of 
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turbulent regions characterized by both velocity shear and stratification has been studied 

for several decades, primarily through laboratory experiments, numerical models, and 

oceanic thermocline observations (e.g., Ivey and Imberger, 1991; Smyth and Moum, 

2000; Gregg, 1989). The present study complements the current body of knowledge by 

adding observations from a highly energetic stratified shear layer. Likewise, the present 

study provides a three-dimensional extension to the concept of two-layer hydraulic 

control, which has been well studied analytically in one dimension (Armi, 1986; Dalziel, 

1991). 

1.2     The Physics of Mixing in Stratified Fluids 

Velocity shear in a fluid of constant density provides a source for instability and the 

generation of turbulence. Stable stratification within a fluid has the opposite effect, 

providing a stabilizing influence to the flow. In a stratified shear flow, both of these 

mechanisms are important and a balance is struck between the two. The nature of the 

balance can be quantified by the gradient Richardson number, Rig, equal to the ratio of 

the square of the buoyancy frequency to the square of the vertical velocity shear: 

Ri = -P^ (1.1) 

where g is gravitational acceleration, p is density, u is velocity, and z is the vertical 

coordinate. Miles (1961) and Howard (1961) demonstrated analytically that at values of 

Rig >'/4 the density gradient is strong enough to suppress the development of turbulence, 
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and that a value of ^ig <V4 was a necessary, but not sufficient, condition for the 

generation of turbulence. Thorpe (1973) supplemented this work by demonstrating 

experimentally that a value of ^ig equal to V^ was a good indicator for the onset of 

stratified turbulence, and establishing this threshold as a sufficient condition for 

turbulence in a laboratory shear flow. 

More recent work, over the last few decades, has focused on quantifying rates of 

turbulent kinetic energy (TKE) production and dissipation in shear stratified 

environments in an effort to underetand both the convereion of mean flow energy into 

turbulence, and the ultimate partitioning of TKE to potential energy, in the form of 

buoyancy flux, and dissipation (e.g., Ivey and Imberger, 1991). Most of this work has 

been performed in the laboratory (e.g.. Linden, 1979; Ivey and Imberger, 1991), or is 

based on observations from the deep ocean thermocline (e.g., Gregg, 1987). This 

existing body of knowledge suggests that the flux Richardson number, % which is a 

measure of mixing efficiency equal to the ratio of buoyancy flux to TKE production, 

should be approximately constant for folly developed shear-stratified turbulence at a 

value between 0.15 and 0.25. Most of the data upon which this conclusion is based are 

from systems with relatively low dissipation rates and small mean flow and turbulent 

scales, which may not be representative of actual environmental flows. 

One scaling measure that can be used to describe stratified turbulence is a Reynolds 

number constructed from turbulent scales (Stillenger et al, 1982): 

^"^ = — = -§? (1-2) 
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where q and Lo are characteristic velocity and length scales of the turbulence, v is the 

molecular viscosity of the fluid, e represents dissipation of tiirbulent kinetic energy, and 

A^ = 

is the buoyancy frequency. The value of this turbulent Reynolds number is limited in the 

laboratory by the limited length scales associated with laboratory apparatus, and, as a 

result, field scale values cannot be approximated in the laboratory. At values of this 

Reynold's number that are too small, molecular diffusion effects for salt and/or heat can 

begin to impact the mixing processes. Another potential drawback of laboratory work is 

that laboratory studies are often confined to two dimensions, removing the effects of 

secondary flows from the analysis. Values oiRer for laboratory flows typically fall 

below 10^, whereas naturally occurring environmental flows are often characterized by 

values several orders of magnitude higher. Little is known about the mechanics of shear- 

stratified turbulence at these scales, particularly the relationship of TKE production to the 

mean flow, and the nature of the flux Richardson number. 

TKE quantities are typically measured in the field using microstructure profilers, 

which have sufficiently high resolution to measure turbulent fluctuations effectively (e.g., 

Gargett and Moum, 1995; Peters, 1999). An alternative technique for directly measuring 

TKE production involves analyzing the variance associated with measurements from a 

stably positioned acoustic Doppler current profiler (ADCP), as described by Stacey et al. 

(1999). This technique can be effective when there is minimal ambient motion of the 

ADCP unit. An indirect measurement of buoyancy flux can also be achieved through the 
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use of overturn scale methods (e.g., Thorpe, 1979; Osbom, 1980; Dillon, 1982), using 

simple observations of density profiles. Although these methods can all be effective, 

each suffers from constraints imposed by cost, implementation, and/or the necessity of 

assumptions related to the turbulent processes that are the subject of the investigation. 

No direct measurements of TKE quantities have been published that utilize velocity and 

density profiles derived from ADCP and conductivity-temperature-depth (CTD) 

measurements. These instruments are widely available and are two of the most common 

pieces of instrumentation for modem observational physical oceanography. Therefore, a 

method utilizing this type of data could be a usefiil alternative to the three methods 

mentioned above for identifying TKE quantities under certain conditions. 

1.3     Two-Layer Hydraulic Theory 

The understanding of stratified flows has advanced substantially in the past 50 years. 

Early studies focused on the large-scale advective effects associated with the motion of 

varying density fluids such as fi-esh and salt water, often referred to as the "lock exchange 

problem", (Schijf and Schonfeld, 1953). Additional work has focused more specifically 

on issues of hydraulic control in these types of flows. An internal Froude number, G, for 

a two-layer flow can be defined as the square root of the sum of the squares of the 

individual layer Froude numbers (e.g., Armi, 1986): 

G'=F,^+F,\ F}=4-, (1.4) 
ghj 
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where the subscripts 1 and 2 refer to the upper and lower layers, respectively, Fj is the 

layer Froude number, hj is the layer thickness, and g' = g(p, - p^ )p„" is a reduced 

gravity. As early as 1952, Stommel and Farmer first suggested that a critical Froude 

number value equal to one was a necessary condition at an estuarine salt wedge fi-ont. 

Several decades later, hydraulic theory for two-layer flows was developed through 

several different analytical methods (Armi, 1986; Armi and Farmer, 1986; Farmer and 

Armi, 1986; Dalziel, 1991).. Two-layer hydraulic theory can be considered an extension 

of classical hydraulic theory for uniform density open channel flow. In a manner 

analogous to traditional hydraulics, the internal Froude number can be used to describe 

the state of the flow with respect to the communication of information, in this case via 

long interfacial waves, in both the upstream and downstream directions. 

A value of G<1 is representative of subcritical flow, indicating that the ambient fluid 

velocity is less than the wave speed, which allows waves to propagate in both directions. 

Supercritical flow is achieved when G>1, indicating that both the upstream and 

downstream directed wave fronts are swept downstream by the mean current, preventing 

information from propagating in the upstream direction. Hydraulic control can be 

established at transition points in the flow, where Froude numbers are forced to a critical 

value equal to 1, establishing a consistent relationship between discharge and interfacial 

depth. A common example of hydraulic control in a uniform density open channel flow 

is that of flow over a weir (e.g., Henderson, 1966, pp. 174-234). This phenomenon has 

been long exploited as an efficient means of measuring flow rates. 
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Armi and Farmer (1986) and Farmer and Armi (1986) presented classification 

schemes for the hydraulic control of two-layer flows through contractions and over sills, 

respectively, based on barotropic flow components and the internal, or individual layer, 

Froude numbers. The changes in channel geometry due to the sill and/or contraction 

result in a convective acceleration of the fluid, with significant changes in Froude 

number. The flow is then controlled at a specific point, depending on the barotropic 

component of the flow, where the local velocity and depth are matched to result in a 

critical Froude number of unity. According to Armi and Farmer (1986) and Farmer and 

Armi (1986), a point of hydraulic control is located at an arrested density front, with 

supercritical conditions behind the front. 

The relevance of two-layer hydraulic theory to observations of estuarine fronts has 

been approached in several previous studies of highly stratified estuaries, including the 

Mississippi River Estuary (Wright and Coleman, 1971), and the Ishikari River Estuary 

(Kashawamura and Yoshida, 1978). These observations have indicated that the Froude 

number is close to one near observed fronts. Observations of the Mississippi River 

plume indicate that vertical mixing was probably intensified as a result of an observed 

increase in Froude number to marginally supercritical conditions near the river mouth. 

The Froude number was observed to decrease within the plume, outside of the mouth, to 

marginally subcritical values, suggesting a possible feedback mechanism with a natural 

tendency towards criticality. Kashawamura and Yoshida (1978) foimd a similar 

distribution of Froude number associated with the Ishikari River in Japan. Subcritical 

flow was found inside the river channel, with approximately critical conditions at the 
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mouth, but a decrease of Froude number outside the mouth was not consistently 

observed. 

The studies of Wright and Coleman (1971) and Kashawamura and Yoshida (1978) 

used observations of approximately critical Froude numbers near estuarine fronts to 

validate the existing two-dimensional theory (i.e., G=l at points of hydraulic control). 

These conclusions were based in part on historical limitations in measurement equipment, 

and a limited number of observation points, which made it difficult to determine the 

nature of hydraulic control in these estuaries more precisely. Other fronts (i.e., Geyer et 

al., 1988) have been observed in estuaries at significantly supercritical values, which are 

inconsistent with existing two-layer hydraulic theory. Although a three-dimensional 

approach has been undertaken for the description of hydraulic control in unstratified open 

channel flows (Ippen, 1936) and similar controls in trans-sonic gas flows (Garvine, 

1982), a similar approach has not been used to expand the scope of two-layer hydraulic 

theory. With the advent of modem oceanographic instruments, specifically the ADCP 

and CTD, previous observational deficiencies can be overcome, and much needed 

observations of frontal structure can be made in order to develop and test a three- 

dimensional extension of classic two-layer hydraulic theory. 

1.4     The Fraser River Estuary 

The Fraser River Estuary is located at the mouth of the Fraser River, which flows 

into the Strait of Georgia in the southwestern comer of British Columbia, approximately 

20 km south of the City of Vancouver (Figure 1.1). With a total length of 1,368 km, the 
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Figure 1,1:  Location and plan view of the Fraser River Estuary, British Columbia, Canada. The 
second panel shows the lower 20 km of the main arm of the Fraser River and ite confluence with the 
Strait of Georgia. Darkest shading represents banks that are submerged at high water. Remaining 
shading represents depths of 0-5 m, 5-10 m and greater than 10 m from dark to Ught. Depths within the 
mam channel generally range from 10 to 15 m, with depths seaward of Sand Heads dropping rapidly to 
greater than 50 m. 
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Fraser River is the longest river in British Columbia, and together with the Columbia and 

Peace Rivers, drains the majority of the western slopes of the Canadian Rockies and the 

Coast Range mountains. The watershed of the Fraser encompasses 234,000 km^, making 

the Fraser the dominant source of freshwater to the inland sea created by the Strait of 

Georgia, the Strait of Juan de Fuca, and Puget Sound. The freshet in the Fraser typically 

occurs in late May or early June as snow pack at the higher elevations of the inland 

mountains begins to melt. Peak freshwater discharge during the freshet is on the order of 

10,000 cubic meters per second. 

This study focuses on the dynamics of the Fraser River Estuary during the summer 

freshet, which is highly stratified through the majority of the tidal cycle. High 

stratification is maintained by the high fresh water discharge. In addition, the estuary is 

also affected by strong tides, potentially leading to more energetic mixing than other 

highly stratified, or salt wedge, estuaries. The conditions in the Fraser are well suited for 

observations of general fluid mechanics phenomena in a high energy, field scale 

environment. The flow in a highly stratified system such as the Fraser is more similar to 

an idealized two-layer flow than the circulation patterns observed in other types of 

estuaries (i.e., well-mixed, or partially mixed), which makes the Fraser suitable for 

observations of both the mixing processes along a highly stratified interface, and the 

structure and position of the stratified front with respect to two-layer hydraulic theory. 

Bathymetry within the estuary is relatively uniform due to maintenance of the 

channel for navigation. The main stem of the channel, which is dredged regularly and 

confined by jetties, varies from 600 to 1,000 m in breadth, with a fairly uniform depth of 

26 



approximately 10 to 15 m. Depths increase rapidly to over 50 m outside the river mouth 

in the Strait of Georgia. The lower 12 km of the river channel is predominately straight, 

with the notable exception of Steveston Bend, a bend of roughly 60° located 

approximately 6 km landward of the mouth. 

The combination of high discharge and large tidal amplitude in the Fraser River 

Estuary creates a highly energetic system at the river mouth. Large amplitudes, typically 

ranging from 2.5 to 4.0 meters, and a pronounced diurnal component characterize tides in 

this area, as shown in Figure 1.2. The resulting salt wedge typically intrudes some 10 to 

20 km landward of Sand Heads, which represents the seaward end of the Steveston Jetty, 

on each tidal cycle, retreating to the mouth during the larger of the two daily ebbs. The 

front then remains nearly stationary at the mouth for several hours prior to reentering the 

channel on the following flood. 

The stratification in the Fraser River is controlled almost exclusively by salmity. 

Although temperature variations on the order of 6° C can be observed, local salinity 

differences on the order of 20 to 30 psu dominate changes in density. This simplifies 

calculations, as isopycnal surfaces can be assumed to be coincident with isohalines 

The work of Geyer and Smith (1987), Geyer (1988), and Geyer and Farmer (1989) in 

the Fraser River Estuary focused on the time-dependent variation of the salt wedge across 

the tidal cycle. The sah wedge was observed to advance landward during the flood as a 

density current, with little mixing along the density interface. The shape of the intrusion 

changed significantly on the ebb, as the structure was eroded by shear instabilities, 

primarily Kelvin-Helmholtz and Holmboe instabilities, along the interface. The 
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Figure 1.2:  Plots of tidal stage from the two field collection efforts, (a) 1999. (b) 2000. Local time 
is shown, Pacific Daylight Savings Time (POST). 
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difference between these two states was attributed to a transition of the internal hydraulic 

state of the flow. On the flood, the advancing current was characterized by subcritical 

densimetric Froude numbers, but during the ebb, a transition towards a supercritical state 

was observed. It was hypothesized that more intense mixing was associated with the 

supercritical regions, which were typically found at and seaward of localized narrows in 

the channel. 

Although these studies (Geyer, 1985; Geyer and Smith, 1987; Geyer, 1988, Geyer 

and Farmer, 1989) provide a solid framework for underetandmg the dynamics of the 

Fraser River salt wedge through the tidal cycle, quantitative measurements of turbulence 

and mixing could not be made. Advances in instrumentation over the last 15 years have 

made such measurements more accessible. Estimates of buoyancy flux through the tidal 

cycle from observations during the current stady, with comparisons to the eariier 

conclusions, are presented in Chapter 4. 

1.5    The 1999 and 2000 Field Efforts 

This thesis is based on observations from two field efforts, during the summer 

freshets of 1999 and 2000. Both field efforts involved the collection of hydrographic 

data from shipboard instruments, using the UNOLS vessel R/V CMfford A. Barnes out of 

the University of Washington. Data was collected primarily from two hull-mounted 

Acoustic Doppler Current Profilers (ADCPs), and a towed Ocean Sensors 200 Series 

conductivity-temperature-depth (CTD) unit. Combined use of two ADCPs, at 1200 kHz 
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and 300 kHz, enabled consistent bottom tracking coupled with a vertical resolution on the 

order of 25 cm across the top 25 m of the water column. 

Data collection at the mouth during the 1999 field study consisted of repeated ship 

tracks across the front during the late ebb portion of the tidal cycle. In 2000, parallel 

tracks were used, in order to develop a three-dimensional picture of the frontal structure. 

Data from an anchor station time series, and transects within the lower 10 km of the 

estuarine channel during the ebb are also incorporated into the present study. 

The tidal range during the course of both field efforts was on the order of 4 m, as 

shown in Figure 1.2. All of the data from the 1999 effort incorporated into the present 

study was collected on July 25, five days past neap tide. Data collection during the 2000 

freshet was conducted between June 30 and July 4, and was centered around the spring 

tide, which occurred on July 2"'', with a tidal amplitude of approximately 4.25 m. 

The freshet of 1999 was unusually large, and it occurred later in the year than usual. 

River discharge on July 25"" was approximately 7,500 cubic meters per second (cms), as 

measured at the most seaward gauging station, located at Hope, approximately 150 km 

upstream of the mouth. The peak discharge in 1999 occurred in late June and was on the 

order of 11,000 cms, compared with an average peak on the order of 7,000 cms. This 

was the result of record-breaking snowfall in the watershed during the winter of 1998-99, 

followed by cold spring and summer weather. The resulting freshet lasted more than six 

weeks from late June into the beginning of August. The extended length of the freshet 

averted the significantly higher discharges and potentially disastrous flooding that would 

have occurred under more typical, warmer conditions, and provided a longer period for 
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observations. The 1999 discharge stands in contrast to the more typical discharge 

observed during the 2000 freshet. Discharge during the 2000 field effort increased 

steadily from approximately 6,500 to 7^0 cms, as me^ured at Hope, over the five day 

cruise. Discharge curves for both 1999 and 2000 are compared with an 85-year mean in 

Figure 1.3. 

Despite significant differences between the overall discharge curves between 1999 

and 2000, hydrologic conditions during the two sampling periods were quite similar. 

These conditions establish a riverine velocity of approximately 50 cms'', an estuarine 

velocity of approximately 100 cms"', and a tidal velocity on the order of 200 cm-s"'. 

1.6    Structure of the Thesis 

The goal of this thesis is to enhance the current understanding of shear stratified 

turbulence and two-layer hydraulic control theory through observations from an energetic 

and highly stratified estuary. The majority of the study focuses on the stationary front 

present at the mouth of the Fraser River during the late ebb. In addition, estuarine 

dynamics are addressed with respect to the temporal and spatial variability of mixing 

processes by quantifying buoyancy flux in the estuarine channel through a complete tidal 

cycle. 

The thesis is organized as follows. An examination of the stationary frontal structure 

during the late ebb, including a survey of the local kinematics and an assessment of the 

relevance of two layer hydraulic theory, is presented in Chapter 2, Estunates of the 

entrainment velocity, and the vertical turbulent flux of both salt and momentum in the 
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Figure 1.3: Eraser River discharge in cubic meters per second (m's"'), as measured at Hope, 
approximately 150 km upstream of Sand Heads. Discharge curves are shown for 1999 and 2000, along 
with the standard deviation around the mean for historical flows from 1912-1996. Data collection 
periods are identified on the respective curves. 
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region seaward of the stationary front are presented and discussed in Chapter 3. Chapter 

4 focuses on the estuarine channel, evaluating the spatial and tenaporal variability of the 

mixing processes by quantifying buoyancy flux rates, and addressing the mechanism 

responsible for the retreat of the salt wedge during the ebb. A summary, and conclusions 

of the entire work, are presented in Chapter 5. Chaptere 2 through 4 contain focused 

introductions that enhance the material presented here, and add detail specific to the 

chapter. 
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Chapter 2 

The Three-Dimensional Structure and 
Hydraulic Control of a Highly 
Stratified Estuarine Front 
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ABSTRACT 

Observations at the mouth of the Fraser River (British Columbia, Canada) indicate an 

abrupt frontal zone between unstratified river outflow and a highly stratified river plume, 

with differences in salinity greater than 25 psu across a few meters in the vertical and 

several hundred meters in the horizontal. The front roughly follows a natural break in the 

bathymetry, crossing the channel at an angle of approximately 45°, and is essentially 

stationary for a period of approximately 3.5 hours centered on the low tide following the 

larger of two daily ebbs. This chapter is focused on understanding the structure of the 

front and associated circulation during this period. The location of the front is coincident 

with observations of significantly supercritical internal Froude numbers at the front, 

based on velocities in the along-flow direction. However, because the front is oriented 

obliquely to the outflow, a coordinate system can be selected that is normal to the front, 

and for which a critical Froude number of one is obtained. This indicates that a Froude 

angle, similar in application to a Mach angle for trans-sonic flows, can be used to 

determine critical conditions when the front is oblique to the principal flow direction. A 

three-dimensional salt balance indicates that the salt feeding turbulent mixing processes 

seaward of the front is delivered to the region through a subpycnocline current flowing 

from the north in an along-isobath direction. This current exists independent of the fresh 

water discharge, in association with the ebbing tide within the Strait of Georgia. 

36 



2.1    The Near-Field Plume 

The shape of a river plume in the immediate vicinity of the river mouth can take 

different forms (Kashiwamura and Yoshida, 1967), depending on the interaction of 

inertial and buoyant forces within the flow field. The near field of the river plume can be 

defined as that portion of the plume where inertia dominates over buoyancy (Jirka et al., 

1981), and Froude numbers are supercritical. The near field is typically a very small 

region in comparison to the far field, or buoyancy dominated, portion of the plume, yet it 

is a region of intense and dramatic change in the structure of the plume. Mixing 

processes and spreading characteristics initiated in the near-field are likely to have 

significant impacts in the far-field, by establishing the thickness of the plume and its 

initial dilution. The ramifications of the near-field dynamics also provide a physical 

foundation for other important biological and chemical processes (Yin et al., 1994), 

A distinct fi-ontal zone is a definitive characteristic of a highly stratified estuary, but 

less significant in well-mixed or partially mixed estuaries, as discussed in Chapter 1, In 

this regard, it is the presence of a strong river outflow that is typically responsible for 

establishing and maintaining a well-defined fi-ont (e.g., Geyer, 1988). An idealized cross- 

section through a highly stratified frontal zone is shown in Figure 2,1. Here, the near- 

field and far-field regions are delineated, and the frontal zone is identified. The frontal 

zone is the point where the interface intereects the bottom. In Figure 2.1, a sharp 

interface between the two layers is shown; field observations typically identify an 

interface of some fmite width across which the transition between water masses occure. 
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Figure 2.1: Definition sketch for front and near-field regions. Fresh river water is discharging to the 
ocean, establishing a front at the point where the internal Froude number, F, of the upper layer flow is 
equal to one. The region immediately seaward of the fi-ont, where the depth of the interface is adjusting 
rapidly and Froude numbers are supercritical is considered the near field region and sometimes referred 
to as the "lift-off" zone. The far-field lies seaward of this adjustment region, and extends far 
downgradient. The near field physics are dominated by inertial influences. Buoyancy differences and 
external forcing (e.g., wind stress) dominate in the far field. In the region landward of the front, the 
ratio of velocity to a wave speed representative of the density difference at the front is greater than one. 
This ratio represents a "virtual" Froude number, illustrating that the location of the fi-ont is pushed 
sufficiently downslope to satisfy the critical condition. 
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This chapter focuses on frontal zone stracture and hydraulic control processes as well as 

near field plume dynamics, illustrated with data from the Fraser River Estuary. The front 

and near field of ttie plume comprise a region that will be fiirther referred to as the "lift- 

off' zone because across this zone the river discharge loses contact with the bottom, and 

the interface rises rapidly in the seaward direction. 

2.1.1 Hydraulic Control 

According to two-dimensional, inviscid theory, the internal Froude number, which 

represents the ratio of flow velocity to internal wave speed, should be critical and equal to 

one at the front (Armi and Farmer, 1986; Farmer and Armi, 1986), thus providing a 

dynamic constraint on the front location, as shown in Figure 2.1. The composite Froude 

number, G, and layer Froude numbers, F„ were defined in Chapter 1, as equation (1.2). 

According to Armi and Farmer (1986) and Farmer and Armi (1986), the flow 

seaward of the front is supercritical (i.e., Froude number values greater than unity) as the 

upper layer thins and accelerates. Landward of the front, the velocity exceeds the phase 

speed Co, as described in Figure 2.1. Thus the front is constrained by the deceleration of 

flow over the crest of the bathymetry, and is positioned at the precise point where the 

mean flow velocity is equal to .^/gW, where F represents the water column depth. 

Stommel and Farmer (1952) first suggested that a critical Froude number value of 

unity is necessary at the front of an arrested salt wedge, and provided a steady, inviscid 

two-layer analytical model for its development. Bowden (1967) reiterated the importance 

of the Froude number, suggesting that the flow in natural estuaries adjusts so that a 

critical Froude number of 1 is reached at the mouth. The rigorous analytical approach 
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conducted by Armi and Farmer (1986), and Farmer and Armi (1986), provided similar 

results. 

Given these conditions, a general deceleration of the flow would result in a landward, 

or upslope, migration of the front. This is seen at the beginning of the flood, as the front 

begins to migrate landward into the channel. In a similar manner, upper layer acceleration 

would result in a repositioning of the front further down slope. 

Armi and Farmer (1986) draw a clear distinction between an arrested density front, 

and an advancing front as described by Benjamin (1968). Jirka and Masamitsu (1987) 

identify bottom friction as the key mechanism distinguishing the blunt shape of an 

advancing density current from the wedge-like shape of an arrested front. The lift-off 

front in the Fraser is essentially stationary for several hours, and is more characteristic of 

an arrested front. However, as the tide begins to flood and the salt wedge begins to 

migrate landward, the structure of the front transitions towards the blunt shape described 

by Benjamin (1968) and Jirka and Masamitsu (1987). The blunt frontal structure of the 

Fraser River salt wedge was observed as the front passed an upstream anchor station 

location. The anchor station data is discussed in more detail in Chapter 4. 

2.1.2 Structure of River Plumes 

Seaward of the front, within the near-field region of the plume, the upper layer thins 

and expands laterally. Various researchers have studied the dynamics of this region over 

the past 50 years, and several models have been used to elucidate the near-field plume 

expansion and structure. Bates (1953) treated a river plume as a turbulent jet spreading 

laterally above a passive salt-water mass, and suggested that lateral mixing was 
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principally responsible for entrainment. Takano (1954,1955) introduced another early 

model, which treated the river water as a homogeneous layer expanding laterally between 

hyperbolic boundaries and thinning in the vertical. Both of these models ultimately 

provided unsatisfactory descriptions of the near-field expansion due to their neglect of 

buoyancy. Although inertia generally dominates over buoyancy in this region, the effect 

of buoyancy cannot be neglected. This is reflected by the importance of the Froude 

number to the dynamics of the region, and the observation that the Froude numbers, 

although generally supercritical, are still of order one. 

Bondar (1970) provided a description of plume expansion that combined buoyancy 

effects, expressed through a surface elevation anomaly, with streamwise inertia. Wright 

and Coleman (1971) extended this idea by showing the importance of vertical mixing to 

the streamwise momentum budget, and thus the observed spreading rate. 

More recent research has focused on the structure of the near-field plume, 

particularly with regards to the relationship between the expansion rate and the three- 

dimensional stracture of the frontal zone. Atkinson (1993) used numerical simulations to 

focus on the case of a surface discharge over a shallow sloping bottom. The results of 

these simulations, and similar laboratory experiments by Adams and Stolzenbach (1977), 

have indicated that the interplay between buoyant and inertial forcing can resuh in a 

wedge shaped detachment, with the bottom attached region tapering in width in the 

seaward direction. This geometry is manifested by the tendency for the upper portion of 

the discharged fluid to spread laterally, and the lower portion to rise. This allows denser 

ambient fluid to move in fi-om the sides, generating a frontal structure at an oblique angle 
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to the streamlines of the discharging fluid. The Adams and Stolzenbach (1977) model of 

detachment indicates that lateral mixing may be important for certain flow geometries. 

This stands in contrast to Wright and Coleman (1971), where vertical mixing was 

observed to be responsible for the majority of entrainment in the Mississippi plume. The 

aspect ratio, or ratio of depth to width, of the Mississippi plume is several orders of 

magnitude smaller than the laboratory flows investigated by Adams and Stolzenbach 

(1977), which may be more directly relevant to smaller scale industrial discharge plumes, 

or to localized regions of river plumes due to the local geometry. In general, the relative 

importance of vertical mixing processes should decrease with width so that at larger 

aspect ratios, lateral mixing processes should be more important. 

The Fraser River provides an ideal field setting in which to investigate the dynamics 

discussed above. This chapter is focused on the near field lift-off dynamics of the highly 

stratified front that sets up at the mouth of the Fraser River during the end of the ebb 

portion of the tidal cycle. A main goal of the chapter is to assess the relevance of two- 

dimensional hydraulic theory (e.g., Farmer and Armi, 1986) to three-dimensional frontal 

structures, such as the front observed at the mouth of the Fraser. A second goal of the 

chapter is to delineate the kinematics associated with the local salt balance at the front, 

and to identify the source of the entrained salt. Here, the relative importance of lateral 

and vertical mixing processes in the Fraser lift-off will be discussed. Finally, the 

observed expansion and near field plume structure at the mouth of the Fraser is 

considered with respect to the existing models and observations discussed above. 
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2.2    The Fraser Estuary and the 2000 Field Effort 

The mouth of the Fraser River consists of a channel that is confined by a jetty along 

its northern boundary, with shallow tidal flats to the south, and an average channel depth 

on the order of 10 to 15 meters, as shown in Figure 2.2. The jetty along the northern 

portion of the channel ends at Sand Heads, allowing lateral expansion of the outflow to 

the north. On the south side, tidal flats continue 1.5 km seaward beyond Sand Heads. 

Approximately 0.5 to 1 km beyond Sand Heads the bathymetry breaks shaiply, reaching 

depths greater than 50 meters in less than 500 meters m the along channel direction. This 

bathymetric break is situated at an angle of roughly 45° to the channel, and the foreslope 

is characterized by an irregular pattern of gullies with scales on the order of lOO's of 

meters. 

The dynamics m the estuary are driven by an influx of buoyancy and inertia from the 

river discharge, and the tides in the Strait of Georgia. The highly energetic estuarine 

environment set up by the interaction of these three strong forcing mechanisms creates 

intense stratification and an energetic turbulent environment. The resulting sah wedge is 

characterized by salinity differences of greater than 20 psu across only a few metere in 

the vertical and less than 500 meters horizontally at its head. The salt wedge advances 

landward some 15 to 20 km uito the channel on each tidal cycle, only to be flushed back 

to the mouth daily during the strong ebb (Geyer and Farmer, 1989). At this point in the 

cycle, after the sah wedge has retreated to the mouth, there is a period of quasi steady- 

state dynamics as the front location remains stable for several hours, prior to beginning 
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Figure 2.2:  Estuarine channel, and mouth regions of the Fraser River Estuary. In the bottom panel, 
the bold dashed line represents the location of the 12 m bathymetric contour, which serves as a marker 
for the bathymetric break. Contours are shown in meters, and are based on a compilation of 
bathymetric data from Canadian Hydrographic Service (Chart 3490, 1997), and shipboard 
measurements (July 2002). 
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its next advance into the channel on the flooding tide. This chapter focuses on the 

stracture and dynanaics of the lift-off zone during this period. 

The 2000 study was timed to coincide both with the freshet and spring tides, and was 

conducted between June 30 and July 4,2000. Data was collected from shipboard 

instrumentation, hicluding two hull-mounted ADCPs, operating at 1200 kHz and 300 

kHz, and a towed Ocean Sensors 200 Series CTD unit. Three to five parallel passes, 

oriented in the along-channel direction, and spaced evenly across the channel, were used 

to identify the three dimensional stracture of the lift-off zone. Strong velocities in the 

along-channel direction precluded the towing of instruments on cross-channel transects. 

The seaward extent of the data transects rarely exceeded 2 km beyond Sand Heads, as the 

focus of the study was confined to the front and the near field of the plume. 

2.3     Structure of the Lift-Off Zone 

There are two topographic features that should affect the position of the front: the 

sharp bathymetry break, and the end of the jetty along the north side of the channel at 

Sand Heads. The presence of the sharp break in bathymetry should provide a fixed 

seaward limit for the location of the front, due to the large mass of salt water positioned 

below the break, through mechanisms similar to the hydraulic control influences of a sill 

described by Farmer and Armi (1986). The end of the jetty represents a relaxation of the 

lateral constriction confining the river discharge to the channel and allows the less dense 

fresh water to spread laterally to the north. This expansion of the channel should also 

influence hydraulic control, as discussed by Armi and Farmer (1986). The presence of a 
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source of ambient ocean water at the edge of the discharge plume, seaward of Sand 

Heads, may hasten the Uft-off through lateral impingement mechanisms (e.g., Adams and 

Stolzenbach 1977). 

The structure and dynamics of the lift-off zone are established by these local 

bathymetric features. Later sections of this chapter investigate these influences in more 

detail, through determination of local Froude numbers and an analysis of hydraulic 

control.  First, observations of the lift-off zone structure are described. 

2.3.1 Streamlines of the Upper Layer 

Data from five passes during the late ebb on June 30 were used to construct upper 

layer streamlines for the lift-off region, as shown in Figure 2.3. Velocity data from the 

five passes were interpolated laterally using an elliptic interpolation scheme that 

preferentially weighted values located along a major axis, which in this case was aligned 

roughly with the bathymetry break. In this scheme, distances perpendicular to the 

defined major axis are scaled by a constant value (with a factor often typical for the lift- 

off analyses), then all the available data is averaged using a weighting factor dependent 

on the scaled distance raised to a constant power (typically 0.1). After a series of two- 

dimensional interpolations along horizontal planes at 1 m depth intervals, velocities were 

averaged vertically across the upper layer, which was defined as all fluid with salinity 

less than 20 psu, and streamlines were generated from the resulting velocity grid. The 

direction of the streamline was defined parallel to the mean velocity at each point, such 

that the mean cross-streamline velocity was equal to zero. 
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Figure 2.3: Mouth of the Fraser, showing upper layer streamlines and the location of cross sections 
shown in Figures 2.4 and 2.5. Streamlines are shown as the solid gray lines, and cruise tracks are 
identified as the heavier dotted lines. The heavy dashed line delineates the location of the 12 m isobath 
and the approximate location of the bathymetric break. Cruise tracks numbered 1 through 4 are shown ' 
m cross section m Figure 2.4. Transverse cross sections A-A' through D-D' are shown in Figure 2 5 
Streamlines are generated from ADCP velocity data collected along the identified cruise tracks  Data 
was collected dunng the late ebb, as shown in the inset frame. Streamline normals are shown behind 
the streamlines, and together with the streamlines create a natural curvilinear coordinate system 
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A new coordinate system was generated from the established streamlines by defining grid 

lines normal to the streamlines, and measuring distances along the deformed streamline- 

normal grid mesh. The normals are shown on Figure 2.3 as dashed lines. This new 

coordinate system facilitated calculations in the lift-off region due to alignment with the 

upper layer flow direction. 

2.3.2 Lift-Off Cross Sections 

The three dimensional structure of the lift-off zone is illustrated with a series of cross 

sections. Eight cross sections through the lift-off zone are indicated on Figure 2.3, and 

shown in profile in Figures 2.4 and 2.5 representing the along-channel, and across- 

channel structure, respectively. 

The series of along-channel sections shown in Figure 2.4 indicate that stratification is 

high, and relatively uniform across the channel. This is evidenced by the similarly close 

spacing of the isohalines in each panel. The front itself is defined by the bottom 

intersection of the isohalines. It is relatively sharp across the channel, although 

somewhat less so in the center of the channel, where velocity-shear driven mixing 

processes may broaden the gradient zone. 

The cross-channel sections of Figure 2.5 demonstrate the inclination of the 

isohalines, which slope upwards to the north. Discharge is dominated by a high velocity 

region in the center of the plume that spreads laterally and shoals in the seaward 

direction. The cross-channel velocity structure generally exhibits characteristics of an 

exchange flow, with surface flows directed northward, and deeper flows moving towards 

the south. The deeper flows are associated with the ebbing tide in the Strait of Georgia, 

48 



-1-6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 

Along Channel Coordinate (km, origin at Sand Heads, positive landward) 

Figure 2.4: Along channel cross-sections through the lift-off zone along cruise tracks as shown in 
Figure 2.3. Salinity contours (1, 5,10,15,20, and 25 psu) are shown in black, with arrows representini 
the magnitude and direction of the streamwise velocity component. Cross channel velocity (i.e., along 
the streamline normals shown dotted in Figure 2.3) is represented by the gray contoure, in units of 
cms", with positive values representing southward directed flows. The dotted line represents the 
approximate path of the towed CTD unit. 
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Figure 2.5:  Transverse channel cross-sections through the lift-off zone at progressively seaward 
positions as identified by the cross-section locations in Figure 2.3. The ordinate axis represents cross- 
channel distance, in meters, from an origin aligned with Sand Heads. Positive values are directed in a 
generally southward direction (normal to the Steveston Jetty). Salinity contours (1, 5,10,15, 20, and 
25 psu) are shown in black, with arrows representing the magnitude and direction of the cross-channel 
velocity component (i.e., along the streamline normals shown dotted in Figure 2.3). Streamwise 
velocity is represented by shading and contours, in units of cm s"'. The black triangles and numbers at 
the top of each cross section indicate the location and number of the cruise tracks from which data for 
these cross sections is extracted. The region between the two connected triangles in cross-section D-D' 
lies along a cruise track, as shown in Figure 2.3. Dashed lines represent visual extrapolations of the 
observed data. 
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when currents are directed south and west through the Strait of Juan de Fuca to the open 

Pacific Ocean. 

2.3.3 Front Location and Temporal Variabtlitv 

As indicated in Figure 2.4, the bottom front is relatively compact in the along 

channel direction. This is illustrated again on Figure 2.6, where the frontal zones for the 

early and late portions of the Uft-ofif period are delmeated by the width of the region 

where water with salinities of 5 psu to 20 psu mtersects the bottom. The shaded region m 

Figure 2.6 is based on observations from several different days, and may overestimate the 

width of the frontal zone due to the horizontal resolution of the CTD tow-yo passes, as 

indicated by the dotted lines in Figure 2.4. 

In addition to the compact nature of the frontal zone, one of the most striking 

characteristics is its oblique orientation with respect to the channel and the along stream 

direction. Across the southern half of the channel, the frontal zone appears to be 

relatively uniform in width and orientation. A bulging area is observed in the north- 

central portion of the channel, where there is a broad shoaling region landward of the 

bathymetric break. At the northern end of the frontal zone, the bottom attachment of 

isohalines is tightly grouped, similar in width to the southern portion of the front, but the 

front is pushed landward of the bathymetric break and Sand Heads. In this region, the 

intrusion of high salinity fluid in the vicinity of Sand Heads is made possible by the 

existence of a scoured trench just seaward of the end of the jetty. 

Comparison of the two panels in Figure 2.6 indicates that the front tends to become 

more uniform in structure during the beginning of the flood. Although the bulging region 
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Figure 2.6: Width of frontal zone as defined by presence of bottom water between 5 and 20 psu 
during the early and late stages of the lift-off period as shown in the tidal curve inset in each upper left 
hand comer. The hatched regions are based on data observed during multiple passes through the lift-off 
zone between June 30 and July 3,2000. For each pass, the landward edge of the region was represented 
by the most seaward bottom water sample with salinities less than 5 psu. The seaward edge is defined 
by the most landward observation of water with a salinity greater than 20 psu at any point in the water 
column.   The limits of the frontal zone are drawn liberally to encompass the observed front locations, 
and without regard to local bathymetry. Data for the 20 psu boundary are shown on Figure 2.7. 
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in the north central portion of the front is still evident during the later period, the leading 

edge of the frontal zone appeare to he established by an influx of salt from both the 

central portion of the channel and the scoured french around Sand Heads, 

There appears to be a significant amount of variability in the position of the frontal 

zone at scales on the order of 100 m. This is best illustrated by considering the observed 

bottom attachment of a single isohaline. In Figure 2.7, the bottom attachment of the 20 

psu isohalme is shown for both early and late stages of the lift-off period, as in Figure 

2.6. Here, the raw observations are represented by the closed and open circles, which 

represent inherent uncertainty in the data based on the horizontal resolution of the CTD 

tow-yo passes. The hatched region is drawn to encompass this data without regard to 

bathymetry. The resultmg region, which is relatively broad, can be further constrained by 

assuming that variations in local bathymetry play an important role in the stracture of the 

front. The bold line provides a location for the 20 psu isohaline bottom attachment that is 

consistent with the observations and follows local isobaths where possible. Note that the 

channels and gullies that are present along the bathymetric break are well correlated with 

the observed front locations, suggesting that these features contribute substantially to the 

spatial uncertainty suggested by the rigid interpretation of the data shown by the hatched 

regions. 

A potential second source of this spatial uncertainty could be related to temporal 

variations in the frontal location, as the accumulated data span across several hours of the 

tidal cycle and are compiled from observations from several different days. The temporal 

evolution of the front was evaluated by comparing all front locations observed during the 
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Figure 2.7: Maps of the intersection of the 20 psu isohaline with the bottom based on the same data 
set used to draw the frontal zones in Figure 2.6. The two panels represent the early and late stages of 
the lifl-off period as shown in the tidal curve inset in each upper left hand comer. Open and filled 
circles represent definitive locations on the landward and seaward sides, respectively, of the 20 psu 
bottom attachment. The hatched area represents an envelope for bottom attachment of the 20 psu 
isohaline, based only on the observations, without regards to local bathymetry. The bold line represents 
an approximation of the front location based on both the observations, and the local bathymetry. 
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five-day field study, within the tliree-liour period each day centered on the low tide 

following the largest daily ebb. Time dependent variability of the front location was 

found to be of the same order or smaller than, and indistinguishable fi-om, the spatial 

variability discussed above. The correlation between the observed front locations and the 

bathymetry, as shown on Figure 2.7, however, suggests that most of the variability is 

driven by spatial irregularities in the bathymetry. In any case, a frontal velocity on the 

order of 50 metere per hour (0.014m/s) was observed during the lift-off period. This 

compares with front propagation speeds during tiie early flood on the order of 1,800 

metere per hour (0.5 m/s), as observed on several occasions. 

2.4     Control of the Front 

According to two-layer hydraulic theory, as discussed in Armi and Farmer (1986) 

and Farmer and Armi (1986), the front is estabHshed at tiie point where the fluid velocity 

and local internal wave speed are equal, resulting in an mtemal Froude number of one. 

However, the geometries considered in the analytical solutions of Armi and Farmer 

(1986) and Farmer and Armi (1986) are essentially two-dimensional, and may not be 

directly applicable to systems where variations in the cross-channel dimension are 

important, such as the Fraser lift-off region. This section investigates the relevance of tiie 

Armi and Farmer (1986) and Farmer and Armi (1986) solutions to the front observed at 

the mouth of the Fraser River, as shown on Figures 2.6 and 2.7. 

Froude numbers were calculated for the lift-off region using a depth-averaged, upper 

layer velocity, which incorporated extrapolated values for the upper two meters of the 
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water column not measured by the ADCP.   The Froude numbers were based on 

velocities aligned in the direction of the upper layer streamlines, as they were calculated 

using the total magnitude of the depth-averaged velocity vector. The calculations 

assumed a layer interface coincident with the 14 psu isohaline surface. This choice 

represents the midpoint of the salinity range (0 to 28 psu), and is also supported by the 

velocity structure within the immediate area of the bathymetric break. The lower layer 

Froude number is nearly zero due to low velocities or velocities orthogonal to the 

streamwise flow across most of the region, so the composite Froude number is essentially 

equal to the upper layer Froude number. Landward of the front, "virtual" upper layer 

Froude numbers were calculated using a representative value of g , and the total water 

depth, as suggested in Figure 2.1. The results of these calculations are shown in Figure 

2.8, where contours of the upper layer Froude number are plotted across the lift-off zone 

using data from June 30, 2000. 

The contours shown in Figure 2.8 indicate that the flow is supercritical across the 

entire lift-off region, with the front stable at a Froude number in the vicinity of 1.5 across 

the majority of the channel. Supercritical velocities occur significantly landward of the 

front, near the end of the confined channel at Sand Heads. Even considering potential 

errors, this a significant departure from an expected Froude number equal to unity at the 

front. Prior to exploring the implications of these observations, a review of the 

calculations and alternative methods for interface determination is warranted. 
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Figure 2.8: Upper layer Froude number across the lift-off zone during the late ebb on June 30,2000. 
The 14 psu front is defined by the open and closed circles (as in Figure 2.7), and the shaded region. 
Upper layer Froude numbers across the region are estimated using a representative value of g . The 
layer interface was defined as the location of the 14 psu isohaline. Dotted lines represent ship tracks. 
Dashed line represents the 12 m isobath, as in Figure 2.3. 
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2.4.1 Interface Height Determination 

The Froude numbers characterized on Figure 2.8 were calculated from mean layer 

velocities averaged across a layer depth determined by the location of a particular 

isopycnal, in this case 14 psu. It is possible that this isopycnal does not adequately 

describe the dynamically important surface meant to approximate the sharp distinction 

between two distinct layers, and that a different isopycnal, or some other means of 

identifying the surface should be used. As an alternative to selecting an isopycnal, the 

velocity structure can be used to define the interface. A layer interface can be defined by 

identifying the point of the most severe transition in a vertical velocity profile, or the 

peak in the second derivative of velocity, -z;—^ . 

An interface defined in this manner is shown with vertical profiles of the streamwise 

velocity on Figure 2.9, superimposed over the transect 3 cross section from Figure 2.4. 

This estimate of the interface elevation demonstrates a bottom attachment very near the 

lip of the bathymetry break, as identified in the figure, and coincident with isohalines in 

the range from 10 to 15 psu. The lack of significant velocity gradient below this level 

indicates that the effective interface elevation must be at this point or higher. For the 

determination of the Froude number near the lift-off point, the choice of a layer interface 

coincident with the 14 psu isohaline surface is consistent with the velocity structure. 

Further seaward, the velocity defined interface in Figure 2.9 quickly crosses isohalines 

until stabilizing between 20 and 25 psu no more than 150 meters behind the front. A 

hypothetical lift-off location, corresponding to the interface depth at which a critical 
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Figure 2.9: Stream-wise velocity profiles overlaid on the lift-off cross section identified as transect 
(3) in Figure 2.3.   The bold gray line represents the interface boundary as defined by a visual 
assessment of the point of the most abrupt change in the slope of the velocity profiles. At locations 
where robust velocity data does not extend deep enough, a lowest case estimate has been made by 
extrapolating the observable slope to u=0 (dotted lines).  The two filled circles indicate the difference 
between the observed lift-off point, using the visual method just described, and the lift-off point 
required for a streamwise upper layer Froude number of 1 (using a vertical mean of the streamwise 
velocity). In order to meet the constraint of G=l, a significant deflection of the isohalines near the 
steeply soping portion of the bottom would be required. 
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Froude number could be obtained using the observed velocity structure, was also 

identified and is shown on Figure 2.9. This downslope location is not consistent with the 

observed data. 

2.4.2 Froude Angle 

The concept of the Froude number is typically considered in one dimension, parallel 

to the orientation of the local streamlines. The two-dimensional structure of these 

transcritical flows can be understood by considering the growth of a wave front 

emanating from a point of disturbance in a moving flow (e.g. Liggett, 1994, pp. 319-323). 

Because the Froude number is dependent on depth, this two dimensional structure is 

sufficient for describing flows in three dimensions, such as the hydraulic control 

established at the mouth of the Fraser. 

Under critical flow conditions, the flow velocity matches the wave speed, and the 

upstream edge of the wave front remains fixed at the point of the disturbance as shown in 

Figure 2.10 (a), while the radius grows with time. Under supercritical conditions, the 

entire disturbance is swept downstream, but the envelope of information transmittal is not 

limited to the axis of the flow direction, and defined by the difference between the 

ambient flow velocity and the wave speed, as in the one dimensional case. Here, as 

shown in Figure 2.10 (b), the envelope of influence of the disturbance can be identified 

by the half-angle formed between the direction of the ambient flow and a line emanating 

from the point of the disturbance tangent to the wave circle at all times. This angle, the 

Froude angle, is equivalent to the Mach angle from supersonic flow theory (Garvine, 
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(a) Critical Flow 

t=sin'(gf)=mir'(F-') 

(b) Supercritical Flm%' 

Front 

Critical Flowr=^'^'' 
 Ic=u sin a 

(c) Critical Flow Relative to a Two-Dimensional Front 

Figure 2,10: Propogation of wave fronts for critical and supercritical flow, and critical conditions for 
an oblique front. In all cases a flow with velocity u flows from right to left, and an instantaneous 
disturbance is initiated at point A. Critical flow is demonstrated in (a), where the wave speed of the 

fluid, C = ^g'h , is equal to «, and the right hand edge of the wave field forms a stationary wave at A, 

but propagates to the left elsewhere. In supercritical flow (b), all portions of the wave front move away 
from A in the same direction due to the u>c condition. Here the envelope of the wave influence can be 
described by a Froude angle, #, as shown, in (c), it is shown how this concept of supercritical flow can 
represent critical flow relative to a two-dimensional front, when the Froude angle is equal to the angle 
of inclination between the front and the oncoming flow, a. In this case, a Froude number calculated 
using the velocity component normal to the front, as demonstrated by the dashed representation of the 
wave front and the velocity components shown perpendicular to the front, is equal to one, as in the one- 
dimensional case presented in (a). 
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1982), and can be defined as: 

0 = sin-'(F-') (2.1) 

Ippen (1936) derived this angle for supercritical hydraulic flows, and discussed its 

implications with regards to curved sections of uniform density open channel flow. 

Although Ippen's flow structure differs from the one presented here, the basic theory is 

the same: that information can only be propagated in the region centered along the 

direction of mean velocity and bounded by the Froude angle to either side. This region, 

bounded by lines tangent to the expanding wave circle at all times, represents the 

envelope of all characteristics emanating from the point of disturbance. 

Consider a front defined by a line at an arbitrary angle, a, with respect to the ambient 

flow, as shown in Figure 2.10 (c). The flow will be critical with respect to the front as 

long as information can be transmitted along the front, but not to the upstream side of the 

front. This is accomplished only when 0 = a, so that the front must always be oriented 

at an angle with respect to the ambient flow equal to the Froude angle. This is equivalent 

to the expression Fsina = 1, which implies that the Froude number, using the 

component of velocity perpendicular to the front, is critical in the traditional one- 

dimensional sense. This interpretation is also shown in Figure 2.10 (c). 

This theory was tested using the stream wise Froude numbers presented in Figure 2.8. 

The Froude angle was calculated for each Froude number evaluated near the observed 

front. These angles are shown graphically in Figure 2.11, along with the observed front 

locations for each transect. The consistency of these two constraints, as shown by the 

approximation of the front, is strong evidence that this theory is reliable in predicting the 
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F^ 2l^-Jh/Tt fl? "1""*"' ^°' lift-off region, calculated from the Froude numbers shown in 
Figure 2.8^ The calculated Froude angles are shown as the bold black line segments   These segments 

Silf Tte^ll ""1*^ °'*^ '' P^" fr°"*' - 'd-tifi^'l by the open anfclosed drdes Imto to 
Hgure 2.7. The bold gray hne represents the front, and meets the constraints of both the observed front 
ocabon, and the Froude angle at all points. The hatched area, and dashed port on of le froS «t 

be well defined, and dominated more by mixing processes and viscous effects than Froude number 
dynamics. Contour represent the depth of the 14 psu isohaline surface. 

63 



location and control of the front. The gray hatched area in Figure 2.11 represents a 

region where the location of the front is poorly constrained by the available data, and 

where the front may not be hydraulically controlled. The dynamics of this portion of the 

front are discussed in more detail later in the chapter. 

2.4.3 Expansion Control vs. Bottom Control 

Two bathymetric features are present in the Fraser liftoff zone that may provide the 

controlling influence on the location of the front were introduced in the previous section: 

the end of the lateral constraint at Sand Heads, allowing lateral expansion of flow to the 

north, and the presence of the bathymetric break allowing rapid expansion of flow in the 

vertical. Because the transmittal of information from any point is constrained by the 

Froude angle, the presence of the expansion at Sand Heads can only influence the 

location of the front to the extent that it lies within a region bounded by a path emanating 

from Sand Heads, and defined by the local Froude angle at all points. An approximation 

of this path is shown in Figure 2.12, which indicates that the Froude angle is large enough 

to encompass the majority of the frontal region within the zone of transmitted 

information. The influence of the local bathymetry, affects the entire front, so that the 

majority of the front, particularly the region south of the hatched area in Figure 2.11 

could be influenced by either the expansion, or the rapid increase in depth. 

As described above, the Froude number ultimately controls the position of the front, 

but changes in the Froude number are affected by both the expansion and bathymetric 

influences, through flow deceleration and adjustment of the layer depth. The relative 

importance of these two mechanisms to the value of the local Froude number must vary 
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Figure 2,12: Path of information transfer from Sand Heads across the channel (AB), defined at each 
point by the local Froude angle. The local Froude number, and approximate location of the 14 psu front 
are also shown. Lines AC and AD represent theoretical turning angles for the flow as defined by an 
mviscid Prandtl-Meyer expansion fan around Sand Heads. Line AC represents the maximum turning 
angle (i.e., F, -^ D ), and line AD represents the angle associated with a Froude number equal to 2, 
which is the point at which the inviscid assumption may break down. Streamlines, as shown in Figure 
2.4, do not turn northward to the extent of line AC, and are more consistent with line AD. This 
suggests that turbulent mixing processes may play an important role in the lateral expansion of the 
plume. 
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with position across the channel. The front that exists landward of the line A-B shown in 

Figure 2.12 is controlled by bathymetric influences, as no information about the 

expansion can be transmitted to the region. The remainder of the front is influenced by 

both mechanisms. 

2.5    Kinematics of the Salt Supply 

A series of control-volume salt flux calculations were performed to investigate the 

kinematics of the lift-off zone. As shown in Figure 2.7, the location of the salt front 

expresses significant cross-channel variability. In an attempt to capture some of this 

variability within the salt flux calculations, control volumes were established along the 

northern, central, and southern portions of the lift-off region, as delineated in Figure 2.13. 

The northern control volume was fiirther subdivided due to significant variability along 

the northern edge, particularly the dynamics associated with the scour trench in the 

immediate vicinity of Sand Heads. The boundaries of the resulting control volumes (I A, 

IB, II and III) are aligned parallel to and normal to the upper layer streamlines. 

A schematic control volume, identifying the various fluxes included in the analysis is 

shown in Figure 2.14. Fluxes were separated into streamwise and normal orientations, 

and then fiirther subdivided by geographic direction and direction relative to the control 

volume (i.e., in or out). A flux was calculated for each grid point on the control volume 

boundary, identified by a streamwise coordinate, a normal coordinate and a depth 

coordinate, as the product of the local salinity, the velocity perpendicular to the control 

volume boundary, and an area based on the resolution of the gridded data. Data from the 

first set of passes on June 30 were interpolated onto the streamwise-normal coordinate 
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Figure 2.13: Zones for control volume salt balance analysis. Zones are arranged with boundaries 
coincident with streamlines and normals. The lift-off plume is divided into three regions, representative 
of the northern portion (I), the central portion (II), and the southern portion (III). Zone I is fiirther 
subdivided to segregate the unique dynamics occurring in the vicinity of Sand Heads. An 
approximation of the frontal location is also shown in the figure, based on the data (filled and open 
circles, as in Figure 2.7), and knowledge of the local bathymehy. 
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Figure 2.14: Definition sketch for control-volume salt balance analysis. Salt fluxes are considered 
normal or streamwise fluxes depending on which boundary of the control volume they cross. Further 
classification relates to direction (landward or seaward for streamwise fluxes; northbound or 
southbound for normal fluxes), and whether the flux is directed into or out of the control volume. 
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III 94 8 0 0 5 79 1 0 

Table 2.1:  Contributions of each of the flux components shown in Figure 2.14 for the four control- 
volume zones of Figure 2.13. Input and output components are identified by the subscripts shown on 
Figure 2.14, with the face of the control volume through which the flow is passing identified in 
parenthesis (i.e., east, west, north, south). Contributions are expressed as percentages of total outward 
directed flux, the value of which is also indicated. Closure error for each zone is shown as a percentage 
in the last column. 
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system, and used for calculation of fluxes. These incremental fluxes were categorized by 

direction, as described in Figure 2.14, and summed across the entke control volume 

boundary. 

The results of this process are shown on Table 2.1. The outbound flux (non-shaded 

columns) is dominated primarily by the streamwise seaward component, indicating that 

salt mixed within the lift-ofifregion is being carried seaward within the plume. This is 

consistent with the classic two-dimensional model of estuarine circulation. The inbound 

flux (shaded columns) is not consistent with such a two-dimensional model, however, as 

the majority of salt enters the control volume in the normal southbound direction, with 

almost no salt entering in the streamwise landward direction. Thus, the flow supplying 

salt to the plume is not an estuarine circulation, but rather is a lateral inflow. 

This pattem of salt entering from the north and exiting within the plume is consistent 

across the region, as evidenced by similar results for all four control volumes. Variations 

from the dominance of the normal southbound and streamwise seaward flux components 

are due to local effects within individual control volumes. For mstance, in control 

volume IB, a significant fraction of the incoming salt is oriented in the streamwise 

seaward direction, an artifact of being directly downsfream of control volume lA. A 

minor, but significant, component of saU exits control volumes IB, II and III in the 

normal southbound direction, which represents a portion of the salt supply for the region 

immediately to the south. This sah passes through the control volume at depth and is 

relatively unaffected by mixing processes higher in the water column. 
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These results show that lateral input is a key component of the salt balance, and 

indicate the importance of cross-channel processes within the estuarine framework. This 

lateral delivery of salt is accomplished through a sustained velocity component in the 

normal direction. 

2.5.1 Distribution of Salt Flux in Salinity and Vertical Space 

The control volume approach identified that most of the saU entering the plume is 

advected from the north. The importance of this influx to the general dynamics of the 

near-field plume is dependent on whether the influx of salt is passively advected seaward, 

or whether the incoming flux is diluted through vertical or lateral mixing processes. 

These issues can be addressed by evaluating the distribution of the incoming salt with 

respect to both salinity and depth. To accomplish this, all boundary fluxes associated 

with the control volume were binned into appropriate salinity and depth bins, maintaining 

the directions defined in Figure 2.14, and summed. 

Figures 2.15 and 2.16 show the distribution of sah flux in salinity coordinates and 

depth coordinates, respectively. The figures show the net streamwise flux (Ssi + SH - Sso 

- Sio) and normal flux (Nsi + Nni - Njo - Nno), with respect to direction into or out of the 

control volume, normalized by the total outward directed flux for each zone. In Figure 

2.15, it can be seen that salt enters the control volume at significantly higher salinities 

than it exits in all four cases, implying that significant dilution through mixing is 

occurring within the lift-off zone. The change of the center of mass of sah within the 

control volume, with respect to salinity space, is shown in the third column of Table 2.2. 

These results suggest that vertical entrainment processes are a significant component of 
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Figure 2,15: Distribution of salt flux relative to salinity for the salt flux calculation zones identified 
m Figure 2.13. Positive values indicate flux into the control volume, and negative values flux out of the 
control volume. Fluxes are aggregated into 2 psu wide bins, and normalized by the total outward 
directed flux for each zone (as shown on Table 1). Shading indicates alignment of flux: light shading 
represents normal fluxes, with dark shading representing flux in the streamwise direction. Values 
shown represent net fluxes in the streamwise and normal directions (i.e., streamwise flux = S,i -i- Sn - 
S„ - Sto; normal flux = N^j + N„j - Ns„ - N„„), which precludes the values shown from summing to ' 
100%. The black line connects the overall net flux associated with each salinity value. 
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Figure 2.16: Distribution of salt flux relative to depth for salt flux calculation zones. Legend and 
normalization scheme are the same as Figure 2.15. 
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Zone 
Mean Salinity of 
Input Salt Flux 

(psu) 

Percentage of 
Input Salt Greater 

Than 20 psu 

OUTs-INs 
(psu) 

OUT,-IN, 
(m) 

lA 16.8 
21.9 
24.1 
25.3 

■ '"                     !===                               

18 
75 
82 

89 

-8.8 
-2.6 

-10.1 
-7.0 

4.0 
2.3 
8.7 

10.5 
!=:T —  

IB 
11 
III 

Table 2.2: Salt input/output distribution statistics, gleaned from data in Figures 2.15 and 2.16. OUT 
and IN are the centere of mass of the oulput salt and input salt, respectively. The subscript s indicates 
salinity space (psu) and the subscript z indicates vertical space (m). 

the local dynamics, particularly in Zones lA, II and HI. The distribution in Zone IB is 

impacted by the large influx of mixed water entering in the streamwise direction. 

The complicating influences of mixed water influx are confined primarily to the 

northern edge of the plume. The firet two columns of Table 2.2 show the pronounced 

increase in the salinity of the input salt flux as one moves along the front southward from 

Sand Heads (Zone lA to III). The input salt flux to Zone lA consists exclusively of 

mixed water, with less than 20% of the input flux at salinities greater than 20 psu. In 

contrast, the input flux in Zone III consists almost exclusively of unmixed Georgia Strait 

water, with a mean salinity well m excess of 20 psu. Zone III exhibits the most well- 

defined two-layer entrainment regime, where two water masses of decidedly different 

salinity are interacting. The kinematics in Zone lA are more complex, with previously 

mixed water of intermediate salinity feeding mixing processes, and no clear density 

distinction between the two major water masses. 
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The distribution in Figure 2.16 cleariy indicates that the center of mass of the output 

salt is situated higher in the water column than the center of mass of the input salt. This 

can also be seen in the last column of Table 2.2, which indicates a more significant 

vertical increase along the southern edge of the channel, where the source salt is 

relatively unmixed Georgia Strait water. The northern portion of the front has limited 

access to deep water and relies on the shallower source of partially mixed water residing 

north of Sand Heads for dilution of the discharging fresh river water. 

The along-channel sections presented in Figure 2.4 identify a zone of high 

southbound directed velocities just below the pycnocline across the entire region. This 

current, with maximum velocities approaching 0.5 ms"', is consistent with the 

distributions shown in Figure 2.15, where strong velocities at high salinities result in 

large fluxes. It is also consistent with Figure 2.16, where the peaks in inbound salt flux 

tend to occur high in the water column, just below the region of high seaward velocity 

within the plume. 

The lateral flux of salt identified as the primary source of salt supplying the 

entrainment processes within the lift-off zone is driven by this southward-directed flow, 

which is part of a tidal motion in the Strait of Georgia. Because the steady-state lift-off 

period occurs during the ebbing tide, the receiving waters of the Strait of Georgia are 

ebbing and directed southward, towards the Strait of Juan de Fuca and the open ocean. A 

model of tidal velocities in the Strait of Georgia, absent any influence from the Fraser 

River, predicts southward-directed velocities on the order of 20 to 40 cm s' in the 

vicinity of Sand Heads during the ebb tide (Crean et al., 1988). These model results are 
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consistent with the observations shown in Figure 2.4, and indicate that the ambient cross 

flow of the receiving waters plays a craciai role in defining the stracture of the lift-off 

region, 

2.5.2 Potential Energy Changes Within the Lift-Off Zone 

The distributions shown in Figure 2.15 indicate that mixing plays a dominant role 

within the lift-off zone, as evidenced by the apparent dilution of inbound salt flux. The 

distributions in Figure 2.16 fiirther suggest that the dilution is the product of vertical 

mixing, given the difference in the vertical center of mass between the outbound and 

inbound flux. A more rigorous examination of the potential energy change within the 

control volumes is required, however, in order to demonstrate that vertical mixing is 

clearly dominant over lateral mixing. For example, lateral mixing, particularly along the 

inclined side boxmdaries of a plume detaching as described by Adams and Stoltzenbach 

(1977), could be responsible for the dilution of incoming flux. However, in the absence 

of vertical mixing and entrainment there would be no change in the center of mass (or 

potential energy) of the salt, and any vertical motion would require a separate advective 

process. 

An upper bound estimate of the potential energy increase that could be accomplished 

in the absence of vertical entrainment was accomplished with the Zone III data by 

focusing on the potential energy increase that would be required through advection. For 

this analysis, a salinity profile representative of the deepest observation of each particular 

salinity value was compared with the observed output salinity profile. The potential 

energy increase necessary to transform the firet salinity profile into the second, given the 
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observed fluxes, is only approximately one-third of the observed increase. This implies 

that salt must travel further in the vertical than possible through only advective processes, 

and that mixing across isohalines must be required. 

In contrast, a mean salinity profile for Zone III was used to generate an estimate of 

the potential energy increase that w^ould be associated strictly with vertical mixing and 

entrainment. For this simplified estimate it is assumed that the salinity profile does not 

change between the input and output, but the distribution of flux with respect to salinity 

does vary, as indicated by the distributions in Figure 2.15. This method yielded an 

energy change approximately 30% greater than the observed change. Using these two 

ratios, and distributing the total observed salt flux between vertical and lateral mixing in 

order to match the observed energy change (i.e., - M^ + - (l - A/^) = 1, where ML is the 

fraction of diapycnal salt flux accomplished through lateral mixing) suggests that, as an 

upper limit, approximately one third of the observed salt flux could be occurring through 

lateral processes. 

This exercise confirms that the majority of the salt related potential energy changes 

observed within the lift-off zone are the result of vertical mixing. At most, only 

approximately a third, and more likely much less, of the observed potential energy 

increase could be due to a combination of lateral mixing followed by vertical advection. 

If lateral mixing were dominant a much steeper streamwise baroclinic gradient would be 

required in order to match the observed potential energy mcrease. 

As discussed in Section 2.1, the aspect ratio of the discharge, i.e., the ratio of depth 

to width, is important in determining the relative importance of lateral mixing processes. 
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In the Fraser the aspect ratio is quite small, on the order of 10"^. Together with the results 

of the potential energy comparisons, this geometry supports the conclusion that lateral 

mixing processes are not the dominant mixing mechanism m the lift-off zone. Similar 

potential energy comparisons for flows with much larger aspect ratios should indicate 

that lateral processes would be more important. 

It is possible that lateral unpacts may play an enhanced role near the northern edge of 

the plume, where there is a lateral intrusion of sah at depth and a lift-off characterized by 

side impingement. A local aspect ratio in this region, estimated from the slope of the 

isohalines shown in cross section D-D' of Figure 2.5, is approximately a factor of two 

larger than the overall aspect ratio of the plume, but still considerably smaller than the 

aspect ratios associated with the Uft-off experiments of Adams and Stolzenbach (1977). 

2.6    Cross Channel Dynamics 

The previous sections have indicated that the spreading of the plume is an important 

aspect of the dynamics. In the immediate vicinity of Sand Heads, the expansion of flow 

to the north can be considered analogous to the Prandtl-Meyer expansion of a 

compressible gas, as discussed by Garvine (1982), and Baines (1995, p. 88). Based on 

simple wave theory, the Froude number should be constant along radial lines of wave 

propagation emanating from the point of transition (in this case Sand Heads). The 

Froude number increases with the size of the angle between the radial and the initial flow 

direction. Radials are crossed by streamlines as they turn due to the expansion, so that 
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the Froude number along a streamline monotonically increases.   Following Garvine 

(1982), the Prandtl-Meyer function for hydraulics can be written as: 

v = 32 tan"' 3'(F'-\)2 -tan"' (F^-I) (2.2) 

where F is the local Froude number. This angle between the initial flow direction, and 

the radial associated with a specific Froude number is equal to the difference between 

corresponding values of the Prandtl-Meyer function 

e=v{F)-v{Fj (2.3) 

where Fg is the initial Froude number of the flow at the expansion. 

A maximum turning angle can be associated with a local Froude number 

theoretically equal to infinity (e.g.. Chapman and Walker, 1971, pp 369-391). Because 

the Froude number of a real flow cannot equal infinity, streamlines cannot cross this 

radial, and it defines an outer limit for inviscid expansion. Using (2.3), with F -^ <», and 

an initial Froude number (Fg) of 1.2, the maximum turning angle is approximately 63°. 

This angle is shown as line segment AC on Figure 2.12. The radial for an angle,0, 

corresponding to F = 2 is also shown on Figure 2.12 as line segment AD. At Froude 

numbers higher than approximately a value of 2, the presence of intense mixing may 

invalidate the inviscid assumption. Comparison of the streamlines in Figure 2.3 to the 

Prandtl-Meyer angles in Figure 2.12 suggest that plume expansion is more consistent 

with the F = 2 assumption, and that interfacial mixing must play a significant role in 

setting the rate of plume expansion. 
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An evaluation of the important terms in the lateral momentum balance can shed 

further light on the dynamics responsible for setting the observed expansion rate, 

although the resolution of the present data set in the cross-channel dkection is not 

sufficient to completely resolve the balance. 

Upper and lower layer transverse momentum equations can be written following 

Geyer (1993). By subtracting the equation of the lower layer from that of the upper layer, 

the unknown barotropic term can be removed from the analysis: 

u,     w , 3M , 9M dh       t       T: (h 4-h\ 
l^"^"""^^"^+ "-^"F^--^"^>+-^"^2 =-g'fL-Ji_ + lLML±^    (2.4) ^      ^ * on dn     phj     p    h^h^ 

Here u represents velocity, with the subscripts s, n, 1, and 2 referring to the streamwise 

direction (referenced to the upper layer), the normal direction, the upper layer, and the 

lower layer, respectively. The CorioHs parameter is represented by/, g = g(Ap)pf' is a 

reduced gravity based on the density difference between the upper and lower layers, R is 

the radius of curvature for the upper layer streamlines (clockwise positive), % and % 

represent bottom and interfacial stress, respectively, h, represents the height of the layer 

interface above an arbitrary datum, and h, and A, represent the individual layer depths. In 

this formulation the frame of reference is established so that u„i is zero everywhere. The 

curvature terms (represented by the first two terms in the equation) represent the 

centripetal acceleration of the fluid. 

Estimation of the terms in (2.4) was conducted using data from the five transects 

interpolated onto the streamwise-normal grid. To estimate the interfacial stress term, a 

drag coefficient on the order of 5x10"* was used, the derivation of which is described in 
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more detail in the next chapter. The exercise indicated that the most dominant terms in 

2 ^f. 

(2.4) are the upper layer curvature term, -^, and the baroclinic term, g'-r-'- ■ 
R an 

Although the Coriolis term is important at larger scales across the far field of the 

plume (e.g., Fong, 1998), the length scales of the lift-off zone are too small for the term 

to have a significant impact in the near-field region.   As a result, the Coriolis term in 

Equation (2.4) is roughly an order of magnitude smaller than the curvature term, and the 

near field region can be considered in a non-rotating reference frame. 

There are at least Wio regions where the transverse baroclinic gradient is well 

constrained in the cross-channel transects shown in Figure (2.5): cross section C-C 

between cruise tracks 3 and 4, and cross section B-B' between cruise tracks 2 and 3. 

Assuming a simple balance between curvature and baroclinicity, as suggested above, 

would require a radius of curvature on the order of 1 to 2 km. A radius of this magnitude 

is consistent with observed curvature near the northern end of cross section C-C, near 

cruise track 4, but does not appear representative of the remainder of these two regions. 

The lateral resolution of the present data set may not be sufficient to accurately measure 

localized radii of curvature, which may be affected by variability at small scales due to 

local bathymetry. Despite these limitations, it is likely that the balance between 

curvature and baroclinicity is adequate to describe the cross channel dynamics of the 

near-field plume. 
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2.7    Implications of Froude Angle Control and Local Kinematics 

The analyses summarized in Figure 2.11 suggest that flow is controlled in the lift-off 

region not by the Froude number, but by the Froude angle. This results in a significantly 

relaxed constraint on front position and orientation, allowing a steady front to occur 

under supercritical conditions. This relaxed constraint has significant implications for the 

dynamics associated with estuarine fi-onts in many diveree situations. 

An important aspect of the use of the Froude angle concept is that no universal 

critical condition can be formulated to describe the position of the front at a point, or to 

predict the location of the front along a 2-D transect. However, when attempting to 

identify the location of a front using this concept, an additional constraint exists. The 

Froude angle concept requires that the front be continuous, because a wave emanating 

from any point on the front must propagate along the front as it expands. In the saU front 

analogy with nonzero viscosity (the physically realistic case), it is the transport of salt 

that is important. A flux of salt is required along the froude angle defined path in order to 

replenish salt lost to entramment and maintain the stability of the front. At the upstream 

endpomt of the front, there can be no along Froude-angle sah flux from an upstream 

position, implying that the front must be locally critical at the endpoint (i.e., G = F, = 1), 

and perpendicular to the oncoming flow with a = 90°. This condition provides the 

needed constraint, anchoring the front at a particular location, and allowing the shape of 

the front to be predicted by propagating a hypothetical wave fi-ont across the channel 

following the direction of the local Froude angle. The endpoint of a density front could 

be forced by the presence of a wall or other boundary in a confined channel. 



Alternatively, local cross channel symmetry centered on a bathymetric depression could 

have a similar effect. It is unclear if this constraint would exist for the invisicid case, or if 

it is possible for the front to be oblique to the oncoming flow along its entire length. In 

the latter case the location of the front could not be controlled without an additional 

constraint. 

Consideration of the Froude angle represents a significant extension of the two- 

dimensional theory presented by Farmer and Armi (1986), and Armi and Farmer (1986). 

The classic two-dimensional theory represents a limiting case for the Froude angle 

concept, characterized by a front perpendicular to the oncoming flow, a = 90°. A second 

limiting case would occur at a = 0°, with the front parallel to the oncoming flow. 

Because this case requires that the Froude number must go to infinity at the front for a 

critical condition to exist, no critical condition can be supported. The resulting front 

cannot be balanced by inviscid dynamics, and would be characterized by weaker 

gradients and transient fluctuations. 

Most of these dynamic implications of the Froude angle can be observed in Figure 

2.11. At its northern endpoint, the front is consistent with the limiting case of a = 90°, 

intersecting the Steveston Jetty perpendicular to the channel with a Froude number 

approximately equal to one. Following the front southward, the shape of the front is 

defined by the local Froude angle, but it does not take a shape similar to the line AB 

shown in Figure 2.12, which is the Froude angle defined path emanating from Sand 

Heads. Instead the front must approach the limiting case of a = 0°, running 

approximately parallel to the channel through the hatched region in Figure 2.11 until it 
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once again becomes hydraulically controlled and stable near the bathymetric break. An 

explanation for this disorepency can be found by once again examining the Froude 

number contours of Figure 2.8. The broad region of the channel adjacent to the hatched 

region is characterized by relatively constant Froude numbers. A front may stabilize in 

this region briefly at the beginning of the Uft-oflf period as it retreats from the channel. 

However, any perturbation in flow rate that briefly increases the local Froude number 

would drive the front seaward. Upon relaxation of the increase, the salt wedge cannot 

return landward to its original position because conditions remain critical at the new 

location. In this manner, the front is ultimately pushed to the edge of the bathymetric 

break where there is a stronger Froude number gradient. In the case of the Fraser, this 

results in a break in the continuity of the controlled front, as represented by the hatched 

region in Figure 2.11. Because of a source of salt water supplied through the scour trench 

around Sand Heads, the northern portion of the front is dynamically isolated from the 

southern portion, and can remain stable in its original location. 

The resulting shape of the front within the hatched region must be uncontrolled at 

least across part of its length, and ultimately stabiUzed only by the existence of controlled 

fronts to either side. One possibility is that the front is characterized by a large fold as 

suggested in Figure 2.7. In this case, the most seaward portion of the front within the 

hatched region would likely be controlled by a critical Froude angle, although control of 

the landward portion (a "reverse" front, as the bottom layer would disappear as one 

moves in the streamwise direction) would not be characterized by the same dynamics. 

Alternatively, an unsteady transport of salt from the hatched region towards the south 
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may be triggered in order establish the front along an unbroken Froude angle path. 

However, any salt transported south of the hatched region will ultimately be flushed 

seaward by the mechanism described above, resuUing in an unstable "fluttering" front. 

The concept of Froude angle control should be applicable in many different 

hydraulic control scenarios. Garvine (1982), developed a model for plume expansion, 

which incorporated a similar Froude angle dependence for defining the surface fronts of 

buoyant plumes. The model was used to predict the location and orientation of the 

surface front with respect to an ambient crossflow, and explained the structure of the 

Connecticut River plume front. Bottom-attached fronts with similar orientation to the 

front observed at the mouth of the Fraser have been predicted analytically and observed 

in laboratory experiments for buoyant jets discharged over a uniformly sloping bottom 

(Adams and Stolzenbach, 1977). The bottom attached region in these cases consisted of 

a long and narrow triangular region, with the bottom front emanating into the jet region at 

an angle from the end of both channel boundaries. The basic geometry of this solution is 

consistent with the Froude angle theory. A similar example of Froude angle criticality 

has been seen within the confines of the estuarine channel in the Hudson River (New 

York), where angled fronts have been observed at supercritical streamwise Froude 

numbers (Geyer et al., 1998). These observed angled fronts are driven by the significant 

cross-channel variability in bathymetry within the Hudson channel. 

The importance of the Froude angle may also be significant in hydraulic control 

situations where both layers are active, although three-dimensional observations of these 

phenomena are scarce. Klymak and Gregg (2001) emphasize the importance of three 
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dimensional structure to the dynamics of a stratified overflow in Kjiight Inlet, identifiying 

lateral recirculations in the lee of the sill. This particular overflow has been well studied 

along the thalweg (Farmer and Armi, 1999), with observations that are quite consistent 

with the Farmer and Armi (1986) theory. However, the importance of lateral structure 

outside of the thalweg, m shown by Klymak and Gregg (2001), suggeste that there could 

also be lateral implications for hydraulic control. In this case the symmetry present in the 

thalweg may locally force the orientation of the front towards a = 90°. 

2.7.1 Importance of Lateral Flow 

Analysis of the salt supply components indicated that the ebbing tidal structure in the 

Strait of Georgia is responsible for creating a sub-pycnocline flow transverse to the 

streamlines of river discharge, which plays a significant role in the dynamics and 

kinematics of the front. The Fraser is not unique in that respect, as many rivers discharge 

into regions of active cross-flow, including the Connecticut (Garvine, 1974), and the 

Columbia (Hickey et al, 1998). Salt entrainment in the Amazon plume is also believed to 

be from lateral sources (Geyer and Kineke, 1995), possibly due to an ambient crossflow. 

At large scales, the absence of a cross-flow would affect the transport of plume watere 

away from the estuary mouth, resulting in the growth of a brackish buoyant layer. This 

layer would eventually impact the relatively "clean" dynamics of the Fraser lift-off region 

through re-entrainment and broadening of the pycnocline. In fact, it is the delivery of 

relatively unmixed Strait of Georgia water to the majority of the lift-off zone that allows 

a simpUfication of the region's dynamics. For example, sah budgets in this region can be 

carried out effectively in the sfreamwise direction, without a thorough analysis of the 



cross-channel influences, by assuming that all salt input enters at salinities equivalent to 

that found in the deep water observed within the two-dimensional transect. The input of 

sah through the re-entrainment of brackish water would confound such analyses, as the 

observation of brackish output water could not necessarily be attributed to mixing. 

The transverse communication of information, as discussed with respect to the 

Froude angle concept, does not require the existence of an ambient transverse current, 

and it does not appear that the cross stream flow is a direct controlling factor in setting 

the location of the fi:ont. The location and angle of the front is established to match the 

conditions of the oncoming river flow, as modified exclusively by local bathymetry and 

channel constraints. Due to the angled nature of the front relative to the streamlines, 

there is a non-zero component of velocity in the along front direction which is sufficient 

for the transmittance of information and mass. In the absence of an ambient cross-flow, 

the front would likely remain in a similar position, and the salt mass required to balance 

entrainment processes would be drawn from deeper local sources rather than the lateral 

sources observed. Similarly angled fronts are observed within the laterally confined 

channel of the Hudson River, where no ambient cross channel flow is present (Geyer et 

al, 1998). 

2.8    Concluding Remarks on Lift-Off Zone Structure 

The Fraser River liftoff is a good example of highly stratified, or two-layer, arrested 

flow, and illustrates many aspects of estuarine fronts common to other physical settings. 

The steady front that forms outside the mouth of the Fraser during late ebb is controlled 
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by the interplay between the sudden expansion of the channel and the local bathymet^. 

The alignmentofthe front is established inresponse to the localFroude angle ofthe flow 

within the channel. TOs importance ofthe Froude angle as the measure of criticality, as 

opposed to the Froude number itself, represents a significant three-dimensional extension 

ofthe two-dimensional theory presented by Axmi and Farmer (1986) and Fanner and 

Armi (1986). Previous data collected from other estuaries (Wright and Coleman, 1971; 

Kashiwamura and Yoshida, 1978; Park et al, 1993) has tended to support the two- 

dimensional theory, indicating that the Froude number is in the vicinity of one near the 

front, m most cases, these studies have not consisted of enough data to define the front in 

three dimensions, and researche,^ have been left to discuss an inherently three- 

dimensional problem by loosely applying a two-dimensional theory to the limited data, 

m some cases, where the orientation ofthe fi-ont has been determined sufficiently to 

locate measurements in a velocity field normal to the front, the two-dimensional theory 

suffices (Huzzey, 1982). The data presented here enables the delineation of the fi-ont in 

three-dimensions, and shows that the Froude number is exactly unity when calculated 

perpendicular to the front. 

Calculation ofthe salt budget within the lift-off zone indicates that most ofthe salt 

used to balance entrainment processes is supplied by an ambient southward-directed, 

tidally-driven current in the Strait of Georgia. Although this cmxent plays an important 

role in the kinematics ofthe lift-off zone, it does not appear to be an important factor in 

the positioning ofthe front. In the absence of an ambient current, however, the 
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kinematics seaward of the front would be markedly different, as more salt would be 

drawn from the local depths. 

The location of an estuarine front, and the dynamics associated with it, are of great 

practical interest for many biological, geomorphological, and engineering related issues. 

A more detailed study of the mixing and entrainment processes local to the lift-off region 

will be examined in the next chapter. Combined, these issues provide a significant 

physical treatment of the lift-off zone, a region that has a significant impact on far-field 

plume characteristics, in addition to interesting local dynamics. 



Chapter 3 

Turbulent Energy Production and 
Entrainment at a Highly Stratified 
Estuarine Front 
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ABSTRACT 

Rates of turbulent kinetic energy (TKE) production and buoyancy flux in the region 

immediately seaward (~1 km) of a highly stratified estuarine front at the mouth of the 

Fraser River (British Columbia, Canada) are calculated using a control volume approach. 

The calculations are based on field data obtained from shipboard instrumentation, 

specifically velocity data from a ship mounted acoustic Doppler current profiler (ADCP), 

and salinity data from a towed conductivity-temperature-depth (CTD) unit. The results 

allow for the calculation of mean vertical velocities in the water column, and the total 

vertical transport of salt and momentum. The vertical turbulent transport quantities 

{uw ,Sw ) can then be estimated as the difference between the total transport and the 

advective vertical transport. Estimated production is on the order of 10    m s' , yieldmg 

a turbulent Reynolds number, —-, on the order of lO"*.   This rate of TKE production is 
vN 

at the upper limit of reported values for ocean and coastal environments. Flux 

Richardson numbers in this highly energetic system generally range from 0.15 to 0.2, 

with most mixing occurring at gradient Richardson numbers slightly less than VA. These 

values compare favorably with other values in the literature that are associated with 

turbulence observations from regimes characterized by scales several orders of magnitude 

smaller than are present in the Fraser. 
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3.1    Mixing in Shear-Stratified Flows 

Many important geophysical flows are both stratified and sheared. Turbulence can 

be generated in these flows when the stabiHzing influence of the stratification is not 

sufficient to damp the destabilizing effects of the velocity shear (Thorpe, 1971,1973). 

The onset of turbulence in such flows can greatly enhance the vertical transport of 

momentum, buoyancy, and other dissolved constituents. Shear stratified flows can be 

found within the pycnocline ia oceans, lakes, reservoirs and estuaries as well as stratified 

atmospheric dynamics. Most investigations concerning the nature of shear-stratified 

turbulence, however, are based on laboratory experiments (e.g. Ivey and Imberger, 1991), 

or observations from relatively low-energy geophysical regimes (e.g. Gregg, 1989). In 

this chapter, turbulence measurements, obtained from momentum and buoyancy budgets 

at the mouth of a large river, are presented as an opportunity to evaluate the nature of 

shear-stratified turbulence in a relatively high energy regune. 

3.1.1 Turbulent Kinetic Energy and Mixing Efflciencv 

The turbulent kinetic energy (TKE) budget in a stratified flow can be written as (e.g. 

Osbom, 1980): 

B 
D 1 — 

/ 
 «, •U:     = 
Dtl   ' 

\ ox, dx 
7-^9",      g —r-1   ^   • u,u. (3.1) 

tf y 

where «,- is the velocity vector, ? represents density, p pressure, ? the coefficient of 

kinematic viscosity, a the specific volume, e,y the fluctuating strain rate, given by 
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dx,     dx, '"    2 

f   \ 

, X3 is directed vertically upward, and primes denote fluctuating 

V 

quantities or a departure from the mean quantity, which is represented by an overbar. 

When the turbulence field is homogenous, and in steady state, equation (3.1) reduces to a 

balance between the shear production (denoted by P in 3.1), buoyant production (B), and 

dissipation (e): 

P = B + e (3.2) 

In stably stratified flows, the buoyant production term is an energy sink, representing the 

conversion of kinetic energy to potential energy through the redistribution of the vertical 

density profile.   In this context, buoyant production, also referred to as buoyancy flux, is 

representative of the amount of energy input into irreversible mixing, and can also be 

expressed in terms of a vertical turbulent eddy diffiisivity for density, K^: 

ap      N^ 
dz 

where A^ = 
yP    dz^ 

is the buoyancy frequency. A similar eddy diffusivity for 

momentum, also referred to as an eddy viscosity, K", is often assumed equal to K^, and 

uw 
is defined similarly as ^r—. TKE not converted to potential energy through the 

au 

buoyancy flux term is dissipated at viscous scales as represented by the e term in (3.1). 

92 



The flux Richardson number represents a mixing efficiency defined as the ratio of 

buoyancy flux to shear production, and indicates the fraction of available TKE that is 

converted to potential energy through vertical turbulent transport: 

P Rif=~ (3.4) 

Many studies have attempted to quantify this ratio under varying turbulent conditions. 

Osbom (1980) suggested a value of ^i/equal to 0.15 based on observations of oceanic 

turbulence. Ivey and Imberger (1991) employed laboratory experiments to investigate 

the relationship between %and several turbulent parameters, concluding that the flux 

Richardson number should fall in a range between 0.15 and 0.2 for flows with turbulent 

Reynolds numbers (Re,. = —— ) greater than a value approximately equal to 10, 

- I     -      - 
assummg an overturn Froude number (Fr^ = e V g"£^', where g is a reduced gravity 

and Ld a centered displacement scale), equal to one. This assumption is consistent with 

most oceanic thermocline measurements (Gregg, 1987, Peters et al, 1988), where 

Kelvin-Helmholz billows are believed to be the primary mechanism of turbulence 

generation. Although their laboratory data was limited to -^ values less than 20 Ivey 
vN 

and Imberger suggested that a similar value should hold for field scale turbulence with 

significantly larger turbulent Reynolds numbers based on dimensional arguments. 

A simple dimensional argument would suggest that the flux Richardson number 

should be equal to the gradient Richardson number, Ri^=-N4~\  , under the 
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assumption that vertical eddy diffusivities for mass and momentum are equal. The 

gradient Richardson number represents the ratio of time scales associated with the 

stratification and the shear. Linear stability analyses (Miles, 1961; Howard, 1961) have 

defined a critical value of i?z'  = — as the theoretical threshold for growth of instabilities. 
8      4 

This critical value has subsequently been interpreted as a threshold for the onset of 

turbulence, based in part on experimental evidence from laboratory (e.g., Thorpe, 1973), 

and field studies (e.g., Geyer and Smith, 1987). Instabilities can grow, triggering 

turbulent motions, for any flows with a gradient Richardson number less than the critical 

value. An equivalent value of the flux Richardson number would fall within the typical 

range, as reported by Osbom (1980), Ivey and Imberger (1991), Linden (1979) and 

others. 

Recent studies have suggested values of the flux Richardson number outside of the 

0.15 to 0.2 range. Barry et al. (2001) report the results of laboratory studies of grid- 

generated turbulence, indicating that the mixing efficiency may decrease to zero at high 

e 6 
values of —-, particularly for —- > 1000, where it is speculated that the turbulent 

vN , vA^ 

cascade cannot support the transfer of energy to scales small enough to support molecular 

diffusion and mixing. Field observations of the interior of two stratified lakes, where 

turbulence is driven mainly by internal wave breaking, with little mean shear, found 

£ 1 3 
negligible mixing efficiencies at —;- values ranging from 10" to 10 (Etemad-Shahidi 

and Imberger, 2001). These observations were based on the mean value derived from 
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many instantaneous microstracture profiles. Although instantaneous buoyancy fluxes 

were observed, an equilibrium between upgradient and downgradient fluxes resulted in a 

negligible mixing efficiency. Similar upgradient fluxes have also been observed in the 

oceanic thermocline (Moum, 1996), suggesting dynamics similar to the lake interior. 

Etemad-Shahidi and Imberger suggest that the differences between these results and the 

eariier laboratory studies are due to differences in the mechanisms triggering the 

turbulence: oscillating grids and shear mechanisms in the laboratory experiments, and 

internal wave breaking in the lake interior and oceanic thermocline.   Similarly, 

Bahnforth et al. (1998) have suggested that grid-generated turbulence may not be 

representative of shear-produced turbulence. 

Significant net buoyancy flux has been observed in the field associated with the 

turbulence generated by shear production at a highly energetic tidal front (Gargett and 

Mourn, 1995). Estimates of the mean flux Richardson number for this flow were on the 

order of 0.4. This brief review of mixing efficiencies suggests that there is considerable 

variability among existing observations, which may or may not be related to the turbulent 

generation mechanisms, as suggested by Etemad-Shahidi and Imberger (2001). In 1991, 

Imberger and Ivey recognized that a "strong debate" had been underway for several years 

regarding the magnitude of the flux Richardson number. Despite signiflcant effort over 

the last decade, this debate remains unresolved, particularly for highly energetic flows. 

3.1.2 Entrainment Velocity 

One factor complicating the study of turbulence in energetic shear-stratified flows is 

the concept of entramment. Morton et al. (1956) and Ellison and Turner (1959) define 
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entrainment as the rate at which ambient fluid is added to an advancing plume. 

Assuming plume motion predominantly in the horizontal plane, entrainment can be 

represented by a vertical velocity across some surface defined by the plume. In the 

context of stratified flows (e.g., Dallimore et al, 2001), it is traditional to discuss 

entrainment with respect to isopycnals. However, entrainment can also be observed in 

unstratified conditions, such as entrainment into a turbulent jet (e.g., Tennekes and 

Lumley, pp. 127-132). In this case entrainment can be considered with respect to a mean 

streamline bounding the initial fluid contained within the jet, or some volumetric subset 

of the initial jet. Assuming the receiving waters of a stratified plume are of constant 

density, the bounding edge of the plume must lie along an isopycnal, and the entrainment 

velocity at the edge, as calculated by either method, should be equal. Within the interior 

of the plume, significant differences between the two definitions of entrainment would be 

observed depending on the orientation of the respective surfaces. 

Due to vagueness associated with generic use of the term "entrainment velocity", this 

term will not be used here to refer to any specific velocity structure. Instead, two vertical 

velocities will be defined which represent mean transport across isohalines, and across 

surfaces defined by the volumetric expansion of the original plume or river discharge. 

The first of these velocities, w^, can be defined as 

w^=un^ (3.5) 

where w^ can be referred to as a diahaline velocity, u is the local velocity vector, and «^ 

is the unit vector normal to the isohaline. The definition of the second velocity, which 

will be referred to as the jet entrainment velocity, by analogy to entrainment into and 
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within an unstratified jet is similar, but taken with respect to surfaces bounding specific 

fractions of the initial discharge 

y^j=U'nj (3,6) 

where the subscript j refere to a volume defined surface. Each of these definitions 

provides an established reference frame and each defines a specific type of entrainment. 

The diahaline velocity represents entrainment into a mixed layer, which must incorporate 

fluid from two directions, if the layer is to grow, so that the diahaline velocity can be of 

either sign. The jet entrainment velocity represents entrainment into a region defined by 

a specified fraction of the original discharging fluid. In the case of a stratified plume 

discharged at the surface this implies that all jet entrainment velocities must be of the 

same sign, and directed upward. In either case, the entrainment velocity represents the 

vector difference between a mean flow streamline and a vector representing the isohaline 

or volume-defined surface. The simple diagrams in Figure 3.1 show the distinction 

between these two concepts of entramment. 

Ellison and Turner (1959) examined the entrainment of ambient fluid into a turbulent 

gravity current, relating the observed diahaline velocity across the bounding surface of 

the plume \w^^ = w^(t„„„^„^j = w^^j„„„^„^j) to the mean horizontal flow, U. The constant 

of proportionality in their relationship, E, is referred to as the entrainment coefficient. 

r;* plume 
E = -^ (3.7) 
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(a) Diahaline entrainment 

s=s, <Jz: 

50% 

100% ^ 

s=s. 

(b) Jet entrainment 

Figure 3.1:  Cartoons of entrainment relative to isohalines (a) and surfaces of constant initial 
discharge (b), where the dashed lines represent the bounding limits of the upper 50% and 100% of the 
initial discharge as it expands into the ambient fluid. In the first case, entrainment, as shown by the 
solid arrows can be of opposite sign at different levels in the water column, resulting in mixed layer 
growth. In the second case, the sign of the entrainment is always positive. The inset in (b) 
demonstrates that the entrainment velocity represents the vector difference between a mean streamline 
and a vector representation of the respective surface. 
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The laboratory experiments carried out by Ellison and Turner, and more recent 

experiments by Pawlak and Armi (2000), suggest that the value of E is a function of the 

bulk Richardson number, ^~-, where H is the plume depth. 

A unique aspect of the local diahaline velocity, w*, is that all fluid crossing an 

isohaline must be diluted through mixing, in order to conserve salt on the isohaline 

surface. This balance (for the vertical direction only) can be represented, following 

McDougall (1984), as: 

d(   pdp')        dp 

For a region of —f = 0, Equation (3.8) indicates that w^ = ^, showing that the 

diahaline velocity is a direct consequence of the gradient in turbulence intensity, and is 

not an independent variable of the flow. 

Vertical velocities induced in the water column by turbulence provide an efficient 

means for the vertical transport of sah and momentum in the water column, m addition to 

volume. Diahaline transport can also have important implications for hydraulic control 

as shown by Gerdes et al. (2002). In order to adequately characterize turbulent vertical 

transport from observations of total vertical transport, the effect of this mean vertical 

transport must be considered. 
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3.1.3 Turbulent Length Scales 

The range of turbulent length scales in shear stratified flows is typically represented 

by several internal scales , notably the Ozmidov scale, LQ, Corrsin scale, LQ, and 

Kolmogorov scale, LK. : 

A 

^°=F 
/ 

Lc = 

L. 

(3.9) 

v^y 

The Ozmidov and Corrsin scales represent upper limits of eddy size w^ith respect to 

deformation by stratification and shear, respectively, as described by Smyth and Moum 

(2000). The Kolmogorov scale represents the range of smaller scales where TKE is 

dissipated (Tennekes and Lumley, 1972, p. 67). Each of these scales is a function of the 

dissipation, e, implying that an a priori knowledge of the turbulence field is necessary for 

their estimation. 

An overturn scale, LT, is a much more readily accessible quantity from observational 

data, and is often assumed equal to the Ozmidov scale, although the actual relationship 

between these two length scales may be much more complicated (Baumert and Peters, 

2000). The overturn scale is defined as the rms displacement distance identified when 

comparing an observed vertical density profile to its stably re-sorted counterpart (Thorpe, 

1977). Assuming a suitable prediction of Z,o can be derived from LT (e.g. Osbom, 1980; 

Dillon, 1982; Baumert and Peters, 2000) dissipation can then be estimated using (3.9). 
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The overturn scale, however, remains a statistical approxunation of an outer turbulence 

scale based on observations. 

As pomted out by Imberger and Ivey (1991), only two independent variables exist m 

a pure shear-stratified flow: one representing the shear, A«, and the other representmg 

the stratification, Ap, which can be represented as a reduced gravity, g' = g^ 
Po ' 

Furthermore, Imberger and Ivey suggest length and dissipation scales from these 

variables based on simple dimensional analysis. Representative dissipation and mixed 

layer length scales for the flow should be proportional to these stratified shear scales: 

e = y(AMg') 

(AM) 
5 = <p 

(3.10) 

8 

where S represents the thickness of the mixed layer, and y and f are coefficients of 

proportionality, which may vary as the shear layer develops. 

In this chapter, the turbulence associated with the highly stratified front at the mouth 

of the Fraser River is investigated. The goals of the study were to develop an effective 

method for estimating turbulent quantities from bulk water column observations, to relate 

the observed turbulent quantities to mean scales representative of the shear-stratified 

flow, and to comment on the observed mixing efficiencies in the high Reynolds number 

turbulence near the front. At the Fraser River front, both of the shear-stratified 

independent variables. AM , and g', are high compared to other oceanic and coastal 
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flows, providing an ideal location to observe energetic turbulence with high values of 

vTV' ■ 

3.2     The Fraser River and the 1999 Field Effort 

The study was conducted at the mouth of the Fraser River, in southwestern British 

Columbia, Canada, as introduced in Chapter 1. Bathymetric and hydrographic 

considerations relevant to the local region at the mouth have been discussed in Chapter 2. 

As discussed previously, the dynamics in the estuary are dominated by an interaction 

between tidal and discharge energies. Tides in the Strait of Georgia are mixed 

semidiurnal and diurnal, with amplitudes typically ranging from 2.5 to 4 meters. River 

discharge is dominated by the summer freshet, during which discharge typically increases 

by a factor often relative to low flow, when snow pack from the higher elevations of the 

inland mountains melts. The highly energetic estuarine environment that results from the 

interaction of these two strong forcing mechanisms is characterized by intense 

stratification and intense horizontal salinity gradients. The resulting salt wedge exhibits 

salinity differences of greater than 20 psu across only a few meters in the vertical and less 

than 500 meters in the horizontal at the head. This salt wedge advances landward some 

10 to 20 km into the channel on each tidal cycle, only to be flushed back to the mouth 

daily during the strong ebb (Geyer and Farmer, 1989). At this point in the cycle, after the 

salt wedge has retreated to the mouth, there is a period of quasi steady-state dynamics as 

the front location remains stable for several hours, prior to beginning its next advance 
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into the channel on the flooding tide. The frontal region during this period will be 

referred to as the "lift-off' zone, as in Chapter 2, and is the focus of the analyses 

presented in the remainder of this chapter. 

The data evaluated in this study was collected on July 25,1999, five days past neap 

tide, during a summer characterized by an unusually large, and delayed, freshet 

discharge. River discharge on My 25th was approximately 7,500 m's'', as measured at 

the most seaward gauging station, located at Hope, approximately 150 km upstream of 

the mouth. This compares with an average peak freshet discharge of approximately 

7,000 m's' typically occurring in early June, and a 1999 peak of approximately 11,000 

m s" which occurred in late June. 

Data was collected from shipboard instrumentation aboard the R/V Clifford Barnes 

(University of Washington), including two hull-mounted Acoustic Doppler Current 

Profilers (ADCPs), operating at 1200 kHz and 300 kHz, and a tow-yoed Ocean Sensors 

200 Series CTD unit. Combined use of the two ADCPs allowed for consistent bottom 

tracking coupled with a vertical resolution on the order of 25 cm across the top 25 m of 

the water column. Vertical resolution of the CTD unit was on the order of 5 to 10 cm. 

The data discussed herein was collected from repeated passes along a transect line across 

the front, oriented parallel to the discharging river flow as shown on Figure 3.2. 

Measurements were taken from the vessel as it drifted seaward with the flow across a 

typical length of 2 to 3 km. Three passes were completed within approximately two 

hours, representing the essentially steady state conditions during the low tide period. 
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Figure 3.2: Plan view of estuary mouth, showing ship tracks of three passes during low tide on July 
25,1999. Dashed line represents the 12 m isobath, approximating the location of the bathymetric 
break. Observed location of the front during each pass is indicated by the open and closed circles, 
representative of the absence of 14 psu salinity fluid, and the presence of 14 psu salinity fluid, 
respectively. 
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3.3    Hydrography Seaward of the Front 

Cross sections through the front are shown in Figure 3.3, representing all thre 

passes. The strong stratification, as indicated by the close spacing of the isohalines, and 

the convective acceleration of the discharge as it passes the front, can be clearly seen in 

the three panels. The bold lines in the figure are mean fresh water sfreamlines, and 

represent the bounding surfaces for specific fractions of the original river discharge. 

These surfaces were estimated from the measured salinity and velocity fields based on 

fresh water conservation, as follows. Defmmg the salinity of pure Georgia Strait water as 

So = 27 psu, a fresh water flux conservation equation can be written as: 

a = J«^^w-- (3.11) 
"io 

where Q^ is constant and equal to the total fresh water flux in the cross section, w is the 

velocity parallel to a mean upper layer flow direction (defined as the x direction), S is the 

local salinity, and 6 = b{x,z) a relative plume width in the cross-stream direction. Using 

(3.11) and some simple assumptions regarding the shape of the vertical profile of 6, the 

value ofb can be determined at each point in the cross section, allowing the trajectory of 

fresh water streamlines to be generated following a specified fraction of the total fresh 

water flux. The fresh water streamlines shown in Figure 3.3 represent 20* percentiles of 

the total freshwater flux. Overall, five different assumptions regarding the shape of the 

width profile relative to depth were compared to evaluate the sensitivity of the process to 

the uncertainty in the shape of the plume. These included a depth-constant width, and 

several variations of linear and parabolic width distributions. In these cases, the plume is 
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(a) 
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(b) 
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Streamwise Coordinate (km, landward of Sand Heads) 

Figure 3.3:  Cross section through the front for the three passes, (a) A, (b) B, and (c) C. Dashed 
contours represent salinity, in psu. Arrows represent streamwise velocity, based on the scale in the 
lower left hand comer of the figure. Bold solid lines are freshwater streamlines, calculated through the 
conservation of freshwater as described in the text. CTD tow-yo track is shown in the background of 
each figure, and ADCP profile locations are identified by the dots near the bottom of each panel. 
Regions used for control volume analyses are delineated by the two vertical lines. 
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Streamwise Coordinate (km, landward of Sand Heads) 

Figure 3.3 (c): For caption see previous page. 
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assumed to be wider near the surface in order to approximate an increased spreading near 

the surface due to buoyancy. 

The angle of the freshwater streamlines relative to the isohalines in Figure 3.3 

implies that significant cross streamline entrainment (i.e., "jet entrainment") is occurring 

at all depths seaward of the front, likely coupled with a high degree of turbulent mixing, 

and the generation of mean diahaline velocities. Analytical and numerical models of 

river plumes (Garvine, 1982), and arrested fronts (Farmer and Armi, 1986; Armi and 

Farmer, 1986) typically assume that the Froude number within the plume increases 

monotonically seaward of the front, implying invisicid conditions within the lift-off zone. 

The Froude number was introduced in Chapter 1 and discussed with respect to hydraulic 

control in Chapter 2. Here the upper layer Froude number is most significant, given that 

the lower layer is arrested: 

G'^F,'=4- (3-12) 

where the subscript 1 refers to representative upper layer values. In Chapter 2 it was 

shown that for fronts oriented obliquely to an oncoming flow, the Froude number need 

not maintain a critical value of unity, as suggested in much of the literature (e.g.. Farmer 

and Armi, 1986), but that a Froude angle, defined as 0 = sin"' (G"' ) is critical when it is 

equal to the angle between the front and the oncoming flow. In the present context, it is 

the change in Froude number in the streamwise direction, and not the local value of the 

Froude number, that is of primary concern. 
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A plot of the upper layer Froude numbers associated with each of the three passes is 

presented in Figure 3,4. Here we see supercritical values of the Froude number at the 

front, and an increase in Froude number for approximately the first 700 m seaward of the 

front. Beyond about 700 m, however, the profiles are characterized by a steady decrease. 

This may indicate a loss of energy through dissipative mixing processes, suggesting that 

the inviscid assumption may not adequately characterize conditions in the lift-off zone. 

Both the orientation of the fresh water streamlines, and the decreasing trend in the 

Froude number profiles indicate that significant mixing may be occurring near the fi-ont. 

The following section outlmes a procedure used to estimate TKE production and 

buoyancy flux in the lift-off zone using the available ADCP and CTD data, 

3.4     Estimation of Turbulent Fluxes 

The control volume analysis used for the estimation of turbulent transport quantities 

relies on the three conservation constraints of volume, salt, and momentum. The three 

unknowns resolved are the mean velocity across the bottom surface of the control volume 

(assuming the top surface of the control volume is taken coincident with the surface), and 

the vertical turbulent transport of both salt and momentum. The results of the turbulent 

flux calculations for salt and momentum are independent of the shape of the control 

volume, but the mean velocity resulting from the analyses is relative to the shape of the 

bottom control volume surface. For this reason, it is most instructive to use bottom 

control volume surfaces aligned with isohaline and/or freshwater streamline surfaces. 

109 



-2.0 -1.5 -1.0 -0.5 

Streamwise Coordinate (km) 

0 

Figure 3.4: Profiles of the squared composite Froude number, G, along each of the three ship-track 
passes presented in Figure 3.2. The observed front locations are noted for each pass. 
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Volume conservation is used to identify the mean velocity across the bottom control 

volume surface. Written as an integral across the control volume surface, this can be 

expressed as: 

r.   ,-    dV_ 
dt 

jjU-dA 
cs 

(3.13) 

where £/represents the local velocity at the control voliraie surface, J is a unit vector 

perpendicular to the surface, the integral represents summation over the entire control 

volume surface, and Fis the total volume contained within the control surface. 

Assuming no contribution from lateral fluxes, the control volimie equation can be 

rewritten in differential form as: 

— [Ibudz\+ wb = — yjMzcfeJ (3.14) 

where the integrals are taken across the vertical limits of the control volume, and w 

represents the mean vertical velocity, which is equal to w^ if the bottom control volume 

surface is coincident with an isohaline, or Wj if the bottom of the control volume is 

aligned with a freshwater streamline. 

A similar treatment of the salt balance allows for estimation of the total vertical salt 

flux, Sw, where 

.-, ,-.   a jjSU.dA = f lllsdV 
cs "*    cr 

(3.15) 

represents the control surface equation, with salinity represented by S. This can be 

written in differential form as: 
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^[\sbudz\-SMb = 
dx dt 

jjSbdzdx (3.16) 

Once an estimate of the total vertical salt flux has been generated, the turbulent part can 

be extracted following a Reynolds decomposition, and making use of the vertical velocity 

estimated in (3.14): 

S'w' = Sw- Sw (3.17) 

where S is the mean salinity of the bottom control volume surface. If the bottom surface 

is coincident with an isohaline, S is equal to the salinity associated with the isohaline. 

Treatment of the momentum balance requires knowledge of the net force on the 

control volume associated with the local pressure, but is otherwise similar to the salt 

balance. Estimation of the turbulent momentum flux can be represented by the following 

equations: 

'^F^=lJupO-dA+^ 
cs dt 

JlJupdV 
cv 

d_u^, ,1 —     a 
dx 

[j Sbud^- Swb = ~ \\\Sbdzdo^ 

(3.18) 

(3.19) 

u'w' = uw — u w (3.20) 

where Fx represents force in the streamwise direction associated with the local pressure. 

The size of the control volumes used for the analyses was on the order of 0.5 to 1 km 

in the x direction (as identified on Figure 3.3). The top surface of the control volume was 

always coincident with the fluid surface, and lateral width was defined by Z? as in (3.11). 

The bottom control volume surfaces were represented by isohalines for the diahaline 
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velocity and turbulent salt flux estimates. Due to the wide spacing of isohalines near the 

surface, where a majority of the momentam flux occurs, an independent set of 

calculations for the momentum flux was conducted using bottom control volume surfaces 

coincident with the fresh water streamlines as identified on Fipire 3.3, 

A schematic of the control volume process is shown in Figure 3.5. The 

implementation of each step of this calculation process is discussed below in fiirther 

detail. The time dependent terms incorporated into Equations (3.13) through (3.20) were 

estimated from the data by comparing subsequent passes, but were generally small due to 

the quasi steady state nature of the plume during the sampling transects. 

3.4.1 Measured Quantities 

Mean velocity and salinity profiles for the three passes are presented in Figure 3.6. 

These profiles identify the two independent variables in the shear stratified environment, 

Au, and Ap . The highly sheared streamwise velocity profiles are presented in the first 

panel, characterized by a AM on the order of 2 m-s"'. Likewise, the salinity profiles 

identify a zone of strong stratification between roughly 3 and 8 meters below the surface, 

characterized by a M on the order of 20 psu, or an equivalent g' value of approximately 

0.15m-s"l 

Profiles of the gradient Richardson number, based on the mean profiles of Figure 3.6, 

are shown in Figure 3.7. Each of the three profiles contains a significant portion of the 

water column with Rig values below the critical value of YA. These critical regions, shown 

shaded in Figure 3.7, are generally positioned between 2 and 6 m below the surface. It is 

at these depths that the most significant mixing is expected. 
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(a) Volume Conservation 
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(b) Salt Conservation 

Figure 3.5: Two-dimensional schematic of the control volume method, identifying the volume 
conservation process (a) for isolating the mean vertical entrainment velocity w , and the salt 

conservation process (b), which allows for the calculation of the total vertical slat flux, Sw. In both 
cases, A represents the projected area of a specific face of the control volume, S is salinity, and u and w 
are streamwise and vertical velocities, respectively. The calculation process shown in these schematics 
is simplified in that incoming and outgoing fluxes are not represented as integrals over the surface, and 
the time dependent terms are not represented. The control volume analysis for momentum is not 
shown, but is similar to the salt analysis, with the additional component of an integration of pressure 
forces across the control surface. 
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Figure 3.6: Vertical profiles of measured quantities, velocity and salinity, in the control volume 
region for each of the three lift-off passes. Plots represent mean profiles across the control volume 
region, which has a streamwise dimension of approximately 1 km for passes A and B, and 
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Figure 3.7:  Vertical profiles of the gradient Richardson number, based on the mean quantities shown 
in Figure 3.6. Profiles are smoothed across approximately 1.5 m in the vertical. The vertical line 
represents a value of 1/4, and the shaded regions indicate the locations where the gradient Richardson 
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3.4.2 Volume Conservation and Vertical Velocity 

The concept of entrainment velocity was discussed in Section 3.1, where two vertical 

velocities were defined relative to specific surfaces within the developing flow structure. 

In the context of the Fraser lift-off, these two surfaces are represented by the isohalines, 

and the fi^shwater streamlines. Under inviscid conditions, streamlines would follow 

lines of constant density, which m this case would be coincident with isohalines. The 

migration of isohalines across the fi-eshwater streamlines is indicative of entrainment. 

Mean vertical entrainment velocity in the Fraser Uft-ofTis calculated from 

observations of volume entrainment within the seaward flowing discharge plume, 

following the calculation scheme outlined above. Initial calculations utilized bottom 

surfaces representing isohalines, in order to generate a vertical profile of the diapycnal 

velocity, w^, The process was then repeated using bottom surfaces coincident with the 

fresh water streamlines associated with each percentile increase in flow fraction, 

providing a vertical profile of w.. 

Mean vertical profiles of w^ and Wj for each of the passes are presented m the two 

panels of Figure 3.8. Error ranges shown on Figure 3.8 represent the standard deviation 

of the results associated with the various width shape assumptions, as discussed above. 

This error is negligible at depths less than approximately five meters, and generally less 

than 30% at depth. The profiles of w^, m the panel at the left show entrainment of both 

surface and deep water into a developing mixed layer centered at approximately 3 to 4 m 

depth and approximately 10 to 14 psu. In the panel on the right, the profiles of w. 
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Figure 3.8: Vertical profiles of the mean vertical velocities, w^, and w., as calculated from the 

control volume analyses. Estimates are bracketed by error bounds, based on the standard deviation of 
the results using five different width assumptions. 
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indicate that ambient fluid is being entrained into all portions of the initial discharging 

plume, with entrainment increasing relative to depth. At the bounding limit of the plume, 

w^ is equal to Wj because the bottom boundary of the expanding discharge is coincident 

with the 27 psu isohaline, 

3.4.3 Salt Conservation 

Total vertical salt transport is calculated as described above, utilizing a series of 

isohaline surfaces as the bottom control volume surface for purposes of generating a 

vertical profile. In this case, the vertical velocity represented by w^ is used with the 

salinity of the isohaline surface to estimate the component of the total vertical salt flux 

attributable to entrainment. 

The first panel of Figure 3.9 shows profdes of turbulent salt flux, expressed; 

buoyancy flux, as in (3.1): 

as 

where ^ =  — 
1 dp 
pdS 

B = gfiS'w (3,21) 

= 0.77 X10"^ psu"'. In the second panel, profiles of eddy diffiisivity, 

derived firom the turbulent salt flux profiles using (3.3) are plotted. The buoyancy flux 

profiles are similar for the three passes, which peak near 2x10-^ m^s"^ in the midst of the 

pycnocline near 4 m depth. The profiles of eddy diffiisivity indicate values of Zf on the 

order of 2 to 6x10"^ m^s' across the middle portion of the water column. 

All of the profiles in Figure 3.9 are shown bracketed by the standard deviation 

associated with the various width shape assumptions, as above. The negative values of 

both buoyancy flux and eddy diffiisivity observed below about 8 m for pass B ; are 

119 



-1 
B (lO'^'mS/s^) 

0 4 
K^ (10"^m2/s) 

Figure 3.9: Buoyancy flux (B), and eddy diffusivity (K^ ) profiles fi-om control volume analysis. 
Each estimate is bracketed by standard deviation as in Figure 3.8.  Note that estimates below 
approximately 5 to 6 meters are also influenced by unresolved lateral fluxes as discussed in the text. 
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unrealistic. They can be explained by unresolved lateral influxes of salt and volume, 

which are discussed more thoroughly later in this chapter. 

3.4.4 Momentum Conservation 

The procedure for calculation of the total vertical momentum flux is similar to the 

volume and salt calculations, but complicated by the necessity of estimating the net 

streamwise dkected force on the control volume associated with the pressure gradient, as 

described above. A hydrostatic force balance is assumed, including both barotropic and 

baroclinic contributions. The baroclinic contribution is calculated based on density 

profiles within the control volume. The barotropic contribution is determined from a 

surface gradient, dT]/dx, estimated as the gradient required to produce a layer of no 

motion, as observed at depths sufficiently below the plume. The reference level for this 

layer was typically taken at 10 m below the surface, in order to extend the control 

volumes landward of the bathymetric break. In the case of Pass C, which occurred at the 

very early stages of the flood, weak landward currents in the lower layer near the front 

produced conditions which invalidated the no motion and zero-stress-divergence 

assumptions, so the control volume region had to be shortened and moved offshore. The 

limits of the control volume regions used for each of the three passes are shown on the 

cross sections in Figure 3.3. 

Profiles of the surface elevation, % are shown in Figure 3.10, where the layer of no 

motion method is compared with two other estimates: one generated using a Bernoulli 

approach along the extrapolated surface velocities (i.e,, j] = ^u^+-i^dx) and the 
2g        gJ dt 
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Figure 3.10: Estimates of surface elevation across the lift-off region based on three different 

methods of estimating the surface slope, dT]/dx. The solid line represents the assumption of a layer of 
no motion, and zero stress divergence at a depth of 10 m below the surface. These results were used for 
subsequent momentum budget calculations. The dotted line represents the surface profile required to 
force the stress to zero at depth (~ 15 m below the surface) using a modified form of the control volume 
analysis. The dashed profile was derived using a Bernoulli approach based on the extrapolated surface 
velocities, assuming zero stress divergence at the surface. The dashed profile is terminated in the 
seaward direction where surface salinities exceeded 1 psu, providing evidence of mixing and an 
invalidation of the zero stress divergence assumption. 
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olher determined m the surface elevation profile required to force the turbulent 

momentum transport (MV) to zero at depth. Note the general consistency between the 

three estimates, and the steepness of the profiles near the firont. This significant drop in 

surface elevation, on the order of 20 cm across roughly 0.5 km, contributes a significant 

amount of kinetic energy to the system. The unresolved dynamics limiting the size of the 

control volume for Pass C can also be seen in the divergence of the no-motion estimate 

and the zero-stress estimate landward of roughly -1.4 km. 

Freshwater streamlines are used to defme the bottom surface for the control volumes, 

as used for estimating profiles of Wj. The turbulent momentum transport is opposite m 

sign as compared to the mean transport, so that the total vertical momentum flux can be 

of either sign depending on the relative magnitude of each component. This indicates 

that the seaward velocities within the plume can be reduced either through the downward 

export of momentum, or the upward transport of fluid with less momentum. 

Profiles of turbulent momentum flux, ?^', are shown in Figure 3.11. These profiles 

peak between approximately 2 and 5 m below the surface at values on the order of 1 to 

2x10" m s" . In Figure 3.12 vertical profiles for two quantities derived fi-om the turbulent 

momentum flux are shown. In the first panel, profiles of TKE production are plotted, 

calculated as the product of the turbulent momentum flux and the local shear: 

„      -7—, 9M 
p = -uw— (3,22) 

az 

These profiles are similar in shape to the turbulent momentum flux profiles, with 

production peaking at values on the order of 0.5 to IxlO'^ mh'K Profiles of eddy 
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Figure 3.11: Turbulent momentum flux (w'w') profiles from control volume analysis. Each 
estimate is bracketed by standard deviation as in Figure 3.8. Note that estimates below approximately 5 
to 6 meters are influenced by unresolved lateral fluxes as discussed in the text. 
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Figure 3.12: TKE production (P), and eddy viscosity (K" ) profiles from control volume analyses. 
Each estimate is bracketed by standard deviation as in Figure 3.8. Note that estimates below 
approximately 5 to 6 meters are also influenced by unresolved lateral fluxes as discussed in the text. 
Eddy viscosity profiles for passes B and C exceed the bounding limite of the plot at depth. The scale 
was constrained to provide enhanced detail in the central portion of the water column. 
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viscosity are shown in the second panel. These profiles are consistent in shape and 

magnitude with the profiles of eddy diffiisivity shown in Figure 3.9, indicating that 

momentum and salt are diffused similarly through turbulent processes. 

3.4.5 Flux Richardson Numbers 

Estimates of the flux Richardson number, generated from the independently 

estimated production and buoyancy flux profiles, are plotted in Figure 3.13 against the 

local gradient Richardson number. Values are taken from each pass at 1 psu intervals, 

from 5 psu through 15 psu, representing depths between about 2.5 to 5.5 m, so that the set 

of values from any particular pass are not necessarily mutually independent. The dashed 

line superimposed over the data, represents the simple model that Ri^ = Ri^. As 

discussed earlier, this model is based on the assumption that vertical eddy diffusivities for 

mass and momentum are equal. Comparison of Figures 3.9 and 3.12 indicate that this 

assumption is reasonable in the lift-off zone. A conclusion that is consistent with the 

position of the dashed line in Figure 3.13 relative to the cloud of data points. 

In general the results shown in Figure 3.13 indicate that most mixing in the Fraser 

lift-off occurs at gradient Richardson numbers slightly less than VA, with flux Richardson 

numbers between 0.15 and 0.25. These results are consistent with previous observations 

of highly energetic shear-induced turbulence (Gargett and Mourn, 1995), and laboratory 

£ 
experiments and field observations at low values of —- (e.g. Ivey and Imberger, 1991; 

Osbom, 1980). They are not consistent, however, with measurements from grid- 

e 
generated turbulence at high values of —^-y (Barry et al., 2000), or observations from 
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Ri. 9 

Figure 3.13: Flux Richardson number (B/P) as a function of the gradient Richardson number for 
Passes A (open circles), B (gray filled circles), and C (black filled squares).   Points shown represent 
values at isohalines from 5 to 15 psu. Error bars represent standard deviation, as in Figure 3.8.   The 
dashed line represents a 1:1 relationship between Rif and Rig. 
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regions where turbulence is generated by the breaking of internal waves not related to 

local shear (Etemad-Shahidi and Imberger, 2001). These comparisons further suggest 

that the magnitude of buoyancy flux is highly influenced by the nature of the mechanisms 

responsible for generating the turbulence. 

3.5    Lateral Effects 

In addition to measurement errors associated with the raw variables, a potential 

source of error to the control volume calculations is the lateral import or export of 

volume, salt and momentum. A separate analysis of data from the 2000 freshet, as 

discussed in Chapter 2, has suggested that the flow in this region of the channel is nearly 

two-dimensional, particularly above the 20 psu isohaline, based on a three-dimensional 

salt balance and the relative contribution of lateral (southward-directed) salt flux to the 

overall salt budget in the region. However, due to the complexities of the interactions 

between entrainment and turbulence in generating the vertical transport, there are 

multiple pathways through which lateral fluxes may impact the calculations.   An 

estimate of the magnitude of the contributions of lateral flux to the overall volume, 

momentum, and salt budgets is, therefore, an important goal. 

An estimate of this magnitude can be obtained using the observed cross-stream 

velocity profile, and estimating a cross-channel length scale, /^, which represents the 

distance to the channel boundary across which the lateral flow must decrease to zero. A 
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profile of lateral volume influx can be estimated by integrating the cross-stream velocity 

profile: 

Hh)=m^\zdx (3.23) 

where V represents the lateral volume influx, and v is the cross-stream velocity. 

The firet panel of Figure 3.14 shows profiles of cross-stream velocity averaged 

across the control volume for each of the passes. In the second panel, the ratio of lateral 

volume influx to the maximum flux divergence in the streamwise direction (in this case 

representing the lowest calculation point in the water column) is plotted. The curves in 

the second panel were generated using a depth dependent value of 4 based on local 

bathymetry. The cross-stream velocity profiles in the firet panel show relatively small 

and balanced velocities in the top 4 m of the water column, with more intense southward- 

directed velocities, approaching 30 cm-s'', in the lower portion of the water column. It is 

the flux in this lower region that supphes most of the salt to the lift-off zone, as discussed 

in Chapter 2, and is most likely to influence the salt balance and thus impact the 

turbulence calculations. 

As expected, based on the velocity profiles in the first panel, the ratio in the second 

panel of Figure 3.14 increases rapidly below about 5 meters, with errorc that are generally 

negligible in the upper half of the water column. The negative sign of the ratio indicates 

that the calculated values of w^ and w, are likely to be overestimated, and that velocities 

may begin to decrease below about 5 m rather than the monotonic increase suggested by 

the curves in Figure 3.8. 
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Figure 3.14: (a) Vertical profiles of the cross stream velocity, positive values directed to the right of 
the discharging flow (northward), (b) Profile of the estimated lateral volume flux to the maximum 
observed streamwise volume flux divergence, as described in the text. 
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Uncertainty in the value of the vertical entrainment velocity propagates into the 

turbulence flux estimates directly through the mean transport terms of Equations (3.17) 

and (3.20), where it is amplified by the mean value of the transported quantity. Hence, 

potential errors in the lower portion of the water column due to errors in the vertical 

velocity are greatly amplified m the turbulent salt flux calculations due to the high value 

of salinity at depth. Errors are sunilarly reduced in the momentum flux calculations due 

to the small along-channel velocities at depth. 

Additional errors are introduced to the turbulence calculations through the direct 

lateral flux of momentum and sah. These errors are typically of opposite sign to the 

entrainment related errors, reducing the overall impact of the lateral influx. Figure 3.15 

presents plots sunilar to those shown in the second panel of Figure 3.14, but representing 

the net effect of lateral influx (both the entrainment and direct components) on both the 

salt budget and momentum budget calculations.  These plots, combined with the curves 

presented in Figure 3.14, and the assessment of direct eflects to the streamlme 

calculations clearly indicate that a high degree of uncertainty will be associated with all 

calculations at depths below approximately five to six meters. Further discussion of these 

results will generally be lunited to those within the upper region of the water column 

where errors associated with lateral fluxes are small. 
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Figure 3.15:  Lateral influx ratios for both salt (a) and momentum (b). The ratios represent the 
cumulative effect of lateral influx (including both the direct lateral flux divergence, and the indirect 

effect of lateral flux induced entrainment) divided by the maximum calculated values of S w   and 

M TV , as shown in Figures 3.9 and 3.11. Significant errors are identifiable in both cases in the lower 
portion of the water column below approximately 6 meters depth, with the salt flux calculations more 
susceptible to lateral errors than the momentum calculations. 
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3.6    Turbulence, Entrainment and Closure 

The results shown in Figure 3.12 place the magnitude of the dissipation rate in the 

Fraser lift-off zone on the order of lO' mVl Corresponding values of ^- are on the 

order of 10 ,  These TKE production rates represent a large amount of turbulent energy 

in comparison to other studies from ocean and coastal environments. In particular, 

Gregg(1989), reports that dissipation rates within the oceanic thermocline typically fall 

within a range of order lO"'" to 10* m^sl Higher rates have been observed in tidal 

channels and in estuaries, but rarely exceeding 10"^ mh'^, and typically several orders of 

magnitude lower (see Grant, Stewart and Moillet, 1962; Gargett and Moum, 1995; and 

Peters, 1999). For comparison, turbulent eddy diffiisivities are on the order of 0.5x10"^ 

nl^s"', as shown in Figures 3,9 and 3.12. These values are more typical of observed K, 

values in ocean and coastal environments (e.g., Ledwell et al, 1993; Osbom, 1980). 

A third expression of turbulent intensity, and one that can be corroborated with 

mdependent observations, is the outer length scale of the turbulence, represented by the 

Ozmidov scale, as in (3.9). Based on a representative dissipation rate of approximately 

0.5x10"^ m^s\ and a representative buoyancy frequency of 0.17 s' (equivalent to a 

change in salinity of 15 psu across 4 m), an associated Ozmidov scale is equal to 

approximately 30 cm. This scale is the scale of the largest eddies that can exist without 

being appreciably consfrained by the sfratification (e.g., Smyth and Moum, 2000). 

Observations of displacement distances associated with overturns recorded in the 

CTD to-yo profiles (approximately 5 to 10 cm resolution, interpolated to 5 cm), indicate 
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an overturn scale of approximately 20 cm. This scale was calculated as the rms value of 

all displacement values between 5 and 20 psu, including zero displacements, within the 

three control volumes. Maximum observed displacements were on the order of 1 to 2 m. 

The outer turbulent length scale, as represented by the Ozmidov scale, is approximately 

50% larger than the observed rms displacement scale. This implies that the ratio of the 

Ozmidov and overturn scales may not be close to one (Baumert and Peters, 2000). As 

discussed by Smyth and Moum (2000), there appears to be a consensus that the ratio of 

overturn scale to Ozmidov scale evolves in time, and that the ratio could be a useful tool 

for diagnostically interpreting the age of turbulence fields. However, the nature of the 

temporal evolution is poorly understood, to the point where there is disagreement over 

the direction of the evolution, from small to large values, or vice versa (Wijesekera and 

Dillon, 1997; Gibson, 1998). The turbulence field observed in the Fraser lift-off zone is 

likely to be evolving through the control volume region, and the observed overturn to 

Ozmidov scale ratio may be representative of this evolution. 

3.6.1 Local Production vs. Advected TKE 

The observed production in the pycnocline is on the same order as production due to 

near bottom boundary layer effects in the unstratified portion of the channel. Boundary 

layer shear production in the unstratified channel can be estimated assuming a log-layer 

3 

shear profile as P = —^, where w. is a local shear velocity {u,  ~ CjU^, C^ is a bottom 
Kz 

drag coefficient, typically on the order of 3x10"^), K is von Karmans constant (equal to 

approximately 0.4), and z is the distance above the bed. This suggests that the observed 
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production could potentially be advected into the stratified region from the unstratified 

boundary layer. However, a length scale for such advection can also be estimated, 

assuming that advection balances the observed production, yielding an extinction length 

la 
scale, L^ - -j=. The length scale for a representative height above the bed of 2.5 m is 

on the order of 20 m, nearly two orders of magnitude smaller than the streamwise length 

scale of the lift-off region. These simple estimates indicate that the turbulent production 

observed in the lift-off region is produced locally, and not advected seaward from the 

boundary layer of the unstratified channel. 

Observation of enhanced local TKE production in the liftoff zone is also consistent 

with the Froude number profiles shown in Figure 3.4, which imply significant energy 

losses through the steady decline in Froude number seaward of approximately -1.5 km. 

This general conclusion suggests that analytical (e.g., Armi and Farmer, 1986; Farmer 

and Ami, 1986) and numerical models (e.g., Garvine, 1982) of river plumes that 

incorporate inviscid conditions near the lift-off region may resuh in a significant 

overestimate of outflow velocities. An alternative scheme for parameterizing mixing and 

dissipation in these regions is needed. Towards that end, a discussion of the mechanisms 

responsible for transferring energy into the turbulence from the mean horizontal current, 

and the relationship of these mechanisms to bulk quantities of the flow, is undertaken in 

the remainder of this chapter. 
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3.6.2 Mean Vertical Velocities 

Representative values of both w^ and Wj near the middle of the water column are on 

the order of 0.1 to 0.2 cm-s', as shown in Figure 3.8. Although these velocities are small 

relative to the mean horizontal velocities, they provide a significant vertical transport of 

both salt and momentum. Vertical entrainment across density surfaces, as described by 

w^, is related to gradients in mixing intensity, as discussed in Section 3.1. Entrainment 

into the body of the plume, represented by Wj, is augmented by a flow divergence in the 

plume interior due to the seaward acceleration of ambient Strait of Georgia water through 

turbulent processes. 

The ratio of the observed entrainment velocity to a representative upper layer 

velocity is analagous to the entrainment coefficient, E, defined by Ellison and Turner 

(1959), and is on the order of 1x10"' in the Eraser lift-off region. This value is roughly 

an order of magnitude smaller than values ofE predicted by Ellison and Turner based on 

laboratory experiments of plumes. Ellison and Turner suggested that entrainment should 

be a function of a bulk Richardson number, Ri„ = ^—r-cosa, where H and U are the B jj2 

length and velocity scales of the flow, respectively, and a is the bottom slope. This bulk 

Richardson number is equivalent to the inverse square of the layer Froude number 

introduced in Chapter 1, and plotted for the three lift-off passes in Figure 3.4. The 

Froude numbers in Figure 3.4 correspond to bulk Richardson numbers of order 0.5 to 1, 

with an average value on the order of 0.7. As the plume in this case is surface attached, 

a would represent the surface slope, which can be considered equal to zero. 
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Although the results of Ellison and Turner did not include bulk Richardson numbers 

as high as the range present in the Fraser lift-off, their data suggest a decreasing trend in 

E with increasing MB, towards values consistent with the present observations. The 

results of other laboratory studies, as compiled by Christodoulou (1986), confirm the 

trend suggested by the data of Ellison and Turner, extending the range of observations to 

values of the bulk Richardson number as high as lOl This expanded data set suggests a 

value of the entrainment coefficient on the order of 10"^ for^iV-l, which is consistent 

with the present observations. In situations where flow conditions continuously adjust to 

drive Froude numbers towards unity, which appeare to be the case in the Fraser lift-off, 

the entrainment coefficient would be approximately constant at this value. 

3.6.3 Mechanisms of Turbulence Generation 

The most likely mechansim for the input of energy from the mean horizontal flow 

into turbulence is the generation of Kelvin-Helmholz billows through the propagation of 

shear instabilities. The development and collapse of these instabilities in a laboratory 

flow similar to the Fraser lift-off is well described by Fawlak and Armi (2000). 

Equation (3.10) presented scaling relationships for dissipation and mixed layer 

thickness, using the two independent variables in a shear stratified flow, AM and g'. 

Based on the velocity and salinity observations shown in Figure 3.6, representative values 

of AM and g' for the Fraser hftoff are approximately 2 m-s"', and 0.15 m-s"^, 

respectively. Using these values, and following (3.10), the coefficient ^, which 

represents the ratio of the mixed layer thickness, 5, to a length scale generated from AM 

and g', is on the order of 0.2 to 0.25, consistent with subcritical values of ^ig. In fact. 
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substitution of the second equation in (3.10) into the definition of the gradient Richardson 

number yields the same result: 

d=Ri^ (3.24) 
8 

This indicates that the coefficient <p in (3.10) is equal to Rig. Because stability issues and 

energy considerations (Miles, 1961; Howard, 1961; Thorpe, 1973) tend to result in a 

relatively constant value for the gradient Richardson number in regions of active 

turbulence, the mixed layer thickness, 5 , is not an independent variable in this type of 

system. 

The value of the coefficient y in (3.10), which represents the ratio of the observed 

dissipation rate to a scaled dissipation rate, is on the order of 2xl0"\ 

7 = -^-2x10"^ (3.25) 
Aug 

It can be shown that this coefficient, y, is proportional to an interfacial drag coefficient, 

Coi, divided by the gradient Richardson number, 

y = (l-Ri)^ (3.26) 

suggesting a value of the interfacial drag coefficient on the order of 5x 10"^. Both the 

drag coefficient and the coefficient y relate to the efficiency with which energy is 

extracted from the mean flow and converted into turbulent energy, suggesting that the 

turbulent energy is on the order of three orders of magnitude lower than the mean flow 

energy. Because turbulence and entrainment are related phenomena, as discussed in 
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Section 3.1, there may be a dependence of the drag coefficient on the bulk Richardson 

number, similar to the relationship that appears to hold for the entramment coefficient 

(e.g., Ellison and Turner, 1959; Christodoulou, 1986). In addition, the interfacial drag 

coefficient may be constrained by lateral influences affecting the plume expansion rate. 

In a dynamic system controlled by conservation of volume, mass, and momentum, and a 

mixing threshold associated with the gradient Richardson number, the drag coefficient 

could also be affected by limitations on the plume width and expansion. Such limitations 

could be imposed by local geometry, or ambient conditions in the receivmg waters. 

The use of these scaling relationships m context with observed turbulent quantities 

requires the assumption that the turbulence in the shear stratified layer is fully evolved. 

As discussed in context with the discrepency between the overturn and Ozmidov scales, it 

is unclear how fiilly developed the turbulence in the Fraser Hft-off is. Observed values of 

the appropriate coefficients are presented here, however, for future comparison with 

observations from other similar shear stratified environments. 

3.7     Concluding Remarks on Mixing in the Lift-Off Zone 

This chapter has provided a robust control volume approach for estimating TKE 

quantities in a shear-stratified flow. The resulting estimates of turbulent dissipation, on 

the order of 10"' m^s"', are high compared to most other observations of dissipation in 

oceanic and coastal environments. These results are reasonable, however, in light of the 

fact that there are only two independent variables in a shear-stratified flow. AM and g . 

In the Fraser lift-off both of these independent variables are high, at 2 m-s"' and 
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0.15 ms" , respectively. The high values of dissipation observed in the lift-off region are 

consistent, as dissipation must scale with the product of these two variables. 

Further contributions of this chapter are based on the results of these turbulent 

calculations, and the highly energetic setting of the study site, which is characterized by 

values of —^ on the order of 10'*. First, mixing efficiencies, as expressed by the flux 

Richardson number, were observed to be consistent with previous laboratory and field 

observations representing far less energetic conditions (Ivey and Imberger, 1991;Osbom, 

1980). Specifically, it was seen that most mixing occurred at gradient Richardson 

numbers between 0.15 and 0.25, with flux Richardson values within the same range. 

The entrainment coefficient for the flow was found to be on the order of 10'^, which 

is not inconsistent with trends suggested by previous studies (Christodoulou, 1986). Due 

to feedback mechanisms that tend to keep the Froude number and bulk Richardson 

number of a plume close to unity, the entrainment coefficient is expected to be relatively 

constant for a wide range of estuarine plumes. This is also suggested by the relative 

dynamical simplicity of a fiilly developed shear-stratified flow, which can be adequately 

characterized by only two independent variables, AM and g'. In the same vain, the issue 

of turbulence closure was discussed with respect to these two independent variables, 

resulting in the formulation of a drag coefficient for the flow on the order of 

C^. ~ 5x10"^ . The combination of these simple general expressions describing 

entrainment and turbulence in the Fraser lift-off region may prove usefiil for predicting 

flow evolution for a wide variety of shear-stratified flows based on mean flow properties. 
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Chapter 4 

The Variability of Vertical Salt Flux in 
a Highly Stratified Estuarine Channel 
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ABSTRACT 

The temporal and spatial variability of vertical salt flux in the dynamics of the highly 

stratified Fraser River Estuary, British Columbia, vk^as investigated observationally, using 

several different direct and indirect indicators of buoyancy flux. Data were collected 

from the estuary using shipboard instrumentation, primarily an acoustic Doppler current 

profiler (ADCP), and a towed conductivity, temperature, depth (CTD) unit. Estimates of 

buoyancy flux were made from along channel control volume analyses and from 

measurements of overturn scales in the vertical salinity profiles. The temporal evolution 

of the salt wedge structure through a tidal cycle was evaluated using the results of these 

buoyancy flux calculations, as well as gradient Richardson number, Froude number, and 

stratification profiles. 

Vertical salt flux, as opposed to seaward advection of high salinity fluid, was found 

to be the dominant mechanism responsible for removal of salt from the estuarine channel 

during each tidal cycle. Buoyancy flux was highly variable in time and space, however, 

with vertical salt flux during ebb tides on the order of 2 to 3 times greater than that 

occurring during floods. This is due to an increase in vertical velocity shear and a sharp 

increase in stratification, which was found to occur during early ebb. Mixing during all 

phases of the tide was considered significant, however. Enhanced mixing was observed 

spatially within a region dominated by a channel constriction in which the channel 

narrows by approximately 25%. 

142 



4.1    Introduction 

Estuaries are an important component of the coastal ocean, providing nutrient-rich 

waters that form the foundation of fertile and productive ecosystems. In the coastal 

ocean, estuaries continue to play an important role, with a significant impact on the 

distribution of land-derived nutrients, contaminants and sediment. These far field 

distributions are driven to a large extent by localized mixing processes within an 

estuarine channel, where the confluence of energy fi-om river and tidal sources can 

generate sufficient turbulence to overcome local stratification. Early studies of estuarine 

physics (e.g., Schijf and Schonfeld, 1953; Pritchard, 1952,1954,1956) recognized 

estuarine mixing as an important component of estuarine circulation. However, even 

today, attempts to quantify mixing rates continue to represent a major technical 

challenge. 

Mixing in estuaries can be highly variable, dependent on diurnal and fortnightly 

variations in tides, seasonal cycles of river discharge and variations in channel 

topography. Simpson et al. (1990) found that in the partially mixed estuary of Liverpool 

Bay, intense mixing occurs primarily near the end of the flood, particularly near spring 

tides. Recent measurements of mixing in the Hudson River Estuary (Peters, 1999), 

another partially mixed estuary, mdicate that about 30% of the total fortnightly vertical 

salt flux occure during spring ebbs, with the majority of the remainder provided during 

floods throughout the fortnightly cycle, A recent numerical study of mixing in a partially 

mbced estuary (MacCready and Geyer, 2001) indicates that mixing is most intense during 

the peak ebb, but more vertical salt flux occurs during the peak flood due to an extended 
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along-channel length of the isopycnals. In the Tacoma Narrows section of Puget Sound, 

a large fjord-like estuary, channel curvature and the flow dynamics over a sill were found 

to produce strong vertical mixing (Seim and Gregg, 1997), reiterating the often observed 

importance of topographic features to mixing processes (e.g., Geyer and Canon, 1982; 

Farmer and Armi, 1999; Wesson and Gregg, 1994). 

While significant progress has been made in identifying mixing in different estuarine 

environments, fundamental questions still remain regarding the mechanisms responsible 

for mixing such as where and when the mixing actually occurs, and how these processes 

are dynamically controlled. Conditions in highly stratified estuaries may be 

fundamentally different than in other types of estuaries. For instance, steep density 

gradients can provide an increased resistance to mixing. However, these steep gradients 

may also result in more productive vertical salt flux once the turbulence is energetic 

enough to overcome the stratification. 

Several previous studies have described the mixing climate of the highly stratified 

Fraser River (Geyer and Smith, 1987; Geyer, 1988; Geyer and Farmer, 1989). These 

studies have suggested that mixing is more prominent in the Fraser during ebbs, and at 

localized constrictions in the channel width (Geyer, 1985), but no attempts to directly 

assess mixing rates within the estuary were attempted. It is still unclear to what degree 

mixing on the flood is significant in natural salt-wedge systems, and, specifically with 

regards to the Fraser River Estuary, how much mixing actually occurs during a typical 

tidal cycle, and where and when that mixing is most intense. 

144 



This chapter focuses on data from a cruise in the Fraser River Estuary during the 

summer of 2000. As discussed in Chapter 1, the Fraser Estuary is a highly energetic salt 

wedge estuary, characterized by a strongly diurnal tide, with amplitudes exceeding 4 m 

during spring tides, and a river discharge that can peak at over 10,000 m's"' during the 

summer freshet. These conditions combine to generate a sah wedge that advances into 

the channel some 15 to 20 km landward of the mouth during the flood portion of every 

tidal cycle, retreating to the mouth once a day during the largest of the two daily ebbs. 

The dates of the 2000 cruise were chosen to coincide with spring tides and the summer 

freshet, in order to observe the oscillating salt wedge under maximal energy conditions. 

The objectives of imderstanding the dynamics of the estuarine ckculation within the 

channel are addressed in this chapter by focusing on the key processes of shear induced 

mixing, the straining of isopycnals by velocity shear, and advection. The interaction of 

these processes within the Fraser estuary is responsible for settuig and maintaining the 

degree of stratification within the estuary. A specific goal of the chapter is to address 

temporal variations in stratification and diapycnal mixing through the tidal cycle, 

particularly the relative strength of mixing on both the flood and ebb portions of the tidal 

cycle. A second and related goal is to determine the dommant processes responsible for 

the evacuation of salt from the channel during the ebb; that is, horizontal advection 

driven by tidal oscillation, or vertical mixing and subsequent transport in the upper water 

column. Spatial variations in mixing intensity will also be evaluated, both with respect to 

their importance to the temporal variability, and to previous observations of localized 

mixing events at channel constrictions (Geyer, 1985). 
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4.2    The Mechanics of Shear-Induced Mixing 

There are several important concepts which are useful in framing any discussion 

regarding turbulence and mixing. Many of these concepts have been introduced in earlier 

chapters of this thesis, but are briefly re-introduced here to provide a context for 

observations from the estuarine channel of the Fraser River. 

4.2.1 Gradient Richardson Number 

The gradient Richardson number was originally introduced in Chapter 1. It 

represents a comparison of the strength of the local buoyancy gradient to the strength of 

the local velocity gradient: 

ou 

where p represents density, u the fluid velocity, g gravitational acceleration, and z is the 

vertical coordinate. Flows with Richardson numbers below a critical value of % are 

generally believed to be capable of sustaining interfacial instabilities and vertical mixing. 

Miles (1961) and Howard (1961) showed analytically that a subcritical gradient 

Richardson number was a necessary, but not sufficient, condition for the generation of 

turbulence. Many subsequent observations and experiments have suggested that a 

subcritical Richardson number can be a robust indicator for turbulent mixing (e.g., 

Thorpe, 1973). 
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4.2.2 Fronde Numbers and Hydraulic Theory 

The Froude number represents the ratio of fluid speed to local wave speed. In 

density stratified fluids, the internal wave speed is of primary importance, and a 

composite Froude number, G, can be defined, as in Chapter 1: 

G'-F^.Fi. F]-± (4.2) 
*   i 

where the subscripts i and 2 refer to the upper and lower layers, respectively, F. is the 

layer Froude number, hj is the layer thickness, and g' = g(p, - p^)p;' is a reduced 

gravity. The importance of the Froude number with respect to hydraulic control at an 

arrested fi-ont was discussed in Chapter 2, and the importance of the Froude number to 

turbulent mixing was discussed in Chapter 3. Here, the Froude number will be used in 

conjunction with the Richardson number and other parametere, to develop an 

understanding of the importance of specific physical processes to the density structure 

observed in the estuarine channel. 

4.2.3 Tubnlent Salt Transport and Buoyancy Flux 

The rate of buoyancy flux provides a direct measure of the vertical flux of density 

difference. In regimes where density is dominated by salinity, such as the Fraser River 

Estuary, it represents the magnitude of vertical salt flux: 

S~rj B = ^p'w' = gpS'w' (4.3) 
P 

where S represents and salinity, and ^ = —^ = 0.77 x 10"^ psu', for temperatures near 
p oS 

10° C. Buoyancy flux provides a usefiil measure of mixing intensity in terms of energy, 
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and represents the buoyant production term in the one-dimensional turbulent kinetic 

energy (TKE) equation, which was introduced in Chapter 3 as equation (3.1). 

Two other parameters often used in discussion of mixing intensity are the turbulent 

eddy diffusivity K^, and a representative entrainment velocity scale, w,. The turbulent 

eddy diffusivity, which represents the rate of mixing relative to a spatial gradient, can be 

related to buoyancy flux as (Osbom, 1980): 

K^=~ (4.4) 

where N is the buoyancy frequency, described by: 

N'=^^ (4.5) 
p  dz 

A representative entrainment velocity scale, that is similar in magnitude to the diahaline 

velocity presented in Chapter 3 can be written as 

w, =4 (4-6) 
S 

This scale represents the vertical velocity that would be required to deliver a specified 

salt flux across an isopycnal. 

4.2.4 Overturn Scales 

The overturn scale, L,, was introduced in Chapter 3 as an observational tool for 

identifying the outer length scales of stratified turbulence. As described by Thorpe 

(1977), it is equal to the rms value of the observed vertical displacement distances within 

an observed density profile as compared to its stably sorted counterpart. The outer scales 

of the turbulence can also be represented by the Ozmidov scale, Lo, which can be scaled 
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directly from turbulent quantities. This scale is interpreted as the maximum vertical scale 

that can be achieved by an eddy given the ambient stratification and rate of turbulent 

kinetic energy (TKE) dissipation, e, and is defined as LQ = s^JN'^ f (Peters et al, 1988). 

Thorpe (1977) initially proposed that his measurement of the overturn scale should 

be related to the Ozmidov scale, and several investigations as to the nature of that 

relationship have been conducted since. Dillon (1982) found a ratio (LJLS) equal to 0.8 

deep within the interior of an actively mfacing surface layer, but speculated that the value 

of this ratio was a function of the local gradient Richardson number. Other studies have 

yielded values from 0.66 (Crawford, 1986) to 0.95 (Perron et al., 1998), primarily based 

on oceanic measurements. Wijesekera et al (1993), and Baumert and Peters (2000), have 

both suggested relationships between ^i^ and Lt/Lo. Baumert and Peters' relationship is 

of the form 

^ = 3.6^if (4.7) 

based on a two-equation turbulence model, and supported by field data, which, while 

widely scattered, supports the general trend. Using this formulation, an overturn scale- 

Ozmidov scale ratio of approximately 1.27 is consistent with a critical Richardson 

number value of 0.25, and equality between the two length scales would be found at a 

value of ^ig = 0.18. Additionally, field observations (Wijesekera and Dillon, 1997), and 

numerical simulations (Smyth and Moum, 2000) indicate that the ratio in (4.7) may 

decrease over time as shear induced turbulence ages, from values on the order of 8 down 

to values on the order of 0.2. Although it appears that the LJLQ ratio is generally of 
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order 1, a more precise value is difficult to constrain, as it is highly dependent on the 

Richardson number, and perhaps other parameters. 

Equivalency between these two length scales will be assumed for purposes of 

estimating buoyancy flux in this study, allowing the easily obtained overturn scale to 

serve as a reasonable estimator for mixing intensity. An expression for buoyancy flux in 

terms of the Ozmidov scale, can be written as: 

B. 
l-Ri,j 

LO'N' (4.8) 

where Rif is the flux Richardson number, representing the ratio of the buoyancy flux and 

shear production terms in the TKE equation, as discussed in Chapter 3. The analyses 

undertaken in Chapter 3 indicated that values of Rif in the highly energetic lift-off zone at 

the river mouth are consistent with previous laboratory studies (e.g., Ivey and Imberger, 

1991), at values between 0.15 and 0.2. 

4.2.5 Stratification 

Simpson et al. (1990) proposed that the degree of stratification in an estuary is 

established primarily by the interaction of two competing mechanisms: the stratifying 

effects of velocity-induced straining, and the homogenizing effects of shear-induced 

mixing. Simpson et al. (1990) quantify stratification by the amount of energy input 

needed to homogenize a vertical density profile. While this method is useful in some 

respects, it can often be misleading, particularly in areas of intense interfacial wave 

activity, as its value changes depending on the vertical location of the layer interface 

relative to mid-depth. 
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Here, stratification will instead be gauged by a non-dimensional representation of 

mixed layer thickness: 

1  h     , 
¥ = -—,L,^=z^s-^z% (4.9) 

where h represents the local water column depth, and Lso represente the vertical distance 

between the 75* (z7j)and 25* {Z25) percentiles of the system salinity range. In the Fraser 

sptem, where salinities typically range from 0 to 28 psu, Lso at any location would be the 

vertical distance between the 7 and 21 psu isohalines. If both isohalines are not observed 

at a given location, the value of £50 can be estimated based on observable salinity 

gradients, thus allowing values of Z,jo exceeding h or values of ^less than 0,5. The 

dimensionless stratification parameter, ^^, can be interpreted as a continuum fi-om well 

mixed conditions at ^ «1 to highly stratified conditions at ^ »1. 

By analogy with the model of Simpson et al, (1990), the temporal change in the 

dimensionless stratification parameter can be related to the sum of a straining term, which 

varies as AM , and a mixing term, which varies as (AW)' , where A« can be taken as the 

velocity difference between an upper and lower layer. The derivation of these terms is 

described more thoroughly in the Appendix. 

4.3    The Fraser River Estuary 

The Fraser River Estuary provides an excellent location to investigate the dynamics 

of two layer flows, due to strong barotropic and baroclinic forcing mechanisms and 

periods of intense stratification. The data utilized in this chapter was collected between 
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June 30 and July 4,2000. As discussed more thoroughly in Chapter 1, this sampling 

period was centered around the spring tide, which occurred on July 2"'', with a tidal 

amplitude of 4.25 m, and was characterized by river discharges on the order of 7,000 m^s' 

'. The analyses detailed in this chapter often rely on the assumption that the dynamics of 

the salt wedge are similar across all of the sampling days. This assumption is reasonable 

based on the small variations in tidal amplitude and river discharge observed throughout 

the period. 

Data were collected from shipboard instrumentation, primarily two hull-mounted 

Acoustic Doppler Current Profilers (ADCPs), operating at 1200 kHz and 300 kHz, and a 

towed Ocean Sensors 200 Series conductivity, temperature, depth (CTD) unit. The data 

discussed in this chapter was collected primarily at an anchor station located 

approximately 3.4 km landward of Sand Heads, and from channel operations located 

landward of the anchor station. The lower 18 km of the channel are shown in Figure 4.1, 

with the location of the anchor station highlighted by the black triangle. 

As an example of the structure of the salt wedge, two composite profiles of the salt 

wedge, compiled from data collected during the ebb from four days of operations in the 

channel, are shown in Figure 4.2. The earlier of the two profiles (2.3 hours after high 

tide) represents a portion of the salt wedge, from the anchor station location, landward 

through the bend, nearly to the entrance to Steveston Harbor, but does not include the 

head of the salt wedge. Contours showing the salinity distribution of this profile are 

shown in Figure 4.2(a). The second profile, for which the salinity distribution is shown 

in Figure 4.2(b), represents conditions 1 hour later and is more complete, extending from 
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6 7 8 9 10 11 

Channel Position (kilometers landward of Sand Heads) 

Figure 4.2:  Composite profile of salt wedge salinity structure at 2.3 hours (top panel) and 3.3 hours 
(bottom panel) after high tide prior to the largest of two daily ebbs. Cast locations are indicated by the 
inverted triangles at the top of each panel. Numbers inside the triangles identify the date of the cast [0 - 
June 30; 1- July]; 2- July 2; 3- July 3; 4- July 4 (Time Series Data)]. Contours are based on an 
interpolation scheme normalized by channel depth. 
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the anchor station location landward past the head of the salt wedge, which was located 

approximately 10.5 km from the mouth. 

4.4    Data Collection During Freshet, Spring Tide Conditions 

4.4.1 Integrated Observations From a Down-Stream Time Series 

Data were collected through a complete tidal cycle on July 3"* and 4*, from the 

anchor station indicated on Figure 4.1. A CTD cast was performed approximately every 

15 minutes, with both ADCPs running continuously, providing good temporal resolution 

across the 18 hour period during which the presence of salt was observed. Tidal stage 

during the anchored period is plotted with near-surface and near-bottom velocities in 

Figure 4,3. For convenience in comparing date from different days, all times will be 

referenced to the high tide leading the larger of the two daily ebbs. 

The conditions observed at the anchor stetion location through the time series are 

shown in Figure 4.4, where the salinity structure is plotted, allowing an overview of the 

conditions through the tidal cycle. Well mixed regions forming the bulk of the upper and 

lower layers can be clearly seen in Figure 4.4, separated by a pycnocline, which varies in 

position and mtensity through the tidal cycle.   The dark shaded region superimposed 

over the salinity contours represents the regions where the gradient Richardson number. 

Rig, is below '4. The dashed line represents a contour of zero velocity. Velocities above 

this line are directed seaward, while regions below the line are flowing landward. The 

hatched region in Figure 4.4 represents the region of positive velocity shear. Within this 

region, velocities increase in the landward direction as one moves away from the channel 
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-10 -5 0 
Time (hours, referenced to second high tide) 

Figure 4.3:  Tidal height (bold line), velocity 1.74 m below the surface (dash dot line, positive 
seaward), and velocity 2 m above the bed (dashed line, positive seaward) during occupancy of anchor 
station. Shaded region indicates presence of salt at anchor station. Vertical lines are for reference in 
comparison with other figures. Time is referenced to the second high tide. 
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Time (Hours, relattve to 2nd high tide) 

Fl^jre 4.4: Contoure of salinity (psu) as a fiinction of depth and time through a tidal cycle at the 
anchor station. Light shaded areas represent ebb tides. Dark shaded area indicates Rig< '4. Dashed line 
represents the vertical location of M = 0 (i.e., regions above this line are flowing seaward, and regions 
below the line are flowing landward). Hatched area represents the region of positive shear (i.e., 
velocity increasing in the landward direction away from the bed). The heavyweight line indicates the 
limits of the data and the surface elevation through the tidal cycle. Vertical lines are provided for 
reference in comparison with other figures. 
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bed. Geyer and Farmer (1989) suggest that shear is most intense, and mixing most active 

at times when no such region exists, so that the bottom shear and interfacial shear act in 

unison. 

The integrated influence of mixing within the estuary can be assessed by comparing 

the distribution of the tidal-cycle integrated landward and seaward directed salt fluxes, 

with respect to salinity. Such a distribution is shown by the composite bar graph in 

Figure 4.5, where positive values of salt mass represent landward-directed motion, and 

negative values represent a flux of salt in the seaward direction. Salt flux was calculated 

incrementally throughout the tidal cycle, adjusting for channel width based on an 

estimated lateral profile derived from a nautical chart. As shown on Figure 4.5, salt flux 

was summed independently for each of the floods and ebbs through the cycle. The solid 

line in Figure 4.5 represents the net salinity flux associated with each salinity bin. The 

seaward and landward directed salt fluxes balance to within 2% through the entire tidal 

cycle, suggesting that this two-dimensional treatment of the observations may be 

representative of conditions across the channel at the anchor station. Significant lateral 

variability in flux would result in considerably poorer closure. 

From the figure, it is apparent that salt mass enters the control volume at high 

salinities, but exits across a range of lower salinities, indicating that saline water is mixed 

with outgoing fresh water somewhere landward of the anchor station. This asymmetry in 

the distributions is strong evidence that mixing, as opposed to horizontal advection 

induced by tidal oscillations, is the dominant mechanism responsible for removal of salt 

from the channel during the ebb. 
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Salt Mass (lO^psumS) 

Figure 4.5: Bars represent total salt mass fluxed past the anchor station (3.5 km landward of Sand 
Heads) during a complete tidal cycle, broken into tidal phases as shown. Positive and negative values 
represent landward- and seaward-directed fluxes, respectively. The solid overlying curve represents the 
net salt mass transport for each salinity bin. The salinity scale is inverted to approximate water column 
denth 
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4.4.2 Buoyancy Flux Estimates Using a Control Volume Approach 

A control volume approach for turbulence measurements was described in detail in 

Chapter 3. A similar approach is used here for two separate data sets: the integrated time 

series data discussed above, and a series of along channel control volumes defined by 

repeated observations at a series of fixed stations during the second ebb. In general, the 

method follows Equations (3.14) through (3.18), with some modifications. 

In the case of the integrated time series data, mean buoyancy flux is estimated for the 

entire tidal cycle. The conceptual limits of the control volume for this analysis extend 

fi-om the anchor station location to a point beyond the landward extent of the salt wedge 

excursion. The time series data adequately constrains the salt balance as all salt must 

enter and exit the control volume at the anchor station location. Extending the limits of 

the analysis across the entire period that salt is present also eliminates the time dependent 

term. Because the volume balance cannot be constrained by this data set, due to 

unknown freshwater velocities landward of the salt wedge, a vertical profile of 

entrainment velocity cannot be generated, as described in Chapter 3. Thus, it must be 

assumed that S'w' is equivalent to Sw, with the implication that the diahaline velocity, 

Wf,, is zero. In fact, Wh must be exactly zero at some level near the middle of the water 

column. This can be seen by combining equations (3.8) and (3.3), 

from which it follows that the diahaline velocity must be zero at the level of maximum 

SW. Furthermore, due to the change of sign of diahaline velocity through the water 
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column, the assumption should also be reasonable with respect to averages token in tiie 

vertical or across salinity space. 

With these considerations, the salt equation for the time series control volume 

reduces to 

S'w'(s)= 

-s 

USu, 
0 

bdtcb 

f - (4.11) 

where S, u, 6,and z^ are the mean salinity, mean along channel velocity, cross-channel 

width, and the observed depth of the given isohaline, respectively. The numerator of 

(4.11) represents the net gain or loss of saU mass above the chosen salinity threshold, S , 

which is represented in Figure 4.5 by the area under the soHd curve. The projected area 

of a given isopycnal surface, represented as Am in the denominator of (4.11), requires an 

estimate of the landward extent of the salinity intrusion beyond the anchor station. This 

was accomplished by taking the difference between running integrals of inbound and 

outbound salt flux to identify the mass of salt present m the channel as a function of tune, 

Combming this information with an observation of the location of the head of the sah 

wedge during an earlier tidal cycle allowed the length of the salinity intrusion to be 

estimated. To generate a time series of isopycnal area, a representative channel width of 

700 m was applied to the time series of sah wedge length. 

Vertical turbulent sah flux, as evaluated in (4.11), can be converted to a buoyancy 

flux using (4.3). A profile of buoyancy flux relative to salinity for the time series data is 

presented in Figure 4.6. These values represent a temporal and spatial mean of the 
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5 ^2^-3\ Buoyancy Flux (10   rrT^s'^) 

Figure 4.6:  Profile of temporally and spatially averaged buoyancy flux with respect to salinity. The 
average buoyancy flux across salinity space is 1.4x10"' m^s"'. 
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buoyancy flux across the entire tidal cycle and the extent of the salinity intrasion. 

Extending the mean across salmity space yields a value of (l ,3 ± 0. l)x 10"*m^s"l Note 

that this mixing is approximately an order of magnitude less intense that the mixing 

observed seaward of the front at the end of the ebb, as discussed in Chapter 3. Assuming 

an average estimated buoyancy frequency of iV = 0.12 s'', and a reduced gravity of 

g' = 0.15 ms", estimates of the mean turbulent eddy difftisivity and entramment velocity 

scale through the tidal cycle landward of the anchor station are Kf' = 9x lO'^m^s"', and 

w, = 9 X10"'ms"', respectively. 

The control volume approach utihzed in the upstream channel is more consistent 

with the method as described in Chapter 3. Data were collected during the second ebb 

from a series of cross-channel CTD "fences", typically consisting of three to four CTD 

stations coupled with ADCP velocity data. A circuit consisting of multiple fences was 

sampled repeatedly during the course of the observation period. Analysis of two adjacent 

fences (typically separated by a half to one kilometer) was conducted by summing fluxes 

m the cross channel direction assuming each station was representative of conditions 

across a specific width. This procedure resulted in the integration of any cross channel 

variability, allowing the volume and salt budgets to be constrained, and an estimate of the 

Reynolds sah flux to be generated following (3.17) as 

S'w' = Sw-Sw (4,12) 

Using this approach, combined with equation (4.3), profiles of buoyancy flux across 

salinity space were generated for 15 locations in time and space. All measurements were 
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taken during the largest daily ebb on July 1^', 2"^, and 3"*, and were located between the 

anchor station discussed above and the entrance to Steveston Harbor, approximately 8.7 

km landward of Sand Heads. At each location, estimates were generated for each 

isopycnal between 1 and 28 psu, with a resolution of 1 psu. 

Unlike the steady state situation described in Chapter 3, the conditions in the 

upstream channel during the ebb are highly time-dependent. In an attempt to account for 

the non-synoptic nature of the measurements, data from different locations used for a 

specific calculation were linearly interpolated to the same point in time prior to 

evaluation of the salt and volume balance terms. Errors can enter this process as a result 

of the frequency at which stations were sampled, and also through the estimation of the 

time dependent term based solely on information at the limits of the control volume. 

The magnitude of the total error for each control volume analysis was assessed by 

determining if salt was balanced within each section. Observed errors were distributed 

linearly in z to close the salt balance, and force SW to zero at the channel bottom. In 

order to minimize the impact of these time-dependent errors, individual estimates of 

buoyancy flux were averaged across many realizations in time and/or space. Mean 

values of the control volume estimates of buoyancy flux during the ebb are shown in 

Figure 4.7. These values represent averages of the corrected profiles taken vertically 

across the entire depth, temporally across the limits of the data during the large daily ebb, 

and spatially within the limits of 1 km along-channel bins. The upper limits of error 

shown in Figure 4.7 represent standard error. The lower limits represent the mean of 

both the corrected and uncorrected profiles. A mean buoyancy flux value for all of the 
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Figure 4.7: Spatial variability of buoyancy flux, B, as estimated from the control volume analysis, for 
observations made during the larger of the two daily ebbs (June 30 - July 4,2000). All values represent 
the vertical and horizontal mean of all profiles generated within the 1 km long regions specified by the 
bars. The numbers in circles at the top of the panel indicate the nxmiber of profiles represented in each 
mean. Profiles were adjusted so that flux at the bottom was equal to zero. Errore were attributed 
mainly to the temporally evolving nature of the sah wedge during this period. The upper error bound 
represents standard error. The lower error bound represents the mean of both corrected and imcorrected 
profiles, as described in the text. 
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control volume calculations during the ebb landward of the time series location, averaged 

across all dimensions (space, time, and salinity), is 2.7x10"^ m^s'^, vi^ith estimated error 

bounds as shown on Figure 4.7. 

4.4.3 Overturn Scale Estimates 

The overturn scale analysis utilized CTD data from the anchor station time series, as 

well as other casts performed between 3 km and 8 km from the mouth during the second 

ebb, including those utilized for the channel control volume calculations. Each individual 

CTD cast, resampled to 5 cm in the vertical, was sorted in order of increasing salinity, 

and compared with the original. A vertical offset was identified for each point as the 

smallest vertical displacement between an observed salinity, and the location of that 

salinity value within the sorted profile. The mean overturn scale for the cast was then 

taken as the rms value of all displacements (including 0, or non-displacements) within the 

cast. This method provided a natural scaling for stable regions of the water column, and 

proved a more effective method for identifying a mean cast overturn scale than averaging 

individual values of L, for each observed overturn (as described in Thorpe, 1977). The 

mean overturn scale for the cast was then combined with similar results from other casts 

to generate broader based estimates by averaging across time and space. 

The top panel of Figure 4.8 shows the mean overturn scale observed through the tidal 

cycle at the anchor station, with temporal means taken across 2.67-hour periods. The 

mean overturn scale through the entire tidal cycle is 25±2 cm, with individual time period 

means ranging from 9 to 39 cm. The bottom panel represents similarly averaged values 

of the overturn scale derived buoyancy flux, B,, using (4.8).   For these calculations, a 
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Figure 4.8: Temporal variability of the overturn scale, L,, (top panel), and the associated buoyancy 
flux, derived using equation (4.8), through a tidal cycle at the time series location. Shaded regions 
i«present ebb tides. 
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buoyancy flux value was calculated for each individual displacement length, prior to 

averaging, using the local buoyancy frequency computed from the sorted profile. 

A comparison of these results indicates that the overturn size steadily increases 

through the first flood and ebb, reaching a plateau near the beginning of the second flood, 

and then peaking sharply towards the end of the second ebb. However, estimates of 

buoyancy flux indicate that mixing is at a maximum during the later part of the first ebb, 

followed by a steady decline through the remainder of the tidal cycle. The decrease in 

buoyancy flux is not due to a decrease in overturn scale, but rather to a decrease in 

stratification. 

This is illustrated in Figure 4.9, using a cast from the time series at the beginning of 

the second ebb as an example. The second panel compares the overturn displacement 

with buoyancy frequency, and shows that the majority of the displacements are 

happening within a well-mixed bottom water layer.   In this case, a significant amount of 

"neutral" mixing (mixing of initially mixed water) is occurring, which is not operating 

against a significant density gradient, and therefore contributes little to the increase in 

potential energy described by the buoyancy flux. In contrast, the large overturn seen near 

z = -3 m occurs within a region of high density gradient and is responsible for the 

majority of the mixing observed in the cast. The average buoyancy flux associated with 

the Z=-3 m overturn is 1.4 x 10"' m^s"^, with an average overturn scale of 12 cm. For 

comparison, the average overturn scale across the entire cast is 23 cm, with a 

corresponding mean buoyancy flux of only 8.0 x 10"' m^s'^. 
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Figure 4.9: Salinity profile for CTD cast at the anchor station, two hours after second high tide. The 
second panel compares overturn displacement and buoyancy frequency. Mean buoyancy flux for the 
entire^cast is equal to SxlO"' m^s'^ the mean is equal to 3x10"* mV across the entire pycnocline; and 
1x10" ms" for the isolated overturn located at approximately 3 meters depth. This cast is typical for 
the period, with large displacements occurring in regions of negligible density gradient. 
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Spatial means were generated by grouping channel casts into along channel bins with 

a dimension of 1 km, as shown in the top panel of Figure 4.10. The overall mean value 

for the channel region between 3 and 8 km from the mouth during the ebb portion of the 

tidal cycle was 38+4 cm. Local means ofB, are shown in the second panel of Figure 

4.10, with a mean value of (1.4+0.6)x 10"' m^s"^. The estimates of 5, in the second panel 

are compared to the estimates of B generated from the control volume analysis that were 

presented in Figure 4.7. The two methods provide consistent results, within the limits of 

the errors associated with each method, and indicate that enhanced mixing is occurring 

within the 5 km bin. This location is just seaward of the bend, within a channel 

constriction. 

4.4.4 Stratification Profiles 

The stratification parameter, i//, provides an integrated assessment of the combined 

effect of mixing and straining mechanisms, which are both dependent on the shear ( AM ) 

as described above. Figure 4.11 shows the evolution of y/ and AM through a tidal cycle 

as observed during the time series. Focusing initially on the stratification parameter, i//, 

we see that the water column is stratified throughout the tidal cycle, with stratification 

increasing dramatically to highly stratified conditions near the middle of each ebb tide, 

and conditions approaching a more partially mixed situation during floods. Comparison 

with the velocity difference indicates that high shears during the later portions of the ebbs 

may be responsible for limiting the increase in stratification that occurs during the early 

portions of both ebbs. Stratification corresponding to the spatial profiles of the second 
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Figure 4.10: Spatial variability of the observed overturn scale (top panel), and buoyancy flux, B„ as 
estimated from the overturn. All values represent the mean of observations from the larger of the two 
daily ebbs (June 30 - July 4,2000). The error bars shown represent standard error. Crosses in the 
bottom panel represent the mean and error limite from the conteol volume method (Figure 4.7) for 
comparison. 
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Figure 4.11: Stratification parameter, ^f, and velocity difference between upper and lower layer, 

AM , at time series location, approximately 3.4 km landward of Sand Heads.   Shaded regions represent 
ebb tides. Vertical lines are for reference in comparison with other figyres. Triangles at top of figure 
identify the times of the two ebb profiles shown in Figure 4.2. 
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ebb shown in Figure 4.2 are not plotted, but values of r are consistently between 2 and 3 

for both profiles, indicating a uniform highly stratified condition. 

4.4.5 Richardson Number Proflles 

The gradient Richardson number was evaluated for both the time series data and the 

two salinity profiles fi-om the ebb portion of the tidal cycle presented in Figure 4.2. As 

discussed above, a value of Rig at or below H is considered a necessary condition for the 

onset of turbulence. However, turbulence in regions of weak stratification results in 

"neutral" mixing, where the weak gradients limit effective contributions to the buoyancy 

flux.  In order to focus on regions that can resuh in a positive buoyancy flux an 

additional criteria of dS/dz>03 psu-m"' was applied to the gradient Richardson number 

results. Figure 4.12 shows a profile of ^%(%) for the time series. This parameter 

represents the percentage of the water column that is both subcritical with respect to the 

local gradient Richardson number and meets the salinity gradient criteria. 

An alternative to this approach is to plot the average gradient Richardson number 

across the pycnocline. This value, known as a bulk Richardson number, was calculated 

using the Ljo length scale of the pycnocline as introduced above: 

m -     P 
(A«) 

'B=    .Iv    • (4.13) 

where A represents a difference across the limits of the pycnocline defined by LSQ. The 

value of MB through the time series is plotted in Figure 4,13. 

The ^J^%) distribution for flie time series data, shown in Figure 4.12, shows an 

increase in mixing propensity during both ebbs, with water column percentages of 25 to 
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Figure 4.12: Percent of water column with Richardson number (Rig) less than 'A, and dS/dz greater 
than a minimum threshold value of 0.3 psti/m for the time series data through one complete tidal cycle 
(July 3-4, 2000). Shaded areas represent ebb tides. Vertical lines are for reference in comparison with 
other figures. 
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30% meeting the threshold criteria. Note that the interfacial region, where the greatest 

buoyancy flux is likely to occur, rarely spans more than a third of the water column, as 

indicated by the stratification parameter in Figure 4.11. Thus, values of 15 to 30 percent 

and greater are significant, as they indicate that conditions are conducive to turbulent 

mixing across the majority of this region. An additional, smaller peak is observed at the 

begmning of the time series, mdicating a tendency for lower Richardson numbers 

associated with the head of the sah wedge. This peak is immediately followed by a 

period of high Richardson numbers as the percentage of the water column satisfying the 

Rig and dS/dz criteria drops to less than 3%. Little relaxation of the curve is seen during 

the second flood, where water column percentages of 15 to 20% are observed. 

The RiB profile plotted in Figure 4.13 is generally consistent with the profile in 

Figure 4.12, with the notable exception of the later portions of the second ebb, where RIB 

values are greater than %, but a high percentage of the water column is observed with 

subcritical Richardson numbers. This suggests that the region of active mixing has been 

depressed beneath the region identified by the Lso scale (approximately 7 psu to 21 psu). 

The spatial variability of the Richardson number during the ebb is shown by plotting 

Ri^%), similar to the plot in Figure 4.12. Both ebb profiles (2.3 and 3.3 hours) are 

shown in one panel on Figure 4.14. A larger portion of the water column shows a 

propensity for mixing near the salt wedge head (x «10km), and seaward of about 

X « 5, km, than in the intermediate region. Both of the profiles in Figure 4.14 are sunilar 

to the buoyancy flux estunates, in that lower mixing activity is observed within the bend 

175 



1000-1 

100 

10- 

0.1 

0.01 

1 ^ '^/ !r-* l^ '*■¥- 

k 15 

5 
'',', ' 1 

5< 

1 i / 

L h •' 
:'i' 

S if 

v\-yNr» A *1* "M 

\ .   ^A 1    1 ^«' ■^t ^M. ^    " 
j rsm~\f"}r ̂ <^ y\tf>^^V ' " ■" ^'^wp 

-^ i- M- 

. ^       s    < 
* 

L_ 
• 

u.s - a I- 

0.45 - ,,;;.  1 
i 

0.4 - t 

0.35 - 1 ' 
1.1 

0.3 - \ 1 

i 
■ .« II 

\ Uiil I L\ u r '\ in cc   ^-^^ 
\ MMP k .^ ./V^ wn PI 

0.2 - 
\ m V r \A j/vr 'V i' 1 

0.15 - ^ 

0.1 - !■ ',' 

0.05 - 

0 - ^ _^ 

-14 -12 -10 -8 -6 -4-2 0 2 

Time (hours, relative to second high tide) 

Figure 4.13: Bulk Richardson number across the pycnocline defined by Lso (approximately 7 psu to 
21 psu). Top panel is plotted on a log scale, and bottom on a linear scale to provide increased 
resolution near the value of YA. In both panels, Rig = 1/4 is indicated by the horizontal line. Vertical 
lines are provided for reference in comparison with other figures. 
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Figure 4,14: Percent of water column with Richarison number (Ri) less than % and dSJdz greater 
than 0.3 psu/m, for ebb profiles at 2.3 hours (dashed line) and 3.3 hours (solid line) after second high 
tide. Note that the profile at 2.3 hours does not extend to the head of the salt wedge. Richardson 
number profiles were calculated at the cast locations indicated on Figure 4.2. 
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(jc« 6,000 m), than seaward of the bend. Values of Rig are not shown, but are consistent 

with the plot in Figure 4.14. 

4.4.6 Froude Number Profiles 

Profiles of the individual layer Froude numbers and composite Froude number 

through the time series are shown in Figure 4.15. The flow is seen to be significantly 

supercritical during both ebbs, and subcritical during floods. It is interesting to note that 

the lower layer is observed to be the active layer until several hours into the first ebb, at 

which point the lower layer Froude number drops nearly to zero. Although these values 

increase during the second flood, the upper layer values never decrease sufficiently to 

allow the lower layer to again dominate the dynamics of the two-layer system. 

The composite Froude numbers for both channel profiles are shown in Figure 4.16. 

In both profiles the Froude number expresses a tendency towards critical values (G = 1) 

across the majority of the region, which may indicate a feedback mechanism between 

accelerating upper layer velocities and mixing.   A distinct increase towards significantly 

supercritical values is observed in the vicinity of the narrows at 5 km, however, 

consistent with the supercritical values (G~2) observed during the ebb at the anchor 

station, as shown in Figure 4.15. These supercritical Froude numbers are likely reflective 

of a local acceleration due to the channel constriction, an acceleration that is substantially 

greater than in other regions of the channel. Although mixing is enhanced due to this 

acceleration, the length scales required to return the Froude number to a critical value of 

unity appear to be on the order of several kilometers, at least, and a significant region of 

supercritical Froude numbers persists in the channel during this period. In this manner. 
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Figure 4.15: Internal composite Froude number (solid line), and individual layer Froude numbers 
(upper layer- dashed; lower layer- dotted) for the time series through one complete tidal cycle (July 3-4) 
at the anchor station located 3.4 km landward of Sand Heads. Shaded are^ represent ebb tides. 
Vertical lines are provided for reference in comparison with other figures. 
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Figlire 4.16: Internal composite Froude number (solid line), and individual layer Froude numbers 
(upper layer- dashed; lower layer- dotted) for the ebb profiles shown in Figure 4.2. Froude number 
values were calculated at the cast locations indicated on Figure 4.2. 

180 



regions of significantly supercritical Froude numbers (G > 2) may be an effective 

indicator of enhanced mixing processes, 

4.5    Temporal Variability of Mixing Processes 

In the following subsections, the temporal evolution of the salt wedge structure is 

discussed with respect to the four main periods of the tidal cycle, by referring to the time 

series data presented in Section 4.4. 

4.5.1 Initial Flood 

During the initial flood, mixing rates are low, as evidenced by the plots of B, (Figure 

4.8), .Ri^%)(Figure 4.12), and ^igCFigure 4.13). Stratification, as shown in Figure 4.11, 

is nearly constant during this period at values that are low relative to the range of values 

observed through the tidal cycle, indicating the presence of a significant quantity of 

mixed water. This mixed water is not the result of local mixing processes, but delivered 

landward through advective processes, as shown by the temperature-salinity (T-S) 

diagram in Figure 4.17.  This figure shows the T-S curves for each of the CTD casts 

performed at the anchor station in the upper panel. The lower panel mdicates the mean 

deviation of the water column from a conservative mixing line connecting the two 

endpomts of fresh, warm, river water (0 psu, 15°C) with cold, saline, Georgia Strait 

Water (28 psu, 11.5 °C). It is evident from this figure that a third water mass is 

contributing to mixed water observed on tiie initial flood, most likely warm, brackish 

water from the shallow regions adjacent to Sand Heads, that moves in on the advancing 

tide. 
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Figure 4.17: Temperature salinity relationships for time series CTD casts. The upper panel 
represents a composite plot of all CTD casts. A conservative mixing line, connecting cold, saline 
Georgia Strait water with warmer, fresh river water is shown in bold. In the bottom panel, the mean 
deviation of each cast from the conservative mixing line in the upper panel is plotted. 
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4.5.2 First Ebh 

The interaction of dynamic processes during the first ebb is best considered by 

dividing the ebb into three periods, as indicated by the vertical lines on the plots of time 

series data. The first hour and a half has conditions similar to the initial flood, with 

relatively constant stratification and low surface velocities. The plot of Ri^¥o) indicates 

that isolated burets of mixing may be occurring, despite generally large values of ^i^, 

which contribute to the slight mcrease in B,. 

During the next hour the surface velocity begins to accelerate rapidly, driving the 

flow towards supercritical, and initiating an estuary-wide straining mechanism that serves 

to flush mixed water seaward within the upper layer, and increase the local stratification. 

During this period, mixing continues to be suppressed, as indicated by Rig values that are 

maintamed above •/4. As the value of ^i^ drops below 'A, mking expands across the 

pycnocline, stemmmg the increase in stratification. The nearly constant value of the 

stratification parameter for the next two houre suggests equilibrium between the rates of 

mixing and straining. 

4.5.3 Second Flood 

The last hour of the ebb, and firet hour of the second flood are characterized by a 

decrease in stratification, representing an adjustment due to significant changes in Au, 

sraiilar to that observed during the first ebb. In this case, straining begins to decrease 

with AM , but mtense mixing is maintained until the pycnocline begins to broaden. 

Eventually, a new equilibrium is established at stratification levels similar to the initial 

flood. Mixing continues through the flood, driven by shears that never fall below 1 m-s"', 
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maintaining subcritical bulk Richardson numbers. Mixing decreases, however, due to 

weakening gradients within the pycnocline, as shown by the Bt estimates. Although the 

salinity structure during the second flood looks qualitatively similar to the first, as seen in 

Figure 4.4, the structure observed during the second flood cannot be attributed to the 

landward advection of mixed water because velocities within the region are primarily 

directed seaward as shown by the dashed line in Figure 4.4. The mixed water must be 

produced by mixing occurring at or landward of the anchor station. 

4.5.4 Final Ebb 

Between hours 1 and 2 of the final ebb, a third adjustment period is observed, similar 

to that observed during the first ebb. During this period, a subcritical spike occurs in the 

i?/5 profile, indicating a brief period of potentially intense mixing, but by the end of this 

period RIB is greater than VA. The profile of i?/g(%) indicates an opposing trend, as it 

continues to increase for several hours. This suggests a depression of the active turbulent 

region below the L50 pycnocline, consistent with the shaded region in Figure 4.4, and a 

corresponding drop in buoyancy flux due to relatively weak gradients. The majority of 

the mbced water during the later portion of the ebb is advected seaward without shears 

large enough to initiate significant mixing. This advection dramatically reduces the local 

stratification. 

Approximately 1.5 to 2 hours prior to the removal of salt from the channel, the near- 

bottom velocities reverse, as shown in Figures 4.3 and 4.4, allowing the seaward 

advection of deep water for the first time since the beginning of the tidal cycle. These 

velocities can only account for approximately 1 km, or less than 10%, of the total wedge 
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length, suggesting that the vMt majority of the wedge is removed through a vertical 

collapse, consistent with conclusions derived from Figure 4.5. 

4.6    Spatial Variabflity of Mixing Processes During Ebb Tide 

The control volume and overturn scale estimates of buoyancy flux in the upstream 

channel during the ebb are compared in Figure 4.10. In most cases, the error bounds 

from the two estimates overlap, and both along channel profiles suggest a region of 

enhanced mixmg associated with the channel constriction approximately 5 km landward 

of Sand Heads. This region is also characterized by an increase of Froude numbers to 

supercritical values from values that are otherwise nearly critical (Figure 4.16), and an 

increase in ^i^%). 

Geyer (1985, Figure 47) suggested that mixing during ebbs in the Fraser channel is 

focused near constrictions, providing visual evidence from echosounder output for four 

significant constrictions in the lower 20 km of the estuary. The data presented here 

provide quantitative support for these observations. The ebb profiles investigated here 

are composites from several days of operations in the channel, and represent conditions at 

2.3 and 3.3 hours after higji tide. The time of these observations is indicated on the 

stratification diagram in Figure 4,11, where it can be seen tiiat the first profile coincides 

with the beginning of the increase in stratification, and the second with the peak in 

stratification. Both of these occur during periods when mixing is relatively suppressed, 

and no data is available to evaluate Froude numbere and Richardson numbers during the 

highly active mixing period that results in the collapse of the salt wedge. 
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Another potential mixing mechanism worth consideration is the possibility of 

secondary circulation processes associated with the large bend in the channel at 6 km. 

The establishment of strong secondary circulation in the bend could force deep water 

southward, and up onto the shallow areas at the inside of the bend, where enhanced 

shears due to bottom friction could provide an efficient mechanism for mixing, as shown 

in Figure 4.18. Due to the dangers of maneuvering the research vessel in shallow water, 

this region was not sampled during the field study, so it is possible that the overall 

estimates of buoyancy flux during the ebb in the upstream channel may be 

underestimated. 

4.7    A Summary of Mixing Through the Tidal Cycle 

4.7.1 Mixing in the Fraser 

The structure of the salt wedge in the Fraser River is initially established through 

advective processes, and subsequently modified through an equilibrium between mixing 

and straining mechanisms. Each phase of the tide is characterized by an adjustment 

period on the order of 1 to 3 hours, where changes in shear trigger a change in the 

equilibrium between mixing and straining. Increases in shear move the system toward 

more highly stratified conditions, while stratification is relaxed during periods of lesser 

shear. 

Mixing is active through the entire tidal cycle, with the exception of the very initial 

stages of the first flood, but enhanced during ebbs. An estimate of average mixing during 

the later portions of the first ebb (hours -7.9 to -4.5) was accomplished using a method 
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Figure 4.18: Schematic representotion of the enhancement of boundary mixing due to secondary 
circulation. In this figure, the primary component of the fi-esh water velocity is directed into the page, 
and the channel is bending to the left. The induced cross-channel circulation pattern that develops is 
responsible for driving dense fluid up into the shallow regions of the channel located on the inside of 
the bend, where mixing is more intense due to the increased importance of bottom friction. 
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similar to the modified control volume method employed for the entire tidal cycle in 

Section 4.4. In this case, the observed outflux during the period was compared to the 

total influx distribution observed through -4.5 hours. Using Equations (4.11) and (4.3), 

and the estimated sah wedge length described in Section 4.2, an estimated profile of 

buoyancy flux with a mean of 1.6 x 10'' m^s'^ and a peak of 3 x 10"' m^s"^ was obtained. 

These values represent a conservative estimate because it was assumed that no water 

mixed during the period remained upstream of the anchor station. 

Observations by Geyer (1985) suggest that the salt wedge is uniform and highly 

stratified prior to the final mixing events that result in the ultimate collapse of the wedge. 

This point in time is coincident with the peak in stratification observed near hour +2, 

shown on Figure 4.11, and is consistent with the salt wedge salinity profiles shown in 

Figure 4.2. An estimated buoyancy flux profile for the second ebb was generated using 

an output distribution equal to the total outflux of salt observed at the anchor station after 

+2 hours. The input distribution required for Equation (4.11) was estimated using the 

total mass of seaward directed salt after +2 hours, and a hypothetical vertical salinity 

profile based on the longitudinal profiles of Figure 4.2 and Geyer (1985, Figure 9). This 

exercise suggested a peak buoyancy flux during the final collapse of the salt wedge equal 

to 5 X10"' m^s'^, with a mean value of approximately 3x10"' m^s"^. These values are 

slightly larger than, but generally consistent with, the average buoyancy flux values 

observed in the upstream channel during the ebb, that were presented in Figure 4.7. 

The vast majority of the salt wedge is removed from the channel through a rapid and 

energetic collapse of the wedge during the second ebb. High shears, associated with the 
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ebbing discharge, and incre^ed within localized channel constrictions lead to this 

collapse, as suggested by Geyer (1985). This conclusion has been supported by 

observations of buoyancy flux within the channel during this study, as well as indications 

that Froude numbers become significantly supercritical within the narrows. It is likely 

that a similar collapse may occur during the firet ebb, but the barotropic forcing 

mechanisms ^sociated with the weaker ebb are insufficient to flush the remaining salt 

from the channel. 

Given the overall estimate of mean buoyancy flux associated with the salt wedge that 

was calculated in Section 4.4, the estimates for the two ebbs presented above, and the 

overturn and control volume estimates of buoyancy flux during the ebb presented in 

Figures 4.7 and 4.10, a mean buoyancy flux value for the remaining portions of the tidal 

cycle (both floods in addition to the first few hours of each ebb) can be estimated. Table 

4.1 summarizes the previous estimates, as well as the length of time for which each 

estimate is considered representative. The last column in table 4.1 is the product of this 

time and a representative salt wedge length. As shown on line 6 of Table 4.1, a mean 

buoyancy flux for the ebb portions of the tidal cycle is approximately (2.2 ± 0.8)x 10"' 

m^s"', representing approximately 6.6 hours of the tidal cycle. A representative buoyancy 

flux value for the remaining portions of the tidal cycle can then be estimated using the 

mean ebb estimate from line 6 and the tidal cycle average shown on line 1, yielding a 

buoyancy flux value of (l.O ± 0.5)x 10"* m^s"^. 

It is likely that there is still considerable variability within the remaining 11.8 hours 

of the tidal cycle. For example, lower rates of buoyancy flux may be associated with the 
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Description of Estimate 
MeanB 

Hours (xlO* ni'hour) 

1 Anchor Station Tidal Cycle Average 1.4 18.4 17.0 
2 Anchor Station First Ebb Estimate 1.6 3.5 3.7 
3 Anchor Station Final Ebb Estimate 3.1 3.1 2.2 

4 Overturn Ebb Estimate 1.4 7 - 

5 Control Volume Final Ebb Estimate 2.7 3.3 - 

6 Mean Ebb Estimate'' 2.210.8 6.6 5.9 

7 Remainder Estimate (Mean) 1.010.5 11.8 11.1 

Notes:   a. Integral represents product of wedge length, L, and time. 
b. Mean B is average of lines 2 through 5. Remaining columns are sum of lines 2 and 3. 

Table 4.1: Summary of buoyancy flux estimates through the tidal cycle. Lines 1,2, and 3 are 
derived from the integrated anchor series flux calculations. Lines 4 and 5 correspond to the overturn 
and control volume analyses shown in Figures 4.7 and 4.10. The mean ebb estimate in line 6 represents 
the average of lines 2 through 5. The estimate for the remainder of the tidal cycle, in line 7, is derived 
from lines 1 and 6 so that a weighted mean of lines 6 and 7 is equal to the mean buoyancy flux estimate 
on line 1. 

initial flood, as compared to the second flood, based on the observations of RIB and Rig at 

the anchor station. Nevertheless, this estimate is generally consistent with the temporal 

evolution of mixing presented in Section 4.5, where estimates of 5, through the tidal 

cycle indicate a similar difference between flood and ebb, on the order of a factor of two. 

Buoyancy flux rates observed at the anchor station location are generally lower than the 

averages identified upstream, which is consistent with the idea that the majority of 

buoyancy flux occurs at local constrictions, but the ratio between ebb and flood 

intensities at the anchor station may be indicative of conditions throughout the channel. 
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This analysis indicates that mixing processes associated with the salt wedge are 

important through all ph^es of the tide. Although differences between buoyancy flux 

rates on flood and ebb may be significant, and as high as a factor of six, the mixing that 

occure during floods cannot be considered negligible, 

4.7.2 Comparisons With Other Estuaries 

Many studies of estuarine dynamics have focused on partially mixed estuaries, such 

as the Hudson River. Although many aspects of estuarine dynamics are applicable across 

the wide physical spectrum of estuaries, differences in stratification can result in 

differences in the magnitude and timing of mixing within an estuary. In general the 

highest buoyancy fluxes in the Fraser channel were seen during ebbs, both locally and at 

critical mixing locations within the channel (e.g., channel constrictions). This is 

consistent with previous analyses of the temporal variation of mixing in estuaries, both in 

highly stratified (Partch and Smith, 1978), and partially mixed regimes (Nepf and Geyer, 

1996). Previous work in the Fraser (Geyer and Farmer, 1989) also suggests that the ebb 

dominates contributions to the buoyancy flux, and that the most productive mixing 

occurred as a response to lateral constrictions in the channel. 

Numerical simulations of a partially mixed estuary (MacCready and Geyer, 2001) 

indicate that while the maximum rates of buoyancy flux occur locally during ebbs, flie 

flood is the most productive period of vertical salt flux due to the elongation of the 

isohalmes and a larger area over which the weaker mixing processes present on the flood 

can act. This is consistent with the results of Peters(1999) who found that, across the 

tidal cycle, floods were the most effective period for mixing in the Hudson River Estuary, 
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with the exception of spring ebbs. Such a case is unlikely to be found in the Fraser River 

(at least during spring tide, freshet conditions) because the isohaline structure is 

substantially eroded during ebb tides, and the floods begin with a salt wedge that is 

considerably shorter in length than is present at the beginning of the ebb tides. A 

rebuilding of the salt wedge, fed by landward advection of dense near-bottom water, 

occurs throughout the flood. 

4.8    Concluding Remarks on Mixing Variability 

Diapycnal mixing plays a vital role in the dynamics of the Fraser River estuary, and 

is the primary mechanism responsible for the daily purge of salt from the estuarine 

channel during high flow, spring tide periods. The nature of the mixing climate is highly 

variable, both spatially and temporally. Spatial heterogeneity in mixing intensity is due 

primarily to variations in channel width, as described by Geyer (1985). Temporal 

variability is highly influenced by the strength of barotropic forcing, and initial 

conditions set up by prior phases of the tide. Average mixing during ebbs, primarily 

focused at localized channel constrictions, appears to be on the order of 2 to 6 times 

larger than the average mixing observed during the remainder of the tidal cycle, but 

mixing processes appear active and important to the system dynamics throughout the 

tidal cycle. 
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Chapter 5 

Conclusions 
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This thesis has presented an investigation of the highly stratified estuarine dynamics 

associated with the Fraser River outflow, with conclusions that are widely applicable to 

other energetic, shear-stratified flows. Hydrographic and bathymetric conditions in the 

Fraser diuing the summer freshet provide an ideal setting for studying the fluid dynamics 

specific to highly sheared and stratified systems. A turbulent Reynolds number, sIvN^, 

is often used to characterize such systems. Most previous research has been conducted in 

the laboratory and at relatively low energy field sites, where values of e/vN^ rarely 

exceed 10^. The conditions observed in the Fraser estuary can be characterized by values 

of s/vN^ on the order of lO"*. Clearly, these observations from the Fraser have provided 

insight into the dynamics of shear-stratified flows at scales that are not reproducible in 

the laboratory, but can be quite common in environmental flows. 

5.1     The Dynamic Cycle of the Fraser River 

A typical tidal cycle in the Fraser River Estuary during the summer freshet can be 

separated into two distinct dynamical periods: a short period of several hours near the 

end of the largest daily ebb, characterized by a nearly steady-state salt front near the 

estuary mouth, and the remainder of the tidal cycle, which is characterized by the time 

dependent development of a salt wedge within the channel. The second period can be 

further dynamically segmented into flood and ebb components. Chapters 2 and 3 of this 

thesis focused on the steady state period of the tidal cycle, specifically addressing frontal 

structure and stratified turbulence seaward of the front, respectively. Chapter 4 addressed 

issues of variability in buoyancy flux during the salt wedge portion of the tidal cycle. 
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Extending from earlier studies (e.g., Geyer, 1985; Geyer and Farmer, 1989), Chapter 4 

provides an improved understanding of the temporally and spatially dependent dynamics 

within the channel. 

The structure of the front during the steady-state period is well described by two- 

layer hydraulic theory, modified for three-dimensions. A Froude angle, defined as the 

arcsine of the inveree Froude number, was found to describe the angle of the front with 

respect to the streamlines of the discharging flow. In fliis sense, a critical Froude number 

of one is only observed at the front when calculated along a frame of reference 

perpendicular to the front. An ambient, sub-pycnocline transverae flow, driven by the 

response of the Strait of Georgia to the ebbing tide, provides the influx of salt and volume 

required to feed the mixing processes within the plimie. 

Turbulence, mixing and entrainment seaward of the front during the steady-state 

period were investigated in Chapter 3. High rates of TKE production and buoyancy flux 

were observed in the firet kilometer behind the front, with typical values of production on 

the order of 10"^ m%'^. The partitioning of the produced TKE mto potential energy 

(through processes quantified by flie buoyancy flux), and dissipation, is described by the 

flux Richardson number, which typically faUs between 0.15 and 0.25, consistent with 

laboratory studies performed at much lower values of s/vN^. Entrainment processes, 

which draw ambient fluid into the expanding plume, were also quantified, and related to 

the mean outflow velocity by an entrainment coefficient on the order of 10"'. This value 

is also consistent with the results of laboratory experiments performed under substantially 

less energetic conditions. 
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As the steady state period wanes, the dynamics near the front are affected by a 

substantial pressure gradient in the ambient fluid, and the salt wedge begins its daily 

advance into the channel. The wedge advances some 10 to 20 km landward during the 

initial flood, persisting in the channel during the minor ebb and flood, until the system 

finally clears itself of salt during the dominant ebb. Observations from a time series 

discussed in Chapter 4 suggest that the majority of salt is removed from the channel 

through mixing processes, as opposed to an advective retreat of the salt wedge. The time 

series analysis also shows that the average rate of buoyancy flux in the channel through 

the tidal cycle is approximately an order of magnitude lower than observed at the mouth 

in Chapter 3. 

The temporal evolution of the salt wedge was related to equilibrium between 

straining and mixing processes. Mixing may play an important role throughout the tidal 

cycle, but it appears to be more significant during ebb tides. Buoyancy flux rates during 

the flood may be of the same order as those observed during the ebb, or up to a factor of 

six smaller, but are likely on the order of two to three times less intense that those 

observed during the ebb. Geyer (1985) suggested that mixing during the ebb might be 

focused spatially at constrictions or other locations of potential hydraulic control. Spatial 

quantification of mixing processes during the ebb supported this conclusion, as described 

in Chapter 4. 

The overall influence of mixing through the tidal cycle results in the flushing of salt 

from the channel several hours prior to the begirming of the dominant flood tide, 

providing an opportunity for the system to reset initial conditions on each tidal cycle. 
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"Hiis cycle, modulated due to the fortnightly variations in tidal height, and variations in 

river discharge continues daily through the jfreshet period, which ^ically laste for one to 

two months during the early summer. 

5.2    Contributions of the Thesis 

Specific information regarding the details of the daily tidal cycle in the Fraser River 

are ultimately of importance only to those residing in the Lower Delta whose lives arc 

influenced by the Fraser and the nuances of its daily, seasonal and yearly cycles. 

However, the fluid dynamics observed in the Fraser River have wide applicability to 

flows in other estuaries and coastal systems, as well as flows in other reahns, such ^ the 

deep ocean, fresh water reservoirs, and the atmosphere. To that end, the most significant 

contributions of the thesis can be summarized as follows, 

5.2.1 Three-Dlmensional Extension of Two-Layer Hydraulic Theory 

Two-layer hydraulic theory, as presented by Armi and Farmer (1986) and Farmer 

and Armi (1986), is based on a channel that is uniform m die transveree direction. Most 

real estuaries and straits exhibit cross-channel variability to some degree, however, no 

extension of two layer hydraulic theory has been developed to address the three 

dimensional nature of these flows. In Chapter 2, the Froude angle was presented as a 

means of expanding two layer hydraulic theory to three dimensions. Application of fliis 

extended theory to the data from the Fraser is consistent with the observations, in contrast 

to the two-dimensional theory. 
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The hydraulic control principles discussed in Chapter 2 are likely relevant to all 

manner of hydraulic control situations, and not only to the arrested front scenario 

observed at the mouth of the Fraser River. Application of these principles to other 

regimes may allow for an increased understanding of flow through straits at many scales, 

from the relatively small scales observed in estuaries, to large overflows in the deep 

ocean. Observations of these types of flows are often confined to two-dimensions, 

usually focused on the deepest path through the strait. As described in Chapter 2, there 

must be some region within any hydraulically controlled flow that is locally two- 

dimensional in order to anchor the control. Typically, this must occur within the deepest 

part of the channel, or near a channel bovmdary. Therefore, the apparent two- 

dimensionality observed in many straits may only be a local effect, while unobserved 

three dimensional aspects of the flow may have a significant influence over the hydraulic 

capacity of the strait. The discussion in Chapter 2 provides a means for predicting the 

location and shape of the control, given three-dimensional knowledge of the strait 

hydrography. 

5.2.2 Development of Control Volume Method For Turbulent Flux Calculations 

The calculation procedure developed in Chapter 3 provides a means of deriving 

turbulent flux estimates from mean velocity and density profile measurements, which 

proved a robust alternative to microstructure measurements (e.g., Gargett and Moum, 

1995; Peters, 1999), overturn methods (e.g., Thorpe, 1979; Osbom, 1980; Dillon, 1982), 

and ADCP variance techniques (Stacey et al., 1999). The key to the method's success 

lies in its ability to separate entrainment processes from turbulent processes. This method 
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has limitations, however, and can only be successM m regions where lateral influxes are 

small and the turbulence signal is large. 

5.2.3 Mixing Efflciencies (Ri^ in Energetic Shear-Stratified Flows 

Although the nature of shear-stratified flows has been well studied in the laboratory 

(i.e., Ivey and hnberger, 1991), with flux Richardson numbere consistently observed in 

the vicinity of 0.2, few field scale observations have been available from highly energetic 

systems, and it has been unclear if the laboratory results are representative of larger scale 

natural s^tems. The observations presented in Chapter 3 indicate that the majority of 

mixing m the Fraser lift-off region occurs at gradient Richardson numbere between 0.2 

and 0.25, wilh flux Richardson numbers between approximately 0.15 and 0.25. As this 

region is characterized by values of s/vN^ on the order of lO", two to three orders of 

magnitude higher than most laboratory studies and other field observations, this study has 

provided a valuable extension of the understanding of shear-stratified flows to larger 

ener^ containing scales. 

5.2.4 Simple Turbulent Closure Scheme for Pure Shear-Stratified Flows 

As noted by Imberger and Ivey (1991), there should be only two independent 

variables in a pure shear-stratified flow: the shear, represented by AU, and the 

stratification, represented by Ap, or g'. Based on these parameters, the turbulence and 

entrainment associated with the fiow should be ftilly characterized by an entrainment 

coefficient and a stratified drag coefficient, as described in Chapter 3. From these two 

ratios, estimates of turbulent quantities can be generated as follows: 
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u'w' = CjAUy 
w^ = E(AU) 

The issue of turbulence closure has been a key issue in fluid dynamics for decades (e.g., 

Mellor and Yamada, 1982), with important ramifications for modeling and other 

predictive analyses in many diverse applications. The discussion in Chapter 3 suggested 

that a simple parameterization scheme for entrainment and turbulent processes within a 

pure shear-stratified flow, such as described in (5.1), should be relevant within regions of 

fully developed turbulence. The turbulence observed in the Fraser may not have been 

fully developed, and the evolution of turbulent scales through the lift-off zone may 

complicate the simplicity of the relationships in (5.1). Further complications could arise 

from the presence of ambient conditions that might limit plume expansion, or otherwise 

introduce additional constraints on the system dynamics. Nevertheless, a mean value for 

the entrainment coefficient identified for the lift-off zone was on the order of 10"^, with a 

shear-stratified drag coefficient on the order of 5x10"^. 

5.2.5 Importance of Mixing Throughout the Tidal Cycle 

Observations of salt wedge structure throughout the tidal cycle in Chapter 4 suggest 

that mixing is more intense during ebbs, but that mixing during floods may remain a 

significant contributor to the mean tidal-cycle integrated buoyancy flux. This is 

consistent with recent findings in the Hudson (Peters, 1999) and recent numerical 

simulations of a partially stratified estuary by MacCready and Geyer (2001). The present 
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study also validated observations by Geyer (1985) that mixing is enhanced within 

localized channel constrictions, 

5.3    Unresolved Issues 

Although this thesis has provided an enhanced understanding of the stratified 

dynamics within the Fraser River, and made significant contributions to the general 

underetandmg of hydraulic control and shear-stratified turbulence, some issues remam 

which may require additional investigation to adequately resolve. In Chapter 2, 

application of a Froude angle was found to predict the location of the arrested estuarine 

fi-ont at the mouth of the Fraser quite well. Further studies in controlled environments, 

either in the laboratory or other field experiments, may be necessary to demonstrate the 

broader applicability of this concept and its implications. Additionally, while it h^ been 

suggested that similar dynamics may affect hydraulic control in situations where both 

layers are active, three-dimensional field observations of such flows are limited. 

Observations of the lateral structure of hydraulic control in such venues as Knight Met 

(Klymak and Gregg, 2001), the Straits of Gibraltar (Farmer and Armi, 1988), and the 

Denmark Strait Overflow (Gurton et al, 2001), for example, could be useful in identifying 

the generality of the Froude angle concept. 

In Chapter 3, the control volume method for estimating turbulent fluxes was found to 

be robust in the top five to six meters of the water column, due to relatively small lateral 

effects. Interesting comparisons could be generated through the use of microstructure 

profilers to provide alternative profiles of turbulent fluxes. Such measurements could 
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corroborate the results obtained using the control volume method in the upper portion of 

the water column, and, perhaps more importantly, provide better insight into the 

characteristics of the turbulence deeper in the water column, at the base of the plume. 

Additional observations of other pure shear-stratified environmental flows are also 

necessary to evaluate the effectiveness of the simple closure schemes proposed in 

Chapter 3. 

Further investigation into the nature of the mixing processes in the Fraser River 

channel are necessary to address the potential for mixing mechanisms driven by 

secondary flows within the vicinity of Steveston Bend. Such mechanisms could 

contribute significantly to the total buoyancy flux budget in the channel, particularly 

during the ebb.   These studies might incorporate similar measurement techniques to 

those used in the present study, but with sampling focused on the shallow areas to the 

inside of the bend, which would require the use of smaller vessels. The results would 

provide a better understanding of the mechanisms specific to mixing in the Fraser River 

estuary, and also allow comparisons with other regions where secondary flows appear to 

be important to the mixing climate, such as the Tacoma Narrows region of Puget Sound 

(Seim and Gregg, 1997), and San Francisco Bay (Lacy and Monismith, 2001). 

Ultimately, a greater understanding of the general dynamics of the Fraser River 

Estuary does not preclude the region from further study. To the contrary, it provides a 

more controlled setting for studying specific fluid dynamic principles at large scales, and 

under highly energetic conditions. The Fraser River Estuary will continue to serve as an 

ideal natural laboratory, even as the body of knowledge about the system is increased. 
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Appendix: A New Stratification Parameter 

The degree of stratification maintained in an estuary is the result of a balance 

between two competing mechanisms (Simpson et al, 1990): the stratifying effects of 

velocity-induced straining, including both estuarine circulation and tidal motion, and the 

homogenizing effects of mixing. The concept of velocity-induced straining involves the 

tilting, or elongating, of isopycnals when acted upon by some sheared horizontal velocity 

profile. As described by Simpson et al. (1990), this action can result in a time rate of 

change of a stratification parameter, 4 which represents the amount of energy input 

needed to homogenize the vertical density profile: 

a 
g dp fi 

where h represents the depth of the fluid, p is the fluid density, u is the along-channel 

velocity component, « is the vertically averaged along-channel velocity, and x and z are 

the along-channel and vertical coordinates, respectively. While # can be a use&l 

parameter for gauging stratification in estuaries, it can also be misleading, particularly in 

areas of intense interfacial wave activity, as its value changes depending on the vertical 

location of the layer interface relative to mid-depth. A non-dimensional representation of 

mixed layer thickness is proposed as an alternative stratification parameter: 

1   h 
^"=^1-^        4o =^75-^25 (A.2) 

where h represents the water column depth, and £50 represents the vertical distance 

between the 75* (z75)and 25* (zis) percentiles of the system salinity range. If both 
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isohalines are not observed at a given location, the value of Lso can be estimated based on 

observable salinity gradients, thus allowing values of Lso exceeding h and values of y 

less than 0.5. The dimensionless stratification parameter, v|/, can be interpreted as 

follows: 

VJ/«1 Well mixed 

M/~l Partially stratified 

\|/»1 Highly stratified 

In general, the effect of velocity-induced straining on this new stratification 

parameter can be represented as: 

f] 
r 

straining V^max y 
^^. (A.3) 
dz dx 

where ASmax represents the span of the system salinity range. Depending on the shape of 

the velocity profile and the structure of the isopycnals, the effect of straining can either 

strengthen or weaken the stratification. However, the mechanism remains the primary 

means of enhancing or creating stratification, and is balanced primarily by turbulent 

mixing. 

The physical act of mixing is typically accomplished by turbulence acting against a 

stable density gradient. The shear production, P, of turbulent kinetic energy (TKE) can 

be expressed as: 

,du 
P = u'w'— (A.4) 

dz 

where the primed values represent turbulent fluctuations, and the overbar represents a 
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mean. Some of this TKE is stored as potential energy, m salt mass is physically lifted 

higher in the water column, and can be quantified as buoyant production, or buoyancy 

flux, 5: 

g B = ^p'w' = gpS'w' (A.5) 
P 

1   fin 
where g represents the gravitational acceleration, and ^ = ^ = 0.77 x 10"'psu"'. The 

pdS 

third major term in the steady state, one-dimensional TKE equation is the TKE 

dissipation term, s, P = B + e. If a flux Richardson number is defined as the ratio of 

shear production to buoyant production, Rj. = PB~^, then a mixing efficiency, equal to 

the ratio of buoyant production to dissipation, E, can be expressed as 

^^^f/v~Rf}= Be'^. Expressing the vertical turbulent density fiux as an interfacial 

stress, r, = pu'w', an expression relating interfacial stress to buoyancy flux can be 

derived by combining equations (A.4) and (A.5), and making use of tiie flux Richardson 

number: 

du      1 

If the interfacial stress is parameterized using a drag coefficient, Co, then: 

B = R^Co—-\dM\tM (A.7) 
oz 

Using this parameterization of the buoyancy flux, and assuming dS/dz is a constant 

through tfie water column, the effect of mixing on stratification can be expressed as: 
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llRfCn—IAMIAM 

gy9(A5L,/» 

This formulation, particularly the parameterization of vertical turbulent density flux 

as interfacial stress, and the resulting equation (A.6), should be effective so long as 

mixing is enabled. In situations where the Rig is not less than VA, existing interfacial 

stress may not be sufficient to initiate mixing, and any observed buoyancy flux may be 

the result of other mixing mechanisms (i.e., not shear induced mixing). In these cases the 

formulation expressed in (A.8) would be invalid. 

In addition to the local processes of straining and mixing, the local stratification can 

also be significantly affected by the advection of stratification into the local region, which 

was set and maintained by non-local processes. The impact of advection on local 

stratification can be expressed as: 

''""^ -u^. (A.9) 
v5/y dx advection 
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