= — C(Carnegie Mellon
Software Engineering Institute

Volnme lll:
A 1echhiology for
Predictable Assembly
from Certifiable

- Comporients

Kurt C. Wallnau

April 2003

20030519 013

y

TECHNICAL REPORT
CMU/SEI-2003-TR-009
ESC-TR-2003-009

DISTRIBUTION STATEMENT A |
Approved for Public Release
Distribution Unlimzted

. Carnegie Mellon

Software Engineering Institute
Pittsburgh, PA 152133890

Volume lll: A
Technology for
Predictable Assembly
from Certifiable
Components

CMU/SEI-2003-TR-009
ESC-TR-2003-009

Kurt C. Walinau

April 2003

Predictable Assembly from Certifiable Components
Initiative

,r}

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office

HQ ESC/DIB

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published
in the interest of scientific and technical information exchange.

FOR THE COMMANDER

(UZL

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2003 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document
should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-00-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center. The Government of the United States has a royalty-
free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any
manner, and to have or permit others to do so, for government purposes pursuant to the copyright
license under the clause at 252.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of
our Web site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Acknowledgements i ittt vii
LT - T ix
T Introduction ... i it et a e, 1
1.1 AboutThisSeries ... 1
1.2 AboutThis Report i e 3
2 Motivationfor PECTottt ittt ieneeineasrannrnnnnns 7
3 Construction Frameworkviiiiiiiriinneeraannnnnnns 13
3.1 Components 13
32 Reactions...............iiiiiii e .15
33 Interactions 16
34 RuntimeEnvironment 17
35 Assemblies 19
3.6 Assembly ConStraintsoueeeeane 22
37 Properties 24
3.8 ConstructionLanguageccoiiiiineenna.. 26
4 Reasoning Frameworksoiiuiiiiiiiiiiiiiiiiinnnnnnnn. 29
4.1 Property Theory i e 30
4.2 Automated ReasoningProcedure 3
4.3 ValidationProceduret 31
4.4 lllustration 1: Temporal Logic Model Checking 33
4.5 lllustration 2: Rate Monotonic Analysis 37
4.6 llustration 3: n-Version Majority Voting Analysis 40
5 Concise Summary of PECTciiitiiiitiiineeeeeaannnnns 43
6 Multiple Reasoning Frameworksouoirreerrnnnennnn. 45

6.1 AFewFormalDefinitions 46
6.2 Simplistic Versus Realistic Property Theories

CMU/SEI-2003-TR-009 i

AQHoz— o8 -2 076

6.3 Optimizing Qualities of Reasoning Frameworks 49

6.4 Incompatibility Among Reasoning Frameworks 52
6.5 Dealing with Incompatibility oo i 55
7 CompositionalReasoningcciiiiiiiiiieiiiennnnnanes 59
7.1 Compositional and ModularReasoning 59
7.2 Why Compositionality IsTooStrong 61
7.3 Why Compositionality Is Important 62
8 StatusandFuture Work...........c.iiiiiiiiiiiiiiinineenannnnn 65
9 CONCIUSIONSoviiiiiiiirnennetessonsnneennsnnasnassnnnans 67
[T T 69
AcronymList........ .ottt i i i ittt 75
Bibliographycciiiiiiiiii ittt ittt saea e 77

CMU/SEI-2003-TR-009

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

Figure 21:

The Fundamental Premise of PACC 0 2
Constructive and Analytic Well-Formedness of Assemblies 8
Logical Structure of Prediction«EnabEed Component Technology. 10
Components, Labels, and Constructive Interface 14
Conéponent Interface with Pinsand Reactions 16
Enabled Interaction Between Two Components 17
Environment Services and Containment. 18
Connectors Provided by Hypothetical Environment 19
A Simple Controller Assembly., 20
Hierarchy via Gateways. 21
Hierarchy via Partial Assembly oo ... 22
Extending the Well-Formedness Rulesof an ACT 23
Property Annotations on Components.c.covuun..... 25
Annotations of Assembly and Component Properties. 25
Component Specificationin CCL.oourerun.. .. 27
An Interpretation for Model Checking 35
An Interpretation for RMA Schedulability Analysis 39
An Interpretation for Reliable Voter Pattern Reliability Analysis 42
UML Class Diagram of PECT Conceptsccoveenenn.... 43
Compatibility of Ane:iyticaiiy Well-Formed Assemblies 45
Time Sequence of a Series of Co-Refinement Steps 51

CMU/SEI-2003-TR-009

i

Figure 22: Interference Among Property Theories. 53

Figure 23: Interference Between Security and Reliability Property Theories.. 55

iv CMU/SEI-2003-TR-009

List of Tables

Table 1: Selected (Analytic) Assumptions of Reliability Theory

Table 2: Plausible Satisfiability of NVV Well-Formedness Constraints. 48

CMU/SEI-2003-TR-009

Vi

CMU/SEI-2003-TR-009

Acknowledgements

This report reflects the contributions of many people. Judith Stafford played an early and
instrumental part in defining the basic structure of prediction-enabled component technology
(PECT). James Ivers provided continuous and instrumental feedback on the numerous drafts
of this report. Daniel Plakosh’s WaterBeans prototype provided an exemplar of pure composi-
tion, and he defined the earliest versions of the Pin component model. Len Bass, Mark Klein,
and Paul Clements helped to solidify the connections between construction model and soft-
ware architecture, and especially between construction model and analyzability. Scott Hissam,
Mark Klein, Magnus Larsson, and Gabriel. Moreno developed proofs of feasibility of PECT
for substation automation, and Otto Preiss provided essential substation domain knowledge.
John Hudak, James Ivers, and Bill Wood introduced model checking for safety and liveness to
augment empirical predictions of time, while James Ivers and Nishant Sinha defined CL,a
syntax and formal compositional semantics for Pin. Natasha Sharygina helped clarify the dis-
tinctions between formal and empirical theories. Linda Northrop provided nourishment and
encouragement despite false starts and backtracking. This work would not have been possible
without the encouragement of John Goodenough and Steve Cross.

CMU/SEI-2003-TR-009 ' ' vii

viii CMU/SEI-2003-TR-009

Abstract

This report is the final volume in a three-volume series on component-based software engi-
neering. Volumes I and II identified market conditions and technical concepts of component-
based software technology, respectively. Volume ITI (this report) focuses on how component
technology can be extended to achieve predictable assembly from certifiable components
(PACC). An assembly of software components is predictable if its runtime behavior can be
predicted from the properties of its components and their patterns of interactions. A compo-
nent is certifiable if its (predictive) properties can be objectively measured or otherwise veri-
fied by independent third parties. This report identifies the key technical concepts of PACC,
with an emphasis on the theory of prediction-enabled component technology (PECT).

CMU/SEI-2003-TR-009

CMU/SEI-2003-TR-009

1 Introduction

This report describes one means of achieving predictable assembly from certifiable compo-
nents (PACC). An assembly of software components is predictable if its runtime behavior can
be predicted from the properties of its components and their patterns of interactions. A compo-
nent is certifiable if its (predictive) properties can be measured or verified by independent
third parties. In our context, component and assembly properties are objective and susceptible
to rigorous empirical and/or formal verification.

The goal of the Software Engineering Institute (SEISM)! PACC Initiative, which was
launched in 2002, is to develop and transition the engineering methods and tools neces-
sary to reliably predict the behavior of assemblies of components, and to certify the prop-
erties of components necessary to trust these predictions.

The SEI’s approach to PACC is prediction-enabled component technology (PECT). A PECT is
a development infrastructure that guarantees that critical runtime properties of assemblies of
components are objectively analyzable and predictable. A PECT comprises a component tech-
nology and one or more analysis technologies. Composition tools ensure that component

assemblies satisfy analytic assumptions, thus ensuring that assemblies are predictable by con-
struction.

1.1 About This Series

This report is the third—and final—volume of a three-volume series that documents the
results of an internal research and development (IR&D) activity of the SEIL This IR&D
involved two phases of exploratory research, spanning three years of effort.

The first phase of the IR&D, carried out in 1999-2000, examined the broad outlines of soft-
ware component technology. In particular, this phase

* surveyed, in Volume I, market conditions underlying industry adoption of software com-
ponent technology [Bass 01]

* identified, in Volume II, technical concepts of software component technology, with an
emphasis on application development infrastructure [Bachmann 00]

1. SElis a service mark of Carnegie Mellon University.

CMU/SEI-2003-TR-009 1

_ These reports concluded that successful adoption of software component technology was
inhibited by (1) the indeterminate (and often poor) quality of software components and (2) the
lack of engineering techniques to predict the behavior of assemblies of components. Com-
bined, these problems result in a heavy reliance on rapid prototyping in place of analysis and
design, and on expensive integration testing and its concomitant late discovery of defects.
Regardless of prototyping and test results, there was a reported expectation that component-
based solutions involve decreases in system quality and increases in project risk.

The second phase of the IR&D, carried out in 2000-2002, was premised on the idea that the
specification of components and the prediction of assembly behavior are codependent. In
short, the properties of software components that must be trusted should be precisely those
properties that support reasoning about assembly behavior. If supported by technology and
appropriate business models, this codependency might form the basis of a virtuous cycle
between component certifiability and assembly predictability, with advances in one area stim-
ulating advances in the other. An emblematic representation of this premise, on which PACC
is predicated, is depicted in Figure 1.

Limits what we can know

about assemblies
Specification and Reasoning frameworks
measurement of that enable the predic-
certifiable compo- tion of assembly-level
nent properties properties

Defines what we need to
know about components

Figure 1: The Fundamental Premise of PACC

The objective of the SEI's PACC research during 2000-2002 was to define a technological and
methodological basis for PACC, specifically linking predictability and certifiability. Examined
chronologically

* In 2000-2001, the major technological and methodological elements of PECT were
defined and demonstrated in a simple laboratory experiment, as described in the paper
titled “Packaging Predictable Assembly” [Hissam 02a].

* In 2001-2002, with an industry partner, the SEI applied PECT to a more realistic applica-
tion area—power grid substation automation—as described in Predictable Assembly of
Substation Automation Systems: An Experiment Report [Hissam 02b].

On October 1, 2002, PACC was established as an emerging initiative at the SEI. This report
describes the key technical ideas underlying PACC and PECT, in effect defining an agenda for
applied research and technology transition for this new initiative.

2 CMU/SEI-2003-TR-009

1.2 About This Report

In principle, this report could describe PACC in the abstract and then motivate PECT within
this abstract context. However, for reasons of expediency, no attempt is made to find a bright
line separating PACC from PECT. Instead, the key concepts of PACC are made material in the
form of PECT. A positive aspect of this approach is that this report provides a basis for under-

standing the SEI’s approach to PACC. A negative aspect is that the report is undeniably paro-
chial.

Objectives

The primary objective of this report is to outline the key concepts of PECT. The intent is to
describe these concepts in a rigorous way without sacrificing their intuitive appeal. This report
provides a theoretical and technological basis to answer the following questions:

* What characteristics of an assembly make it predictable, and what kinds of assembly prop-
erties can be predicted?

* What characteristics of a component make it certifiable, and what kinds of component
properties can be certified? '

* How can we achieve objective and measurable confidence in certified component proper-
ties and predicted assembly properties?

* Can atechnology infrastructure that provides answers to these questions be systematically
developed and transitioned into practice?

Answers to these four questions are provided in Chapter 9.

It should be noted that this report describes work in progress. It is definitive of the SEI's
approach in some cases, and speculative in others. Another objective of this report, then, is to
generate constructive criticism of our ideas by exposing them to the scrutiny of the software
engineering and computer science research communities, and to interested practitioners.

Caveats

The following caveats should be kept in mind when reading this report:

* This report does not dwell on fundamental phﬁoéophical issues of predictability, but rather
stakes out positions that define our approach to PACC; however, pointers are provided to
the literature of philosophy of science where appropriate.

* This report also does not provide a detailed survey of alternative approaches to PACC;
however, pointers are provided to competing or augmenting ideas.

* This report is not comprehensive in its treatment of the theory and technology required for
PACC. In particular, this report focuses on predictable assembly and leaves a detailed
treatment of certifiable components to a later report.

CMU/SEI-2003-TR-009 3

» This report is not a primer on software component technology, language semantics, formal
analysis, empirical analysis, measurement, or certification. Rather, this report addresses
their integration to form a PECT.

Audience

This report is intended for a technical audience interested in predictable assembly and compo-
nent certification in general, but more specifically in the SEI's approach to these topics. It is
assumed that the reader has at least surface knowledge of software architecture, formal verifi-
cation, and measurement theory. Some familiarity with real-time analysis techniques, fault tol-
erance, and software reliability would be helpful, but is not required.

This report makes occasional use of the Unified Modeling Language (UML) [Booch 99] and
the UML Object Constraint Language (OCL) [Warmer 99]; for example, Figure 12 on page
23. Some familiarity with UML and OCL is useful, but because only their simple features are
used in this report, no special expertise is required.

Relation to Other Reports

Familiarity with Volume I of this series is not essential [Bass 01], but familiarity with Volume
11 is assumed [Bachmann 00].2 A straightforward application of the concepts presented in this
report to a simple model problem can be found in the paper Packaging Predictable Assembly
[Hissam 02a]; indeed, this may be considered a companion report to the present volume. A
more comprehensive illustration of the ideas to a nontrivial application area can be found in
Predictable Assembly of Substation Automation Systems: An Experiment Report [Hissam 02b],
which introduces the notation and terminology of a composition language, CL, and its under-
lying construction model, Pin. A formal treatment of CL can be found in A Basis for Composi-
tion Language CL [Ivers 02], but is not required to appreciate the main points of this report.

All three volumes document, in varying degrees of rigor, the essentials of the SEI’s view of
PACC and our thinking about PECT. Various workshop papers are also available, some of
which address topics not given adequate attention in this report [Stafford 01a], [Stafford 01b],
[Wallnau 01], [Stafford 02], [Moreno 02], {Li 02]. Although those papers provide insight into
PACC and PECT, they are by intent speculative. Naturally, some speculations have fared the
test of time better than others. In short, caveat emptor.3

2. There are some inconsistencies in terminology between Volume Il and this report. For example,
“component framework” in Volume Il is (less ambiguously) denoted as “component runtime
environment” in this report. However, such inconsistencies are minor and should not pose
difficulties to the reader.

4 CMU/SEI-2003-TR-009

Typographic Conventions

The first defining occurrence of terms that can be found in the glossary are underlined. Formal
notations are italicized. Example specifications appear in courier. Important points are
highlighted in boldface. Footnotes are used extensively and in two ways: (1) for additional
explanation of ideas that may be obvious to most but not all readers, and (2) for ideas that will
be of interest to some readers, but otherwise digress from the main flow of the report.

Structure of This Report

The report is organized in three main parts.

Part 1, comprising Chapters 2 through 5, focuses on the technological aspects of PECT. Chap-
ter 2 motivates the main ideas. Chapter 3 describes construction frameworks, which constitute
the “component technology” aspect of a PECT. Chapter 4 describes reasoning frameworks,
which constitute the “prediction-enabled” aspect of a PECT. Chapter 5 provides a concise
summary of how construction and reasoning frameworks are combined to form a PECT.

Part 2, comprising Chapters 6 and 7, focuses on theoretical and, in places, speculative aspects
of PECT. Chapter 6 deals with different types of relationships that arise among reasoning
frameworks during the construction and use of a PECT. Chapter 7 deals with the crucial fopic
of compositional reasoning, and, in particular, distinguishes compositional reasoning from rea-
soning about compositions.

Part 3, comprising Chapters 8 and 9, closes the report. Chapter 8 describes the current status of

PECT and areas where further development is planned. Chapter 9 answers the four motivating
questions posed earlier.

3. Let the buyer beware.

CMU/SEI-2003-TR-009 . 5

CMU/SEI-2003-TR-009

2 Motivation for PECT

Component technologies are not new, and neither are the technologies that are used to specify
and reason about the behavior of software systems. What is new in PECT is the conscious

design of component technology to enable automated and trustworthy analysis and prediction
of system behavior.

All component technologies are designed to achieve specific goals. Microsoft’s COM is
designed to support independent deployment of components through a separation of interface
and implementation, and to permit the use of different programming languages to develop
components [Box 98]. Sun Microsystems’ Enterprise JavaBeans (EJB) is designed to support
quick development and deployment of distributed, secure, transactional business information
systems. Other component technologies have their own design goals.

The key to a component technology is its component model. A component model, in effect,
imposes design and implementation rules on component developers and application integra-
tors (assemblers). To date, component models have focused mainly on the construction aspects
of development—application programming interfaces (APIs), memory management conven-
tions, concurrency management conventions, component and application deployment pro-
cesses, and so forth. These aspects may all be thought of as imposing constructive _
constraints on developers; if the constraints are satisfied, an assembly can be constructed, that
is, its components can be compiled and linked, integrated, deployed, and so forth.

Volume II of this series observed that component models share characteristics with architec-
tural styles. Both define component ‘typc:es,5 patterns of interaction, and other design con-
straints. The significance of this observation is that a system’s pﬂ:npelrties6 (e.g., reliability and
performance) correlate strongly to its architectural structure; a style is in essence a structural

4. Shaw and Garlan provided one of the earliest and most extensive treatments of architectural
style [Shaw 96b]. The sense of “style” adopted in this report and in Volume Il (viz. component
types and their interaction patterns) foliows the book titled Software Architecture in Practice

[Bass 98]. More recently, Clements et al. bring much-needed order to architecture-related
terminology [Clements 02b].

5. EJB, for example, defines different types of enterprise “beans” for handling stateless/stateful
sessions and data entities. Analogously, there is a rich hierarchy of COM component types,
specified as a hierarchy of interface specifications.

CMU/SEI-2003-TR-009 ; 7

pattern [Bass 98]. In particular, Klein and associates showed that the assumptions of certain
qualitative and quantitative theories for analyzing quality attributes can be expressed using
design patterns such as styles [Kazman 99], [Bachmann 02], what we call “property theories.’
In effect, these patterns define analytic constraints that, if satisfied, ensure that the design
will be analyzable in the constraining property theory, and the behavior of the resulting system
will therefore be predictable.

]

A good way to understand the complementary roles of constructive and analytic constraints is
to think of a component model as a language that defines well-formedness rules for compo-
nents and their assemblies. Figure 2 depicts this mode of thinking and introduces some termi-
nology.

4= Assemblies Well Formed 7% = Analyzable Models
in Component Model
® 0O O O
® o

L) @) O
L Ay = Assemblies Interpretation 7 Models in
Well Formed in 7 Interpretation 7
° o o o

]
Inverse Interpretation

Figure 2: Constructive and Analytic Well-Formedness of Assemblies

The box on the left in Figure 2 represents the universe of all assemblies that are well formed
with respect to the constraints of some component model. The box on the right represents the
universe of all models 7 in some property theory—a theory that can be used to predict some
kind of assembly behavior. The validity of 7 rests on some assumptions about the systems it
models; for example, resource management policies. These assumptions are the analytic con-
straints imposed by 7's property theory. »%,, is the set of all assembly specifications that sat-
isfy these analytic constraints in addition to satisfying the constraints of the component
model. An interpretation 7 maps assembly specifications to analyzable models in the property
theory; to relate the results of analysis back to the original assembly specification, the inverse

6. The term “quality attribute” is used in most SEI literature on software architecture. The more
generic term “property” is used in this report. The emphasis in PECT is on runtime quality
attributes only (e.g., availability instead of modifiability), and attributes that have objective rather
than subjective definition (e.g., latency instead of usability). Of course, these distinctions can be
debated—a system that is unable to perform a runtime reconfiguration might become
unavailable, and the usability of an interface can be studied using experimental subjects.
Nonetheless, these distinctions have practical significance.

8 CMU/SEI-2003-TR-009

interpretation 7! is defined. Each assembly specification in 4y 1s analyzable and predictable,
with respect to the property theory underlying 7%.

This discussion spotlights two fundamental theses underlying the theory of PECT:

1. A component technology imposes constructive and analytic constraints, and provides
tools and environments that enforce these constraints. As a result, component assemblies
have predictable behavior by construction.

2. Interpretations are defined to component and asseinbiy specifications for analyzable mod-

els of assembly behavior. As a result, component properties’ required for predictabil-
ity are unambiguously defined, establishing a basis for trust and certification.

In more practical terms, the above theses declare that rather than trying to predict the behavior
of arbitrary assemblies of components (e.g., »¢), we should construct only those assemblies
whose behavior is predictable (e.g., /4. Further, rather than defining subjective notions of

component quality, we should rigorously define those component properties that have mean-
ing in some validated, predictive theory.

So far, the discussion has focused on the theory of PECTs rather than the technology itself.
Before shifting to a more concrete focus on the latter, it is worth emphasizing that it is not our
objective to develop PECT insofar as this implies a single component technology and a partic-
ular suite of property theories. That objective would be untenable for at least two substantial
reasons. First, there will never be a “one size for all” component technology—as noted earlier,
the key concepts of component technology can be applied to solve widely varying problems,
ranging from embedded real-time to distributed enterprise systems. Second, and for an analo-
gous reason, there will never be a “one size for all” property theory.

For these (and other) reasons, it makes little sense for the SEI to define PECT theory in terms
of a particular component technology and suite of property theories. Moreover, many software
development organizations will be similarly motivated to preserve some conceptual distance
between the theory of PECT and the specific software component and analysis technologies

7. This is yet another use of the term “property.” Earlier, the term was used to denote the subset of
quality aftributes that are manifested at runtime and objectively observable; they are the
properties that are the subject of prediction. Here, the term “property” denotes things that are
known rather than predicted about a component; these properties are the subject of certification.
it might be argued that it is better to have two terms to denote these two concepts. In Section 3.7,

however, .a single (formal) definition will be given to “property” that will accommodate both
concepts.

CMU/SEI-2003-TR-009 9

used to realize the concept. This motivation provides the rationale for the generic structure of
PECT that is described in this report and illustrated in Figure 3.

Prediction-Enabled Component Technology
models 4| Construction Reasoning g uses
W Framework Framework) \V
Component Abstract Com- Automated Computational
Technology ponent Tech- Reasoning Theory
Component nology interpretation Procedure
Model Property
Component Tools Theory
Runtime iy
i |Environment

Figure 3: Logical Structure of Prediction-Enabled Component Technology

A PECT has two key ingredients, a construction framework and one or more reasoning
frameworks. Each reasoning framework is linked to the construction framework by means of
an interpretation.

The construction framework supports the construction activities of component-based software
development. The abstract component technology is a proxy for one or more component
technologies. It defines a conceptual vocabulary and notations for specifying components,
assemblies, and their runtime environments® in a component-technology-independent ways; it
also specifies the properties, imposed by reasoning frameworks, that must hold on these com-
ponent technologies for predictions to be valid. Tools provide automation support for con-
struction activities such as writing assembly specifications, checking well-formedness of

assemblies, and generating code.

Reasoning frameworks support the prediction activities of component-based software devel-
opment; they encapsulate the property theories mentioned earlier. A property theory is a
proxy for, and is likely to be a specialization of, some computational theory. It defines a prop-
erty-specific conceptual vocabulary and notation for reasoning about, and predicting, the
behavior of assemblies of components. Each property theory has an associated automated

8. Recall that Volume II: Technical Concepts of Component-Based Software Engineering, 2nd
Edition defined a component technology to include, among other things, a component mode! and
runtime environment, where the term “component framework” was used in place of “component
runtime” [Bachmann 00]. The role of the runtime environment in an ACT is discussed in Chapter
3.

10 CMU/SEI-2003-TR-009

reasoning procedure. Automation is stressed not as its own end, but as a practical means of
ensuring that a property theory is explicit and computationally tractable.

Last, interpretations map specifications in the “construction world” to and from specifications
in the “analysis world.” Interpretations are formally defined; they are complete and consistent
translations from the notations defined by construction and reasoning frameworks. Again, for-
mal rigor and automation is stressed not as its own end, but as a practical means of ensuring
that there is a sound correlation between construction and analysis.

CMU/SEI-2003-TR-009) 11

12

CMU/SEI-2003-TR-009

3 Construction Framework

An abstract component technology (ACT) defines a vocabulary and notation for specifying
components, assemblies, and their runtime environments in a component-technology-indepen-
dent way, and for specifying the constraints, imposed by reasoning frameworks, that must be
satisfied for predictions to be valid. A construction framework is an ACT and the tools that
support its use (e.g., editors, constraint checkers, repositories). This chapter focuses on ACT.

The following discussion serves two purposes. The first is descriptive: it explains the essential
concepts and defines their terminology and notation. The second is prescriptive: it strongly
suggests what is required of a concrete component technology if it is to be a suitable founda-
tion for predictable assembly.

3.1 Components

Components are the building blocks of predictable assembly, although, as you will see, a sub-
stantial amount of component substructure must be exposed in the interest of certiﬁabihty and
predictability. Components

* are implementations in final form, modulo binding labels

~* provide an interface for third-party composition

* are units of independent deployment

The term implementation distinguishes components from design abstractions in software
architecture and architecture description languages [Bass 98], [Clements 96], which also use
component as a primitive concept. The term final form means that the implementation is deliv-
ered in a form ready to be executed rather than as source code. This is more general than the
term “binary form” [Bachmann 00], [Szyperski 97], although it conveys the same idea.’

The term binding label refers to linking mechanisms embedded in components to enable their
interaction with other components.!® The interface of a component includes (among other

9. Language interpreters and *just-in-time” compilation blur but do not eliminate the usefulness of
this distinction.

10. Similar but not necessarily equivalent terminology is used in the literature; for example, ports and
provide/require interfaces.

CMU/SEI-2003-TR-009 ’) 13

things) a set of publicly defined binding labels; these labels are used by some composition
mechanisms to “bind” the labels of one component to those of another, and therefore enable
the components’ runtime interaction through those bindings. “Public” definition of these
labels allows third parties to compose components on them.

The term “units of independent deployment” is quite subtle, more than is apparent at first
glance,” with the result that it is quite difficult to propose a completely satisfactory definition.
For the purpose of this report, it is sufficient to emphasize one particular aspect of independent
deployment: a component is a unit of independent deployment if all its dependencies on exter-
nal resources are clearly specified, and if it can conceivably be a substitute for, or substituted
by, some other component.

!
i Key: |
i component X
So. ta Yy i |
>— —> |)
s;.ty myCom ry I Sgty I
>— > | > sinkpinkon threadx
Sz ! !
>— : 7y - |
S3. I ——> source pin |
$3:ty ! pinj |

Figure 4: Components, Labels, and Constructive Interface

Figure 4 introduces terminology and graphical conventions used in this and other SEI reports
on predictable assembly that generally adopt the “box and line” convention. A component is
depicted as a box. A label within a box denotes the name of the component. Decorating the
boundary of the component is one or more binding labels that are depicted as incoming and
outgoing arrows, called “pins.”

Each pin has an associated label that denotes its name. Roughly speaking, incoming pins—
called sink pins—denote incoming events to a component, and outgoing pins—called source
pins—denote outgoing events, although they may represent other interaction mechanisms as
well, such as procedure calls.!? It is useful to make explicit concurrent behavior in compo-
nents. Therefore, sink pins also indicate whether they execute on their own thread of control,
or on their caller’s thread; threads may be shared by sink pins within a component but not
across components.'3 Here “thread” does not denote a particular implementation concept, but
rather any unit of concurrent execution in the component technology.

11. For example, code (component) mobility is a special case of deployment. See Cardelli's work for
cross-fertilizing ideas on it [Cardelli 98).

12. The sink/source distinction mirrors the notions of provides/requires interfaces found elsewhere;
for example, Van Ommering's work [van Ommering 02].

14 CMU/SEI-2003-TR-009

A component defines a naming scope for (among other things) pins. We use dot notation to
scope names. In Figure 4 for example, c.r, denotes pin r; of component c. However, fully
scoped pin names are used only where ambiguity would otherwise resuit.

3.2 Reactions

Clearly, predicting the runtime behavior of assemblies of components requires that we know
something about the runtime behavior of the components themselves. This requires additional
specification mechanisms beyond pins, and certainly beyond what passes for interface specifi-
cation in the vernacular of software developers—the API. The behavior of components is
specified as reactions. A reaction specifies the behavioral dependencies between the stimulus
of a component and its possible responses (i.e., between its sink and source pins). Roughly

speaking, a component reacts to an event arriving on a sink pin by emitting one or more events
on its source pins.

The simplest form of reaction is a simple dependency relation sRr on component pins such
that (s, r) € R indicates that a component will react to stimulus on pin s by generating a
response on pin r. This is the minimal characterization of component behavior required to pre-
dict any meaningful assembly property. Still, the consensus is that computational models that
are richer than a simple dependency relation are needed in practice. We have, in the past, used
the CSP process algebra [Hoare 85] to specify reactions.!4 Although CSP is a complex speci-
fication language, only the simplest features of it will be used in the following illustrations.

Note that reactions can be either complete or abstracted descriptions of component behavior,
and can be specified in a “formal” language (such as CSP) or in an “implementation” language
(such as Java). The only requirement is that a reaction has a parsable syntax, as is discussed
more fully in Chapter 4.

In Figure 5, the reaction Rs; shown inside component c (on the left) specifies that ¢ can
receive stimulus on 5o (i-e., Rsp = s5(...), and its reaction will be to respond through source pins
ro and r; (i.e.,...sp—>rg—>r;...), after which it will be prepared again to receive stimulus on s,
(i.e., ...r;=Rsp). The other reactions are similar. We réqaire that each sink pin appears in
exactly one reaction (although several sink pins can appear in the same reaction), and that each
source pin appears in at least one reaction rule. Component behavior is specified as an inter-

13. Some restrictions apply to thread allocation. Pins also specify a type signature to accommodate
parameters. These and other minutiae are not discussed further in this report.

14. We are currently exploring less complex process algebras such as FSP [Magee 99] and

altematives to process algebra altogether, such as one of its many variants or statecharts [Harel
g5} :

CMU/SEI-2003-TR-009 15

leaved (indicated by the ||| symbol) and/or parallel (indicated by the || symbol) composition
(in the CSP sense) of these reactions. In the example, overall component behavior Rc is
defined using interleaved composition, indicating that there is no synchronization among the
component’s reactions. The reaction Rsy, shown inside the simpler component ¢', is specified
directly as a labeled transition system; its meaning is the same as the CSP reaction in c.

(o] '

Sy c
RSO=SO_‘>r0“‘)r1'—>RSO SO T

s Lo > 0 r

1 Rsl-_—sl‘—)ro‘—)RSl Sg T, . 0
- 2| S :
R52=Sl—)r1—)RSZ > | 1>
Re=Rs, || Rs,y || Rs;
P oo - . m m m e m m e e m m e — e e e e — - —— - = - —)

RS Y
“P=x—>Q’ : CSP process P accepts event x and m

|
|
|
|
: then behaves like process Q
|
|
|

“P ||| @’ : CSP interleaved (non-interacting) event y follows event x, with T
composition of P, Q the hidden (internal) event.

Figure 5: Component Interface with Pins and Reactions

As a notational convention, R{s,} is the reaction associated with sink pin s,, and R{s,.s,} isa
reaction shared by sink pins s, and s, and so forth. R{y} is the overall behavior of component
y. Braces ({ }) are omitted if confusion will not result, and dot notation is used to disambiguate
reactions; for example, c.Rsg and c'.Rsg.

3.3 Interactions

Where reactions specify the behavior of components, interactions specify the behavior of
interacting components. To be a bit more precise, an interaction specifies the composite behav-
ior of two or more reactions. An interaction may only occur between components that have
been composed. Two components are composed when their labels (i.e., pins) have been
bound. !> Note that such a binding only specifies that an interaction may occur between two
components, not that it must. Note also that the definition of component composition is given
in terms of a binding mechanism and not in terms of some abstract operator.

15. In this report, we assume that all interactions are binary and involve some form of “handshake”
between the two interacting components. In general, n-ary interactions are possible (e.g.,
broadcast interaction), although it is possibly a matter of philosophy whether all such n-ary
interactions comprise n-1 binary interactions.

16 CMU/SEI-2003-TR-009

Figure 6 illustrates the main ideas. Here components ¢/ and c2 are composed on c1.r and c2.p.
Graphically, this composition, or enabled interaction, is shown as a solid line connecting the
composed pins. The semantics of composition is defined so that the behavior of composed
reactions can be inferred from the reactions themselves. In the illustration, a very simple CSP
semantics has been assumed: Rs and Rp synchronize on the shared event x, which is achieved

by renaming both c1.r and c2.p to x ({x\r] and [x\p], respectively), and then using CSP parallel
composition (Rs || Rp).

Again, the details of CSP are less importént than the requirement for a defined mechanism for

inferring the behavior of composed components. Composition semantics is discussed in the
next section. :

Enabled interaction

cl r \ 3

>21 Rs=s—r—Rs w Rp=p—g—Rp |95

Interaction (i.e., composed) behavior: P e e e mm
R{Rs, Rp} =Rs [x\] || Rp [X\p]

Figure 6: Enabled Interaction Between Two Components

3.4 Runtime Environment

As asserted in Volume II of this series, a component technology includes a runtime environ-
ment [Bachmann 00]. That runtime environment (called environment below) is a prominent
feature of a component technology, although terminology varies; for example, framework,
container, and platform are frequently used. In each case, the environment plays an analogous
role: provider of services (e.g., transaction and security services), manager of resources (e. g,
thread pools and database connections), and controller of component life cycles (e.g., initial-
ization, preservation, and execution'%). It is quite consistent to think of the component runtime

environment as a kind of high-level, cempoaent-aware, possibly application-specific virtual
machine. :

16. Here, too, terminology varies substantially. Life-cycle terms analogous to the one cited include
activation passivation, and persistence, and they hardly exhaust the alternatives.

CMU/SEI-2003-TR-009 17

Environments, likewise, play a critical role in PECT. However, the PECT notion of environ-
ment is more general than the one discussed above. Rather than referring to a specific virtual
machine, the PECT notion of environment refers to all relevant aspects of the execution envi-
ronment that can influence the runtime behavior of components. Specifically, a component
runtime environment

1. provides runtime services that may be used by components in an assembly. That is, envi-
ronments can be thought of as a distinguished type of component with which (or in which)
other components, and other environments, may interact.

2. provides an implementation for one or more interaction mechanisms, each supporting its
own characteristic interaction protocol (e.g., blocking or non-blocking, buffered or unbuf-
fered, and ordered or unordered interactions)

3. provides a closure for, and containment of, all assumptions made by a reasoning frame-
work about the component runtime environment that can influence assembly behavior.
(Reasoning frameworks are discussed in Chapter 4.)

environment names

. E.2
E.1 s [
[
4 ¢
9 *

L 4
2

oo 7

v v /
environment-provided
services

Figure 7: Environment Services and Containment

The graphic in Figure 7 introduces terminology and graphical conventions. First, environ-
ments, like components, are represented as boxes. Also, like components, environments have
interfaces (in this illustration represented by the ¢ symbol—junctions on the environment
boundaries), although later illustrations will extend this iconography to different types of envi-
ronment services. Unlike components, though, environments have internal structure: they can
contain components and other environments (a discussion of containment is deferred until
Section 3.5).

The graphic in Figure 8 shows the main ideas of item (2) above and, likewise, introduces ter-
minology and graphical conventions. The interaction mechanisms provided by an environment
are encapsulated by connectors. A “connector” is best thought of as an environment-provided
component whose behavior enforces an interaction protocol, or discipline, on the participants
of an interaction or sequence of interactions.

18 CMU/SEI-2003-TR-009

Graphic) Connector Behavior (Informal)

r . pri . s Asynchronous (e.g., event-based) interaction.® Unbounded priority

queue. The priority of events is taken from the priorities of the reac-

tions that emit them.
r n 5 Asynchronous (e.g., event-based) interaction. Bounded first-in,
e 0 first-out (FIFO) queue of length n = maximum number of events.
Oldest events are discarded on queue overflow.
r s Synchronous (e.g., call-return) interaction. Semaphore acquired by
() () calling reaction (i.e., the reaction on s is a [protected] critical sec-
tion).

& Gateway from environment E to containing environment E'. Syn-
5 . i : . :

— chronous interaction is preserved. No semaphore is required (i.e., r
~O-=H0 p phore s required

is reentrant).

a. Reaction on source r does not wait for reaction on sink s to complete.

Figure 8: Connectors Provided by Hypothetical Environment

The graphical notation of connectors has already been encountered, at least in part—the line
connecting the component pins in Figure 6 on page 17 denotes a connector. Additional con-
nector information can be encoded on the lines or in the symbols used to denote pins. Exam-
ples of the former are the pri for “priority queue” and [n] for “bounded queue” connectors in
Figure 8 (the first two entries). Other examples are the use of the > symbol to denote connec-

tors for event-based interaction (the first two entries) and the >| symbol to denote connectors
for protected critical sections (the third entry).

The behavior of each connector in Figure 8 is specified in such a way that the composite
behavior of the participants in an interaction can be inferred from the behavior (reactions) of
the participants themselves. The informal behaviors described in Figure 8 convey only a sense
of what a complete connector specification must describe; in some circumstances, details such
as threading and caching may also be required. Ivers and associates provide a detailed example
of connector specifications (in CSP) for a mix of in;eraction protocols {Ivers 02].

3.5 Assemblies

The abstractions discussed in the preceding sections provide the necessary machinery to

define what we mean by assembly. An assembly is a set of components and their enabled inter-
actions. Since interactions are enabled by environments, each assembly is associated, through
deployment, with exactly one environment.

Components are deployed to runtime environments; deployment defines where (ultimately, on
which machine) behavior is executed. It is also sometimes useful to think of an assembly as

CMU/SEI-2003-TR-009 19

being deployed on an environment, although, strictly speaking, assemblies have no behavior
other than that provided by their constituent components. A:E denotes the assembly A
deployed in environment E.

Components and assemblies are contained by other assemblies. Containment introduces hier-
archy, with A.c denoting component ¢ contained in assembly A, A].A2 denoting assembly A2
contained by assembly A/, and so forth. Containment defines a constructive closure—that is,
the scope of all component interactions is restricted to (or closed within) the component’s

immediately containing assembly.

The following illustrations are meant to appeal to the ;eader’s intuition; they are intentionally
abstract and, in various ways, incomplete. For example, details such as allocation of environ-
ments to processors are ignored.17 Assume, for the present, that each environment denotes a
distinct running instance of some (as yet anonymous) environment type; analogously, consider
each component in Figure 6 to be a runtime instance of some anonymous component type.

assembly name
current_temp

! Controller:RTOS

change_pos
_20ms_Alarm |

Actuator S —(D—
¢ — (> Sensor I >

Figure 9: A Simple Controller Assembly

Figure 9 shows a simple two-component assembly, Controller, whose components are
deployed in the runtime environment, RTOS. The environment provides three services: one
service generates an alarm every 20 milliseconds (ms) (_20ms_Alarm), one provides system
temperature (current_temp), and one changes the position of some device
(change_pos). Although reactions are not shown, one scenario for the behavior of Con-
troller is that the Sensor component reads the current temperature of some external system
every 20ms and, based on what has been read, issues a command to the Actuator component.

17. This is not meant to imply that the abstracted details are trivial or unimportant, but merely that
they are not critical to the following discussion.

20 CMU/SEI-2003-TR-009

Figure 10 illustrates another form of hierarchy. Controller!® from Figure 9 has been repli-
cated, and each replicant is deployed into its own RTOS environment; these environments are,
in turn, linked, via gateways, to the Voter component. Gateways are connectors that permit
interaction among components across different environments. The outermost assembly,
FTController, is deployed to the RTOS_4 environment. A reasonable scenario for the
FTController assembly is that the Voter component implements some form of a fault-
tolerance protocol. The important point, though, is to observe that all component interactions
(i.e., their compositions) take place within a particular runtime environment.

FTController:RTOS_4
v
Controller_1: %
RTOS_1 change_pos
}
" " g
h
. o D
}Co'ntroller__z: 8 = 3 HO——(D—4
RTOS_2 change_pos > b
I < do_chg_pos
+ P m e e J_,
Controller_3: Ksey: assembly i
RTOS_3 change_pos § 1
i i Vs gateway i
1 — 1
'] !
I i

ngurel 10: Hierarchy via Gateways

A third form of hierarchy is illustrated in Figure 11. In Figure 10, the three controllers were
deployed assemblies. In Figure 11, the Controller_N assemblies and Voter component
are partial assemblies. Like assembly, a partial assembly defines a scope of interaction. In this
case, however, the scope is not associated with its own runtime environment; it “inherits” the
runtime environment of its immediately containing assembly. Partial assemblies hide their
contained components, but can expose selected pins through null junctions. A null junction
has no behavior; it simply “unhides” selected pins. In Figure 11, Controller_2 is shown;
the other controllers are, of course, not required to have identical internal structure.

18. The-internal structure of the Controller assembly has been abstracted to make the graphic
simpler.

CMU/SEI-2003-TR-009 21

FTController:RTOS

S
Controller_1 b
11

Controller_2

N @ | sensor 'l
'@—l +é9 Voter _@__.@_4.

do_change_pos

‘_®__Actuator l
- -

| : , 1
. | partial assembly |
Controller_3 1 1
: ? | }
\ ~ null |
| — junctions

_20ms_Alarm | |

Figure 11: Hierarchy via Partial Assembly

current__temp

h 4

7

The notion of hierarchy via partial assembly seems, on the surface, to be quite simple and nat-
ural. However, there are subtleties—in particular concerning analytic closures. An analytic
closure defines a scope for assumptions that underlie predictions of assembly behavior. It is
important to note that scopes defined by constructive and analytic closures do not always coin-
cide; nor, in fact, do the scopes defined by different analytic closures (for different reasoning
frameworks) always coincide.

3.6 Assembly Constraints

The previous sections described, in effect, a graphical language for an ACT consisting of com-
ponents, reactions, interactions, environments, and assemblies. However, that description has
not been particularly formal or complete. For example, the rules for well-formedness in the
language are, for the most part, implicit. This informality is a necessary compromise, because
a complete and formal description of a visual language is nontrivial, and its exposition would
certainly distract from the objectives of this report.

In any event, to specify an ACT there must be at least one intended (target) component tech-
nology, and, insofar as ACT is specific to PECT, one intended reasoning framework. In partic-
ular, recall, from Chapter 2, that an ACT serves to make explicit constraints imposed by a
component technology and one or more reasoning frameworks. In practice, then, well-formed-
ness constraints will exist on components and their assemblies in addition to those discussed in
Sections 3.1-3.5, which describe only the essential features of component technology.

22 - CMU/SEI-2003-TR-009

Context Assembly Confext Cf”}p onent
/ wla: well-formed assembl complete =
wfa = Y T~ forall—>sink(s |
forall—scomponent{c | c.complete) Assembly) ex_sg__;s;llﬁzm—}mﬁn{c lesp =)
wfa: Boolean P {sragf:)sessree(ri
K¢ existsUnigue—conn(c | c.rp = r))
2. =i? S
i *
SinkPin s;szf C Component I. SourcePin
1. complete: Boolean source
11sp w1
conn | 1.*
Connector
------ ey T
Context Connector ! . !
sp.component # rp.component j : UML VefS}GH 13 :
1 OCL version 1.3 1
1 i

Figure 12: Extending the Well-Formedness Rules of an ACT

Figure 12 illustrates well-formedness constraints that might be imposed by a component tech-
nology or reasoning framework: 19

* An assembly must have at least two components.

* Each component must have at least one sink pin and at least one source pin.

* Each sink and source pin must be connected exactly once.

* A component cannot be connected to itself (see the OCL annotation on Connector).

* An assembly is well formed if and only if all pins are connected (see the OCL annotation
on Assembly).

This particular set of well-formedness constraints is easy to specify and understand, since it
concerns syntactic (or topological) aspects of components and assemblies. Other constraints
may go beyond well-formedness, specifying behavioral rather than syntactical constraints. For
example, a reasoning framework might require that the component runtime environment
enforces a specific scheduling discipline (e.g., the earliest deadline first) or that components
conform to a particular start-up and shut-down sequence.

19. Note that these constraints are for illustration purposes only. They represent a component
technology used in an early PECT prototype (see the paper titled “Packaging Predictable
Assembly” [Hissam 02a}), but are too restrictive for general use.

CMU/SEI-2003-TR-009) - 23

Assembly constraints include the well-formedness and behavioral constraints imposed on an

ACT by one or more component technologies and one or more reasoning frameworks. A con-
struction framework comprises an ACT, tools to enforce the constraints imposed by an ACT,
and other tools useful to automate the specification, development, and deployment of- compo-
nents and their assemblies.

3.7 Properties

Referring back to Figure 1, PACC is concerned with predicting what is unknown—assembly
properties—from that what is known—component properties. A flexible but uniform treat-
ment of both kinds of properties is desirable.

A property is an n-tuple <name, value, ... >, where name and value refer to the name of some
property and the value it takes, respectively. The “...” portion of the definition refers to arbi-
trary and, perhaps, property-specific information. For example, it is often necessary to include
a confidence interval with a property value.?? However, at this level of generality, property
types, hierarchies of property types, and the value sets of property types are not needed. Such
details may ultimately be important, of course, but it is best to sidestep these complexities for
as long as possible.

An annotation associates a property with a referent. An association of property P with referent
R means that “R has property P” and is denoted as R.P. Although Figure 1 on page 2 implies
only two kinds of referents—components and assemblies—that is far too restrictive. In fact,
several kinds of referents have already been introduced: component, assembly, pin, reaction,
environment, and environment service. Generally speaking though, properties of assemblies

20. Our notion of property annotation is an amalgam of ideas found in the Acme architecture
description interchange language [Garlan 97]—which uses annotations to support extensible
analyses—and credentials [Shaw 96a}—a proposal for treating architectural annotations as
conjectures modified by the evidence to support the conjecture.

24 CMU/SEI-2003-TR-009

are predicted, while all other properties are asserted. That is, assembly properties are the pur-
view of prediction, while all others are the purview of certification.

A7
<reliability, 0.999> so | €
- o> ” Rs0 =s0—=10 —r1-Rs0 o
-7 > Rsl =sl—r0—Rsl
A s n

<time, 0.53ms, 6=0.04ms> >_f_: _ . Rs2=s1-r1-Rs2

——— Rc =Rs0[J|Rsl [|| Rs2

<D

Figure 13: Property Annotations on Components

Figure 13 illustrates the main ideas and conventions with three annotations on the component
discussed in Figure 5 on page 16. The component as a whole has been assigned a reliability of
0.999. Sink pin c.s) is annotated with an execution time of 0.53ms, with a standard deviation
of 0.04ms. Lastly, the reaction Rs2 has been annotated with its execution priority.

<latency, 139ms, (UB = 155ms, y=0.95ms, p=0.80),
(Controller.alarm) ~»(wake.Sensor.move) ~»
(set.Actuator.move) ~»(change_pos.Controller)>

&
A Controller:RTOS current_temp
\\
\ .
A
S set
s, wake
AR Actuator | S o
¢ —=——(>— Sensor
alarm \ YL change_pos
\ move
i A + <time, 74ms, 6=0.09ms>
<time, 53ms, 06=0.04ms>
PO T T T e o e e e e e o e e = e m e e
I Key '

Figure 14: Annotations of Assembly and Component Properties

Figure 14 shows an annotation with a slightly more complex structure than that shown in Fig-
ure 13. The annotation appears to be attached to the alarm junction of the RTOS environment,
but the actual referent is the series of interactions beginning with a response by the RTOS
environment—alarm—and ending with a stimulus on the RTOS environment—
change_pos. One interpretation of this annotation is that the predicted end-to-end latency of

CMU/SEI-2003-TR-009) 25

the series of interactions is 139ms, a 95% tolerance interval, with an upper bound of 155ms
and a confidence of 80%.

This is, however, just one possible interpretation of the latency annotation. In fact, all of the

annotations in Figures 13 and 14 are undefined, because they have not been assigned an
interpretation in some reasoning framework. Assigning meaning to component annotations
is discussed in Chapter 4.

3.8 Construction Language

The graphical notation and concepts discussed above constitute an informal language for
describing an ACT. A more formal definition is required to serve as a basis for automated
interpretation from assembly specifications to analyzable models of assembly behavior. A
construction language defines a concrete syntax for specifying ACTs, and for specifying com-
ponents and assemblies of components that are well formed in ACTs. Each interpretation
defined on a well-formed assembly can be thought of as assigning a semantics to the assembly.

The new jargon (“‘construction language”) adds to a field already crowded with composition
language, architecture description language, coordination language, and module interconnec-
tion language. Admittedly, the boundaries among these different classes of notations are
imprecise, and, in fact, particular notations are often classified in several ways.2! The intro-
duction here is motivated by distinctions between what is needed to specify an ACT and what
is provided by these existing classes of notation, such as the following:

* Components in architecture description languages tend to be design abstractions, rather
than independently deployable component implementations in final form.

* Module interconnection languages tend to assume a fixed and limited repertoire of compo-
nent interaction mechanisms, and do not represent “style” or “pattern” constraints.

» Coordination languages tend to ignore constructive issues such as module boundaries and
focus instead on abstract behavioral specifications and their compositions.

e Composition languages tend to emphasize their roots in object-oriented (OO) program-
ming languages, largely because their early formulations emerged from OO research.

Nonetheless, there is also significant overlap between these classes with one another and with
the construction language concept discussed in this report. For example, the semantics for
composing behaviors in the Piccola composition language [Achermann 01] is an earlier-speci-

21. For example, Papadopoulos and Arbab classify Polylith [Purtillo 94] and Rapide [Luckham 95]
as coordination languages even though the inventors of those languages described them as a
module interconnection language and an architecture description language, respectively
[Papadopoulos 98].

26 CMU/SEI-2003-TR-009

fied m-calculus variation of the CSP semantics defined by Ivers and associates [Ivers 02]; and
the Acme architecture description interchange language [Garlan 97] defines syntactic ele-
ments for components, connectors, and annotations. In short, the new term “construction lan-

guage” may not be justified in the long term; in the near term it is used to emphasize the
distinctions.

A concrete syntax for one possible construction language has been specified. The construction
and composition language (CCL) fragment in Figure 15 specifies the CSWI component used
to implement a high-speed switch controller (see the substation automation case study for
details [Hissam 02a]). Note that the sample specification assumes the use of CSP to specify
reactions.?? (The meaning of the annotation is discussed later in Section 4.4 on page 33.)

#include *“types.clh”
component CSWI: // From TR-031, pg. 54.

gink async OpSel: Listener (Sel: in Select_t);
gink async OpPos: Listener (Pos: in Position_t);
source sync SwSel (Sel: out Select_t);
source sync SwPos (Pos: out Position_t);
react SwitchR |
SwitchR =
-OpSel.on-> _SwSellon-> SwSel-> OpSel-> Selected
[1 _OpSel.off-> _SwSelloff-> SwSel-> OpSel-> SwitchR

Selected =
_OpSel.on-> _SwSellion-> SwSel-> OpSel-> Selected
[1 _OpSel.off-> _SwSel!off -> SwSel-> OpSel -> SwitchR

{1 _OpPos?x-> _SwPos!x-> SwPos-> _SwSelloff-> SwSel-> OpPos-> R
1:

annotate react <SwitchR,
claim: string =
“1E[!{output = _sbosel_on} U {(output = _sbopos_open}]”>

end CSWI.

Figure 15: Component Specification in CCL

The CCL syntax also allows for the specification of environments (their services and connec-
tors) and assemblies, and for the attachment of semi-structured annotations to an explicitly
defined set of syntactic referents (component, assembly, pin, reaction, etc.).

22. Aversion of CCL under development uses executable statecharts in preference to CSP. See the
SE! technical report by Ivers, J. & Wallnau, K. titled CCL: A Parsable Syntax for a Construction
and Composition Language, currently in development. The CSP variant is used in this report for
consistency with earlier reports.

CMU/SEI-2003-TR-009 27

28

CMU/SEI-2003-TR-009

4 Reasoning Frameworks

We want to reason about, and ultimately to predict, the behavioral properties (hereafter, simply
properties) of assemblies. Our concern is with properties such as: the time it takes an operation
to complete (latency); whether an operation exhibits erroneous behavior, and, if so, how fre-
quently (reliability); whether an operation can always respond to a certain stimulus (liveness);
and whether an operation invariably preserves certain conditions (safety). This is not a closed
or precisely defined list, but it serves as a broad indicator of the different types of properties
that are of interest to practicing software engineers.

Invariably, reasoning about complex systems requires the use of models. In general, a model is
an abstraction that exposes some aspects of a system while simultaneously suppressing (or
abstracting) others. A scientific theory provides models that objectively describe?? the observ-
able phenomena of natural or artificial syste;ns,z”’ and predict future observations in those sys-
tems. A scientific theory is always susceptible to falsification—that is, its predictions can be
subjected to tests designed specifically to refute (falsify) the theury.zs

Property theories in PECT can be thought of as scientific theories about a particular runtime
behavior, or property, of assemblies—they must be objective, predictive, and testable. Prop-

23. A scientific theory need not explain the cause of a phenomenon. For example, Newton’s laws of
motion described the effects of a hypothesized attractive force called gravity, but an explanation
of these phenomena was not offered until Einstein formulated his general theory of relativity.
Analogously, the ideal gas laws describe, but do not explain, the relation of pressure,
temperature, and volume to each other.

24. This distinction is discussed at length by Herbert Simon in his classic The Sciences of the
Artificial [Simon 96]. Natural systems are the purview of the traditional natural sciences such as
physics, biology, and geology, while artificial systems are the result of human artifice. Simon
argued that the scientific method developed for natural systems was applicable to, and required
for, reasoning about modem artificial systems. A strong argument can be made that computing
systems are artificial systems in the purest sense of that term, with complexity rivaling, if not
exceeding, that of any other class of artificial system.

25. The falsifiability of scientific theories is the subject of Karl Popper’'s classic The Logic of Scientific
Discovery [Popper 92]. Note that scientific models need only be falsifiable in principle. That is,
an approach to falsification may be well defined but not technically feasible; for example,
because of the limits of experimental apparatus. For example, there are models of quantum
physics whose falsifiability, even in principie, is a matter of doubt.

CMU/SEI-2003-TR-009 29

erty theories must also be susceptible to automation so that their complexity can be, to the
maximum practical extent, hidden from the end user—the practicing software engineer.

A PECT reasoning framework comprises a property theory, an automated reasoning proce-
dure, and a validation procedure. These parts are discussed in Sections 4.1-4.3. The overall

concept is illustrated with three reasoning frameworks, in Sections 4.4-4.6.

4.1 Property Theory

The design of an effective property theory can, and usually does, require significant theoretical
knowledge and intellectual effort.?% In short, its development requires a feat of ingenuity and
skill no less than that implied by the devélopment of any scientific theory. It is a research
activity that, with luck and persistence, might eventually bear fruit in practice.

As discussed in Chapter 2, our objective is not to develop new property theories, but rather to
specialize (restrict) existing ones to particular sets of systems, and, in this specialization, to
satisfy required accuracy while also obtaining ease of use through automation. To understand
how to achieve this, we must be more precise about the structure of a property theory. The
basic elements of a PECT property theory are

* acalculus, which is “a system or arrangement of intricate or interrelated parts” [Merriam-
Webster 93], where, in this context, the parts are symbolic

* alogic, which defines rules for transforming one sequence of symbols to another, estab-
lishing “principles and criteria of validity of inference and demonstration” [Merriam-Web-
ster 93]

* an abstract interpretation, which is a map from the symbols of a calculus to elements of a
(not necessarily component-based) computing system

The generality of this definition of property theory reflects the broad range of such theories
that can be used in a PECT, while its formality reflects the emphasis placed by PECT on auto-
mated reasonin g.27

26. The following description of a property theory is based loosely on Hoare’s paper, “Algebra and
Models” [Hoare 93]. In that paper, Hoare outlines an approach to developing algebraic models
for reasoning about systems. The adaptation of Hoare's ideas in this report generalizes from
algebraic models to arbitrary calculi and logics; limiting PECT reasoning frameworks to algebraic
models would be too restrictive. The generalization does no violence to Hoare's ideas, however.
It is also worth noting that Milner observed, in the introduction to his process algebra, that non-
algebraic calculi, such as first-order logic, have their usefulness in conjunction with algebraic
models [Milner 89].

30 CMU/SEI-2003-TR-009

4.2 Automated Reasoning Procedure

An automated reasoning procedure has three distinct elements, each of which must, in princi-

ple, be automatable: a decision procedure, a definite interpretation, and an definite inverse
Interpretation, where

* A decision procedure is a function that evaluates claims made on assemblies described in
the property theory to the values “true” or “false.”

* A definite interpretation maps assemblies specified in a concrete syntax of a construction
language to strings in the input language of the decision procedure.

* A definite inverse interpretation maps the results of the decision procedure back to the
concrete syntax of the construction language.

Limiting decision procedures to evaluate claims to boolean values is not as restrictive as it
might appear. A quantitative prediction of end-to-end latency of interactions can always, for
example, be expressed as a boolean claim that latency does not exceed some value. The real
effect of the definition, however, is to rule out decision procedures (and, indirectly, property
theories) that cannot be used to express claims that are verifiable or, at a minimum, falsifiable.

Decision procedures must, of course, be computable, but there are no other restrictions on the
type of algorithms used. In particular, a decision procedure could compute the value of a
closed-form expression or compute its approximation using iterative means, do an exhaustive
search, or perform a simulation. In general, complete decision procedures are preferred to par-

tial procedures, but are not required. The only requirement is that if the procedure terminates,
it yields a verifiable or falsifiable claim.

4.3 Validation Procedure

The most accurate predictions are of little use if they are not trusted. This trust is indispensable
to achieving a fruitful separation of concerns among component developers, component certi-
fiers, and application assemblers. Without trust in component properties, excess effort will be
expended revalidating claims about components. Without trust in assembly predictions, excess
effort will be expended in integration testing. Without trust in both, there will be little hope of

27. It may, in the future, be useful to classify property theories to expose their deeper structure. For
example, Bachmann and associates, in /lluminating the Fundamental Contributors to Software
Architecture Quality [Bachmann 02] and Deriving Architectural Tactics: A Step Toward
Methodical Architectural Design (SEI technical report CMU/SEI-2003-TR-004, currently in
development), describe a structure for property theories that distinguishes independent from
dependent variables; in contrast, Hoare distinguishes between direct and indirect observations
[Hoare 93]. The former seems a better fit for theories that emphasize reasoning about
magnitudes, while the latter seems a better fit for reasoning about assertions in a formal logic.

CMU/SEI-2003-TR-009 ’ 31

establishing a value proposition for certified components or predictable assembly. A robust
value proposition is needed, because the technical and social infrastructure for “trust” will
require up-front investment that must be justified in terms of future efficiencies.

A validation procedure provides objective evidence for trusting the validity and soundness of a

reasoning framework; it also defines its required component properties with sufficient rigor to
provide an objective basis for trust in assertions of component behavior. A reasoning frame-
work is valid if its predictions match observations and sound if its theorems, relations, and so
on can be mathematically demonstrated.

As observed by Meyer and associates, trust is a social phenomenon likely to be achieved
through a mix of technical and nontechnical means [Meyer 98]. These same authors also
observed that trust is not absolute except in matters of religious faith. Looking beyond
Meyer’s concern with trusting that a component implementation is correct, the means for
establishing trust depends on qualities inherent to the

e property theory—for example, is it a stochastic or deterministic theory?
* to the problem domain—for example, is human safety of concern?

* and to the business context—for example, how much value accrues with additional evi-
dence?

Minimally, the weight of objective evidence must justify a value proposition for component
certification and other infrastructure development.

There are, however, two classes of objective evidence that are worth distinguishing: empirical
evidence and formal evidence (in Polya’s terminology—plausible and demonstrable evi-
dence?®), because different schools of thought place more trust in one form of evidence than
the other. However, to the extent that these forms of evidence are truly distinct, both are
needed. Empirical evidence is acquired through direct observation, preferably under con-
trolled circumstances, with results reported in well-defined units of measure. Empirical evi-
dence is therefore provisional, as any other observation might have been different; hence,
conclusions based on empirical evidence are, to a lesser or greater extent, only plausible. For-
mal evidence is acquired through mathematical proof and is therefore irrefutable, as all such
proofs are tautological; hence, conclusions based on formal evidence are inevitable or demon-
strable.

In fact, both empirical and formal evidence have roles in providing objective confidence in
property theories and in the asserted values of component properties. Different types of theo-

28. The distinction between plausible and demonstrable reasoning is discussed eloguently by Polya
in Mathematics and Plausible Reasoning: Volume | Induction and Analogy in Mathematics [Polya
54).

32 CMU/SEI-2003-TR-009

ries and properties will result in different emphases on one or the other. For example, proper-
ties with established measures of magnitude, such as time and space, are more susceptible to
empirical treatment than are properties with less obvious measures, such as reliability. The fol-
lowing statements illustrate the mix of reasoning used to establish trust:

* A reasoning procedure for predicting the absence of a behavior in an assembly might be
defined in automata theory and temporal logic; the resulting claims will be demonstrable.
However, establishing that a particular automata describes the behavior of a particular
component will involve, ultimately, observation.

* Areasoning procedure for predicting the execution latency of an operation in an assembly
might be defined as equations involving the measured time of components; the resulting
claims will be plausible. However, the equations themselves might be derived from theo-
rems whose validity must be formally demonstrated.

It is well worth repeating that the level and kind of objective evidence required to establish
trust in predictions will vary from situation to situation.2?

Note that the problems of establishing trust in component properties and predictions are

strongly interrelated, as premised in the introduction to this report (and implied by Figure 1 on
page 2). This report is focused primarily, however, on PECT. A full treatment of how empiri-
cal and formal property theories are validated and how component properties are certified will

be the topic of a future report. Only a passing treatment of the topic is provided through the
following illustrations.

4.4 lllustration 1: Temporal Logic Model Checking

Temporal logic model checking (hereafter simply called model checking) is a technique for
formally verifying system properties such as safety (informally, a certain condition never
occurs) or liveness (informally, a certain condition eventually 0c<:urs}.30

29. Infact, it has been argued that the notion of a demonstration in a proof is also subject to different
degrees of rigor, ranging from fully formal {mechanized) proof in the Hilbert style, to sketches of
proof templates in which more can be assumed about the social context of a proof’s audience
[DeMillo 771.

30. Model checking has been used widely and successfully to verify hardware design; significant
effort has been made recently to apply it to software design as well. There are many books and
articles on the subject of temporal logic model checking. See Huth's work for a gentle but
thorough introduction [Huth 00] or the work of Clarke and associates for a more in-depth and
theoretical treatment [Clarke 99].

LS

CMU/SEI-2003-TR-009) 33

Property Theory

The property theory for model checking combines automata theory and temporal logic—in
model checking literature, property theory is usually described as a combination of a computa-
tional model and a specification language for a particular class of temporal logic claims. There
are many variations in the automata theory and temporal logics used, and each combination is
equipped with its own rigorously defined (i.e., purely formal) calculus and logic. Although the
distinctions among these property theories are theoretically important, they all bear strong
family resemblances to one another. The illustration sidesteps distracting nuance.

Automated Reasoning Procedure

The decision procedure used in Illustration 1 is provided by the SMV model checker.3!

The top half of Figure 16 shows a state machine corresponding to the CSWI . SwitchR reac-
tion shown in Figure 15 on page 27. There, the temporal logic claim was expressed, in the
annotation, directly in the notation of SMYV; ideally, a neutral syntax would have been chosen.
In natural language, the claim reads, “it is never possible for the switch to be opened
(_sbopos_open) before it has been selected (_sbosel_on).”

31. See <http://www.cs.cmu.edu/~modelcheck/smv> for details on this model checker.

34 CMU/SEI-2003-TR-009

The bottom half of the graphic shows a fragment of the input string to the SMV model
checker. The last line of the SMV is the annotated temporal claim; the rest corresponds to the
SwitchR component reaction.

start

1. A finite state model =g
for CSWI.Switchr

_opsel_on/
_sbose!_on

shosel/
opsel

_opsel_oft/

sbosel/ _sbosel_off

oppos

2. ...which
has this deselecting
SMV illtel'- _stel_gg[hosel/
. _sbhosel_off sel
pretation shopos/ op
_sbosel_off _epsel_on/
sbopas/ _sbosei_on
_sbhosel_off
opening .oppos_close/
_sbopos_close selected
_oppos_open/
_sbhopos_open
MODULE
main

IVAR input : {_opsel_on, _opsel_off,
-Oppos_open,_oppos_close, sbosel, sbopos, none};
VAR output : {_sbosel_on, _sbosel_off, _sbopos_open,
-sbopos_close, opsel, oppos, none};
state : {waiting, selecting, selected, opening, closing,
deselecting, unselecting};

ASSIGN
init{input) := none;
init (output) := none;
next (output} :=
case
state = waiting & input = _opsel_on : _sbosel_on ;
state = waiting & input = _opsel_off : _sbosel off ;

...ETC...details deleted ...

SPEC IE[! (output = _sbosel_on) U'{Qutput = _sbopos_open)]
Figure 16: An Interpretation for Model Checking

The scheme for translating the component behavior specified in CSP into SMV involves con-
siderable complexity. The translation scheme for composing reactions specified in CSP was
worked out in A Basis for Composition Language CL [Ivers 02]. The translation from com-
posed CSP reactions to the input language of SMV was not formalized, although the outlines
of an interpretation can be gleaned from CSP event names in the CSWI . SwitchR reaction,
and the state and variable names used in the input string passed to SMV.

CMU/SEI-2003-TR-009 ' 35

The key points are (1) a mechanical translation from CCL to SMV is possible, in principle, but
its definition is complex, and (2) the resulting SMV is not easily comprehended by the end
user. However, the complexity is apparent only once, when the definite interpretation is
defined, and the resulting SMV input does not have to be made visible to the end user, any
more than the internal results of any “‘code generation” process need to be exposed. All that is
required, instead, is the inverse interpretation that maps the results of a decision procedure,
SMV in this case, back to the original specification in CCL.

Validation Procedure

Model checking is a form of verification; the soundness of the model-checking algorithm is
demonstrated by proofs involving; for example, the fixed-point semantics of the temporal
logic operators.32

Therefore, the basis for trusting the results of model checking depends on confidence
1. in the implementation of the model checker itself

2. that the finite models of component behavior used in the model checker are satisfied by
the components (i.e., the implementations) they represent

Confidence in item (1) above is generally obtained by testing the model checker. Whether or
not it’s justified, most users trust the implementation of a model checker.3? University-devel-
oped software might be regarded with some skepticism, but some model checkers are sup-
ported by commercial vendors, helping to obtain a level of trust.

Confidence in item (2) above is a more difficult matter. Some research prototypes extract state
machines directly from source code [Corbett 00]. In that case, the formal translation process
from source code to state machine (in fact, a definite interpretation in the PECT sense) reduces
the question of trust to one of trusting the translator’s implementation; an analogous situation
arises in the reverse case, where components are derived from state machines. Some form of
testing is required where state machines are not “formally” linked to components; for example,
where state machines and components are implemented manually [Havelund 01].

32. An accessible treatment of the fixed-point semantics of computational tree logic (CTL)—a
temporal logic—is provided by Huth [Huth 00].

33. Interesting is the experience of Brat and associates in evaluating verification and validation tools
on Martian Rover software. In presenting the findings, one of the authors reported that the model-
checking group encountered unexpected difficulties when it encountered a floating point error in
the model checker. See <http://sei.cmu.edu/pacc/smew/> for the proceedings of this workshop.

36 CMU/SEI-2003-TR-009

4.5 lllustration 2: Rate Monotonic Analysis

Rate monotonic analysis (RMA) is a technique for determining, among other things, whether a
set of tasks can be scheduled for execution in such a way as to guarantee that hard-real-time
deadlines are always satisfied. >4 Actually, RMA is a system for constructing property theories,
although it does include results (such as the Lui Layland theorem discussed below) that can be
thought of as property theories in their own right.

Property Theory

In addition to the usual symbols of classical algebra and finite mathematics, the RMA calculus
defines symbols for tasks, parallel and sequential composition of tasks, task priority, period,
task execution time, processor utilization, queues, and so forth. The underlying logic of RMA
is based in classical algebra, with key principles and results expressed algebraically. This illus-
tration makes use of the Liu and Layland theorem, which states that a set of n independent

periodic tasks, when scheduled using a rate monotonic algorithm, will always meet its dead-
lines, for all task phasings, if

C C
Eq.l T—I-{- -i-%—“SU(n) =" -1
1 n

where C; = worst-case task execution time of task;, T; = period of task;, and U(n) = utilization
bound for n tasks.

RMA was used as a basis for the A, property theory discussed extensively in the substation
automation case study (see [Hissam 02b]). This property theory predicted the latency () of
the longest execution path in an assembly, for the Average case latency, where components
could Block one another, and including Asynchronous interactions (ABA). A preliminary
form of the property theory predicted worst case latency with blocking for synchronous inter-
actions only (Awp); this simpler theory is more convenient for illustrative purposes.

i-1

L
L, = Z{?“}Cj-i—ci

i

Eq2

i=1

34. A Practitioner’s Handbook for Real-Time Analysis is the definitive source for applying RMA in

practice [Klein 93]; it cites a variety of publications that establish the soundness of the underlying
computational model,

CMU/SEI-2003-TR-009 37

The formula in Eq. 2 predicts the worst-case latency L; for the i task. C; is the execution time
of the i task; T; is the period of the ith task. Tasks 1 through i-1 are assumed to be all the tasks
whose priorities are higher than the priority of task i. The iterative calculation starts by using
C; as the first guess for the worst-case latency by setting L, to C;, and it then computes L, , ;
using the formula. It continues until L,, = L, , ;, at which time the fixed point has been reached,
and L, ; is the worst-case latency.

Automated Reasoning Procedure

Figure 17 shows yet another variant of the controller assembly. Two sensors are in that assem-
bly, each connected to its own actuator, but both connected to the same temperature gauge. In
this figure, the reactions on asynchronous sink pins (>) are assumed to execute on their own
threads of control, and are therefore schedulable tasks with fixed priorities, while the reactions
on non-blocking synchronous sink pins (>) execute on the caller’s thread of control.

The interpretation is straightforward. First, observe that, in contrast to Figure 16, this interpre-
tation requires annotations: the period of the alarm service (7; in Eq. 1), the priority of threads
Senl .wake:t and Sen2 .wake: t,35 and the execution time of reactions (C; in Eq. 1).
Since Actl.set and Act2. set are not threaded, they are not schedulable in RMA, and
they have no priority assignment. The execution time for the Rset reactions is simply added
to the execution time of the calling reaction.

The decision procedure for Aywpg was more complex, but fully automated (again, unlike Figure
16, which was automated only “in principle”). The interpretation scheme translated assemblies
specified in CCL3® to an input string of a simulator developed especially for the property the-
ory. The simulator used a combination of analytic and iterative means to compute the fixed
point of a set of tasks sharing the same processor, and from that fixed point, the latency was
derived.

35. Recall from Section 3.1 that where xzy, cx.s:t and cy.s:t denote different threads of execution.

36. The translation rules are specified completely in Appendix A of Predictable Assembly of
Substation Automation Systems: An Experiment Report [Hissam 02b). Note, however, that the
syntax of CCL has changed since the time of that initial case study.

38 CMU/SEI-2003-TR-009

_ A <claim, isGuaranteedSchedulable>

-
-
-
-
-
-
—

ik
Controller:RTOS QIQ current_temp
alarm wake:t Senl set Actl
¢ —(D—] Rwake=... & Rset=... e —4
\‘ \ \ f
Y \ —% i
A \— + :
. \ . i
<per10d, 100> A A <time, 20ms> A <time, 30>
<priority, 10>
alarm
wake:f Sen2 < set Act2
i*—-@—-{%—r Rwake=... —& &— Rset=... (St T
\\ \\ \\ ——P ;
A > 7
A i ~ ‘

<period, 150> A A\ <time, 15m>

i
<time, 35>
<priority, 5> £

which can be interpreted in Liu and Layland (Eq. 1) as...

(204—30_;_ 15+35
100 150

) = 715<202 - 1)= 83

Figure 17: An Interpretation for RMA Schedulability Analysis

Validation Procedure

Unlike model checking, RMA theories depend explicitly on measured (empirical) phenomena:
execution time—an explicit parameter of the property theory—and blocking time—the prop-
erty that is predicted (i.e., latency = execution time + blocking time). While many of the basic
results of RMA are demonstrable (e.g., Lui-Layland), trust in the overall effectiveness of the
property theory rests on empirical, experimental evidence.

Trust in the effectiveness of Aywp depends on statistical trust in the
1. quality of Ayp predictions

2. measures of component execution time

Confidence in the quality of Awp predictions required the development of a measurement
infrastructure for collecting timed traces of component and assembly execution in a controlled
environment. Also required was a statistically valid (representative) sample of assemblies, so
that a confidence interval for the property theory could be obtained. The technique used to
generate this sample combined elements of random graph generation and topology constraints

CMU/SEI-2003-TR-009

39

to restrict the random assemblies to those that were, in some predefined way, “stereotypical”
of the intended application.

Confidence in the measures of component execution time also required the development of a
measurement infrastructure—this time for collecting traces of component execution time in a
controlled environment, where the total blocking time of a component under all execution
traces could be eliminated. As with the property theory itself, a statistical measure of confi-
dence was obtained that reflected an inherent quantum of nondeterminism (random measure-
ment error) introduced by the runtime environment and additional measurement apparatus.

In both cases, trust was established using statistical means for Ay p statistical confidence in the
representativeness of the random sample and for component measures’ statistical confidence
that the component execution time established in a measurement environment would be equiv-
alent to the execution time in the deployed runtime environment.

4.6 lllustration 3: n-Version Majority Voting Analysis

Many design patterns have been developed to make systems more resilient to hardware and
software failure.3” Most (if not all) of these patterns are based on some underlying notion of
redundancy. The form that this redundancy takes in Illustration 3 is the n-version majority vot-
ing (NVV) pattern. In the NVV pattern, a reliable voting component chooses the majority
response from a set of n unreliable components, where each component computes the same
function but has a different implementation (i.e., n versions).

Note that, unlike Illustrations 1 and 2, the NVV reasoning framework is more a thought exper-
iment than reality. It is introduced here as a foil for exposing different aspects of PECT theory.
Nonetheless, while NVV is a thought experiment, doubts about its realism can be challenged,
as will be discussed in Section 6.2 on page 47.

Property Theory

A simple calculus is defined for this example. In addition to the usual symbols of classical
algebra and discrete probability theory, the symbol 7t is defined to denote the probability of
component failure. As with most theories of reliability and fault tolerance, the underlying

37. Musa’s Software Reliability Engineering is widely cited as being authoritative [Musa 98]. Daniels
and associates merge several design patterns for fault tolerance [Daniels 97]. McAllister and
associates give an in-depth analysis of one particular voting pattern that is representative of the
computational model shared by various models for reasoning about system reliability [McAllister
90].

40 CMU/SEI-2003-TR-009

logic is based in probability theory. In this contrived property theory, the reliability of an
assembly of components using the NVV pattern is given as

n

Eq3 pFail = Y @nk(i—n)“‘k

k=m

where pFail = the probability that an assembly will fail, n = the number of unreliable compo-
nents, m = (n + 1)/ 2 for odd n, and 7 = the probability of component failure. Of course, this is
nothing more than the sum of simple binomial distributions of the probability that a majority k
out of n components will experience a failure on some event, where k € {m, m+1,..., n}.
Although the theory is undeniably simple, it captures the essence of the voting pattern.

Automated Reasoning Procedure

The illustration in Figure 18 reprises Figure 11 with minor modifications. In this example, the
failure rate of unreliable components is specified as an annotation on the partial assemblies,
c1, c2, and c3. The reliability claim is the topmost, boldfaced annotation in the figure.3® It
asserts that the probability that the end-to-end interaction starting with one of the three RTOS
alarms and ending on RTOS.temp will fail (pFail) is less than or equal to 1x107.

38. The notation for the interaction omits pin names for brevity. As with CSP, the symbol || denotes
paraliel composition. The intent is that the reactions composed by ~»in (a~b) || (c~d) execute
concurrently.

CMU/SEI-2003-TR-009 ‘ 41

<claim, pFail <1x107,{alarm1~-cl || alarm2 -2 || alarm3~»c3}~+{Voter, temp}>

A _-/A<claim, isGuaranteedSchedulable>

-

\ FTController:RTOS
N ,,A <pFail, .001>

) S !acf: Contm‘l vl g !
alarml : - ’ f
/, 4
c2: Gontrol _v2
4_®_@_{|] d
/
alarm2 , P voter H—(D—4

4 chg
/
/

c3: Control_v3

alarm3

which can be interpreted in Eq. 3 as...

pFail = 3n(1—m)+7° = 3n° - 271 <3x10™°

Figure 18: An Interpretation for Reliable Voter Pattern Reliability Analysis

The interpretation uses the sink annotations to fill in the value of m in Eq. 3 and the assembly
topology to fill in the values of n and m. The decision procedure for the property theory, as for-
mulated, is a trivial mathematical function and interpretation. More complex decision proce-
dures (e.g., using Monte Carlo simulations of failure rates with probability distribution
functions) can be envisioned.

Validation Procedure

Similarly to RMA-based property theories, the NVV property theory is parameterized by, and
predicts, an empirical (observable) phenomenon: rate of failure. Accordingly, confidence in
the NVV property theory will be based in part on demonstration (e.g., the applicability of basic
probability theory) and experimental evidence.

However, while time is, for all practical purposes, a universally understood phenomenon, the
failure rate of software components is not. Still, it is possible to fix on a particular definition of
failure rate (e.g., the number of “hard crashes” per invocation for each reaction) and obtain a
statistical measure of a property defined in this way through established testing procedures.

42 CMU/SEI-2003-TR-009

5 Concise Summary of PECT

A PECT extends the notion of a component technology with one or more reasoning frame-
works, such that assemblies of components are predictable with respect to those reasoning

frameworks. In Figure 19, a UML class diagram illustrates how a component technology
relates to reasoning frameworks in a PECT.

PECT

¢

1] |

Construction Reasoning
Framework Framework
1] S -
Construction |1 Abstract -
Language | -speciiedin | COMpPoOnNent interpretation
Technology
isa
¥ model
of [1..*
Component
Technology
1.0 i1
Runtime Component
Environment Model

Figure 19: UML Class Diagram of PECT Concepts

A component technology consists of a component model and one or more runtime environ-
ments. The component model specifies allowable component types, interaction mechanisms,
services provided by the runtime environment, and constraints among them. A runtime envi-
ronment is an execution environment that enforces aspects of the component model. A runtime
environment plays a role analogous to that of an operating system, serving as the context in
which components execute. Different runtime environments for the same component technol-

ogy enforce the same component model, but may differ in terms of quality attributes, such as
performance or reliability.

A component technology is incorporated into a PECT by means of a construction framework.
Such a framework consists of an ACT and a construction language. An ACT is a description of
a particular component technology in a construction language. ACTs are described using a

CMU/SEI-2003-TR-009 43

common language—a construction language—to allow the same tools to be used with PECTs
containing different component technologies.

The construction language is also used to describe assemblies constructed in accordance with
the ACT and associated reasoning frameworks. A construction language includes the syntactic
elements needed to capture three kinds of information:

1. the topology of an assembly (the composition of components that defines the structure of
the assembly)

2. the behavior of each component in the assembly, the interaction mechanisms defined by
the component model, and the services provided by the component technology’s runtime
environments

3. arbitrary property descriptions that are required by specific reasoning frameworks and
attached to various syntactic elements, such as components or interactions

Each reasoning framework included in a PECT embodies the concepts and theories needed to
analyze, and hence predict, properties of an assembly of components. An interpretation is
defined for each reasoning framework of a PECT that relates the concepts of the ACT to the
concepts of the reasoning framework. An interpretation is used during development to trans-
late an assembly specification, as documented using the construction language, to a specifica-
tion that can be used with the interpretation’s reasoning framework.

44 CMU/SEI-2003-TR-009

6 Multiple Reasoning Frameworks

The value of PECT will be enhanced as reasoning frameworks are developed, validated, and,
possibly, certified. However, additional complexity also attends the introduction of multiple
reasoning frameworks. Questions will arise, for example, about the consequences of using one
reasoning framework in place of another, or about whether reasoning frameworks that have
contradictory assumptions (assembly constraints) can be safely used together.

The situation is shown informally as a Venn diagram in Figure 20, which refines the earlier
depiction in Figure 2 on page 8. Figure 20 shows several reasoning frameworks, and the space
of possible assemblies has been subdivided into a number of distinct sets, each containing the
assemblies that are well formed with respect to a reasoning framework theory whose models
(input to its decision procedure) are in the set 7.

4= Constructively well-formed 7,
assemblies

2 |
7, = Analyzable models in the
e %, decision procedure of theory T,

o —= ° © °°
O O

7; = Models under
interpretation 7,

O O

7, = Interpretation
L

#1 = Analytically well-
formed assemblies in T;

7{3 = Inverse Interpretation

Figure 20: Compatibility of Analytically Well-Formed Assemblies

To illustrate, perhaps 7, and 7; model different properties; for example, security and perfor-
mance (what will later be defined as heterogeneous properties). Since the well-formed assem-
blies for these reasoning frameworks are equivalent in extent (4, =), all is well. However,
what if we now add 7 that models, say, reliability? How will it be ensured that only the inter-
section M{A4, , 43, 45} is constructed? Alternatively, given an assembly, is it possible to infer
which reasoning frameworks are applicable?

We do not yet have robust answers to these questions. However, the concepts elaborated in the
earlier chapters appear to provide a good foundation for providing answers—and indeed some

- progress has been made already. This chapter outlines, in Sections 6.2 through 6.4, what we

CMU/SEI-2003-TR-009 45

already know about several key issues introduced when considering multiple reasoning frame-
works, and how these issues can be addressed. Section 6.2 addresses the question “when does
a simple theory become too simple?” This discussion is a precursor to Section 6.3, which dis-
cusses co-refinement—the process by which an optimal balance is achieved among various
qualities of property theories, including simplicity. Section 6.4 discusses the issue of incom-
patibilities among reasoning frameworks, while Section 6.5 discusses some still speculative
approaches to dealing with these incompatibilities. This last is an area for needed research.

Before embarking, though, formal definition of some key terms (in Section 6.1) will prove
useful. Readers not formally inclined may skip Section 6.1 and refer to it only when encoun-
tering unfamiliar terms or notation.

6.1 A Few Formal Definitions

Standard mathematical notation is used. The symbols <, A, =, Ax-P, and Vx-P denote boolean
“if and only if,” “and,” “not,” and the existential and universal quantifiers, respectively. The

letters p, g, r, denote (boolean) predicates, and p(x) denotes the application of p to some x. The
symbols €, N, D, D, =, and I denote set “element,” “intersection,” “subset,” “proper subset,”

“equality,” and “the empty set,” respectively.

&L 2% &8

General Definitions

e Let#={al, a2, ... ak} be the set of assembly specifications, in CCL, that are well formed
with respect to the constructive constraints of some ACT.

e Let T={T,, Ty, ..., T,} be the set of property theories, embedded in reasoning frame-
works, that are integrated in the same ACT.

* Let#, = {ml,, m2,, ..., mk,} be the set of models in (or input strings to) the decision pro-
cedures of property theory T,.

* Let P ={ply, P2y, .-, Pk} be the set of predicates that encodes the analytic constraints of
property theory T,.

o Letk : #xT be the “satisfies” relation such that a ¥ T, < Vpk, € P - pk,(a)—that is, an
assembly a satisfies property theory X if and only if a satisfies X’s analytic constraints.

o Let9,: #X 7, be the “interpretation” relation such that (a, m) € 9, < a T, and a derives
m through some sequence of syntactic transformations.

» Lets# ={a,|3Im(a,, m) € 9,} be the set of assembly specifications that satisfy and have
interpretations in T,. We say “assembly a is well formed with respect to T,” if and only if
aEA,.

46 CMU/SEI-2003-TR-009

Definition of Compatibility Relations

* T,=T, (pronounced “T| and T, are compatible”) & 4, = 4,

* T, ~ T, (pronounced “T} and T, are incompatible”) & 4, N 4 = @

* Ty =T, (pronounced “T; and T, are partly compatible”) & —(T; = Tp) A —(T~ Ty

T, 2T, (pronounced “T; subsumes T,”) & A4, 2 4,

* Ty > T, (pronounced “T strictly subsumes 7,”) & #; D 4,
So, in Figure 20, To=T3, T\~T,, T,=Ts, and T,>T.

6.2 Simplistic Versus Realistic Property Theories

Practitioner and theorist alike will be skeptical of the NVV pattern and its accompanying
equation in Eq.3, referred to as Tyyyy, or “the [reliability] theory” in the following discussion.
In fact, the theory might be dismissed out of hand as being simplistic, perhaps justifiably so.

Still, being explicit about the basis for this dismissal highlights useful aspects of the theory of
PECT.

The reliability theory can be mooted in a number of ways; for example, the vagueness of the
definition of failure rate. However, our concern is not with reliability theory itself; assume that
“failure rate” has a precise meaning and is measurable on components. Instead, our concern is
with whether Ty is “simplistic” in the sense that it is unrealistically simple. To address this
concern, it helps to look at analytic assumptions that are implicit in the theery.39 A small selec-
tion of assumptions is presented in Table 1 (there are many assumptions in this and any other
property theory):

Table 1: Selected (Analytic) Assumptions of Reliability Theory

1. A well-formed assembly satisfies the voter topology.

2. Failure rate (1) is defined for each sensor.
3. All sensors have the same failure rate.
4. Voter and connectors are 100% reliable.

5. Sensor output space is finite and small.?

6. Sensor failure rate is uniform over all input.

7. Sensor responses remain synchronized.

8. Failures are independent events.

a. This assumption simplifies the voting protocol.

39. The issue is not that the assumptions are implicit—that is a by-product of the necessarily
attenuated description of the theory itself. As already noted, a complete description of any

reasoning framework, while necessary in some contexts, would overwhelm the main points of
discussion in this report.

CMU/SEI-2003-TR-009 47

The basic question is, “which assumption, or set of assumptions, brands the reliability theory
as simplistic?” More to the point, what criteria can be used to make this assessment? One rea-
sonable test is whether an assumption is overly constraining: in short, is it realistic to assume
that systems of interest—that is, systems likely to be built in practice—will satisfy the assump-
tion? If the answer is “no,” any theory based on that assumption is likely to be simplistic. If,
conversely, the answer is “yes,” then the theory can be considered as “realistic,” at least for the
satisfying system.

The assumptions in Table 1 can be characterized in PECT terms by defining each it assump-
tion as a predicate Pi on assemblies that evaluates to “True” if the assumption i is satisfied by
the assembly, and “False” otherwise; in this way, assumptions are converted to well-formed-
ness constraints. Then, the reliability of FTController (from Figure 18) can be established
if and only if P1(FTController) A P2(FTController) A..A P8(FTController).

It is possible, even in the absence of specific application requirements, to conduct a thought
experiment on whether a sufficiently large set of assemblies can be constructed that is well
formed with respect to these predicates. After all, if no such experiment is possible, the origi-
nal critique of the reliability theory as simplistic must be discounted. The results of the experi-
ment are presented in Table 2.

Table 2: Plausible Satisfiability of NVV Well-Formedness Constraints

P1 is satisfiable. By virtue of the ACT, it is a simple topology.

P2 is satisfiable. By assumption (see earlier assumption about the validity of failure rate)

P3 is satisfiable. Even though the design pattern “assumes” that each component has a different
implementation, the failure rate = .001 might be a minimal norm for compo-
nents. Eq.3 can also be generalized, without altering the theory, to handle
unique failure rates.

P4 is satisfiable. The binomial distribution can be generalized easily to handle additional
sources of failure events. It is also plausible that the correctness of a voter com-
ponent can be formally verified. Failure-free connectors can be assumed in
some (but not all) situations.

PS5 is satisfiable, The temperature sensor in the example might report temperature t € {safe,
given plausible caution, critical}; a switch sensor might report position p € {closed, closing,
assumptions. opening, open}.
P6 is satisfiable, If components exhibit a range of failure rates over their input ranges, the worst
with loss of preci- | rate can be chosen, yielding a worst-case (pessimistic) estimate for the assem-
sion. bly. Assigning a distribution to failure rates would require substantial changes
to the theory (a new theory), especially if the distributions were nonstandard.
P7 is satisfiable, The NVV pattern requires synchronization to ensure that voting refers to the
assuming RMA same event. This could be done by tagging sensor output or through some other
schedulability as a | interaction protocol. In this illustration, the approach is to guarantee that sensor
precondition. deadlines are never missed. Adding the RMA schedulability precondition,? in

effect, defines the ordering Tgma> Tnvy:

48 CMU/SEI-2003-TR-009

Table 2: Plausible Satisfiability of NVV Well-Formedness Constraints (contd.)

Satisfiability of P8 | This is a key assumption of most reliability theories:? its satisfaction is the pri-
is problematic, but | mary motivation for n-version programming. However, even the assumption
plausible. that the sensors are independent versions is not sufficient—erroneous assump-
tions may be found in the shared specification for sensors. The FTController
assembly, as depicted, likely executes on one processor—another single source
of failure. A distributed assembly could be constructed, but distributed inter-
process communication will not be 100% reliable (see P4).

a. The schedulability claim for FTController is an explicit annotation on Figure 18 on page 42.

b. The term “common mode failure” is often used in reliability literature to denote the condition in which the assumption of in-
dependent failure events is not satistied.

To summarize the results of Table 2: assumptions 1, 3, and 4 are readily satisfiable; assump-
tions 6 and 7 are satisfiable, assuming that a pessimistic estimate of reliability is acceptable,
and assuming that Tgy;4 is a valid theory. The satisfiability of assumptions 2 and 8 is no more
(or less) questionable here than in any other reliability theory. This leaves only assumption 5,

which is satisfiable in any assembly in which sensors have a limited output range, a common
scenario.

It appears that peremptory dismissal of Tyyy may not be justifiable. As simple as the theory
is, its viability appears to be dependent only on the application setting (i.e., assumption 5) and
not due to anything intrinsically weak about the theory itself. In more general terms, a prop-
erty theory, however simple it appears, can be dismissed as simplistic only if the set of

assemblies well formed in that theory is a small subset of the assemblies likely to arise in
practice.

6.3 Optimizing Qualities of Reasoning Frameworks

The discussion in the previous section concerned the quality of property theories called “sim-
plistic,” or put another way, with the question of judging when a particular property theory Tx
exhibits (the quality called) “realism.” The criterion for making this judgement was reduced to
relating the set A#x of analytically well-formed assemblies in T to the set of stereotypical
assemblies in some potential solution set, call it 4. In this view of the matter, a necessary con-
dition for judging a theory to be “simplistic” is 45 D 4.

There are other qualities of property theories, several of which reflect different aspects of the
the “complexity” quality. Some examples of these other qualities include

* computational complexity: growth rate of the decision procedure’s time/space costs

* confidence bounds: objective statements about theory reliability, stability, and accuracy
* certification effort: the cost of acquiring required component properties

* verification/validation complexity: the cost of showing theory soundness and validity

* end-user complexity: the level of difficulty perceived by users of a property theory

CMU/SEI-2003-TR-009 49

The subsumes relation (indicated by the > symbol) was defined in the introduction to Section
6. Assuming that Ty and Ty address the same property (e.g., latency), the subsumes relation
can be thought of as a preference relation—that is, “all else being equal, T is preferable to
Ty if and only if Tx>Ty.” Similar ordering relations can, in principle, be defined for each of
the above itemized qualities, each with an analogous meaning in “preference” to that of sub-
sumes.

The key phrase for each preference relation, though, is “all else being equal.” Not surprisingly,
the above qualities of theories interact with one another. For example, a decrease in the end-
user complexity of a property theory (a desirable result) might be achieved by abstracting
some phenomenon from the theory, which leads to nondeterminism—that is, behavior not pre-
dicted by the theory—and this, in turn, reduces the accuracy and stability of the theory (an
undesirable result).40

In this characterization, a classical multi-objective41 optimization solution is required to inte-
grate a new property theory into a PECT. In general, this is a hard problem; however, the
emphasis on formal (or at least explicit) representation of ACTs and reasoning frameworks
and on automated interpretation and reasoning imposes a helpful constraining influence on the

. integration process. These constraining influences are harnessed through “co-refinement.” The

co-refinement process derives its name from the coincident and iterative corrections (or
“refinements”) made to an ACT and property theory. The main concepts are shown, in Figure
21, as a trace over four iterations (steps O through 3) of the co-refinement process.

40. Assuming of course that the abstracted phenomenon is not extraneous to begin with.

41. There is an enormous body of literature on multi-objective decision theory, also known as “multi-
attribute decision theory,” "multi-objective optimization,” “multi-objective design,” and other
synonyms and their permutations. Roy provides a concise but accessible formalization of
preference relation, preference structure, and families of decision procedures [Roy 91].

50 - CMU/SEI-2003-TR-009

ABSTRACT . . PROPERTY
COMPONENT least constrained maximum UT) __ THEORY
TECHNOLOGY—____ —
Step 3
Ay | T.
target definition of/ 3 —> 3 ™ final property
well-formedness theory
Jor stereotypical U R .
assemblies v A (I

[S |

"TT[= Invariant: for each step k
‘r— ;{fl - ’! 9, is well defined

Cm g s \ To |~ initial property

initial definition of { theory for basts

well-formedness Step 0 b step

Jor basis step N A Ty

most constrained A minimum W(T)

[Key: — 7T oT oo e o 1
] P2 analytic well- T property theory U(T): numerical aggre- |}
l 3| formedness con- J at step j gate of preference structure ;
L straints at step j P

Figure 21: Time Sequence of a Series of Co-Refinement Steps

The vertical arrow on the left side of Figure 21 represents the level of restrictiveness of assem-
bly constraints, perhaps quantified (intuitively) as the cardinality of the set of well-formed
assemblies. The vertical arrow on the right side represents the state of the multi-objective opti-
mization problem; the hypothetical function U: T—N assigns an integer score to a property
theory to quantify its level of optimality or utility.*? All else being equal, fewer constrained
well-formedness rules are preferred to more constrained rules, since fewer constraints translate
to a greater number of possible assemblies, and therefore a more general property theory.
Likewise, greater values of U are preferred to lesser values, since the former translate to better
tradeoffs of theory qualities.

There are different strategies for converging on the right balance between restrictiveness and
utility. The one illustrated in Figure 21 begins with highly restrictive assembly constraints and
proceeds by systematically relaxing these constraints while adding utility to the property the-

42. There is nothing special about this function, which can take many forms. it is a standard
component of the vast majority of multi-objective decision aids. Strictly speaking, the utility
function should be defined on a vector of valuations assigned to each objective, rather than on
the theory as a whole.

CMU/SEI-2003-TR-009 51

ory. An alternative is to start with target assembly constraints and a property theory with little
or no utility, and then add assembly restrictions as needed, while improving theory utility.

In Figure 21, the co-refinement process begins with the basis step, Step 0, that involves defin-
ing highly restrictive well-formedness rules—which can, in fact, restrict well-formedness to a
single model assembly—and specifying a property theory that “solves” the model problem
posed by the model assembly(ies). The crucial element of the basis step is that it establishes an
interpretation from the model assembly(ies) to the property theory. The only invariant '
between steps in any co-refinement process is that an interpretation is defined as the
post-condition of each step.

Each jth step after the basis step is guided by a primary objective and a secondary objective.
The primary objective is that T; subsumes T_j, that is, T; 2 T;_, as defined earlier. This sub-
sumption is valid only because of the invariant on the defined-ness of interpretations. That is,
if # 2 A_y, the interpretation 7; ensures T; > T;_,, by definition. The secondary objective is
that U(7}) > U(T;_;). The intent is that the primary objective takes precedence over the sec-
ondary objective.

However, neither objective is sacred; in some circumstances, the secondary objective may
have priority; in others, regression in one or both objectives may be warranted in the interest of
“one step backward, two steps forward.” The possibility of regression on utility is shown at
Step 1 in Figure 21, as T1 > T0, but U(T0) = U(T1). Such pragmatic decisions have been
encountered in practice (see Predictable Assembly of Substation Automation Systems. An
Experiment Report for a case study of co-refinement [Hissam 02b]).

An interesting question is how to define the termination condition (or exit criteria) for co-
refinement. Figure 21 suggests that some target set of stereotypical assemblies was defined,
perhaps prior to Step 0. This might be the case if a PECT were developed for an established
product line. Even so, there will likely be normative requirements imposed on the property
theory—perhaps a required accuracy or confidence interval that must be achieved by a prop-
erty theory (again, see Predictable Assembly of Substation Automation Systems: An Experi-
ment Report for a case study of normative requirements on property theories [Hissam 02b]).

6.4 Incompatibility Among Reasoning Frameworks

Even assuming that T; = 73_] is a primary objective for successive steps in co-refinement, it is
possible for incompatibilities to arise, that is, T; ~T;_; or T;=T;_,. To illustrate, a performance
theory at Step j might be modified to rely on a task-scheduling policy different from the policy
assumed at Step j-1; for example, a change from “fixed-priority scheduling” to “earliest-dead-
line-first scheduling.” Since tasks in an assembly cannot be scheduled simultaneously with
two different policies, the two property theories (whatever they are) cannot be valid simulta-

52 CMU/SEI-2003-TR-009

neously, hence Tj"_l ~T3~, However, this incompatibility is not problematic since, by definition,
T}_} and T; would never be applied simultaneously to the same assembly.

For the purpose of this discussion, let reasoning frameworks that are defined as a consequence
of a particular co-refinement activity be called homogeneous; assume that, at most, one of
these reasoning frameworks will be used to reason about the same assembiy.43 Also, let rea-
soning frameworks that span different co-refinement activities be called heterogeneous;
assume that one or more of these frameworks can be used simultaneously to reason about the
same assembly. For the following discussion, Greek subscripts are used to distinguish hetero-
geneous from homogeneous reasoning frameworks—that is, T, and Tg are heterogeneous,
while T; and Ty are homogeneous.

In the case of co-refinement, the incompatibilities Tj~T_y and T;=T;_; are not, in general,
problematic to the end user of a PECT, since TJ and TJT-; are homogeneous. However, compli-
cations do arise with incompatibilities among heterogeneous theories, and in particular where
Tq ETg. In this case, the two properties may be susceptible to interference. Interference arises
when, for example, changes to an assembly specification are made to optimize predicted prop-
erties in T, but where those changes violate the well-formedness constraints imposed by
some other property theory Tg. Figure 22 depicts a canonical form of interference, using anal-
ogous Venn diagram and naming conventions used in Figure 20.

?

Figure 22: Interference Among Property Theories

To illustrate interference, imagine a PECT that supports some security theory— Tggc. Say that
Tsgc can be used to predict the probability that the confidentiality of message traffic can be
- compromised within a specified time interval. Further, to be well formed in Tggc, an assembly

43. itis possible, and may be desirable, for more than one homogeneous theory to be embedded in
its own reasoning framework and integrated into the same PECT.

CMU/SEI-2003-TR-009 ‘ ‘ 53

must encrypt messages explicitly with the encryption component Crypto. or implicitly with
the (security environment-specific) connector ~ry . In this illustration, Tsec Will be used in
conjunction with Tyyy, and we assume Tgpc =Tnyy:

Now, let assembly al be Controller, as depicted in Figure 14 on page 25. Assume that our
objective is to ensure that al satisfies specific reliability and security requirements that are
predictable in Tggc and Tyyy: Unfortunately, al is not well formed to either Tggc or Tyyy.
With luck, tools will provide diagnostics that provide clues about how to repair the specifica-
tion. As a practical matter, al might first be modified to be well formed in Tyyy; assume that
the resulting a2 assembly is FTController, as depicted in Figure 18 on page 42. At this
point, a2 is modified yet again to be well formed to Tggc; assume that the resulting assembly
a3 is FTSecController, as depicted in Figure 23.

Unfortunately, there are various ways in which FTSecController is no longer well
formed with respect to Tnvv: For example, it probably violates any naive definition of the
voter topology. Only a bit more subtle is the violation of the Tyyy assumption about indepen-
dent failure modes—Crypto is a single source of failure (see P8 in Table 2 on page 48). To
complete the scenario, assembly a3 is modified to replace Crypto with an encrypted connec-
tor, resulting in a4 assembly in Figure 22, which is well formed to both Tyyy and Tggc.

This is, admittedly, a rather simple illustration—it is just as easy to imagine that, with only two
property theories to accommodate, the initial sequence of assemblies {al, a2, a3} might never
have been specified, or al could be transformed directly into a4. On the other hand, the sce-
nario would look more likely if the hypothetical PECT had supported a dozen or more hetero-
geneous property theories, with several homogeneous alternatives for each such theory.
Although this more complicated scenario has not yet arisen, it is inevitable should the PECT
concept achieve widespread industrial use.

54 CMU/SEI-2003-TR-009

/\ <claim, pFail < 1x105, ...><— This claim is now unverifiable!

Ay
‘. A\ <Claim, pDisclosure(l0sec) < 1. 0}(10—6(__ New security claim
\ ~ -~ i .

.| FTSecController:RTOS é<§}Faﬂ, 001> 2\ <keyspace, 21285

-
PRy

*

—= ,‘;' en
- . p
) ‘ ! -€1l: Coptrol vl g_g—F@‘ Crypto
— S ©—4
- 7
alarml I E
- 7
’ c2: (,'.Jontrol_v2
f .
alarm2 ‘; Voter [r==p—4¢
#
~ chg
Je3s: Control_v3 g:?.__ <~
alarm3

Figure 23: Interference Between Security and Reliability Property Theories

6.5 Dealing with Incompatibility

Incompatibilities azzlar{g heterogeneous reasoning frameworks are almost certainly inevitable,
but they must be managed and, where possible, eliminated. PECT is as yet an immature tech-
nology, and as such, a sufficient number of reasoning frameworks don’t exist to make this a
pressing near-term issue. However, as the issue directly affects end users and issues of scale, it
is vital that sound and practical approaches to dealing with incompatibility be developed.
Three approaches are described below, from the least to the most speculative.

Multi-Refinement

One way to minimize the potential for heterogeneous incompatibility is by introducing a
“multi-refinement” process that has as its primary objective maximizing the extent of (M4,
where * ranges over the set of heterogeneous theories being integrated.

Multi-refinement might yield one or more intersection theories. For example, the new reliabil-
ity theory Ty~ might be defined, Tyyyy = Ty that requires a reliable filter to be inter-
posed between unreliable components and the Voter component. Similarly, a new Tggcr
might be defined, Tggc = Tspe, that requires the use of Crypto and disallows the use of
wém,pm. Then, Tggcr = Tyyyr> where both can be thought of as intersection theories designed
“in the context” of one another. Here, though, Tgg seems a bit too restrictive. An alternative
is to leave Tggc as it is and define Tyy = Tyyy to allow, but not require, cryptographic

CMU/SEI-2003-TR-009 55

topologies such as in FTSecController. Then, although Tggc =Tyyy, at least matters
have improved somewhat, since Tggc NTnyv 2 Tsec N Tnvy:

In brief, as with co-refinement, selecting a mix of intersection theories for a set of heteroge-
neous property theories will almost certainly involve multi-objective optimization. Although
this is certainly achievable for a reasonably small number of reasoning frameworks (say, fewer
than five), the process will be messy and ad hoc if many theories, with overlapping constraints,
are introduced. In the long run, a more rigorous approach will be required.

Expert Tool Assistance

The interference between the reliability and security theories also strongly implied the impor-
tance of automated detection of theory incompatibility, as well as detection of the introduction
of incompatibilities where previously there were no incompatibilities. However, achieving
automation will be challenging.

For example, defining well-formedness constraints for a single property theory, with sufficient
formality to support automated checking, is nontrivial. However, identifying contradictory
constraints over heterogeneous reasoning frameworks, where each will likely have its own
“domain of discourse,” will be doubly challenging. A large number and variety of automated
constraint management tools have been developed to develop artificial intelligence applica-
tions. Such tools, in concert with some form of type system for property theories and other
construction-language-sensitive tools, may well form the core of automated tool support for
PECT users.

The notion of tactics for quality attribute design [Bachmann 02], currently being investigated
by Bachmann, Bass, and Klein, is also intriguing and appears to have bearing on interference.
The authors sketch a decision procedure that operates on analyzable design fragments known
as tactics and produces refinements of those fragments.44 In terms of the above scenario, the
procedure manages design dialogues leading to the sequence of refinements {42, a2y, ..., a2;}
to improve reliability, and refinements {a3;, a3,, ..., a3, } to improve security.4> As currently
defined, the procedure regards these dialogues as independent; it does not yet address refine-
ment over multiple interacting theories. An extension to manage an agenda of design tactics

44. See Deriving Architectural Tactics: A Step Toward Methodical Architectural Design (SEI
technical report CMU/SEI-2003-TR-004, currently in development) for a description of the
following decision procedure.

45. This description takes liberties with the concept of a design tactic that operates at a more
primitive level of abstraction than property theories. One motivation for design tactics is for them
to serve as building blocks for attribute-based architecture styles (ABASs) {Kazman 99]. The
NVV pattern and its property theory 7yyy can be defined as an ABAS.

56 CMU/SEI-2003-TR-009

spanning several property theories and the associated techniques to compose tactic-based
design fragments would support the scenario envisaged in Figure 22 (e.g., {a2,, a3, aly, ... }).

A Type System for Reasoning Frameworks

A speculative alternative to multi-refinement is to define a type system for reasoning frame-
works that would permit them to be selected on the basis of a well-defined subtype relation.
That is, rather than adapting an assembly to meet the well-formedness requirements of a prop-
erty theory, it might be possible to select, or even infer, the “best fit” reasoning framework for
a given requirement or assembly.

For example, the decision procedure for Tnvy might be defined as eval: Wy X Vyy where
VNvyv is the probability of failure—that is, Vve Vnvv'0 £v < 1. Since 2y y is derivable, we
can instead use eval: Ayyy X Viyyy.- With this notation, a conventional contravariant/covariant
subtype relation X <: Y (pronounced “X is a subtype of ¥”’) on homogeneous reasoning frame-
works can be defined in a straightforward way: T <: T, < A, CAAVey CV,. Thatis, Ty
is a subtype of T, if and only if it applies to a superset of assemblies and yields a subset of
behaviors. This can be further generalized; for example, by also encoding in Vyyy the notion
of confidence. In this case, T is a subtype of T, if and only if it applies to a superset of
assemblies and yields a subset of predicted behaviors with at least as much confidence.

This discussion, of course, risks trivializing the task of defining such a type theory. For one
thing, conventional type theory assigns one domain of values to each syntactic phrase (i.e., its
semantic domain); in a construction language, each phrase would have several semantic
domains, one for each reasoning framework. Further, a typing scheme along the lines
described above would require that reasoning frameworks be compositional; as discussed in
Chapter 7, this is not always possible. Nonetheless, the potential benefits of treating “nonfunc-
tional” properties on a par with functional properties (as in the type theory of modern pro-
gramming languages) is certainly intriguing.

CMU/SEI-2003-TR-009 57

58 CMU/SEI-2003-TR-009

7 Compositional Reasoning

It is almost (but not quite) a tautology that components are valuable insofar as they are com-
posable with other components. In the parlance of software component technology, “composi-
tionality” is simply assumed. As observed in Chapter 2, however, current parlance tends to
focus almost exclusively on the constructive aspects of composition—namely, on the binding
of component labels to enable their runtime interaction.

Compositionality is also desirable for the analytic aspects of component-based development;
however, unlike constructive compositionality, it cannot be assumed. It is also not an easy or
straightforward topic—a substantial body of research literature under the general heading of
“compositional reasoning” has been developed since the early 1980s. To the extent that there
is a general understanding of compositional reasoning and the closely related notion of modu-
lar reasoning, this understanding appears to be limited to particular research communities,
such as those concerned with formal (demonstrable) verification and, more particularly, with
verification of concurrent systems. In fact, even within these research niches, there is contin-
ued interest in developing first principles of compositionality.

To state the conclusion first: Support for compositional reasoning is a desirable property
of reasoning frameworks. However, PECT does not always support compositional rea-
soning. It does, however, always support reasoning about cemposztmns The following
discussion will clarify and substantiate this conclusion.

The following discussion is based on a survey paper by de Roever that also served as an intro-
duction to the proceedings of a conference devoted to the first principles of compositional rea-
soning [de Roever 98]. The terminology and definitions used by de Roever have been adapted
to better fit the terminology and definitions provided in this report. There is, therefore, some
risk that this adaptation does violence to de Roever’s intent.

7.1 Compositional and Modular Reasoning

According to de Roever:

“The purpose of a compositional verification approach is to shift the burden of
verification from the global level to the local component level, so that global
properties are established by composing together independently (specified and)
verified component properties.” [de Roever 98]

CMU/SEI-2003-TR-009 59

This is entirely consistent with the objectives of a PECT, modulo its restriction to demonstra-
ble reasoning (i.e., verification)—an important proviso and one that must be generalized to
accommodate plausible reasoning, if the purpose of compositionality is to be achieved by
PECT.

Setting aside for the moment the distinction between component and assembly, the following
outlines a compositional proof scheme. To compositionally demonstrate that a component C

46

satisfies™> some property P, written C £ P

1. If C cannot be further decomposed, then demonstrate C ¢ P directly on C.
2. If C can be decomposed into components {C;, C,, ..., Cy}, then
a. Find properties {Py, P,, ..., P} and demonstrate that PP APy A ... Py = P.
b. Recursively demonstrate for each j™ component in {C 12 Cos ooy G} that G Py

Interestingly, the above (widely accepted) compositional proof scheme works “top-down”—
that is, it is a decompositional proof scheme. Modular proof schemes, in contrast, work “bot-
tom up”—that is, they begin with non-decomposable components and their demonstrated
properties. The task is to show that a composite property on a composite component is entailed
by these previously established component properties and so on, in a “bottom-up” fashion.

It can be observed, however, that while the distinction between compositional and modular
reasoning may be significant to the theory of PECT in the long run (with modular reasoning
apparently closer to what is needed where systems are composed from preexisting compo-
nents), the description of reasoning frameworks in this chapter does not expose this distinc-
tion. In particular, Step 1 above is delegated to component certification, and Step 2a is
delegated to the design and validation of a reasoning framework; Step 2b, however, has not
been assumed to be a valid reasoning step for all reasoning frameworks.

In fact, “component” was not given an inductive definition in Section 3.1, and the different
forms of hierarchy defined for assembly in Section 3.5 flow from the fact that Step 2b is not
always a valid reasoning step for every property theory (although it might be valid for some
property theories). This is one reason why compositionality and modularity—as currently for-
mulated—impose conditions that are too strong in practice, even if they are ideal in theory. A
justification of this important assertion is discussed next.

46. Recall that even plausible (i.e., empirical) properties can be expressed as factual assertions.
Thus, casting the following discussion into the terms of formal logic does not restrict the
applicability of the discussion to demonstrable reasoning. Note also that in this discussion, the
notion of “C satisfies p” (or “C k p”) refers to the usual definition of this term in formal! logic, and
not to that given in the general definitions of Section 6.

60 CMU/SEI-2003-TR-009

7.2 Why Compositionality Is Too Strong

As observed by de Roever, the proof Steps 2a and 2b lead to the following technical require-
ments, recast in PECT terms. For each n-ary connector ~» in (a CCL specification of) an ACT,
an n-ary operator ~»» exists in (a calculus and logic of) a property theory 7 such that

Requirement 1: If Cjk P;, 1 <j <n, then ~4Cy, Cy, ..., Cp) F ~»(Py, Py, ..., P,).
1] 1,2 n 1

Requirement 2: If ~C,, C,, ..., C,) F P, then some P; exists for each C;, 1 <j <n, such that
CJF P_} and "\/)7(})1, Pz, O Pn) =P

These requirements flow quite naturally from the compositional proof scheme. The first states
that each connector has some corresponding property theory that describes the semantics of

the connector. The second states that properties can be decomposed into wholly independent
subproperties.

These conditions are too strong, however, and exclude property theories that are nonetheless
quite useful. In fact, none of the three property theories illustrated in Sections 4.4 - 4.6 satisfy
these requirements:

* Neither 7,54 (discussed Section 4.5) nor 7yyy (Section 4.6) are defined on individual
connectors—7; opa is defined on sequences of interactions beginning with periodic stim-

uli, while 7y is defined on its own topological arrangement;” this fact violates require-
ment 1.

* The timing properties of an assembly of components (discussed in Section 4.5) cannot be
decomposed into independent subproperties—the timing behavior of one component may
(and will likely) influence the timing behavior of others; this fact violates requirement 2.

* Itis, in general, impossible to reason compositionally about liveness properties in tempo-
ral logic (discussed in Section 4.4)—the “rely/guarantee” reasoning procedure is composi-
tional, but, in general, works only for safety properties; this fact violates requirement 2.

This is not to say that no compositional (or modular) theory for reasoning about liveness, tim-
ing, or reliability is possible. Of course, such theories must exist, since the assembly-level
behaviors exist and since computation is deterministic. But the effort to develop or use such
theories might outweigh the benefits of compositionality. For example, there is an interaction
between components and a shared central processing unit (CPU) that is abstracted by 7AABA-

47. ltis interesting to speculate about the objection to the compositionality of 7nvy- The NVV pattern
of interaction could, in principle, be encoded as an n-ary connector for m unreliable components,
1 voter and 1 client. A corresponding polyadic operator, ~s- vy, would be defined to take as its
argument one or more failure probabilities and return a failure probability. This would satisfy
requirement 1.

CMU/SEI-2003-TR-009 61

The CPU is a global resource; changes in the timing behavior of one component are transmit-
ted through this global resource, leading to a loss of compositionality. However, this loss is
offset by a simplification in the reasoning procedure, both in terms of human and computa-
tional complexity.

Before deciding if the loss of compositionality is worth the gain in simplicity, it is worth
reflecting on the value of compositionality.

7.3 Why Compositionality Is Important

Compositionality implies all the benefits inherent to the “divide and conquer” problem-solv-
ing strategy, namely, significant reductions in complexity. Where automated reasoning is used
(e.g., in model checking), a lack of compositionality leads to exponential growth complexity,
either in the number of states in a model, or in the number of propositions in a temporal logic
claim. At this time an objective for research in model checking is to discover an adequate res-
olution to exponential complexity, and no wholly satisfactory compositional approach has yet
been defined to address this complexity.

Also, without compositional reasoning to link components to assembly properties, the long
sought-after goal of independently substitutable component parts will remain chimerical. Until
design theories permit reasoning about the behavior of components (and assemblies) composi-
tionally—that is, in a way that is independent of other components (and assemblies)—unex-

pected interactional behaviors*?

among components will remain an open-ended source of
undocumented intercomponent dependencies. As long as these dependencies exist, one com-

ponent can never be substituted for another without the expectation of unpredictable results.

Consider the analogy between module types in higher order functional languages such as ML
[Harper 94] and a theory of component types based upon compositional component properties.
In ML, a subtype relation on modules* M; <: M, is defined such that M can always be

48. Unexpected and unexplained interactional behaviors are usually also undesirable, as is any
source of unpredictability in an engineering discipline. Such behavior is sometimes denoted as
emergent behavior. Any effort to understand or control emergence is an effort to achieve
predictable assembly. Earlier reports on PECT went as far as to assert that the terms “assembly
property” and “emergent property” were synonymous. However, because the term “emergent
property” has been widely associated with “unpredictable property,” it is probably better to
concede the term and move on.

49. Essentially, a module in ML is a set of functions, each of which has its own type signature and
exists within a well-defined type lattice. The analogy being drawn here is between modules in ML
and components in CCL. Of course this does not do justice to the theory of higher order module
types, but it is sufficient to situate the analogy.

62 CMU/SEI-2003-TR-009

“safely” substituted for any module M2—that is, no function in M; will be “surprised” by a
value it receives from the environment in which it is deployed, and no function in M p will
compute a value that “surprises” its environment. Achieving a similar feat for software com-
ponents will require that, in addition to the ML sort of functional-type theory, an extra-func-
tional-type theory be defined for each of the assembly-level properties of interest to
application assemblers. That is, by analogy with type theory Ci<: Cyif and only if VP-C|.P <:

C,.P, where P includes the functional interface and all extra-functional properties of a compo-
nent.

i

Compositional property theories might be abandoned in the near term for reasons of expedi-
ency, but, ultimately, such theories are required to achieve the degree of scalability and flexi-

bility that is so often promised to be the inevitable accompaniment to software component
technology.

CMU/SEI-2003-TR-009 ; 63

64

CMU/SEI-2003-TR-009

8 Status and Future Work

The major elements of PECT have been demonstrated in progressively more demanding
proofs of feasibility [Hissam 02a], [Hissam 02b]. The overall design structure of a PECT has
proven sufficient for these initial trials, and several parts of a generic PECT development
infrastructure are currently being developed—for example, a trace-based execution monitor,
and tools for specifying and processing CCL specifications. Currently, a more ambitious proof
of feasibility in industrial robotics is underway that incorporates automated model checking
and performance theories based in both RMA and real-time queuing theory.

Other areas of near-term effort are described below:

* The PECT concept, as described in this report, focuses mainly on a theory and infrastruc-
ture for predictable assembly. Of equal importance is a theory and infrastructure for certi-
fiable components. The technology for functional certification, perhaps along the lines of
contracts [Meyer 97], extended to software components [Meyer 98], is a precondition to
PECT. Future work will be more explicit about this assumption, and generalize it to
address certification of properties defined and required by reasoning frameworks. -

* The emphasis of PACC research, to date, has been on the science and technology of pre-
dictable assembly. Although PECT is relatively immature and although the theory of
PECT will continue to evolve, a body of experience with the main ideas is accumulating,
and the basic elements of a development method are emerging—for example, co-refine-
ment and statistical validation of property theories. Future work will capture those ele-
ments, initially as method fragments, and later as an integrated method.

* The emphasis of PACC research, to date, has been on systems with highly deterministic,
periodic, and reactive behavior, and property theories that are either verifiable (e.g., model
checking) or present a clear falsification strategy (e.g., latency). Future work will extend
the focus to systems exhibiting increasingly stochastic behavior (e.g., behavior sensitive to
the distribution profiles of stimuli) and property theories whose falsification strategies are

not inherently clear (e.g., reliability theories based on statistical testing of component reli-
ability). '

Areas for longer range research include developing

* sound value propositions for certifying components for predictable assembly
* automation for simultaneously optimizing assemblies for one or more properties

* type systems for component specifications extended to nonfunctional properties

CMU/SEI-2003-TR-009 : 65

66

CMU/SEI-2003-TR-009

9 Conclusions

Expressiveness arises from strictures: restrictions entail stronger invariants.

Flexibility arises from controlled relaxation of strictures, not from their
absence.

—Robert Harpersg

This report has described the structure and underlying theory of PECT. Answers to the ques-
tions that were posed in Section 1 are now provided, in the terminology of PECT.

Which characteristics of an assembly make it predictable, and which kinds of
assembly properties can be predicted? An assembly is predictable if it is well formed
with respect to the assembly constraints imposed by one or more property theories. An assem-
bly is then said to be predictable with respect to the properties addressed by these theories.
Property theories can be developed for any property that can be shown, in an objective way, to
adhere to (well-formed) assemblies. Objective evidence can be demonstrable—in the form of
verifiable proof—or plausible—in the form of empirical observation.

What characteristics of a component make it certifiable, and what kinds of com-
ponent properties can be certified? A component is certifiable if it has properties that
can be demonstrated, in an objective way, to adhere to the component. As before, objective
evidence can be demonstrable or plausible. Any such property can be the subject of certifica-
tion, but only those properties that are parameters to a property theory are of direct interest to a
PECT. In this case, the property theory always provides a definition of component properties
in sufficient detail, and with sufficient rigor, to enable their certification.

How can we achieve objective and measurable confidence in certified compo-
nent properties and predicted assembly properties? All property theories provide
an explicit and objective basis for confidence, both in the predictions themselves, and in the

50. This quotation is from the invited presentation titled “The Practice of Type Theory in
Programming Languages,” Dagstuhl 10th Anniversary Symposium. Saarbruecken, August,
2000. Available online at <http:/www-2.cs.cmu.edu/~rwh/talks/Dagstuhl%202000.ppt>.

- CMU/SEI-2003-TR-009 67

component properties on which they depend (as described in the previous two answers). Mea-
surable confidence, in the form of statistical labels, attends any component or assembly prop-
erty that depends directly on empirical evidence. Even formally demonstrated properties are
amenable to statistical treatment, where proof results depend on assumptions that can be vali-
dated through observation.

Can a technology infrastructure that provides answers to these questions be
systematically developed and transitioned into practice? A PECT provides for two
parallel frameworks, one for specifying and deploying well-formed assemblies of components
(the construction framework), and one for imposing well-formedness constraints and provid-
ing automated analysis tools that exploit these constraints. A discipline for systematically
developing and integrating these frameworks, and for validating the resulting integration, has
been demonstrated in increasingly realistic industrial proofs of feasibility.

68 CMU/SEI-2003-TR-009

Glossary

abstract component
technology

abstract
interpretation
analytic closure
analytic constraints
annotation
assembly
assembly

constraints

automated
reasoning
procedure

binding label

component

a vocabulary and notation for specifying components, assemblies,
and their runtime environments in a component-technology-inde-
pendent way, and for specifying the constraints, imposed by rea-
soning frameworks, that must be satisfied for predictions to be
valid

a map from the symbols of a calculus (in a property theory) to
elements of a (not necessarily component-based) computing sys-
tem. See also definite interpretation.

the minimum scope of component interactions for which the
assumptions of a particular reasoning framework can be satisfied

constraints imposed by one or more reasoning frameworks on an
abstract component technology

a property P associated with a referent R, meaning that “R has
property P,” denoted as R.P

a set of components and their enabled interactions

behavioral and topological rules of well-formedness imposed on
components and assemblies by one or more (real) component
technologies, and one or more reasoning frameworks

a decision procedure, a definite interpretation, and a definite
inverse interpretation, each susceptible to full automation. See

also property theory.

a linking mechanism embedded in components to enable their
interaction with other components. See also pin.

an implementation in final form, modulo bound binding labels,

that provides an interface for third-party composition and is a unit

of independent deployment

CMU/SEI-2003-TR-009

69

connector

construction frame-
work

construction lan-
guage
constructive closure

compose, com-
posed, composition

contained, contain-
ment

co-refinement

decision procedure

definite interpreta-
tion

definite inverse
interpretation

deploy

a mechanism provided by the runtime environment that enforces
an interaction protocol, or discipline, on the components that are
participants in an interaction

an abstract component technology, tools to enforce assembly con-
straints, and other tools used to automate the specification, devel-
opment, and deployment of components and their assemblies

a language for specifying abstract component technologies
(ACTs) and their well-formed components and assemblies

See containment.

components that have interactions enabled through some connec-
tor are composed; composition (n): is a set of such enabled inter-
actions; compose (vb): to enable component interaction. See also
assembly.

All interactions among components are restricted to the scope of
the most immediately enclosing (“containing”) assemblies and
partial assemblies.

a process for developing reasoning frameworks, and in particular,
for finding an acceptable tradeoff among various qualities of a
reasoning framework, such as generality, complexity, and stabil-

ity

a function that evaluates claims made on assemblies, described in
the property theory, to the values “true” or “false”

a map from assemblies specified in a concrete syntax of a con-
struction language to strings in the input language of the decision
procedure. See also property theory.

a map of the results of a decision procedure back to the concrete
syntax of the construction language. See also property theory.

defines where (in which instance of a runtime environment, and,
ultimately, on which physical computing device) component
behavior is executed

70

CMU/SEI-2003-TR-009

empirical evidence

final form

formal evidence

gateway

heterogeneous
reasoning frame-
work

homogeneous
reasoning frame-
work

interaction

“interpretation

multi-refinement

null junction

evidence acquired through direct observation, preferably under
controlled circumstances, with results reported in well-defined
units of measure. Empirical evidence is therefore provisional, as
any other observation might have been different. See also formal
evidence.

a software specification that is ready for execution on a physical
or virtual machine. See also component.

evidence acquired through mathematical proof. Formal evidence
is therefore irrefutable, as all such proofs are tautological. See
also empirical evidence.

a connector that enables interactions among components
deployed in different environments

property theories developed in different co-refinement activities.
One or more heterogeneous theories can be used simultaneously
to reason about the same assembly. See also homogeneous rea-
soning framework.

property theories developed in a particular co-refinement activity.
In general, only one homogeneous theory will be used to reason
about the same assembly. See also heterogeneous reasoning
ﬁ'amewérk.

a composition of two or more reactions, from distinct compo-
nents, using a runtime-environment-provided connector

See abstract interpretation, definite interpretation.

a generalization of co-refinement for finding an acceptable
tradeoff among various qualities of heterogeneous reasoning
frameworks

a graphical notation on partial assemblies that indicates which
pins of components contained in the partial assembly are visible
outside the assembly

CMU/SEI-2003-TR-009

71

partial assembly

prediction theory

property

property theory

reaction

reasoning
framework

pin

runtime
environment

sink pin

source pin

unit of independent
deployment

a (recursively defined) abstraction that aggregates a set of compo-
nents and their enabled interactions, and exposes selected compo-
nent pins through null junctions. Logically, a partial assembly is a
component implemented entirely in terms of other components.
See also assembly.

synonym for property theory

an n-tuple <name, value, ... >, where name and value refer to the
name of some property and the value it takes, respectively. See
also annotation.

a calculus, logic, and abstract interpretation that provides an
objective, rigorous, and verifiable or falsifiable basis for predict-
ing the properties of assemblies. See also prediction theory.

specifies the behavior of units of concurrency within a compo-
nent (e.g., a thread) and the behavioral dependencies between the
sink pins and source pins of a component

comprises a property theory, an automated reasoning procedure,
and a validation procedure

binding labels in the construction and composition language
(CCL). See also source pin, sink pin, connector.

provides runtime services that may be used by components in an
assembly, provides an implementation for one or more connec-
tors, and enforces assembly constraints

a pin that accepts interactions with the environment of a compo-
nent (i.e., from other components or the runtime environment).
See also pin, source pin.

a pin that initiates interactions with the environment of a compo-
nent (i.e., from other components or the runtime environment).
See also pin, sink pin.

A component is independently deployable if all its dependencies
on external resources are clearly specified (e.g., as pins), and if it
can be substituted for, or substituted by, some other component.
See also deployment.

72

CMU/SEI-2003-TR-009

validation procedure provides an objective basis for trusting the validity and soundness
of a reasoning framework, and defines its required component
properties with sufficient rigor to provide an objective basis for
trust in assertions of component behavior

CMU/SEI-2003-TR-009) 73

74

CMU/SEI-2003-TR-009

Acronym List

ABAS
ACT
API
CCL
CPU
CTL
DoD
EJB
FIFO
IR&D
NVV
OCL
00
PACC
PECT
RMA
SEI

UML

attribute-based architectural style

abstract component technology
application program interface
construction and caﬁposition language
central processing unit

computational tree logic

Department of Defense

Enterprise JavaBean

ﬁrs{ in, first out

internal research and development
n-version majority voting

object constraint language

object oriented

predictable assembly of certifiable components
prediction-enabled component technology
rate monotonic analysis

Software Engineering Institute

Unified Modeling Language

CMU/SEI-2003-TR-009

76

CMU/SEI-2003-TR-009

Bibliography

URLs are valid as of the publication date of this document.

[Achermann 01]

Achermann, F.; Lumpe, M.; Scheider, J.; & Nierstrasz, O. “Pic-
cola—a Small Composition Language,” 403-426. Formal Meth-

- ods for Distributed Processing: A Survey of Object-Oriented

[Allen 97]

[Ayer 46]

[Bachmann 00]

[Bachmann 02]

[Bass 98]

Approaches. New York, NY: Cambridge University Press, 2001.

Allen, R. A Formal Approach to Software Architecture. PhD
diss., CMU-CS-97-144, Carnegie Mellon University, May 1997.

Ayer, A. Language, Truth, and Logic, 2nd ed. London, England:
V. Gollancz, 1946.

Bachmann, F.; Bass, L.; Buhman, C.; Comella-Dorda, S.; Long,
E; Robert, J.; Seacord, R.; & Wallnau, K. Volume II: Technical
Concepts of Component-Based Software Engineering, 2nd ed.
(CMU/SEI-2000-TR-008, ADA379930). Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, 2000.
<http://www.sei.cmu.edu/publications/documents
/00.reports/00tr008.html>.

Bachmann, F; Bass, L.; & Klein, M. llluminating the Fundamen-
tal Contributors to Software Architecture Quality (CMU/SEI-
2002-TR-025, ADA407778). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2002.
<http://www.sei.cmu.edu/publications/documents/02.reports
/02tr025.html>.

Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice. Reading, MA: Addison-Wesley, 1998.

CMU/SEI-2003-TR-009

77

[Bass 01]

[Booch 99]

[Box 98]

[Buschmann 96]

[Buskens 02]

[Cardelli 98]

[Clarke 99]

[Clements 96]

[Clements 02a]

[Clements 02b]

Bass, L.; Buhman, C.; Comella-Dorda, S.; Long, F.; Robert, J.;
Seacord, R.; & Wallnau, K. Volume I: Market Assessment of
Component-Based Software Engineering Assessments
(CMUY/SEI-2001-TN-007, ADA395250). Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, 2001.
<http://www.sei.cmu.edu/publications/documents/O1.reports
/01tn007.html>.

Booch, G.; Rumbaugh, J.; & Jacobson, 1. The Unified Modeling
Language User Guide. Reading, MA: Addison-Wesley, 1999.

Box, D. Essential COM. Reading, MA: Addison-Wesley, 1998.
(See especially Chapter 1 for a concise summary of design ratio-
nale for the design of COM.)

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; & Stal,
M. Pattern-Oriented Software Architecture. New York, NY: John
Wiley and Sons, 1996.

Buskens, V. Social Networks and Trust. Boston, MA: Kluwer
Academic Publishers, 2002.

Cardelli, C. & Gordon, A. D. “Mobile Ambients,” 140-155. Pro-
ceedings of Foundations of Software Science and Computation
Structures FoSSaCS’98 (Lecture Notes in Computer Science
LNCS 1378). Lisbon, Portugal, March 30-31, 1998. New York,
NY: Springer-Verlag, 1998.

Clarke, E.; Grumberg, O.; & Pelad, D. Model Checking. Cam-
bridge, MA: MIT Press, 1999.

Clements, P. A Survey of Architecture Description Languages.
<http://www.sei.cmu.edu/publications/articles/survey-adl.html>
(1996).

Clements, P. & Northrop, L. Software Product Lines: Practices
and Patterns. Boston, MA: Addison-Wesley, 2002.

Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, I.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures:
Views and Beyond. Boston, MA: Addison-Wesley, 2002.

78

CMU/SEI-2003-TR-009

[Corbett 00]

[Cross 02]

[Daniels 97]

[DeMillo 77]

[de Roever 98]

[Fenton 97]

[Garlan 97]

Corbett, J.; Dwyer, M.; Hatcliff, J.; Laubach, S.; Pasareanu, C.; &
Hongjun Zheng, R. “Banadera: Extracting Finite-State Models
from Java Source Code,” 439-448. Proceedings of the 22nd Inter-
national Conference on Software Engineering (ICSE). Limerick,
Ireland, June 4-11, 2000. New York, NY: Association for Com-
puting Machinery, 2000.

Cross S.; Forrester, E.; Hissam, S.; Kazman, R.; Levine, L.; Lin-
ger, R.; Longstaff, T.; Monarch, 1.; Smith, D.; & Wallnau, K. SEI
Independent Research and Development Projects (CMU/SEI-
2002-TR-023, ADA407792). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2002.
<http://www.sei.cmu.edu/publications/documents/02.reports
/02tr023.html>.

Daniels, F.; Kim, K.; & Vouk, M. The Reliable Hybrid Pattern: A
Generalized Software Fault Tolerant Design Pattern.
<http://st-www.cs.uiuc.edu/users/hanmer/PLoP-97/Proceedings
/daniels.pdf> (1997).

DeMillo, R.; Lipton, R.; & Perlis, A. “Social Processes and
Proofs of Theorems and Programs,” 206-214. Proceedings of the
Fourth ACM Symposium on Principles of Programming Lan-
guages. Los Angeles, California, January 17-19, 1977. New
York, NY: Association for Computing Machinery, 1977.

de Roever, W.-P. “The Need for Compositional Proof Systems: A
Survey,” 1-22. Proceedings of the International Symposium
COMPOS’97 (Lecture Notes in Computer Science LNCS 1536).
Bad Malente, Germany, September 8-12, 1997. New York, NY:
Springer-Verlag, 1998.

Fenton, N. & Pleeger, S. Software Metrics: A Rigorous and Prac-
tical Approach (ISBN 1-85032-275-9). Boston, MA: PWS Pub-
lishing Company, 1997.

Garlan, D.; Monroe, R.; & Wile, D. “Acme: An Architecture
Description Interchange Language,” 169-183. Proceedings of
CASCON '97. Toronto, Canada, November 10-13, 1997. Toronto,
Ontario, Canada: IBM Canada Ltd. Laboratory, Centre for
Advanced Studies, 1997. ‘

CMU/SEI-2003-TR-008

79

[Harel 95]

[Harper 94]

[Havelund 01]

[Hissam 02a]

[Hissam 02b]

[Hoare 85]

[Hoare 93]

[Huth 00]

Harel, D. & Naamad, A. The STATEMATE Semantics of State-
charts (Technical Report CS95-31). Rehovot, Israel: The Weiz-
mann Institute of Science, Department of Applied Mathematics
and Computer Science, 1995.

Harper, R. & Lillibridge, M. “A Type Theoretic Approach to
Higher-Order Modules with Sharing,” 123-137. Proceedings of
the ACM Symposium on Principles of Programming Languages
(POPL). Portland, Oregon, January 17-21, 1994. New York, NY:
Association for Computing Machinery, 1994.

Havelund, K. & Rosu, G. Testing Linear Temporal Logic Formu-
lae on Finite Execution Traces (RIACS Technical Report 01-08).
Moffett Field, CA: Research Institute for Advanced Computer
Science, 2001.

Hissam, S.; Moreno, G; Stafford, J.; & Wallnau, K. “Packaging
Predictable Assembly,” 108-125. Proceedings of the First Inter-
national IFIP/ACM Working Conference on Component Deploy-
ment (Lecture Notes in Computer Science Volume 2370). Berlin,
Germany, June 20-21, 2002. Berlin, Germany: Springer Verlag,
2002.

Hissam, S.; Hudak, J.; Ivers, J.; Klein, M.; Larrson, M.; Moreno,
G; Northrop, L.; Plakosh, D.; Stafford, J.; Wallnau, K.; & Wood,
W. Predictable Assembly of Substation Automation Systems: An
Experiment Report (CMU/SEI-2002-TR-031). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,
2002. <http://www.sei.cmu.edu/publications/documents
/02.reports/02tr031.html>.

Hoare, C. A. R. Communicating Sequential Processes. Engle-
wood Cliffs, NJ: Prentice Hall, 1985.

Hoare, C. A. R. “Algebra and Models.” SIGSOFT Software Engi-
neering Notes 18, 5 (December 1993): 1-8.

Huth, M. Logic in Computer Science: Modelling and Reasoning
About Systems. New York, NY: Cambridge University Press,
2000.

80

CMU/SEI-2003-TR-009

[Ivers 02]

[Kazman 99]

[Kiein 93]

[Kuhn 96]

[Li 02]

[Luckham 95]

[Magee 99]

[McAllister 90]

[Merriam-Webster
93]

[Meyer 97]

Ivers, I.; Sinha, N.; & Wallnau, K. A Basis for Composition Lan-
guage CL (CMU/SEI-2002-TN-026, ADA407797). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2002. <http://www.sei.cmu.edu/publications/documents
/02.reports/02tn026.html>.

Kazman, R. & Klein, M. Attribute-Based Architectural Styles
(CMU/SEI-99-TR-022, ADA371802). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1999.
<http://www.sei.cmu.edu/publications/documents/99.reports
/99tr022/99tr022abstract. html>.

Klein, M.; Ralya, T.; Pollak, B.; Obenza, R.; & Harbour, M. G. A
Practitioner’s Handbook for Real-Time Analysis. Boston, MA:
Kluwer Academic Publishers, 1993.

Kuhn, T. The Structure of Scientific Revslsstz'eﬂ, 3rd ed. Chicago,
IL: University of Chicago Press, 1996.

Li, P. L.; Shaw, M_; Stolarick, K.; & Wallnau, K. “The Potential
for Synergy Between Certification and Insurance.”
<http:!fwww,sei.czﬁﬂ.edufstafffkcwiicsr(}lpéf> (2002).

Luckham, D.; Augustin, L.; Kenney, J.; Veera, J.; Bryan, D.; &
Mann, W. “Specification and Analysis of System Architecture
Using Rapide.” IEEE Transactions on Software Engineering 21,
6 (April 1995): 336-355.

Magee, J. & Kramer, J. Concurrency State Models & Java Pro-
grams. New York, NY: John Wiley and Sons, 1999.

McAllister, D.; En Sun, C.; & Mladen, V. “Reliability of Voting
in Fault-Tolerant Software Systems for Small Output-Spaces.”

IEEE Transactions on Reliability 39, 5 (December 1590): 524-
534.

Merriam Webster, Inc. Merriam Webster’s Collegiate Dictionary,
10th ed. Springfield, MA: Merriam-Webster Incorporated, 1993.

Meyer, B. Object-Oriented Software Construction, 2nd ed. Lon-
don, UK: Prentice-Hall International, 1997.

CMU/SE!-2003-TR-009

81

[Meyer 98]

[Milner 89]
[Milner 99]

[Moreno 02]

[Musa 98]

[Necula 97]

[Nierstrasz 02]

[Pierce 02]

[Polya 54]

Meyer, B.; Mingins, C.; & Schmidt, H. “Providing Trusted Com-
ponents to the Industry.” IEEE Computer 31, 5 (May 1998): 104-
105.

Milner, R. Communication and Concurrency. New York, NY:
Prentice Hall, 1989.

Milner, R. Communicating and Mobile Systems: The n-Calculus.
New York, NY: Cambridge University Press, May 1999.

Moreno, G.; Hissam, S.; & Wallnau, K. “Statistical Models for
Empirical Component Properties and Assembly-Level Property
Predictions: Toward Standard Labeling.” Proceedings of the 5th
International Workshop on Component-Based Software Engi-
neering, in conjunction with the 24th International Conference on
Software Engineering (ICSE2002). Orlando, Florida, May 19-20,
2002. <http://www.sei.cmu.edu/pacc/CBSES
/Moreno-cbse5-final. pdf>

Musa, J. Software Reliability Engineering. New York, NY:
McGraw-Hill, 1998.

Necula, G “Proof Carrying Code,” 106-119. Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL-97). Paris, France, January 15-17,
1997. New York, NY: Association for Computing Machinery,
1997.

Nierstrasz, O.; Arevalo, G; Ducasse, S.; Wuyts, R.; Black, A.;
Muller, P.; Zeidler, C.; Genssler, T.; & van den Born, R. “A Com-
ponent Model for Field Devices,” 200-209. Proceedings of the
First IFIP/ACM Working Conference on Component Deployment
(Lecture Notes in Computer Science Volume 2370). Berlin, Ger-
many, June 20-21, 2002. Berlin, Germany: Springer Verlag, 2002.

Pierce, B. Types and Programming Languages. Cambridge, MA:
MIT Press, 2002.

Polya, G. Mathematics and Plausible Reasoning: Volume I Induc-
tion and Analogy in Mathematics. Princeton, NJ: Princeton Uni-
versity Press, 1954.

82

CMU/SEI-2003-TR-009

[Papadopoulos 98]

[Popper 92]

[Purtillo 94]

[Rabinovich 00]

[Roy 91]

[Ryan 01]
[Sharygina 02]

[Shaw 96a]

[Shaw 96b]

[Simon 96]

Papadopoulos, G. & Arbab, F. Coordination Models and Lan-
guages (Technical Report SEN-R9834, ISSN 1386-396X).
Amsterdam, The Netherlands: Centrum voor Wiskunde en Infor-
matica, 1998.

Popper, K. The Logic of Scientific Discovery. New York, NY:
Routledge, 1992.

Purtillo, J. “The Polylith Software Bus.” ACM Transactions on

Programming Languages and Systems 16, 1 (January 1994): 151-
174.

Rabinovich, S. Measurement Errors and Uncertainties, 2nd ed.
(ISBN 0-387-98853-1). New York, NY: Springer Verlag, 2000.

Roy, B. “The Outranking Approach and the Foundations of the
ELECTRE Methods.” Theory and Decisions 31, 1 (July 1991):
49-73.

Ryan, B. & Schneider, S. Modeling and Analysis of Security Pro-
tocols. New York, NY: Addison-Wesley, 2001.

Sharygina, N. “Model Checking of Software Control Systems.”
PhD diss., University of Texas at Austin, 2002.

Shaw, M. “Truth vs. Knowledge: The Difference Between What a
Component Does and What We Know It Does,” 181-185. Pro-
ceedings of the Eighth International Workshop on Software Spec-
ification and Design. Schloss, Germany, March 22-23, 1996. Los
Alamitos, CA: IEEE Computer Society Press, 1996.

Shaw, M. & Garlan, D. Software Architecture: Perspectives on an

Emerging Discipline. Upper Saddle River, NJ: Prentice Hall,
1996.

Simon, H. The Sciences of the Artificial, 3rd ed. Cambridge, MA:
MIT Press, 1996.

CMU/SEI-2003-TR-009

83

[Stafford O1a]

[Stafford 01b]

[Stafford 02]

[Szyperski 97]

[TCSEC 85]

[UL 98]

[van Ommering 02]

[Wallnau 01]

[Warmer 99]

Stafford, J. & Wallnau, K. “Predicting Feature Interactions in
Component-Based Systems,” 35-42. Proceedings of the Work-
shop on Feature Interaction of Composed Systems, in conjunction
with the 15th European Conference on Object-Oriented Program-
ming (ECOOP 2001). Budapest, Hungary, June 18-22, 2001.
New York, NY: Springer, 2001.

Stafford, J. & Wallnau, K. “Is Third-Party Certification Neces-
sary?” <http://www.sei.cmu.edu/pacc/CBSE4_papers
/StaffordWallnau-CBSE4-22.pdf> (2001).

Stafford, J. & McGregor, J. “Issues in Predicting the Reliability
of Composed Components.” <http://www.sei.cmu.edu/pacc
/CBSES/StaffordMcGregor-cbse5.pdf> (2002).

Szyperski, C. Component Software: Beyond Object-Oriented
Programming. Reading, MA: Addison-Wesley, 1997.

Department of Defense. Trusted Computer Security Evaluation
Criteria (TCSEC), DoD Standard DOD 5200.28-STD.
<http://www.radium.ncsc.mil/tpep/library/rainbow
/5200.28-STD.htmI> (1985).

Underwriter’s Laboratory. UL Standard for Safety for Software in
Programmable Components. Northbrook, IL: Underwriter’s Lab-
oratory, 1998.

van Ommering, R. Part 5, Ch. 12, “The Koala Component
Model,” 223-236. Building Reliable Component-Based Software
Systems. Boston, MA: Artech House, 2002.

Wallnau, K.; Stafford, J.; Hissam, S.; & Klein, M. “On the Rela-
tionship of Software Architecture to Software Component Tech-
nology.” Proceedings of the 6th International Workshop on
Component-Oriented Programming (WCOP6), in conjunction
with the European Conference on Object-Oriented Programming
(ECOOP 2001). Budapest, Hungary, June 19, 2001. New York,
NY: Springer, 2001. <http://research.microsoft.com/users
lcszypers/events/'WCOP2001/>.

Warmer, J. & Kleppe, A. The Object Constraint Language: Pre-
cise Modeling With UML. Reading, MA: Addison-Wesley, 1999.

84

CMU/SEI-2003-TR-009

|
[
REPORT DOCUMENTATION PAGE Forn Approved |
OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, inctuding the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
inforration, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reponts, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Offics of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,
1. AGENCY USE ONLY (leave bi&nk} 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
. Final
April 2003
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
e - F19628-00-C-0003
Volume Ili: A Technology for Predictable Assembly from Certifiable
Components
6. AUTHOR(S)
Kurt C. Wallnau ,
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University
Pittsburgh, PA 15213 CMU/SEI-2003-TR-009
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ ESC}‘XPK AGENCY REPORT NUMBER
5 Eglin Street
Hanscom AFB, MA 01731-2116 ESC-TR-2003-009
11. SUPPLEMENTARY NOTES
12.a DISTRIBUTIONJAVAILABILITY STATEMENT 12.b DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS
13. ABSTRACT (maximum 200 words)
This report is the final volume in a three-volume series on component-based software engineering. Volumes
I'and Il identified market conditions and technical concepts of component-based software technology,
respectively. Volume Il (this report) focuses on how component technology can be extended to achieve
predictable assembly from certifiable components (PACC). An assembly of software components is
predictable if its runtime behavior can be predicted from the properties of its components and their patterns
of interactions. A component is certifiable if its (predictive) properties can be objectively measured or
otherwise verified by independent third parties. This report identifies the key technical concepts of PACC,
with an emphasis on the theory of prediction-enabled component technology (PECT).
14, SUBJECT TERMS 15. NUMBER OF PAGES
software components, predictable assembly, component-based 98
development 16. PRICE CODE
17. SECURITY CLASSIFICATION |18, SECURITY CLASSIFICATION |19, SECURITY 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED OF ABSTRACT UL
UNCLASSIFIED
"NSN 75406-07-280-5500 tandard Form ev.
Praseribed by ANSI SN, Z38-18
208-102

