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1 Introduction 

A key challenge in organizational research is accounting for the existence of levels, i,e., distinguishing be- 

tween the effects on individual and organizational behavior, when analyzing a particular process. Multilevel 

modeling has proven to be an effective method for investigating the effects at several levels within an orga- 

nizational hierarchy. In today's commericial and open-source software, several tools exist that can estimate 

a multilevel model for a data set of continuous measurements. For date sets with binomial or categorical 

measurements, multilevel modeling requires estimating a generalized linear mixed model (GLMM). Cur- 

rendy, extant software tools for estimating a GLMM are very limited in that the numerical methods used 

can be slow, inaccurate, or both. In this work, Toyon Research Corporation and the University of Wiscoimin 

are developmg a software package for estimating a GLMM in R, an open-source statistical environment. 

For Phase I, we have developed an approach that fite an approximate model, but uses methods that can be 

extended for maximum Ukelihood (ML) methods that we will pursue m Phase II. 

2 Body 

As discussed in our Phase I proposal, there are three main objectives for the Phase I work: 

1. Develop a preliminary version of the code for estimating a GLMM, which can be used as a foundation 

for Phase 11, 

2. Demonstrate the code using simulated date sets 

3. Identify a suitable approach for modeling ordinal data sets 

4. Develop a suiteble interface 

We elected to use the standard R interface for a fimction, and not to develop any specialized or graphical 

user interface. 

As discussed in the proposal for Phase I, Penalized Quasi Likelihood (PQL) is an approximate method 

that can estimate a GLMM for bmary data. We proposed to me this approximate method to estimate an 

initial solution, which can be fiuther refined using a more accurate, but computationally intensive procedure. 

The Phase I effort focused on using PQL, with extensions to other methods to be developed in Phase II. 

Code development was the major effort in Phase I, and consisted of some low-level R programming and 

theoretical work on the numerical methods for GLMM. The programming t^ks consisted of re-implementing 



the Ime fiinction in R, to take advantage of S4-classes and better linear algebra solvers. Because the Ime 

fiinction is called repeatedly in several iterations for estimating a GLMM, it is the "long pole in the tent" in 

terms of speed and accuracy. 

The PQL method directly works for binary data, but does not clearly extend for categorical data (i,e., 

where the response variable can be more than two values). For Phase I, we focused on identifying a suitable 

method for ordinal data, which are a particularly kind of categorical data where the categories are ordered. 

The main intent for this work was to identify a method analogous to the PQL for binary, i.e,, a method that 

can produce an initial estimate for an ML procedure. 

Before discussing these tasks in detail, we review the pertinent technical background in the next section 

and describe our over-arching vision, 

2.1    Technical Background 

Mixed-effects models are statistical models that describe the behavior of a response variate as it relates to 

measured covariates. These models incorporate hoXh fixed-effects parameter, which are parametere that 

relate to the entire population or well-defined subgroups of the population, and random-effects, which are 

random variables associated with individual experimental units. They are particularly useful with longitu- 

dinal data — data that are collected over time on each of several subjects. As described in the program 

solicitation the subjects can be grouped according to one or more nested layers of grouping. For example, 

soldiers can be grouped in squads that are within platoons, that are within companies, and so on, 

A multilevel model (Goldstein, 1995; Snijders and Bosker, 1999; Raudenbush and Bryk, 2002; de Leeuw 

and Kreft, 2002) is another name for a mixed-effects statistical model that includes random-effects terms at 

one or more nested levels. Multilevel models apply to longitudinal data or to general repeated measures data 

that are not necessarily gathered over time. 

Linear models are statistical models for responses that are measured on a continuous scale. They have the 

property that the prediction of the response is a linear function of the model parametere, or coefficients, and 

terms derived firom the values of the covariates. In contrast, a nonlinear statistical model generally refers to 

models for responses measured on a continuous scale but where the prediction of the response is a nonlinear 

function of the model parameters. 

Generalized linear models (McCullagh and Nelder, 1989) are statistical models in which a ftmction, 

called the lirdc fimction, of the expected response is modeled as a linear combination of model terms, GLMs 



are frequently used to model a dichotomous response and some variations of GLMs are used for ordinal 

data. Typical link functions for dichotomous responses are the logit link or the pmbit link. There is a veiy 

efficient algorithm called iteratively reweighted le^t squares (IRLS) that is used to fit GLMs that do not have 

random-effects terms, 

A linear model with both fixed-effects terms and random-effects terms is a linear mixed-effects model. 

The R fimction Ime firom the NLME package (Pinheiro and Bates, 2000) calculates maximum UMihood 

(ML) or restricted maximum likelihood (REML) parameter estimates for these models. A nonlinear model 

with random-effects terms is a nonlinear mixed-effects model. The R fimction nlme, also ui the NLME 

package, calculates parameter estimates for these models, A generalized linear model with random-effects 

terms is called a generalized linear mixed model (GLMM) or a multilevel generalized linear model (Ro- 

driguez, 2002), At present the NLME package does not provide capabilities for estimatmg the parameter in 

GLMMs. The R fimction glmmPQL in the MASS package provides maximum likelihood estimates of the 

parametera in a GLMM using an approximation method called penalized quasi-likelihood. Another function, 

glmm in the GLMMGibbs package, approximates ML estunates through a Gibbs sampler, 

2.2   Technical approach 

For this STTR project, we will develop and implement in R methods to determine the maximum likelihood 

estimates of parameters in generalized linear mixed models (GLMMs) for longitudmal data, A GLMM with 

one level of random effects is sunilar to the linear mixed-effects (LME) model 

yi = Xip + Zibi + ei,    bi^MiO,a^D),    €» ~ jVCO.cr^J),    i = l,...,m, 
(I) 

€i±ej,    bi±bj,    i^j;        ei±bj,    alH,j 

where yi is the vector of length »» of responses for subject i; XiisthsriiX p model matrix for subject i 

with respect to 13; and Zi is the Wj x g model matrix for subject i and the random effects 6j, The symbol 

± indicates independence of random variables. The columns of the model matrices Xi and Zi are derived 

fi-om covariates observed for subject i. The q x q relative dispereion matrix D is symmetric and must be 

positive definite. Because it contains redundant entries and its elements are constrained we do not express 

the likelihood in terms of it. Instead we use 0, which is any unconstrained, non-redundant set of parametere 

that determine D. 

The maximum likelihood estimates for model (1) are those parameter values, $, a^ and 0 that maximize 
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the likelihood or, equivalently, maximize the log-likelihood, of the statistical model given the observed 

date. The likelihood of the parametere given the data, written L{fi, d, a'^ly), is the same expression as the 

probability density for the data given the parameters, written p(y |j9,0, a% where y is the combined vector 

of responses for all the subjects. To obtain p(y\fi, 6, a% we must integrate the conditional density for each 

subject, pivilh, fi, 0-2), with respect to the distribution of the random effects p(bi\e, a^). Symbolically 

m 

L(p,e,a''\v) = Jlp{y,\p,0,a'') 

'm (2) 

i=l" 

In a GLMM it is a ftmction g{n), called the link function, of the mean response that is expressed as the 

linear predictor Xi0 + Zibi. Furthermore, the parameter a^ is replaced by a scale parameter and, in the 

most common types of GLMMs, the scale parameter is constant and is not estimated. Thus we write the 

model as 

g(lii) = Xi0 + Zibi   bi^AfiO,D),    yi--p(m),    i = l,...,m, 
(3) 

yi±yj,    bi±bj,    t^j;        ei±bj,    alH.j 

where g{fj.) is the nf-dunension vector obtained by applying g componentwise and p is a known distribution 

such as binomial or Poisson, The likehhood has a form similar to (2) 

L0.o\y)^flpiyi\0,e) 
m     . 

^H   Piyi\bi,f3)pibi\e)db 
*m     , (4) 

with one major difference: the integral in (2) has a closed-form expression but the integral in (4) does not. 

It is the lack of a closed-form expression for this mtegral that vastly increases the complexity of parameter 

estunation for GLMMs relative to LMEs because we must do an iterative optimization of an objective, 

L{0,0), that is an integral which must itself be approxunated by numerically intensive techniques, 

2.2.1   Approximating the integral 

The glttmPQL approach implemented by Brian Ripley for the MASS package has been reimplemented in 

Phase I of this project. It uses iteratively reweighted LME approximations to the GLMM to jointly optimize 



fi and 0. Because of the LME approximation, an estimate ofa^ is also produced but not used. More accurate 

approximations to the likelihood are obtained by approximation the integral in (4). As described in the phase 

I proposal we will implement the deterministic approximations called second-order Laplacian and adaptive 

Gauss-Hermite quadratuie in Phase II. 

As described in Thisted (1988, §5.3), Gaussian quadrature is used to approximate one-dimemional inte- 

grals of the form 

Iia,b)^ /  /(a;)«;(a;)da: (5) 
Ja 

where w{x) is a weight function. For a fixed weight function and interval, Gaussian quadrature rules can be 

generated for any order polynomial. Gauss-Hermite quadrature applies to integrals of the form 

1= /(a;)e-^ da; 
J—oc 

(6) 

which is approximately the form that we expect the integral Jpivilh, fi)p{bi\0) dbi to take. 

In adaptive Gauss-Hermite quadrature we center the integrand p(i/i|6j,^)p(6t|0) about its conditional 

mode bi{0, d) before applying the Gauss-Hermite rule. This technique requires substantially fewer fiinction 

evaluations than does Gaxiss-Hermite quadrature centered at 6j = 0 to achieve the same level of accuracy 

in the approximation. When adaptive Gauss-Hermite quadrature is reduced a single fimction evaluation 

it is equivalent to the second-order Laplacian quadrature rule. Second-order and higher-order Laplacian 

quadrature rules are described in Raudenbush and Bryk (2002). 

2.2.2   Determining 6j {0,0) 

The same iteratively reweighted penalized least squares technique used in glmmPQL to simultaneously op- 

timize P and the 6i, i = 1,..., m can be used for the conditional optimization 

6iO, 6) = arg maxp(|/i|6i, 0) p{hi\e) (7) 
bi 

This greatly simplifies the code for Laplacian and adaptive Gauss-Hermite quadrature. 

To demonstrate this, follow the derivation in McCullagh and Neider (1989, §2.5) mcluding the penalty 

term. 

In providing methocb for GLMMs we will restrict our attention to local Imearization and to adaptive 

Gauss-Hermite quadrature. The local linearization technique is called penalized quasi-UMthood and h^ 
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already been implemented by Prof. Brian Ripley for the MASS package (Venables and Ripley, 1999) for R, 

The local linear approximation to the GLMM model for PQL is analogous to that used m the IRLS algorithm 

for GLMs. It replaces the likelihood for the generalized model by a quasi-likelihood for which a least squares 

estimate can be calculated. The quasi-likelihood is based on working residuals and weights calculated at 

the current parameter estimates. When the estimates are updated, the weights and working residuals are 

recalculated, producing a new weighted least squares problem. As described in Pinheiro and Bates (2000, 

chapter 2) the ML or REML criterion in a linear mixed-effects model can be efficiently evaluated from a 

penalized least squares problem. The penalized least squares calculation can be applied to GLMMs if the 

likelihood is replaced by the quasi-likelihood, hence the name penalized quasi-likelihood, 

PQL can be regarded as a series of iteratively reweighted linear mixed-effects problems where the opti- 

mization of the linear least squares problem uses penalized least squares. In fact, this is exactly Prof. Ripley's 

implementation. The core of the glmmPQL function is a loop that calls Ime then checks for convergence. If 

convergence has not been achieved, new weights and working residuals are calculated followed by another 

call to Ime. In our experience glmmPQL converges quickly, usually after 4 to 8 calls to Ime. The indi- 

vidual calls to Ime are relatively &t but could be made much faster. Fitting the 100 simulated data sets 

from Rodriguez and Goldman (1995) took about 45 minutes in R on a 1.2 GHz desktop computer running 

Linux. Each of these 100 model fits is a GLMM fit to 2445 observations with two levels of random effects. 

This is already quite reasonable performance for an interactive language like R but we have been able to 

reimplement Ime so as to provide a set of interfaces to the penalized least squares optimization at the core of 

Ime that avoid unused, repetitive work in each of these calls to Ime and achieve greater stability and speed 

in the algorithm. The stability is achieved because we can use the converged estimates from one iteration m 

the starting estimates in the next iteration. We have accomplished this reimplementation in Phase I of this 

project. We have communicated with Prof Ripley and Dr, Venables regarding this project and they are quite 

willing to continue to cooperate with us. We will ensure that the R implementation of glmmPQL uses the 

direct interfaces in a reimplemented Ime whether glmmPQL continues to be part of the MASS package or 

becomes part of the NLME package. 

Especially with the changes that we propose for Ime, glmmPQL is a fast and reliable method for esti- 

mating parameters in a GLMM, However, unlike GLMs where the IRLS estimates are indeed the maximum 

likelihood estimates, m GLMMs the PQL estimates are not necessarily the maximum likelihood estimates. 

For example, the Rodriguez and Goldman (1995) data sets were sunulated using fixed-effects parameters 

/3 = [0,5,1., 1., 1.]' and with variance components of ai = 1.0 at the family level and 0-2 = 1.0 at the com- 



munity level, (A GLMM for dichotomous data is based on a binomial distribution and does not have a scale 

parameter like a^.) The average parameter estimates over the 100 simulated data sets fit with gltnmPQL 

were I = [0.6322,0,9759,0.9427,0.9880]', #1 = 1.881, and ^2 = 1,2206. Compared with the estimates 

fi-om other methods, as given m Rodriguez (2002, Table 10,1), the estimates of the variance components are 

quite re^onable but the estimates of the fixed-eflfecte parameters, like those from other PQL-based methocb, 

are biased downward. 

Systematically underestunating the magnitude of the fixed-effects estimates is a well-known property of 

the PQL method. Producing better estimates involves using a better approximation to the likelihood — in 

this case either a Laplacian approximation or adaptive Gauss-Hermite quadrature. Both of these techniques 

approximate integrals of functions that are close to e~^* in form, Laplacian integration (Tiemey and Kadane, 

1986) uses the value and the Hessian of the log-integrand at its conditional mode. Adaptive Gauss-Hermite 

quadrature uses the value of the log-integrand at the conditional mode and at some number of nearby points 

whose location is determined from the Hessian of the log-integrand according to the Gauss-Hermite formula. 

Because the locations of the log-integrand evaluations are symmetric about the conditional mode the total 

number of points in each axis direction is an odd number. Generally five or seven points will produce 

sufficient accuracy in AGQ evaluation for GLMMs. A one-point AGQ evaluation is the same as the Laplacian 

approximation. 

Notice that the Laplacian and AGQ methods will require evaluation of the conditional modes of the ran- 

dom effects for each subject every tune the likelihood is evaluated during the iterative optimization method. 

Obviously, the determination of the conditional modes vdll need to be made as efficient as possible. In our 

redesign and reimplementation of the Ime code we will make provision for using IRLS within compiled 

code for determining the conditional modes of the random effects. 

More accurate approximations that use Laplacian approximations or adaptive Gauss-Hermite quadrature 

are much more compute-intemive than PQL. One approach to parameter estimation is to use the expensive 

approximations to the log-likelihood throughout the entire iterative process of determining parameter es- 

timates, PROC NLMIXED, available in SAS (http://www,sas,com) versions 7.0 and later, employs this 

approach using adaptive Gauss-Hermite quadrature throughout. It is an intensive approach and to make it 

feasible the SAS procedure uses highly tuned, inflexible code. As an example of the inflexibility, PROC 

NLMIXED caimot be used on the Rodriguez and Goldman simulated data sete because it does not allow for 

nested random effects. 

During an iterative algorithm to optimize the log-likelihood it is not necessary to use an expensive ap- 

10 



proximation to the log-likelihood except when close to the optimum. Thus we recommend using simpler 

approximations initially and, when the simple approximation has converged, switch to a more expensive 

approximation for final tuning. Because the Laplacian and AGQ evaluations are much more computationally 

intensive that the PQL iterations, it does not make sense to start with Laplace or AGQ. We propose using 

PQL initially until it has conveiged, which, as mentioned above, occure quite quickly, then switch to Laplace 

or AGQ to finish the estimation. 

In Phase I we concentrated on enhancing the already existing PQL implementation at the level of the pe- 

nalized least squares problem. The improved performance and interface to the penalized least squares prob- 

lem will be useM for the Laplacian approximation and the adaptive Gauss-Hermite quadrature approaches 

in later phases. 

2.3   Re-implementation of the Ime function 

Our specific tasks for Phase I included updating the linear algebra calls and interfaces in the R functions Ime, 

which fits linear mixed-efifects models, and glttmPQL, which fits generalized linear mixed models (GLMMs) 

by penalized quasi-likelihood (PQL). This has been accomplished in the Ime4 package for R-1.6.2 (released 

Jan. 10,2003). 

The classes and methods in Ime4 use the formal classes and methods described in Chambers (1998) 

and implemented in the methods package for R. The underlying numerical methods use Lapack (Anderson 

et al., 1999) and levels 1,2, and 3 of the BLAS (Basic Linear Algebra Subroutines). ATLAS (Automatically 

Tuned Luiear Algebra Software) implementations of Lapack and the BLAS are used by R when available. 

All calls to the underlymg C code use the .Call interfece (R Development Core Team, 2002, §4,7) that enables 

us to control the number of copies of objects that are created during the calculations. This can be important 

when working vnth lai^e data sets and/or with many terms in a statistical model. 

These changes to Ime and glmmPQL have produced a dramatic improvement in performance. In §2.5 

below we describe the numerical results of glmmPQL applied to 100 sets of simulated multilevel binomial 

response data. When run on a 2.0 GHz Pentium 4 Linux system the previous version of glmmPQL fi-om the 

MASS package took an average of 30.6 seconds of user time per data set to converge. The version in Ime4 

took an average of 6.1 seconds of user time per data set. 

We have also tested the ability of the new versions to work with large data sets by fitting a multilevel 

Unear model with a fixed-eifects parameter vector of length 47 to 378,047 test scores on 134,713 students in 
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3,722 different schools. Each copy of the model matrix for the fixed eflfects in this model is approximately 

150 MB in size. The new version of Ime was able to fit this model (on the same 2.0 GHz Pentium 4 system 

running Linux) in under 5 minutes while keeping the total memory image to less than 1 GB. 

2.4   Analytical resulte for optimization 

Another specific task for Ph^e I is to incorporate the analytic gradient calculations developed by Saikat 

DebRoy into the Ime optimization. Doing so provides faster and more reliable convergence in the Ime 

fimction, which is used both for model fitting by itself and in the iteratively reweighted penalized le^t 

squares (IRPLS) algorithm used as the inner loop in glmmPQL fits of GLMMs, In Phase IIIRPLS will be 

used to determine the conditional modes of the random effects for the Laplacian and the Adaptive Gauss- 

Hermite Quadrature fits of GLMMs, 

We give here an overview of the calculations for ML estimation in a Unear mixed-effects model single 

level of random eflfects (1). 

Calculations are based on ^precision factor A, which is any matrix that satisfies A'A = D~^. Given 

the current 0 we form a series of orthogonal-triangular decompositions 

zi 
= Qi 

^ii(i) 
5 

Rio(j) 
= Q'i 

'x'i 
A 0 _Rm(j)_ 0 

and = m m 

followed by 

^O(l)      <k)(l) 

= Qo 

^0 CQ 

0 C-1 

0 0 

(9) 

•Roo(m)     Co(r) 

These decompositions provide the profiled log-likelihood l{d), the conditional estimates ^{d) of the fixed 

effects, the conditional estimate a^(0) of the variance, and the conditional modes £0), i = l,...,m of the 

12 



random effects. 

" lAI 
i(e) = fe - «log abs c-i + Y^ log abs    *    ' (10) 

m = R^'t^ (11) 

biie) = JJ-i ,j (ci(i) - Hio(i)^(0))    i = 1,..., m (12) 

^ie) = cl,/n (13) 

With one more orfliogonal-triangular decomposition 

[bi/a    (fl-y    ...   Qa    (ji^-i^j)]' = UA (14) 

we can evaluate the gradient of the profiled log-likelihood as 

I=4I:E((^'^)«-*«)^ 
»=i j=i dd (15) 

where {A'A)ij and #'•' are the («,i)-th elements of A'A and #-i = D, respectively. 

Optimization of the profiled log-likelihood with respect to 0, even with the analytic gradient (15) avail- 

able, can be a difficult optunization problem from poorly-chosen initial values. The EM algorithm and the 

ECME (expectation conditional maximization either) variant of the EM can be used to refine initial estimates. 

DebRoy and Bates (2003b) derive the ECME update for * as 

The matrix A produced by decomposition (14) contains all the information needed to calculate both the 

ECME algorithm and the gradient of the profiled log-likelihood, and we use this to produce compact and 

efficient code for the Ime4 package. A single C fimction called commonDecompose is called before 

an ECME iteration and a gradient calculation. This fimction calculates and imtalls the matrix ^ as the 

updateFactor slot of each ImeLevel object and all fiirther calculations can be expressed in terms of 

that matrix. 

The analytic gradients and the ECME iterations are generalized to multiple nested levels of random ef- 

fects for both maximum likelihood (ML) estimation and restricted maxunum likelihood (REML) estimation 
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Effects True value Mean Median 
Fixed effects 
Individual 1.0 0.9584 0.9812 
Family 1.0 0.9296 0.9261 
Community 1.0 0.9715 0.9589 

Random effects m 
Family 1.0 1.6760 1.8494 
Community 1.0 1.1794 1.1678 

Table 1: Mean and median coefficients for covariates and estimated standard deviations of random eflfecte in 
the simulated data sets from Rodriguez and Goldman (2001) 

in DebRoy and Bates (2003a). All of these results are incorporated into the methods in the Ime4 package 

for R using Lapack and, when available, using ATLAS for maximum efficiency. 

2.5   Demonstration using simulated data 

We have tested the new implementions of the Ime and glmmPQL fimctions on several data sets including 

the simulated data described in Rodriguez and Goldman (1995) and Rodriguez and Goldman (2001). These 

data are 100 simulated sets of 2445 binary responses grouped into 1558 families in 161 communities. The 

grouping structure and the values of covariates at each of the levels of community, family, and birth are based 

on the observed structure of the data from a survey of prenatal care in Guatemala. 

The glmmPQL fimction from the lme4 package converged on all 100 of the simulated data sets. Sum- 

mary results are shown in Table 1 and boxplots of the parameter estimates are provided in Figure 1, The 

summary results can be compared to those for other methods as given in Table 1 of Rodriguez and Goldman 

(2001). 

In evaluating the estimates from the simulated data recall that they will be used as starting estimates for 

the more accurate adaptive Gauss-Hermite quadrature method m the final version of the GLMM estimation. 

The objective of the PQL estunation, which is fest and simple, is merely to get into the neighbourhood of the 

optimum, which these certainly do. 

Even these fast, simple estimates are superior to those from many of the methocte examined in Rodriguez 

and Goldman (2001). In the simulation the parameters for which the estunates are shown in Figure 1 were 

set at 1 then the random noise was added. Estimates for the fixed effects are both accurate (small bias) and 

precise (small variation). The estimates ofai and o-j are biased upward but they are still suitable as starting 

estimates for AGQ. Although some of the estimates of ca are zero this is not alarming. It is quite possible 
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Figure 1: Boxplots of the parameter estimates from glmmPQL for the 100 simulated data sets from Rodriguez 
and Goldman (2001). The parameter ai is the standard deviation of the community-level random effect, a^ 
is the standard deviation of the family-level random effect, ft is the coefficient of the community-level 
covariate, ^2 is the coefficient of the family-level covariate and ^3 is the coefficient of the individual-level 
covariate. The notches in the boxes represent 95% confidence intervals on the median of the parameter 
estimates. 

for the maximum likelihood estimate of a variance component from simulated data to be zero, even when the 

data were simulated vnth a non-zero value. Nevertheless, we will take this into account when using the PQL 

estimates as starting estimates for AGQ and adjust any zero estimates from PQL before beginning AGQ. 

Similar results are obtained using the original glmmPQL function from the MASS package, which calls 

Ime from the nime package. The coefficient estimates are not necessarily identical on each of the simulated 

data sets because Ripley's glmmPQL restarts each call to Ime by calculating initial values whereas the Ime4 

version of Ime uses the most recent parameter values. This can affect convergence with the Ime4 version 

converging in fewer iterations on most occasions. As mentioned above, the Ime4 version of glmmPQL is 5 

times as fast as the previous version on these tests. 

2,6   Modeling ordinal data 

As stated in the project soHcitation, the observed data from investigations and studies that could be modeled 

using this R package are often ordinal in nature. Moreover, the extant software tools are quite limited for 

modeling ordinal data. Thus, one of the major goals for the R package is to develop the software that can 

build an accurate GLMM for ordinal data. 

As discussed previously, in order to expeditiously build an accurate GLMM for binary data one must 

proceed rather cautiously; i.e., estimating a GLMM i^ing maximum likelihood methods in a straightfor- 

ward feshion can result in a lai^e computational effort that is unlikely to produce good parameter estimates. 

Thus, we propose using a Penalized Quasi-Likelihood (PQL) method to develop an approximate solution be- 
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fore proceeding to more rigorous computational methods such as Laplacian integration or Adaptive Gauss- 

Hermite Quadrature (AGQ). Recall that the PQL produces initial estimates for these rigorous methods, and 

also may be used to quickly investigate several model structures. This initial investigation provides a "first 

cut" m the model development process, and poor stmctures can be eliminated from further consideration 

early on in the process. 

Unfortunately, for ordinal data there is currently no analogous procedure to the PQL method. In order 

to model ordmal data in the R package a different approach is needed. Thus, the main goal for this research 

is to develop a suitable approach for that could be used for ordinal data in the same fashion that the PQL 

method is used for binary data. 

2.6.1   Ordinal data and the Proportional-Odds Model 

The primary type of data for this toolbox are composed of categorical variables, and often these categories 

have a natural ordering. Such categorical variables with ordered scales are defined as ordinal data (Agresti, 

1996). Data sets consisting of ordinal variables are quite commonly found in organizational and sociological 

studies, for example, performance on a test (poor, fair, or good), attitude toward a proposed policy change 

(disapprove, neutral, approve, approve strongly), and so on. 

Categorical variables without natural ordering are defined as as nominal or multinomial variables. Exam- 

ples of multinomial data include religious affiliation or the kind of car a person purchases. Multinomial data 

are also frequently found in the social sciences, and a researcher could use this package to develop mixed- 

eflFect models for multinomial data sets. However, the inherent ordering in ordinal data greatly simplifies the 

modeling process, and was therefore the initial concern for Phase I of this research project. 

As discussed previously, a GLMM model extends a GLM to include random effects. Because a GLM for 

ordinal variables uses the same fundamental approach as a GLM for binary variables, we briefly summarize 

the approach for binary data here (McCuUagh and Nelder, 1989). Let y denote a binary random variable, 

and the probability of success (indicated by a 1) is denoted by w. In the GLM, a model for IT is constmcted 

using a continuous variable, rj, which is linearly related to one or more predictors; this continuous variable 

is related to the categorical variable usmg a link fimction, g{-), 

t](x)   =   ^0iXi (16) 
i 

gilt)   =   riix) (17) 
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where Xi are the terms used to predict w. Although several link fiinctions may be used, the logit link function 

is of particular interest for ordinal variables: 

f(fr) = log (j^j (18) 

For an ordinal random variable, suppose there are N categories of interest. Again let y denote the 

random variable, which may now take on N values corresponding to each category; we label the values for 

the JV categories 0,,.., JV - 1. Furthermore, let Vj denote the probability of being in category j, and let jj 

denote the cumlative probability for category j; i.e., the probability of being in category 0 to category j. The 

proportional-odds model for ordinal variables is given by. 

Compared to (18) for binary variables, an additional parameter is introduced, $j, which is the threshold for 

the J*'' category. The unique feature of a proportional-odds model, and the origin of its name, is that the ratio 

of the odds for two values of a; is given by, 

7i(a^i)/(l-7j(a^i)) ^ ^-^(.1-0=3) .^0) 

which is independent of the category 0), The proportional-odds model is illustrated in Fig. 2, for a single 

predictor with /3 > 0 and three possible categories for the response variable. Note that the probability for 

a category is proportional to the area under the curve within the region for that category. Note that as x 

increases, W3 increases for ^ > 0; if ^ < 0, the response probabilities would shift in the opposite direction, 

and TTj would increase. 

As discussed by Hedeker (2002), random effects may be included in the proportional-odds model in the 

same way that random effects are added to a GLM for binary data and the logistic regression model. That is, 

the continuous variable rj is predicted with new terms for the random effects, 

riix,z)^0^x + b'^z (21) 

where the random effects are assumed to be normally distributed with mean zero and variance af. Using 

the logit link function in (18) and the thresholds for the proportional-odds model in (19), the following 
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Figure 2: The response probabilities for the proportional-odds model, ^ > 0 
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parameters must be estimated for the mixed-effects, proportioiml-odds model: 

0 Fixed-effects parameters 

b Conditional modes for the random effects 

(T| Variance of random effects 

6 Thresholds for the proportional-odds model 

Thus, the same parameters for binary data and the logistic regression model are estimated, and the thresholds, 

0, are now estimated for the proportional-odds model. 

In principle, these parameters could be estimated directly using MLE, However, as in the case for binary 

data, the resulting optimization would be very diJBficult computationally, and unlikely to produce good param- 

eter estimates. Furthermore, the addition of the thresholds precludes the PQL approach from being directly 

used on the ordinal problem. There is no clear-cut nimierical method to use as an approximate procedure 

for estimating an initial estimate for the MLE and for exploring different model structures during the initial 

phases of the model development process. Thus, we have investigated two approaches that are somewhat 

heuristic but should be able to provide an approximate solution. 

2.6.2   Continuous Linear Mixed-Effects Modeling 

Perhaps the simplest approach for modeling ordinal data would be to ignore the categorical nature of the data 

and model the data as if it were continuous. That is, if the categorical random variable y falls into one of JV 

categories, the values for y are labelled as t/ € 0,..., iV - 1, and these values are modeled m if they were 

on the continuous scale and did not represent N distinct categories. Thus, the link fimction in (17) becomes 

the identity, and a linear, mfated-effects model is used to describe the data, 

yc = 0jx + hlz + e (22) 

where the subscript "c" is added to denote the continuous-model predictions. 

By ignoring the ordinal nature of the data, the linear mixed-effects model in (22) may be fit to the data 

using a single call to the Ime function. Building models using this approach is very fast, even for large data 

sets. Furthermore, as the number of categories increases in y, the data begin to appear "more continuous", 

and a linear mixed-effects model can be quite accurate. 
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Figure 3: Predictions using the continuous-LME approach. 

However, interpreting the model parameters and the model predictions in terms of the true categories 

becomes difficult. As shown in Fig. 3, the predictions of a linear, mixed-effects model can be quite correlated 

with the categorical values. But there is no clear meaning for model predictions that lie between categories, 

or are beyond the range of category values (e.g., % < 0, or fc > 3), Furthermore, the model parameters 

on a continuous scale are not related to the proportional-odds model parameters on the categorical scale. 

Recall that one of the main reasons for approximating the data with a simple model is to provide good initial 

estimates to a more rigorous method for estimating GLMM parameters, 

2.6.3   Dichotomization 

An alternative approach is to dichotomize the ordinal data, which transforms the ordinal problem into a 

binary problem, for which the PQL method may be used to estimate model parameters. Furthermore, by 

dichotomizing the ordinal data in the way that is outlined below, the model structure for the dichotomized 

data set directly corresponds to the structure of the proportional-odds model; i,e,, the estimated parameters 

from this step may be used as the initial estimate for a ML method. 

Once again, suppose that the ordinal random variable y can be in one of JV categories, and these cate- 
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gories are labeled such that ^ e 0,..., JV - 1. The ordinal data set consiste of n observations of y, and is 

denoted as the vector Y. These data may be dichotomized as follows: 

1. For each category, calculate yoj, a binary flag that indicates whether y is in categories 0 through j: 

Note that by this definition, yjjfl = 1. 

2. Concatenate the results for YD,J to create YD: 

YD = 

Note that YD will be length nx(N - 1). 

0 y<j 

1 y>j 
(23) 

YD,N-I 

(24) 

3. Define an indicator wriable, in, which corresponds to an (N-l)-level factor that indicates for which 

category the current observation ofyo is calculated: 

iD,j=j + l iJ = l,...,N-l) (25) 

4. Re-define the model matrix for the fixed-effecte to include in, 

X    =     \x XD\ 

where XD is the appropriate model matrix for an (N-l)-level factor (Pinheiro and Bates, 2000), corre- 

sponding to «£>: 

5. Estimate the mixed-effects model for the binary ^ta, where the formula for rj is given by: 

ri = 0'^x + hZ (26) 

In terms of the proportional-odds model for the ordinal data, the estimates for 13, b, and aj can be used 
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directly. Furthermore, the model estimates for PD, the intercepts for the N-level factor io, can be used for 

the thresholds 6, in the proportional-od^ models. 

Note that the model predictions can be the inverted back to the ordinal scale. Given values for x and 

z, the model can predict r] on the linear scale; denote this prediction as rj. Using the inverse of the link 

function (McCuUagh and Nelder, 1989), »j can be converted into %, predicted cumulative probabilities. The 

cimiulative probabilities can be transformed into the categorical probabilities by: 

%■ = % - %-i 

The predicted category, y, is the category with the largest value of TT. 

2.6.4   Proposed Approach 

The continuous approach is very fast and might model the ordinal data fairly well (i.e., the model predictions 

can be quite correlated with the measured values), but the parameters are not clearly recognizable. The 

dichotomization approach predicts the data as a categorical variable, and produces parameter estimates that 

can be used as initial estimates for estimating the parameters of the proportional-odds model; however, this 

method is slower than the continuous approach. 

We propose using the continuous method to estimate several models structures, (i.e., different levels 

and sources of random effects, different predictors, and so on), particularly at the initial stages of the model 

development process. Using model validation criteria such as the Akaike Information Criterion (AIC) (Bum- 

ham and Anderson, 1998), several model strictures can be investigated quickly, and model structures that are 

clearly inappropriate can be rejected from further consideration. 

Using the model structures of interest from this initial analysis, the dichotomization approach can be 

used to estimate approximate models for the ordinal data. Based on the accuracy of these models, once again 

using metrics such as the AIC, the candidate set of model structures may be reduced again, and the remaining 

structures that pass this "second cut" can be estunated using MLE and computationally intensive methods 

for numerical integration, e.g., Laplacian integration or Adaptive Gauss-Hermite Quadrature. Furthermore, 

the parameter estimates from this dichotomization method can be used m the initial estimate for the more 

nimierically intensive methods. 
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2,6.5   Simulation Example 

This simulation represents the kind of data that might appear in a typical survey. The respome variable is 

the performance on a test, and may take on three categories: poor, fair, or good, which are enumerated as 0 

(poor), 1 (fair), and 2 (good). The predictor variables for the model are experience, a continuous variable that 

measures the yeare of experience on the job, and treatment, a binary variable that corresponds to whether a 

subject has received a particular kind of training. The data are collected for every soldier within one regunent, 

and the grouping for mixed-effects corresponds to the nested levels of company, platoon and squad. For the 

sunulation, the data are balanced and there are 4 companies in the regiment, 2 platoons in each company, 2 

squads in each platoon, and 10 soldiere (individuals) in each squad. 

The response data were simulated using a proportional-odds model. Several proportional-odds models 

were used to examine different model structures for the random-effects terms only. Denote the random- 

effects ternK as jj^n and the fixed-effecte terms at »j^, so that the continuous variable, -q in (21), can be 

written as: 

>? = »?^ + nran 

The fixed-effects for each simulation were: 

Vfix= 00+ 0expXeicp + /StrtXtr (27) 

Results were calculated for the following four random effects: 

h + hj + bij^k "Intercept" 

h + bij + bij^k + bexp,i "Experience" 

h + fcj j + &ij,fc + btH,i "Treatment" 

^ h + bij + bij^k + bexp,i + bm,i "Both" 

(28) 

where index i corresponds to the company-level effect, j is for the platoon-level effect (i.e,, the f* platoon 

in the i*^ company, and k is for the squad-level effect. Each of the random-effect coefficients are normally 

distributed random variables with variance, o-f = 1. 

The design matrix was generated by specifying Xexp as a uniformly distributed random variable between 

0 and 5 years, and the treatments were calculated from a binomial distribution, with uniform probability, p = 

0.5, for all of the mdividuals. Using 30 Monte Carlo trials, results were calculated for the four simulations 
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Table 2: Average AAIC values for the continuous models. 
Model Structure 

Simiilation   None   Intercept   Experience    Treatment   Both 
Intercept 231 1.2 4.3 2.0 6.8 

Experience 307 69 1.4 71 2.9 
Treatment 243 34 37 0.29 5.1 

Both 318 72 17 59 0.26 

in (28). 

Following the proposed approach, the ordinal response data v^ere first modeled with continuous linear 

mixed-eflfects models. For each model structure in (28), 30 Monte Carlo trials were generated, and for each 

trial, five model structures were estimated: four are the exact structures in (28) and the fifth model was a 

simple linear model (i.e,, mixed eflFects were ignored). For each model, the AIC values were calculated. 

As discussed by Bumham and Andereon (1998), the AIC metric can be used to select the most appropriate 

model (or subset of models) fi-om a candidate set of model structures. Furthermore, the AIC is not an absolute 

measure, and should only be used relative to other models in the candidate set. Thus, for each trial, the A AIC 

was calculated for each model in the candidate set, 

AAIC(i) = AIC(i) - min AIC 

where min AIC is smallest AIC for the candidate set of models. The AAIC results for the continuous models 

are shown in Table 2, avenged over 30 trials. For each trial, AAIC = 0 for the selected model; averaged over 

30 trials, the best model selection for these simulations has the smallest average AMC. 

For each simulation, the smallest average AAIC value corresponds to the true model structure. Clearly, 

mixed-effects models are required as the ^AIC for models without random effects (the column labelled 

"None") are quite large. Often the AAIC are rather close (e.g., the "Intercept" simulations), indicating that 

no model is clearly superior; although for the "Both" simulation, the AMC indicates that random eflfecte 

shoidd be included for the experience and treatment slopes. We should note that these simulations are very 

fast; thus, using this continuous modeling step, we could quickly identify reasonable model structures for 

fiirther analysis. 

Using the proposed dichotomization method, GLMMs were estimated for the binary data. For each 

simulation in (28), the glmmPQL fimction was used to estimate a GLMM, using the true model stracture. 

The results fi-om one trial are shown in Table 3, for the "treatment" simulation (i,e., when there are company- 
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Table 3: Parameter Estimates for "Treatment" Simulation (first Monte Carlo trial) 
Predicted 

Observed 0       1      2 
0 156   47    7 
1 13     57   48 
2 0      3     29 

Pexp 0.1 0,1489 
I3trt 1 1.829 
01 1 1.03 
02 4 4.72 
(T6(Company,Intercept) 1 1.36 
o-ftCCompany.Treatment) 1 1.765 
cr5(Platoon,Intercept) 1 1.606 
o-ftCSquadjIntercept) 1 1.83 

Table 4: Parameter Estimates for "Treatment" Simulation (averaged over 30 trials) 
 True   Estimate (Average)   Estimate (Std, Dev.) 

0.0956 
0.939 
1.01 
1.14 
1.25 

0,999 
0.617 
 037  

level effects on the intercept and slope for xtn)- The model predictions are relatively accurate, especially for 

the first and third categories; the middle category gets underpredicted. For all of the simulations in (28), we 

observed the same behavior, i.e., the model predictiom are worst for the middle category. 

In Table 4, the true parameters are shown with the estimated parameters' means and standard deviations 

(for 30 Monte Carlo trials). Note that there is a rather large uncertainty in the parameter estimates, and that 

the mean values for the estimates are greater tiian the true values. This behavior also was observed for all of 

the simulation, and may be symptomatic of the current version of glmmPQL, as well as the PQL solution. 

However, in general the parameter are reasonably close to the true values, and therefore appear to be useful 

as initial estimates for more refined nimierical methods such as Laplacian integration and Gauss-Hermite 

Quadrature, 

2.6.6   Results for an experimental data set 

Data collected fi-om a survey of ROTC college students were used to evaluate the proposed dichotomization 

approach', In the survey, each student was scored according to three metrics related to leadership abilities: 

performance potential, group conflict, and psychological health. Each of these of metrics could take on 

three categories (enumerated as 0, 1 and 2), For performance potential and group conflict, the categories 

'The ROTC data set used in this section was graciously provided by Major Paul Bliese 
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Table 5: Results for continuous models of performance potential. 
 rjrand ^(AIC) 

GPA (Squad)                                bGPA,sXGPA,i + 6a 0 

Gender (Squad)                        6Gender,sa;Gender,i + h 2,6 

Gender, GPA (Squad) 6Gender,sa;Gender,i + ftGPA,sa;GPA,i + bs 4.6 
Intercept (Squad) bs 22.5 
None 0 330 

correspond to binning the students' scores into three classes: the upper third (2), middle third (1), and lower 

third (0). Psychological health measures the degree of depression: major (0), minor (1), and none (2). 

In addition to the leaderehip metrics, the following data were also collected for each subject: high school 

grade point average (GPA), gender, efficacy (a measure of self confidence), engagement (a measure of in- 

volvement), and adaptability (a measure of "experimental adaptability"). 

The survey w^ conducted for eleven regimente and the regiments were grouped according to companies, 

platoons, and squads (two companies per regiment, four platoons per company, and four squads per platoon). 

The data set consists of 2,990 observations, although several observations are incomplete. After removing 

these values, 2,316 observations remain, and the resulting data set is unbalanced - i.e., there are varying 

numbers of observations for the each level. For small data sets, unbalanced data can be problematic because 

there may be very few data points for certain levels. Furthermore, even in large data sets where there are 

several groups, there may be very few data for the lowest level of grouping. In this case, there appear to be 

sufficient observations for most levels, although the squad-level interaction should be handled with care, 

and the unbalanced design should not be a problem. 

Results for Performance Potential Using Performance Potential as the response variable, we examined 

several model structures by first modeling the data as if it were continuous. The linear models indicated 

that all of the predictors are significant, and should be included. In Table 5 the difference in AIC values 

for several models are shown. Clearly, random effects are needed to model the data accurately. Among 

the mixed-eflfects models, the residts indicated that effects may have existed at the squad and regiment 

levels. In Table 5, results are shown only at the squad level for four mixed-eflfecte models. It appears that 

two-dimensional models may be necessary, i.e., because the A(AIC) for models with mixed-eflfects on the 

intercept only was 22, which is quite different fi-om models that included random coefficients for the slopes. 
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Table 6: Parameter estimates for fixed effects, performance potential  
$1        $2      Gender    GPA    Efficacy    Engagement    Adaptability 

PQL -6.85 -8.42 -.482 0.769 0.303 
POLR -6.66 -8.18 -0.481 0.751 0.300 

0.369 
0.383 

0.653 
0.602 

Table 7: Parameter estimates for random eflFects, peformance potential 
 <^br       ^CPA     O'Gender 

Estimate 1.906    0,673     0.928 
Component (%)      73        10 17 

For the GLMM, the following model structure for the fixed effecte was used: 

-nT- nfix,i = 0 Xi (29) 

Xi   = 

0 

fl-GPA.t    3;(3ender,i    3;Efficacy,i    3^Engagement,t    3^Adaptability,i    il,i    ■'2,i 

PGPA    ^Gender    ^Efficacy    ^Engagement    ^Adaptability    01    ^2 

where Ii and I2 are the indicator variables and 61 and #2 are the corresponding thresholds. 

In Table 8, the accuracy of the POLR and PQL model predictions is shown, using an "error matrix". 

The true category is shown in each row of the matrix, and the model predictions are shown in each column. 

Thus, when the observed category is 0, the PQL model predicts Category 0 for 60%, Category 1 for 24%, 

and Category 2 for 16% of these observations. Ideally, the error matrix is the identity, indicating that all 

categories are predicted perfectly. For the PQL model, the diagonal elements of the error matrix are all 

higher than the corresponding elements for the POLR model's error matrix (i.e., the PQL model is more 

accurate than the POLR model). One metric for measuring the model accuracy is the "error rate", which 

equals one minus the average of the diagonal elements. For the PQL model, the error rate is 48% versus the 

Table 8: Error matrices for performance potential. 
PQL POLR 

Predicted Predicted 
Observed 0 1 2 0 1 2 

0 0.60 0.24 0.16 0.53 0.21 0.26 
1 0.30 0.31 0.39 0.33 0.24 0.43 
2 0.12 0.23 0.65 0.21 0.19 0.60 
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Table 9: Error matrices for group conflict. 
PQL POLE 

Predicted Predicted 
Observed      0      1 

0 
1 
2 

0.91 0 0.09 
0.63 0 0.37 
0.28    0    0.72 

0 1 
0.93 0 0.07 
0.93 0 0.07 
0.88    0   0.12 

PQL model includes squad-level random effects on the intercept and the Adaptability slope. 

55% for the POLR model. Thus, the addition of random effects clearly improves the predictability of these 

data. Note that for both the POLR and PQL results, the middle category (i.e., the middle third of performance 

potential) is predicted the least accurately; a possible explanation is the thresholds, 0i and 62 are rather close 

to one another compared to the spread in the data. 

Results for Group Conflict and Psychological Health The same modeling approach was applied using 

the group conflict and psychological health response variables. Several models with different dimensions 

and groupings of random effects were examined, with the continuous methods and proposed dichotomization 

method. For both response variables, only squad-level random effects appeared to be significant. The error 

matrices for a POLR model and a representative mixed-effects model (estimated using PQL) are shown in 

Tables 9 and 10, respectively. 

For group conflict, neither the POLR or PQL model ever predicts the middle category. This may be 

the resuh of two factors: the difficulty of predicting the middle category (i.e., the predictions tend to be 

skewed toward the outer categories) and the small number of observations in the middle category (24% of the 

observations are m the middle category, compared to 47% in the first category and 29% in the last category). 

For psychological health, both models nearly always predict the last category (no signs of depression) and 

therefore do not accurately model observations in the first or second category. This tendency is most likely 

due to the lack of data for signs of depression: 82% of the respondents reported no signs of depression, 14% 

reported minor depression, and only 4% reported major depression. 

Clearly, the mixed-effects models estimated with PQL do not predict the categories where there are 

relatively few data very accurately. In Phase H, we will mvestigate whether a more accurate mixed-effects 

model can be estimated using a more numerically intensive method such as Gauss-Hermile Quadrature (i.e., 

whether such a model accurately predicts categories where there are few observations). 
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Table 10: Error matrices for psychological health. 
PQL POLR 

Predicted Predicted 
Observed 0 1 2 0 1 2 

0 0.01 0.10 0.89 0.01 0.09 0.90 
1 0.01 0.02 0.97 0.01 0.03 0.96 
2 0 0.01 0.99 0 0.01 0.99 

PQL model includes squad-level random effects on the intercept and the Efficacy and Engagement slopes. 
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3 Key Research Accomplishments 

• Re-implemented the Ime fimction in the R NLME package. 

• Developed analytic results for gradient calculation used in the Ime function, 

• Developed a method for modeling ordinal data approximately. 

• Demonstrated the method for ordinal data on simulations and ROTC data set. 

4 Reportable Outcomes 

• Technical report: "Computational Methods for Single Level Linear Mixed-effects Models" (DebRoy 

and Bates, 2003b) (Appendix A). 

• Technical report: "Computational Methods for Multiple Level Linear Mixed-effects Models" (DebRoy 

and Bates, 2003a) (Appendix B). 

• Presentation: "Converting a large R package to S4 classes and methods", to be presented at the Dis- 

tributed Statistical Conference, March 20-22,2003, Vienna Austria (Appendix C). 

• We intend to publish a paper on the proposed approach for modeling ordinal data. 

• The analytical results will appear in Mr. Saikat Debroy's Ph.D, dissertation (degree expected to be 

awarded Fall, 2003). 

5 Conclusions 

A prototype R package for estimating generalized linear mixed-effects models has been developed in Phase 

I of this research, A key fimction within the package is the Ime fimction. In Phase I, the Ime fimction 

•was reimplemented and is now faster and more accurate. Several analytical results were developed that, 

once implemented in the Ime fimction, will also improve the speed and accuracy of the package. Using 

the proposed dichotomization method, approximate GLMMs may be estimated for ordinal data. The results 

for a simulation study and real data sets indicated that these approximate models can predict ordinal date 

reasonably accurately, but tend to be skewed toward the firet and last categories and do not accurately predict 

in categories where there are few observations. A more refined numerical procedure for estimating GLMM 
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parametera, which will be investigated and developed in Phase II, may be needed to model these situations 

better. 
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Abstract 

Linear mixed-effects models are an important class of statistical models 
that are used directly in many fields of applications auid sire also used 
as iterative steps in fitting other types of mixed-effects models, such as 
generalized linear mixed models. The parameters in these models are 
typically estimated by maximum likelihood (ML) or restricted maximum 
likelihood (REML). In general there is no closed form solution for these 
estimates and they must be determined by iterative algorithms such as 
the EM algorithm or Fisher scoring or by general nonlinear optimizers. 
We recommend using a moderate number of EM iterations followed by 
general nonlinear optimization of a profiled log-likelihood. In this paper 
we present a method of calculating analytic gradients of the profiled log- 
likelihood. This gradient calculation can be implemented very efficiently 
using matrix decompositions as is done in the nime packages for R and 
S-PLUS. Rirthermore, the same type of calculation as is used to evaluate 
the gradient of the profiled log-likelihood can be used to implment an 
ECME algorithm. 

1    Introduction 

Linear mixed-effects (LME) models are widely-used statistical models that also 
are used as iterative steps in fitting other types of mixed-effects models such 
as non-linear mixed-effects (NLME) models and generalized linear mixed mod- 
ek (GLMMs). Some forms of nonparametric smoothing spUne models can also 
be viewed as LME models (Ke and Wang, 2001). 

•This work is supported by U.S. Army Medical Research and Materiel Command under 
Contract No. DAMD17-02-C-0119. The views, opinions auid/or findings contained in this 
report are those of the authors and should not be construed as an official Department of the 
Army position, policy or decision unless so designated by other documentation. 



The parameters in these models are typically ratimated by maximum likeli- 
hood (ML) or restricted maximum likelihood (REML). In this paper we consider 
ML and REML estimation of the parameters in LME models with a single level 
of random effects. In a companion paper (DebRoy and Bates, 2003) we gener- 
alize our results to models with multiple nested levels of random effects. 

Laird and Ware (1982) wrote the single-level linear mixed-effects model as 

yi = Xtfi + Zibi + ei,    6i~j^(0,o-2#-i),    Sj ~JV(0,(T=^J),    i = l,...,m, 

Si-LSj,    h^bj,    i^j;       etJ-bj,    allij 
(A-1) 

where j/t is the vector of length tit of responses for subject i; Xi is the TIJ x p 
model matrix for subject i and the fixed effects fi; and Zi is the rij x q model 
matrix for subject i and the random effects bj. The symbol ± indicates indepen- 
dence of random variables. The columns of the model matrices Xt and Zt are 
derived from covariates observed for subject i. The maximum likeHhood rati- 
mates for model (A-1) are those parameter values that maximize the likelihood 
or, equivalently, maximize the log-Ukelihood, of the statistical model given the 
oteerved data. 

1.1    Log-Likelihood Function 

When defining the parameter space for the model (A-1) we must take into 
account that the matrix # is required to be symmetric and positive definite. 
Instead of using elements of # as parameters we will use 0, which is any set 
of non-redundant, unconstrained parameters that determine # (some choices 
for the mapping 0 i-^ # are given in Pinheiro and Bates (1996)) and write the 
log-likelihood for model (A-1) as 

e(13,ff2,e|y) = -- [nlog(27r<7^) - mlog |«| -I- ^log\ZiZi + «|] 
1=1 

1    "* 
- 2^2 E (»* - ^<'3)'(J - Zi(ZiZi + ^r'ZiKVi - Xi0)    (A-2) 

1=1 

where y is the concatenation of the yi,i = 1,... ,m and n = J2lLi"» b the 
total number of observations. 

It is straightforward to determine the conditional ML ^timates PML{0) and 

<T^ML(0) and the conditional modes of the random effects 6iO, 0), i = 1,..., m 
given 6 as 

$MLi0) =    J2 ^i^T'^i       E Xi^T'Vi (A-3) 
\t=l /     »=1 

^      Eii (vi - xSumSii-^ u - xSum) 
<T^ML(e) =  ^ 1 i 1 (A-4) 

6<(A 6) = {Z'iZi + ^r^ZHvi - Xil3) (A-5) 



where 

Si = (l- Zi(ZiZi + #)-i^/)'' (A-6) 

1.2    Log-Restricted-Likelihood function 

The rffitricted maximum likelihood (REML) estimate can be obtaiined by max- 
imizing 

where L{l3,a^,0ly) is the lilcelihood fimction for single-level LME model. We 
are more interrated in the log-r^tricted-likelihood, which is 

1 r *" 
iR (ff^6\V) = -2 [(n -P)log(2w<r2) - mlog |#| + J^log iZ'^Zt + «| 

m 

+ 5]log|X|SriXi| 

1   "* / 

Because IR is not a fimction of 0 there is no "REML ratimate" of 0. It is, 
however, traditional to use the conditional ML estimate (A-3) evaluated at the 
REML estimate of 0, We can compute the conditional REML ratimate of a^ as 

-~ Eii (vi - xjMi(0))'s-i (vi - xSMm) 
a^REMm = ^ i- i L (A.8) 

n — p 

1.3    Estimation of 0 

Results (A-3) and {A-4) show that we can provide ainaJytic expressions to evalu- 
ate the profiled log-likelihood l{0) = 1{PML(0),O'^ML(0),0), which is a function 
of 0 only. Using (A-8) we can also caJculate the profiled log-restricted-likelihood 

iR(9) = IR(O'^RBUL(0), 0). Note that although (A-3) and (A-4) show that we 
can evaluate a profiled log-likelihood, they are not good computational formulas 
for doing so. Efficient computational methods for evaluating t{d) and tR{0) are 
described in Pinheiro and Bates (2000) and summarized in §2.3. 

It is generally much easier to determine the ML (or REML) ratimates by 
optimizing I (or IR) rather than I (or IR) when \m\ng a general optimization rou- 
tine because the parameter vector is of smaller dimension - often much smaller. 
Another way we can make the optimization problem easier is by providing an- 
alytic gradients of the profiled log-(restricted)-likelihood. It is possible to use 
numerical gradients in optimization but anaJytic gradients are preferred as they 



provide more stable and reliable convergence. In section 2 we derive the ana- 
lytic gradient of the profiled log-(restricted)-likellhood and show how it can be 
computed accurately and efficiently. 

A third way to make the optimization problem easier is to use good starting 
values. The EM algorithm provide a way of refining starting estimates before 
beginning general optimization procedures. In section 3 we derive EM and 
ECME iterations for ML (REML) estimates of model (A-1) and show how these 
updates may be applied efficiently. 

Finally in section 5 we discuss some connectioiB between the gradient result 
and the ECME iterations. 

2    The gradient of the profiled log-likelihood 

Because the partial derivatives of t with respect to /9 and a^ at the conditional 
^timatra PML(0) and tr^MbiO) must be zero, the first two terms in the chain 
rule expansion of the gradient 

^ _ dp' at , ae da^ 
de dJB dp    da-^ d0    f^^j^^X a{*} J y dB 

wUl vanish, leaving only 

do   ^Ittewly do ^A8) 

When evaluating (A-9) we must again take into account the symmetry of #. 
We define a special form of the derivative of a scalar function with respect to a 
symmetric matrix for this. 

2.1    Derivatives for symmetric matrices 

Let /(#) be a scalar fimction of the g x g symmetric matrix #. We will define 
the symmetric matrix derivative of /(#) with respect to # to have elements 

This definition has the property that if # is a function of a non-redundant 
parameter, such as 6, then 

with the sum in (A-11) being over all the elements of #, not just the upper or 
the lower triangle. 



Another way of regarding definition (A-10) is to consider Y, a general qxq 
matrix (i.e. not restricted to being symmetric) that happens to coincide with 
#. Then 

d{*}-'^^~ 2 

That is, the derivative gAy/C*) can be obtained by differentiating the scalar 
function with respect to # dteregarding the symmetry, then symmetrissing the 
result. 

Using this approach and standard results on matrix derivatives (Rogers, 
1980) we have the following rraults for # and .4 symmetric qx q matrices and 
a, 0 vectors of dimension q. 

^   (a'*^) = ^:±^ 
d{#} 

^(a'(A + *)-^)=-(A + *)-5£±^(^ + *)- 

d{*} 
d 

dm 

tT(%A) = A 

d{#} 
log|^ + #| = (A + «)-i 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

2.2    Gradient of the profiled log-likelihood 
Using the results of the previous section we can express the partial derivative 
of the log-likelihood(A-2) with respect to # as 

dl 
d{«} 

i=l 

dlog\ZlZi + #1 
a{»}   ' ^      am 

- ^^ E(^f^*+^r'Hivi - xtrnvi - Xi0YZi(ziZi+#)-! 



In the profiled log-likelihood the last term can be expressed using the conditional 
modes (A-5) providing 

de~^^Ad{m 
»=i j=i I   "^   ^ 

9      9 

t=l 3=1 
EE - E 

dB 

dB 

(A-17) 

2.3    Efficient computation of the gradient 

Pinheiro and Bates (2000) describe methods for evaluating the profiled log- 
likelihood using a relative precision factor A, which is any qxq matrix satisfying 
A'A = #-ij and a series of QR decompositions of the form 

= Qi 

followed by 

■RiiO) •Rioo) 
0   J '     \Rooij) 

■Roo(i)     Co(i) 

Qi and 
L^(i)J 

= QJ 

Qo 
%Q Co 
0 C-l 

0 0 

Vi 
0 

■ (A-18) 

(A-19) 

.^O(ni)     C0(m). 

These decompositions provide easily solved triangular systems of equations 

BmfiiO) = Co (A-20) 

RimHe) = ci(i)-Rw[i)$(e) i = i,...,m (A-21) 

for the conditional estimates of 0 and the conditional modes of the random 
effects. The conditional estimate of a^ is ff^(0) = c^i/n and (Z^Zi + #)~^ = 

■'*ii(j)-'*ii(0- 
using these r^ults and taking one more QR decompceition 

[blML/^ML     [Rnm)     ■••     bmMhl^ML     \Ru(m))\   =UA (A-22) 

we can evaluate the gradient of the profiled log-likelihood as 

f = -lEECC^'^k -«**^)|*yW (A-23) 
i=l j=l 

where (A'A)ij and #*•' are the (i, j)-th elements of A'A and #~* respectively. 

2.4    Gradient of the log-restricted-likelihood 

Using the same argument as used for log-likelihood, to compute the gradient 
of the profiled log-restricted-likelihood, we only need consider the the partial 



derivative of tlie log-restricted-likelihood (A-7) with respect to # whicli can be 
computed to be 

diE 1 
a{*}      2 

1  d 

aiog|#| , ^d\og\ziZt + ^ 
' dm +E- a{*} 

%-' + Y,(zlZi + 9)-^ 

1 _"^_ / M \ 

«=1 

Using (A-S) and the decompositions in §2.3, the profiled log-restricted- 
Hkelihood can be written as 

dl    ^A f dip 1    d#„ 

'     *   r     1    *"    hh' -1 
"E E{-2 E [-H- + -RnW (j^'iKo) 

1=1 i=i »=i    " 

J/y d# 

If we take the QR decompc^ition 

b'lML/^RBML 

(*u(i)) 

(^U(m)) 

.(^ll(m)^10(ni)-RM j , 

(A-24) 

URA R-fi-R (A-25) 



we can compute the profiled log-restricted-likelihood as 

3    EM and ECME algorithms for LME models 

The EM algorithm (Demi»ter et al., 1977) is a general iterative algorithm for 
computing maximum likelihood estimates in the presence of missing or imob- 
served data. In the case of LME models the typical approach to using the EM 
algorithm is to comider the bi,i = l,...,m m unobserved data. In the termi- 
nology of EM algorithm, we call the given data yt the incomplete data and yi 
augmented by bi the complete data. 

The EM algorithm has two steps: in the E step, we compute Q, the expected 
log-likelihood for the complete data and in the M step we maximize the expected 
log-likelihood with respect to the parameters in the model. 

Liu and Rubin (1994) derived the EM algorithm for LME models using dj 
as the missing data. In same paper they also introduce expectation conditional 
mammization either (ECME) algorithms, which are an exteiBion of the EM 
algorithm. In ECME algorithms the M step is broken down into a number of 
conditional maximization steps and in each conditional maximization step either 
the original log-likelihood i or its conditional expectation Q is maximized. The 
maximization in eewih step is done by placing constraints on the parameters in 
such a way that the collection of all the maximization steps is with respect to 
the full parameter space. 

Liu and Rubin (1994) provide an example of an ECME algorithm for LME 
models. An alternative approach (van Dyk, 2000) uses other candidates for the 
unobserved data in LME models but we will not pursue that here. 

3.1    An EM algorithm for LME models 

We firet describe the EM algorithm obtained with bt as the missing data. We 
denote the current values of the paffametets by 00, OQ and do, which generates 
#0. These are either starting values or values obtained from the last E and M 
steps. The parameter estimates to be obtained after an E and an M step are 
01, o-f and di, which generates #i. It happens that in the EM and ECME al- 
gorithnM we can derive #i directly without forming 0i so we will write formulas 
in terms of #i. 



The log-likelihood for the complete data is 

m 

2i±«log(2wa=)-te*-^'^-"^^*ll 

+E 

2(T2 

log 1*1 1    11*1 
2<T2 

#>/%! (A-26) 

and the conditional distribution of the random effects is 

bilVi, A), trl #0 - J^r (6,(^0, *o), (Z'iZi + *o)-'<r|) (A-27) 

where &i(Ai»*o) is the conditional expected value of bj (also the conditional 
mode) given in (A-5). 

In the E step we compute QO,a^,#|y,^o»<''o.*o)) the conditional expec- 
tation of t {0, ff^, #|y, b) as defined in equation (A-26). 

0(A<T2,»|y,^o,ffi,«o) 

 5—log(27rCT )-■ = E.|«E[-^log(2. 
2<T2 

-I- 
log|«|     11*1/25, IP 

2<r2 

 2— logl2wo- ) - 2^ Efc.,^, —  

-f-log 1*1-2] 2 

n-l-TO^ 

Et,|yJ|*V%i|p 
2(T2 

2     log(2wff2)-|--log|#| 

y^j||*^/2S«(ft,*o)|p  ^ tr[*gg(g|g<-h*o)-i] 
20-2 2<T2 

y^ j lltfi - g<S<(A), *o) - Xj^lP  ^ tr [g{gigg(Z|Z< -I- *o)-'] 
2(T2 2ff2 

(A-28) 

In the M step, we maximize the expected log-likelihood defined in equation 
(A-28). To do that, we differentiate Q(fi, a^, *|i/, ^O) <fot *o) with respect to fi, 
{p' and #. 

5^       h 
Vi - Zibi - Xi0 

A = (E ^»'^') E ^.' (» - ^fii) 
(A-29) 



We use (A-12), (A-14) and (A-15) to compute the matrix derivative of (A-28) 
with respect to #. 

a 
am Q(0,a^,9\v,0o,4,^o) 

1    d 

+ 

£ {||*V2S,|p + tr [*a|(2|2, + *o)-i]} 

2 a{«} 
-I      Si 

«=i 

log|#| 

^ + %Z|2, + *o)-^-«- 

Ekiuatii^ to the zero matrix and substituting a\ for (P' 

*r' = ;;^ E {SiSJ + 4{z[z, + *o)-'} 
1 (=1 

2 =^    #1 = maf 

Finally we differentiate (A-28) with respect to a^ to get 

(A-30) 

(A-31) 

n + mq 
20-2 

+ J- ^ H^^^%IP ^ tr[#a§(g|Z< + #o)-i] 
2<T4 2£T4 

_^ ^ ^ fa-gtSi-X<^f _^ tr[g|g<gg(g|g, + #o)-i] 
2ff4 2ff* 

Again equating to zero and substituting Pi for 0 amd #i for # we get 

2 _ ™   f |«M2||£     tr [*icri(^|2, + *o)-i] 
mg n + »ng 

_!_ y ^ \\m-Z$i-Xil3if _^ tr [ZlZi4iZ'iZi + «o)-i] 
«=i 

n + mg n + mq 

(A-32) 



We can now substitute the value of #i from (A-31) in (A-32) to get 

M s -1 m   I , m .   _i 

t=i I S=i / 
m 

'tr 
\-1 

} 

+ E {ll»* - ^A - ^*A IP + tr [Z'tZi4iZiZi + #o)-']} 

Using the fact that J21Li tr(j4j) = tr (J^Jlj ^j) we can show that the irst two 
terms together are equaJ to mgo-f. Therefore 

'^J = ;; E {IIW* - ^*S« - ^A f + tr [ZlZi4(ZiZi + #o)-']}      (A-33) 

3.2    Efficient computation of #i 

To compute #i we use the same results as in §2.3 except that the conditional 
means of the random effects are scaled by ^o, not a{B). That is, the orthogonal- 
triangular decomposition we use is 

[SiM    (R-,\^)    ...   S„/ao    (B-»„j)]' = t/iAi (A-34) 

The qxq upper triangular matrix Ai provide #i as #i ^ = ^£i (^A^^)'. 

4    An ECME -rariation to the EM algorithm 
Consider the ECME algorithm for estimating the LME model 

1. Maximize Q over # by fixing a"^ to 5Q and fi to /3o to obtain #i. 

2. Maximize I over P and tr* by fixing # to #i to obtain 0i and ?f. 

Note that in the second maximization step, the constraint is only on #. So, Sf 
and 01 are ssune as the ML estimates of a^ and 0 given # = #i. 

The matrix A we will use to compute this #i is exactly the triangular factor 
from (A-22) and 

By taing the ECME algorithm we avoid computing the EM estimate of a"^ 
at each step and instead use SQ, which is much simpler to compute. It is clear 



that at the stationary point, the two updates coincide and fiirthermore tliis 
ECME algoritlim behaves at least as well as the EM algorithm because using 
the ML ratimate for a^ can only increase the value of the log-likeHhood, The 
formal justification for ECME algorithm is a more rigorous proof of this heuristic 
argument. 

4.1    ECME algorithm for REML 

To obtain a REML ECME algorithm we consider fi to be part of the missing 
data. 

in 
nj+g 

log hmo^ 
m-Xi^-Zihi\ 

+E 

2ff2 

2 2<T2'I 'I^ 
(A-35) 

(A-36) 

(A-37) 

The joint conditional distribution of fi and the 6<'s is 

h0, Vutrl^o-M (Si, (Z'iZi + *O)-^«T|) 

where Sjo is defined by (A-6) with # = #o. 
For the E step we have to compute QH(o'^,*|y,o-oi*o), the conditional 

expectation of in, 

QR(o•^*|y,ff|,*o) 

=%l„[£bl^.„€B(<T^*|tf)] 

= E, mv 
n + mq,    ,„    o, . m,    ,_. 
 2"^ log(2irff2) + j log 1*1 

-E Vi - Zfiiifi, #o) - Xifif , tr [ZiZi4iZiZi + #o)-i] 
2a2 + 

20-2 

)|p     tr[#«Tg(g|Z, + #o)-i] 

(A-38) 

We can now specify our ECME algorithm as 

1. Maximize QR over # by fixing a^ to SQ to obtain #i. 



2. Maximize (.R over a^ by fixing # to #i to obtain fff = O^REUL- 

In this ECME algorithm we only need to maximize Q/j with respect to #. 
So we only have to compute the expectation of the fifth term in (A-38), Other 
terms are either free of # or they are constants. Now 

%|„ [||«V2g.(^^^j,)||2j ^ pl/2S.(|jj^^(#o),#„)|| 

+ tr 
M 

^(ZiZi + «o)-'2|Jfi ("£X'jlijiXj j     XiZiiZlZi + #o)-Vg 

So the gradient of QR with respect to # is 

^   0(a^*|y,<T|,«o) dm 
j d_ 

"2(Tfa{*} 

_i ^ 
2<rf S{#} 

£ {||*i/^8,|p + tr [^4(ZlZi + *o)-^]} 

tr ^(ZiZt + ^or'ZiXi (j^XjEJoiX^ 

X|2i(Zi^i + *o)-Vi 

5 E[f+^(^;^.+*.)--*-' 

XiZi(ZiZi + 9or 

We equate the above to the zero matrix, use O-Q = o-^ = (T^REML and the 
decomposition (A-25) to get the EM update #J'^ = s/m{A^^y. 

5    Discussion 

Although not obvious from the derivations it should not come as a surprise that 
the gradient and of the ECME update for ML criteria both involve the same qxq 
matrix A. If the EM algorithm has converged so the matrix # te a stationary 



point then A = TO#~^/^ and the gradient of the profiled log-Ukelihood is zero, 
as it should be. The same also holds for the REML criteria with AR = TO*"^/^ 

at the stationary point. 
The ECME algorithm presented in §4 can be viewed as an attempt to make 

the gradient zero by setting # to be the matrix that would make the gradient 
zero if A does not change. 
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Abstract 

In an earlier paper we provided easily-calculated expressions for the 
gradient of the profiled log-likelihood and log-restricted-likelihood for 
single-level mixed-effects models. We also showed how this gradient 
is related to the update of an ECME (expectation conditional maxi- 
mization either) algorithm for such single level models. In this paper 
we extend those results to mixed-effects models with multiple nested 
levels of random effects. 

1    Introduction 

In an earlier paper (DebRoy and Bates, 2003) we derived the gradient of the 
profiled log-likelihood and the log-restricted-likelihood for a linear mixed- 
effects (LME) model with a single level of random efiects. In the Laird- 
Ware (Laird and Ware, 1982) formulation this model would be written 

Vi = Xifi + Zibi + £i,    6j ~ JV(0, CT2#"^), 

£i ~ jV(0,a^J),    i=l,...,m, (B-1) 

Si X €j,    bi X bj,    i 7^ j;       £j X 5j,    all i,j 

*This work is supported by U.S. Army Medical Research and Materiel Command under 
Contract No. DAMD17-02-C-0119. The views, opinions and/or findings contained in this 
report are those of the authors auid should not be construed ^ an official Department of 
the Army pc»ition, policy or decision untes so designated by other documentation. 



where yi is the vector of length n^ of r^ponses for subject i; Xi is the 
Jij X p model matrix for subject i and the fixed effects fi; and Zi is the 
mx q model matrix for subject i and the random effects bj. The symbol 
± indicates independence of random variabte. The columns of the model 
matrices Xi and Zi are derived from covariates observed for subject i. 

The final computational formulae are based on a relative precision factor 
A, which is any q x q matrix satisfying A'A = *~^, and a series of QR 
decompositions of the form 

m 
= Qj 

Rn(j) Rmij) 
= Q'i 

\Xi\ 
[A\ L   0 Rmijl 0 

and -Q'i 

followed by 

and 

= Qo 
^0 ca' 
0 C-l 

0 0 

giving the gradient of the profiled log-likelihood as 

CB-2) 

(B-3) 

(B-4) 

(B-5) 
t=i j=i 

where (A'A)ij and #'■' are the (i, j)-th elements of A'A and #~^ respec- 
tively. 

For the log-restricted-liltelihood, the objective function optimized by the 
REML estimates, decomposition (B-4) is replaced by 

^XMLI^RBML 

(«U(l)) 

\RlHm)RlO(m)Rm) 

URAR CB-6) 



Furthermore an ECME update of A can be calculated as 

*f = ^(A^^)' = ^^(A^l)' 

for maximum likelihood (ML) ratimation or the same expression with An 
in place of A for REML estimation. 

In this paper we generalize these results to linear mixed-effects models 
with multiple nested levels of random effects, 

1.1    Multilevel LME models 

A general Unear mfaced-effects model would be written 

y = X0 + Zb + £ (B-7) 

where y is the response, X and Z are fixed effects and random effects model 
matrices, 0 is the vector of fixed effects parameters, b m the random effects 
vector and e is the error vector and both b and e are assumed to have 
Gaussian distributions. 

We will comider specific forn^ of (B-7) that generalize (B-1) to multiple 
nested levels of random effects. Such modeb are sometimes called multilevel 
models (Goldstein, 1987) or hierarchical linmr models (Raudenbush and 
Bryk, 2002). Let Q be the number of nested levels of random effects. We 
will number the levels so that the Q-th. level is innermost. That is, the level-1 
random effects apply to the largest groups of experimental units, the level-2 
random effects to the next largest groups nested within the largest groups, 
and so on, up to level Q. The fixed effects fl apply to all the observations 
which could be considered as a single group of observations at a hypothetical 
zeroth level of grouping. 

Two typical examples of nested classifications of experimental units re- 
sulting in such multilevel data are students within classes within schools 
within school districts in an educational system or soldiers within squads 
within platoons within companies within regiments in an army. In the ed- 
ucational system we would call the school districts level 1, the schools level 
2, and so on. In the multilevel modelling hterature the levels are often 
numbered in the opposite order; from innermost to outermost. 

We will assume that the observations are ordered so that observations in 
the same group are adjacent for all Q levels of nested clMsification. At the 
f-th level of classification we will number the groups from 1 to TOJ, the total 
number of groups at that level and write indices according to the group 



number and the level. That is, we will write the level i response vectors 
as |/i0) of length nnj^,j = 1,...,»nj. We will extend this notation to the 
hypothetical level 0 for which mo = 1 and no(i) = n, the total number of 
observations. 

The model matrix for the fixed-effects b X of size nxp. When discussing 
a particular level of groups we will refer to the submatrices consisting of the 
rows of X for group j at level i as X^yj of size n^y) x p. Recall that "level 
0" corresponds to the fixed-effects which apply to all n observations so that 
V = yo(i) and X = XQ^I). 

The random effects at level k, bfey), j = 1,.. • ,»Wfc are each of dimeiBion 
Qk- The corresponding model matrices are of size »fe(j) x ft. At times we 
will need to refer to the rows of the model matrix for the level k random 
effects corresponding to group j at level i, which we designate as Z/^^y The 

model matrix Z for the complete set of random effects 6 = fdg,... ,6i) 

where 6i=(6j(ij,...,6j(^J is 

Zx] 

where each ZJ is defined to be 

Zi = 

Zi: (1) 0 
Zu(%) 

0 0      0 

1,...,Q 

Notice that the model matrix Z can be completely defined firom components 
of the form Zn(j^,i = 1,..., Q, j = 1,,.., rrij. The notation Z^.^^-^ tor k ^i 
is used simply to designate the rows corresponding to group j at level i of 
the model matrix for the level k random effects. 

The model specification k completed by specifying the distribution of 
the random effects and the random noise e 

'MiO,a^I) Mi) ■M{Q,<P^i^) 

bk(i) -L bkU)' » ^ i all fc,    s X bk(i), all i, k   bk(i) ± 6fc'(j) k ^ k', all i,j 
(B-8) 

where L indicates independence of two random variables. The relative dis- 
peraion matrices #j, t = 1,..,, Q are gathered as 

Q 

^A = 0(J»r.Q_(+, ® *Q-<+l) 



These matrices must be positive definite, symmetric matrices. We use 6, to 
represent a non-redundant, uncoiKtrained parametrization for #i,..., #Q. 

The log-lilcelihood for y is given by 

i {fi,a^, e\y) = -i [nlog(2w2) + log \J + Z^-^Z'\ 

Using the identities 

+ -i(v-X/3)'(l + Z#^iZ')  ^{y-X0, 

.,   „      xZ'Z + ^A 

(J + Z^2^Z')~^ = 1- Z{Z'Z + %AT^Z' 

we can rewrite the log-likelihood as 

i 0, <T2, e\y) = -^ [n log(27r<T2) + log \Z'Z \^A\- log |*^| 

+ ^(j, - X0i{l - Z(Z'Z + %A)-^Z')(y - XP)]    (B-9) 

For a given value of 0, the conditional ML estimates of fi and a^ are 
given by 

pML(e) = Sx^' (/ - Z{Z'Z + ^AT^Z') y (B-10) 

O^MLW = ^ (l/ - XPML){I - Z{Z'Z 4- *^)-^Z') (» - XPML)  (B-11) 

where 
Sx - {X' (J - ^(^^2 + %A)-^Z')~^ X)~' (B-12) 

and the log-restricted-likelihood is given by 

tR (CT^ 6\y) = -- [(ji - p) log(2w2) + log \Z'Z + *A| - log \^A\ 

+ log IJf' (/ - Z(Z'Z + ^AT^Z') X\ 

+ ^{y- Xfi)'{l - ZiZ'Z + ^Ar'Z')iy - X0)]    (B-13) 

Because in is not a fimction of fi there is no conditional "REML esti- 
mate" of 0. (It is, however, traditional to \me the conditional ML estimate 



(B-10) evaluated at the REML estimate of © as the final estimate of /B.) We 
can compute the conditional REML estimate of a^ as 

O^REML{6) = 
{y - X^ML){I - Z{Z'Z + ^AT^Z') (V - X0ML) 

n — p 
(B-14) 

As we can obtain analytical expressioiK for the ML estimate of j9 and the 
conditional ^timatra of a^, we can optimize with respect to 0 only. That 
is, we optimized the profiled, log-likelihood 1(0) = t{PML{6)i<^'^ML{Q)JO) or 
the profiled log-restricted-likelihood iR{0) = £(fiML{0),(r%EMLW'^)' 

1.2    Efficient computation of the log-likelihood 

The decomposition methods (B-2) and (B-3) for evaluating the profiled log- 
likelihood or log-restricted-Ukelihood were dracribed for both single- and 
multiple-level LME models in Pinheiro and Bates (2000, chap. 2). In De- 
bRoy and Bates (2003) we showed that these decompositioiK followed by 
(B-4) can be used to calculate the gradient of the profiled objective func- 
tion and to provide an ECME update. Here we generalize the calculation 
of the profiled log-likelihood or log-restricted-likelihood to multiple levels of 
random effects. Later we will show how the generalization of the gradient 
and ECME calculations. 

Consider the Choteky factorization 

itR 

where R is upper triangulax. Because of the structure of Z and #A we can 
partition R as 

Z'Z + ^A Z'X Z'yl 
X'Z X'X X'v 

.   y'z y'x y'y. 

RQQ ... RQ2 RQI RQO CQ 

0 ... R22 R2I R2O C2 

0 ...      0 Jill JRio ci 
0 ...     0        0 Rm Co 
0 ...     0        0        0 c_i 

where for i > 1 Ra = diag(Jijj(i),..., Rii(mi)y each Rmj) is upper triangular 
of size Qi X qi. Because we have ordered the observations so that the groups 



are in adjacent rows, we can eiaure that for i > l,j > 0 

Rij{i,i) 0 ... 0 

Rij 

%(n»y(l),l) 0 

0 %(my(i)+l,2) 

0 ■''ii(»ny{i)+my(2).2) 

0 
0 

Rij(mi-miji^^y+l,mj) 

" • • • • • • "•ij(mi,mj) 

where Rij(ki) is a general matrix of size qi x qj and »ny(fc) is the number of 
level-i groups which are nested within the fc-th level-j group. Ako, for i > 1 

Ci = 

CHI) 

PUmi), 

•RiO 

^O(l) 

.■RjOCnij). 

where Cj^j is of size qi and Rio(j) is of size g, x p. 
Instead of computing the R matrix from a Cholesky factorization, we 

use a series of QR decompositions to obtain Rmk) and Rij^ki)- When Q = 1 
these decompositions are exactly (B-2), The decompositioia for Q = 2 are 
shown in detail in Pinheiro and Bates (2000, chap. 2), 

In terms of these decomposed matrices the profiled log-likelihood and 
log-restricted-likelihood are 

Q   mi 

l(%) = const-n|c_i|| + J^^(log|Ai| -log|Bjj(fe)|) 

^RWV) = amst - (n -p)|c_i|| - log |lJoo| 
Q    mt 

+13 H 0°s l^il - log \Rim\) 
t=i fe=i 



2    Gradient of the profiled log-likelihood 

Exprrasion (B-5) for single level LME models is derived in DebRoy and 
Bates (2003) For multiple levels this generalizes to 

(B-15) 

where jm-r denotes the partial derivative of I with respect to the symmetric 
matrix #fe, ^ defined in DebRoy and Batra (2003), 

We can ako write it as l^f^j a^T * ^ where the TO x n matrix A*B 
is the star product (Rogers, 1980) defined by 

p     9 

{A * B]ij = 2J zJ ■^k,lBlk-l)m+i,(l-l)n+j 
fc=i 1=1 

with A of size px q and B of size mp x nq, 
The partial derivative of (B-9) with respect to #4 is given by 

1 

dlog\Z'Z + mA\     dlog\^A\ 

d 
H^A} J 

1[{Z'Z + ^A)-'-^-/] 

■^(Z'Z + ^Ar^Z'X(v-X0) 

{y-Xp)'X'Z{Z'Z + ^Ar^ 

^+iz'z+^Ar'-n' 



In order to compute the derivative with respect to #, we need 

d Q 

4©W 

d 

mg-k+i '*0- Q-k+1) 

= © aM^^'"''-*^' ® *^"''^'^ ^^"^^^ 
Q 

=e« n»Q-*+l 
fc=l 

a#Q-fc+l, 

where ^=Oifi^fcand^ = vec(I,,) vec'(J,J, 

Let (^'2 + #A)" be the block in {Z'Z+%A)~^ that corresponds to the 
Z'^Z^ block in Z'2 and {Z'Z + #A)"^*' be the block in {Z'Z + ^A)"^ that 
corresponds to the ^Lw'^MCfc) block in Z'Z. 

Using (B-16), 

ai di a*. 
a{*i}   a{#^}  a{*i} 

5| + (Z'2 + #^)-i-#-i 

' ^(^niQ-fc+i ®    5^;-   ) 
fe=l 

a*i 

^ + (2'Z + #4«-(J„, \-i 

* (Jmj ® vec(I,.) vec'(J,J 
1   rrii 

Hk)K(k- m + (^'2 + #4"W_^ M(fc) 

fe=i L 

*vec(J,.)vec'(J,.) 

fe=l L 

Hk)bi(k (fe) 
+ (2'^ + *A) 

»»(*) _ ^-1 



We can now write the gradient of the profiled log-lilcelihood as 

E di       d*i * 
r; «{*i)   de 

EE E 
i=l  k,l  Kj=l 

+ (z'z+#4f(^)-#ri 
fei 

d{^i}ki 
de 

2.1    Gradient of the Log-Restricted-Likelihood 

The partial derivative of (B-13) with respect to #^ is given by 

a{#A} 
lR{(T^,^A\y) 

d\og\Z'Z + %A\     dlo%\%A\ 
d{^A) 

d 

(B-17) 

-(v - xfi)'{i - z{z'z + *4)-^z')(v - X0) 

1 a log |x^ (f - zjz'z + ^AT^Z') X\ __ __ 

= -\[{Z'Z + %A)-'-^f] 

- -^{Z'Z + ^AT^Z'X (y - XP) 

(y-XfiYX'ZiZ'Z+^A)-' 

- \{Z'Z + %AT^Z'X11XX'Z{Z'Z + ^A ,-1 
2 _ 

+ {Z'Z + #^)~^ Z'XSx^'^ {Z'Z + #A)"* 

^i^ 



Let 

.-1 {Z'Z + #^)  ^ + {Z'Z + *A)"^ Z'XllxX'Z (Z'Z + *^) 

S21     S; 22 

where Sy is of size mjgi x rrijqj and 

SM(1) Sjj(i2) 

SQI   SQ2 

'M(lnii) 

52Q 

SQOJ 

'M(21) 

pii{m,il) 

3M(2) 

O.v :(mj2) 

^M(2Tni) 

^ii(mi) . 

Using (B-16), 

diR dlR dD, 
a{#i}   a{#^}  d{^i} 

n§+(^'^+*.r 21^2 

fc=l 

a 

a* O-fe+l 

g- + S« - (J„, ® #i)-l * (Iroj ®vec(I,Jvec'(J,.)) 

1   nii 

fe=l 

fe=l 

hkA(k) 
a 3— + *«(fc) - *i *vec(I,Jvec'(I,.; 

(fc) 
+ Siiik) - # -1 

2.2    Efficient calculation of the gradients 

As discussed in §1.2 we do not use the analytical formulas derived here 
directly when computing the gradients numerically. Instead we use the 
decomposed matrices. 



First of all, for i> j define 

T ■ — 

"■iHl)^ik^iJimj)inj)'^jj{mj). 

Generalizing the approach taken in DebRoy and Bates (2003) we compute 
the QR decompostion 

= UiAi {B-18) 

Then the gradient of the profiled log-likelihood is given by 

i = -| EEE((^5^)ife - '"*f )|{*aifc(e)      (B-19) 
t=i i=i fc=i 

In the case of the REML gradient, there are some extra terms in the 



decomposition 

h(mi)^RML 
U(mi) 

M,Q 

= URiAm (B-20) 

Then the gradient of the profiled log-restricted-likeUhood 'm given by 

i = -| E E E((Aki^ffi)ife - m*f)^{*aifeW (B-21) 
1=1 3=1 fc=l 

3    ECME Algorithm for linear mixed effects mod- 
els 

DebRoy and Bates (2003) presented an ECME algorithm for single-level 
LME models. Here we extend that algorithm to multiple nested leveb of 
random eifects. 

Using 6 as the missing data, the log-Ukelihood of the complete data is 

Q 
€ 0, (7=, 0\y, 6) = -| [(„ + ^ muqk) logil-Ka"^) 

+ ^\\y-Xfi- Zhf - log |#A| + ^b'*A6]    (B-22) 

In subsequent discussion, we will assume that the current values of the 
parameters are fio, O-Q and ^o- These can be either the starting values or 
the values obtained from the last E and M steps. The parameter estimates 
to be obtained at the end of the current E and M steps are fix, o-f and d\. 
We also use #^o = ^A(QQ) and %AI = *>i(fii). 

The conditional distribution of the random effects is given by 

6|i/,A,ffo.0o-JV(S,(^' ̂  + # AO) ^0) (B-23) 



where 6 is the expected value of 6 and te given by 

b=iZ'Z + ^Aor^Z'iy~X/3o) fB-24) 

When evaluated at #^ these are called the best linear unbiased predictors 
(BLUPs) of &. 

3.1    The E step 

In this step we compute Q{0, a^, e\y, fica^, Oo), the conditional expectation 
of e {0,0-2,0\y, b) m defined in equation (B-22). 

Q(fi,a^,e\y,0o,4,eo) 

Ei Hv _n + E|iI^ log(2..=) - \lv-^fjm 

+ log|*A| liiil/21,112 

2 °' .g(2w2)-E5|„ 
2^2 

1/2M,2 

+ 2 log 1*^1 - 2ff2 

= ^J log(2n-(T^) + - log |*A| 

I 2(T2 + 2<T2 

(B-25) 

3.2    The M step 

We use the following ECME scheme 

1. Maximize Q over Q by fixing <p- at CT| and 0 at ^o to obtain Q^- 

2. Maximize I over fi and o-2 by fixing B at ©i to obtain 0\ and S^f. 



We only need to maximize Q with respect to d, which is equivalent to 
maximizing with respect to all the #»,» == 1,... .Q, First we must compute 
the paxtial derivative of (B-25) with respect to #A. 

||^QO,<r^ #A|y, ^0,4. *o) 

d 

2a-^d{^A} 
|#i/^Sf + tr [^A4{Z'Z + *Ao)-^: 

1 
+ - 

a 
2d(^A] 

log 1*^1 

66' 
[Z'Z + % AQ) 

\-l n' 
(B-26) 

Using (B-16), 

d 
jr^Q(fia^, #A||/, fio, <Tg, *o) 

dQ d%j 

d{^A]  a{#i} 

% + §(z'z+mA.)-'-^-^ 

e« s*. 0-fc+l 
n»0-*+i 

fe=l 
a{#i} 

* {Inii ® vec(J,() vec'(I,,)) 
TOj 

= - E ^!<^ + f|(Z'Z + *^„)'«_*-. 
fe=lL 

*vec(I,.)vec'(J,J) 

1 
mi 

E 
it=l L 

%(k)% (k) + ^(Z'2 + *^or*='-#ri 



Equating to the zero matrix and substituting a^ = erg = a^^i 

™» i=l  I    O^ML J 

*ii = mi 
^ [frjWfej (fc) 

+ {Z'Z + mAQ) 
ii(k) 

CB-27) 

We can use the decompc^ition (B-18) to compute the update more effi- 
ciently as #J|^ = ^/mi {Aj^)'. 

3.3    ECME algorithm for REML 

Again we generalize the ECME algorithm in DebRoy and Bates (2003) for 
REML estimation. As explained there, we extend the complete data set 
to include ^ ^ if it were another level of random effects but with a preci- 
sion matrix #o = 0. (In a Bayesian formulation this would correspond to 
an improper, "locally uniform" prior distribution.) We note that the com- 
plete data likelihood t-n (<''^, 0\Vi fi, b) has exactly the same expression as in 
(B-22). In the E step we must take expectation of (B-25) with respect to ft 
by regarding ^i as ^ using the conditional distribution of ft 

/3\y,ale ^ AT($ML, (X'E^|X)~' <r|) 

where S^o is defined by using #^ = #^o in Sx-   This gives us Qn = 

As we noted in DebRoy and Bates (2003), we only need to deal with the 
terms which involve both #^ and fi in (B-25) for maximizing with respect 
to #J4. The only additional term in the derivative is 

d 
d^^^ tr [^A{Z'Z + ^Aor^Z'X-ExoX'ZiZ'Z + ^AO] -n 

= -{Z'Z + ^Aor^Z'X-ExoX'ZiZ'Z + *^o)"^ 

We must take this term into accoimt when computing the EM update. 
That is done in the decompostion (B-20) so that we can calculate the update 
using #J/^ = ^i(A5|)'. 
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Appendix C: Distributed Statistical Computing 

Conference Paper 

Converting a large R paclage to S4 classes and 
methods 

Douglas M. Bates and Saikat DebFtoy* 
Department of Statistics 

University of Wisconsin - Madison 

February 19, 2003 

Abstract 

The nlme package for fitting and examining linear and nonlinear mixed- 
effects modeb in R is a required paclcage and also one of the largest R 
packages. In the first phase of a project to extend the capabilities of 
the nlme package to include generalized linear mixed models (glmm's), 
we reimplemented linear mixed-effects (Ime) models using 'S4' classes and 
methods, as described in John Chambers' book "Programming with Data" 
and as implemented in the methods package for R. Our general goals for 
this phase are to incorporate new theoretical and computational develop- 
ments for the Ime model and to provide a faster, cleaner implementation 
of Ime fits in R while including hooks for later extensions to the glmm 
model and the nlme model. In particular, we use our reStruct (random- 
effects structure) class in iterative PQL fits for glmm's, based on Brian 
Ripley's function glmmPQL from the MASS package. 

As described in "Programming with Data", classes, slots and inheri- 
tance relationships must be declared explicitly when using the methods 
package. Although such formal declarations require package authors to be 
more disciplined than when using informal 'S3' classes, they provide assur- 
suice that each object in a class has the required slots and that the names 
and classes of data in the slots are consistent. This is important to us be- 
cause we are trying to achieve both efficiency and flexibility. We provide 
flexibility by defining many classes and methods and by using multiple- 
argument signatures in method declarations. We achieve efficiency by 
implementing many methods in C code using the .Call interface and 
through liberal use of GET_SLOT and SET_SLOT within the C code. 

•This work is supported by U.S. Army Medical Research and Materiel Command under 
Contract No. DAMD17-02-C-0119. The views, opinions and/or findings contained in this 
report are those of the authors amd should not be construed as an official Department of the 
Army position, policy or decision unless so designated by other documentation. 



We feel that the new implementation is much cleaner and easier to 
understand than the previous implementation, due in large part to the 
more extensive use of classes and methods. It is definitely faster and can 
handle larger problems than the previous implementation. 

1    Introduction 

The nlme package (Pinheiro and Bates, 2000) for fitting and examining linear 
and nonlinear mixed-effects models is a large R package. It consists of more 
than 500 R functions, 3500 lines of C code, and 40 data sets plus documentation 
and examples. The reason that there are so many functions in a package that 
is devoted to fitting just one general type of statistical model is to provide 
flexibility in specifying and examining the models. We also want to fit mixed- 
effects models efficiently. 

To organize the large number fiinctiom applied to different types of objects 
we created many classes of objects representing, for example, grouped data 
(groupedData), linear mixed-effects model structures (ImeStruct), nonlinear 
mixed-effects model structures, random-eflfects structures (reStruct), positive- 
definite parameterized matrices (pdMat), correlation structures (corStruct), vari- 
ance functions (varFunc) and many different kinds of fitted models or summaries 
or plots derived from fitted models. Most of the 500 functions are methods for 
different elates of objects. 

The computational methods described in Pinheiro and Bates (2000, ch. 2,7) 
for efficiently evalating and profiling the log-likelihood or log-restricted-likelihood 
of a linear or nonlinear mixed-effects model with multiple, nested levels of ran- 
dom effects are quite formidable. Model matrices corresponding to the fixed- 
effects or to the random-effects terms in the statistical model are combined and 
decomposed repeatedly during the iterative optimization of the objective func- 
tion to determine the parameter estimates. To achieve a reaaanable level of 
efficiency in fitting models we coded the compute-intensive parts of the calcula- 
tions in C. 

We have begun a project to extend the capabilities of nlme to fit general- 
ized linear mixed models (Haudenbush and Bryk, 2002, ch. 10), beginning with 
the method implemented by Brian Ripley in the glmmPQL function from the 
MASS package but also implementing estimation methods based on Laplacian 
and adaptive Gauss-Hermite approximations to the integral of the conditional 
density of the random effects. 

In the first phase of this project we have reimplemented the data struc- 
tures and computational algorithms for linear mixed models as 'S4' classes and 
methods. Our objectivra for this reimplementation are: 

• To encapsulate the underlying structures for linear mixed models in such 
a way that they can be extended to generaHzed linear mixed models and 
to nonlinear mixed models. 

• To incorporate new theoretical and computational developments for the 



Ime model. We have derived the analytic gradient of the profiled log- 
likelihood (or log-restricted likelihood) of a linear mixed model (DebRoy 
and Bates, 2003a,b) and have related the gradient results to an ECME 
(expectation conditional maximization either) optimization step. The an- 
alytic gradient allows for faster and, more importantly, more stable opti- 
mization. 

• To convert the numerical linear algebra calls from Linpack and BLAS- 
1 calls to Lapack (Anderson et al., 1992) and BLAS levels 1, 2, and 3. 
Lapack provides state-of-the-art algorithms and can provide a substantial 
performance boost when ATLAS (Automatically Tuned Linear Algebra 
Software) implementations of the BLAS and some Lapack routines are 
available. 

• To switch all calls of C code to the . Call interface so that entire R objects 
can be p^sed to and from the C code. This also allows direct access to 
the slots of S4 classed objects from within C code. 

• To monitor the number of copies of objects that axe created, especially 
those created within iterative algorithms. In §5 we discuss an example of 
a model fit to 375,000 observations on 135,000 subjects grouped into 3722 
groups. The model matrices for the fixed effects can have as many as 40 
or 50 coliunns, or about 150 MB for each copy of the model matrix and 
information derived from it. We need at least three arrays of this size to 
keep track of all the information we use. We do not want to create more 
than that if we can avoid doing so. 

1.1    S3 versus S4 cls^ses and methods 

Object-oriented programming is a powerfiil tool for organizing the representa- 
tion of information (classes) and the actions that are applied to these represen- 
tations (methods). A system of classes and methods for the S language was in- 
troduced in Chambers and Hastie (1992). We will call this the 'S3' class system, 
to distinguish it from the 'S4' ctes system described in Chambers (1998) and 
implemented for R in the methods package. Unlike object-oriented languages 
such as Java and C-|—I- where methods are associated with a class definition, 
both the S3 and the S4 systems associate methods with the combination of a 
generic function and the classes of one or more of the arguments to that function. 

S3 classes are informal: the class of an object is determined by its class 
attribute, which should consist of one or more character strings, and methods 
are found by combining the name of the generic function with the class of the 
first argument to the function. If a function having this combined name is 
on the search path, it is assumed to be the appropriate method. Classes and 
their contents are not formally defined in the S3 system - at best there is a 
"gentleman's agreement" that objects in a class will have certain structure with 
certain component names. 



By contrast, S4 classes must be defined explicitly. The number of slots in 
objects of the class, and the names and classes of the slots, are established at 
the time of class definition. During computation with objects from the class 
they can be vaHdated against the definition. As in many other object-oriented 
systems, an S4 class can be declared to inherit from another class so S4 classes 
can be arranged in a hierarchy. 

S4 also requires formal declarations of methods, unlike the informal system 
of using fanction names to identify a method in S3. An S4 method is declared 
by a call to setMethod giving the name of the generic and the "signature" of the 
arguments. The signature identifies the classes or one or more named arguments 
to the generic function. Special meta-classes named ANY and missing can be 
used in the signature. 

S4 generic functions can be declared by a call to setGeneric or they can be 
automatically created by declaring a method for an existing function, in which 
case the function becomes generic and the current definition becomes the default 
method. 

2    Package conversion: creating S4 classes 

The principle generic functions for mixed-effects models and the methods as- 
sociated with them were already defined in version 3.1 of the nlme package. 
Although these generics and methods would be modified to some extent during 
the conversion to S4 classes and methods, we could initially assume these would 
stay as they are and concentrate instead on determining what classes should be 
defined and how we should define them. 

We could use the informal set of classes from the S3 version as a guide when 
formulating the S4 classes. We found, however, that we frequently reconsidered 
the structure of the classes diuing the conversion and iKually ended up adding 
more slots to the classes than had been present in the informal, 'S3' version. 

Consider, for example, the pdMat class of parameterized, pcMitive definite, 
symmetric matrices. It is a virtual class (which means that there will be objects 
of classra that inherit from pdMat but there will never be objects whose only 
CIMS is pdMat). The matrices represented by objects that inherit from this class 
are determined by a non-redundant, unconstrained vector of parameters. In 
some parameterizations the dimensions of the matrix can be determined from 
the length of the pairameter vector but in others, such as pdldent, representing 
multiples of the identity, or pdCompSymm, representing matrices with compound 
symmetry, the parameter vector has a fixed length and the number of columns 
in the matrix must be stored separately. We decided to add an Ncol slot to all 
the pdMat classes and did so by declaring it in the virtual pdMat class. In fact, 
the pdMat class declares six slots that must be present in all classes inheriting 
from it. 

setClass("pdMat", # parameterized positive-definite matrices 
representationffoj:TO="fonBula", # a model-matrix formula 

Names="chara.cter",  # column  (and row) names 



parain= "numeric",      # paraaeter vector 
Ncol="integer",        # number of columns 
tactor="matriK",      # factor of the pos-def matrix 
logDet="iiuineric"      # logaritin of tie absolute value 
## at tie deteiTBinant of tie factor (i.e.  ialf 
## tie logarltia of tie deteiBiinant of tie matrix^ 
). 

prototype (form=formulA(NULL), 
Names=cbaracter(0), 
param=nmaeric(0), 
Ncol=as.integer(0), 
factor=fflatrix fnumeric (0),0,0), 
logDet=nwaeri c (0) } 

} 

After this definition most of the class definitions for other pdMat classes are 
trivial. 

setClassC'pdSymm",   "pdMat") # general symmetric pd matrices 
setClassC'pdScalar",   "pdSymm") # special case of positive scalars 
setClassf'pdlogCaiol",   "pdSymm") # default parameterization 
setClassf'pdJiratural",   "pdSymm") # log sd and Fisher's z of correlation 
setClassC'pdMatrixLog",   "pdSymm") # matrix logaritim parameterization 
setCIassf"pdDiag",   "pdMat") # diagonal pd matrices 
setClassf"pdldent",   "pdMat") # positive multiple of the identity 
setClass("pdCompSymm",   "pdMat") # compound symmetric pd matrices 

Increasing the number of slots may be an inevitable consequence of revis- 
ing the package (we tend to add capabilities more frequently than we remove 
them) but it may also be related to the fact that S4 classes must be declared 
explicity and hence we consider the components or slots of the classes and the 
relationships between the classes more carefully. 

3    Calling C functions with .Call 

The .Call interface, through which a programmer can p^s raw R objects to 
C code and receive raw R objects from the C code, has been part of R for 
several years. It was inspired by the .Call interface for S described in Cham- 
bers (1998). Several C macros for working with S4 classed objects, including 
GET.SLOT, SET_SLOT, MAKE.CLASS and lEW, all described in Chambers (1998) are 
are now available in R, or will be in R-1.7.0. (Note that the macro lEW.OBJECT 
is preferred to NEW when writing code for R only. These two macros have the 
same effect but 1EW_0BJECT is less likely to conflict with other definitions.) 

The combination of the formal classes of S4, the .Call interface, and these 
macros allows a programmer to manipulate S4 classed objects in C code nearly 
as easily as in R code. A common idiom is to have an S4 method call C code 



through the .Call interface. In the C code the values of slots are extracted 
with GET_SLOT and either modified in place or used to create slots for new 
objects. Such new objects are created and populated by calls to MAKE_CLASS, 
NEW.OBJECT, and SET_SLOT. 

Because the C code is called from a method, the programmer can be confident 
of the classes of the objects passed in the call and the classes of the slots of those 
objects. Much of the checking of classes or modes and possible coersion of modes 
that is common in C code called from R can be byp^sed. 

We found that we would initially write methods in R then translate them 
into C if warranted. The nature of our calculations, firequently involving multi- 
ple decompositions and manipulations of sections of arrays, was such that the 
calculations could be expressed in R but not very cleanly. Once we had the 
R version working satisfactorily we could translate into C the parts that were 
critical for performance or were awkward to write in R. An important advantage 
of this mode of development is that we could me the same slots in the C version 
as in the R version and create the same types of objects to be returned. 

We feel that defining S4 elates and methods in R then translating parts of 
method definitions to C functions called through .Call is an extremely effective 
mode for numerical computation. Programmers who have experience working in 
C++ or Java may initially find it more convenient to define classes and methods 
in the compiled language and perhaps define a parallel series of classes in R. (We 
did exactly that when creating the Matrix package for R.) We encourage such 
programmers to try instead this method of defining only one set of classes, the 
S4 clMses in R, and use these classes in both the interpreted language and the 
compiled language. 

3.1    Using replacement methods 

The . Call interface is a powerful tool and, hke many powerful tools, must be 
used carefully if you are to avoid hurting yourself with it. The programmer 
must be aware that the arguments are not copied when they are passed through 
.Call even though the semantics of R function calls require that arguments 
must not be modified by a function call. If you are to modify the value of an 
R object passed as an argument you must somehow copy its storage, usually 
by duplicating it or coercing it to another mode, before making any changes. 
Failure to do so can result in bugs that are extremely difficult to diagnose. 

Duplicating or coercing R objects will usually require that the result be 
protected fi-om the garbage collector by a call to the PROTECT macro. The effect 
of all calls to PROTECT must be undone by calUng UIPROTECT before returning 
from the C function. Keeping track of what has been protected can sometimes 
be tedious. 

There is a one exception to the "don't modify the arguments" rule: a replace- 
ment function or a replacement method te allowed to modify its first argument. 
Because the clam of the result is the same as the class of the first argument it 
is common to use this argument as the return value, after suitable modification 
of its contents. We found that we used replacement methods more frequently 



in our code than we had firet expected. We tended to think in steps of creating 
an object then modifying it according to the values of other objects. 

For example, a linear mixed-effects model is represented by an reStruct 
object. The core part of the code to fit such a model is 

re <- reStruct(fixed = fixed, random = random, 
data = eval(mCall, parent.frameO), 
REML = method  != "ML") 

EMsteps(re) <- controlvals 
LMEoptimize(re)  <- controlvals 

where we construct the reStruct object, perform some number of EM updates 
on it then perform general nonHnear optimization on it. 

4    Use of Lapack and ATLAS 

Linpack and Eispack routines are used for numerical linear algebra in R since 
its inception and are part of the R API. The Linpack and Eispack paclages 
have been largely supercede by Lapack (Anderson et al., 1992) which provides, 
in some cases, better algorithms and, in nearly all cases, more effective imple- 
mentatioiK of the algorithms. Some of the effectiveness of the implementations, 
especially for large arrays, comes from more extensive use of the Basic Linear 
Algebra Subroutines (BLAS). As the name impHes, these are basic routines for 
doing operatioiM like multiplying two matrices or replacing y hy ax + y. Even 
in sophisticated linear algebra algorithms, the majority of the numerical com- 
putation takes place in these basic operations, hence it is worthwhile devoting 
considerable effort to optimizing these routines. ATLAS (Automatically Hmed 
Lmear Algebra Software) is a collection of highly optimized BLAS routines that 
can be compiled for different architectures. The combination of Lapack and AT- 
LAS can give a considerable performance boost to algorithms that use niimerical 
linear algebra extensively. 

The R Core Development Group (primarily Brian Ripley) has been migrating 
R from Linpack and Eispack to Lapack. Beginning with R-1.7.0 the double 
precision Lapack routines and some of the double precision complex Lapack 
routines will be part of the R APL We converted all the linear algebra in the 
Ime calculations to Lapack, with gratifying results as described in the next 
section. 

5    Timing results 

Rodriguez and Goldman (1995) simulated 100 sets of 2445 binary responses 
grouped into 1558 families in 161 communities and fit generalized Hnear mixed 
models with two levels of random effects to thrae. The implementation of glnm- 
PQL in the new version of the package is roughly 5 times as fast on these fits as 
the previous version that used repeated calls to Ime. 



We also fit a linear mixed-effects model to 378047 mathematics scores of 
134713 students on the Texas Assessment of Academic Skills (TAAS). The data 
were all the test scores of students in grades 3 to 8 in Dallas, Texas during 1994 
to 2000. The particular model that we fit had a fixed-effects vector of length 
47, resulting in very large model matrices. A fit with the previous veraion of 
the Ime function took 993 seconds of user time (1093 seconds elapsed time) on a 
2.0 GHz Pentium-4 machine with 1.0 GB of PC-2700 memory running Debian 
GNU/Linux. The new version of Ime took 221 seconds user time (345 seconds 
elapsed time) on the same machine. 

6    Conclusions 

We feel that we have met our objectives in reimplementing the Ime part of 
the nlme paclage using 'S4' classes and methods. Although the performance 
boost from using Lapack and ATLAS is gratifying, we feel that the biggest gain 
is in making the code much cleaner and easier to understand and in exposing 
interfaces that can be used by models that extend the Hnear mixed-effects model. 

Code clarity is enhanced by the fact that S4 classes and the .Call interface 
allow programmers to work with the same class definitioiB in R code and in C 
code. We have also found that liberal use of replacement functions and methods 
allows us to maintain control of the number of copies of objects being created. 
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