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1 Summary

The operation of a human organization requires dozens of everyday tasks to
ensure coherence in organizational activities, to monitor the status of such
activities, to gather information relevant to the organization, to keep ev-
eryone in the organization informed, etc. Teams of software agents can aid
humans in accomplishing these tasks, facilitating the organization’s coher-
ent functioning and rapid response to crisis, while reducing the burden on
humans. Based on this vision, we developed the Electric Elves, which has
been applied to the tasks of organizing activities (such as meetings) within
an organization and meeting and travel planning outside an organization.

A key aspect to the successfu l planning and execution of tasks in an
agent-enabled organization is the timely access to up-to-date information.
Agents making decisions on behalf of human users need to access and verify
information from multiple heterogeneous information sources, such as inter-
nal organizational databases (personal schedules, staff lists), real-time sensors
(traffic and weather updates), as well as many types of public information
(airline schedules, restaurant listings, etc).

To address the problems of accessing and verifying information from het-
erogeneous soures, we developed a set of techniques for learning to recognize
the content of the required information. The capability makes it possible
to automatically access and maintain wrappers to extract data from online
sources. It also provides semantic interoperability among software agents: to
verify information from other agents, identify semantic mismatches in data,
as well as automatically determine the type of information being communi-
cated by an agent.

Our research addressed the shortcomings of existing systems for build-
ing wrappers for accessing online data sources. 1) Web information sources
frequently change in a way that breaks the wrappers, and 2) the wrapper
creation is a laborious process. Our research focused on developing machine
learning techniques to build wrappers, automatically detect wrapper failure,
and to recover from it.
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2 Introduction

There is a tremendous amount of information available on the Web, but
much of this information is not in a form that can be easily used by other
applications. There are hopes that XML will solve this problem, but XML is
not yet in widespread use and even in the best case it will only address the
problem within application domains where the interested parties can agree on
the XML schema definitions. Previous work on wrapper generation in both
academic research [9, 11, 13] and commercial products (such as OnDisplay’s
eContent) have primarily focused on the ability to rapidly create wrappers.
The previous work makes no attempt to ensure the accuracy of the wrappers
over the entire set of pages of a site and provides no capability to detect
failures and repair the wrappers when the underlying sources change.

We have developed the technology for rapidly building wrappers for ac-
curately and reliably extracting data from semistructured sources. Figure 1
graphically illustrates the entire lifecycle of a wrapper. As shown in the
Figure, the wrapper induction system takes a set of web pages labeled with
examples of the data to be extracted. The user provides the initial set of
labeled examples and the system can suggest additional pages for the user
to label in order to build wrappers that are very accurate. The output of
the wrapper induction system is a set of extraction rules that describe how
to locate the desired information on a Web page. After the system creates
a wrapper, the wrapper verification system uses the functioning wrapper to
learn patterns that describe the data being extracted. If a change is detected,
the system can automatically repair a wrapper by using the same patterns to
locate examples on the changed pages and re-running the wrapper induction
system. The details of this entire process are described in the remainder of
this report.

3 Methods, Assumptions, and Procedures

3.1 Wrapper Induction

A wrapper is a piece of software that enables a semistructured Web source
to be queried as if it were a database. These are sources where there is no
explicit structure or schema, but there is an implicit underlying structure (for
example, consider the two documents in Figure 2). Even text sources, such

2
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Figure 1: The Lifecycle of a Wrapper

as email messages, have some structure in the heading that can be exploited
to extract the date, sender, addressee, title, and body of the messages. Other
sources, such as online catalogs, have a very regular structure that can be
exploited to extract the data automatically.

One of the critical problems in building a wrapper is defining a set of ex-
traction rules that precisely define how to locate the information on the page.
For any given item to be extracted from a page, one needs an extraction rule
to locate both the beginning and end of that item. Since, in our framework,
each document consists of a sequence of tokens (e.g., words, numbers, HTML
tags, etc), this is equivalent to finding the first and last tokens of an item.
The hard part of this problem is constructing a set of extraction rules that
work for all of the pages in the source.

A key idea underlying our work is that the extraction rules are based
on “landmarks” (i.e., groups of consecutive tokens) that enable a wrapper
to locate the start and end of the item within the page. For example, let
us consider the three restaurant descriptions E1, E2, and E3 presented in
Figure 3. In order to identify the beginning of the address, we can use the
rule

3



Figure 2: Two Sample Restaurant Documents From the Zagat Guide

E1: ...Cuisine:<i>Seafood</i><p>Address:<i> 12 Pico St. </i><p>Phone:<i>...
E2: ...Cuisine:<i>Thai </i><p>Address:<i> 512 Oak Blvd.</i><p>Phone:<i>...
E3: ...Cuisine:<i>Burgers</i><p>Address:<i> 416 Main St. </i><p>Phone:<i>...
E4: ...Cuisine:<i>Pizza</i><p>Address:<b> 97 Adams Blvd. </b><p>Phone:<i>...

Figure 3: Four sample restaurant documents
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R1 = SkipTo(Address) SkipTo(<i>)

which has the following meaning: start from the beginning of the docu-
ment and skip every token until you find a landmark consisting of the word
Address, and then, again, ignore everything until you find the landmark <i>.
R1 is called a start rule because it identifies the beginning of the address.
One can write a similar end rule that finds the end of the address; for sake
of simplicity, we restrict our discussion here to start rules.

Note that R1 is by no means the only way to identfy the beginning of
the address. For instance, the rules

R2 = SkipTo( Address : <i> )

R3 = SkipTo( Cuisine : <i> ) SkipTo( Address : <i> )

R4 = SkipTo( Cuisine : <i> _Capitalized_ </i> <p> Address : <i> )

can be also used as start rules. R2 uses the 3-token landmark that immedi-
ately precedes the beginning of the address in examples E1, E2, and E3, while
R3 relies on two 3-token landmarks. Finally, R4 is defined based on a 9-
token landmark that uses the wildcard _Capitalized_, which is a placeholder
for any capitalized alphabetic string (other examples of useful wildcards are
_Number_, _AllCaps_, _HtmlTag_, etc).

To deal with variations in the format of the documents, our extraction
rules allow the use of disjunctions. For example, let us assume that the
addresses that are within one mile from your location appear in bold (see
example E4 in Figure 3), while the other ones are displayed as italic (e.g.,
E1, E2, and E3). We can extract all the names based on the disjunctive start
rule

either SkipTo(Address : <b>)

or SkipTo(Address) SkipTo(<i>)

Disjunctive rules are ordered lists of individual disjuncts (i.e., decision lists).
Applying a disjunctive rule is a straightforward process: the wrapper suc-
cessively applies each disjunct in the list until it finds the first one that
matches. Even though in our simplified examples one could have used the
nondisjunctive rule

SkipTo( Address : _HtmlTag_ ),
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there are many real world sources that cannot be wrapped without using
disjuncts.

We have developed stalker [19], a hierarchical wrapper induction algo-
rithm that learns extraction rules based on examples labeled by the user. We
have a graphical user interface that allows a user to mark up several pages on
a site, and the system then generates a set of extraction rules that accurately
extract the required information. Our approach uses a greedy-covering in-
ductive learning algorithm, which incrementally builds the extraction rules
from the examples.

In contrast to other approaches [9, 11, 13], a key feature of stalker is
that it is able to efficiently generate extraction rules from a small number of
examples: it rarely requires more than 10 examples, and in many cases two
examples are sufficient. The ability to generalize from such a small number
of examples has a two-fold explanation. First, in most of the cases, the pages
in a source are generated based on a fixed template that may have only a
few variations. As stalker tries to learn landmarks that are part of this
template, it follows that for templates with little or no variations a handful
of examples usually will be sufficient to induce reliable landmarks.

Second, stalker exploits the hierarchical structure of the source to con-
strain the learning problem. More precisely, based on the schema of the data
to be extracted, we automatically decompose one difficult problem (i.e., ex-
tract all items of interest) into a series of simpler ones. For instance, instead
of using one complex rule that extracts all restaurant names, addresses and
phone numbers from a page, we take a hierarchical approach. First we apply
a rule that extracts the whole list of restaurants; then we use another rule to
break the list into tuples that correspond to individual restaurants; finally,
from each such tuple we extract the name, address, and phone number of the
corresponding restaurant. Our hierarchical approach also has the advantage
of being able to extract data from pages that contain complicated formatting
layouts (e.g., lists embedded in other lists) that previous approaches could
not handle (see [19] for details).

stalker is a sequential covering algorithm that, given the training ex-
amples E, tries to learn a minimal number of perfect disjuncts that cover all
examples in E. By definition, a perfect disjunct is a rule that covers at least
one training example and on any example the rule matches it produces the
correct result. stalker first creates an initial set of candidate-rules C and
then repeatedly applies the following three steps until it generates a perfect
disjunct:
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- select most promising candidate from C

- refine that candidate

- add the resulting refinements to C

Once stalker obtains a perfect disjunct P , it removes from E all examples
on which P is correct, and the whole process is repeated until there are
no more training examples in E. stalker uses two types of refinements:
landmark refinements and topology refinements. The former makes the rule
more specific by adding a token to one of the existing landmarks, while the
latter adds a new 1-token landmark to the rule.

For instance, let us assume that based on the four examples in Figure 3,
we want to learn a start rule for the address. stalker proceeds as follows.
First, it selects an example, say E4, to guide the search. Second, it generates
a set of initial candidates, which are rules that consist of a single 1-token
landmark; these landmarks are chosen so that they match the token that
immediately precedes the beginning of the address in the guiding example.
In our case we have two initial candidates:

R5 = SkipTo( <b> )

R6 = SkipTo( _HtmlTag_ )

As the <b> token appears only in E4, R5 does not match within the other
three examples. On the other hand, R6 matches in all four examples, even
though it matches too early (R6 stops as soon as it encounters an html
tag, which happens in all four examples before the beginning of the address).
Because R6 has a better generalization potential, stalker selects R6 for
further refinements.

While refining R6, stalker creates, among others, the new candidates
R7, R8, R9, and R10 shown below. The first two are obtained via landmark
refinements (i.e., a token is added to the landmark in R6), while the other
two rules are created by topology refinements (i.e., a new landmark is added
to R6). As R10 works correctly on all four examples, stalker stops the
learning process and returns R10.

R7 = SkipTo( : _HtmlTag_ )

R8 = SkipTo( _Punctuation_ _HtmlTag_ )
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R9 = SkipTo(:) SkipTo(_HtmlTag_)

R10 = SkipTo(Address) SkipTo( _HtmlTag_ )

By using stalker, we were able to successfully wrap information sources
that could not be wrapped with existing approaches (see [19] for details). In
an empirical evaluation on 28 sources proposed in [13], stalker had to
learn 206 extraction rules. We learned 182 perfect rules (100% accurate),
and another 18 rules that had an accuracy of at least 90%. In other words,
only 3% of the learned rules were less that 90% accurate.

3.2 Active Learning

stalker can do significantly better on the hard tasks (i.e., the ones for
which it failed to learn perfect rules) if instead of random examples, the
system is provided with carefully selected examples. Specifically, the most
informative examples illustrate exceptional cases. However, it is unrealistic
to assume that a user is willing and has the skills to browse a large number
of documents in order to identify a sufficient set of examples to learn perfect
extraction rules. This is a general problem that none of the existing tools
address, regardless of whether they use machine learning.

To solve this problem we have developed an active learning approach that
analyzes the set of unlabeled examples to automatically select examples for
the user to label. Our approach, called co-testing [18], exploits the fact that
there are often multiple ways of extracting the same information [4]. In the
case of wrapper learning, the system can learn two different types of rules:
forward and backward rules. All the rules presented above are forward rules:
they start at the beginning of the document and go towards the end. By
contrast, a backward rule starts at the end of the page and goes towards
its beginning. For example, one can find the beginning of the addresses in
Figure 3 by using one of the following backward rules:

R11 = BackTo(Phone) BackTo(_Number_)

R12 = BackTo(Phone : <i> ) BackTo(_Number_)

The main idea behind co-testing is straightforward: after the user labels
one or two examples, the system learns both a forward and a backward rule.
Then it runs both rules on a given set of unlabeled pages. Whenever the rules
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disagree on an example, the system considers that as an example for the user
to label next. The intuition behind our approach is the following: if both
rules are 100% accurate, on every page they must identify the same token
as the beginning of the address. Furthermore, as the two rules are learned
based on different sets of tokens (i.e., the sequences of tokens that precede and
follow the beginning of the address, respectively), they are highly unlikely
to make the exact same mistakes. Whenever the two rules disagree, at least
one of them must be wrong, and by asking the user to label that particular
example, we obtain a highly informative training example. Co-testing makes
it possible to generate accurate extraction rules with a very small number of
labeled examples.

To illustrate how co-testing works, consider again the examples in Fig-
ure 3. Since most of the restaurants in a city are not located within a 1-mile
radius of one’s location, it follows that most of the documents in the source
will be similar to E1, E2, and E3 (i.e., addresses shown in italic), while just
a few examples will be similar to E4 (i.e., addresses shown in bold). Con-
sequently, it is unlikely that an address in bold will be present in a small,
randomly chosen, initial training set. Let us now assume that the initial
training set consists of E1 and E2, while E3 and E4 are not labeled. Based on
these examples, we learn the rules

Fwd-R1 = SkipTo(Address) SkipTo(<i>)

Bwd-R1 = BackTo(Phone) BackTo(_Number_)

Both rules correctly identify the beginning of the address for all restaurants
that are more than one mile away, and, consequently, they will agree on all of
them (e.g., E3). On the other hand, Fwd-R1 works incorrectly for examples
like E4, where it stops at the beginning of the phone number. As Bwd-R1
is correct on E4, the two rules disagree on this example, and the user is asked
to label it.

To our knowledge, there is no other wrapper induction algorithm that
has the capability of identifying the most informative examples. In the re-
lated field of information extraction, where one wants to extract data from
free text documents, researchers proposed such algorithms [21, 20], but they
cannot be applied in a straightforward manner to existing wrapper induction
algorithms.

We applied co-testing on the 24 tasks on which stalker fails to learn
perfect rules based on 10 random examples. To keep the comparison fair,
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co-testing started with one random example and made up to 9 queries. The
results were excellent: the average accuracy over all tasks improved from
85.7% to 94.2% (error rate reduced by 59.5%). Furthermore, 10 of the learned
rules were 100% accurate, while another 11 rules were at least 90% accurate.
In these experiments as well as in other related tests [18] applying co-testing
leads to a significant improvement in accuracy without having to label more
training data.

3.3 Verifying the Extracted Data

In our quest to improve our wrapper induction technology, we were faced with
the problem that Web sites frequently change their format and as a result,
wrappers frequently break. We realized that if a system knew enough about
the type of information it was supposed to extract, then it would be possible
to automatically maintain a wrapper in the face of format changes, and even
automatically create wrappers for many types of websites. This idea has led
to a method for automatically maintaining wrappers [17] and more recently,
an initial version of an unsupervised wrapper induction system. Both of
these systems use data prototypes for pattern-based bootstrapping.

Kushmerick [12] addressed the wrapper verification problem by monitor-
ing a set of generic features, such as the density of numeric characters within
a field, but this approach only detects certain types of changes. In contrast,
we address this problem by applying machine learning techniques to learn
a set of patterns that describe the information that is being extracted from
each of the relevant fields. Since the information for even a single field can
vary considerably, the system learns the statistical distribution of the pat-
terns for each field. Wrappers can be verified by comparing the patterns of
data returned to the learned statistical distribution. When a significant dif-
ference is found, an operator can be notified or we can automatically launch
the wrapper repair process, which is described in the next section.

Data prototypes are patterns of specific tokens and syntactic token types
that describe the common beginnings and endings of a set of examples of
data [17]. For example, a set of street addresses - ”4676 Admiralty Way”,
”220 Lincoln Boulevard” and ”998 South Robertson Boulevard” - start with
a pattern ”Number Caps” and end with ”Boulevard” or ”Caps.” The starting
and ending patterns together define a data prototype. We have developed
DataPro - an algorithm that learns data prototypes from positive examples of
the data field. DataPro finds all statistically significant sequences of tokens
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- a sequence of tokens is significant if it occurs more frequently than would
be expected if the tokens were generated randomly and independently of
one another. We begin by estimating the baseline probability of a token’s
occurrence from the proportion of all tokens in the examples for the data
field that are of that type. Suppose we have already found a significant token
sequence - e.g., the pattern consisting of the single token ”Number”- in a set
of street addresses such as the ones above, and want to determine whether the
more specific pattern, ”Number Caps”, is also a significant pattern. Knowing
the probability of occurrence of type Caps, we can compute how many times
Caps can be expected to follow Number completely by chance. If we observe a
considerably greater number of these sequences, we conclude that the longer
pattern is significant.

The learned patterns represent the structure, or format, of the field as
a sequence of words and wildcards [14]. Wildcards represent syntactic cat-
egories to which words belong — alphabetic, numeric, capitalized, etc. —
and allow for multi-level generalization. For complex fields, and for purposes
of information extraction, it is sufficient to use only the starting and ending
patterns as the description of the data field. For example, a set of street
addresses — 12 Pico St., 512 Oak Blvd., 416 Main St. and 97 Adams
Blvd. — all start with a pattern (_Number_ _Capitalized_) and end with
(Blvd.) or (St.). We refer to the starting and ending patterns together as
the data prototype of the field.

The problem of learning a description of a field (class) from a set of la-
beled examples can be posed in two related ways: as a classification or a
conservation task. If negative examples are present, the classification algo-
rithm learns a discriminating description. When only positive examples are
available, the conservation task learns a characteristic description, i.e. one
that describes many of the positive examples but is highly unlikely to de-
scribe a randomly generated example. Because an appropriate set of negative
examples not available in our case, we chose to frame the learning problem as
a conservation task. The algorithm we developed, called DataPro [14], finds
all statistically significant starting and ending patterns in a set of positive
examples of the field. A pattern is said to be significant if it occurs more
frequently than would be expected by chance if the tokens were generated
randomly and independently of one another. Our approach is similar to work
on grammar induction [5, 10], but our pattern language is better suited to
capturing the regularities in small data fields (as opposed to languages).

The algorithm operates by building a prefix tree, where each node cor-
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responds to a token whose position in the sequence is given by the node’s
depth in the tree. Every path through the tree starting at the root node is a
significant pattern found by the algorithm.

The algorithm grows the tree incrementally. Adding a child to a node
corresponds to extending the node’s pattern by a single token. Thus, each
child represents a different way to specialize the pattern. For example, when
learning city names, the node corresponding to “New” might have three chil-
dren, corresponding to the patterns “New Haven”, “New York” and “New
_Capitalized_”. A child node is judged to be significant with respect to its
parent node if the number of occurrences of the child pattern is sufficiently
large, given the number of occurrences of the parent pattern and the base-
line probability of the token used to extend the parent pattern. A pruning
step insures that each child node is also significant given its more specific
siblings. For example, if there are 10 occurrences of “New Haven”, and 12
occurrences of “New York”, and both of these are judged to be significant,
then “New _Capitalized_” will be retained only if there are significantly more
than 22 examples that match “New _Capitalized_”. Similarly, once the en-
tire tree has been expanded, the algorithm includes a pattern extraction step
that traverses the tree, checking whether the pattern “New” is still signifi-
cant given the more specific patterns “New York”, “New Haven” and “New
_Capitalized_”. In other words, DataPro decides whether the examples de-
scribed by “New” but not by any of the longer sequences can be explained
by the null hypothesis.

The patterns learned by DataPro lend themselves to the data validation
task and, specifically, to wrapper verification. A set of queries is used to re-
trieve HTML pages from which the wrapper extracts some training examples.
The learning algorithm finds the patterns that describe the common begin-
nings and endings of each field of the training examples. In the verification
phase, the wrapper generates a test set of examples from pages retrieved
using the same or similar set of queries. If the patterns describe statisti-
cally the same (at a given significance level) proportion of the test examples
as the training examples, the wrapper is judged to be extracting correctly;
otherwise, it is judged to have failed.

Once we have learned the patterns, which represent our expectations
about the format of data, we can then configure the wrappers to verify the
extracted data before the data is sent, immediately after the results are sent,
or on some regular frequency. The most appropriate verification method
depends on the particular application and the tradeoff between response time
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and data accuracy.
We monitored 27 wrappers (representing 23 distinct Web sources) over

a period of several months. For each wrapper, the results of 15-30 queries
were stored periodically. All new results were compared with the last correct
wrapper output (training examples). A manual check of the results revealed
37 wrapper changes out of the total 443 comparisons. The verification al-
gorithm correctly discovered 35 of these changes. The algorithm incorrectly
decided that the wrapper has changed in 40 cases.

Figure 4: An Example of the Reinduction Process
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3.4 Automatically Repairing Wrappers

We have built a system that uses data prototypes to re-induce a wrapper
when a site’s format changes [16]. The system takes a working wrapper, and
learns data prototypes for each field extracted. If the wrapper later breaks,
the system can frequently find enough examples of each field on new sample
pages to automatically seed the STALKER induction algorithm.

Most changes to Web sites are largely syntactic and are often minor for-
matting changes or slight reorganizations of a page. Since the content of
the fields tend to remain the same, we exploit the patterns learned for ver-
ifying the extracted results to locate correct examples of the data field on
new pages. Once the required information has been located, the pages are
automatically re-labeled and the labeled examples are re-run through the
inductive learning process to produce the correct rules for this site.

Specifically, the wrapper reinduction algorithm takes a set of training
examples and a set of pages from the same source and uses machine learning
techniques to identify examples of the data field on new pages. First, it
learns the starting and ending patterns that describe each field of the training
examples. Next, each new page is scanned to identify all text segments that
begin with one of the starting patterns and end with one of the ending
patterns. Those segments, which we call candidates, that are significantly
longer or shorter than the training examples are eliminated from the set,
often still leaving hundreds of candidates per page. The candidates are then
clustered to identify subgroups that share common features. The features
used in clustering are the candidate’s relative position on the page, adjacent
landmarks, and whether it is visible to the user. Each group is then given
a score based on how similar it is to the training examples. We expect the
highest ranked group to contain the correct examples of the data field.

Figure 4 shows a actual example of a change to Amazon’s site and how our
system automatically adapts to the change. The top frame shows an example
of the original site, the extraction rule for a book title, and the extracted
results from the example page. The middle frame shows the source and the
incorrectly extracted result after the title’s font and color were changed. And
the bottom frame shows the result of the automatic reinduction process with
the corrected rule for extracting the title.

We evaluated the algorithm by using it to extract data from Web pages
for which correct output is known. The output of the extraction algorithm
is a ranked list of clusters for every data field being extracted. Each cluster
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is checked manually, and it is judged to be correct if it contains only the
complete instances of the field, which appear in the correct context on the
page. For example, if extracting a city of an address, we only want to extract
those city names that are part of an address.

We ran the extraction algorithm for 21 distinct Web sources, attempting
to extract 77 data fields from all the sources. In 62 cases the top ranked
cluster contained correct complete instances of the data field. In eight cases
the correct cluster was ranked lower, while in six cases no candidates were
identified on the pages. The most closely related work is that of Cohen [8],
which uses an information retrieval approach to relocating the information
on a page. The approach was not evaluated on actual changes to Web pages,
so it is difficult to assess whether this approach would work in practice.

3.5 Automatically Building Wrappers

More recently, we used data prototypes to automatically create wrappers
that extract data from pages with arbitrarily structured lists and group the
data into rows and columns [15] (assuming the list is not already formatted
using explicit HTML lists or tables, in which case the task is trivial). This
is useful when we want to rapidly create a wrapper without asking the user
to label data on sample pages.

Our algorithm uses only some very general assumptions about the struc-
ture of a page. Data in a list is not always laid out in a grid-like pattern;
however, it is almost always arranged with a certain amount of regularity
we can exploit. For example, consider a white pages listing of names and
addresses. The elements are arranged in the same order for each listing, so
if the address follows the name in one row, it usually follows the name in
all other rows. While such principles may not apply universally, we have
found them to be valid for many online sources we studied, including airport
listings, online catalogs, hotel directories, etc.

The algorithm operates by first extracting all visible (nonHTML) text.
A ”chunk” of text is defined to be a string of text with HTML tokens to the
left and right. The task is then to produce a table from these chunks. As we
mentioned above, we expect all data in the same column to be of the same
type and therefore have the same or similar format. The algorithm takes
all the chunks and learns data prototypes to capture these regularities. It
then clusters the chunks according to the separators on each side and the
data prototypes that it matches. Each resulting cluster usually consists of
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the data from a single column. From this point, it is straightforward to
heuristically construct the columns and rows in a table.

3.6 Electric Elves

As part of this project, we participated in the unified Electric Elves project [6,
7, 3] which was a joint effort of several groups working at ISI. This project
included our group, and those headed by Milind Tambe, Yolanda Gil and
Hans Chalupsky. The purpose of the joint effort was to integrate the var-
ious agent technologies at ISI into a framework that will enable the rapid
deployment of novel agent applications.

Many activities of a human organization are well-suited for software
agents, which can devote significant resources to perform these tasks, thus re-
ducing the burden on humans. Indeed, teams of such software agents could
assist all organizations, including disaster response organizations, corpora-
tions, the military, universities and research institutions.

The operation of a human organization involves dozens of critical every-
day tasks to ensure coherence in organizational activities, to monitor the
status of such activities, to obtain information relevant to the organization,
to keep everyone in the organization informed, etc. These activities are of-
ten well-suited for software agents, which can devote significant resources to
perform these tasks, thus reducing the burden on humans. Indeed, teams of
such software agents, including proxy agents that act on behalf of humans,
would enable organizations to act coherently, to attain their mission goals
robustly, to react to crises swiftly, and to adapt to events dynamically. Such
agent teams could assist all organizations, including the military, civilian
disaster response organizations, corporations, and universities and research
institutions.

Within an organization, we envision agents assisting in all of its day-to-
day functioning. For a research institution, agents may facilitate activities
such as meeting (re)scheduling, selecting presenters for research meetings,
composing papers, developing software and deploying people and equipment
for out-of-town demonstrations. For a disaster response organization, agents
may facilitate the teaming of people and equipment to rapidly respond to
crises (e.g., earthquakes), to monitor the progress of any such for rapid re-
sponse, etc. To accomplish such goals, each person in an organization will
have an agent proxy. For instance, if an organizational crisis requires an ur-
gent deployment of a team of people and equipment, then agent proxies could
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dynamically volunteer for team membership on behalf of the people or re-
sources they represent, while also ensuring that the selected team collectively
possesses sufficient resources and capabilities. The proxies must also manage
efficient transportation of such resources, the monitoring of the progress of
individual participants and of the mission as a whole, and the execution of
corrective actions when goals appear to be endangered.

Based on the above vision, we have developed a system called Electric
Elves that applies agent technology in service of the day-to-day activities of
the Intelligent Systems Division of USC/ISI. Electric Elves is a system of
about 15 agents, including nine proxies for nine people, plus two different
matchmakers, one flight tracker and one scheduler running continuously for
past several months.

The primary research issues that we focused on within the Elves project
was access to online sources, detection of changes to those sources, automatic
adaptation to those changes, and, ultimately, automatic access to previously
unseen sources. These problems were central to the Electric Elves effort
since reliable access to data from online sources and other agents is a critical
problem in building a reliable network of personal agents.

The Electric Elves project uses Ariadne wrappers to extract information
from Web sources, such as online bibliographic databases, airline schedules,
and restaurant reviews. Currently, wrapper creation is a semi-automated
process: the user marks up several examples of the data to be extracted
from the Web page, and a learning system learns the appropriate extraction
rules. Our research addresses two of the shortcomings of the present wrapper
creation system. Web-based information sources frequently change in a way
that breaks the wrapper’s extraction rules (e.g., Web site changes its layout).
We developed automatic methods to detect wrapper failures and to recover
gracefully from them, i.e., to learn new extraction rules with minimal user
intervention.

4 Results and Discussion

Our work addresses the complete wrapper creation problem, which includes:

• building wrappers by example,

• ensuring that the wrappers accurately extract data across an entire
collection of pages,
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• verifying a wrapper to avoid failures when a site changes,

• and automatically repair wrappers in response to changes in layout or
format.

Our main technical contribution is in the use of machine learning to ac-
complish all of these tasks. Essentially, our approach takes advantage of the
fact that web pages have a high degree of regular structure. By analyzing
the regular structure of example pages, our wrapper induction process can
detect landmarks that enable us to extract desired fields. After we developed
an initial wrapper induction process we realized that the accuracy of the in-
duction method can be improved by simultaneously learning “forward” and
“backward” extraction rules to identify exception cases. Again, what makes
this possible is the regularities on a page that enable us to identify landmarks
both before a field and after a field.

Our approach to automatically detecting wrapper breakages and repairing
them capitalizes on the regular structure of the extracted fields themselves.
Once a wrapper has been initially created, we can use it to obtain numerous
examples of the fields. This enables us to profile the information in the
fields and obtain structural descriptions that we can use during monitoring
and repair. Essentially this is a bootstrapping approach. Given the initial
examples provided by the user, we first learn a wrapper. Then we use this
wrapper to obtain many more examples which we then analyze in much
greater depth. Thus by leveraging a few human-provided examples, we end
up with a highly scalable system for wrapper creation and maintenance.

The following publications were funded completely or in part by this
project:

1. David N. Allsopp, Patrick Beautement, Michael Kirton, Jeffrey M.
Bradshaw, Niranjan Suri, Edmund H. Durfee, Craig A. Knoblock,
Austin Tate, and Craig W. Thompson. Coalition agents experiment:
Multiagent cooperation in international coalitions. IEEE Intelligent
Systems, 17(3):26–35, May/June 2002.

2. Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina Lerman,
Jean Oh, David V. Pynadath, Thomas A. Russ, and Milind Tambe.
Electric elves: Agent technology for supporting human organizations.
AI Magazine, 23(2):11–24, Summer 2002.
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3. Kristina Lerman, Steven Minton, and Craig A. Knoblock. Wrapper
maintenance: A machine learning approach. To appear in the Journal
of Artificial Intelligence Research, 2002.

4. Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning domain-
independent string transformation weights for high accuracy object
identification. In Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD-
2002), Edmonton, Alberta, Canada, 2002.

5. Sheila Tejada. Learning Object Identification Rules for Information
Integration. PhD thesis, Department of Computer Science, University
of Southern California, 2002.

6. Jose Luis Ambite, Greg Barish, Craig A. Knoblock, Maria Muslea,
Jean Oh, and Steven Minton. Getting from here to there: Interactive
planning and agent execution for optimizing travel. In Proceedings
of the Fourteenth Conference on Innovative Applications of Artificial
Intelligence (IAAI-2002), pages 862–869, Edmonton, Alberta, Canada,
2002.

7. Ion Muslea, Steven Minton, and Craig A. Knoblock. Active + semi-
supervised learning = robust multi-view learning. In Proceedings of
the 19th International Conference on Machine Learning (ICML-2002),
pages 435–442, Sydney, Australia, 2002.

8. Ion Muslea, Steven Minton, and Craig A. Knoblock. Adaptive view
validation: A first step towards automatic view detection. In Proceed-
ings of the 19th International Conference on Machine Learning (ICML-
2002), pages 443–450, Sydney, Australia, 2002.

9. Greg Barish and Craig A. Knoblock. An efficient and expressive lan-
guage for information gathering on the web. In Proceedings of the
AIPS-2002 Workshop on Is there life after operator sequencing? – Ex-
ploring real world planning, pages 5–12, Tolouse, France, 2002.

10. D.N. Allsopp, P. Beautement, J.M. Bradshaw, E.H. Durfee, M. Kir-
ton, C.A. Knoblock, N. Suri, A. Tate, and C.W. Thompson. Coalition
agents experiment: Multi-agent co-operation in an international coali-
tion setting. In Proceedings of the Second International Conference on
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Knowledge Systems for Coalition Operations (KSCO-2002), Toulouse,
France, April 2002.

11. Craig A. Knoblock, Kristina Lerman, Steven Minton, and Ion Muslea.
Accurately and reliably extracting data from the web: A machine learn-
ing approach. In P.S. Szczepaniak, J. Segovia, J. Kacprzyk, and L.A.
Zadeh, editors, Intelligent Exploration of the Web. Springer-Verlag,
Berkeley, CA, forthcoming.

12. Naveen Ashish, Craig A. Knoblock, and Cyrus Shahabi. Selectively
materializing data in mediators by analyzing user queries. International
Journal of Cooperative Information Systems, 11(1), March 2002.

13. Jose Luis Ambite and Craig A. Knoblock. Planning by rewriting. Jour-
nal of Artificial Intelligence Research, 15:207–261, 2001.

14. Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning object
identification rules for information integration. Information Systems,
26(8), 2001.

15. Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina Lerman,
Jean Oh, David V. Pynadath, Thomas A. Russ, and Milind Tambe.
Electric elves: Applying agent technology to support human organiza-
tions. In Proceedings of the Conference on Innovative Applications of
Artificial Intelligence, 2001.

16. Kristina Lerman, Craig A. Knoblock, and Steven Minton. Automatic
data extraction from lists and tables in web sources. In Proceedings
of the IJCAI 2001 Workshop on Adaptive Text Extraction and Mining,
Seattle, WA, 2001.

17. Craig A. Knoblock, Jose Luis Ambite, Steven Minton, Cyrus Sha-
habi, Mohammad Kolahdouzan, Maria Muslea, Jean Oh, and Snehal
Thakkar. Integrating the world: The worldinfo assistant. In Proceed-
ings of the 2001 International Conference on Artificial Intelligence (IC-
AI 2001), Las Vegas, NV, 2001.

18. Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Maria Muslea,
Jean Oh, and Martin Frank. Mixed-initiative, multi-source information
assistants. In Proceedings of the World Wide Web Conference, Hong
Kong, May 2001.
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19. Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen Ashish,
Ion Muslea, Andrew G. Philpot, and Sheila Tejada. The ariadne ap-
proach to web-based information integration. International Journal of
Cooperative Information Systems (IJCIS), Special Issue on Intelligent
Information Agents: Theory and Applications, 10(1/2):145–169, 2001.

20. Jose Luis Ambite, Craig A. Knoblock, Ion Muslea, and Andrew Philpot.
Compiling source descriptions for efficient and flexible information in-
tegration. Journal of Intelligent Information Systems, 16(2):149–187,
March 2001.

21. Martin Frank, Maria Muslea, Jean Oh, Steve Minton, and Craig Knoblock.
An intelligent user interface for mixed-initiative multi-source travel. In
Proceedings of the ACM International Conference on Intelligent User
Interfaces, Santa Fe, New Mexico, January 2001.

22. Craig A. Knoblock, Kristina Lerman, Steven Minton, and Ion Muslea.
Accurately and reliably extracting data from the web: A machine learn-
ing approach. IEEE Data Engineering Bulletin, 23(4), December 2000.

23. Greg Barish, Daniel DiPasquo, Craig A. Knoblock, and Steven Minton.
Dataflow plan execution for software agents. In Proceedings of the
Fourth International Conference on Autonomous Agents (Agents-2000),
Barcelona, Spain, 2000.

24. Greg Barish, Daniel DiPasquo, Craig A. Knoblock, and Steven Minton.
A dataflow approach to agent-based information management. In Pro-
ceedings of the 2000 International Conference on Artificial Intelligence
(IC-AI 2000), Las Vegas, NV, 2000.

25. Greg Barish, Craig A. Knoblock, Yi-Shin Chen, Steven Minton, An-
drew Philpot, and Cyrus Shahabi. The theaterloc virtual application.
In Proceedings of Twelfth Annual Conference on Innovative Applica-
tions of Artificial Intelligence (IAAI-2000), Austin, Texas, 2000.

26. Jose Luis Ambite, Craig A. Knoblock, and Steven Minton. Learning
plan rewriting rules. In Proceedings of the Fifth International Confer-
ence on Artificial Intelligence Planning and Scheduling, Breckenridge,
CO, 2000.
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27. Jose Luis Ambite and Craig A. Knoblock. Flexible and scalable cost-
based query planning in mediators: A transformational approach. Ar-
tificial Intelligence Journal, 118(1-2):115–161, April 2000.

28. Greg Barish, Craig A. Knoblock, Yi-Shin Chen, Steven Minton, An-
drew Philpot, and Cyrus Shahabi. Theaterloc: A case study in building
an information integration application. In Proceedings of the IJCAI-99
Workshop on Intelligent Information Integration, Stockholm, Sweden,
1999.

29. Greg Barish, Craig A. Knoblock, Daniel DiPasquo, and Steven Minton.
An efficient plan execution system for information management agents.
In Proceedings of the ACM CIKM’99 Workshop on Web Information
and Data Management (WIDM), Kansas City, MO, 1999.

30. Jose Luis Ambite and Craig A. Knoblock. Flexible and scalable query
planning in distributed and heterogeneous environments. In Proceed-
ings of the Fourth International Conference on Artificial Intelligence
Planning Systems, Pittsburgh, PA, 1998.

5 Conclusions

Our work on wrapper creation and maintenance and semantic interoperabil-
ity plays a central role in providing access to real-world data. This work
provided a key capability for the Electric Elves project. The results of this
research were also applied in several different applications. First, we have
applied our wrapper creation and maintenance in the context of the CoAX
TIE [1, 2] in order to provide access to coalition data. In a coalition environ-
ment, the capability to build and maintain wrappers is important for rapidly
accessing data from both coalition partners and open sources.

Second, we have applied our work on wrapper maintenance to a project
for Special Operations for automatically building Target Intelligence Pack-
ages from open sources. The ability to create, verify, and maintain access to
online data sources provides a critical capability to automatically gather data
for military planning and intelligence. This application has received enthusi-
astic reviews from various intelligence analysts and military planners. Today
Target Intelligence Packages are laboriously constructed by hand. Using the
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wrappers, we can automatically populate a large portion of a Target Intel-
ligence Package in a matter of minutes. The system uses a variety of open
sources and integrates this information with imagery, maps, and vector data
that are stored on local servers.

Finally, much of the technology developed under this contract has been
licensed to Fetch Technologies (www.fetch.com), which has turned it into
commercial products for creating and building agents for extracting online
data. An important customer for Fetch is the US intelligence community,
which is currently using these products for their own intelligence gathering
efforts.
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Electric Elves: Applying Agent Technology to
Support Human Organizations ∗†
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Abstract

The operation of a human organization requires dozens of everyday tasks
to ensure coherence in organizational activities, to monitor the status of such
activities, to gather information relevant to the organization, to keep every-
one in the organization informed, etc. Teams of software agents can aid
humans in accomplishing these tasks, facilitating the organization’s coher-
ent functioning and rapid response to crises, while reducing the burden on
humans. Based on this vision, this paper reports on Electric Elves, a system
that has been operational, 24/7, at our research institute since June 1, 2000.

Tied to individual user workstations, fax machines, voice, mobile de-
vices such as cell phones and palm pilots, Electric Elves has assisted us in
routine tasks, such as rescheduling meetings, selecting presenters for re-
search meetings, tracking people’s locations, organizing lunch meetings,
etc. We discuss the underlying AI technologies that led to the success of
Electric Elves, including technologies devoted to agent-human interactions,
agent coordination, accessing multiple heterogeneous information sources,
dynamic assignment of organizational tasks, and deriving information about
organization members. We also report the results of deploying Electric Elves
in our own research organization.

∗Appeared in the Proceedings of the Thirteenth Innovative Applications of Arti£cial Intelli-
gence Conference (IAAI-2001), Seattle, WA, 2001.

†Copyright 2001 American Association for Arti£cial Intelligence (www.aaai.org). All rights
reserved.
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1 Introduction

Many activities of a human organization are well-suited for software agents, which
can devote significant resources to perform these tasks, thus reducing the burden
on humans. Indeed, teams of such software agents could assist all organizations,
including disaster response organizations, corporations, the military, universities
and research institutions.

Based on the above vision, we have developed a system called Electric Elves
that applies agent technology in service of the day-to-day activities of the Intelli-
gent Systems Division of USC/ISI. Electric Elves is a system of about 15 agents,
including nine proxies for nine people, plus two different matchmakers, one flight
tracker and one scheduler running continuously for past several months. This pa-
per discusses the tasks performed by the system, the research challenges it faced
and its use of AI technology in overcoming those challenges.

One key contribution of this paper is understanding the challenges faced in
deploying agents to support organizations. In particular, the complexity inherent
in human organizations complicates all of the tasks agents must perform. First,
since agents must interact with humans, issues of adjustable autonomy become
critical. In particular, agents acting as proxies for people must automatically ad-
just their own autonomy, e.g., avoiding critical errors, possibly by letting people
make important decisions while autonomously making the more routine decisions.
Second, to accomplish their goals, agents must be provided reliable access to in-
formation. Third, people have a wide variety of capabilities, interests, preferences
and engage in many different tasks. To enable teaming among such people for
crisis response or other organizational tasks, agents acting as their proxies must
represent and reason with such capabilities and interests. We thus require pow-
erful matchmaking capabilities to match both interests and capabilities. Fourth,
coordination of all of these different agents, including proxies, is itself a signif-
icant research challenge. Finally, the entire agent system must scale-up: (i) it
must scale-up in the sense of running continually 24 hours a day 7 days a week
(24/7) for months at a time; (ii) it must scale-up in the number of agents to support
large-scale human organizations.

2 The Electric Elves

In the Electric Elves project we have developed technology and tools for deploy-
ing agents into human organizations to help with organizational tasks. We de-
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scribe the application of the Electric Elves to two classes of tasks. First, we de-
scribe the problem of coordinating activities within an individual research project.
These tasks must be tightly coordinated and a significant amount of information is
known in advance about the participants and their goals and capabilities. Second,
in order to demonstrate the capabilities of the system in a more open environment,
we applied the system to the problem of meeting planning with participants out-
side the organization where some of the necessary information about participants
is not known in advance.

2.1 Coordinating Project Activities

Our agents help coordinate the everyday activities of a research project: they keep
the project running smoothly, rescheduling meetings when someone is delayed,
ordering food for meetings or if someone has to work late, and identifying speak-
ers for research meetings. Each person in the project is assigned their own per-
sonal proxy agent, which represents that person to the agent system.

Figure 1: A Palm VII PDA with
GPS receiver

A proxy agent keeps track of a project
member’s current location using several dif-
ferent information sources, including their
calendar, Global Position System (GPS) de-
vice when outside of the building (Fig. 1),
infrared communications within the building,
and computer activity. When a proxy agent
notices that someone is not attending a sched-
uled meeting or that they are too far away to
make it to a scheduled meeting in time, then
their agent sends them a request using a wire-
less device (i.e., a cell phone or Palm Pilot)
asking if they want to cancel the meeting, de-
lay the meeting, or have the meeting proceed without them. If a user responds,
their decision is communicated to the other participants of the scheduled meeting.
If they are unable to respond, the agent must make a decision autonomously.

For weekly project meetings, the agents coordinate the selection of the presen-
ter and arrange food for the meetings. Once a week an auction is held where all of
the meeting participants are asked about their capability and willingness to present
at the next meeting. Then the system compiles the bids, selects a presenter, and
notifies all of the attendees who will be presenting at the next project meeting.
The agents also arrange food for lunch meetings. They order from a set of nearby
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restaurants, select meals that were highly rated by others, and fax the orders di-
rectly to the restaurant with instructions for delivery. We have begun relying on
our agents so heavily to order lunch that one local “Subway” restaurant owner
even remarked: “. . . more and more computers are getting to order food. . . so we
might have to think about marketing [to them].”

Some of the technical challenges in building this application are in determin-
ing how much autonomy the agents should assume on behalf of the user, dynam-
ically building agent teams, determining how to assign the organizational tasks
(e.g., presentations), and providing access to online data such as calendars and
restaurants.

2.2 Organizing External Meetings

To demonstrate how the technology supports less structured environments, we
also applied the Electric Elves to the task of planning and coordinating ad hoc
meetings at conferences and workshops involving individuals across different or-
ganizations. The system identifies people that have similar research interests, co-
ordinates scheduling a meeting with those people, locates a suitable restaurant
for a meeting that takes into account dietary constraints, and makes a reservation
using an online reservation service.

To identify individuals with related interests, the agents use an online bibli-
ography service that provides a list of the papers written by an individual. When
a person is going to a meeting, their agent can check an online source to locate
individuals going to the same meeting and then build a model of the research
interests of the different participants based on their publications. Using this infor-
mation, the user selects the participants for the meeting and the agent sends out
an invitation to each of the potential attendees.

Once the agent has finalized the set of participants for a meeting, it selects an
appropriate place to have the meeting. It does this by checking for any known
dietary restrictions and uses that information to identify suitable cuisine types.
Next, the agent goes out to an online restaurant reservation site to find the set of
restaurants closest to the given location and matches up these restaurants with a
restaurant review site to select the high-quality restaurants. The user selects from
a small set of close, highly-recommended restaurants and the agent then makes a
reservation for the meeting using the online reservation system.

This application highlights two additional technical challenges: gathering in-
formation about people from other organizations and ensuring the robustness of
the interaction with online sources that change frequently.
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3 Underlying Technologies

In this section we describe how we addressed some of the technical challenges,
namely the issues of interacting with human users within an organization, pro-
viding reliable access to organization-related data, dynamic assignment of organi-
zational tasks, deriving knowledge about the participants in an organization, and
coordination of agent teams.

3.1 Agent Interactions with Human Users

Electric Elves agents must often take actions on behalf of the human users. Specif-
ically, a user’s agent proxy (named “Friday” after Robinson Crusoe’s servant and
companion) can take autonomous actions to coordinate collaborative activities
(e.g., meetings). Friday’s decision making on behalf of a person naturally leads
to the issue of adjustable autonomy. An agent has the option of acting with full
autonomy (e.g., delaying a meeting, volunteering the user to give a presentation,
ordering a meal). On the other hand, it may act without autonomy, instead asking
its user what to do. Clearly, the more decisions that Friday makes autonomously,
the more time and effort it saves its user. Yet, given the high uncertainty in Fri-
day’s knowledge of its user’s state and preferences, it could potentially make very
costly mistakes while acting autonomously. For example, it may order an ex-
pensive dinner when the user is not hungry, or volunteer a busy user to give a
presentation. Thus, each Friday must make intelligent decisions about when to
consult its user and when to act autonomously.

Our initial attempt at adjustable autonomy was inspired by CAP [21], an agent
system for advising a user on scheduling meetings. As with CAP, each Friday tried
to learn its user preferences using decision trees under C4.5 [25]. One problem
became apparent when applying this technique in Electric Elves: a user would
not grant autonomy to Friday in making certain decisions, but s/he would some-
times be unavailable to provide any input at decision time. Thus, a Friday could
end up waiting indefinitely for user input and miscoordinate with its teammates.
We therefore modified the system so that if a user did not respond within a fixed
time limit, Friday acted autonomously based on its learned decision tree. Un-
fortunately, when we deployed the system in our research group, it led to some
dramatic failures. For instance, one user’s proxy erroneously volunteered him to
give a presentation. C4.5 had overgeneralized from a few examples to create an in-
correct rule. Although Friday tried asking the user at first, because of the timeout,
it had to eventually follow the incorrect rule and take the undesirable autonomous
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action.
It was clear, based on this experience, that the team context in Electric Elves

would cause difficulties for existing adjustable-autonomy techniques [4, 5, 21]
that focused on solely individual human-agent interactions. Therefore, we devel-
oped a novel, decision-theoretic planning approach that used Markov Decision
Processes (MDPs) [23] to support explicit reasoning about team coordination.
The MDPs used in our framework [27] provide Friday with a novel three-step
approach to adjustable autonomy: (i) Before transferring decision-making con-
trol, an agent explicitly weighs the cost of waiting for user input and any potential
team miscoordination against the likelihood and cost of erroneous autonomous
action; (ii) When transferring control, an agent does not rigidly commit to this
decision, but it instead flexibly reevaluates when its user does not respond, some-
times reversing its decision and taking back autonomy; (iii) Rather than force
a risky decision in situations requiring autonomous action, an agent changes its
coordination arrangements by postponing or reordering activities to potentially
buy time to lower decision cost/uncertainty. Since these coordination decisions
and actions incur varying costs and benefits over time, agents look ahead over
the different sequences of possible actions and plan a policy that maximizes team
welfare.

We have implemented MDPs that model Friday’s decisions on meeting reschedul-
ing, volunteering its user to give a presentation, and selecting which user should
give a presentation. For instance, consider one possible policy, generated from an
MDP for the rescheduling of meetings. If the user has not arrived at the meeting
five minutes prior to its scheduled start, this policy specifies “ask the user what
to do”. If the user does not arrive by the time of the meeting, the policy specifies
“wait”, so the agent continues acting without autonomy. However, if the user still
has not arrived five minutes after the meeting is scheduled to start, then the policy
chooses “delay by 15 minutes”, which the agent then executes autonomously.

3.2 Flexible Assignment of Tasks

The human agents and software agents in our organization perform a wide vari-
ety of tasks that are often interrelated. Agents often need to delegate a subtask
to another agent capable of performing it (e.g., reserve a meeting room), invoke
another agent to gather and report back necessary information (e.g., find the loca-
tion of a person), or rely on another agent to execute some task in the real world
(e.g., attend a lunch meeting). Simple agent matchmaking is sufficient in many
multi-agent systems where agents perform one (or at most a few) kind of task,
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and their capabilities are designed by the system developers to fit the interactions
anticipated among the agents. In contrast, our agents are complex and heteroge-
neous, and the agents that issue a request cannot be expected to be aware of what
other agents are available and how they are invoked.

We have developed an agent matchmaker called PHOSPHORUS [8], which
builds on previous research on matching problem solving goals and methods in
EXPECT [28, 7]. The main features of this approach are: 1) a declarative lan-
guage to express task descriptions that includes rich parameter type expressions to
qualify task types; 2) task descriptions are fully translated into description logic to
determine subsumption relations among tasks; 3) task descriptions are expressed
in terms of domain ontologies, which provide a basis for relating and reasoning
about different tasks and enables reformulation of tasks into subtasks.

Agent capabilities and requests are represented as verb clauses with typed
arguments (as in a case grammar), where each argument has a name (usually a
preposition) and a parameter. The type of a parameter may be a specific instance,
an abstract concept (marked with spec-of), an instance type (marked with inst-of),
and extensional or intensional sets of those three types. Here are some examples
of capabilities of some researchers and project assistants:

“agents that can discuss Phosphorus”
((capability (discuss (obj Phosphorus-project)))
(agents (gil surya chalupsky russ)))

“agents that can setup an LCD projector in a meeting room”
((capability (setup (obj (?v is (inst-of lcd-projector)))

(in (?r is (inst-of meeting-room)))))
(agents (itice)))

Requests are formulated in the same language, and can ask about general types
of instances (e.g., what agents can setup any kind of equipment for giving research
presentations in a meeting room).

Description logic and subsumption reasoning are used to relate different task
descriptions. Both requests and agent capabilities are translated into Loom [18].
Loom’s classifier recognizes that the capability to “setup equipment” will sub-
sume one to “setup LCD projector”, because according to the domain ontologies
equipment subsumes LCD projector.

PHOSPHORUS performs task reformulations when there are no agents with
capabilities that subsume a request. In that case, it may be possible to fulfill the re-
quest by decomposing it into subtasks. This allows a more flexible matching than
if one required a single agent to match all capabilities in the request. PHOSPHO-
RUS supports set reformulations (breaking down a task on a set into its individual
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elements) and covering reformulations (decomposing a task into the disjoint sub-
classes of its arguments). For example, no single agent can discuss the entire
Electric Elves project, since no single researcher is involved in all the aspects of
the project. But PHOSPHORUS can return a set of people who can collectively
cover the topic based on the subprojects:

(COVERING -name ARIADNE-PROJECT
-matches KNOBLOCK MINTON LERMAN

-name PHOSPHORUS-PROJECT
-matches GIL SURYA CHALUPSKY RUSS

-name TEAMCORE-PROJECT
-matches

(COVERING
-name ADJUSTABLE-AUTONOMY-PROJECT

-matches TAMBE SCERRI PYNADATH
-name TEAMWORK-PROJECT

-matches TAMBE PYNADATH MODI)
-name ROSETTA-PROJECT

-matches GIL CHALUPSKY)

Many additional challenges lay ahead regarding capability representations for
people within the organization. For example, although anyone has the capability
to call a taxi for a visitor (and will do so if necessary), project assistants are the
preferred option. Extensions to the language are needed to express additional
properties of agents, such as reliability, efficiency, and invocation guidelines.

3.3 Reliable Access to Information

Timely access to up-to-date information is crucial to the successful planning and
execution of tasks in the Electric Elves organization. Agents making decisions on
behalf of human users need to extract information from multiple heterogeneous
information sources, which include internal organizational databases (personal
schedules, staff lists), and external Web sites such as airline schedules, restaurant
restaurant information, traffic and weather updates, etc. For example, in order to
pick a restaurant for a scheduled lunch meeting, the agents access the Restaurant
Row Web site to get the locations of restaurants that meet the specified criteria,
e.g., dietary restrictions. Wrappers, such as the Ariadne wrappers [13] used in
the Electric Elves organization, extract data from information sources and make it
available to other applications, including agents. Moreover, wrappers enable the
sources, including Web sites, to be queried as if they were databases. A critical
part of the wrapper is a set of extraction rules, often based on ”landmarks” or
sequences of HTML tokens [22, 6, 11, 15], that enable the wrapper to quickly
locate the beginning and end of data to be extracted from a page returned by the
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Web source in response to some query. Previous research has primarily focused
on applying machine learning techniques to rapidly generate wrappers [6, 11, 15].
Few attempts were made to provide capability to validate data, detect failures [14]
and repair the wrappers when the underlying sources change in a way that breaks
the wrapper. A critical component of a robust dynamic organization is the ability
to automatically monitor external information sources and repair wrappers when
errors are detected.

We address the problem of wrapper verification by applying machine learning
techniques to learn a set of patterns that describe the information being extracted
for each data field. Since the information for a single field can vary considerably,
the system learns a statistical distribution of patterns. Wrappers can be verified
by comparing newly extracted data to the learned patterns. When a significant
difference is found, an operator can be notified or we can automatically launch
the wrapper repair process.

The learned patterns represent the structure, or format, of data as a sequence
of words and wildcards. Wildcards represent syntactic categories to which words
belong alphabetic, numeric, capitalized, etc. and allow for multi-level general-
ization. For example, a set of street addresses all start with a pattern “ Number
Capitalized ”: a numeric token followed by a capitalized word. The algorithm
we developed [16] finds all statistically significant starting and ending patterns in
a set of positive examples of the data field. A pattern is said to be significant if
it occurs more frequently than would be expected by chance if the tokens were
generated randomly and independently of one another. Our approach is similar
to work on grammar induction [1, 9], but our pattern language is better suited to
capturing the regularities in small data fields (as opposed to languages). For the
verification task, we learn the patterns from data extracted by the wrapper that is
known to be correct (training examples). In the verification phase, the wrapper
generates a test set of examples from pages retrieved using the same or similar set
of queries. If the patterns describe statistically the same (at a given significance
level) proportion of the test examples as the training examples, the wrapper is
judged to be correct; otherwise, it is judged to have failed.

The wrappers frequently fail because changes in Web site format, even slight
reorganizations of a page, break data extraction rules. However, since the con-
tent of the fields tends to remain the same, it is often possible to automatically
repair the wrapper by learning new extraction rules. For this purpose, we exploit
the patterns learned for verifying data to locate correct examples of data on new
pages. For example, while the wrapper for Restaurant Row was working correctly,
we managed to acquire several examples of restaurant addresses, and the verifi-
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cation algorithm learned that some fraction of the examples start with the pattern
“ Number Capitalized ” and end with the pattern “Avenue”. If the Restaurant
Row changes its format to look more like Zagats Web site, the wrapper will no
longer extract correct addresses. The verification algorithm will detect the failure
because extracted data will not be described by the learned patterns. However,
since restaurant addresses will still start with the pattern “ Number Capitalized ”
and end with the pattern “Avenue”, we should be able to identify addresses on the
changed pages. Once the required information has been located, these examples,
along with the new pages, are provided to the wrapper generation system to learn
data extraction rules for the changed site. In order to identify the correct examples
of data on the changed pages we leverage both the prior knowledge about the con-
tent of data, as captured by the learned patterns, and a priori expectations about
data. We can reasonably expect the same data field to appear in roughly the same
position and in a similar context on each page; moreover, we expect at least some
of the data to remain unchanged. Of course, the latter assumption is violated by
information that changes on a regular basis, such as traffic and flight arrival infor-
mation, though we may still rely on patterns to identify correct examples.

Our approach can be extended to automatically create wrappers for new infor-
mation sources using data extracted from a known source. Thus, once we learn
what restaurant addresses look like, we can use this information to extract ad-
dresses from any other yellow pages-type source, and use the extracted data to
create a wrapper for the source. Such cross-site wrapper creation, as well auto-
matic extraction of data from more complex sources, such as lists and tables, is a
focus of our current research.

3.4 Knowledge from Unstructured Sources

As mentioned above, an agent-assisted organization crucially depends on access
to accurate and up-to-date information about the humans it supports as well as the
environment in which they operate. Some of this information can be provided di-
rectly from existing databases and online sources, but other information—people’s
expertise, capabilities, interests, etc.—will often not be available explicitly and
might need to be modeled by hand. In a dynamic environment such as Electric
Elves, however, manual modeling is only feasible for relatively static information.
For example, if at some conference we want to select potential candidates for a
lunch meeting with Yolanda Gil based on mutual research interests, it is not fea-
sible to manually model relevant knowledge about each person on the conference
roster before such a selection can be made.
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To support team-building tasks such as inviting people for a lunch meeting,
finding people potentially interested in a presentation or research meeting, find-
ing candidates to meet with a visitor, etc., we developed a matchmaking service
called the Interest Matcher. It can match people based on their research inter-
ests but also take other information into account such as involvement in research
projects, present and past affiliation, universities attended, etc. To minimize the
need for manual modeling in a dynamic environment, we combined statistical
match techniques from the area of information retrieval (IR) with logic-based
matching performed by the PowerLoom knowledge representation (KR) system.
The IR techniques work well with unstructured text sources available online on
the Web, which is the form in which information is typically available to out-
side organizations. PowerLoom facilitates declarative modeling of the decision
process, modeling of missing information, logical inference, explanation and also
customization.

The matchmaker’s knowledge base contains an ontology of research topic
areas and associated relations; rules formalizing the matchmaking process; and
manually modeled, relatively static information about staff members, research
projects, etc. To perform a particular matchmaking task, a requesting agent sends
a message containing an appropriate PowerLoom query to the Interest Matcher.
For example, the following query finds candidates for lunch with Yolanda Gil:

(retrieve all ?x (should-meet ?x Gil))

The should-meet relation and one of its supporting relations are de£ned as follows
in PowerLoom:

(defrelation should-meet ((?p1 Person) (?p2 Person))
:⇐ (or (interests-overlap ?p1 ?p2)

(institution-in-common ?p1 ?p2)
(school-in-common ?p1 ?p2)))

(defrelation interests-overlap ((?p1 Person) (?p2 Person))
:⇐ (exists (?interest1 ?interest2)

(and (research-interest ?p1 ?interest1)
(research-interest ?p2 ?interest2)
(or (subset-of ?interest1 ?interest2)

(subset-of ?interest2 ?interest1)))))

For more speci£c purposes, any of the more basic relations comprising should-

meet such as interests-overlap could be queried directly by a client. Using a general
purpose KR system as the matching engine provides us with this flexibility. Note,
that for interests-overlap we only require a subsumption relationship, e.g., interest
in planning would subsume (or overlap with) interest in hierarchical planning.
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To deal with incompleteness of the KB, we allow a requesting agent to intro-
duce new individuals and then the Interest Matcher automatically infers limited
structured knowledge—their research interests—by analyzing relevant unstruc-
tured text sources on the Web.

The key idea is that people’s research interests are implicitly documented in
their publication record. We make these interests explicit by associating each re-
search topic in the PowerLoom topic ontology with a statistical representation of a
set of abstracts of research papers representative of the topic. These topic sets are
determined automatically by querying a bibliography search engine such as Cora
or the NEC ResearchIndex with seed phrases representative of the topic (access
to such Web sources is facilitated by Ariadne wrappers). We then query the same
search engine for publication abstracts of a particular researcher and then clas-
sify them by computing statistical similarity measures between the researcher’s
publications and the topic sets determined before. We use a standard IR vector
space model to represent document abstracts and compute similarity by a cosine
measure and by weighting terms based on how well they signify particular topic
classes [26].

3.5 Coordination of Component Agents

The diverse agents in Electric Elves must work together to accomplish the com-
plex tasks of the whole system. For instance, to plan a lunch meeting, the interest
matcher finds a list of potential attendees, the Friday of each potential attendee de-
cides whether s/he will attend, the capability matcher identifies dietary restrictions
of the confirmed attendees, and the reservation site wrapper identifies possible
restaurants and makes the £nal reservation. In addition to low-level communica-
tion issues, there is the complicated problem of getting all these agents to work
together as a team. Each of these agents must execute its part in coordination with
the others, so that it performs its tasks at the correct time and sends the results to
the agents who need them.

However, constructing teams of such agents remains a difficult challenge.
Current approaches to designing agent teams lack the general-purpose teamwork
models that would enable agents to autonomously reason about the communica-
tion and coordination required. The absence of such teamwork models makes
team construction highly labor-intensive. Human developers must provide the
agents with a large number of problem-specific coordination and communication
plans that are not reusable. Furthermore, the resulting teams often suffer from
a lack of robustness and flexibility. In a real-world domain like Electric Elves,
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teams face a variety of uncertainties, such as a member agent’s unanticipated fail-
ure in fulfilling responsibilities (e.g., a presenter is delayed), members’ divergent
beliefs, and unexpectedly noisy communication. It is difficult to anticipate and
pre-plan for all possible coordination failures.

In Electric Elves, the agents coordinate using Teamcore, a domain-independent,
decentralized, teamwork-based integration architecture [24]. Teamcore uses STEAM,
a general-purpose teamwork model [31] and provides core teamwork capabili-
ties to agents by wrapping them with Teamcore proxies (separate from the Fri-
day agents that are user proxies). By interfacing with Teamcore proxies, existing
agents can rapidly assemble themselves into a team to solve a given problem. The
Teamcore proxies form a distributed team-readiness layer that provides the fol-
lowing social capabilities: (i) coherent commitment and termination of joint goals,
(ii) team reorganization in response to member failure, (iii) selective communica-
tion, (iv) incorporation of heterogeneous agents, and (v) automatic generation of
tasking and monitoring requests. Although other agent-integration architectures
such as OAA [20] and RETSINA [29] provide capability (iv), Teamcore’s use
of an explicit, domain-independent teamwork model allows it to support all five
required social capabilities.

Each and every agent in the Electric Elves organization (Fridays, matchers,
wrappers) has an associated Teamcore proxy that records its membership in vari-
ous teams and active commitments made to these teams. Given an abstract speci-
fication of the organization and its plans, the Teamcore proxies automatically exe-
cute the necessary coordination tasks. They form joint commitments to team plans
such as holding meetings, hosting and meeting with visitors, arranging lunch, etc.
Teamcore proxies also communicate amongst themselves to ensure coherent and
robust plan execution. The Teamcore proxies automatically substitute for missing
roles (e.g., if the presenter is absent from the meeting) and inform each other of
critical factors affecting a team plan. Finally, they communicate with their corre-
sponding agents to monitor the agents’ ability to fulfill commitments (e.g., asking
Friday to monitor its user’s attendance of a meeting) and to inform the agents of
changes to those commitments (e.g., notifying Friday of a meeting rescheduling).

4 Electric Elves Architecture

Electric Elves is a complex and heterogeneous system spanning a wide variety of
component technologies and languages, communication protocols as well as op-
erating system platforms. Figure 2 shows the components of the current version
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Figure 2: Electric Elves System Architecture

of Electric Elves. Teamcore agents are written in Python and Soar (which is writ-
ten in C), Ariadne wrappers are written in C++, the PHOSPHORUS capability
matcher is written in Common-Lisp and the PowerLoom interest matcher is writ-
ten in STELLA [2] which translates into Java. The agents are distributed across
SunOS 5.7, Windows NT, Windows 2000 and Linux platforms, and use TCP/IP,
HTTP and the Lockheed KQML API to handle specialized communication needs.

Tying all these different pieces together in a robust and coherent manner con-
stitutes a significant engineering challenge. Initially we looked for an implemen-
tation of KQML, but there was none available that supported all the languages
and platforms we required. To solve this integration problem, we are using the
DARPA supported CoABS Grid technology developed by Global InfoTek, Inc.
and ISX Corporation1. The CoABS Grid is a Java-based communication infras-
tructure built on top of Sun’s Jini networking technology. It provides message and
service-based communication mechanisms, agent registration, lookup and dis-
covery services, as well as message logging, security and visualization facilities.
Since it is is written in Java, it runs on a wide variety of OS platforms, and it is
also relatively easy to connect with non-Java technology. Grid proxy components
connect non-Java technology to the Grid.

We primarily use the CoABS Grid as a uniform transport mechanism. The
content of Grid messages are in KQML format and could potentially be communi-
cated via alternative means. Not all Electric Elves message traffic goes across the
Grid. For example, the Teamcore agents communicate via their own protocol (the

1http://coabs.globalinfotek.com/coabs public/coabs pdf/gridvision.pdf
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Lockheed KQML API) and only use the Grid to communicate with non-Teamcore
agents such as the capability and interest matchers. Similarly, the information re-
trieval engine communicates with Ariadne wrappers directly via HTTP instead of
going through the Grid.

5 Related Work

Several agent-based systems have been developed that support specific tasks within
an organization, such as meeting scheduling [3] and visitor hosting [12, 30]. In
contrast to these systems, we believe that our approach integrates a range of tech-
nologies that can support a variety of tasks within the organization. Agent archi-
tectures have been applied to organizational tasks [29, 20, 17], but none of them
include technology for team work, adjustable autonomy, and dynamic collection
of information from external sources.

To our knowledge, Electric Elves represents the first agent-based system that
is used for routine tasks within a human organization. Several other areas of
research have looked at complementary aspects of the problems that we aim to
address. Research on architectures and systems for Computer-Supported Coop-
erative Work include a variety of information management and communication
technologies that facilitate collaboration within human organizations [10, 19]. In
contrast with our work, they do not have agents associated with people that have
some degree of autonomy and can make decisions on a human’s behalf. Our work
is also complementary and can be extended with ongoing research on ubiquitous
computing and intelligent buildings [17]. These projects are embedding sensor
networks and agents to control and improve our everyday physical environments.
This kind of infrastructure would make it easier for Electric Elves to locate and
contact people as well as to direct the environmental control agents in support of
organizational tasks.

6 Current Status

The Electric Elves system has been in use within our research group at ISI since
June 1, 2000; and operating continuously 24 hours a day, 7 days a week (with
interruptions for bug fixes and enhancements). Usually, nine agent proxies are
working for nine users, with one proxy each for a capability matcher and an inter-
est matcher. The proxies communicate with their users using a variety of devices:
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Figure 3: Number of daily coordination messages exchanged by proxies over a
seven-month period.

workstation display, voice, mobile phones, and palm pilots. They also communi-
cate with restaurants by sending faxes.

Figure 3 plots the number of daily messages exchanged by the proxies for
seven months (June 1, 2000 to December 31, 2000). The size of the daily counts
demonstrates the large amount of coordination actions necessary in managing all
of the activities such as meeting rescheduling. The high variability is due to the
variance in the number of daily activities, e.g., weekends and long breaks such as
the Christmas break, usually have very little activity. Furthermore, with contin-
ually increasing system stability, the amount of housekeeping activity necessary
has reduced automatically.

Several observations show the effectiveness of Electric Elves. First, over the
past several months, few emails have been exchanged among our group members
indicating to each other that they may get delayed to meetings. Instead, Friday
agents automatically address such delays. Also the overhead of waiting for de-
layed members in meeting rooms has been reduced. Overall, 1128 meetings have
been monitored, out of which 285 have been rescheduled, 230 automatically and
55 by hand. Both autonomous rescheduling and human intervention were useful
in Elves.

Furthermore, whereas in the past, one of our group members would need to
circulate emails trying to recruit a presenter for research meetings and making
announcements, this overhead has almost completely vanished—weekly auctions
automatically select the presenters at our research meetings. These auctions are
automatically opened when the system receives notification of any meeting requir-
ing a presentation. Auction decisions may be made without requiring a full set of
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bids; in fact, in one case, only 4 out of 9 possible bids were received. The rest of
the group simply did not bid before the winner was announced. Most of the time,
the winner was automatically selected. However, on two occasions (July 6 and
Sept 19) exceptional circumstances (e.g., a visitor) required human intervention,
which our proxy team easily accommodates.

7 Discussion

As described in this paper we have successfully deployed the Electric Elves in
our own real-world organization. These agents interact directly with humans both
within the organization and outside the organization communicating by email,
wireless messaging, and faxes. Our agents go beyond simply automating tasks that
were previously performed by humans. Because hardware and processing power
is cheap, our agents can perform a level of monitoring that would be impractical
for human assistants, ensuring that activities within an organization run smoothly
and that events are planned and coordinated to maximize the productivity of the
individuals of an organization.

In the process of building the applications described in this paper we addressed
an number of key technology problems that arise in any agent-based system ap-
plied to human organizations. In particular we described how to use Markov De-
cision Processes to determine the appropriate degree of autonomy for the agents,
how to use knowledged-based matchmaking to assign tasks within an organiza-
tion, how to apply machine learning techniques to ensure robust access to the
data sources, how to combine knowledge-based and statistical matchmaking tech-
niques to derive knowledge about the participants both within and outside an or-
ganization, and how to apply multi-agent teamwork coordination to dynamically
assemble teams.
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Abstract

Planning and monitoring a trip is a common but complicated human activity. Cre-
ating an itinerary is nontrivial because it requires coordination with existing schedules
and making a variety of interdependent choices. Once planned, there are many possible
events that can affect the plan, such as schedule changes or flight cancellations, and
checking for these possible events requires time and effort. In this paper, we describe
how Heracles and Theseus, two information gathering and monitoring tools that we
built, can be used to simplify this process. Heracles is a hierarchical constraint planner
that aids in interactive itinerary development by showing how a particular choice (e.g.,
destination airport) affects other choices (e.g., possible modes of transportation, avail-
able airlines, etc.). Heracles builds on an information agent platform, called Theseus,
that provides the technology for efficiently executing agents for information gather-
ing and monitoring tasks. In this paper we present the technologies underlying these
systems and describe how they are applied to build a state-of-the-art travel system.
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gence (IAAI-2002), pages 862–869, Edmonton, Alberta, Canada, 2002.
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1 Introduction

The standard approach to planning business trips is to select the flights, reserve a hotel,
and possibly a car at the destination. Choices of which airports to fly into and out of,
whether to park at the airport or take a taxi, and whether to rent a car at the destination
are often ad hoc choices based on past experience. These choices are frequently suboptimal,
but the time and effort required to make more informed choices usually outweighs the cost.
Similarly, once a trip has been planned it is usually ignored until a few hours before the
first flight. A traveler might check on the status of the flights or use one of the services
that automatically notify a traveler of flight status information, but otherwise a traveler
just copes with problems that arise as they arise. Beyond flight delays and cancellations
there a variety of possible events that occur in the real world that one would ideally like to
anticipate, but again the cost and effort required to monitor for these events is not usually
deemed to be worth the trouble. Schedules can change, prices may go down after purchasing
a ticket, flight delays can result in missed connections, and hotel rooms and rental cars are
given away because travelers arrive late.

To address these issues we have developed an integrated travel planning and monitoring
system. The Travel Assistant provides an interactive approach to making travel plans where
all of the information required to make informed choices is available to the user. For example,
when deciding whether to park at the airport or take a taxi, the system compares the cost of
parking and the cost of a taxi given other selections, such as the airport, the specific parking
lot, and the starting location of the traveler. Likewise, when the user is deciding which
airport to fly into, the system provides not only the cost of the flights, but also determines
the impact on the cost of the ground transportation at the destination. Once a trip is
planned, the monitoring tasks are addressed by a set of information agents that can attend
to details for which it would be impractical for a human assistant to monitor. For example,
beyond simply notifying a traveler of flight delays, an agent will also send faxes to the hotel
and car rental agencies to notify them of the delay and ensure that the room and car will
be available. Likewise, when a traveler arrives in a city for a connecting flight, an agent
notifies the traveler if there are any earlier connecting flights and provides both arrival and
departure gates.

These innovations in travel planning and monitoring are made possible by two underlying
AI technologies. The first is the Heracles interactive constraint-based planner [Knoblock et
al., 2001], which captures the interrelationships of the data and user choices using a set of
constraint rules. Using Heracles we can easily define a system for interactively planning
a trip. The second is the Theseus information agent platform [Barish et al., 2000], which
facilitates the rapid creation of information gathering and monitoring agents. These agents
provide data to the Heracles planner and keep track of information changes relevant to the
travel plans. Based on these technologies, we have developed a complete end-to-end travel
planning and monitoring system that is in use today.

The remainder of this paper describes the travel application and underlying technology
in more detail. The next section describes by example the trip planning process as well as
the monitoring agents that ensure that the trip is executed smoothly. Then, we present the
constraint-based planning technology that supports the trip planning. Next, we describe the
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information agent technology, which provides the data for the planner and the agents for
monitoring the trip. Finally, we compare with related work, and discuss our contributions
and future plans.

2 Planning and Monitoring a Trip

In this section we describe by example the functionality and interface of our Travel Assistant,
showing both its capabilities for interactive planning and for monitoring the travel plans.

2.1 Interactive Travel Planning

Our Travel Assistant starts the travel planning process by retrieving the business meetings
from the user’s calendar program (e.g., Microsoft Outlook). Figure 1 shows the user interface
of the Travel Assistant with the high level information for planning a trip to attend a business
meeting. The interface displays a set of boxes showing values, which we call slots. A slot
holds a current value and a set of possible values, which can be viewed in a pull-down list by
clicking the arrow at the right edge of the slot. For example, there are slots for the subject
and location of the meeting with values Travel Planner Meeting and DC respectively. The user
could choose to plan another meeting from the list or input meeting information directly.

Once the system has the details of the meeting, the next step is to determine how to get
to the destination. There are three possible modes of transportation: Fly, Drive, or Take a
Taxi. The system recommends the transportation mode based on the distance between the
user’s location and the meeting location. The system obtains the departure location from
the user’s personal profile and the meeting location from Outlook. The system computes
the distance by first geocoding (determining the latitude and longitude) of the origin and
destination addresses using the Mapblast Web site (www.mapblast.com). Then, using the
geocoded information, a local constraint computes the distance between the two points. In
our example, the distance between Los Angeles and Washington D.C. is 2,294 miles, so
the system recommends that the user Fly. Since the meeting lasts for several days, it also
recommends that the user stay at a hotel. Of course, the user can always override the system
suggestions.

The Travel Assistant organizes the process of trip planning and the associated information
hierarchically. The left pane of Figure 1 shows this hierarchical structure, with the particular
choices made for the current plan. In this example, the trip consists of three tasks: flying to
the meeting, staying at a hotel at the meeting location, and flying back home. Some tasks
are further divided into subtasks, for example, how to get to and from the airport when flying.
In Heracles these tasks are represented by related slots and constraints that are encapsulated
into units called templates, which are organized hierarchically.

The Travel Assistant helps the user evaluate tradeoffs that involve many different pieces
of information and calculations. For example, Figure 2 illustrates how the system recom-
mends the mode of transportation to the departure airport. This recommendation is made
by comparing the cost of parking a car at the airport for the duration of the trip to the
cost of taking a taxi to and from the airport. The system computes the cost of park-
ing by retrieving the available airport parking lots and their daily rates from the AirWise
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Figure 1: Planning a Meeting

site (www.airwise.com), determining the number of days the car will be parked based on
scheduled meetings, and then calculating the total cost of parking. Similarly, the system
computes the taxi fare by retrieving the distance between the user’s home address and the
departure airport from the Yahoo Map site (maps.yahoo.com), retrieving the taxi fare from
the Washington Post site (www.washingtonpost.com), and then calculating the total cost.
Initially, the system recommends taking a taxi since the taxi fare is only $19.50, while the
cost of parking would be $48.00 using the Terminal Parking lot (the preferred parking lot in
the user’s profile). However, when the user changes the selected parking lot to Economy Lot
B, which is $5 per day, this makes the total parking rate cheaper than the taxi fare, so the
system changes the recommendation to Drive.

The system actively maintains the dependencies among slots so that changes to earlier
decisions are propagated throughout the travel planning process. For example, Figure 3
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Figure 2: Comparing Cost of Driving versus Taking a Taxi
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shows how the Taxi template is affected when the user changes the departure airport in the
higher-level Round Trip Flights template. In the original plan, the flight departs from Los
Angeles International (LAX) at 11:55 PM. The user’s preference is to arrive an hour before
the departure time, thus he/she needs to arrive at LAX by 10:55 PM. Since Mapblast calcu-
lates that it takes 24 minutes to drive from the user’s home to LAX, the system recommends
leaving by 10:31 PM. When the user changes the departure airport from LAX to Long Beach
airport (LGB), the system retrieves a new map and recomputes the driving time. Changing
the departure airport also results in a different set of flights. The recommended flight from
LGB departs at 9:50 PM and driving to LGB takes 28 minutes. Thus, to arrive at LGB by
8:50 PM, the system now suggests leaving home by 8:22 PM.

2.2 Monitoring Travel Status

There are various dynamic events that can affect a travel plan, for instance, flight delays,
cancellations, fare reductions, etc. Many of these events can be detected in advance by
monitoring information sources. The Travel Assistant is aware that some of the information
it accesses is subject to change, so it delegates the task of following the evolution of such
information to a set of monitoring agents. For instance, a flight schedule change is a critical
event since it can have an effect not only on the user’s schedule at the destination but also
on the reservations at a hotel and a car rental agency. In addition to agents handling critical
events, there are also monitoring agents whose purpose is to make a trip more convenient or
cost-effective. For example, tracking airfares or finding restaurants near the current location
of the user. In what follows, we describe the monitoring agents that we defined for travel
planning. As shown in Figure 4, Heracles automatically generates the set of agents for
monitoring a travel plan. Figure 5 shows some example messages sent by these agents.

The Flight-Status monitoring agent uses the ITN Flight Tracker site to retrieve the cur-
rent status of a given flight. If the flight is on time, the agent sends the user a message to
that effect two hours before departure. If the user’s flight is delayed or canceled, it sends
an alert through the user’s preferred device (e.g., a text message to a cellular phone). If the
flight is delayed by more than an hour, the agent sends a fax to the car rental counter to
confirm the user’s reservation. If the flight is going to arrive at the destination airport after
5 PM, the agent sends another fax to the hotel so that the reserved room will not be given
away. Since the probability of a change in the status of a flight is greater as the departure
time gets closer, the agent monitors the status more frequently as the departure time nears.

The Airfare monitoring agent keeps track of current prices for the user’s itinerary. The
airlines change prices unpredictably, but the traveler can request a refund (for a fee) if
the price drops below the purchase price. This agent gathers current fares from Orbitz
(www.orbitz.com) and notifies the user if the price drops by more than a given threshold.

The Flight-Schedule monitoring agent keeps track of changes to the scheduled departure
time of a flight (using Orbitz) and notifies the user if there is any change. Without such
an agent, a traveler often only discovers this type of schedule changes after arriving at the
airport.

The Earlier-Flight monitoring agent uses Orbitz to find the flights that leave earlier than
the scheduled flight. It shows the alternative earlier flights and their status. This information
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Figure 3: Change in Selected Airport Propagates to Drive Subtemplate
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Figure 4: Template for Generating Monitoring Agents

(a) Flight-Status Agent: Flight delayed message
Your United Airlines flight 190 has been delayed. It was originally scheduled to depart at 11:45 AM and is now scheduled to depart

at 12:30 PM. The new arrival time is 7:59 PM.

(b) Flight-Status Agent: Flight cancelled message
Your Delta Air Lines flight 200 has been cancelled.

(c) Flight-Status Agent: Fax to a hotel message
Attention : Registration Desk

I am sending this message on behalf of David Pynadath, who has a reservation at your hotel. David Pynadath is on United Airlines

190, which is now scheduled to arrive at IAD at 7:59 PM. Since the flight will be arriving late, I would like to request that you indicate

this in the reservation so that the room is not given away.

(d) Airfare Agent: Airfare dropped message
The airfare for your American Airlines itinerary (IAD - LAX) dropped to $281.

(e) Earlier-Flight Agent: Earlier flights message
The status of your currently scheduled flight is:

# 190 LAX (11:45 AM) - IAD (7:29 PM) 45 minutes Late

The following United Airlines flight arrives earlier than your flight:

# 946 LAX (8:31 AM) - IAD (3:35 PM) 11 minutes Late

Figure 5: Actual Messages sent by Monitoring Agents
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becomes extremely useful when the scheduled flight is significantly delayed or canceled.
The Flight-Connection agent tracks the user’s current flight, and a few minutes before it

lands, it sends the user the gate and status of the connecting flight.
The Restaurant-Finder agent locates the user based on either a Global Positioning System

(GPS) device or his/her expected location according to the plan. On request, it suggests
the five closest restaurants providing cuisine type, price, address, phone number, latitude,
longitude, and distance from the user’s location.

In the following sections, we describe in detail the technology we have used to automate
travel planning and monitoring, namely, the Heracles interactive constraint-based planning
framework and the Theseus agent execution and monitoring system.

3 Interactive Constraint-based Planning

The critical challenge for Heracles is integrating multiple information sources, programs, and
constraints into a cohesive, effective tool. We saw examples of these diverse capabilities in
the Travel Assistant, such as retrieving scheduling information from a calendar system, com-
puting the duration of a given meeting, and invoking an information agent to find directions
to the meeting.

Constraint reasoning technology offers a clean way to integrate multiple heterogeneous
subsystems in a plug-and-play approach. Our approach employs a constraint representation
where we model each piece of information as a distinct variable1 and describe the rela-
tions that define the valid values of a set of variables as constraints. A constraint can be
implemented either by a local procedure within the constraint engine or by an external com-
ponent. In particular, we use information agents built with Theseus to implement many of
the external constraints.

Using a constraint-based representation as the basis for control has the advantage that
it is a declarative representation and can have many alternative execution paths. Thus, we
need not commit to a specific order for executing components or propagating information.
The constraint propagation system will determine the execution order in a natural manner.
The constraint reasoning system propagates information entered by the user as well as the
system’s suggestions, decides when to launch information requests, evaluates constraints,
and computes preferences.

3.1 Constraint Network Representation

A constraint network is a set of variables and constraints that interrelate and define the valid
values for the variables. Figure 6 shows the fragment of the constraint network of the Travel
Assistant that addresses the selection of the method of travel from the user’s initial location
to the airport. The choices under consideration are: driving one’s car (which implies leaving
it parked at the airport for the duration of the trip) or taking a taxi.

1In the example in the previous section we have referred to each piece of information presented to the
user as a slot. We use the term slot for user interface purposes. Each slot has a corresponding variable
defined in the constraint network, but there may be variables that are not presented to the user.
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computeDuration

multiply

getDistance

getTaxiFare

findClosestAirport

getParkingRate

selectModeToAirport

DestinationAddress

OriginAddress

DepartureDate

Mar 15, 2001

ReturnDate

Mar 18, 2001

DepartureAirport

LAX

Distance
15.1 miles

Duration

4 days

ParkingTotal

$64.00

ModeToAirport

Taxi

ParkingRate

$16.00/day

TaxiFare
$23.00

Figure 6: Constraint Network: Driving Versus Taking a Taxi

In the sample network of Figure 6, the variables are shown as dark rectangles and the
assigned values as white rectangles next to them. The variables capture the relevant infor-
mation for this task in the application domain, such as the DepartureDate, the Duration of the
trip, the ParkingTotal (the total cost of parking for the duration of the trip), the TaxiFare, and
the ModeToAirport. The DepartureAirport has an assigned value of LAX, which is assigned by
the system since it is the closest airport to the user’s address.

Conceptually, a constraint is a n-ary predicate that relates a set of n variables by defining
the valid combinations of values for those variables. A constraint is a computable compo-
nent which may be implemented by a local table look-up, by the computation of a local
function, by retrieving a set of tuples from a remote information agent, or by calling an
arbitrary external program. In Heracles the constraints are directed. The system evaluates
a constraint only after it has assigned values to a subset of its variables, the input variables.
The constraint evaluation produces the set of possible values for the output variables.

In the sample network of Figure 6 the constraints are shown as rounded rectangles. For
example, the computeDuration constraint involves three variables (DepartureDate, ReturnDate,
and Duration), and it’s implemented by a function that computes the duration of a trip given
the departure and return dates. The constraint getParkingRate is implemented by calling an
information agent that accesses a web site that contains parking rates for airports in the US.

Each variable can also be associated with a preference constraint. Evaluating the pref-
erence constraint over the possible values produces the assigned value of the variable. (The
user can manually reset the assigned value at any point by selecting a different alternative.)
Preference constraints are often implemented as functions that impose an ordering on the
values of a domain. An example of a preference for business travel is to choose a hotel closest
to the meeting.
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3.2 Constraint Propagation

Since the constraints are directed, the constraint network can be seen as a directed graph.
In the current version of the system, this constraint graph must be acyclic, which means
that information flows in one direction. This directionality simplifies the interaction with the
user. Note that if the user changes a variable’s value, this change may need to be propagated
throughout the constraint graph.

The constraint propagation algorithm proceeds as follows. When a given variable is
assigned a value, either directly by the user or by the system, the algorithm recomputes
the possible value sets and assigned values of all its dependent variables. This process
continues recursively until there are no more changes in the network. More specifically,
when a variable X changes its value, the constraints that have X as input variable are
recomputed. This may generate a new set of possible values for each dependent variable Y.
If this set changes, the preference constraint for Y is evaluated selecting one of the possible
values as the new assigned value for Y. If this assigned value is different from the previous
one, it causes the system to recompute the values for further downstream variables. Values
that have been assigned by the user are always preferred as long as they are consistent with
the constraints.

Consider again the sample constraint network in Figure 6. First, the constraint that
finds the closest airport to the user’s home address assigns the value LAX to the variable
DepartureAirport. Then, the constraint getParkingRate, which is a call to an information agent,
fires producing a set of rates for different parking lots. The preference constraint selects
terminal parking which is $16.00/day. This value is multiplied by the duration of the trip to
compute the ParkingTotal of $64 (using the simple local constraint multiply). A similar chain
of events results in the computation of the TaxiFare. Once the ParkingTotal and the TaxiFare
are computed, the selectModeToAirport constraint compares the costs and chooses the cheapest
means of transportation, which in this case is to take a Taxi.

3.3 Template Representation

As described previously, to modularize an application and deal with its complexity, the user
interface presents the planning application as a hierarchy of templates. For example, the top-
level template of the Travel Assistant (shown in Figure 1) includes a set of slots associated
with who you are meeting with, when the meeting will occur, and where the meeting will be
held. The templates are organized hierarchically so that a higher-level template representing
an abstract task (e.g., Trip) may be decomposed into a set of more specific subtasks, called
subtemplates (e.g., Fly, Drive, etc). This hierarchical task network structure helps to manage
the complexity of the application for the user by hiding less important details until the major
decisions have been achieved.

This template-oriented organization has ramifications for the constraint network. The
network is effectively divided into partitions, where each partition consists of the variables
and constraints that compose a single template. During the planning process the system
only propagates changes to variables within the template that the user is currently working
on. This strategy considerably improves performance.
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4 Information Agents

Our system uses information agents to support both the trip planning and monitoring. While
information agents are similar to other types of software agents, their plans are distinguished
by a focus on gathering, integrating, and monitoring of data from distributed and remote
sources. To efficiently perform these tasks we use Theseus [Barish et al., 2000, Barish &
Knoblock, 2002], which is a streaming dataflow architecture for plan execution. In this
section, we describe how we use Theseus to build agents capable of efficiently gathering and
monitoring information from remote data sources.

4.1 Defining an Information Agent

Building an information agent requires defining a plan in Theseus. Each plan consists of
a name, a set of input and output variables, and a network of operators connected in a
producer-consumer fashion. For example, the Flight-Status agent takes flight data (i.e.,
airline, flight number) as input and produces status information (i.e., projected arrival time)
as output.

Each operator in a plan receives input data, processes it in some manner, and outputs
the result - which is then potentially used by another operator. Operators logically process
and transmit data in terms of relations, which are composed of a set of tuples. Each tuple
consists of a set of attributes, where an attribute of a relation can be either a string, number,
nested relation, or XML object.

The set of operators in Theseus support a range of capabilities. First, there are informa-
tion gathering operators, which retrieve data from local and remote sources including web
sites. Second, there are data manipulation operators, which provide the standard relational
operations, such as select, project and join, as well as XML manipulation operations us-
ing XQuery. Third, there are monitoring-related operators, which provide scheduling and
unscheduling of tasks and communication with a user through email or fax.

Plans in Theseus are just like operators: they are named and have input and output
arguments. Consequently, any plan can be called as an operator from within any other plan.
This subplan capability allows a developer to define new agents by composing existing ones.

4.2 Accessing Web Sources

Access to on-line data sources is a critical component of our information agents. In the
Travel Assistant there is no data stored locally in the system. Instead, all information is
accessed directly from web sources. To do this we build wrappers that enable web sources
to be queried as structured data sources. This makes it easy for the system to manipulate
the resulting data as well as integrate it with information from other data sources.

For example, a wrapper for Yahoo Weather dynamically turns the source into XML data
in response to a query. Since the weather data changes frequently, it would not be practical
to download this data in advance and cache it for future queries. Instead, the wrapper
provides access to the live data, but provides it in a structured form.

We have developed a set of tools for semi-automatically creating wrappers for web sources
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[Knoblock et al., 2000]. The tools allow a user to specify by example what the wrapper
should extract from a source. The examples are then fed to an inductive learning system
that generates a set of rules for extracting the required data from a site.

Once a wrapper for a site has been created, Theseus agents can programmatically access
data from that site using the wrapper operator in their plans. For example, with the wrapper
for Yahoo Weather, we can now send a request to get the weather for a particular city and
it will return the corresponding data.

4.3 Monitoring Sources

In addition to being able to gather data from web sources, Theseus agents are capable of
monitoring those sources and performing a set of actions based on observed changes. The
monitoring is performed by retrieving data from online sources and comparing the returned
results against information that was previously retrieved and stored locally in a database.
This provides the capability to not only check current status information (e.g., flight status),
but to also determine how the information has changed over time.

There are several ways in which plans can react to a monitoring event. First, a plan
can use e-mail or fax operators to asynchronously notify interested parties about important
updates to monitored data. Second, a plan can schedule or unschedule other agents in
response to some condition. For example, once a flight has departed, the flight monitoring
agent can schedule the Flight-Connection agent to run a few minutes before the scheduled
arrival time.

Theseus agents are managed by a scheduling system that allows agents to be run once
or at a fixed interval. The agent scheduler works by maintaining a database of the tasks to
run and when they are scheduled to run next. Once scheduled, agents are launched at the
appropriate time. Once they are run, the database is updated to reflect the next time the
task is to be run. Since the Theseus plan language supports operators that can schedule and
unschedule agents, this provides the ability to run new agents at appropriate times based
on events in the world.

As an example information agent that monitors a data source, consider the plan for
the Flight-Status agent shown in Figure 7. Initially, the agent executes a wrapper operator
to retrieve the current flight status information. It then uses another online source to
normalize the information based on the time zone of the recipient. The resulting normalized
flight status information indicates that the flight is either arrived, cancelled, departed, or pending
(waiting to depart). If the flight has been cancelled, the user is notified via the email operator.
In this case, the flight needs no additional monitoring and the unschedule operator is used to
remove it from the list of monitored flights. For departed flights the Flight-Connection agent
is scheduled. For each pending flight, the agent must perform two actions. First, it checks if
the arrival time of the flight is later than 5pm and if so it uses the fax operator to notify the
hotel (it only does this once). Second, the agent compares the current departure time with
the previously retrieved departure time. If they differ by a given threshold, the agent does
three things: (a) it faxes a message to the car rental agency to notify them of the delay, (b)
it updates its local database with the new departure time (to track future changes) and (c)
it e-mails the user.
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Figure 7: The Flight Status information monitoring agent

4.4 Efficiently Executing Agent Plans

Information agent plans are unique in two key respects. First, they tend to integrate data
from multiple sources - for example, the Flight-Status agent might query multiple Internet
real-time data sources to find out the in-flight status of a particular airplane. Second, they
usually gather and monitor data from sources that are remote and deliver unpredictable
performance - such as Internet web sites. Thus, information agent execution is often I/O-
bound - with an agent spending the majority of its execution time waiting for replies from
remote sources it has queried.

To efficiently execute plans that primarily integrate data from remote sources, Theseus
employs a dataflow model of execution. Under this model, plan operators are arranged in a
producer-consumer fashion, leading to partially ordered plans. Then, at run-time, operators
can execute in parallel when their individual inputs have been received. This decentralized
form of execution maximizes the amount of horizontal parallelism, or concurrency between
independent data flows, available at run-time.

Theseus also supports the streaming of data between plan operators. Streaming enables
consumer operators to receive data emitted by their producers as soon as possible. This, in
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turn, enables these consumers to process this data immediately and communicate output to
other consumers farther downstream as soon as possible. For example, consider an agent
plan that fetches a large amount of data from two slow sources and joins this information
together. Streaming enables the join to be executed as soon as possible on the available data,
as it trickles in from either source. As a result, with streaming, producers and consumers
may be processing the same logical set of data concurrently, resulting in a form of pipelined
or vertical parallelism during execution.

5 Related Work

Most commercial systems for travel planning take the traditional approach of providing tools
for selecting flights, hotel, and car rentals in separate steps. The only integrated approach is
a system called MyTrip from XTRA On-line. Based on personal calendar information, the
system automatically produces a complete plan that includes the flights, hotel and car rental.
Once it has produced a plan, the user can then edit the individual selections made by the
system. Unlike the Travel Assistant, the user cannot interactively modify the plan, such as
constraining the airlines or departure airport. Also, MyTrip is limited to only the selection of
flights, hotels, and car rentals. In addition to MyTrip, there exist some commercial systems
(such as the one run by United Airlines) that provide basic flight status and notification.
However, these systems do not actually track changes in the flight status over time (they
merely notify passengers a fixed number of hours before flights) and they do not notify hotels
about flight delays or suggest earlier flights or better connections when unexpected events
(e.g., bad weather) occur.

In terms of constraint reasoning, there is a lot of research on constraint programming
[Saraswat & van Hentenryck, 1995], but not much attention has been paid to the interplay
between information gathering and constraint propagation and reasoning. Bressan and Goh
[1997] have applied constraint reasoning technology to information integration. They use
constraint logic programming to find relevant sources and construct an evaluation plan for
a user query. In our system, the relevant sources have already been identified. In dynamic
constraint satisfaction [Mittal & Falkenhainer, 1990], the variables and constraints present in
the network are allowed to change with time. In our framework, this is related to interleaving
the constraint satisfaction with the information gathering. Lamma et al. [1999] propose a
framework for interactive constraint satisfaction problems (ICSP) in which the acquisition of
values for each variable is interleaved with the enforcement of constraints. The information
gathering stage in our constraint integration framework can also be seen as a form of ICSP.
Their application domain is on visual object recognition, while our focus is on information
integration

Our work on Theseus is related to two existing types of systems: general agent executors
and network query engines. General agent executors, like RAPS [Firby, 1994] and PRS-Lite
[Myers, 1996] propose highly concurrent execution models. The dataflow aspect of Theseus
can be seen as another such model. The main difference is that execution in Theseus not
only involves enabling operators but routing information between them as well. In this
respect, Theseus shares much in common with several recently proposed network query
engines [Ives et al., 1999, Hellerstein et al., 2000, Naughton et al., 2001]. Like Theseus, these
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systems focus in efficiently integrating web-based data. However, network query engines have
primarily focused on performance issues; while Theseus also acts as an efficient executor,
it is distinguished from these other query engines by (a) its novel operators that facilitate
monitoring and asynchronous notification and (b) its modular dataflow agent language that
allows a wider variety of plans to be built and executed.

6 Discussion

The travel planning and monitoring are fully functional systems that are in use today.
The planner is not yet directly connected to a reservation system, but it is a very useful
tool for helping to make the myriad of decisions required for planning a trip. Likewise,
the monitoring agents are able to continually monitor all aspects of a trip and provide
immediate notification of changes and cancellations. There are existing commercial systems
that provide small pieces of these various capabilities, but the technology and application
presented here is unique in providing a complete end-to-end solution that plans and then
monitors all aspects of a trip. For example, the planning process will automatically produce
the fax numbers required for use by the monitoring agents to notify the hotel and car rental
agency. The current system is in use at the Information Sciences Institute and we plan to
make this system more widely available on the Web as part of the Electric Elves Project
[Chalupsky et al., 2001].

One limitation of the current system is that the monitoring agents do not communicate
problems or changes back to the travel planner. Ideally, if a flight is canceled one would
want the system to re-book the traveler on another flight as soon as possible and then make
any other needed changes to the itinerary based on the changes to the flight. Or if the price
of a ticket declines to automatically rebook the ticket. The current system does not do this.
We are working on the next generation of the travel planning component which will support
this type of dynamic replanning of a trip based on changes in the world.
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Abstract

The Web is based on a browsing paradigm that makes it difficult to retrieve and
integrate data from multiple sites. Today, the only way to do this is to build spe-
cialized applications, which are time-consuming to develop and difficult to maintain.
We have addressed this problem by creating the technology and tools for rapidly con-
structing information agents that extract, query, and integrate data from web sources.
Our approach is based on a uniform representation that makes it simple and effi-
cient to integrate multiple sources. Instead of building specialized algorithms for han-
dling web sources, we have developed methods for mapping web sources into this
uniform representation. This approach builds on work from knowledge representation,
databases, machine learning and automated planning. The resulting system, called
Ariadne, makes it fast and easy to build new information agents that access existing
web sources. Ariadne also makes it easy to maintain these agents and incorporate new
sources as they become available.

1 Introduction

The amount of data accessible via the Web and intranets is staggeringly large and grow-
ing rapidly. However, the Web’s browsing paradigm does not support many information
management tasks. For instance, the only way to integrate data from multiple sites is
to build specialized applications by hand. These applications are time-consuming and
costly to build, and difficult to maintain.

This paper describes Ariadne,2 a system for extracting and integrating data from
semi-structured web sources. Ariadne enables users to rapidly create information
agents for the Web. Using Ariadne’s modeling tools, an application developer starts

1This article appeared in the International Journal of Cooperative Information Systems, Special Issue
on Intelligent Information Agents: Theory and Applications, 10(1/2), pg 145-169, 2001. This article is an
extended version of the article originally published in AAAI’98 [20]

Copyright 2001, World Scientific Publishing
2In Greek mythology, Ariadne gave Theseus the thread that let him find his way out of the Minotaur’s

labyrinth.
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with a set of web sources – semi-structured HTML pages, which may be located at
multiple web sites – and creates a unified view of these sources. Once the modeling
process is complete, an end user (who might be the application developer himself) can
issue database-like queries as if the information were stored in a single large database.
Ariadne’s query planner decomposes these queries into a series of simpler queries, each
of which can be answered using a single HTML page, and then combines the responses
to create an answer to the original query.

The modeling process enables users to integrate information from multiple web
sites by providing a clean, well-understood representational foundation. Treating each
web page as a relational information source – as if each web page was a little database
– gives us a simple, uniform representation that facilitates the data integration. The
representation is quite restricted, but we compensate for that by developing intelligent
modeling tools that help application developers map complex web sources into this
representation.

Figure 1: A CIA Factbook Page

We will illustrate Ariadne by considering an example application that involves an-
swering queries about the world’s countries. An excellent source of data is the CIA
World Factbook, which has an HTML page for each country describing that country’s
geography, economy, government, etc. The top of the Factbook page for the Nether-
lands is shown in Figure 1.3 Some of the many other relevant sites include the NATO
site, which lists the NATO member countries (shown in Figure 2), and the World
Governments site, which lists the head of state and other government officers for each
country (shown in Figure 3). Consider queries such as “What NATO countries have
populations less than 10 million?” and “List the heads of state of all the countries in
the Middle East”. Since these queries span multiple countries and require combining
information from multiple sources, answering them by hand is time consuming. Ari-
adne allows us to rapidly put together a new application that can answer a wide range
of queries by extracting and integrating data from prespecified web sources.

3All the web sources in our examples are based on real sources that Ariadne handles, but we have
simplified some of them here for expository purposes.
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Figure 2: NATO Members Page

Figure 3: World Governments Page

In the following section we describe our basic approach to query planning, where a
unifying domain model is used to tie together multiple information sources. We then
describe the details of our modeling approach: how we represent and query individual
web pages, how we represent the relationships among multiple pages in a single site,
how we integrate data that spans multiple sites, and how we represent and materialize
data locally to optimize an application. In each section, we also describe the methods
that are used in modeling and query processing, and how the uniform representational
scheme supports these methods.

2 Approach to Information Integration

The Ariadne integration framework consists of the following components:

• A model of the application domain,
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• A description of the information sources in terms of this model,

• Wrappers that provide uniform access to the information sources so that they
can be queried as if they were relational databases, and

• A query planner that dynamically determines how to efficiently process a user
query given the set of available information sources.

As we describe in this paper, these components provide the infrastructure to build a
complete web-based information integration system. For example, navigating through
a web site is simply a matter of creating wrappers for the navigation pages, representing
these pages, and letting the query planner generate the appropriate navigation plans.
Similarly, resolving naming inconsistencies across sites is addressed by building a new
information source that provides the mapping, modeling this information source, and
using the query planning to generate plans that use these mappings when needed.
Finally, locally storing data to optimize plans can be done simply by creating a new
information source with the cached data, modeling this source, and relying on the
query planning to use this cached information when needed.

In this section we provide an overview of Ariadne’s integration model and how it
facilitates efficient query planning. In later sections we will show how this uniform
model supports the requirements of a complete information integration system for the
web.

Ariadne’s approach to information integration is an extension of the SIMS mediator
architecture [5, 6, 19]. SIMS was designed for structured information sources such
as databases and knowledge bases (and to some extent output from programs). In
Ariadne, we extend the SIMS approach to semi-structured sources such as web sources
by using wrappers. Also, database applications typically involve only a small number of
databases, while web applications can involve accessing many more sources. Since the
SIMS planner did not scale well to large numbers of sources, for Ariadne we developed
an approach capable of efficiently constructing large query plans by precompiling part
of the integration model and using a local search method for query planning [4].

2.1 Integration Model

In SIMS and Ariadne the mediator designer defines a domain model, which is an
ontology of the application domain that integrates the information in the sources and
provides a single terminology over which the user poses queries. The domain model is
represented using the Loom knowledge representation system [24]. Each information
source is defined to be equivalent to a class description in the domain model. Thus,
Ariadne uses a form of local-as-view source descriptions, cf. [28]. This approach
facilitates the addition of new sources to the mediator, since the new source definitions
do not interact with the previous ones.

As an example of a domain model consider Figure 4. For simplicity of exposition,
this model assumes that the information in the three web sites described earlier, the
CIA World Factbook, the World Governments site, and the NATO members page,
is available in three separate databases, along with a fourth database containing a
map for each country (later we show the modeling when the information is available
from web sources, see Figure 11). The model contains four classes with some relations
between them. For example, ‘NATO Country’ is a subclass of ‘Country’, and ‘Country’
has a relation called ‘Head-of-State’ which points to a class with the same name.
Each domain class has a set of attributes. For example, some of the attributes of the
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‘Country’ class are total area, latitude, population, etc. We use the domain model
to describe the contents of each information source. For example, the figure shows
that the CIA Factbook is a source for information about Countries, and the World
Governments database is a source for Heads of State. A source may provide only a
subset of the attributes for a given domain class, so the system may need to combine
several sources to obtain all the desired attributes. For example, if the user requests
the total area and a map of a country, the system must retrieve the total area from
the CIA World Fact Book and the map from the Map database.

  

Head
    of
 State

Person

ISA

ISA

Map database
country nm
            map

country nm    

Country

person nm
title
country nm

World Governments
         database

country nm
    total area
       latitude
    longitude
  population
           etc ...

CIA factbook  database

   NATO
 Country

NATO Countries 
    database

year joined    

Figure 4: Domain Model with Database Sources

2.2 Query Processing

Queries are presented to the system in terms of the domain model. For example, a
query might be “List the heads of state of all the countries whose population is less
than ten million.”4 The system then decomposes the query into subqueries on the
individual sources, such as the World Governments and Factbook sources, producing
a query plan consisting of relational operators (i.e., joins, selects, projects, etc.) and
access operations to the sources.

To improve the efficiency of query planning, we used two techniques. First, the
source descriptions are compiled off-line into a more convenient form. Second, we im-
plemented a transformational query planner that explores the space of query evaluation
plans using local search.

2.2.1 Integration Axiom Precompilation

To facilitate query planning, we developed an algorithm [5] to compile the local-as-
view source descriptions into global-as-view integration axioms. Each integration ax-
iom specifies an alternative combination of sources that produces a maximal set of
attributes for a domain class. Once the integration axioms are compiled, finding the

4We use English translations of the queries for clarity. In the system the queries can be expressed using
either SQL or the Loom query language.
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sources relevant for a user domain query is straightforward. For each domain class in
the query the system looks up the integration axioms for that class and its attributes
mentioned in the query. The body of each integration axiom is a formula containing
only source terms that can be substituted by the corresponding domain class in the
query. Compiling axioms a priori is a space-for-time optimization, allowing the system
to amortize the cost of producing them over all queries, thus avoiding repetition of
costly run-time search. This section presents the highlights of the approach, see [5] for
details.

Ariadne generates the integration axioms from the source descriptions and the
structure of the domain model. The axiom compilation algorithm is based on the
iterative application of a set of inference rules. The rules are applied in parallel, con-
structing a generation of novel integration axioms from existing axioms. The process
is repeated until quiescence. The five rules are:

• Direct Rule: Inverts the source descriptions.

• Covering Rule: Exploits the covering relationships in the domain model (when a
class is defined as the union of its subclasses, the subclasses constitute a covering
of the class).

• Definition Rule: Exploits the constraints in the definition of a domain class.

• Inherit Rule: Exploits the inheritance of superclass attributes via shared keys.

• Compose Rule: Combines axioms on a given class to provide additional attributes.

The compiled axioms from the domain of Figure 4 are shown in Figure 5. In
the first generation the source descriptions are inverted and installed as axioms via
the direct rule (the axioms 1.1, 1.2, 1.3, and 1.4). Then, the sources are composed
iteratively to produce more attributes for each domain class. In the second generation,
the inherit rule produces axioms 2.1 and 2.2 by adding the NATO-db source to the
body of axioms 1.1 and 1.2 which specilizes them for NATO countries and provides
the additional ‘map’ attribute. Also, the compose rule generates axiom 2.3 by joining
the CIA Factbook database and the Map database over the common key attribute
’country-nm’. Finally, in the third generation, the inherit rule constructs axiom 3.1
by adding the NATO-db source to axiom 2.3 in order to produce the maximal number
of attributes that the available sources provide for the ‘NATO Country’ class. In
this domain, rule application takes three generations until quiescence producing the 8
axioms of Figure 5.

2.2.2 Query Planning

Once the integration axioms have been compiled, Ariadne is ready to accept user
queries expressed over terms of the domain model. Query planning for each user query
follows two steps. First, the query is parsed, simplified, and rewritten so that each
class mentioned in the query is the most specific according to the definitions in the
domain model. This ensures that the appropriate integration axioms are used during
query planning. For example, consider an extension to Figure 4 which includes the
class ‘Military Leader’, defined as the subclass of ‘Head of State’ where the title is
equal to “general”, “colonel”, etc. An input query that asks for information about a
‘Head of State’ whose title is “general” will find all the relevant axioms associated with
the class ‘Military Leader’ as opposed to the class ‘Head of State’ that is mentioned in
the query.
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Country(cn ta lat long pop) ⇔ CIA-db(cn ta lat long pop) 1.1
Country(cn map) ⇔ Map-db(cn map) 1.2
Country(cn ta lat long pop map) ⇔ CIA-db(cn ta lat long pop)

∧ Map-db(cn map) 2.3
NATO-Country(cn year) ⇔ NATO-db(cn year) 1.3
NATO-Country(cn ta lat long pop year) ⇔ CIA-db(cn ta lat long pop)

∧ NATO-db(cn year) 2.1
NATO-Country(cn map year) ⇔ Map-db(cn map)

∧ NATO-db(cn year) 2.2
NATO-Country(cn ta lat long pop map year) ⇔ CIA-db(cn ta lat long pop)

∧ Map-db(cn map)
∧ NATO-db(cn year) 3.1

Head-of-State(pn cn title) ⇔ WorldGov-db(pn cn title) 1.4

Figure 5: Compiled Integration Axioms

Second, the query is optimized using a transformational query planner [4, 3] based
on the Planning by Rewriting paradigm [2, 1]. The query planner first constructs an
initial query evaluation plan based on a depth-first parse of the query. This initial
plan is possibly suboptimal, but it is generated very efficiently. Then, the plan is
iteratively transformed using a set of rewriting rules in order to optimize the plan
cost. The rewriting rules are derived from properties of the relational algebra, the
distributed environment, and the integration axioms in the application domain. The
space of plan rewritings is explored efficiently using local search methods. During the
rewriting process, the planner considers the different sources, operators, and orders of
the operators that can be used to answer the query.

The query planner has a modular, declarative, and extensible architecture. The
initial plan generator, the cost metric, the set of rewriting rules, and the strategy
used during the rewriting search, are all modules that can be extended or replaced
independently. Since our query planner is based on a domain-independent approach
to planning, it is extensible in a principled way and very flexible. The specification of
both the plan operators and the plan rewriting rules is declarative.

As an example, consider the processing required to retrieve the names of all NATO
countries and the year they joined NATO for those countries that have a population
of less than 10 million. In this case, the relevant axiom that provides the population
of NATO countries and the year of incorporation (using a minimal set of sources) is
axiom 2.1 in Figure 5 (if there were several alternative axioms for that information,
the planner would consider them during the search). Based on this axiom, assume
that the planner constructs the initial plan of Figure 6. This plan is suboptimal since
it retrieves the names and population for all countries from the Factbook source, the
names and year from the NATO source, and then joins both relations locally, which
is very costly since the Factbook source is quite large. Moreover, the selection on
population is done after the join, instead of being used to reduce the number of tuples
that participate in the join. The query planner rewrites this initial plan producing the
optimized plan of Figure 7. The optimized plan first retrieves the name and year of
the NATO countries, projects the country names, and passes NATO country names so
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that only the population of NATO countries is retrieved from the CIA World Factbook
source. In addition the selection on population has been placed immediately after the
retrieval from the Factbook source to further reduce the number of tuples participating
in the join.

JOIN on
country_nm

SELECT
population < 10M

RETRIEVE country_nm, year_joined
from NATO−Country
@ NATO−db

RETRIEVE country_nm population
from Country
@ Factbook−db

Figure 6: A Suboptimal Initial Query Plan

PROJECT on
country_nm

SELECT
population < 10M

JOIN on
country_nm

RETRIEVE country_nm, year_joined
from NATO−Country
@ NATO−db

RETRIEVE country_nm population
from Country
@ Factbook−db

Figure 7: An Optimized Query Evaluation Plan

Ariadne’s uniform integration model is expressive enough to encompass a wide va-
riety of web sources but simple enough to allow for efficent query planning. In the
following sections, we discuss how, based on this simple model, we provide a coherent
set of solutions for each level of the problem of integrating information on the web.
First, we discuss how we model and automatically learn wrappers for individual web
pages. Second, we describe the modeling that allows our query planner to generate
plans that navigate among pages. Third, we present techniques to identify entities
across sites so that they can be integrated. Fourth, we describe further performance
optimization by selectively materializing data. Finally, we describe some of the appli-
cations that have been developed using Ariadne and assess the approach.

3 Modeling the Information on a Page

The previous section described how the planner decomposes a complex query into
simple queries on individual information sources. To treat a web page as an information
source so that it can be queried, Ariadne needs a wrapper that can extract and return
the requested information from that type of page. While we cannot currently create
such wrappers for unrestricted natural language texts, many information sources on
the Web are semistructured. A web page is semistructured if information on the page
can be located using a concise formal grammar, such as a context-free grammar. Given
such a grammar, the information can be extracted from the source without recourse
to sophisticated natural language understanding techniques. For example, a wrapper
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for pages in the CIA Factbook would be able to extract fields such as the Total Area,
Population, etc. based on a simple grammar describing the structure of Factbook pages.

Our goal is to enable application developers to easily create their own wrappers
for web-based information sources. To construct a wrapper, we need both a semantic
model of the source that describes the fields available on that type of page and a
syntactic model, or grammar, that describes the page format, so the fields can be
extracted. Requiring developers to describe the syntactic structure of a web page
by writing a grammar by hand is too demanding, since we want to make it easy
for relatively unsophisticated users to develop applications. Instead, Ariadne has a
“demonstration-oriented user interface” (DoUI) where users show the system what
information to extract from example pages. Underlying the interface is a machine
learning system for inducing grammar rules.

Figure 8 shows how an application developer uses the interface to teach the system
about CIA Factbook pages, producing both a semantic model and a syntactic model
of the source. The screen is divided into two parts. The upper half shows an example
document, in this case the Netherlands page. The lower half shows a semantic model,
which the user is in the midst of constructing for this page. The semantic model in the
figure indicates that the class Country has attributes such as Total Area, Coastline,
Latitude, Longitude, etc. The user constructs the semantic model incrementally, by
typing in each attribute name and then filling in the appropriate value by cutting and
pasting the information from the document. In doing so, the user actually accomplishes
two functions. First, he provides a name for each attribute. Notice that he can
choose the same names as used in the document (e.g., “Total area”) or he can choose
new/different names (e.g., “Latitude”). As we will explain later, the attribute names
have significance, since they are the basis for integrating data across sources.

Figure 8: Creating a Wrapper by Demonstration

The second function achieved by the user’s demonstration is to provide examples so
that the system can induce the syntactic structure of the page. Ideally, after the user
has picked out a few examples for each field, the system will induce a grammar suffi-
cient for extracting the required information for all pages of this type. Unfortunately,
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grammar induction methods may require many examples, depending on the class of
grammars being learned. However, we have observed that web pages have common
characteristics that we can take advantage of, so that a class of grammars sufficient
for extraction purposes can be rapidly learned in practice.

More specifically, we can describe most semistructured web pages as embedded
catalogs. A catalog is either a homogeneous list, such as a list of numbers, (1,3,5,7,8),
or a heterogeneous tuple, such as a 3-tuple consisting of a number, a letter, and a
string, (1,A,“test”). An embedded catalog (or, for short, EC) is a catalog where the
items themselves can be catalogs. As an example, consider the fragment of the CIA
Factbook page shown in Figure 8. At the top level, it can be seen as a 9-tuple that
consists of Map References, Total Area, Land Area, Comparative Area, Coastline,
Latitude, Longitude, Total Land Boundaries, and Border Countries. Furthermore, the
Border Countries represent an embedded list of 2-tuples that contain a Country Name
and a Border Length. Note that the illustrative page description above contains all
the fields in the document, while in practice, the user can identify only the items of
interest for a particular application. For instance, a user can model the CIA Factbook
page as a 4-tuple that consists of the Total Area, Latitude, Longitude, and Border
Countries, where the last field is an embedded list of 2-tuples that contain a Country
Name and a Border Length.

An embedded catalog is a structured description of the information on a page, and
can be (trivially) converted into an XML view of the document, as illustrated in Figure
9.

<!DOCTYPE document [
<!ELEMENT document ( TotalArea, Latitude, Longitude,

Neighbors_LIST )>
<!ELEMENT TotalArea (#PCDATA)>
<!ELEMENT Latitude (#PCDATA)>
<!ELEMENT Longitude (#PCDATA)>
<!ELEMENT Neighbors_LIST ( Neighbor* )>
<!ELEMENT Neighbor (Name, BorderLength)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT BorderLength (#PCDATA)> ] >

Figure 9: Sample XML description of an embedded catalog.

Besides being used as data schema in the integration process, the EC description of a
document plays another important role: in Ariadne, we use a document’s EC to extract
the data in a hierarchical manner. For instance, in order to extract all the neighboring
countries from a document, we begin by extracting the Border Countries from the whole
document; then we iterate through this list, and break it down to individual 2-tuples;
finally, from such tuples, we extract each individual Country Name. In other words, if
we look at EC as a tree-like structure describing the embedded data, in order to extract
a relevant item we must successively extract each of its ancestors from their respective
parents in the tree. Our approach has a major advantages: it transforms a potentially
hard problem (i.e., extracting all items from an arbitrarily complex document) into
a set of simpler ones (i.e., extracting one individual item from its parent in the EC).
This is particularly appealing when a document contains a large number of items and
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multiple levels of embedded data (e.g., list within lists).
Because web pages are intended to be human readable, special markers often play a

role identifying the beginning or ending of an item in an embedded catalog, separating
items in a homogeneous list, and so on. These distinguishing markers can be used
as landmarks for locating information on a page. A landmark grammar describes the
position of a field via a sequence of landmarks, where each landmark is a sequence of
tokens and wildcards (e.g., Number, CapitalizedWord, AllCaps, etc.). For example,
to find the beginning of the longitude, we can use the rule

R1 = SkipTo(Geographic coordinates) SkipTo(,)

which has the following meaning: start from the beginning of the document and skip
everything until you find the landmark Geographic coordinates; then, again, ignore
all tokens until you encounter the first comma. Similarly, we can use the rule

R2 = SkipTo( <br> Land boundaries)

to identify the end of the longitude field (<br> is the HTML tag that forces the line
break, and, consequently, it is not displayed by the browser in Figure 8).

In order to fully define a wrapper, one needs to provide the embedded catalog,
together with one extraction rule for each field and one additional iteration rule for
each list in the EC (iteration rules are applied repeatedly to the content of the list in
order to extract all individual tuples). Our recent work [26] shows that in practice,
a subclass of landmark grammars (i.e., linear landmark grammars) can be learned
rapidly for a variety of web pages using a greedy covering algorithm. There are several
reasons for this. First, because web pages are intended to be human readable, there is
often a single landmark that distinguishes or separates each field from its neighbors.
Therefore, the length of the grammar rules to be learned will usually be very small,
and learning will be easy in practice. Second, during the demonstration process, users
traverse a page from top-to-bottom, picking out the positive examples of each field.
Any position on the page that is not marked as a positive example is implicitly a
negative example. Thus, for every positive example identified by the user, we obtain
a huge number of negative examples that the covering algorithm can use to focus its
search.

The empirical evaluation of stalker [26], our wrapper induction system, shows
that in most of the cases our system learns perfect extraction rules (i.e., 100% accuracy)
based on just a handful of examples. We tested stalker on 30 information sources,
which required the induction of 206 different rules. In 182 cases stalker generated
a perfect rule (in most of the cases based on just a couple of labeled examples), and
18 other rules had an accuracy above 90% based on as few as 10 training examples.
On the same 30 information sources, wien [21], which was the first wrapper induction
system, requires one to two orders of magnitude more labeled examples in order obtain
a similar or worse performance.

There are several differences between the approaches taken by stalker and wien.
First of all, wien’s approach to handling documents with multiple levels of embedded
data turned out to be impractical: even for the domains in which such a wrapper exists,
the learning algorithm failed to find it. Second, wien uses a very simple extraction
language. By assuming that all the fields are always present and in exactly the same
order, wien is capable of learning the rules extremely fast, provided that they exist.
On the other hand, these assumptions make it impossible to wrap more complicated
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sources. Last but not least, the same simplicity of the extraction language, together
with the fact that wien does not extract the sibling fields independently of each other,
leads to failure to wrap sources from which stalker finds perfect rules for most of the
items, and slightly imperfect ones for the remaining fields.

A quite different approach to wrapper induction is the one used in SoftMealy [16].
This system induces extraction rules expressed as finite transducers, and it addresses
most of the wien’s shortcomings. However, its empirical evaluation is quite sketchy,
which makes it hard to compare with wien and stalker. There are three other recent
systems that are focusing on learning extraction rules from online documents: srv [13],
rapier [11], and whisk [27]. Even though these approaches are mostly concerned with
extracting data from natural language text, they could be also applied to some simple
wrapper induction problems.

The modeling tool we have described enables unsophisticated users to turn web
pages into relational information sources. But it has a second advantage as well. If
the format of a web source changes in minor respects, the system could induce a new
grammar by reusing examples from the original learning episode, without any human
intervention (assuming the underlying content has not changed significantly). This is
a capability we are currently exploring.

4 Modeling the Information in a Site: Connec-

tions between Pages

The previous section showed how Ariadne extracts information from a web page
to answer a query. However, before extracting information from a page, Ariadne must
first locate the page in question. Our approach, described in this section, is to model
the information required to “navigate” through a web site, so that the planner can
automatically determine how to locate a page.

Figure 10: CIA Factbook Index

For example, consider a query to our example information agent asking for the
population of the Netherlands. To extract the population from the Factbook’s page
on the Netherlands, the system must first find the URL for that page. A person faced
with the same task would look at the index page for the Factbook, shown in Figure 10,
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which lists each country by name together with a hypertext link to the page in question.
In our approach, Ariadne does essentially the same thing. The index page serves as an
information source that provides a URL for each country page. These pages in turn
serve as a source for country-specific information.

To create a wrapper for the index page, the developer uses the approach described
in the last section, where we illustrated how a wrapper for the Factbook’s country
pages is created. There is only one difference: this wrapper only wraps a single page,
the index page. The developer creates a semantic model indicating that the index page
contains a list of countries, each with two attributes, country-nm and country-URL.5

The learning system induces a grammar for the entire page after the developer shows
how the first few lines in the file should be parsed.

As the wrappers for each source are developed, they are integrated into the unifying
domain model. Figure 11 shows the domain model for the completed geopolitical agent.
(Notice that we have substituted web source wrappers for the hypothetical databases
used previously.) To create the domain model, the developer specifies the relationship
between the wrappers and the domain concepts. For instance, the developer specifies
that the Factbook country wrapper and the Factbook index wrapper are both informa-
tion sources for “country” information, and he identifies which attributes are keys (i.e.,
unique identifiers). In the example, “country-nm” and “country-URL” are both keys.
Binding constraints specify the input and output of each wrapper (shown by the small
directional arrows in Figure 11). The country page wrapper takes a country-URL, and
acts as a source for “total area”, “population”, “latitude”, etc. The index wrapper
takes a country name6 and acts as a source for “country-URL”. Given the domain
model and the binding constraints, the system can now construct query plans. For
instance, to obtain the population of a country given its name, the planner determines
that the system must first use the country name to retrieve the country-URL from the
index page wrapper, and then use the country-URL to retrieve the population data
from the country page wrapper.

Explicitly modeling ‘navigation’ pages, such as the Factbook index, as information
sources enables us to reuse the same modeling tools and planning methodology un-
derlying the rest of the system. The approach works well in part because there are
only two common types of navigation strategies used on the Web – direct indexing and
form-based retrieval. We have already seen how index pages are handled; form-based
navigation is also straightforward. A wrapper for an HTML form simply mimics the
action of the form, taking as input a set of attributes, each associated with a form
parameter name, and communicating with the server specified in the form’s HTML
source.

When the resulting page is returned, the wrapper extracts the relevant attributes
in the resulting page. Imagine, for instance, a form-based front end to the Factbook,
where the user types in a country name and the form returns the requested country
page. To create a wrapper for this front end, the developer would first specify that
the parameter associated with the type-in box would be filled by a “country-nm”. He
would then specify how the system should extract information from the page returned
by the form using the approach described in the last section.

The Factbook example described in this section illustrates our basic approach to

5During the demonstration, a check box is used to extract a URL from a hyperlink, as opposed to grabbing
text.

6No URL is needed as input to the index page wrapper since the URL of the index page is a constant.

goodelle
78



  

Head
    of
 State

Person

ISA

ISA
Country

country nm
            map World Governments

     page wrapper

country nm    

Factbook index wrapper 

Map database

Factbook country page wrapper 
  country url
      total area
        latitude
     longitude
   population

country nm
country url

country nm
person nm
title

   NATO
 CountryNATO  page  wrapper

Figure 11: Domain Model with Web Sources

modeling navigation pages. Many web sites are more complex than the Factbook. The
approach still works, but the models become more involved. For instance, indexes
can be hierarchical, in which case each level of the hierarchy must be modeled as an
information source. Imagine the top-level Factbook index was a list of letters, so that
clicking on a letter “C” would produce an index page for countries starting with “C”
(a “subindex”). We would model this top level index as a relation between letters and
subindex-URL’s. To traverse this index, we also need an information source that takes
a country name and returns the first letter of the name (e.g., a string manipulation
program). Thus, altogether four wrappers would be involved in the navigation pro-
cess, as shown in Figure 12. Given a query asking for the Netherlands’ population,
the first wrapper would take the name “Netherlands”, call the string manipulation
program, and return the first letter of the name, “N”. The second wrapper would
take the letter “N”, access the top level index page, and return the subindex-URL.
The third wrapper would take the subindex-URL and the country name, access the
subindex page for countries starting with “N”, and return the country-URL. Finally,
the last wrapper would take the country-URL and access the Netherlands page. The
advantage of our approach is that all these wrappers are treated uniformly as infor-
mation sources, so the query planner can automatically determine how to compose
the query plan. Furthermore, the wrappers can be semi-automatically created via the
learning approach described earlier, except for the string manipulation wrapper, which
is a common utility.

5 Modeling Information Across Sites

Within a single site, entities (e.g., people, places, countries, companies, etc.) are
usually named in a consistent fashion. However, across sites, the same entities may be
referred to with different names. For example, the CIA Factbook refers to “Burma”
while the World Governments site refers to “Myanmar”. Sometimes formatting con-
ventions are responsible for differences, such as “Denmark” vs. “Denmark, Kingdom
of”. To make sense of data that spans multiple sites, we need to be able to recognize
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Figure 12: Domain Model with Hierarchical Index

and resolve these differences.
Our approach is to select a primary source for an entity’s name and then provide

a mapping from that source to each of the other sources where a different naming
scheme is used. An advantage of the Ariadne architecture is that the mapping itself
can be represented as simply another wrapped information source. One way to do this
is to create a mapping table, which specifies for each entry in one data source what
the equivalent entity is called in another data source. Alternatively, if the mapping
is computable, it can be represented by a mapping function, which is a program that
converts one form into another form.

Figure 13 illustrates the role of mapping tables in our geopolitical information agent.
The Factbook is the primary source for a country’s name. A mapping table maps each
Factbook country name into the name used in the World Governments source (i.e.,
WG-country-nm). The mapping source contains only two attributes, the (Factbook)
country name and the WG-country-nm. The NATO source is treated similarly. So,
for example, if someone wanted to find the Heads of State of the NATO countries, the
query planner would retrieve the NATO country names from the NATO wrapper, map
them into (Factbook) country names using the NATO mapping table, then into the
World Government country names using the World Governments mapping table, and
finally retrieve the appropriate heads of state from the World Governments wrapper.

We have developed a semi-automated method for building mapping tables and
functions by analyzing the underlying data in advance. The method attempts to pair
each entity in one source with a corresponding entity (or entities, in some cases) in
another source. The basic idea is to use information retrieval techniques to provide
an initial mapping (following [12]), and then to apply machine learning techniques to
improve the mapping. The initial mapping matches entities from two sources based
on their textual similarity. For example, “Denmark” and “Denmark, Kingdom of”
are assumed to refer to the same entity because both names include “Denmark”, an
infrequently-occurring word. In the subsequent learning phase, the system learns two
types of rules to help improve/verify the initial mapping. Transformation rules identify
textual transformations like acronyms, abbreviations, and phrase orderings that are
common in the domain. For instance, the system can learn that “Rep” is a commonly
used abbreviation for “Republic”, or that one source commonly employs acronyms, or
that one source represents person names as “LastName, Firstname”, while the other
uses “FirstName LastName”. The system also learns Mapping rules which are used
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Figure 13: Domain Model with Mapping Tables

when we can compare entities along multiple attributes.
For example, consider a multi-year Factbook application which includes yearly ver-

sions of the Factbook (each year a new version of the CIA Factbook is released), as
shown in Figure 14. Sometimes countries in the new Factbook have new names, or
countries merge or split. These name confusions can often be resolved by using the
attributes containing geographical information, e.g., land area, latitude and longitude.
These attributes stay constant over time and are unique to a country, so they are good
indicators of a mapping. Mapping rules specify the importance of each attribute when
computing a mapping.

  

  country url
      total area
        latitude
     longitude
   population

  country url
      total area
        latitude
     longitude
   population

Country

  country url
      total area
        latitude
     longitude
   population

  country url
      total area
        latitude
     longitude
   population

  country url
      total area
        latitude
     longitude
   population

ISA

Country95

Factbook95 country page wrapper 

country nm
country95 nmcountry95 nm

country url Country95 mapping table 

Factbook95 index wrapper 

   country nm
              year

Country knowledgebase 

Country99 country nm
country url

Factbook99 index wrapper 

  

  country url
  total area
  latitude
  longitude
  population

Factbook99 country page wrapper 

ISA

Figure 14: Multi-Year Factbook Model

We are prototyping an active learning method for learning transformation rules
and mapping rules. In our approach, a human is asked to verify some of the pairs
in the initial mapping, i.e., to indicate whether the pairs are correctly or incorrectly
matched. Then the system attempts to learn new rules, and selects additional pairs
for the human to verify. The system selects the pairs that will be most valuable for
confirming/disconfirming the hypotheses explored by the learning algorithm. The goal
is to obtain a mapping for which the system is highly confident, while minimizing the
time the human must spend.
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6 Performance Optimization by Selective Ma-

terialization

An issue with building applications using Ariadne is that the speed of the resulting
application is heavily dependent on the individual web sources. The response time may
be high even when the query planner generates high-quality information integration
plans. This is because for some queries a large number of pages may have to be
fetched from remote Web sources and some sources may be very slow. In this section
we describe our approach to optimizing agent performance by locally materializing
selected portions of the data. The materialized data is simply a locally stored relation
that is handled using the same uniform representation and query planning techniques
used throughout the system.

The brute force approach would be to simply materialize all the data in all the
Web sources being integrated. However this is impractical for several reasons. First
the sheer amount of space needed to store all this data locally could be very large.
Second, the data might get updated at the original sources and the maintenance cost
for keeping all the materialized data consistent could be very high. Our approach is
thus to materialize data selectively. In this approach to optimizing performance by
selectively materializing data there are two key issues that must be addressed.

1. What is the overall framework for materializing data, i.e., how do we represent
and use the materialized data?

2. How do we automatically identify the portion of data that is most useful to
materialize?

In [7] we presented a framework for representing and using materialized data in
an information agent. The basic idea is to locally materialize useful data and define
it as another information source for the agent. The agent then considers using the
materialized data instead of retrieving data from remote sources to answer user queries.
For instance, in the countries application suppose we determined that the population
and national product of all European countries was queried frequently and thus useful
to materialize. The system would retrieve this data and define it as an additional
information source as shown in Figure 15. Given a query the planner would use the
materialized data instead of the original Web source(s) to answer the query when it
reduced the cost of a query. The system selects the data to materialize by considering
a combination of several factors which are described below.

6.1 The Distribution of User Queries

From the user query distribution we determine what classes of data are queried most
frequently by users since it is often useful to materialize such classes. We have devel-
oped an algorithm known as the CM (Cluster and Merge) algorithm [8], which identifies
useful classes of information to materialize by extracting patterns in user queries. A
key feature of this algorithm is that it finds compact patterns to be extracted. Com-
pact patterns are important from a query planning perspective since we define a new
information source in the agent for each class of data materialized. A set of fragmented
patterns will result in a large number of new sources. The problem of query planning in
an information agent is combinatorially hard and having a very large number of sources
could create performance problems for the planner. With compact patterns we need
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Figure 15: Materialized Data as Another Source

to materialize fewer classes of data and thus define fewer new information sources. For
instance in the countries application suppose the class of information “the population
and ethnic divisions of all European countries” was a frequently queried class of data,
the CM algorithm would extract this class as a pattern from the query distribution.
Even if some European countries were never queried, it might still materialize all of the
data for the European countries in order to minimize the number of patterns stored.

6.2 The Structure of Queries and Sources

As described earlier, we provide database-like query access to otherwise only browsable
Web sources by building wrappers around the sources. As a result certain kinds of
queries can be very expensive as a lot of the functionality for structured querying of
these sources needs to be provided by the wrapper or the mediator. For instance in
the countries application, the CIA Factbook source is structured such that selection
queries, such as say determining which countries are European countries requires the
wrapper to retrieve pages of all countries in the Factbook source, which takes a long
time.

In many kinds of queries we can materialize a portion of data which if stored locally
greatly improves the response time of the expensive queries. In the above example if
we materialize locally the names and continents of all countries, determining which
countries are European countries (the step that requires otherwise fetching pages of
all countries from the source) can be done locally and much faster. We have generalized
this strategy for various kinds of queries that may be expensive such as selection queries,
joins, ordered joins etc. The system analyzes the user query interface to determine what
queries can be asked in an application and uses the mediator query cost estimator and
also specification of the structure of Web sources to determine which of these queries
can be expensive. It then prefetches and materializes data based on heuristics that
use information about the kind of query (selection, join etc.) and the structure of the
source (whether it supports selections etc.) to speed up the processing of the expensive
queries.

goodelle
83



6.3 Updates at Web Sources

Finally we must address the issue of updates at Web sources. First the materialized
data must be kept consistent with that in the Web sources. It may also be that the user
is willing to accept data that is not the most recent in exchange for a fast response to
his query (using data that is materialized). Thus we need to determine the frequency
with which each class of data materialized needs to be refreshed from the original
sources. Next the total maintenance cost for all the classes of data materialized must
be kept within a limit that can be handled by the system. We provide a language
for describing the update characteristics of each source and also user requirements for
freshness. The system then takes update frequency and maintenance cost into account
when selecting data to materialize. For instance, considering the countries application
again, the Factbook is a source that does not change so we materialize whatever data
we want to prefetch or is frequently queried from that source as there is no maintenance
cost for the materialized data. However we may not want to materialize data from the
World Governments source as that is a source where data can change anytime.

We have implemented a materialization system for Ariadne based on the above
ideas. We present experimental results in Table 1 demonstrating the effectiveness
of our approach. Specifically we show the improvement in performance obtained by
materializing data locally in Ariadne using our system.

Query Response Response Response Improvement Improvement
Set Time Time Time

(No opt.) (Ariadne) (Page Level) (Ariadne) (Page Level)
Q1 41233 sec 1515 sec 36974 sec 96% 10%
Q2 47935 sec 2198 sec 42502 sec 95% 13%

Table 1: Experimental Results

Table 1 shows the experimental results for the countries application. We provide
results showing the improvement in performance due to our system and compare it with
an alternative scheme of page level caching with the same local space. We measure
query response times with and without materialization for two query sets - Q1, which is
a set of queries we generated and in which we introduced some distinct query patterns,
and Q2, which is a set of actual user queries that we logged from a version of the
countries application that was made available online for several months. There is
significant performance improvement due to our materialization system. Our system
also significantly outperforms the page level caching scheme for both query sets Q1 and
Q2. The primary reason is that with our system we are much more flexible in selecting
the portion of data that we want to materialize in terms of the attributes and tuples we
want to specify. In the page level caching scheme, we can only materialize either all or
none of an entire web page which causes local space to be wasted for storing data that
may not be frequently queried. Also in this particular application source structure
analysis proves to be very effective as the system locally materializes attributes of
countries to speed the processing of certain very expensive kinds of selection queries.
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7 Applications

We have used Ariadne to build a variety of applications. We list a few of them
below to illustrate the generality of our approach.

As shown in the examples in this paper, we built a country information agent
with Ariadne that combines data about the countries in the world from a variety of
information sources. The agent extracts and integrates data from the CIA World
Factbook. The Factbook is published each year, so the agent can support queries that
span multiple years. The agent also extracts data from other related sources such as the
World Governments site, which provides up-to-date information about world leaders.
This application provides a good example where significant added value was added to
the data sources by providing the additional structure where only the relevant data is
extracted and returned for specific countries.

We have built a system using Ariadne that integrates data about restaurants and
movie theaters and places the information on a map [9]. The application extracts
restaurant names and addresses from CuisineNet, theater names and addresses from
Yahoo Movies, movies and showtimes for each theater also come from Yahoo Movies,
and trailers for movies from Hollywood.com. The addresses are run through the Etak
geocoder to convert street addresses into the corresponding latitude and longitude.
Finally, Ariadne uses the US Census Bureau’s Tiger Map Server to produce a map
with all of the restaurants and theaters for a requested city. Clicking on one of the
points of the map will bring up the restaurant review or list of movies as appropriate.
If the user selects a specific movie, Ariadne will then play the appropriate trailer.
This application provides a compelling integration example that combines a variety of
multimedia data sources.

We have applied Ariadne to integrate online electronic catalogs to provide a more
comprehensive virtual catalog. In this application, Ariadne combines data on pricing,
availability, manufacturer, and so on from four major electronic part suppliers. Each
site requires several wrappers in order to navigate to the page that provides the required
data. In several cases, the data on a given part is spread over multiple pages at
a site. This application provides an example of a virtual data source where up-to-
date information on electronic parts is made available from multiple suppliers without
maintaining any local data.

8 Discussion

There is a large body of literature on information integration [30], and more recently,
several projects focusing specifically on information integration on the Web, such as
Tukwila [29], Araneus [25], the Information Manifold [23], Occam [22], Infomaster
[15], and InfoSleuth [17]. These systems focus on a variety of issues, including the
problems of representing and selecting a relevant set of sources to answer a query,
handling binding patterns, and resolving discrepancies among sources. All of this work
is directly relevant to Ariadne, but no other system handles the broad range of practical
issues that arise in modeling information within a single page, across pages at a site,
and across sites to support web-based information integration.

We believe that Ariadne is successful, in terms of the broad applicability of the ap-
proach, because it combines a simple representation scheme with sophisticated model-
ing tools that map web information sources into this simple representation. There are
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many examples of impressive AI systems based on relatively simple representational
schemes. In the realm of planning, recent examples include SATplan [18] and Graph-
plan [10]; the former employs a propositional CSP approach, the latter, a graph-based
search. In machine learning, propositional learning schemes (e.g., decision trees) have
been dominant. Though it is often difficult to understand exactly what a simple rep-
resentational scheme buys you computationally, one thing seems clear: systems with
simple representations are often easier to design and understand.

Ariadne’s representation scheme was adopted from database systems, where the
world consists of a set of relations (or tables) over objects, and simple relational opera-
tors (retrieve, join, etc.) are composed to answer queries. This representation makes it
straightforward to integrate multiple databases using an AI planner. Ariadne’s plan-
ner can efficiently search for a sequence of joins, selections, etc. that will produce the
desired result without needing to do any sophisticated reasoning about the information
sources themselves.

The Web environment is much more than a set of relational tables, of course.
What makes Ariadne possible are the modeling tools that enable a user to create a
database-like view of the Web. Other competing approaches to information integration
on the web (such as the ones mentioned above) have also adopted database-oriented
representational schemes, but they do not include the tools that enable developers to
create these models for real web sites. Where our approach becomes challenging (and
could break down) is in situations where the “natural” way to represent a web site is
not possible due to limitations of the underlying representation.

One such limitation is that Ariadne cannot reason about recursive relations. (To
do this properly would require query plans to contain loops.) This has many practical
ramifications. For example, consider web pages that have a ‘more’ button at the
bottom, such as Alta Vista’s response pages. It would be natural to represent each
‘more’ button as a pointer to the next page in a list, but there is no way to do this
without a recursive relation. Instead, we can build knowledge about ‘more’ buttons
in our wrapper generation tools, so the process of following a ‘more’ buttons is done
completely within a wrapper, hiding the complexity from the query planner.

Another ramification of the planner’s inability to reason about recursive relations
shows up with hierarchical indexes like Yahoo, where there is no fixed depth to the
hierarchy. The natural way to model such pages is with a parent-child relation. Instead,
the alternative is to build a more sophisticated wrapper that computes the transitive
closure of the parent-child relationship, so that we can obtain all of a node’s descendants
in one step.

There is an obvious tension between the expressiveness of the representation and
the burden we place on the modeling tools. Some researchers, such as Friedman et
al. [14], have introduced more expressive representations for modeling web pages and
their interconnections. Our approach has been to keep the representation and planning
process simple, compensating for their limitations by relying on smarter modeling
tools. As we have described, the advantage is that we can incrementally build a
suite of modeling tools that use machine learning, statistical inference, and other AI
techniques, producing a system that can handle a surprisingly wide range of tasks.
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Abstract

A critical problem in developing information agents for the Web is accessing data
that is formatted for human use. We have developed a set of tools for extracting data
from web sites and transforming it into a structured data format, such as XML. The
resulting data can then be used to build new applications without having to deal with
unstructured data. The advantages of our wrapping technology over previous work
are the the ability to learn highly accurate extraction rules, to verify the wrapper to
ensure that the correct data continues to be extracted, and to automatically adapt to
changes in the sites from which the data is being extracted.

1 Introduction

There is a tremendous amount of information available on the Web, but much of this in-
formation is not in a form that can be easily used by other applications. There are hopes
that XML will solve this problem, but XML is not yet in widespread use and even in the

∗Appeared in IEEE Data Engineering Bulletin, 23(4), December, 2000.
†Copyright 2000 IEEE
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Figure 1: The Lifecycle of a Wrapper

best case it will only address the problem within application domains where the interested
parties can agree on the XML schema definitions. Previous work on wrapper generation in
both academic research [4, 6, 8] and commercial products (such as OnDisplay’s eContent)
have primarily focused on the ability to rapidly create wrappers. The previous work makes
no attempt to ensure the accuracy of the wrappers over the entire set of pages of a site
and provides no capability to detect failures and repair the wrappers when the underlying
sources change.

We have developed the technology for rapidly building wrappers for accurately and reli-
ably extracting data from semistructured sources. Figure 1 graphically illustrates the entire
lifecycle of a wrapper. As shown in the Figure, the wrapper induction system takes a set of
web pages labeled with examples of the data to be extracted. The user provides the initial
set of labeled examples and the system can suggest additional pages for the user to label
in order to build wrappers that are very accurate. The output of the wrapper induction
system is a set of extraction rules that describe how to locate the desired information on
a Web page. After the system creates a wrapper, the wrapper verification system uses the
functioning wrapper to learn patterns that describe the data being extracted. If a change
is detected, the system can automatically repair a wrapper by using the same patterns to
locate examples on the changed pages and re-running the wrapper induction system. The
details of this entire process are described in the remainder of this paper.

2 Learning Extraction Rules

A wrapper is a piece of software that enables a semistructured Web source to be queried
as if it were a database. These are sources where there is no explicit structure or schema,
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Figure 2: Two Sample Restaurant Documents From the Zagat Guide.

but there is an implicit underlying structure (for example, consider the two documents in
Figure 2). Even text sources, such as email messages, have some structure in the heading
that can be exploited to extract the date, sender, addressee, title, and body of the messages.
Other sources, such as online catalogs, have a very regular structure that can be exploited
to extract the data automatically.

One of the critical problems in building a wrapper is defining a set of extraction rules
that precisely define how to locate the information on the page. For any given item to be
extracted from a page, one needs an extraction rule to locate both the beginning and end
of that item. Since, in our framework, each document consists of a sequence of tokens (e.g.,
words, numbers, HTML tags, etc), this is equivalent to finding the first and last tokens of
an item. The hard part of this problem is constructing a set of extraction rules that work
for all of the pages in the source.

A key idea underlying our work is that the extraction rules are based on “landmarks”
(i.e., groups of consecutive tokens) that enable a wrapper to locate the start and end of the
item within the page. For example, let us consider the three restaurant descriptions E1, E2,
and E3 presented in Figure 3. In order to identify the beginning of the address, we can use
the rule

E1: ...Cuisine:<i>Seafood</i><p>Address:<i> 12 Pico St. </i><p>Phone:<i>...
E2: ...Cuisine:<i>Thai </i><p>Address:<i> 512 Oak Blvd.</i><p>Phone:<i>...
E3: ...Cuisine:<i>Burgers</i><p>Address:<i> 416 Main St. </i><p>Phone:<i>...
E4: ...Cuisine:<i>Pizza</i><p>Address:<b> 97 Adams Blvd. </b><p>Phone:<i>...

Figure 3: Four sample restaurant documents.

R1 = SkipTo(Address) SkipTo(<i>)
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which has the following meaning: start from the beginning of the document and skip every
token until you find a landmark consisting of the word Address, and then, again, ignore
everything until you find the landmark <i>. R1 is called a start rule because it identifies the
beginning of the address. One can write a similar end rule that finds the end of the address;
for sake of simplicity, we restrict our discussion here to start rules.

Note that R1 is by no means the only way to identfy the beginning of the address. For
instance, the rules

R2 = SkipTo( Address : <i> )

R3 = SkipTo( Cuisine : <i> ) SkipTo( Address : <i> )

R4 = SkipTo( Cuisine : <i> _Capitalized_ </i> <p> Address : <i> )

can be also used as start rules. R2 uses the 3-token landmark that immediately precedes
the beginning of the address in examples E1, E2, and E3, while R3 relies on two 3-token
landmarks. Finally, R4 is defined based on a 9-token landmark that uses the wildcard
_Capitalized_, which is a placeholder for any capitalized alphabetic string (other examples
of useful wildcards are _Number_, _AllCaps_, _HtmlTag_, etc).

To deal with variations in the format of the documents, our extraction rules allow the use
of disjunctions. For example, let us assume that the addresses that are within one mile from
your location appear in bold (see example E4 in Figure 3), while the other ones are displayed
as italic (e.g., E1, E2, and E3). We can extract all the names based on the disjunctive start
rule

either SkipTo(Address : <b>)

or SkipTo(Address) SkipTo(<i>)

Disjunctive rules are ordered lists of individual disjuncts (i.e., decision lists). Applying a
disjunctive rule is a straightforward process: the wrapper successively applies each disjunct
in the list until it finds the first one that matches. Even though in our simplified examples
one could have used the nondisjunctive rule

SkipTo( Address : _HtmlTag_ ),

there are many real world sources that cannot be wrapped without using disjuncts.
We have developed stalker [11], a hierarchical wrapper induction algorithm that learns

extraction rules based on examples labeled by the user. We have a graphical user interface
that allows a user to mark up several pages on a site, and the system then generates a
set of extraction rules that accurately extract the required information. Our approach uses
a greedy-covering inductive learning algorithm, which incrementally builds the extraction
rules from the examples.

In contrast to other approaches [4, 6, 8], a key feature of stalker is that it is able to
efficiently generate extraction rules from a small number of examples: it rarely requires more
than 10 examples, and in many cases two examples are sufficient. The ability to generalize
from such a small number of examples has a two-fold explanation. First, in most of the
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cases, the pages in a source are generated based on a fixed template that may have only
a few variations. As stalker tries to learn landmarks that are part of this template, it
follows that for templates with little or no variations a handful of examples usually will be
sufficient to induce reliable landmarks.

Second, stalker exploits the hierarchical structure of the source to constrain the learning
problem. More precisely, based on the schema of the data to be extracted, we automatically
decompose one difficult problem (i.e., extract all items of interest) into a series of simpler
ones. For instance, instead of using one complex rule that extracts all restaurant names,
addresses and phone numbers from a page, we take a hierarchical approach. First we apply
a rule that extracts the whole list of restaurants; then we use another rule to break the list
into tuples that correspond to individual restaurants; finally, from each such tuple we extract
the name, address, and phone number of the corresponding restaurant. Our hierarchical
approach also has the advantage of being able to extract data from pages that contain
complicated formatting layouts (e.g., lists embedded in other lists) that previous approaches
could not handle (see [11] for details).

stalker is a sequential covering algorithm that, given the training examples E, tries to
learn a minimal number of perfect disjuncts that cover all examples in E. By definition, a
perfect disjunct is a rule that covers at least one training example and on any example the
rule matches it produces the correct result. stalker first creates an initial set of candidate-
rules C and then repeatedly applies the following three steps until it generates a perfect
disjunct:

- select most promising candidate from C

- refine that candidate

- add the resulting refinements to C

Once stalker obtains a perfect disjunct P , it removes from E all examples on which P
is correct, and the whole process is repeated until there are no more training examples in
E. stalker uses two types of refinements: landmark refinements and topology refinements.
The former makes the rule more specific by adding a token to one of the existing landmarks,
while the latter adds a new 1-token landmark to the rule.

For instance, let us assume that based on the four examples in Figure 3, we want to learn
a start rule for the address. stalker proceeds as follows. First, it selects an example, say
E4, to guide the search. Second, it generates a set of initial candidates, which are rules that
consist of a single 1-token landmark; these landmarks are chosen so that they match the
token that immediately precedes the beginning of the address in the guiding example. In our
case we have two initial candidates:

R5 = SkipTo( <b> )

R6 = SkipTo( _HtmlTag_ )

As the <b> token appears only in E4, R5 does not match within the other three examples.
On the other hand, R6 matches in all four examples, even though it matches too early
(R6 stops as soon as it encounters an html tag, which happens in all four examples before
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the beginning of the address). Because R6 has a better generalization potential, stalker
selects R6 for further refinements.

While refining R6, stalker creates, among others, the new candidates R7, R8, R9, and
R10 shown below. The first two are obtained via landmark refinements (i.e., a token is added
to the landmark in R6), while the other two rules are created by topology refinements (i.e.,
a new landmark is added to R6). As R10 works correctly on all four examples, stalker
stops the learning process and returns R10.

R7 = SkipTo( : _HtmlTag_ )

R8 = SkipTo( _Punctuation_ _HtmlTag_ )

R9 = SkipTo(:) SkipTo(_HtmlTag_)

R10 = SkipTo(Address) SkipTo( _HtmlTag_ )

By using stalker, we were able to successfully wrap information sources that could not
be wrapped with existing approaches (see [11] for details). In an empirical evaluation on 28
sources proposed in [8], stalker had to learn 206 extraction rules. We learned 182 perfect
rules (100% accurate), and another 18 rules that had an accuracy of at least 90%. In other
words, only 3% of the learned rules were less that 90% accurate .

3 Identifying Highly Informative Examples

stalker can do significantly better on the hard tasks (i.e., the ones for which it failed to
learn perfect rules) if instead of random examples, the system is provided with carefully
selected examples. Specifically, the most informative examples illustrate exceptional cases.
However, it is unrealistic to assume that a user is willing and has the skills to browse a
large number of documents in order to identify a sufficient set of examples to learn perfect
extraction rules. This is a general problem that none of the existing tools address, regardless
of whether they use machine learning.

To solve this problem we have developed an active learning approach that analyzes the set
of unlabeled examples to automatically select examples for the user to label. Our approach,
called co-testing [10], exploits the fact that there are often multiple ways of extracting the
same information [1]. In the case of wrapper learning, the system can learn two different
types of rules: forward and backward rules. All the rules presented above are forward rules:
they start at the beginning of the document and go towards the end. By contrast, a backward
rule starts at the end of the page and goes towards its beginning. For example, one can find
the beginning of the addresses in Figure 3 by using one of the following backward rules:

R11 = BackTo(Phone) BackTo(_Number_)

R12 = BackTo(Phone : <i> ) BackTo(_Number_)
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The main idea behind co-testing is straightforward: after the user labels one or two
examples, the system learns both a forward and a backward rule. Then it runs both rules
on a given set of unlabeled pages. Whenever the rules disagree on an example, the system
considers that as an example for the user to label next. The intuition behind our approach
is the following: if both rules are 100% accurate, on every page they must identify the same
token as the beginning of the address. Furthermore, as the two rules are learned based on
different sets of tokens (i.e., the sequences of tokens that precede and follow the beginning
of the address, respectively), they are highly unlikely to make the exact same mistakes.
Whenever the two rules disagree, at least one of them must be wrong, and by asking the
user to label that particular example, we obtain a highly informative training example. Co-
testing makes it possible to generate accurate extraction rules with a very small number of
labeled examples.

To illustrate how co-testing works, consider again the examples in Figure 3. Since most of
the restaurants in a city are not located within a 1-mile radius of one’s location, it follows that
most of the documents in the source will be similar to E1, E2, and E3 (i.e., addresses shown
in italic), while just a few examples will be similar to E4 (i.e., addresses shown in bold).
Consequently, it is unlikely that an address in bold will be present in a small, randomly
chosen, initial training set. Let us now assume that the initial training set consists of E1
and E2, while E3 and E4 are not labeled. Based on these examples, we learn the rules

Fwd-R1 = SkipTo(Address) SkipTo(<i>)

Bwd-R1 = BackTo(Phone) BackTo(_Number_)

Both rules correctly identify the beginning of the address for all restaurants that are more
than one mile away, and, consequently, they will agree on all of them (e.g., E3). On the
other hand, Fwd-R1 works incorrectly for examples like E4, where it stops at the beginning
of the phone number. As Bwd-R1 is correct on E4, the two rules disagree on this example,
and the user is asked to label it.

To our knowledge, there is no other wrapper induction algorithm that has the capability
of identifying the most informative examples. In the related field of information extraction,
where one wants to extract data from free text documents, researchers proposed such algo-
rithms [13, 12], but they cannot be applied in a straightforward manner to existing wrapper
induction algorithms.

We applied co-testing on the 24 tasks on which stalker fails to learn perfect rules based
on 10 random examples. To keep the comparison fair, co-testing started with one random
example and made up to 9 queries. The results were excellent: the average accuracy over all
tasks improved from 85.7% to 94.2% (error rate reduced by 59.5%). Furthermore, 10 of the
learned rules were 100% accurate, while another 11 rules were at least 90% accurate. In these
experiments as well as in other related tests [10] applying co-testing leads to a significant
improvement in accuracy without having to label more training data.
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4 Verifying the Extracted Data

Another problem that has been largely ignored in past work on extracting data from web sites
is that sites change and they change often. Kushmerick [7] addressed the wrapper verification
problem by monitoring a set of generic features, such as the density of numeric characters
within a field, but this approach only detects certain types of changes. In contrast, we address
this problem by applying machine learning techniques to learn a set of patterns that describe
the information that is being extracted from each of the relevant fields. Since the information
for even a single field can vary considerably, the system learns the statistical distribution
of the patterns for each field. Wrappers can be verified by comparing the patterns of data
returned to the learned statistical distribution. When a significant difference is found, an
operator can be notified or we can automatically launch the wrapper repair process, which
is described in the next section.

The learned patterns represent the structure, or format, of the field as a sequence of
words and wildcards [9]. Wildcards represent syntactic categories to which words belong
— alphabetic, numeric, capitalized, etc. — and allow for multi-level generalization. For
complex fields, and for purposes of information extraction, it is sufficient to use only the
starting and ending patterns as the description of the data field. For example, a set of street
addresses — 12 Pico St., 512 Oak Blvd., 416 Main St. and 97 Adams Blvd. — all
start with a pattern (_Number_ _Capitalized_) and end with (Blvd.) or (St.). We refer to
the starting and ending patterns together as the data prototype of the field.

The problem of learning a description of a field (class) from a set of labeled examples
can be posed in two related ways: as a classification or a conservation task. If negative
examples are present, the classification algorithm learns a discriminating description. When
only positive examples are available, the conservation task learns a characteristic description,
i.e. one that describes many of the positive examples but is highly unlikely to describe a
randomly generated example. Because an appropriate set of negative examples not available
in our case, we chose to frame the learning problem as a conservation task. The algorithm we
developed, called DataPro [9], finds all statistically significant starting and ending patterns
in a set of positive examples of the field. A pattern is said to be significant if it occurs more
frequently than would be expected by chance if the tokens were generated randomly and
independently of one another. Our approach is similar to work on grammar induction [2, 5],
but our pattern language is better suited to capturing the regularities in small data fields
(as opposed to languages).

The algorithm operates by building a prefix tree, where each node corresponds to a token
whose position in the sequence is given by the node’s depth in the tree. Every path through
the tree starting at the root node is a significant pattern found by the algorithm.

The algorithm grows the tree incrementally. Adding a child to a node corresponds to
extending the node’s pattern by a single token. Thus, each child represents a different way
to specialize the pattern. For example, when learning city names, the node corresponding
to “New” might have three children, corresponding to the patterns “New Haven”, “New
York” and “New _Capitalized_”. A child node is judged to be significant with respect to its
parent node if the number of occurrences of the child pattern is sufficiently large, given the
number of occurrences of the parent pattern and the baseline probability of the token used
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to extend the parent pattern. A pruning step insures that each child node is also significant
given its more specific siblings. For example, if there are 10 occurrence of “New Haven”,
and 12 occurrences of “New York”, and both of these are judged to be significant, then
“New _Capitalized_” will be retained only if there are significantly more than 22 examples
that match “New _Capitalized_”. Similarly, once the entire tree has been expanded, the
algorithm includes a pattern extraction step that traverses the tree, checking whether the
pattern “New” is still significant given the more specific patterns “New York”, “New Haven”
and “New _Capitalized_”. In other words, DataPro decides whether the examples described
by “New” but not by any of the longer sequences can be explained by the null hypothesis.

The patterns learned by DataPro lend themselves to the data validation task and, specif-
ically, to wrapper verification. A set of queries is used to retrieve HTML pages from which
the wrapper extracts some training examples. The learning algorithm finds the patterns that
describe the common beginnings and endings of each field of the training examples. In the
verification phase, the wrapper generates a test set of examples from pages retrieved using
the same or similar set of queries. If the patterns describe statistically the same (at a given
significance level) proportion of the test examples as the training examples, the wrapper is
judged to be extracting correctly; otherwise, it is judged to have failed.

Once we have learned the patterns, which represent our expectations about the format of
data, we can then configure the wrappers to verify the extracted data before the data is sent,
immediately after the results are sent, or on some regular frequency. The most appropriate
verification method depends on the particular application and the tradeoff between response
time and data accuracy.

We monitored 27 wrappers (representing 23 distinct Web sources) over a period of several
months. For each wrapper, the results of 15-30 queries were stored periodically. All new
results were compared with the last correct wrapper output (training examples). A manual
check of the results revealed 37 wrapper changes out of the total 443 comparisons. The
verification algorithm correctly discovered 35 of these changes. The algorithm incorrectly
decided that the wrapper has changed in 40 cases. We are currently working to reduce the
high rate of false positives.

5 Automatically Repairing Wrappers

Most changes to Web sites are largely syntactic and are often minor formatting changes or
slight reorganizations of a page. Since the content of the fields tend to remain the same, we
exploit the patterns learned for verifying the extracted results to locate correct examples of
the data field on new pages. Once the required information has been located, the pages are
automatically re-labeled and the labeled examples are re-run through the inductive learning
process to produce the correct rules for this site.

Specifically, the wrapper reinduction algorithm takes a set of training examples and a set
of pages from the same source and uses machine learning techniques to identify examples of
the data field on new pages. First, it learns the starting and ending patterns that describe
each field of the training examples. Next, each new page is scanned to identify all text seg-
ments that begin with one of the starting patterns and end with one of the ending patterns.
Those segments, which we call candidates, that are significantly longer or shorter than the
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Figure 4: An Example of the Reinduction Process

training examples are eliminated from the set, often still leaving hundreds of candidates per
page. The candidates are then clustered to identify subgroups that share common features.
The features used in clustering are the candidate’s relative position on the page, adjacent
landmarks, and whether it is visible to the user. Each group is then given a score based on
how similar it is to the training examples. We expect the highest ranked group to contain
the correct examples of the data field.

Figure 4 shows a actual example of a change to Amazon’s site and how our system
automatically adapts to the change. The top frame shows an example of the original site,
the extraction rule for a book title, and the extracted results from the example page. The
middle frame shows the source and the incorrectly extracted result after the title’s font and
color were changed. And the bottom frame shows the result of the automatic reinduction
process with the corrected rule for extracting the title.

We evaluated the algorithm by using it to extract data from Web pages for which correct
output is known. The output of the extraction algorithm is a ranked list of clusters for every
data field being extracted. Each cluster is checked manually, and it is judged to be correct
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if it contains only the complete instances of the field, which appear in the correct context
on the page. For example, if extracting a city of an address, we only want to extract those
city names that are part of an address.

We ran the extraction algorithm for 21 distinct Web sources, attempting to extract 77
data fields from all the sources. In 62 cases the top ranked cluster contained correct complete
instances of the data field. In eight cases the correct cluster was ranked lower, while in six
cases no candidates were identified on the pages. The most closely related work is that of
Cohen [3], which uses an information retrieval approach to relocating the information on a
page. The approach was not evaluated on actual changes to Web pages, so it is difficult to
assess whether this approach would work in practice.

6 Discussion

Our work addresses the complete wrapper creation problem, which includes:

• building wrappers by example,

• ensuring that the wrappers accurately extract data across an entire collection of pages,

• verifying a wrapper to avoid failures when a site changes,

• and automatically repair wrappers in response to changes in layout or format.

Our main technical contribution is in the use of machine learning to accomplish all of
these tasks. Essentially, our approach takes advantage of the fact that web pages have a high
degree of regular structure. By analyzing the regular structure of example pages, our wrapper
induction process can detect landmarks that enable us to extract desired fields. After we
developed an initial wrapper induction process we realized that the accuracy of the induction
method can be improved by simultaneously learning “forward” and “backward” extraction
rules to identify exception cases. Again, what makes this possible is the regularities on a
page that enable us to identify landmarks both before a field and after a field.

Our approach to automatically detecting wrapper breakages and repairing them capital-
izes on the regular structure of the extracted fields themselves. Once a wrapper has been
initially created, we can use it to obtain numerous examples of the fields. This enables us
to profile the information in the fields and obtain structural descriptions that we can use
during monitoring and repair. Essentially this is a bootstrapping approach. Given the initial
examples provided by the user, we first learn a wrapper. Then we use this wrapper to obtain
many more examples which we then analyze in much greater depth. Thus by leveraging a
few human-provided examples, we end up with a highly scalable system for wrapper creation
and maintenance.

Acknowledgements

The research reported here was supported in part by the Rome Laboratory of the Air Force
Systems Command and the Defense Advanced Research Projects Agency (DARPA) under

goodelle
100



contract number F30602-98-2-0109, in part by the United States Air Force under contract
number F49620-98-1-0046, and in part by the Integrated Media Systems Center, a National
Science Foundation Engineering Research Center, under Cooperative Agreement No. EEC-
9529152. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of any of the above organizations or any person connected with them.

References

[1] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
Proc. of the 1988 Conference on Computational Learning Theory, pages 92–100, 1998.

[2] R. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state
merging method. In Lecture Notes In Computer Science, page 862, 1994.

[3] W. Cohen. Recognizing structure in web pages using similarity queries. In Proc. of the
16th National Conference on Artificial Intelligence AAAI-1999, pages 59–66, 1999.

[4] D. Freitag and N. Kushmerick. Boosted wrapper induction. In Proc. of the 17th National
Conference on Artificial Intelligence AAAI-2000, pages 577–583, 2000.

[5] T. Goan, N. Benson, and O. Etzioni. A grammar inference algorithm for the world wide
web. In Proc. of the AAAI Spring Symposium on Machine Learning in Information
Access, 1996.

[6] C. Hsu and M. Dung. Generating finite-state transducers for semi-structured data
extraction from the web. Journal of Information Systems, 23(8):521–538, 1998.

[7] N. Kushmerick. Regression testing for wrapper maintenance. In Proc. of the 16th
National Conference on Artificial Intelligence AAAI-1999, pages 74–79, 1999.

[8] N. Kushmerick. Wrapper induction: efficiency and expressiveness. Artificial Intelligence
Journal, 118(1-2):15–68, 2000.

[9] K. Lerman and S. Minton. Learning the common structure of data. In Proc. of the 17th
National Conference on Artificial Intelligence AAAI-2000, pages 609–614, 2000.

[10] I. Muslea, S. Minton, and C. Knoblock. Co-testing: Selective sampling with redundant
views. In Proc. of the 17th National Conference on Artificial Intelligence AAAI-2000,
pages 621–626, 2000.

[11] I. Muslea, S. Minton, and C. Knoblock. Hierarchical wrapper induction for semistruc-
tured information sources. Journal of Autonomous Agents and Multi-Agent Systems,
2001. (to appear).

[12] S. Soderland. Learning extraction rules for semi-structured and free text. Machine
Learning, 34:233–272, 1999.

goodelle
101



[13] C. Thompson, M. Califf, and R. Mooney. Active learning for natural language parsing
and information extraction. In Proc. of the 16th International Conference on Machine
Learning ICML-99, pages 406–414, 1999.

goodelle
102



Wrapper Maintenance: A Machine Learning Approach ∗

Kristina Lerman1, Steven Minton2, Craig Knoblock1,2

1. Information Sciences Institute
Univ. of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292
2. Fetch Technologies
4676 Admiralty Way

Marina del Rey, CA 90292
{lerman,knoblock}@isi.edu

minton@fetch.com

Abstract

The proliferation of online information sources has led to an increased use of wrappers for
extracting data from Web sources. While most of the previous research has focused on quick and
efficient generation of wrappers, the development of tools for wrapper maintenance has received
less attention. This is an important research problem because Web sources often change in ways
that prevent the wrappers from extracting data correctly. We present an efficient algorithm
that learns structural information about data from positive examples alone. We describe how
this information can be used for two wrapper maintenance applications: wrapper verification
and reinduction. The wrapper verification system detects when a wrapper is not extracting
correct data, usually because the Web source has changed its format. The reinduction algorithm
automatically recovers from changes in the Web source by identifying data on Web pages so
that a new wrapper may be generated for this source. To validate our approach, we monitored
27 wrappers over a period of a year. The verification algorithm correctly discovered 35 of the
37 wrapper changes, and made 16 mistakes, resulting in precision of 0.73 and recall of 0.95. We
validated the reinduction algorithm on ten Web sources. We were able to successfully reinduce
the wrappers, obtaining precision and recall values of 0.90 and 0.80 on the data extraction task.
Our results indicate that combining structural information about data with a priori expectations
about page structure is a feasible approach to automatically generating wrappers.

∗Submitted to Journal of Artificial Intelligence Research
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1 Introduction

There is a tremendous amount of information available online, but much of this information is
formatted to be easily read by human users, not computer applications. Extracting information
from semi-structured Web pages is an increasingly important capability for Web-based software
applications that perform information management functions, such as shopping agents [Doorenbos
et al., 1997] and virtual travel assistants [Knoblock et al., 2001b, Ambite et al., 2002], among others.
These applications, often referred to as agents, rely on Web wrappers that extract information from
semi-structured sources and convert it to a structured format. Semi-structured sources are those
that have no explicitly specified grammar or schema, but have an implicit grammar that can be
used to identify relevant information on the page. Even text sources such as email messages have
some structure in the heading that can be exploited to extract the date, sender, addressee, title,
and body of the messages. Other sources, such as online catalogs, have a very regular structure
that can be exploited to extract all the data automatically.

Wrappers rely on extraction rules to identify the data field to be extracted. Semi-automatic
creation of extraction rules, or wrapper induction, has been an active area of research in recent
years [Knoblock et al., 2001a, Kushmerick et al., 1997]. The most advanced of these wrapper
generation systems use machine learning techniques to learn the extraction rules by example. For
instance, the wrapper induction tool developed at USC [Knoblock et al., 2001a, Muslea et al.,
1998] and commercialized by Fetch Technologies, allows the user to mark up data to be extracted
on several example pages from an online source using a graphical user interface. The system then
generates “landmark”-based extraction rules for these data that rely on the page layout. The
USC wrapper tool is able to efficiently create extraction rules from a small number of examples;
moreover, it can extract data from pages that contain lists, nested structures, and other complicated
formatting layouts.

In comparison to wrapper induction, wrapper maintenance has received less attention. This is
an important problem, because even slight changes in the Web page layout can break a wrapper
that uses landmark-based rules and prevent it from extracting data correctly. In this paper we
discuss our approach to the wrapper maintenance problem, which consists of two parts: wrapper
verification and reinduction. A wrapper verification system monitors the validity of data returned
by the wrapper. If the site changes, the wrapper may extract nothing at all or some data that
is not correct. The verification system will detect data inconsistency and notify the operator or
automatically launch a wrapper repair process. A wrapper reinduction system repairs the extraction
rules so that the wrapper works on changed pages.

Figure 1 graphically illustrates the entire life cycle of a wrapper. As shown in the figure, the
wrapper induction system takes a set of web pages labeled with examples of the data to be extracted.
The output of the wrapper induction system is a wrapper, consisting of a set of extraction rules
that describe how to locate the desired information on a Web page. The wrapper verification
system uses the functioning wrapper to collect extracted data. It then learns patterns describing
the structure of data. These patterns are used to verify that the wrapper is correctly extracting
data at a later date. If a change is detected, the system can automatically repair a wrapper by using
this structural information to locate examples of data on the new pages and re-running the wrapper
induction system with these examples. At the core of these wrapper maintenance applications is
a machine learning algorithm that learns structural information about common data fields. In
this paper we introduce the algorithm, DataProG, and describe its application to the wrapper
maintenance tasks in detail. Though we focus on web applications, the learning technique is not
web-specific, and can be used for data validation in general.
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Figure 1: Life cycle of a wrapper

Note that we distinguish two types of extraction rules: landmark-based rules that extract data
by exploiting the structure of the Web page, and content-based rules, which we refer to as content
patterns or simply patterns, that exploit the structure of the field itself. Our previous work focused
on learning landmark rules for information extraction [Muslea et al., 2001]. The current work shows
that augmenting these rules with content-based patterns provides a foundation for sophisticated
wrapper maintenance applications.

2 Learning Content Patterns

The goal of our research is to extract information from semi-structured information sources. This
typically involves identifying small chunks of highly informative data on formatted pages (as op-
posed to parsing natural language text). Either by convention or design, these fields are usually
structured: phone numbers, prices, dates, street addresses, names, schedules, etc. Several exam-
ples of street addresses are given in Fig. 2. Clearly, these strings are not arbitrary, but share some
similarities. The objective of our work is to learn the structure of such fields.

4676 Admiralty Way
10924 Pico Boulevard

512 Oak Street
2431 Main Street

5257 Adams Boulevard

Figure 2: Examples of a street address field

2.1 Data Representation

In previous work, researchers described the fields extracted from Web pages by a character-level
grammar [Goan et al., 1996] or a collection of global features, such as the number of words and
the density of numeric characters [Kushmerick, 1999]. We employ an intermediate word-level rep-
resentation that balances the descriptive power and specificity of the character-level representation
with the compactness and computational efficiency of the global representation. Words, or more
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accurately tokens, are strings generated from an alphabet containing different types of characters:
alphabetic, numeric, punctuation, etc. We use the token’s character types to assign it to one or
more syntactic categories: alphabetic, numeric, etc. These categories form a hierarchy depicted
in Fig. 3, where the arrows point from more general to less general categories. A unique specific
token type is created for every string that appears in at least k examples, as determined in a pre-
processing step. The hierarchical representation allows for multi-level generalization. Thus, the
token “Boulevard” belongs to the general token types Alphanum (alphanumeric strings), Alpha

(alphabetic strings), Upper (capitalized words), as well as to the specific type representing the
string “Boulevard”. This representation is flexible and may be expanded to include domain specific
information. For example, the numeric type is divided into categories that include range informa-
tion about the number — Large (larger than 1000), Medium (medium numbers, between 10 and
1000) and Small (smaller than 10)— and number of digits: 1−, 2−, and 3−digit. Likewise, we
may explicitly include knowledge about the type of information being parsed, e.g., some 5-digit
numbers could be represented as zipcode.

TOKEN

PUNCT ALPHANUM HTML

ALPHA NUMBER

LOWER

ALLCAPS

CA Boulevard

UPPER SMALL MEDIUM LARGE

1Digit 2Digit 3Digit

310

Figure 3: Portion of the token type syntactic hierarchy

We have found that a sequence of specific and general token types is more useful for describing
the content of information than the character-level finite state representations used in previous
work [Carrasco and Oncina, 1994, Goan et al., 1996]. The character-level description is far too fine
grained to compactly describe data and, therefore, leads to poor generality. The coarse-grained
token-level representation is more appropriate for most Web data types. In addition, the data
representation schemes used in previous work attempt to describe the entire data field, while we
use use only the starting and ending sequences, or patterns, of tokens to capture the structure
of the data fields. The reason for this is similar to the one above: using the starting and ending
patterns allows us to generalize the structural information for many complex fields which have a
lot of variability. Such fields, e.g., addresses, usually have some regularity in how they start and
end that we can exploit. We call the starting and ending patterns collectively a data prototype. As
an example, consider a set of street addresses in Fig. 2. All of the examples start with a pattern
<Number Upper> and end with a specific type <Boulevard> or more generally <Upper>. Note
that the pattern language does not allow loops or recursion. We believe that recursive expressions
are not useful representations of the types of data we are trying to learn, because they are harder
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to learn and lead to over-generalization.

2.2 Learning from Positive Examples

The problem of learning the data prototype from a set of examples that are labeled as belonging
(or not) to a class, may be stated in one of two related ways: as a classification or as a conservation
task. In the classification task, both positive and the negative instances of the class are used
to learn a rule that will correctly classify new examples. Classification algorithms, like FOIL
[Quinlan, 1990], use negative examples to guide the specialization of the rule. They construct
discriminating descriptions — those that are satisfied by the positive examples and not the negative
examples. The conservation task, on the other hand, attempts to find a characteristic description
[Dietterich and Michalski, 1981] or conserved patterns [Brazma et al., 1995], in a set of positive
examples of a class. Unlike the discriminating description, the characteristic description will often
include redundant features. For example, when learning a description of street addresses, with
city names serving as negative examples, a classification algorithm will learn that <Number> is
a good description, because all the street addresses start with it and none of the city names do.
The capitalized word that follows the number in addresses is a redundant feature, because it does
not add to the discriminating power of the learned description. However, if an application using
this description encounters a zipcode in the future, it will incorrectly classify it as a street address.
This problem could have been avoided if <Number Upper> was learned as a description of street
addresses. Therefore, when negative examples are not available to the learning algorithm, the
description has to capture all the regularity of data, including the redundant features, in order to
correctly identify new instances of the class and differentiate them from other classes. Ideally, the
characteristic description learned from positive examples alone is the same as the discriminating
description learned by the classification algorithm from positive and negative examples, where
negative examples are drawn from infinitely many classes. While most of the widely used machine
learning algorithms (e.g., decision trees [Quinlan, 1993], inductive logic programming [Muggleton,
1991]) solve the classification task, there are fewer algorithms that learn characteristic descriptions.

In our applications, an appropriate source of negative examples is problematic; therefore, we
chose to frame the learning problem as a conservation task. We introduce an algorithm that learns
data prototypes from positive examples of the data field alone. The algorithm finds statistically
significant sequences of tokens. A sequence of token types is significant if it occurs more frequently
than would be expected if the tokens were generated randomly and independently of one another. In
other words, each such sequence constitutes a pattern that describes many of the positive examples
of data and is highly unlikely to have been generated by chance.

The algorithm estimates the baseline probability of a token type’s occurrence from the propor-
tion of all types in the examples of the data field that are of that type. Suppose we are learning
a description of the set of street addresses in Fig. 2, and have already found a significant token
sequence — e.g., the pattern consisting of the single token <Number> — and want to determine
whether the more specific pattern, <Number Upper>, is also a significant pattern. Knowing the
probability of occurrence of the type Upper, we can compute how many times Upper can be
expected to follow Number completely by chance. If we observe a considerably greater number of
these sequences, we conclude that the longer pattern is also significant.

We use hypothesis testing [Papoulis, 1990] to decide whether a pattern is significant. The null
hypothesis is that observed instances of this pattern were generated by chance, via the random,
independent generation of the individual token types. Hypothesis testing decides, at a given confi-
dence level, whether the data supports rejecting the null hypothesis. Suppose n identical sequences
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have been generated by a random source. The probability that a token type T (whose overall prob-
ability of occurrence is p) will be the next type in k of these sequences has a binomial distribution.
For a large n, the binomial distribution approaches a normal distribution P (x, µ, σ) with µ = np
and σ2 = np(1− p). The cumulative probability is the probability of observing at least n1 events:

P (k ≥ n1) =
∫ ∞

n1

P (x, µ, σ)dx (1)

We use polynomial approximation formulas [Abramowitz and Stegun, 1964] to compute the value
of the integral.

The significance level of the test, α, is the probability that the null hypothesis is rejected even
though it is true, and it is given by the cumulative probability above. Suppose we set α = 0.05. This
means that we expect to observe at least n1 events 5% of the time under the null hypothesis. If the
number of observed events is greater, we reject the null hypothesis (at the given significance level),
i.e., decide that the observation is significant. Note that the hypothesis we test is derived from
observation (data). This constraint reduces the number of degrees of freedom of the test; therefore,
we must subtract one from the number of observed events. This also prevents the anomalous case
when a single occurrence of a rare event is judged to be significant.

2.3 DataProG Algorithm

We now describe DataProG, the algorithm that finds statistically significant patterns in a set of
token sequences. During the preprocessing step the text is tokenized, and the tokens are assigned
one or more syntactic types (see Figure 3). The patterns are encoded in a type of prefix tree,
where each node corresponds to a token type. DataProG relies on significance judgements to
grow the tree and prune the nodes. Every path through the resulting tree starting at the root node
corresponds to a significant pattern found by the algorithm. In this section, we focus the discussion
on the version of the algorithm that learns starting patterns. The algorithm is easily adapted to
learn ending patterns.

We present the pseudocode of the DataProG algorithm in Table 1. DataProG grows the
pattern tree incrementally by (1) finding all significant specializations (i.e., longer patterns) of
a pattern and (2) pruning the less significant of the generalizations (or specializations) among
patterns of the same length. As the last step, DataProG extracts all significant patterns from the
pattern tree, including those generalizations (i.e., shorter patterns) found to be significant given
the more specific (i.e., longer) patterns.

The tree is empty initially, and children are added to the root node. The children represent
all tokens that occur in the first position in the training examples more often than expected by
chance. For example, when learning addresses from the examples in Fig. 2, the root will have two
child nodes: Alphanum and Number. The tree is extended incrementally at each node Q. A new
child is added to Q for every significant specialization of the pattern ending at Q. As explained
previously, a child node is judged to be significant with respect to its parent node if the number
of occurrences of the pattern ending at the child node is sufficiently large, given the number of
occurrences of the pattern ending at the parent node and the baseline probability of the token type
used to extend the pattern. To illustrate on our addresses example, suppose we have already found
that a pattern <Number Upper> is significant. There are five ways to extend the tree (see Fig. 4)
given the data: <Number Upper Alphanum>, <Number Upper Alpha>, <Number Upper

Upper>, <Number Upper Street>, <Number Upper Boulevard>, and <Number Upper Way>.
All but the last of these patterns are judged to be significant at α = 0.05. For example, <Number
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DATAPROG MAIN LOOP
Create root node of tree;
For next node Q of tree

Create children of Q;
Prune nodes;

Extract patterns from tree;

CREATE CHILDREN OF Q
For each token type T at next position in examples

Let C = NewNode;
Let C.token = T;
Let C.examples = Q.examples that are followed by T;
Let C.count = |C.examples|;
Let C.pattern = concat(Q.pattern T );
If Significant(C.count, Q.count, T.probability)

AddChildToTree(C, Q);
End If

End T loop

PRUNE NODES
For each child C of Q

For each sibling S of C s.t. S.pattern ⊂ C.pattern
Let N = C.count− S.count
If Not(Significant(N,Q.count, C.token.probability))

Delete C;
break;

Else
Delete S;

End If
End S loop

End C loop

EXTRACT PATTERNS FROM TREE
Create empty list;
For every node Q of tree

For every child C of Q
Let N = C.count− ∑

i(Si.count|Si ∈ Children(C))
If Significant( N,Q.count, C.token.probability)

Add C.pattern to the list;
Return (list of patterns);

Table 1: Pseudocode of the DataProG algorithm
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Upper Upper> is significant, because Upper follows the pattern <Number Upper> five out of
five times,1 and the probability of observing at least that many longer sequences purely by chance
is 0.0002.2 Since this probability is less than α, we judge this sequence to be significant.

ROOT

NUMBER

UPPER

ALPHANUM ALPHA UPPER Boulevard Street

Figure 4: Pattern tree that describes the structure of addresses. Dashed lines link to nodes that
are deleted during the pruning step.

The next step is to prune the tree. The algorithm examines each pair of sibling nodes, one of
which is more general than the other, and eliminates the less significant of the pair. More precisely,
the algorithm iterates through the newly created children of Q, from the most to least general, and
for every pair of children Ci and Cj , such that Ci.pattern ⊂ Cj .pattern (i.e., Cj .pattern is strictly
more general than Ci.pattern), the algorithm keeps only Cj if it explains significantly more data;
otherwise, it keeps only Ci. 3

Let us illustrate the pruning step with the example pattern tree in Fig. 4. We can eliminate the
node AlphaNum, because all the examples that match the pattern <Number Upper Alphanum>
also match the pattern <Number Upper Alpha> — thus, Alphanum is not significant given
its specialization Alpha. We can eliminate node Alpha for a similar reason. Next, we check
whether <Number Upper Upper> is significant given the patterns <Number Upper Boulevard>
and <Number Upper Street>. There are 2 instances of the address field that match the pattern
<Number Upper Boulevard>, and 2 addresses that match <Number Upper Street>. If <Number

Upper Upper> matches significantly more than 4 addresses, it will be retained and the more
specific patterns will be pruned from the tree; otherwise, it will be deleted and the more specific
ones kept. Because every example is described by at most one pattern of a given length, the
pruning step ensures that the size of the tree remains polynomial in the number of tokens, thereby,
guaranteeing a reasonable performance of the algorithm.

Once the entire tree has been expanded, the final step is to extract all significant patterns from
the tree. Here, the algorithm judges whether the shorter (more general) pattern, e.g., <Number

Upper>, is significant given the longer specializations of it, e.g., <Number Upper Boulevard> and
<Number Upper Street>. This amounts to testing whether the excess number of examples that

1Such small numbers are used for illustrative purposes only — the typical data sets from which the patterns are
learned are much larger.

2The calculation of this cumulative probability depends on the occurrence probability of Upper. We count the
occurrence of each token type independently of the others. In our example, occurrence probability (relative fraction)
of type Upper is 0.18.

3
DataProG is based on an earlier version of the algorithm, DataPro, described in the conference paper [Lerman

and Minton, 2000]. Note that in the original version of the algorithm, the specific patterns were always kept, regardless
of whether the more general patterns were found to be significant or not. This introduced a strong bias for specific
patterns into the results, which led to a high proportion of false positives during the wrapper verification experiments.
Eliminating the specificity bias, improved the performance of the algorithm on the verification task.
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BUSINESS NAME ADDRESS
Chado Tea House 8422 West 1st Street
Saladang 363 South Fair Oaks Avenue
Information Sciences Institute 4676 Admiralty Way
Chaya Venice 110 Navy Street
Acorda Therapeutics 330 West 58th Street
Cajun Kitchen 420 South Fairview Avenue
Advanced Medical Billing Services 9478 River Road
Vega 1 Electrical Corporation 1723 East 8th Street
21st Century Foundation 100 East 85th Street
TIS the Season Gift Shop 15 Lincoln Road
Hide Sushi Japanese Restaurant 2040 Sawtelle Boulevard
Afloat Sushi 87 East Colorado Boulevard
Prebica Coffee & Cafe 4325 Glencoe Avenue
L ’ Orangerie 903 North La Cienega Boulevard
Emils Hardware 2525 South Robertson Boulevard
Natalee Thai Restaurant 998 South Robertson Boulevard
Casablanca 220 Lincoln Boulevard
Antica Pizzeria 13455 Maxella Avenue
NOBU Photographic Studio 236 West 27th Street
Lotus Eaters 182 5th Avenue
Essex On Coney 1359 Coney Island Avenue
National Restaurant 273 Brighton Beach Avenue
Siam Corner Cafe 10438 National Boulevard
Grand Casino French Bakery 3826 Main Street
Alejo ’ s Presto Trattoria 4002 Lincoln Boulevard
Titos Tacos Mexican Restaurant Inc 11222 Washington Place
Killer Shrimp 523 Washington Boulevard
Manhattan Wonton CO 8475 Melrose Place
Starting patterns
<Alpha Upper> <Number Upper Upper>
<Alpha Upper Upper Restaurant> <Number Upper Upper Avenue>
<Alpha ’> <Number Upper Upper Boulevard>

Table 2: Examples of the business name and address fields from the Bigbook source, and the
patterns learned from them

are explained by the shorter pattern, and not by the longer patterns, is significant. Any pattern
that ends at a terminal node of the tree is significant. Note that the set of significant patterns
may not cover all the examples in the data set, just a fraction of them that occur more frequently
than expected by chance (at some significance level). Tables 2–4 show examples of several data
fields from a yellow pages source (Bigbook) and a stock quote source (Y ahoo Quote), as well as
the starting patterns learned for each field.

3 Applications of Pattern Learning

As we explained in the introduction, wrapper induction systems use information from the layout
of Web pages to create data extraction rules and are therefore vulnerable to changes in the layout,
which occur frequently when the site is redesigned. In some cases the wrapper continues to extract,
but the data is no longer correct. The output of the wrapper may also change because the format of
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CITY STATE PHONE
Los Angeles CA ( 323 ) 655 - 2056
Pasadena CA ( 626 ) 793 - 8123
Marina Del Rey CA ( 310 ) 822 - 1511
Venice CA ( 310 ) 396 - 1179
New York NY ( 212 ) 376 - 7552
Goleta CA ( 805 ) 683 - 8864
Marcy NY ( 315 ) 793 - 1871
Brooklyn NY ( 718 ) 998 - 2550
New York NY ( 212 ) 249 - 3612
Buffalo NY ( 716 ) 839 - 5090
Los Angeles CA ( 310 ) 477 - 7242
Pasadena CA ( 626 ) 792 - 9779
Marina Del Rey CA ( 310 ) 823 - 4446
West Hollywood CA ( 310 ) 652 - 9770
Los Angeles CA ( 310 ) 839 - 8571
Los Angeles CA ( 310 ) 855 - 9380
Venice CA ( 310 ) 392 - 5751
Marina Del Rey CA ( 310 ) 577 - 8182
New York NY ( 212 ) 924 - 7840
New York NY ( 212 ) 929 - 4800
Brooklyn NY ( 718 ) 253 - 1002
Brooklyn NY ( 718 ) 646 - 1225
Los Angeles CA ( 310 ) 559 - 1357
Culver City CA ( 310 ) 202 - 6969
Marina Del Rey CA ( 310 ) 822 - 0095
Culver City CA ( 310 ) 391 - 5780
Marina Del Rey CA ( 310 ) 578 - 2293
West Hollywood CA ( 323 ) 655 - 6030
Starting patterns
<Upper Upper> <AllCaps> <( 3digit ) 3digit - Large>
<Upper Upper Rey>

Table 3: Examples of the city, state and phone number fields from the Bigbook source, and the
patterns learned from them
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PRICE CHANGE TICKER VOLUME PRICE
+ 0 . 51 INTC 17 , 610 , 300 122 3 / 4
+ 1 . 51 IBM 4 , 922 , 400 109 5 / 16
+ 4 . 08 AOL 24 , 257 , 300 63 13 / 16
+ 0 . 83 T 8 , 504 , 000 53 1 / 16
+ 2 . 35 LU 9 , 789 , 300 68

ATHM 5 , 646 , 400 29 7 / 8
- 10 . 84 COMS 15 , 388 , 200 57 11 / 32
- 1 . 24 CSCO 19 , 135 , 900 134 1 / 2
- 1 . 59 GTE 1 , 414 , 900 65 15 / 16
- 2 . 94 AAPL 2 , 291 , 800 117 3 / 4
+ 1 . 04 MOT 3 , 599 , 600 169 1 / 4
- 0 . 81 HWP 2 , 147 , 700 145 5 / 16
+ 4 . 45 DELL 40 , 292 , 100 57 3 / 16
+ 0 . 16 GM 1 , 398 , 100 77 15 / 16
- 3 . 48 CIEN 4 , 120 , 200 142
+ 0 . 49 EGRP 7 , 007 , 400 25 7 / 8
- 3 . 38 HLIT 543 , 400 128 13 / 16
+ 1 . 15 RIMM 307 , 500 132 1 / 4

C 6 , 145 , 400 49 15 / 16
- 2 . 86 GPS 1 , 023 , 600 44 5 / 8
- 6 . 46 CFLO 157 , 700 103 1 / 4
- 0 . 82 DCLK 1 , 368 , 100 106
+ 2 . 00 NT 4 , 579 , 900 124 1 / 8
+ 0 . 13 BFRE 149 , 000 46 9 / 16
- 1 . 63 QCOM 7 , 928 , 900 128 1 / 16
Starting patterns
<Punct 1digit . 2digit> <AllCaps> <Number , 3digit , 3digit> <Medium 1digit / Number>

<Medium 15 / 16 >

Table 4: Data examples from the Y ahoo Quote source, and the patterns learned from them

goodelle
113



the source data itself has changed: e.g., when “$” is dropped from the price field (“9.95” instead of
“$9.95”), or book availability changes from “Ships immediately” to “In Stock: ships immediately.”
Because other applications, such as Web agents [Ambite et al., 2002, Chalupsky et al., 2001], rely
on data extracted by wrappers, wrapper maintenance is an important research problem. We divide
the wrapper maintenance problem into two parts, each described separately in the paper. Wrapper
verification automatically detects when a wrapper is not extracting data correctly from a Web
source, while wrapper reinduction automatically fixes broken wrappers. Both applications learn a
description of data, of which patterns learned by DataProG are a significant part.

3.1 Wrapper Verification

If the data extracted by the wrapper changes significantly, this is an indication that the Web source
may have changed its format. Our wrapper verification system uses examples of data extracted
by the wrapper in the past that are known to be correct in order to acquire a description of the
data. The learned description contains features of two types: patterns learned by DataProG and
global numeric features, such as the density of tokens of a particular type. The application then
checks that this description still applies to the new data extracted by the wrapper. Thus, wrapper
verification is a specific instance of the data validation task.

The verification algorithm works in the following way. A set of queries is used to retrieve
HTML pages from which the wrapper extracts (correct) training examples. The algorithm then
computes the values of a vector of features, "k, that describes each field of the training examples.
These features include the patterns that describe the common beginnings (or endings) of the field.
During the verification phase, the wrapper generates a set of (new) test examples from pages
retrieved using the same set of queries, and computes the feature vector "r associated with each
field of the test examples. If the two distributions, "k and "r (see Fig. 5), are statistically the same
(at some significance level), the wrapper is judged to be extracting correctly; otherwise, it is judged
to have failed.
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Figure 5: A hypothetical distribution of features over the training and test examples

Each field is described by a vector, whose ith component is the value of the ith feature, such
as the number of examples that match pattern j. In addition to patterns, we use the following
numeric features to describe the sets of training and test examples: the average number of tuples-
per-page, mean number of tokens in the examples, mean token length, and the density of alphabetic,
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numeric, HTML-tag and punctuation types. We use goodness of fit method (Papoulis 1990) to
decide whether the two distributions are the same. To use the goodness of fit method, we must
first compute Pearson’s test statistic for the data. The Pearson’s test statistic is defined as:

q =
m∑

i=1

(ti − ei)2

ei
(2)

where ti is the observed value of the ith feature in the test data, and ei is the expected value
for that feature, and m is the number of features. For the patterns ei = nri/N , where ri is the
number of training examples explained by the ith patter, N is the number of examples in the
training set and n is the number of examples in the test set. For numeric features ei is simply
the value of that feature for the training set. The test statistic q has a chi-squared distribution
with m− 1 independent degrees of freedom. If q < χ2(m− 1;α), we conclude that at significance
level α the two distributions are the same; otherwise, we conclude that they are different. Values
of χ2 for different values of α and m can be looked up in a statistics table or calculated using an
approximation formula.

In order to use the test statistic reliably, it helps to use as many independent features as possible.
In the series of verification experiments reported in [Lerman and Minton, 2000], we used the starting
and ending patterns and the average number of tuples-per-page feature when computing the value
of q. We found that this method tended to overestimate the test statistic, because the features
(starting and ending patterns) were not independent. In the experiments reported in this paper, we
use only the starting patterns, but in order to increase the number of features, we added numeric
features to the description of data.

3.1.1 Results

We monitored 27 wrappers (representing 23 distinct Web sources) over a period of ten months,
from May 1999 to March 2000. The sources are listed in Table 5. For each wrapper, the results
of 15–30 queries were stored periodically, every 7–10 days. We used the same query set for each
source, except for the hotel source, because it accepted dated queries, and we had to change the
dates periodically to get valid results. Each set of new results (test examples) was compared with
the last correct wrapper output (training examples).

The verification algorithm used DataProG to learn the starting patterns and numeric features
for each field of the training examples and made a decision at a high significance level (corresponding
to α = 0.001) about whether the test set was statistically similar to the training set. If none of the
starting patterns matched the test examples or if the data was found to have changed significantly
for any data field, we concluded that the wrapper failed to extract correctly from the source;
otherwise, if all the data fields returned statistically similar data, we concluded that the wrapper
was working correctly.

A manual check of the 438 comparisons revealed 37 wrapper changes attributable to changes
in the source layout and data format.4 The verification algorithm correctly discovered 35 of these
changes and made 15 mistakes. Of these mistakes, 13 were false positives, which means that the
verification program decided that the wrapper failed when in reality it was working correctly. Only
two of the errors were the more important false negatives, meaning that the algorithm did not

4Seven of these were, in fact, internal to the wrapper itself, as when the wrapper was modified to extract “$22.00”
instead of “22.00” for the price field. Because these actions were mostly outside of our control, we chose to classify
them as wrapper changes.
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Source Type Data Fields
airport tuple/list airport code, name
altavista list url, title
Amazon tuple book author, title, price, availability, isbn
arrowlist list part number, manufacturer, price, status,

description, url
Bigbook tuple business name, address, city, state, phone
Barnes&Noble tuple book author, title, price, availability, isbn
borders list book author, title, price, availability
cuisinenet list restaurant name, cuisine, address, city, state,

phone, link
geocoder tuple latitude, longitude, street, city, state
hotel list name, price, distance, url
mapquest tuple hours, minutes, distance, url
northernlight list url, title
parking list lotname, dailyrate
Quote tuple stock ticker, price, pricechange, volume
Smartpages tuple name, address, city, state, phone
showtimes list movie, showtimes
theatre list theater name, url, address
Washington Post tuple taxi price
whitepages list business name, address, city, state, phone
yahoo people list name, address, city, state, phone
Y ahoo Quote tuple stock ticker, price, pricechange, volume
yahoo weather tuple temperature, forecast
cia factbook tuple country area, borders, population, etc.

Table 5: List of sources used in the experiments and data fields extracted from them. Source type
refers to how much data a source returns in response to a query — a single tuple or a list of tuples.
For airport source, the type changed from a single tuple to a list over time.
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detect a change in the data source. The numbers above result in the following precision, recall and
accuracy values:

P =
true positives

true positives+ false positives
= 0.73 ,

R =
true positives

true positives+ false negatives
= 0.95 ,

A =
true positives+ true negatives

positives + negatives
= 0.97 .

These results are an improvement over those reported in [Lerman and Minton, 2000], which
produced P = 0.47, R = 0.95, A = 0.91. The poor precision value reported in that work was
due to 40 false positives obtained on the same data set. We attribute the improvements both to
eliminating the specificity bias in the patterns learned by DataProG and to changing the feature
set to include only the starting patterns and additional numeric features.5

3.1.2 Discussion of Results

Though we have succeeded in significantly reducing the number of false positives, we have not
managed to eliminate them altogether. There are a number of reasons for their presence, some of
which point to limitations in our approach.

We can split the types of errors into roughly three not entirely independent classes: improper to-
kenization, incomplete data coverage, and data format changes. The URL field (Table 6) accounted
for a significant fraction of the false positives, in large part due to the design of our tokenizer, which
splits text strings on punctuation marks. If the URL contains embedded punctuation (as part of
the alphanumeric key associated with the user or session id), it will be split into a varying number
of tokens, so that it is hard to capture the regularity of the field. The solution is to rewrite the
tokenizer to recognize URLs for which well defined specifications exist. We will address this prob-
lem in our ongoing work. Our algorithm also failed sometimes (e.g., arrowlist, showtimes) when
it learned very long and specific descriptions. It is worth pointing out, however, that it performed
correctly in over two dozen comparisons for these sources. These types of errors are caused by
incomplete data coverage: a larger, more varied training data set would produce more general pat-
terns, which would perform better on the verification task. A striking example of the data coverage
problem occurred for the stock quotes source: the day the training data was collected, there were
many more down movements in the stock price than up, and the opposite was true on the day
the test data was collected. As a result, the price change fields for those two days were dissimilar.
Finally, because DataProG learns the format of data, false positives will inevitably result from
changes in the data format and do not indicate a problem with the algorithm. This is the case for
the factbook source, where the units of area changed from “km2” to “sq km”.

3.2 Wrapper Reinduction

If the wrapper stops extracting correctly, the next challenge is to rebuild it automatically [Cohen,
1999]. The extraction rules for our wrappers [Muslea et al., 2001], as well as many others (cf. [Kush-
merick et al., 1997, Hsu and Dung, 1998]), are generated by a machine learning algorithm, which

5Note that this improvement does not result simply from adding numeric features. To check this, we ran the
verification experiments on a subset of data (the last 278 comparisons) using only the global numeric features and
obtained P = 0.92 and R = 0.55, whereas using both patterns and numeric features results in values of P = 0.71 and
R = 1.00 for the same data set.
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hotel, mapquest (5 cases): URL field contains alphanumeric keys, with embedded punctuation
symbols. The tokenizer splits the field into many tokens. The key or its format changes from:

http://. . .&Stamp=Q4aaiEGSp68*itn/hot%3da11204,itn/agencies/newitn. . . to
http://. . .&Stamp=8∼bEgGEQrCo*itn/hot%3da11204,itn/agencies/newitn. . .
On one occasion, the server name inside the URL changed: from
http://enterprise.mapquest.com/mqmapgend?MQMapGenRequest=. . . to
http://sitemap.mapquest.com/mqmapgend?MQMapGenRequest=. . .

showtimes, arrowlist (5 cases ): Instance of the showtimes field and part number and description
fields (arrowlist) are very long. Many long, overly specific patterns are learned for these fields:
e.g.,
<( Number : 2digit AllCaps ) , ( Small : 2digit ) , ( Small : 2digit ) , ( 4 : 2digit ) , 6 :

2digit , 7 : 2digit , 9 : 2digit , 10 : 2digit >

altavista (1 case): Database of the search engine appears to have been updated. A different set
of results is returned for each query.

quote (1 case): Data changed — there were many more positive than negative price movements
in the test examples

factbook (1 case): Data format changed:
from <Number km2 >
to <Number sq km >

Table 6: List of sources of false positive results on the verification task
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takes as input several pages from a source and labeled examples of data to extract from each page.
It is assumed that the user labeled all examples correctly. If we label at least a few pages for which
the wrapper fails by correctly identifying examples of data on them, we can use these examples as
input to the induction algorithm, such as STALKER,6 to generate new extraction rules.7 Note
that we do not need to identify the data on every page — depending on how regular the data
layout is, Stalker can learn extraction rules using a small number of correctly labeled pages.
Our solution is to bootstrap the wrapper induction process (which learns landmark-based rules) by
learning content-based rules. We want to re-learn the landmark-based rules, because for the types
of sites we use, these rules tend to be much more accurate and efficient than content-based rules.

We employ a method that takes a set of training examples, extracted from the source when the
wrapper was known to be working correctly, and a set of pages from the same source, and uses a
mixture of supervised and unsupervised learning techniques to identify examples of the data field
on new pages. We assume that the format of data did not change. Patterns learned by DataProG

play a significant role in the reinduction task. In addition to patterns, other features, such as the
length of the training examples and structural information about pages are used. In fact, because
page structure is used during a critical step of the algorithm, we discuss our approach to learning
it in detail in the next paragraph.

(a)

(b)

Figure 6: Fragments of two Web pages from the same source displaying restaurant information.

6It does not matter, in fact, matter which wrapper induction system is used. We can easily replace Stalker with
HLRT [Kushmerick et al., 1997] to generate extraction rules.

7In this paper we will only discuss wrapper reinduction for information sources that return a single tuple of results
per page, or a detail page. In order to create data extraction rules for sources that return lists of tuples, the Stalker

wrapper induction algorithm requires user to specify the first and last elements of the list, as well as at least two
consecutive elements. Therefore, we need to be able to identify these data elements with a high degree of certainty.
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Page Template Algorithm Many Web sources use templates, or page skeletons, to automati-
cally generate pages and fill them with results of a database query. This is evident in the example
in Fig. 6. The template consists of the heading “RESULTS”, followed by the number of results
that match the query, the phrase “Click links associated with businesses for more information,”
then the heading “ALL LISTINGS,” followed by the anchors “map,” “driving directions,” “add to
My Directory” and the bolded phrase “Appears in the Category.” Obviously, data is not part of
the template — rather, it appears in the slots between template elements.

Given two or more example pages from the same source, we can induce the template used
to generate them (Table 7). The template finding algorithm looks for all sequences of tokens —
both HTML tags and text — that appear exactly once on each page. The algorithm works in the
following way: we pick the smallest page in the set as the template seed. Starting with the first
token on this page, we grow a sequence by appending tokens to it, subject to the condition that
the sequence appears on every page. If we managed to build a sequence that’s at least three tokens
long8, and this sequence appears exactly once on each page, it becomes part of the page template.
Templates play an important role in helping identify correct data examples on pages.

input:
P = set of N Web pages

output:
T = page template

begin
p = shortest(P )
T = null
s = null
for t = firsttoken(p) to lasttoken(p)

s′ = concat(s, t)
if ( s′ appears on every page in P )
s = s′

continue
else
n =

∑N
page=1 count(s, page)

if ( n = N AND length(s) ≥ 3 )
add-to-template(T, s)

end if
s = null

end if
end for

end
Table 7: Pseudocode of the template finding algorithm

Automatic Labeling Algorithm Figure 7 is a schematic outline of the reinduction algorithm,
which consists of automatic data labeling and wrapper induction. Because the latter aspect is de-
scribed in detail in other work [Muslea et al., 2001], we focus the discussion below on the automatic
data labeling algorithm.

8The best value for the minimum length for the page template element was determined empirically to be three.
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Figure 7: Schematic outline of the reinduction algorithm

First, DataProG learns the starting and ending patterns that describe the set of training
examples. These training examples have been collected during wrapper’s normal operation, while
it was correctly extracting data from the Web source. The patterns are used to identify possible
examples of the data field on the new pages. In addition to patterns, we also calculate the mean
(and its variance) of the number-of-tokens in the training examples. Each new page is then scanned
to identify all text segments that begin with one of the starting patterns and end with one of the
ending patterns. Text segments that contain significantly more or fewer tokens than expected based
on the old number-of-tokens distribution, are eliminated from the set of candidate extracts. The
learned patterns are often too general and will match many, possibly hundreds, text segments on
each page. Among these spurious text segments is the correct example of the data field. The rest
of the discussion is concerned with identifying the correct examples of data on pages.

We exploit some simple a priori assumptions about the structure of Web pages to help us
separate interesting extracts from noise. We expect examples of the same data field to appear
roughly in the same position and in the same context on each page. For example, Fig. 6 shows
fragments of two Web pages from the same source displaying restaurant information. On both
pages the relevant information about the restaurant appears after the heading “ALL LISTINGS”
and before the phrase “Appears in the Category:”. Thus, we expect the same field, e.g., address,
to appear in the same place, or slot, within the page template. Moreover, the information we are
trying to extract will not usually be part of the page template; therefore, candidate extracts that
are part of the page template can be eliminated from consideration. Restaurant address always
follows restaurant name (in bold) and precedes the city and zip code, i.e., it appears in the same
context on every page. A given field is either visible to the user on every page, or it is invisible
(part of an HTML tag) on every page. In order to use this information to separate extracts, we
describe each candidate extract by a feature vector, which includes positional information, defined
by the (page template) slot number and context. The context is captured by the adjacent tokens:
one token immediately preceding the candidate extract and one token immediately following it.
We also use a binary feature which has the value one if the token is visible to the user, and zero
if it is part of an HTML tag. Once the candidate extracts have been assigned feature vectors, we
split them into groups, so that within each group, the candidate extracts are described by the same
feature vector.

The next step is to score groups based on their similarity to the training examples. We expect
the highest scoring group to contain correct examples of the data field. One scoring method involves
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assigning a rank to the groups based on how many extracts they have in common with the training
examples. This technique generally works well, because at least some of the data usually remains
the same when the Web page layout changes. Of course, this assumption does not apply to data that
changes frequently, such as weather information, flight arrival times, stock quotes, etc. However,
we have found that even in these sources, there is enough overlap in the data that our approach
works. If the scoring algorithm assigns zero to all groups, i.e., there exist no extracts in common
with the training examples, a second scoring algorithm is invoked. This scoring method follows the
wrapper verification procedure and finds the group that is most similar to the training examples
based on the patterns learned from the training examples.

The final step of the wrapper reinduction process is to provide the extracts in the top ranking
group to the Stalker wrapper induction algorithm [Muslea et al., 2001] along with the new pages.
Stalker learns data extraction rules for the changed pages. Note that examples provided to
Stalker are required to be the correct examples of the field. If the set of automatically labeled
examples includes false positives, Stalker will not learn correct extraction rules for that field.
False negatives are not a problem, however. If the reinduction algorithm could not find the correct
example of data on a page, that page is simply not used in the wrapper induction stage.

3.2.1 Results

To evaluate the reinduction algorithm we used only the ten sources (listed in Table 5) that returned
a single tuple of results per page, a detail page.9 The method of data collection was described in
Sec. 3.1.1. Over the period between October 1999 and March 2000 there were eight format changes
in these sources. Since this set is much too small for evaluation purposes, we created an artificial
test set by considering all ten data sets collected for each source during this period. We evaluated
the algorithm by using it to extract data from Web pages for which correct output is known.
Specifically, we took ten tuples from a set collected on one date, and used this information to
extract data from ten pages (randomly chosen) collected at a later date, regardless of whether the
source had actually changed or not. We reserved the remaining pages collected at a later date for
testing the learned Stalker rules.

The output of the reinduction algorithm is a list of tuples extracted from ten pages, as well as
extraction rules generated by Stalker for these pages. Though in most cases we were not able to
extract every field on every pages, we can still learn good extraction rules with Stalker as long
as few examples of each field are correctly labeled. We evaluated the reinduction algorithm in two
stages: first, we checked how many data fields for each source were identified successfully; second,
we checked the quality of the learned Stalker rules by using them to extract data from test pages.

Extracting with content-based rules We judged a data field to be successfully extracted
if the automatic labeling algorithm was able to identify it correctly on at least two of the ten
pages. This is the minimum number of examples Stalker needs to create extraction rules. In
practice, such a low success rate only occurred for one field each in two of the sources: Quote and
Y ahoo Quote. For all other sources, if a field was successfully extracted, it was correctly identified
in at least three, and in most cases almost all, of the pages in the set. A false positive occurred
when the reinduction algorithm incorrectly identified some text on a page as a correct example of

9We did not use the geocoder and cia factbook wrappers in the experiments. The geocoder wrapper accessed
the source through another application; therefore, the pages were not available to us for analysis. The reason for
excluding the factbook is that it is a plain text source, while our methods apply to Web pages. Note also that in
the verification experiments, we had two wrappers for the mapquest source, each extracting different data. In the
experiments described below, we used the one that contained more data for this time period.
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a data field. In many cases, false positives consisted of partial fields, e.g., “Cloudy” rather than
“Mostly Cloudy” (yahoo weather). A false negative occurred when the algorithm did not identify
any examples of a data field. We ran the reinduction experiment attempting to extract the fields
listed in Table 8. The second column of the table lists the fractions of data sets for which the field
was successfully extracted. We were able to correctly identify fields 277 times across all data sets
making 61 mistakes, of which 31 were attributed to false positives and 30 to the false negatives.

There are several reasons the reinduction algorithm failed to operate perfectly. In many cases
the reason was the small training set.10 We can achieve better learning for the yellow-pages-type
sources Bigbook and Smartpages by using more training examples (see Fig. 8). In two cases,
the errors were attributable to changes in the format of data, which resulted in the failure of
patterns to capture the structure of data correctly: e.g., the airport source changed airport names
from capitalized words to allcaps, and in the Quote source in which the patterns were not able
to identify negative price changes because they were learned for a data set in which most of the
stocks had a positive price change. For two sources the reinduction algorithm could not distinguish
between correct examples of the field and other examples of the same data type: for the Quote
source, in some cases it extracted opening price or high price for the stock price field, while for the
yahoo weather source, it extracted high or low temperature, rather than the current temperature.
This problem was also evident in the Smartpages source, where the city name appeared in several
places on the page. In these cases, user intervention or meta-analysis of the fields may be necessary
to improve results of data extraction.
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Figure 8: Performance of the reinduction algorithm for the fields in the Smartpages source as the
size of the training set is increased

Extracting with landmark-based rules The final validation experiment consisted of using
the automatically generated wrappers to extract data from test pages. The last three columns in
Table 8 list precision, recall and accuracy for extracting data from test pages. The performance is
very good for most fields, with the notable exception of the STATE field of Bigbook source. For
that field, the pattern <Allcaps> was overly general, and a wrong group received the highest score

10Limitations in the data collection procedure prevented us from accumulating large data sets for all sources;
therefore, in order to keep the methodology uniform across all sources, we decided to use smaller training sets.
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source/field ex % p r
airport code 100 1.0 1.0
airport name 90 1.0 1.0
Amazon author 100 97.3 0.92
Amazon title 70 98.8 0.81
Amazon price 100 1.0 0.99
Amazon ISBN 100 1.0 0.91
Amazon availability 60 1.0 0.86
Barnes&Noble author 100 0.93 0.96
Barnes&Noble title 80 0.96 0.62
Barnes&Noble price 90 1.0 0.68
Barnes&Noble ISBN 100 1.0 0.95
Barnes&Noble availability 90 1.0 0.92
Bigbook name 70 1.0 0.76
Bigbook street 90 1.0 0.87
Bigbook city 70 0.91 0.98
Bigbook state 100 0.04 0.50
Bigbook phone 90 1.0 0.30
mapquest time 100 1.0 0.98
mapquest distance 100 1.0 0.98
Quote pricechange 50 0.38 0.36
Quote ticker 63 0.93 0.87
Quote volume 100 1.0 0.88
Quote shareprice 38 0.46 0.60
Smartpages name 80 1.0 0.82
Smartpages street 80 1.0 0.52
Smartpages city 0 0.68 0.58
Smartpages state 100 1.0 0.70
Smartpages phone 100 0.99 1.0
Y ahoo Quote pricechange 100 1.0 0.41
Y ahoo Quote ticker 100 1.0 0.98
Y ahoo Quote volume 100 1.0 0.99
Y ahoo Quote shareprice 80 1.0 0.59
Washington Post price 100 1.0 1.0
Weather temp 40 0.36 0.82
Weather outlook 90 0.83 1.0
average 83 0.90 0.80

Table 8: Reinduction results on ten Web sources. The first column lists the fraction of the fields for
each source that were correctly extracted by the pattern-based algorithm. We judged the field to
be extracted if the algorithm correctly identified at least two examples of it. The last two columns
list precision and recall on the data extraction task using the reinduced wrappers.
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source/field P R A source/field P R A
Amazon author 1.0 1.0 1.0 Smartpages name 1.0 0.9 0.9
Amazon title 1.0 0.7 0.7 Smartpages street N/A 0.0 0.0
Amazon price 0.9 0.9 0.9 Smartpages city 0.0 0.0 0.0
Amazon ISBN 1.0 0.9 0.9 Smartpages state 1.0 0.9 0.9
Amazon availability 1.0 0.9 0.9 Smartpages phone N/A 0.0 0.0
Barnes&Noble author 1.0 0.5 0.5 Y ahoo Quote pricechange 1.0 0.2 0.2
Barnes&Noble title 1.0 0.8 0.8 Y ahoo Quote ticker 1.0 0.5 0.5
Barnes&Noble price 1.0 1.0 1.0 Y ahoo Quote volume 1.0 0.7 0.7
Barnes&Noble ISBN 1.0 1.0 1.0 Y ahoo Quote shareprice 1.0 0.7 0.7
Barnes&Noble availability 1.0 1.0 1.0
Quote pricechange 0.0 0.0 0.0 Quote volume 1.0 1.0 1.0
Quote ticker 1.0 1.0 1.0 Quote shareprice 0.0 N/A 0.0

Table 9: Precision, recall, and accuracy of the learned STALKER rules for the changed sources

during the scoring step of the reinduction algorithm. The average precision and recall values were
P = 0.90 and R = 0.80.

Within the data set we studied, five sources, listed in Table 9, experienced a total of seven
changes. In addition to these sources, the airport source changed the format of the data it returned,
but since it simultaneously changed the presentation of data from a detail page to a list, we could
not use this data to learn Stalker rules. Table 9 shows the performance of the automatically
reinduced wrappers for the changed sources. For most fields precision P , the more important of the
performance measures, is close to its maximum value, indicating that there were few false positives.
However, small values of recall indicate that not all examples of these fields were extracted. This
result can be traced to a limitation of our approach: if the same field appears in a different context,
more than one rule is necessary to extract it from a source. In such cases, we extract only a subset
of the examples that share the same context, but ignore the rest of the examples.

As mentioned earlier, we believe we can achieve better performance for the yellow-pages-type
sources Bigbook and Smartpages by using more training examples. Figure 8 shows the effect
increasing the size of the training example set on the performance of the automatically generated
wrappers for the Smartpages source. As the number of training examples goes up, the accuracy
of most extracted fields goes up.

Lists We have also applied the reinduction algorithm to extract data from pages containing lists
of tuples, and, in many cases, have successfully extracted at least several examples of each field
from several pages. However, in order to learn the correct extraction rules for sources returning
lists of data, Stalker requires that the first, last and at least two consecutive list elements be
correctly specified. The methods presented here cannot guarantee that the required list elements
are extracted, unless all the list elements are extracted. We are currently working on new approaches
to data extraction from lists [Lerman et al., 2001] that will enable us to use Stalker to learn the
correct data extraction rules.

4 Previous Work

There has been a significant amount of research activity in the area of pattern learning. In the
section below we discuss two approaches, grammar induction and relational learning, and compare
their performance to DataProG on tasks in the Web wrapper application domain. In Section 4.2
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we review previous work on topics related to wrapper maintenance, and in Section 4.3 we discuss
related work in information extraction and wrapper induction.

4.1 Pattern Learning

Grammar induction Several researchers have addressed the problem of learning the structure,
or patterns, describing text data. In particular, grammar induction algorithms have been used
in the past to learn the common structure of a set of strings. Carrasco and Oncina proposed
ALERGIA [Carrasco and Oncina, 1994], a stochastic grammar induction algorithm that learns
a regular language from positive examples of the language. ALERGIA starts with a finite state
automaton (FSA) that is initialized to be a prefix tree that represents all the strings of the language.
ALERGIA uses a state-merging approach [Angluin, 1982, Stolcke and Omohundro, 1994] in which
the FSA is generalized by merging pairs of statistically similar (at some significance level) subtrees.
Similarity is based purely on the relative frequencies of substrings encoded in the subtrees. The
end result is a minimum FSA that is consistent with the grammar.

Goan et al. [Goan et al., 1996] found that when applied to data domains commonly found on
the Web, such as addresses, phone numbers, etc., ALERGIA tended to merge too many states,
resulting in an over-general grammar. They proposed modifications to ALERGIA, resulting in
algorithm WIL, aimed at reducing the number of faulty merges. The modifications were motivated
by the observation that each symbol in a string belong to one of the following syntactic categories:
NUMBER, LOWER, UPPER and DELIM. When viewed on the syntactic level, data strings
contain additional structural information that can be effectively exploited to reduce the number of
faulty merges. WIL merges two subtrees if they are similar (in the ALERGIA sense) and also if,
at every level, they contain nodes that are of the same syntactic type. WIL also adds a wildcard
generalization step in which the transitions corresponding to symbols of the same category that
are approximately evenly distributed over the range of that syntactic type (e.g., 0–9 for numerals)
are replaced with a single transition corresponding to the type (e.g., NUMBER). Goan et al.
demonstrated that the grammars learned by WIL were more effective in recognizing new strings in
several relevant Web domains.

We compared the performance of WIL to DataProG on the wrapper verification task. We used
WIL to learn the grammar on the token level using data examples extracted by the wrappers, not on
the character level as was done by Goan et al.Another difference from Goan et al. was that, whereas
they needed on the order of 100 strings to arrive at a high accuracy rate, we have on the order of
20–30 examples to work with. Note that we can no longer apply the wildcard generalization step to
the FSA because we would need many more examples to decide whether the token is approximately
evenly distributed over that syntactic type. Instead, we compare DataProG against two versions
of WIL: one without wildcard generalization (WIL1), and one in which every token in the initial
FSA is replaced by its syntactic type (WIL2). In addition to the syntactic types used by Goan et
al., we also had to introduce another type ALNUM to be consistent with the patterns learned by
DataProG. Neither version of WIL allows for multi-level generalization.

The algorithms were tested on data extracted by wrappers from 26 Web sources on ten different
occasions over a period of several months (see Sec. 3.1). Results of 20–30 queries were stored every
time. For each wrapper, one data set was used as the training examples, and the data set extracted
on the very next date was used as test examples. We used WIL1 and WIL2 to learn the grammar
of each field of the training examples and then used the grammar to recognize the test examples.
If the grammar recognized more than 80% of the test examples of a data field, we concluded that
it recognized the entire data field; otherwise, we concluded that the grammar did not recognize
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the field, possibly because the data itself has changed. This is the same procedure we used in the
wrapper verification experiments, and it is described in greater detail in Section 3.1.1. Over the
period of time covered by the data, there were 21 occasions on which a Web site changed, thereby
causing the data extracted by the wrapper to change as well. The precision and recall values for
WIL1 (grammar induction on specific tokens) were P = 0.20, and R = 0.81; for WIL2 (grammar
induction on wildcards representing tokens’ syntactic categories) the values were P = 0.55 and
R = 0.76. WIL1 learned an overly specific grammar, which resulted in a high rate of false positives
on the verification task, while WIL2 learned an overly general grammar, resulting in slightly more
false negatives. The recall and precision value of DataProG for the same data were P = 0.73 and
R = 1.0.

Recently Thollard et al. [Thollard et al., 2000] introduced MDI, an extension to ALERGIA.
MDI has been shown to generate better grammars in at least one domain by reducing the number
of faulty merges between states . MDI replaces ALERGIA’s state merging criterion with a more
global measure that attempts to minimize the Kullback-Leibler divergence between the learned
automaton and the training sample while at the same time keeping the size of the automaton
as small as possible. It is not clear whether MDI (or a combination of MDI/WIL) will lead to
better grammars for common Web data types. We suspect not, because regular grammars capture
just a few of the multitude of data types found on the Web. For example, business names, such
as restaurant names shown in Table 2 may not have a well defined structure, yet many of them
start with two capitalized words and end with the word “Restaurant” — which constitute patterns
learned by DataProG.

Relational learning As a sequence of n tokens, a pattern can also be viewed as a non-recursive
n-ary predicate. Therefore, we can use a relation-learning algorithm like FOIL [Quinlan, 1990]
to learn them. Given a set of positive and negative examples of a class, FOIL learns first order
predicate logic clauses defining the class. Specifically, it finds a discriminating description that
covers many positive and none of the negative examples.

We used Foil.6 with the no-negative-literals option to learn patterns describing several different
data fields. In all cases the closed world assumption was used to construct negative examples from
the known objects: thus, for the Bigbook source, names and addresses were the negative examples
for the phone number class. We used the following encoding to translate the training examples to
allow foil.6 to learn logical relations. For each data field, FOIL learned clauses of the form

data field(A) := P (A) followed by(A,B) P (B) , (3)

as a definition of the field, where A and B are tokens, and the terms on the right hand side are
predicates. The predicate followed by(A,B) expresses the sequential relation between the tokens.
The predicate P (A) allows us to specify the token A as a specific token (e.g., John(A)) or a
general type (e.g., Upper(A), Alpha(A)), thus, allowing FOIL the same multi-level generalization
capability as DataProG.

We ran Foil.6 on the examples associated with the Bigbook (see Tables 2–3). The relational
definitions learned by Foil.6 from these examples are shown in Table 10.

In many cases, there were similarities between the definitions learned by FOIL and the patterns
learned by DataProG, though clauses learned by FOIL tended to be overly general. Another
problem was when given examples of a class with little structure, such as names and book titles,
FOIL tended to create clauses that covered single examples, or it failed to find any clauses. In
general, the description learned by FOIL depended critically on what we supplied as negative
examples of that field. For example, if we were trying to learn a definition for book titles in the
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*** Warning: the following definition does not cover 23 tuples in the relation
NAME(A) := AllCaps(A), followed by(A,B)
NAME(A) := Upper(A), followed by(A,B), Number(B)
NAME(A) := followed by(A,B), Venice(B)

STREET(A) := Large(A), followed by(A,B)
STREET(A) := Medium(A), followed by(A,B), AlphaNum(B)

** Warning: the following definition does not cover 9 tuples in the relation
CITY(A) := Los(A)
CITY(A) := Marina(A)
CITY(A) := New(A)
CITY(A) := Brooklyn(A)
CITY(A) := West(A), followed by(A,B), Alpha(B)

STATE(A) := CA(A)
STATE(A) := NY(A)

PHONE(A) := ((A)

Table 10: Definitions learned by foil.6 for the Bigbook source

presence of prices, FOIL would learn that something that starts with a capitalized word is a title.
If author names were supplied as negative examples as well, the learned definition would have been
different. Therefore, using FOIL in situations where the complete set of negative examples is not
known or available, is problematic.

4.2 Wrapper Maintenance

Kushmerick [Kushmerick, 1999] addressed the problem of wrapper verification by proposing an
algorithm Rapture to verify that a wrapper correctly extracts data from aWeb page. In that work,
each data field was described by a collection of global features, such as word count, average word
length, and density of types, i.e., proportion of characters in the training examples that are of an
HTML, alphabetic, or numeric type. Rapture calculated the mean and variance of each feature’s
distribution over the training examples. Given a set of queries for which the wrapper output is
known, Rapture generates a new result for each query and calculates the probability of generating
the observed value for every feature. Individual feature probabilities are then combined to produce
an overall probability that the wrapper has extracted data correctly. If this probability exceeds
a certain threshold, Rapture decides that the wrapper is correct; otherwise, that it has failed.
Kushmerick found that the HTML density alone can correctly identify almost all of the changes in
the sources he monitored. In fact, adding other features in the probability calculation significantly
reduced algorithm’s performance. We compared Rapture’s performance on the verification task
to our approach, and found that Rapture missed 17 wrapper changes (false negatives) if it relied
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solely on the HTML density feature. 11

There has been relatively little prior work on the wrapper reinduction problem. Cohen [Cohen,
1999] adapted WHIRL, a “soft” logic that incorporates a notion of statistical text similarity,
to recognize page structure of a narrow class of pages: those containing simple lists and simple
hotlists (defined as anchor-URL pairs). Previously extracted data, combined with page structure
recognition heuristics, was used to reconstruct the wrapper once the page structure changed. Cohen
conducted wrapper maintenance experiments using original data and corrupted data as examples
for WHIRL. However, his procedure for corrupting data was not realistic or representative of
how data on the Web changes. Although we cannot at present guarantee good performance of
our algorithm on the wrapper reinduction for sources containing lists, we handle the realistic data
changes in Web sources returning detail pages.

4.3 Information Extraction

Our system, as used in the reinduction task, is related in spirit to the many information extraction
(IE) systems developed both by our group and others in that it uses a learned representation of data
to extract information from specific texts. Like wrapper induction systems (see [Muslea et al., 2001,
Kushmerick et al., 1997, Freitag and Kushmerick, 2000]), it is domain independent and works best
with semi-structured data, e.g., Web pages. It does not handle free text as well as other systems,
such as AutoSlog [Riloff, 1993] and Whisk [Soderland, 1999]. Unlike wrapper induction, it does
not extract data based on the features that appear near it in text, but rather based on the content
of data itself. However, unlike Whisk, which also learns content rules, our reinduction system
represents each field independently of the other fields, which can be an advantage, for instance,
when a web source changes the order in which data fields appear. Another difference is that our
system is designed to run automatically, without requiring any user interaction to label informative
examples. In the main part because it is purely automatic, the reinduction system fails to achieve
the accuracy of other IE systems which rely on labeled examples to train the system; however, we
do not see it as a major limitation, since it was designed to complement existing extraction tools,
rather than supersede them. In other words, we consider the reinduction task to be successful if
it can accurately extract a sufficient number of examples to use in a wrapper induction system.
The system can then use the resulting wrapper to accurately extract the rest of the data from the
source.

There are many similarities between our approach and that used by the RoadRunner system,
developed concurrently with our system and reported recently in [Crescenzi et al., 2001b, Crescenzi
et al., 2001a]. The goal of that system is to automatically extract data from Web sources by
exploiting similarities in page structure across multiple pages. RoadRunner works by inducing
the grammar of Web pages by comparing several pages containing long lists of data. The grammar
is expressed at the HTML tag level, so it is similar to the extraction rules generated by Stalker.
The RoadRunner system has been shown to successfully extract data from several Web sites. The
two significant differences between that work and ours are (i) they do not have a way of detecting
changes to know when the wrapper has to be rebuild and (ii) our reinduction algorithm works
on detail pages only, while RoadRunner works only on lists. We believe that our data-centric

11Although we use a different statistical test and cannot compare the performance of our algorithm to Rapture

directly, we doubt that it would outperform our algorithm on our data set if it used all global numeric features. We
ran the verification experiment on a subset of the verification data (278 comparisons) using all numeric features,
which resulted in P = 0.92 and R = 0.55. Using the approach described in this paper, on the other hand, lead to
P = 0.71 and R = 1.00 for the same data set.
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approach is more flexible and will allow us to extract data from more diverse information sources
than the RoadRunner approach that only looks at page structure.

5 Conclusion

In this paper we have described the DataProG algorithm, which learns structural information
about a data field from a set of examples of the field. We use these patterns in two Web wrapper
maintenance applications: (i) verification — detecting when a wrapper stops extracting data
correctly from a Web source, and (ii) reinduction — identifying new examples of the data field
in order to rebuild the wrapper if it stops working. The verification algorithm performed with an
accuracy of 97%, much better than results reported in our earlier work [Lerman and Minton, 2000].
In the reinduction task, the patterns were used to identify a large number of data fields on Web
pages, which were in turn used to automatically learn Stalker rules for these Web sources. The
new extraction rules were validated by using them to successfully extract data from sets of test
pages.

There remains work to be done on wrapper maintenance. Our current algorithms are not
sufficient to automatically create Stalker rules for sources that return lists of tuples. However,
preliminary results indicate [Lerman et al., 2001] that it is feasible to combine information about
the structure of data with a priori expectations about the structure of Web pages containing
lists to automatically extract data from lists and assign it to rows and columns. This is a first step
towards automatic Web wrapper generation. Another exciting direction for future work is using the
DataProG algorithm to automatically create wrappers for new sources in some domain given there
are existing wrappers for other sources in the same domain. For example, we can learn the author,
title and price fields for the AmazonBooks source, and use them to extract the same fields on
the Barnes&NobleBooks source. Preliminary results show that this is indeed feasible. Automatic
wrapper generation is an important cornerstone of information-based applications, including Web
agents.
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Abstract

We describe a technique for extracting data from lists and tables and grouping it
by rows and columns. This is done completely automatically, using only some very
general assumptions about the structure of the list. We have developed a suite of
unsupervised learning algorithms that induce the structure of lists by exploiting the
regularities both in the format of the pages and the data contained in them. Among the
tools used are AutoClass for automatic classification of data and grammar induction
of regular languages. The approach was tested on 14 Web sources providing diverse
data types, and we found that for 10 of these sources we were able to correctly find
lists and partition the data into columns and rows.

1 Introduction

There is a tremendous amount of information available online, but much of this information
is formatted to be easily read by human users, not computer applications. Modern markup
languages, like XML, have been advanced to simplify the exchange of information between
applications, including software agents; however, XML is not yet in widespread use, it will
not help with the legacy data sources not converted to the new standard, and even in the best
case it will only address the problem within application domains where all interested parties
can agree on the semantic schemas. Until XML becomes ubiquitous, most users will rely on
the existing data extraction technologies, the most popular of which are Web wrappers.

A wrapper is a piece of software that turns a Web source into a source that can be
queried as if it were a database. The types of sources that this applies to are what are

∗Appeared in the Proceedings of the Automatic Text Extraction and Mining Workshop (ATEM-01),
IJCAI-01, Seattle, WA, August 2001

†Copyright 2001, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.
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called semistructured sources. The pages that come from such sources have no explicit
structure or schema, but have an implicit underlying structure. Even text sources such as
email messages have some structure in the heading that can be exploited to extract the date,
sender, addressee, title, and body of the messages. Other sources, such as online catalogs,
have a very regular structure that can be exploited to extract the data. Extraction rules,
which the wrapper uses to identify the beginning and end of the data field to be extracted,
form an important part of the wrapper. Quick and efficient generation of extraction rules,
so-called wrapper induction, has been an active area of research in recent years . The
most advanced of such wrapper induction systems use machine learning techniques to learn
extraction rules by example. Using a graphical user interface a user marks up data to
be extracted on several pages from an online source, and the system generates a set of
extraction rules that accurately extract the required information. The wrapper induction
system developed at USC is able to efficiently generate extraction rules from a small
number of examples. Moreover, it can extract data from pages that contain lists, nested
structures, and other complicated formatting layouts.

Figure 1: A fragment of a Web page containing a list. The page was downloaded from the
Borders Books web site.

Wrapper induction for sources containing lists and tables presents a special challenge from
the user interface point of view. Consider a Web source, e.g., Borders Books (Figure 1), which
provides information about books for sale. The page in the example contains two listings,
each consisting of the title, availability, author, format, year of publication, and price of
the book. The first listing also contains information about the discount. In order to learn
accurate extraction rules for data from this source, the wrapper induction system requires
that the user label first, last and at least two consecutive listings. Since this has to be done
for several pages, the labeling task quickly becomes tedious and time intensive. However,
we have certain expectations about the structure of lists and tables that we can exploit for
automatic extraction of data from such sources. For example, each column (e.g., author,
availability) of a table usually contains the same type of data, and each row corresponds to
a tuple — e.g., (title, availability, author, format, year, price, savings) tuple describing the
book — that is repeated in different rows. Moreover, each list from the Borders book site
starts after the heading “In Stock/Available for Advance Order” and ends before the string
“Page 1 of x—Result pages: x.”
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In this paper we describe a technique for extracting data from lists and tables and group-
ing it by rows and columns. This is done completely automatically, using only some very
general assumptions about the structure of a list. Lists and tables are alternate ways to
present multiple sets of data, and we won’t make a distinction between the two. Data on the
page is not always laid out in a grid-like pattern; however, it is almost always arranged with
a certain amount of regularity we can exploit. For example, in the Borders page containing
book listings (see Fig. 1), the title of the book comes first, followed by author, availability,
price, followed by the next listing, one listing or tuple per row. Moreover, the tuple elements
are arranged in the same order for each listing, so if the author follows the title in one row,
it usually follows the title in all other rows. Likewise, we never expect the author in a book
listing to appear after the title of the next listing. While these principles may not apply
universally, we have found them to be valid for most online sources we studied, including
airport listings, online catalogs, hotel directories, etc. We tested our approach on 14 Web
sources providing diverse types of data and found that for 10 of these sources we were able
to correctly find lists and partition the data on the lists into columns and rows.

2 The Approach and Challenges

We have developed a suite of unsupervised learning algorithms that induce the structure of
lists by exploiting the regularities both in the format of the pages and the data contained
in them. The list below describes the approach at a high level, along with the learning
techniques used at each step.

• Extract all data from lists

– Compute the page template and identify the list on each page

– Compute a set of features (separators and content) for each data extract

• Identify columns
Classification of data

• Identify rows
Grammar-induction on a sequence of class labels

We begin by tokenizing Web pages, that is, splitting the text of the Web pages into
individual words or tokens. We analyze pages to find common structure. Many types of
Web sources, especially those that return lists, generate the page from a template and fill it
with results of a database query. For example, Borders source in the figure above puts book
listings after the header “In Stock/Available for Advance Order.” By comparing several
pages, we are able to deduce the template used to generate them and identify the section of
the template that contains the list. Next, we extract all data from the list. If the HTML table
has been carefully formatted, this step would amount to extracting all visible text. However,
in addition to HTML tags, punctuation characters, such as the tilde in the Borders example,
are often used to separate data fields (columns); therefore, we define a column/row separator
as a set of sequential HTML tags or any punctuation character excluding the set “(-)’.%”
(the choice of the excluded set is discussed in Section 3.1). In the end, the extracted data
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are all sequences of tokens that occur between separators. We refer to these sequences of
tokens as extracts.

As we mentioned above, we expect all data in the same column to be of the same type,
book price for instance, and its content have the same or similar format. In addition to
content, layout features, such as separators, may be useful hints for arranging extracts by
columns. However, we cannot rely solely on separators — the table may have missing
columns, separators before the first row and after the last one may be different from those
separating rows within the list, etc. Likewise, we cannot rely solely on content — data has a
lot of variability, and our representation scheme, like many others, may not be capable of fully
capturing distinctions between data. Rather than using each type of evidence separately, we
combine them by describing each extract by a set of features that include the separators as
well as features that capture the content of data. We use AutoClass   to cluster extracts.
AutoClass is an unsupervised classification algorithm that finds the optimal number of classes
and the best assignment of extracts to classes. In the resulting assignment, each data type
ends up in a separate class, or column.

The final step of the analysis is to partition the list into rows. Ideally, it should be easy
to identify rows from the class assignment, because a row corresponds to a tuple of data,
which is repeated for every row. However, real lists and tables have missing columns, and
AutoClass assignment may include errors; therefore, identifying the repeated row pattern is
a non-trivial task. We use a grammar induction algorithm for this task. Each list, or rather
the sequence of AutoClass-assigned column labels for the extracts in the list, can be thought
of as a string generated by a regular language, which we try to learn from the examples of the
language. The language captures the repeated structure in the sequences that corresponds
to rows. We use this information to partition the list into tuples.

The end result of the application of the suite of algorithms is a complete assignment of
data in the list to rows and columns. It is possible to do a meta-analysis of the assignment
and fix any errors made along the way, but we have not done so at this point.

3 Algorithms for Automatic Data Extraction

In this section we present details of the algorithms for automatic data extraction. The input
is a set of unlabeled Web pages containing lists.

3.1 Finding the page template

During the tokenization step, the text of each Web page is split into individual words, or
more accurately tokens, and each token is assigned one or more syntactic types , based on
the characters appearing in it. Thus, a token can be an HTML token, an alphanumeric, or a
punctuation token. If it’s an alphanumeric token, it may also belong to one of two categories:
numeric or alphabetic, which is further divided into capitalized or lowercased types, and so
on.

Many Web sources use templates to automatically generate pages and fill them with
results of a database query. Given two or more example pages from the same source, we
can induce the template used to generate them. Our template finding algorithm looks for
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all sequences of tokens — both HTML tags and text — that appear exactly once on each
page. The algorithm works in the following way: we pick the smallest page in the set as the
template seed. Starting with the first token on this page, we grow a sequence by appending
tokens to it, subject to the condition that the sequence appears on every page. If we managed
to build a sequence that’s at least k tokens long,1 and this sequence appears exactly once
on each page, it becomes part of the page template. Figure 2 contains the details of the
template finding algorithm.

If any of the lists contains more than two rows, the tags specifying the structure of the list
will not be part of the page template, because they will appear more than once on that page.
We can use this to our advantage. We look for sections of the page where these sequences of
tokens appear more than once, because that’s where we expect the list to be. The template
finding algorithm has the following pitfall: it can happen that every list starts with exactly
the same data; therefore, the beginning of the list will be improperly included in the page
template. We can minimize this problem by including diverse pages in the set.

input:
P = set of N Web pages

output:
T = page template

begin
p = minimum(P )
T = null
s = null
for t = firsttoken(p) to lasttoken(p)

s′ = concat(s, t)
if ( s′ appears on every page in P )

s = s′

continue
else

n =
∑N

page=1 count(s, page)
if ( n = N AND length(s) ≥ 3 )
add(s, T )

end if
s = null

end if
end for

end

Figure 2: Pseudocode of the template finding algorithm

Once we identify the section of the page that contains the list, we extract all data from it.
If the HTML table was carefully formatted, this step would amount to extracting all visible

1In our experiments, we have found that k = 3 worked best as a minimum length for the page template
element.
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text. However, in addition to HTML tags, punctuation characters are often used to separate
data fields (columns); therefore, we define a column/row separator as a set of sequential
HTML tags or any punctuation character excluding the set “.(-)’%”. The excluded set
was chosen empirically. Sometimes a dash (-) is a good separator, but for many frequently
encountered data types, such as phone numbers and zip codes, dash is part of data and not
a separator. Likewise, comma (,) is sometimes a separator (e.g., “123 Main St., Pasadena”)
and sometimes part of data (e.g., in “1,000,000”), though we generally chose to treat it as a
separator. In principle, there should be a less ad hoc method for choosing separators, which
will be the subject of future research. In the end, we extract every sequence of text tokens
between separators.

3.2 Identifying columns

We expect all data in the same column to be of the same type, e.g., book prices; therefore,
we may be able to identify columns by grouping extracts by similarity of content. In addition
to content, layout hints and separators, may be useful evidence for helping arrange extracts
by column. However, we cannot rely on either type of evidence by itself. Most methods for
representing the content of data, including our own, would be hard pressed to distinguish
restaurant names from cities. Likewise, examples of the same data type may contain lots of
variability and may be erroneously separated into different columns. While we cannot, for
the above reasons, rely on content information when making column assignment, neither can
we rely solely on separators. If the table has missing columns, they will affect the separators
surrounding visible data. In addition, separators before the first row of the list and after
the last row may be different from the ones around the rows within the list. Rather than
using either of the two types of evidence alone, we decided to combine them by describing
each extract by a set of features that include both the separators and those that capture the
content of data.

Each unique separator is assigned an integer. Every extract is described by a set of
features, two of which are integers, one for the separator that precedes the extract, and one
for the separator that immediately follows it. The content of data is captured by the data
prototype, or patterns of specific tokens and syntactic token types that describe the common
beginnings and ends of a set of examples of data . For example, a set of street addresses
may be well described by the starting pattern “NUMBER CAPS” and the ending pattern
“Street”, meaning that a significant fraction of addresses start with a number followed by
a capitalized word and end in the word “Street.” The algorithm (DataPro) that learns the
patterns that describe data from positive examples of the field is presented in reference .

Our first approach to computing content features was to use all extracts as examples
for DataPro. However, the algorithm tended to overgeneralize by producing patterns that
describe more than one column, e.g., addresses and zip codes, which affected the subsequent
performance of the classification algorithm. Instead, we adopted a two-step approach, as
illustrated in Figure 3. First, we group the extracts by separators, so that the extracts
that share at least one separator are in the same cluster. This already does a decent job of
separating some of the extracts into columns, though many columns are split among different
clusters, and not every extract ends up in a cluster. Extracts within a cluster belong to the
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input:
X = set of data extracts from the list

output:
V = set of vectors describing extracts

begin
for each x in X

(Vx)1 = leftseparator(x)
(Vx)2 = rightseparator(x)

end for
C = cluster(V )
P = null
for each c in C

addpatterns(patterns(c), P )
end for

for each x in X
for i=firstpattern(P ) to lastpattern(P )

if ( matches(x, patterns(i, P ) )
(Vx)i+2 = 1

else
(Vx)i+2 = 0

end if
end for

end for
end

Figure 3: Pseudocode of the algorithm
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same column, and we use the DataPro algorithm to learn the patterns that describe each
cluster. Next, we evaluate every extract to see whether it is similar to any cluster. If any
of the patterns associated with the nth cluster describe the extract, the value of the nth
content feature is one; otherwise, it is zero. Thus, there are as many binary content features
as there are clusters.

The two types of evidence are expressed in different units; therefore, standard clustering
algorithms that use geometrically based similarity measure (e.g., K-means) would not be
appropriate for this purpose. We use AutoClass instead to cluster the extracts. This
tool gives us the flexibility to combine different kinds of evidence: class instances may be
described by continuous, discrete, and binary values at the same time. AutoClass is a mixture
model-based unsupervised classification algorithm that finds both the optimal number of
classes and the best (MAP-based) assignment of extracts to classes. It has been used for
automatic discovery of classes in diverse data — from DNA to astronomical data sets [?].
In the resulting assignment, each data type ends up in a separate class, or column. Because
it starts from a random initial assignment which serves as a starting point for the search for
both the optimal number of classes and the model that explains the distribution of instance
values in each class, AutoClass does not always converge on the same model of data. Thus,
it is necessary to run AutoClass several times from different initial random assignments, and
choose the outcome that corresponds to the greatest classification likelihood.

3.3 Identifying rows

Finally, we want to find associations between the columns of data by assigning data to tuples.
If we anticipate using the Web source in the future, it is more efficient to build a wrapper
for it, rather than analyze pages each time information from the source is required. In order
to build a wrapper, we need to label the first, last and several consecutive elements of the
list. The easiest way to guarantee that the required elements are labeled is to label every
element of the list. It is for this reason that we must break the list into rows.

Ideally, it should be easy to identify rows from the column assignment, because each row
corresponds to a tuple of data types, and the tuple is expected to be repeated in every row.
However, real lists and tables have missing columns, additionally, AutoClass assignment may
include errors; therefore, identifying rows is a non-trivial task. We use a grammar induction
algorithm to find the repeated cycles of column assignments that correspond to rows. If the
extracts are arranged sequentially as they appear in the list, the sequence of their AutoClass-
assigned column labels forms a string in a language generated by a regular grammar. Our
objective is to learn this grammar from the example strings and to use it to recognize the
rows of the list.

Grammar induction, especially the identification of regular languages, has received a
great amount of attention in the past three decades . Carrasco and Oncina proposed
an algorithm ALERGIA to learn grammars of stochastic regular languages using a
state-merging method. The advantages of ALERGIA is that it learns from a set of positive
examples of the languages alone; moreover, its performance is polynomial, and indeed has
been shown to be linear , in the size of the example set. However, when there are few
examples, ALERGIA tends to produce overly complicated grammars, because statistical
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significance judgments it uses to learn the grammar are less reliable for small data sets. We
adapt a simplified version of ALERGIA to learn the regular grammars associated with lists
(Figure 4). Like ALERGIA, we start by constructing a prefix-tree acceptor from the example
strings and proceed by merging pairs of equivalent nodes until we arrive at the minimum
finite state automaton (FSA) consistent with the language. We examine nodes in the same
lexicographic order as ALERGIA; however, unlike ALERGIA, we merge two nodes, i and j,
if their incoming arcs, δk,i(a) and δl,j(a), correspond to the same symbol a and at least one
of the outgoing arcs, δi,k(b) and δj,l(b), from each node correspond to the same symbol. We
add an another level of generalization by merging two nodes if they have an incoming arc
with the same symbol, and one node is a parent of the other, thereby creating a loop. After
a pair of states is merged, we determinize the FSA by making sure all descendents have at
most one outgoing transition corresponding to a given symbol. The motivation for the state
merging approach is the following: if a column B follows column A and precedes column
C in one row, it is likely to follow the same pattern in other rows. Therefore, observing a
sequence ABC more than once constitutes evidence that it forms a pattern for a row.

Finally, we extract all cycles from the merged FSA, where each cycle corresponds to a
sequence of columns that could constitute a row. This step consists of finding all closed
paths through the FSA, i.e., paths that start and end at the same node. Loops, or states
that accept a symbol, let’s say A, but stay in the same state are represented as A* in the
cycle. As in a regular language, this expression means that the symbol A may be repeated
any number of times in the language.

To partition the list into rows, we begin at the first symbol of the sequence and find the
longest cycle that matches the sequence starting with that symbol. After we find a match,
we move to the first unmatched symbol and repeat the procedure for the remaining part of
the sequence. Below are the tuples automatically extracted from the list shown in Figure 1
after applying the algorithm to several pages from the Borders book site.
(b)Daughter of Fortune

(a)In stock - ships in 24 hours

(c)Allende , Isabel

(c)Peden , Margaret Sayers

(f)Hardcover

(g)1999

(d)Our Price

(e)13 . 00

(h)You Save

(i)13 . 00 ( 50 % )

(b)Daughter of Fortune , Unabridged

(a)In stock - ships in 24 hours

(c)Allende , Isabel

(c)Peden , Margaret Sayers

(c)Brown , Blair

(f)Audio Cassette

(g)1999
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input:
S: set of example strings

output:
minimum FSA

begin
A = prefix tree acceptor from S
for j = successor(firstnode(A)) to lastnode(A)

for i = firstnode(A) to j
if compatible(i, j)
merge(A, i, j)
determinize(A)
exit(i-loop)

end if
end for

end for
return A

end main

COMPATIBLE(i, j)
input:

i, j nodes
output:

boolean
begin compatible

δk,i = arc from node k to node i
δi,m = arc from node i to node m
if symbol(δk,i) = symbol(δl,j) for some k and l
if symbol(δi,m) = symbol(δj,n) for some m and n
return true

end if
if i is parent of j
return true

end if
end if

end compatible

DETERMINIZE(A)
input:

FSA A
begin determinize

for i = firstnode(A) to lastnode(A)
for j = firstsuccessor(i) to lastsuccessor(i)

for ( k = nextsuccessor(j) to lastsuccessor(i)
if symbol(δi,j) = symbol(δi,k)
merge(j, k)
determinize(A)

end if
end for
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(d)Our Price

(e)27 . 97

4 Results

We have validated our approach by applying it to extract data from 14 Web information
sources containing a wide variety of data types. We randomly selected three or four pages
from each source, with the only requirement being that the pages contain a list with at
least two elements. We applied the extraction algorithm to each set of pages and manually
checked whether the data from the list was partitioned correctly into tuples. The table in
Fig. 5 summarizes the results. The approach worked for 10 of the 14 sources, though for
one source, Yahoo stock quotes, the algorithm made a mistake with two of the 20 tuples.
Conceivably, a meta-analysis of the final tuple assignments would be able to catch and correct
any errors contained in the preceding steps.

source pages extracts columns classes result
airport 4 370 4 5 correct tuples
airport code,
location
Blockbuster 4 663 11 no tuples extracted
movies
Borders 4 186 9 9 correct tuples
books
Cuisinenet 3 535 17 15 no tuples extracted
restaurants
RestaurantRow 4 273 14 14 correct tuples
Yahoo people 3 126 8 8 correct tuples
whitepages
Yahoo quote 3 259 13 13 18/20 tuples correct
stocks
Whitepages 3 73 9 5 correct tuples
MapQuest 3 83 5 5 tuples begin in the
driving directions middle of the rows
hotel 4 163 6 6 correct tuples
CitySearch 4 204 4 6 correct tuples
restaurants
car rental 4 161 8+ 9 correct tuples
boston 4 174 4+ 6 correct tuples
restaurants
Arrow 3 366 10 no tuples extracted
electronic
components

Figure 5: Results of applying the automatic data extraction algorithm to different Web
sources.

Our approach failed in four cases for the following reasons. In one case (MapQuest) all
three lists began with the same data; therefore, the page template finding algorithm did
not locate the correct start of list. In the three other cases, the approach failed because
the structure of the list and the resulting FSA for these sources was too complex to extract
cycles. Our approach to breaking the list into rows by using grammar induction is clearly
not sufficient, and another approach or a modification of the grammar induction algorithm
is warranted.
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5 Discussion

We have demonstrated that it is possible to accurately extract data from semistructured
Web pages containing lists and tables by exploiting the regularities both in the format of
the pages and the data contained in them. We have presented a suite of algorithms that
extract data from lists and tables and automatically assign it to rows and columns. First,
we assign extracts to columns using AutoClass, an unsupervised classification algorithm,
then a grammar induction algorithm finds repeated patterns in the column assignments that
correspond to rows. The grammar induction may also correct some of the mistakes made by
the classification algorithm. It is possible to further analyze the assignment of extracts to
tuples to correct mistakes not caught in the preceding steps; however, we have not done this
step. We have been able to extract and label data from lists with high accuracy for 10 out
of the 14 sources to which we have applied our algorithm. Therefore, we can easily create
wrappers for these sources.

One limitation of our approach is that it requires several pages to be analyzed before data
can be extracted from a single list. Often, we may have just a single page from a source.
Conceivably, there is enough structure in a single list for us to exploit for the purposes of
extraction. We are currently considering the extensions of our algorithm that will enable us
to extract data from a single list.
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