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Stochastic Nayier-Stokes Equation^^^^ 
Propagation of Chaos and Statistical 

Moments 

R. Mikulevicius ^ and B.Rozovskii ^ 

Center of Allied Mathematical Sciences, 
use, 90089-1113 Los Angeles, USA 

Abstract 

- In the first part of the paper, we discuss existence and um^^^^^^^^^ 
results for a «^eneral stochastic Navier-Stokes equation (SNS) derued 
fr"m he fiit principles^ In the second part, we deal wxth the prop- 
a^aTion of^iener Los by the SNS and its relation to statistical 

moments of the solution. 

Key words: Stochastic Navier-Stokes, turbulence, Wiener chaos, mo- 

ments. 

1      Introduction 

Relation of the Navier-Stokes equation to the V'^^^Jl^; ^^^t:;,^ 

driven by white noise type random force, ^f^'^^ l^J'^t7'f^^ ,5, [6], 
tiaUy developed and extended by many authors (see, e.g. [2], 13J, W, 1=1, loi, 

''Sn'tSsiplt'some form of stochastic Navier-Stokes (SNS) equation 

N00014-97-1-0229, and ARO Grant DAAG55-98-1-0418. 
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77(t,x) = u(t,7,(t,x)) + a(i,7?(t,x))oVr,   7?(0.X) = X (1.1) 

«nth imdetermined (random) local characteristics u(t,x) and <^M-J;f' 
»tg X) o W modeL the turbulent part of the velocity field wMe 
u X) modeTs i s iegular component. FoUowing the cla^ica scheme of the 
Nwtom'n fluid mechanics (i.e. coupling (1-1) with Newton's second law) 
a vlrHeneral SNS equation (see (2.3) below), was derived It mcludes as 
llnal^Ses the classical deterministic Navier-Stokes and Euler equation as 

ruim'toftirv^^^^^^^ 
iTthe present paper we will discus new results on existence and unique- 

ness of W^d gfobal (pathwise) solutions to these equations m the Besse 
clises^'    In addition we wiU derive a deterministic P-^-b°hc fs «m for 
S HerS e-Fourier coefficients in Wiener chaos expansion of u {t, x) winch 
t referTo as "propagator". It will be shown that the statistical moments of 
rhevdociJv field u (i x) can be expressed straightforwardly via the solution 
tiZf^Z^l^o. kiL still an i^nite-dimensional syst^^^^^^^^^^^ 
for the SNS equation is a much more simple object then the related t^oi 
^ogorov eq^^^^^^^ On the other hand, it is quite sufficient for deahng with 
ba^c statistical properties of solutions to the SIsS equation. 

2    Stochastic Navier-Stokes and Euler Equa- 

tions 
Let (fi ^ P) be a complete probabiUty space and F be a separable Hilbert 
space The scalar product in Y wiU be denoted by x • y. Let W^ be an F- 
space,   iiic ai-a.ia.i i^ /-n -r T>^  TVip P-comoletion of the 
valued cyUndrical Brownian motion on («.^.P)-/^^^ ^°°^P'^ 

«i,roT^,.a n      a(W{s\ s <t-r£) will be denoted >{    - 
ttr^^^^I^S'l^stoJ^^c fluid flow is given by equation   1.1 

whereV^t x)^d u\t, x) are, respectively, aa ^-valued and a rea^-valued 
^'-a^ald functions on fi x [0. oo) x i?-^ . Throughout what foUows the 
SmbofS^ (respectively. .d^V) indicates that the integral is understood 

^he Stratonovic'h (respectively, Ito) sense. F stochastic -^^.^t^Xli 
derstood in the sense of [9], [10].  (The Kunita and ^alsh in_^gr^ ^ w^^ 
as the integrals with respect to spatially-homogeneous Browman motion are 

included as special cases of the above setting). 
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In contrast to the classical assumption that the velocity field u (t, i) is dif- 
ferentiable in t, we will suppose that it is a semimartingale. More specificaUy, 

we will assTune the following: ^ 
HI. dn {t, X) = a (i. x)dt + P {t, x) ■ dW^) where a and 0 are ;^c   - 

adapted vector-functions on fi x [O.cx.) x i?' taking values va R^ ^nd Y , 

'"^ NofJthat as in the classical theory, the components of the velocity field, 
a 5 a are not supposed to be given, and will be determmed ater from to 
The conservation of momentum principle. The only additional assumption 
we make regarding these functions is that they are sufficiently smooth m x 

and the related integrals are defined. , ,.    .       -r-^* ^^ ;. th. 
By the Newton 2nd law, we have v{t) = F {t, v (t)) where F(i, x) is the 

total force applied to the fluid particle. 
Since the acceleration and the force must have the same structure, we 

conclude (for more detail, see [11]) that there exist ^.--adapted functions 

Fa , Fa and Ft, so that 
f^{t)F{t,x)dt = J<pit){Fait,x)dt + Fa{t,x)-dW{t)) ^^^^ 

-/</(«) (Ft (t, x) - dW{t) + (1/2) diFtit, x) ■ Fi it, x)) dt. 

Similarly to the classical setting, we assume that the forces acting on 
the fluid particle mclude pressure and body forces More _specIficaJl>^ we 
Lsume that F„(t,x) = -Vp.(i,x) + f.(t,x), G(t,x) ='^P^'''^^-f;± 
Id D(t,x) = -Vp.(t,x) + f.(t,x). The components of the body force axe 
considered to be given while the components of the pressure are subject to 

'^TiLlSwn in [11] that (1.1), (2.2), aad Newton's 2nd law yield the 
foUowing equations for the components of the velocity field : 

d,u = djia'^d'u) - u^djU - (Va^ -diP + f- Vp+ 

(g - Vp - (T'diU) ■ W, div u = 0, u(0, x) = uo(x) 

(2.3) 

and 
a(t,x) = -Vp(i,x)-l-d(f,x) 

where p = p„ - a* ■ d,p, f = fa - a^ • diS, and a'^ = \a' ■ cr^ in the case of 

constant v. 
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3    Existence and Uniqueness of Solutions 

In this section we will discuss the solvabiUty problem for the equation (2.3) 
in the Bessel classes. The following notation will be used in the future: 

Let p € [2,oo) and n € (-oo, oo). 
fT* =ff" (R'') is the space of generalized functions u so that |u|„,p = 

1(1 - A)"''2u|p < oc, where | • |p is the Lp-norm; 
W = ]H["(R'') is the space of all vector fields u = (ti\... , tt"*) such that 

|ukp = (EJ^'iU'^" < °°- 
We will omit the sub- and super-indices n if n = 0. 
Lp(y) is the space of vector functions with F-valued components 5' such 

that|5|p = (Ej5'lp'/''<oo; 
Lp = Hp, . 
5^(R'') is the space of all vector fields ^ = (0\..., </>'') such that ^* € 

C^ (R'') and div (/>= 0; 
The scalar product in L2 is denoted (•, -)o. 
We will need the following assumptions: 
Bl.There exist constants 0<K <oo and 5 > 0 so that P-a.s. 

2 

fc=0 

and 

K\Xf > [a'^'it,x) - ^a%x) ■ cx^{t,x)]X'X^ > S\X\'' 

for all i > 0 and x, A € R**. 
B2(p). For each T > 0 there are constants Ci and C2 such that P-a.s. 

for each s < T and x € R"*, 

2 2 

J3[0^5(5,a:)|y < Ci{s,x) and Y^\d^f{s,x)\ < C2(s,x) 
Jfc=0 k=Q 

and|Ci(i)|^ + |C2(i)l?<^- 
The following two results establish strong (pathwise) existence and unique- 

ness of local and global maximal solutions for the stochastic Navier-Stokes 
equation (2.3). 
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Theorem 3.1 a) Let p>d. Assume Bl, B2(p) , and suppose that \u 
00 P-o 5 Then there is a unique predictable sopping time C, P(C - 
1 such that for each stopping time S, [0,5] C [0, C) if end only if then 
W^-valued continuous solution to (2.3) on [0,5]; Also, there is an Mp- 
cSntinuous process u(t) on [0,0 such that u(C-)ii.p = cx) on (C < oc 
for each S such that [0,5] C [0,C), u(« AS) is a unique solution to (£ 
[0,5] - Moreover, forr]=curlu, P-a.s. we have 

f Jo 
\Vri(,s)\lds<co. 

The function u(t) and the stopping time C are usuaUy referred t 
maximal solution and its explosion time. 

The proof of the Theorem is quite involved and could not be pre 
in this paper.   The interested reader could find a complete proof 
forthcoming paper [12]. 

Now let us specialize to the 2D case. 

Theorem 3.2 Suppose that the assumptions of the Theorem 3.1 ho 
addition, let us assume thatd = 2, B2{2) holds, andF-a.s. |uo|i,p + |u 
oo P-0.5. Then there exists a unique continuous MlnUl-valued solutic 
to (2.3) on [0, oo). Moreover, for each T > 0 

Esup(|u(t)|?,p + |u(t)|?,2)<oo 

provided that 

E(luollp + |uoll2)<o°- 

Proof.The existence of a maximal solution follows from Theorej 
It remains to prove that P(C = oo) = 1. Let yt = W{t)\\,p + I" 
R^ = mf(i : 2/t > m) AC. Since the sequence Rm "announces" the predi 
stopping time C. for each T > 0 

P(i2m < T) < P{yRm A T > m) < m-^EyR^r.T, 

It can be shown (see [12]) that 

SUpEt/R^AT < oc- 
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So \]iam'P{Rm < T) = 0, and therefore P(C = oo) = 1. For the moments 
estimates see [12]. 

Remark. One can consider a more general equation 

' dtu^ {t, x) = di (a^ {t, x) djU^ {t, z)) - u* (t, x) dku'{t, x) 

-dip (t, x) + b\t, x)diu{t, x) + dip{t, x)h'-'{t, x) 

+f{t,x,n{t,x),Vn{t,x)) + 

+[a'{t, x)diu^ it, x) + y (t, X, u {t, x)) - dip (t, x)] Wu 

divu = 0, 

. u (0, x) = uo (x),  / = 1, -. - rf, 

where the free forces are functional of the solution. The results similar to the 
above hold for equation (3.4) .Of course in this case additional assumptions 
on regularity of /' and g^ with respect to u, Vu as well as the appropriate 
growth conditions must be introduced ( see [12]. ) 

(3.4) 

4    Wiener Chaos Expansion and Statistical Mo- 
ments 

In this Section we investigate how the SNS equation (2.3) propagates chaos 
generated by the driving Brownian motion. Then we will apply the Wiener 
Chaos expansion to derive formulas for the statistical moments of the velocity 
field u. For the sake of simplicity, everywhere in this section it will be assumed 
that the cr, f, g, and UQ are nonrandom and the assumptions of Theorem 3.2 
are in force. 

To begin with, we shall introduce the Wiener chaos generated by W. 
Let us fix a positive number T < oo. Let {mfc.'fc < 1} be an orthonormal 

basis in L^ (O.T) and {4, ^ > 1} an orthonormal basis in Y. Write M^ (t) = 
/o "^« (5) dw'' (i) where to* {t) = {W (i) , 4)y - Below in this section we will 
also use the notation ^^ = M^ (T) . Let a = {of, A; = 0,1,2, ...;i = 1,2,...} , 
be a multiindex, i.e. for every {i, A;), af G iV = {0,1,2,... }. We shall 
consider only such a that \a\ = X)* ,• <*? < oc. i-e-, only a finite number of af 
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is non- zero, and we denote by J. the set of all such multiindice 
write Ca := H" i H^o ^c* (^*) ^^^re Hn is the n'" Hermit 
The random variable ^Q = (^a/VcH is often referred to as Q"* ' 
(polynomial). 

Let {ei,i € N} be an orthonormaJ basis in L2. Since, by 1 
Martin Theorem (see, e.y.[13]), {^Q, Q € J"} is an orthonormal 
Z2 (fi, ^T' P) . we have that {si (g) ^Q, i € N,a € J} is an ortb 
in L2 (n, J^T, P;L2) • This impUes in particular that for every v 6 
we have the following Wiener chaos expansion : 

where v„ = ^E[vC„] = ^r E,~i E[(v, e^CaJei-   We will refer 
unnormalized Hermite-Fourier coefficient of v (with respect 
{si 0^aii € N,a 6 v7}) or simply, Hermite-Fourier coefficient. 

By Theorem 3.2, Esup3<y |u(0li,2 < °°- Thus the solution c 
the Wiener Chaos expansion u (t, x) = Yi,aej "<* (*• ^) ^°- Of coii 
problem of interest is how to chaxeicterize the Hermite-Fomrie 
UQ (t, x). It will be shown below that these coefficients verify a 
hnear paraboUc system of equations. To formulate this stateme 
cisely, we need some more notation. 

Write 

(u (t) * diu)^ = 

MUa{t) = -Cr^(t)dj%, (t) 4- /{a=0}5 («) , 

For V ehiiY), write g^{v) = dj frx.(x-y)v'{y) dy where T{x- 
y\/2iT. The operator Q = {Q^}i<i<d is often referred to as gradie: 
on h^fy). It is well known that 

U{Y) = g{U{Y))@S{U{Y)) 

where S{U{Y)) = {g E 1.2{Y) idiv^ = 0}. 
For ae J,we define multiindex a (i, j) G J hy the formula 



R. Mikulevicius and B. Rozffvskii /Stochastic Navier-Stokes Equations 

"^'■^^'-\ (af-l)AOif(*,Z) = (i.i), ^^-^^ 

i.e. the multiindex a {i,j) might differ from or only by its (i,j) entry which 
is equal to (a) — l) A 0. Finally, write 

DM (ua it)) = (/af/{ia,=:} - c^{t)djUaii,k) (*)) rm (t). 

Theorem 4.1 Let u be the maximal solution of the stochastic Navier-Stokes 
equation (2.3). Then the Fourier-Hermite coefficients UQ are continuous H^n 
M^-valued functions on [0,oo) and for each T > 0, 

snpi\nJt)\lj,-i-\uJt)\l,)<co 
3<T 

Moreover , {UQ [t, x), a € J"} is the unique solution of the system 

{ (u, (t) , 0)o = /{a=o} (uo, <P)o + /o {-(a^^'5'Ua (s), 5,<p)o- 

((U (5) * diU (5))„ , 0)o + (V(7'(t)) - e'(A^ (Ua (t)) , 0)o+ 

/{a=0} (f (s), 0)o + {DM {He. {s)) , 4>)Q}ds, div Uc = 0, 

^ for all <l>eS^ (R**)  and aej. 

(4.8) 

Sketch of Proof. The first part of the statement follows from Theorem 3.2. 
It can be shown that the relation E {din {t) u* {t) Ca) = (u (i) * diu)^ follows 
from the well known formula 

■^^=.5ip) ©"''"'-*■ 
Write Ca {t) = E [Cal^t] • Note that CQ {t) verifies the equation 

dCa(*) = TUi (t) afCa(t,Jk){t)dw'' {t). (4.9) 

Now, the equation (4.8) can be derived by differentiating the product 
^{t,3:)^a{t) by Ito formula and taking expectations of both sides of the 
resulting equation. 
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Making use of the Wiener chaos expansion (4.5)for a solution of the SNS 
(2.3), one°can immediately compute the first two moments of the solution 
via the Hermite-Fourier coefficients provided by the equation (4.8) for the 
propagator. Indeed, since ECa = 0 for a ^ 0 and ECo = 1 where 0 is the 
zero length element of J" , we have 

Eu (i, x) = uo [t, x) • 

By (4.5) and Parceval's identity, one has that for ahnost all x,y € R'' and 

«,se[0,T], 

Eu (i, x) u (s, y) = J] Ua {t, x) u^ (s, y). 

Moreover, we have 

Similarly, given the solution of the equation (4.8), the higher order moments 
of the solution to SNS equation (2.3)can be obtained by computing the mo 
ments of the Wick polynomials CQ- For exariiple. 

Eu'(i,x)Ti^"(t,I/)u*(t,z) 

^ ui(i,x)4(t>y)^'7(*'^) 
i-   f(a + /? - 7) /2)! {{a-13 + 7) /2)! ((/? - a + 7) /2)-' 

where JT' = {a, /?, 7 € ^ : a 4- /? - 7 = 2p, P € J?', 0 < p < a A /?} . 
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