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Stochastic Navier-Stokes Equations.
Propagation of Chaos and Statistical
Moments |

R. Mikulevicius ! and B. Rozouskii ¥

Center of AppliedMathematical Sciences,
USC, 90089-1113 Los Angeles, USA

Abstract

" In the first part of the paper, we discuss existence and uniqueness
results for a general stochastic: Navier-Stokes equation (SNS) derived
from the first principles. In the second part, we deal with the prop-
agation of Wiener chaos by the SNS and its relation to statistical

moments of the solution. :

Key words: Stochastic Navier-Stokes, turbulence, Wiener chaos, mo-

ments.

1 Introduction

Relation of the Navier-Stokes equation to the phenomenon of turbulence have
fascinated physicists and mathematicians for a long time. One of the popular
hypothesis relates the onset of turbulence to the » randomness of background
movement”. Bensoussan and Temam [1] have pioneered an analytic version
of this approach based on investigation of a stochastic Navier-Stokes equation
driven by white noise type random force. Later this approach was substan-
tially developed and extended by many authors (see, e-.g. [2], (3], [l (5], [6],
[7], (8], [9], [14] etc.).

In these papers, some form of stochastic Navier-Stokes (SNS) equation
was postulated at the inception point. A somewhat different, approach was
taken in the recent paper [11]. In this papers it was postulated that the
dynamics of the fluid particle was given by the stochastic diffeomorphism

t This work was partially supported by NSF Grant DMS-98-02423.
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7 (t,z) =u(tn(t2))+o (tn(tz)o W, n(0.2) =2 (1.1)

with undetermined (random) local characteristics u (t,z) and o (t,z). In -
this setting, o (t,z) o W models the turbulent part of the velocity field while
u (t, ) models its regular component. Following the classical scheme of the
Newtonian fluid mechanics (i.e. coupling (1.1) with Newton’s second law),
a very general SNS equation (see (2.3) below), was derived. It includes as
special cases the classical deterministic Navier-Stokes and Euler equation as
well as most of the variations of the SN'S equation considered in the literature.
In the present paper we will discus new results on existence and unique-
ness of local and global (pathwise) solutions to these equations in the Bessel
classes Hy, In addition, we will derive a deterministic parabolic system for
the Hermite-Fourier coefficients in Wiener chaos expansion of u (¢, z) which
we refer to as ”propagator”. It will be shown that the statistical moments of
the velocity field u (¢, z) can be expressed straightforwardly via the solution
of the propagator. While still an infinite-dimensional system, the propagator
for the SNS equation is a much more simple object then the related Kol-
mogorov equation. On the other hand, it is quite sufficient for dealing with
basic statistical properties of solutions to the SNS equation. -

2 Stochastic Navier-Stokes and Euler Equa-
tions |

Let (2, F7,P) bea complete probability space and Y be a separable Hilbert
space. The scalar product in ¥ will be denoted by z - y. Let W be an Y-
valued cylindrical Brownian motion on (Q, F, P). The P-completion of the
o—algebra 5o 0(W(s),s <t + €) will be denoted Fv.

Let us assume that the stochastic fluid flow is given by equation (1.1)
where o'(t, z) and u'(t, z) are, respectively, an Y —valued and a real-valued
FW —adapted, functions on 2 X [0,00) x R? . Throughout what follows the
symbol odW (respectively, .dW’) indicates that the integral is understood
in the Stratonovich (respectively, Ito) sense. F stochastic integrals are un-
derstood in the sense of [9], [10]. (The Kunita and Walsh integrals as well
as the integrals with respect to spatially-homogeneous Brownian motion are
included as special cases of the above setting). :
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In contrast to the classical assumption that the velocity field u (¢, z) is dif-
ferentiable in ¢, we will suppose that it is a semimartingale. More specifically,
we will assume the following:

H1. du(t,z)=c(tz)dt+ B z) - dW(t) where & and f are FY -
adapted vector-functions on Q x [0,00) x R? taking values in R¢ and Y¢,
respectively. .

Note that as in the classical theory, the components of the velocity field,
a, B3, o, are not supposed to be given, and will be determined later from to
the conservation of momentum principle. The only additional assumption
we make regarding these functions is that they are sufficiently smooth in z
and the related integrals are defined.

By the Newton 2nd law, we have #(t) = F (¢,1 (t)) where F(t,z) is the

total force applied to the fluid particle. .
Since the acceleration and the force must have the same structure, we

conclude (for more detail, see [11]) that there exist F}¥-adapted functions
F, , Fy and Fy, so that :
[0 F(t,3) dt = [ (8) (Fa(t,2)dt + Fo (6,7) - W (1))

— [ (&) (Fe(t,2) - dW(2) + (1/2) O:F: (t,z) - F (¢, %)) dt.

Similarly to the classical setting, we assume that the forces acting on
the fluid particle include pressure and body forces. More specifically, we
assume that Fa(t,z) = —Vpa(t,z) + £.(t, ), G(t,z) = ~Vp(t, z) + g(t, z),
and D(t,z) = —Vp:(t, z) + f,(t,z). The components of the body force are
considered to be given while the components of the pressure are subject to

determination. .
It was shown in [11] that (1.1), (2.2), and Newton’s 2nd law yield the

following equations for the components of the velocity field :

By = 8;(a¥0'u) — wOu — (Vo*) -85+ f — Vp+
. (2.3)
(g — Vb —o*d) - W,divu =0, u(0, x) = up(x)
and ' :
o (t,z) = =Vp(t, z) + d(t, z)

where p = p, — o' - 0:p, £ = fa — ot - 8,g, and a¥ = 3ot - o in the case of
ideal fluid and o = vd;; + 1o - o if the fluid is viscous with the viscosity

constant v.
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3 Existence and Uniqueness of Solutions

In this section we will discuss the solvability problem for the equation (2.3)
in the Bessel classes. The following notation will be used in the future:

Let p € [2,00) and n € (—0o0, ).

Hy =Hj (RY) is the space of generalized functions u so that |uln, =
(1- )"/Zul < 0o, where | - |, is the Ly-norm;

H? = HZ(R?) is the space of all vector fields u = (4}, ... ,u?) such that
[ufnp = (Z [u'lE, )llp < o0.

We will omit the sub- and super-indices n if n = 0.

L,(Y) is the space of vector functions with Y —valued components g' such
that |gl, = (32, 1¢'5)"/7 < o0;

L, = Hp, _

S°(RY) is the space of all vector fields ¢ = (@', ... ,¢%) such that ¢* €
Cg (R?) and div ¢=0

The scalar product in L, is denoted (-, ), -

We will need the following assumptions:

B1.There exist constants 0 < K < oo and § > 0so that P-a.s.

(19a% (¢, z)| + ¥t )] + }_j 1902, 2)ly) < K,

k=0
and

KIAR > [a¥(t,7) — %a*'(t, z) - o3 (8, Z) NN > S

for allz >0 and z, A € R4.
B2(p). For each T > 0 there are constants C1 and C; such that P-a.s.

for each s < T and z € RY,

2 2 .
3 [85g(s, Dy < Ci(s,x) and ) 105E(s, 2)| < Cals,2)

k=0 k=0

and [Ci()F + |C(D)I < K.
The followmg two results establish strong (pathwise) existence and unique-
ness of local and global maximal solutions for the stochastic Navier-Stokes

equation (2.3).
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Theorem 3.1 a) Let p > d. Assume B1, B2(p) , and suppose that ju
oo P-a.s. Then there is a unique predictable sopping time ¢, P(¢:
1, such that for each stopping time S, [0, S] € [0,¢) if and only if ther
H}-valued continuous solution to (2.9) on [0, S]; Also, there is an H)-
continuous process u(t) on [0,¢) such that u(¢—)|1, = o0 on {(<x
for each S such that [0,5) C [0,(), u{t A S) is a unique solution to (%

[0, S} - Moreover, for n=curlu, P-a.s. we have

s
/ [Vn(s)f ds < 0.
0

The function u(t) and the stopping time ¢ are usually referred t
maximal solution and its explosion time.

The proof of the Theorem is quite involved and could not be pre
in this paper. The interested reader could find a complete proof

forthcoming paper [12].
Now let us specialize to the 2D case.

Theorem 3.2 Suppose that the assumptions of the Theorem 3.1 ho
addition, let us assume that d = 2, B2(2) holds, and P-a.s. [uolip+lu
oo P-a.s. Then there ezists a unique continuous Hj,NH}-valued solutic
to (2.3) on [0,00). Moreover, for each T>0 /

Esup(fu(iff, +lu(@)ffs) < o0

provided that
E(Juol}, + [uolf2) < oo-

Proof.The existence of a maximal solution follows from Theore
It remains to prove that P(¢ = o0) = 1. Let y = u@)f, + Ju
R, = inf(t : 3 > m)A(. Since the sequence Fm " announces” the predi
stopping time ¢, for each T' > 0 '

P(Rn < T) < Pygm AT > m) < m™ Eypat:
It can be shown (see [12]) that

sup Eyr, AT < oC.
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So limp, P(Rn < T) = 0, a.nd therefore P(C = o00) = 1. For the moments

estimates see [12].
Remark. One can consider a more genera.l equation

[ Bu! (t,z) = 8; (a¥ (¢, z) Oju! (¢, 7)) — uk (¢, z) Bed(t, z)

—ap(t,z) + bi(t, z)B;u(t, ) + Bip(t, z)hH(¢, )

+fL(¢, z,u (¢, z), Vu(t,z)) +

4 a _ (3.4)
+[o*(t, z)0u! (¢, 7) + ¢' (t.z,u (¢, 7)) — Bip (¢, z)] Wi,

diva =0,

[ u(0,z) =ue(z), {=1,...4,

where the free forces are functionals of the solution. The results similar to the =
above hold for equation (3.4) .Of course in this case additional assumptions
on regularity of f! and g* with respect to u, Vu as well as the appropriate
growth conditions must be introduced ( see [12]. )

4 Wiener Chaos Expansion and Statistical Mo-
ments

In this Section we investigate how the SNS equation (2.3) propagates chaos
generated by the driving Brownian motion. Then we will apply the Wiener
Chaos expansion to derive formulas for the statistical moments of the velocity
 field u. For the sake of simplicity, everywhere in this section it will be assumed
that the o, f, g, and uy are nonrandom and the assumptlons of Theorem 3.2
are in force.

To begin with, we shall introduce the Wiener chaos generated by W.

Let us fix a positive number T’ < co. Let {ms,k < 1} be an orthonormal
basis in Ly (0,T) and {£, k > 1} an orthonormal basis in Y. Write M¥ (t) =
Iy mi (s) dw (t) where w* (t) = (W (t), %), - Below in this section we will
also use the notation & = M¥ (T). Let a = {of, k=0,1,2,..;i=1,2,...},
be a multiindex, i.e. for every (3,k), of € IN = {0,1, 2 } We shall
consider only such « that |af = 3, ; &F < oo, i.e., only a finite ‘number of ok
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is non- zero, and we denote by J the set of all such multiindice
write (o = [[2; [T5io Hor (&F) where H, is the n** Hermit
The random variable &, = (,/ V! is often referred to as a**
(polynomial ).

Let {e;,7 € N} be an orthonormal basis in L;. Since, by f
Martin Theorem (see, e..[13]), {£a, @ € J} is an orthonormal
Ly (Q,F¥,P), we have that {e; ® &a,i € N,a € J} is an orth
in Ly (2, 77, P;Ly) . This implies in particular that for every v ¢
we have the following Wiener chaos expansion :

V= ZVQCG

aEd

where Vo, = ZE[V(] = 132 E[(v,e:)(]ei. We will refer
unnormalized Hermite-Fourier coefficient of v (with respect
{ei @&, i € Nya € J}) or simply, Hermite-Fourier coefficient.

By Theorem 3.2, Esup,r |u(t)[}, < co. Thus the solution ¢
the Wiener Chaos expansion u (t,z) = 3 ¢  la (£, Z) G- Of cou
problem of interest is how to characterize the Hermite-Fourie
G, (¢, z) . It will be shown below that these coefficients verify a
linear parabolic system of equations. To formulate this stateme
cisely, we need some more notation.

Write

(@ (t) * Bya),, =

ZPEJ Z0_,6<az af (p+ﬂ) (p+a p)p p+a— (t) Oitipep ()

Mitg(t) = ~07 (£)858a () + Ia=0}9 (2),

For v €L,(Y), write G7(v) = §; [T, (z—y)v'(y) dy where T (z -

y|/2n. The operator G = {G’} 1<i<a 1S often referred to as gradies
on Ly(Y). It is well known that

- Lo(Y) = G(Lo(Y)) @ S(Lo(Y))

where S(Ly(Y)) = {g € Ly(Y) :divg = 0}.
For a € J, we define multiindex « (¢,5) € J by the formula
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k : . .
-k _ [ ok if (k1) # (i,) ~
ok { (of = 1) AOE (k1) = (3. 5), @1

i.e. the multiindex a (%, j) might differ from « only by its (%, j) entry which
is equal to (o} — 1) A 0. Finally, write

DM (8 (2)) = (9" Igai=1y — o7 ()95 agik () m: (£) -

Theorem 4.1 Let u be the mazimal solution of the stochastic Navier-Stokes
equation (2.3) . Then the Fourier-Hermite coefficients o are continuous HN
H}-valued functions on [0,00) and for each T >0,

fgg(lﬁ.,(t)l’f,p +[6,(8)2) <00
Moreover , {Gq (t, ), € T} is the unigue solution of the system
( (G (), B)o = Loy (U0, 8)g + [H{~(a900a (5), B;0)0—
((@(s) * B (s))g  B)g + (VIi(t)) - G (M (ua (2)) , $)o+

4 (4.8)
La=0} (f (s) , #)o + (DM (11 (5)) , #)o }ds, div Ga =0,

L forall¢€$§°(R") anda € J.

Sketch of Proof. The first part of the statement follows from Theorem 3.2.
It can be shown that the relation E (3 u (t) v () C) = (a(2) x 0;n),, follows
from the well known formula

8
wo= 3 (5) GJpess

p<ang
Write (, (t) = E [(,|F¢] . Note that (, (¢) verifies the equation
dCa(t) = m; () af Cagi) ()dw* (). (4.9) .

Now, the equation (4.8) can be derived by differentiating the product
u(t,z)(,(t) by Ito formula and taking expectations of both sides of the
resulting equation.
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Making use of the Wiener chaos expansion (4.5)for a solution of the SNS
(2.3), one can immediately compute the first two moments of the solution
via the Hermite-Fourier coefficients provided by the equation (4.8) for the
propagator. Indeed, since E(, = 0 for a # 0 and E{p = 1 where 0 is the
zero length element of J , we have '

Eu(t,x) = 0o (¢,X) -
By (4.5) and Parceval’s identity, one has that for almost all x,y € R? and
t,s €[0,T],
Eu(t,x)u(s,y) = Z Gig (t,%) Ga (5, Y) -

a€T

Moreover, we have
Elu@l, =D G @), -
-V 4 .

Similarly, given the solution of the equation (4.8), the higher order moments
of the solution to SNS equation (2.3)can be obtained by computing the mo-
ments of the Wick polynomials (,. For example,

Eu' (¢, z) (t,y)u* (8 2) =

&, (t,2) & (¢, 9) 8 (&, 2) |

2 (e+B8—7/2(a=B8+7)/DHB-a+7)/2)

8,9t

where.7’={a,ﬁ,vé]:a+ﬁ—7=2p,p»€J,OSpgaAﬁ}.-
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