
Carnegie Mellon
Software Engineering Institute

PECT Infrastructure:
A Rough Sketch

Scott Hissam

James Ivers

December 2002

20030519 012

TECHNICAL NOTE
CMU/SEI-2002-TN-033

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

CamegieMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

PECT Infrastructure;
A Rough Sketch

CMU/SEI-2002-TN-033

Scott Hissam

James Ivers

December 2002

Predictable Assembly from Certifiable Components
Initiative

Unlimited distribution subject to the copyright.

4Q 1/0-5' OF- 2-Of^

The Software Engineering Institute is a federally funded research and development center sponsored
by the U.S. Department of Defense.

Copyright © 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number FI9628-00-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center. The Government of the United States has a royalty-
free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any
manner, and to have or permit others to do so, for government purposes pursuant to the copyright
license under the clause at 252.227-7013.

Internal use. Permission to reproduce this document and to prepare derivative works from this
document for internal use is granted, provided the copyright and "No Warranty" statements are
included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this
document for external and commercial use should be addressed to the SEI Licensing Agent.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of
our Web site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract VII

1 Introduction

1.1 About This Report

1.2 Structure of This Report ...

2 Summary of PECT Concepts ...

3 Roles and Activities
3.1 Roles
3.2 Activities

3.2.1 PECT Developers
3.2.2 PECT Users

4 PECT Infrastructure
4.1 Construction Environment .

4.2 Analysis-Specific Tools
4.3 Runtime Environment .
4.4 Deployment Too!

4.5 Observation Engine ...
4.6 Parser/Compiler......
4.7 Interpretation Translators.
4.8 Component Repository
4.9 Assembly Generator .
4.10 Statistical Analysis Too
4.11 Packaging Tool

5 infrastructure Change Scenarios .
5.1 New Reasoning Framework .
5.2 New Component Technology

5.3 New Construction Language .
5.4 Summary of Scenario Impacts

1
2

2

.... 7

....7

....8

....9

...11

...15

...16

...17

...17

...17

...17

...18

...18

...18

...19

...19

... 19

...21

... 21

... 23

... 24

... 26

CMU/SEI-2002-TN-033

6 Conclusion 27

References 29

CMU/SEI-2002-TN-033

List of Figures

Figure 1: UML Class Diagram of PECT Concepts

Figure 2: UML Class Diagram of PECT Infrastructure Tools

....5

...15

CMU/SEI-2002-TN-033

CMU/SEI-2002-TN-033

List of Tables

Table 1: Summary of Change Scenario Impacts. ...26

CMU/SEI-2002-TN-033

CMU/SEI-2002-TN-033

Abstract

A prediction-enabled component technology (PECT) is an approach to achieving predictable
assembly from certifiable components. A PECT consists of a component technology that has
been extended with one or more reasoning frameworlcs that are used to predict how assemblies
of components will behave. Developing and using a PECT involves a number of different
activities, many of which are practical only when supported by automation. This paper investi-
gates the nature of PECT infrastructures, summarizes the activities that a PECT infrastructure
should support, and proposes a design for the tools that make up a PECT infrastructure. This
paper also considers the reusability of such an infrastructure by evaluating the impact that
three possible changes to a PECT have on its infrastructure.

CMU/SEI-2002-TN-033

CMU/SEI-2002-TN-033

1 Introduction

The Predictable Assembly from Certifiable Components (PACC) Initiative at the Software
Engineering Institute (SEI^"^)' has been investigating a development activity for building sys-
tems from components where the runtime behavior of those systems (or assemblies of compo-
nents) is predictable. An assembly is predictable (with respect to some property) if its behavior
can be inferred from the properties of components and their patterns of interaction. A compo-
nent is certifiable if the same component properties can be obtained or validated by indepen-
dent third parties.

Our investigations into PACC have resulted in two specific applications of our approach that
we call prediction-enabled component technology (PECT). These applications are docu-
mented in Packaging Predictable Assembly with Prediction-Enabled Component Technology

[Hissam 01] and Predictable Assembly of Substation Automation Systems: An Experiment
Report [Hissam 02]. A PECT extends the notion of component technology with one or more
reasoning frameworks such that assemblies of components are guaranteed to be analyzable—
and therefore predictable—with respect to those frameworks. More thorough discussions of
PACC and PECT are available in Volume 1: Market Assessment of Component-Based Software
Engineering [Bass 01], Volume II: Technical Concepts of Component-Based Software Engi-

neering [Bachmann 00], and Volume III: A Technology for Predictable Assembly from Certifi-
able Components?

In our development of a PECT, we were without an underlying infi-astructure to support it. We
had to design and implement various tools to support various activities, including

• component specification: capturing component-level behaviore regarding some property
(e.g., component execution time)

• component assembly: "wiring" together components to form assemblies

• component and assembly measurement: capturing and recording observations of compo-
nent and assembly execution

• pre- and post-execution analysis: transforming constructed assemblies into forms that are
analyzable, making predictions, and validating those predictions

1. SEI is a service mark of Carnegie Meiion University.

2. Waiinau, K. Volume HI: A Technology for Predictable Assembly from Certifiable Components (CMU/SEI.2003-TR-009)
Pittsburgh, PA: Software Engineering Institute, to be pubiished.

CMU/SEI-2002-TN-033

Furthermore, the "glue" that would have allowed us to take artifacts and work products from
each stage of PECT development had to be developed "just in time." This required constant
translation of component and assembly information from one tool to another and rerunning
experiments and predictions—effort that could have been reduced or eliminated with a sup-
porting PECT infrastructure.

Based on this experience, we gained an appreciation of how essential it is to have an infra-
structure to support a PECT and how much work developing such an infrastructure can be.
This combination makes the cost of adopting a PECT significant if no infrastructure is already
available. As part of our continuing research into PECTs, we will be developing multiple
PECTs and would like to minimize the effort spent on infrastructure development. Moreover,
our ultimate objective is to transition PECTs to the software community. With a constant eye
toward our transition goal, we must simplify and reduce the effort needed to use PECTs when-
ever possible.

We believe that different PECTs share some common infrastructure needs. In this paper, we

explore the activities that any PECT infrastructure must support, and we propose a design for
such an infrastructure that promotes reusing portions of it. We evaluate the reusability poten-
tial in our design by proposing three scenarios that are representative of the significant chal-
lenges of reusing a PECT infrastructure, and we consider how each scenario affects the
proposed infrastructure design.

1.1 About This Report
This document is our initial attempt to understand the requirements for a PECT infrastructure.
We do this by looking at what we have accomplished in the past and what we want to accom-
plish in the future. Looking back, we take the experience from our past PECTs and distill the
development activities that would have been facilitated by the existence of specialized tools;
we also consider the roles and activities that were actually being carried out. Looking forward,
we immediately recognize the need for an infrastructure that will support not only the develop-
ment of PECTs, but also their usage. Additionally, we acknowledge that developing a new
infrastructure for each PECT is impractical, and we begin to consider how to design an infra-
structure such that sizeable portions are reusable across PECTs.

This document is a statement of what we believe a PECT infrastructure should do, what con-
struction and analysis it should support, who it should support, and how it might be structured.

1.2 Structure of This Report
Section 2 summarizes the concepts embodied in a PECT. The roles and activities that a PECT
infrastructure should support are found in Section 3. Section 4 illustrates an infrastructure

CMU/SEI-2002-TN-033

design in terms of specific tools and tiieir interactions. Tliis design is then evaluated in Section
5 against three change scenarios to consider each tool's reusability in the face of each change.
Finally, Section 6 closes with a brief discussion of how we intend to approach the development
of our next PECT infrastructure.

CMU/SEI-2002-TN-033

CMU/SEI-2002-TN-033

2 Summary of PECT Concepts

A PECT extends the notion of a component technology with one or more reasoning frame-
works such that assemblies of components are predictable with respect to those frameworks.
In Figure 1, we use a Unified Modeling Language (UML) class diagram to illustrate how a
component technology relates to reasoning frameworks in a PECT.

PECT

?
1 1 1 •*

Construction
Framework

1..*

/
Reasoning
Framework

? X
1 1 1 1/ "^^

Construction
Language

1 Abstract
Component
Technology

Interpretation -^specified In

1
is a

▼ model
of 1,.*

Component
Technology

t
i..-r IJ

Runtin
Environr

ie
nent

Component
Model

Figure 1: UML Class Diagram of PECT Concepts

A component technology consists of a component model and one or more runtime environ-
ments. The component model specifies allowable component types, interaction mechanisms,
services provided by the runtime environment, and constraints among them all. A runtime
environment is an execution environment that enforces aspects of the component model. A
runtime environment plays a role analogous to that of an operating system, serving as the con-
text in which components execute. Different runtime environments for the same component
technology enforce the same component model, but may differ in terms of quality attributes,
such as performance or reliability.

A component technology is incorporated into a PECT by means of a construction framework
that consists of an abstract component technology (ACT) and a construction language. An
ACT is a description of a particular component technology in a construction language. ACTs

CMU/SEI-2002-TN-033

are described using a common language—a construction language—to allow the same tools to
be used with PECTs containing different component technologies.

The construction language is also used to describe assemblies constructed in accordance with
the ACT and associated reasoning frameworks. A construction language includes the syntactic
elements needed to capture three kinds of information:

1. the topology of an assembly (the composition of components that defines the assembly's
structure)

2. the behavior of each component in the assembly, the interaction mechanisms defined by
the component model, and the services provided by the component technology's runtime
environments

3. arbitrary property descriptions, required by specific reasoning frameworks, that are

attached to various syntactic elements, such as components or interactions

Each reasoning framework included in a PECT embodies the concepts and theories needed to
analyze, and hence predict, certain emergent properties of an assembly of components. For
each reasoning framework, an interpretation is defined that relates the concepts of the ACT to
those of the framework. An interpretation is used during development to translate an assembly
specification, as documented using the construction language, to a specification that can be
used with the interpretation's reasoning framework.

CMU/SEI-2002-TN-033

Roles and Activities

Before we can describe the infrastructure that is needed to support a PECT, we need to under-
stand the different roles PECT stakeholders play and how they use PECTs to do their jobs. We
examine the differences among these roles by listing some of the activities stakeholders under-
take. For each activity, we note infrastructure needs.

3.1 Roles
While much of the PACC work to date has focused on developing and validating a PECT, we
recognize that these are not the end goals. We develop a PECT because it helps us develop sys-
tems that behave predictably. Consequently, we consider how a PECT is used, as well as how
it is developed and validated. We use the distinction between developing and using a PECT as
a starting point in considering different roles that PECT stakeholders might undertake.

A PECT developer focuses on developing the technology needed to predict the behavior of
assemblies of components. A PECT developer does not necessarily focus on a particular sys-
tem to be built, but instead figures out how to apply particular analysis models to a class of
related systems that use the same component technology. A PECT developer must also vali-
date (with some degree of confidence) that predictions apply to a system constructed using the
PECT. Ideally, a PECT developer also provides infrastructure that can be used to construct and
analyze component assemblies.

A PECT developer assumes one of several subroles: component technology specialist, analy-
sis specialist, PECT designer, or PECT validator. A component technology specialist has a
thorough understanding of the component technology on which die PECT is built, defines the
ACT in the construction language, and handles any infrastructure issues relating to the compo-
nent technology or its runtime environments. An analysis specialist has a thorough under-
standing of a reasoning framework and handles any infrastructure issues relating to that
framework. PECT designers are responsible for integrating one or more reasoning frameworks
with a component technology; they coordinate with component technology and analysis spe-
cialists to constrain the use of the component technology and to provide interpretations from
the ACT to the reasoning frameworks. A PECT designer also coordinates the development of
any infrastructure provided with the PECT. A PECT validator is responsible for confirming
that predictions made using the PECT are "correct." This typically involves gathering data
from system executions and comparing it to PECT predictions, and may require the develop-
ment of infrastructure to support data collection.

CMU/SEI-2002-TN-033

A PECT user focuses on developing a particular system and uses the PECT to predict the
behavior of the component assembly used to implement the system. A PECT user assumes that
a PECT is "correct"—that is, the PECT's predictions can be trusted to some specified degree
of confidence. A PECT user works within constraints imposed by the component technology
and associated reasoning frameworks.

A PECT user assumes one of several subroles: component developer, component certifier, or
component assembler. A component developer implements individual components and must
conform to the constraints imposed by the PECT. A component certifier assesses whether or
not (or perhaps how well) an implemented component matches information in its specifica-
tion, such as execution time or behavioral models. A component assembler combines compo-
nents to form assemblies that meet some need. A component assembler then uses the PECT's
reasoning frameworks to predict emergent properties of the assembly, make needed changes to
the assembly, and so on until the predicted properties meet the requirements.

3.2 Activities
In this section, we sketch some of the activities performed by stakeholders assuming the sub-
roles of PECT developers and PECT users. These activities are not complete and should not be
interpreted as the presentation of a "PECT method."^ They are, however, the activities we cur-
rently believe are likely to apply to most PECT uses, regardless of the order in which they
occur.

Because we made this list to gain a better understanding of what type of PECT infrastructure
would be useful, each activity is accompanied by a brief note regarding infrastructure that
would be useful in performing the activity.'* Our convention is to follow each activity with a
short list of notes regarding infrastructure support for the activity.

3. More detailed method workflows have been identified, but a complete method has not yet been detailed.

4. In some cases, particularly for PECT developer activities, the infrastructure support noted may be for Infrastructure that is
produced by individuals in the role, rather than used by them.

CMU/SEI-2002-TN-033

3.2.1 PECT Developers

Component Technology Specialist

Activity: Develop or identify a component technology and associated rantirae environment.

Infrastructure support needs: The infrastructure needed for this activity is outside our
scope of concern. We are not pondering a suite of tools that helps component technology
specialists produce new component technologies.

Activity: Constrain the component technology during co-refinement to improve analyzability.

Infrastructure support needs: Constraints on the component technology suggest a need
for a tool that evaluates whether a component (or assembly) satisfies the constraints. Fur-
thermore, such constraints require formal definitions, which may be used as input to con-
straint-checking tools.

Activity: Formalize the component technology's construction model (e.g., the interaction
semantics) in the PECT's construction language.

Infrastructure support needs:

• Tools are needed to parse and check component and assembly specifications written in
the PECT's construction language. Checks to perform would include ensuring that a
specification does not violate the constraints imposed by the component technology.

• A tool is needed to compile assembly specifications into composite behavioral models
suitable for automated analysis.

Analysis Specialist

Activity: Develop or identify a reasoning framework, and modify it as needed during co-
refinement.

Infrastructure support needs: Developing or identifying a reasoning framework is an
exercise that does not require PECT-specific tools. Many reasoning frameworks have their
own accompanying tools. For those that do not, we do not consider infrastructure that
helps analysis specialists build such tools.

PECT Designer

Activity: Work with customer to identify PECT goals/requirements.

Infrastructure support needs: There are no infrastructure needs for this activity.

CMU/SEI-2002-TN-033

Activity: Use co-refinement to constrain or generalize the ACT or reasoning framework.

Infrastructure support needs: Any adjustments that result in constraints to which assem-
blies must conform must be reflected in the infrastructure. A tool that can evaluate
whether a component or assembly specification conforms to such constraints is also
needed.

Activity: Develop or identify a construction language for the PECT (e.g., CL [Ivers 02]).

Infrastructure support needs: The infrastructure (including parsers and compilers) must
be able to work with the construction language.

Activity: Define interpretations from the ACT to the reasoning framework.

Infrastructure support needs: This activity suggests a need for tools that implement the
interpretations. Each such tool must be able to process composed assembly specifications,
ensure that those specifications conform to the interpretation's constraints, and produce
specifications in the language of the interpretation's target reasoning framework.

Activity: Determine which infrastructure to distribute with the PECT; that is, decide which
infrastructure tools should be available to PECT users.

Infrastructure support needs: Whatever infrastructure is to be distributed with the
PECT must (obviously) exist. Any tools that do not already exist must be developed and
integrated (to the degree desired) with the rest of the PECT infrastructure. (See Section
3.2.2 for more information on which pieces of infrastructure are likely to be useful to
PECT users.)

PECT Validator

Activity: Determine which assembly or assemblies will be used to validate the PECT.

Infrastructure support needs:

• In some cases, synthetic assemblies can be used to represent actual assemblies. In
such cases, tools that can generate a number of synthetic assemblies are needed.

• In other cases, real assemblies may be used. In these cases, a means to construct such
assemblies is required, implying that the PECT validator needs to perform those activ-
ities normally categorized as PECT user activities and can share the same infrastruc-
ture needs. (For more information, see Section 3.2.2.)

10 CMU/SEI-2002-TN-033

Activity: Determine which data must be collected to validate the reasoning framework's pre-
dictions and then collect it.

Infrastructure support needs: This activity suggests the need for a tool that can collect
the data necessary for validation. Such data is gathered from an execution within a partic-
ular runtime environment.

Activity: Process data and compare the results to PECT predictions to determine the statistical
accuracy of the latter.

Infrastructure support needs: This type of data analysis may be supported by spread-
sheets or statistical packages, so there may be no need for custom infrastructure.

3.2.2 PECT Users

Component Developer

Activity: Develop a component specification for an implemented component. This can happen
in one of three ways, each with different infrastructure needs:

1, The developer could write a component specification first, and then use it to implement
the component.

Infrastructure support needs:

• In some cases, a code generator is needed to produce code skeletons based on the
behavioral information found in the component specification.

• Additional tools are necessary to check that successive changes to the code do not
violate the original specification.

2, A developer could implement the component first, and then derive a component
specification from it.

Infrastructure support needs: A model extractor might be used to produce a compo-
nent specification based on the component implementation.

3, A developer could write a specification, independently implement the component, and
then show that the implementation satisfies the specification.

Infrastructure support needs: A test harness may be necessary to demonstrate that
the behavior expressed in the component specification is also exhibited by the compo-
nent implementation.

CMU/SEI-2002-TN-033 -|1

Activity: Annotate a component specification with property information that is required by
PECT reasoning frameworks.

Infrastructure support needs:

• This activity requires a tool that allows such annotations to be supplied.

• There may be a need for tools that help the developer capture property values. For
example, if a performance reasoning framework requires execution time properties,
infrastructure that allows the component developer to collect this information is nec-
essary.

Component Certifier

Activity: Certify that a component specification (that includes property values) accurately

represents the component implementation.

Infrastructure support needs: We do not sufficiently understand what infrastructure is
needed here. Perhaps the tools required would be the same as those tools used to validate a
PECT (such as a data collection tool that could be used in conjunction with a test suite
derived from the component specification).

Component Assembler

Activity: Select and compose components to form an assembly.

Infrastructure support needs:

• An environment that facilitates component assembly is necessary. Such a tool would
likely be a graphical user interface (GUI) in which components can be selected, anno-
tated, edited, and assembled.

• This activity suggests the need for a repository of components to select from when
forming an assembly.

• A tool that can evaluate whether an assembly specification conforms to the constraints
of construction and reasoning frameworks is needed.

Activity: Use reasoning frameworks to determine whether an assembly meets its emergent
property requirements.

Infrastructure support needs:

• To use a reasoning framework, an assembly specification must first be interpreted for
the reasoning framework. A tool is needed to perform that interpretation. This tool
should ensure that only assembly specifications satisfying the constraints of the rea-

soning framework can be analyzed.

12 CMU/SEI-2002-TN-033

• A tool that automates analysis should be provided for each reasoning framework.

Activity: Deploy an assembly to the runtime environment.

Infrastructure support needs: This activity should be fully automated. While what is
required to deploy an assembly to a runtime environment likely varies with runtime envi-
ronments, example steps include copying files to a specific location, building a configura-
tion file, and registering components with the runtime environment.

CMU/SEI-2002-TN-033 .|3

14 CMU/SEI-2002-TN-033

PECT Infrastructure

As discussed in Section 3, a PECT tool infrastructure supports many of the activities of both
PECT developers and users. Based on our experience in developing PECTs, we have identified
a core set of infrastructure tools, shown in Figure 2, that supports those activities. We recog-
nize that, as we get more experience as both PECT developers and users, the number of infra-
structure tools (and possibly their scope) will change.

Runtime
Environment

3rtsexeo»Aton

Construction
Environment

Analysis-
Specific Tool!

Statistical
Analysis Tool

sembly
nerator

Dmponent
Repository

retrieves components
and artifacts from

okaging
Tool

Figure 2: UML Class Diagram of PECT Infrastructure Tools

A PECT infrastructure is designed to support arbitrary empirical and formal reasoning frame-
works (such as for average latency and safety) and arbitrary properties (such as latency, mem-
ory allocation, liveness, and reliability). Thus, the infrastructure shown in Figure 2 reflects the
existence of analysis-specific tools for reasoning frameworks without identifying specific
analysis tools. We envision that any such tool will be provided by the PECT developer. Hooks
provided by the PECT infrastructure will then be used by PECT developers to integrate analy-

CMU/SEI-2002-TN-033 15

sis-specific tools. How such tools will interface with the remainder of the PECT infrastructure
is uncertain.

Also uncertain is how all the tools within the PECT infrastructure interact. Figure 2 is one pos-
sibility. Of interest in this figure is the central role of the construction environment (described
in Section 4.1). From our experience in A Builder's Guide for- Waterbeans Components, the
graphical builder was the focal point for assembly and execution, as this was where users
selected components and composed assemblies [Plakosh 99]. From that original builder, hints
were passed to the analysis tools so that predictions could be made and evaluated against
observations gleaned from the runtime environment. In the PECT infrastructure we want to
incorporate that working model. However, in some circumstances, we want to broaden the role
of the graphical builder to coordinate other activities (such as deployment); in other circum-
stances we want to reallocate duties, such as interpretation and runtime, to other (now) exter-
nalized tools.

Figure 2 shows tools needed to satisfy the majority of the developer and user needs identified

in Section 3. PECT users, however, would typically only use a portion of these tools. Specifi-
cally, a PECT user uses all tools except for the statistical analysis tool, the assembly generator
tool, and the packaging tool (at the right in Figure 2). These three tools are used primarily by
PECT developers. Incidentally, those tools used by the PECT user are used much less by
PECT developers. While PECT developers do need to "test out" the infrastructure that they
build for PECT users, a PECT developer typically does not build an actual system.

Each tool from Figure 2 is briefly described in the remainder of this section.

4.1 Construction Environment
The construction environment is the visual integrated development environment (IDE) that
supports component assembly via explicit interaction mechanisms. Essentially, the construc-
tion environment supports both PECT developers and users in the selection of components and
their configurations as functioning assemblies.

Beyond its role as an end-user interface for the construction of assemblies, the construction
environment can serve as a means to coordinate many PECT developer and user activities,
such as

• assignment of property annotations to components as required by one or more reasoning
frameworks upon which the PECT is based

Some infrastructure needs, such as the need for a tool that generates code from a component specification, are not included
because they represent an area we are still exploring.

16 CMU/SEI-2002-TN-033

constraint checking—tliat assemblies constructed are well formed (given the constraints of
the ACT and associated reasoning frameworks) through integration with the parser

generation of analysis models through integration with interpretation translators

assembly execution (and debugging) through integration with the rantime environment

packaging components and assemblies for deployment through integration with the
deployment tool

4,2 Analysis-Specific Tools
Each reasoning framework is supported by one or more tools that automate the calculations
needed to make predictions. We refer to each of these tools as an analysis-specific tool.

4.3 Runtime Environment
The runtime environment is the core of the execution environment for all components. Fur-
thermore, the runtime environment conforms to the underlying component technology and
constraints placed on the component technology so that PECTs are analyzable according to
design and construction.

The runtime environment also supports collecting data about the execution of an assembly. In
its simplest form, the runtime environment produces a trace of events showing the runtime
activity of an assembly's execution. The runtime environment can associate additional infor-
mation, such as a timestamp, with each event in the trace.

4.4 Deployment Tool
The deployment tool is used to prepare implemented components to run in the runtime envi-
ronment. Deployment may include such activities as copying binaries to specific locations,
providing the runtime environment with a description of how components are assembled, and
setting configuration parameters for components or for the runtime environment itself.

4.5 Observation Engine
The observation engine records and processes assembly execution data collected by the run-
time environment. The processing that can be performed depends on the raw execution data
provided by the runtime environment; for example, if the runtime environment provides a
trace of timestamped events, the observation engine can calculate the time elapsed between
any two events in the assembly's execution. Given rich enough raw data, the observation
engine could also calculate

CMU/SEI-2002-TN-033 .,7

memory allocation

processor utilization

network utilization

thread priority

queue utilization

throughput

Analysis tools constructed to use the services of the engine can observe when the assembly is
actually executing within the runtime environment, or for post-run analysis, when the assem-
bly has finished executing. The former is necessary for continuous or real-time monitoring of
an assembly. The latter is necessary for historical analysis of prior assembly executions or for
step-by-step analysis.

4.6 Parser/Compiler
The parser performs a series of well-formedness checks on component and assembly specifi-
cations written in the construction language. Checks include syntactic issues as well as
whether the specification satisfies component technology constraints (e.g., that component
inputs are not connected to the inputs of other components).

The compiler produces a composed specification for a well-formed assembly specification.
Behavioral models for each component in the assembly are combined with behavioral models
for the interaction semantics (provided by the component technology) to produce a composed
specification for the assembly. This composed specification is used as the source for analysis

model interpretations.

4.7 Interpretation Translators
An interpretation translator produces an analysis model from an assembly's construction lan-
guage specification. However, a translator must first check that the assembly specification sat-
isfies the assumptions of its reasoning framework. Such assumptions include the requirement
that a specification include specific property annotations, or that components or the assembly
satisfy constraints (e.g., a particular performance reasoning framework may assume that no
asynchronous communication is used).

4.8 Component Repository
The component repository stores components and various artifacts associated with those com-
ponents. The components stored in the repository are the actual, binary implementation of the
components as loaded and executed by the runtime environment (see Section 4.3). The reposi-

18 CMU/SEI-2002-TN-033

tory also stores all component-associated artifacts needed to support the analysis of any com-
ponent in the assembly. Such artifacts may include but are not limited to

• source code

• binary implementation

• component specification in the construction language

• analysis models (specifications in languages understood by analysis tools supporting rea-
soning frameworks)

Essentially, all tools within the infrastructure draw information from and record information to
the repository.

4.9 Assembly Generator
The assembly generator is used during PECT validation to generate a number of synthetic
assemblies that can be used to validate the accuracy of a reasoning framework's predictions.
Each synthetic assembly is a collection of synthetic components annotated with property val-
ues required by a particular reasoning framework. The assembly generator varies the assign-
ment of property values over different configurations of components to produce a variety of
assemblies characteristic of those we want to analyze.

4.10 Statistical Analysis Tool
The statistical analysis tool is used during PECT validation to compare a series of reasoning
framework predictions to observations of executing assemblies. The comparisons are used to
estimate a measure of the confidence that a PECT user should have in the reasoning frame-
work's predictions.

4.11 Packaging Tool
The packaging tool is used to produce a PECT distribution package that includes everything
another user or group of users would need to use the PECT. The distribution package created
by the tool contains all the components from the component repository as well as the artifacts
necessary to support wholesale distribution of the PECT. The package may include

• component binary implementations

• runtime environment enforcing the PECT construction model constraints

• applicable component artifacts (specifications, properties, etc.)

• predictions

CMU/SEI-2002-TN-033 19

sample or deployable assemblies

scripts or post-deployment tools to perform active install-time property attribution (if nec-
essary)

test data

other supporting analysis tools and configuration information

20 CMU/SEI-2002-TN-033

5 Infrastructure Change Scenarios

In this section, we propose three change scenarios that represent the significant challenges to
reusing a PECT infrastructure. For each scenario, we evaluate how much each tool in the
infrastructure would have to change to accommodate the scenario.

During co-refinement, multiple change scenarios may occur simultaneously. In particular, a
new reasoning framework may be introduced that is more effective if changes are made to the
component technology. This discussion, however, considers the impact of each change inde-
pendent of any other changes.

5.1 New Reasoning Framework
In this scenario, a new reasoning framework is integrated into a PECT whose assumptions are
already satisfied by the component technology.

Construction Environment

While the construction environment must integrate a new analysis tool(s) and an associated
interpretation translator, the construction environment should be designed so that this integra-
tion can be accomplished using a simple plug-in mechanism. That is, no real changes are
required to integrate new plug-ins.

Analysis-Specific Tools

A new analysis-specific tool must be provided for the new reasoning framework. No existing
analysis tools for other reasoning frameworks in the PECT are affected.

Runtime Environment

Few or no runtime environment changes are needed to support a new reasoning framework.
No execution semantics need to be changed, but the use of some component technology fea-
tures may be restricted. It is possible that new execution data may need to be collected by the
runtime environment to support validation of the PECT.

CMU/SEI-2002-TN-033 21

Deployment Tool

No changes are needed because the underlying component technology and runtime environ-
ment are not changed.

Observation Engine

An observation engine may be extended in response to the introduction of a new reasoning
framework if new types of execution data must be processed to validate the predictions of the
reasoning framework. If existing observations are sufficient to validate predictions, no
changes are needed.

Parser/Compiler

No parser or compiler changes are needed to support a new reasoning framework because the
construction language requires no changes.

Interpretation Translators

A new interpretation translator must be developed for the new reasoning framework. No exist-
ing interpretation translators for other reasoning frameworks in the PECT are affected.

Component Repository

No changes to the repository are needed; all repositories used with PECTs should already pos-
sess the ability to store arbitrary artifacts linked to a component or assembly.

Assembly Generator

A new reasoning framework requires the assembly generator to vary a different set of property
values over the assemblies generated.

Statistical Analysis Tool

Although what is being predicted is different for a new reasoning framework, the process of
comparing predictions to observations does not change. In other words, the raw data used by
this tool changes, but the tool itself does not.

Packaging Tool

No changes are needed.

22 CMU/SEI-2002-TN-033

5.2 New Component Technology
In this scenario, a different component technology is used in a PECT, and existing reasoning
frameworks are assumed to be compatible with the new component technology. While it is
also possible to consider a scenario in which a component technology is simply tweaked, this
scenario focuses on a large semantic change to a component technology.

Construction Environment

With the introduction of a new component technology, the construction environment must be
integrated with a different set of tools (e.g., deployment tools). Any new interaction semantics
introduced by the new component technology may require the introduction of new symbols
(e.g., symbols for pins) to be used in the graphical editor. New interaction semantics may also
require new topological constraints that may be enforced by the editor.

Analysis-Specific Tools

No changes to analysis tools are needed as long as the reasoning frameworks are compatible
with the new component technology (i.e., the component technology does not violate any
assumptions made by the analysis tools).

Runtime Environment

A new component technology requires a new runtime environment.

Deployment Tool

Because a new component technology requires a new runtime environment and because a new
runtime environment may require different actions during deployment, a new deployment tool
may be needed.

Observation Engine

The observation engine requires minimal changes to work with a new runtime environment.
The data processing performed by the observation engine stays the same, but how it collects
the data from the runtime environment may change.

Parser/Compiler

The parser and compiler must change to reflect the new component technology. Different con-
straints are enforced as well-formedness checks in the parser, and the compiler uses the com-
ponent technology's formalized interaction semantics to produce composed models.

CMU/SEI-2002-TN-033 23

Interpretation Translators

Regardless of the specific component technology, an inteq^retation operates over a composed
assembly model, which is expressed in terms of the construction language. Thus, no changes
to the interpretation translators are necessary.

Component Repository

No changes to the repository are needed; all repositories used with PECTs should already pos-
sess the ability to store arbitrary artifacts linked to a component or assembly.

Assembly Generator

The assembly generator requires minor changes to generate only the assemblies that are valid

under the constraints of the new component technology.

Statistical Analysis Tool

No changes to the statistical analysis tool should be needed, as the predictions and the observa-
tions stay the same when a new component technology is used.

Packaging Tool

No changes are needed.

5.3 New Construction Language
In this scenario, a different construction language is used in a PECT. Such a change could be
largely syntactic, could represent a change in the underlying computational model of the for-
mal language used to describe behavior, or could mean using a different architectural style or

metaphor for describing components and assemblies. For the purpose of considering the
impact on infrastructure tools, we assume that a change in construction language is significant
(i.e., not merely syntactic), but that the new construction language is still based on the con-
cepts of component assembly via explicit interaction mechanisms.

Construction Environment

Because the construction environment is the tool in which users document components using
the construction language, at least moderate changes are required to support a different lan-
guage. However, the portion of the construction environment that integrates other tools in the
infrastructure remains unchanged.

24 CMU/SEI-2002-TN-033

Analysis-Specific Tools

No changes are needed for the analysis-specific tools. While the interpretation translators may
be severely affected, the output of the translators remains the same. This output is what the
analysis-specific tools operate on.

Runtime Environment

Because the runtime environment executes component implementations rather than specifica-
tions, no changes are needed.

Deployment Tool

No deployment tool changes are needed since the component implementation and the runtime
environment remain unchanged.

Observation Engine

The observation engine may require minor changes if it uses information from component or
assembly specifications. For example, if a user can select events from an assembly specifica-
tion to observe during execution, a change to the construction language may require observa-
tion engine changes to enable the engine to understand the new language.

Parser/Compiler

A new parser and compiler are needed. The types of constraints to be checked and the work
performed in compiling a composed model remain conceptually unchanged.

Interpretation Translators

All interpretation translators are affected by a change in construction language. If the construc-
tion language changes in a syntactic manner, only minor changes to the translators are needed.
However, if the underlying formal language changes, translators are affected significantly.

Component Repository

No changes to the repository are needed; all repositories used with PECTs should already be
able to store arbitrary artifacts linked to a component or assembly.

Assembly Generator

Minor (syntactic) changes would be required to enable the assembly generator to produce
assemblies described in the new construction language.

CMU/SEI-2002-TN-033 25

statistical Analysis Tool

No changes to the statistical analysis tool are needed because the predictions and the observa-
tions remain unchanged.

Packaging Tool

No changes are needed.

5.4 Summary of Scenario Impacts
Table 1 provides a summary of the effect that each change scenario has on each infrastructure

tool.

Table 1: Summary of Change Scenario Impacts

Infrastructure Tool New
Reasoning
Framework

New
Component
Technology

New
Construction
Language

Construction environment N M M

Analysis-specific tools H N N

Runtime environment V H N

Deployment tool N H N

Observation engine V L L

Parser/compiler N M H

Interpretation translators H N H

Component repository N N N

Assembly generator L L L

Statistical analysis tool N N N

Packaging tool N N N
Key:
H = high Impact
M = moderate impact
L = low Impact
N = no Impact
V = variable impact

26 CMU/SEI-2002-TN-033

Conclusion

In this paper, we have

• listed the activities that we believe any PECT infrastructure must support

• proposed a set of interacting tools forming such an infrastructure

• examined the reusability of tools in a PECT infrastructure in the face of three significant
changes

This paper contains our current understanding of PECT infrastructures; we plan to use this
information to guide the development of our next PECT infrastructure. As we continue to
develop and research PECTs, our understanding may change.

In this paper, we examined change scenarios and the reusability of tools in a PECT infrastruc-
ture for both short-term and long-term reasons. In the short term, we will be producing several
PECTs to further research and validate ideas. Because we would prefer to focus on the ideas
rather than the tools, reusing as much of the infrastructure as possible leaves us with more time
available for the "real work." In the long term, one factor that might influence the success of
PECTs is the difficulty of developing a PECT for a particular set of needs. Infrastructure reuse
may be able to lower infrastructure cost, but it is too early to know by how much.

When we develop infrastructure for our next PECT, we will use the following guidelines
(sketchy though they are), any of which may result in infrastructure that is less capable than
that described in this paper:

• Activities that are the most time-consuming or susceptible to errors will have priority over
other activities.

• We will implement only those tools in the infrastructure for which no "workable" alterna-
tives already exist.

• We may implement "bare-bones" tools for some pieces of the infrastructure to save time
(e.g., we may use a file system as a simple repository).

• We will accommodate the types of changes we have hypothesized only when the effort
involved in doing so is less than the cost of prototyping an alternative.

Once we have developed a few more PECTs and have more experience with how different
PECTs impact infrastructure needs, we can revisit the issue of general PECT infrastructure.

CMU/SEI-2002-TN-033 27

One promising avenue to explore is the connection between PECTs and software product
lines, and the applicability of proven reuse approaches from that movement.

28 CMU/SEI-2002-TN-033

References

URLs are valid as of the publication date of this document.

[Bachmann 00] Bachmann, R; Bass, L.; Buhman, C; Comella-Dorda, S.; Long,

R; Robert, J.; Seacord, R.; & Wallnau, K. Volume II: Technical

Concepts of Component-Based Software Engineering (CMU/SEI-
2000-TR-008, ADA379930). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2000.

<http://www.sei.cmu.edu/publications/documents/00.reports
/00tr008.html>.

[Bass 01] Bass, L.; Buhman, C; Comella-Dorda, S.; Long, P.; Robert, J.;

Seacord, R.; & Wallnau, K. Volume I: Market Assessment of
Component-Based Software Engineering (CMU/SEI-2001-TN-
007, ADA395250). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 2001.

<http://www.sei.cmu.edu/publications/documents/01.reports
/01tn007.html>.

[Hissam 01] Hissam, S.; Moreno, G; Stafford, J.; & Wallnau, K. Packaging

Predictable Assembly with Prediction-Enabled Component Tech-
nology (CMU/SEI-2001-TR-024, ADA399793). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,

2001. <http://www.sei.cmu.edu/publications/documents
/0i.reports/01tri)24.html>.

[Hissam 02] Hissam, S.; Hudak, J.; Ivers, J.; Klein, M.; Larsson, M.; Moreno,
G; Northrop, L.; Plakosh, D.; Stafford, J.; Wallnau, K.; & Wood,
W. Predictable Assembly of Substation Automation Systems: An
Experiment Report (CMU/SEI-2002-TR-031). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,

2002. <http://www.sei.cmu.edu/publications/documents
/O2.reports/02tri)31 .html>.

CMU/SEI-2002-TN-033 29

[Ivers 02] Ivers, J.; Sinha, N.; & Wallnau, K. A Basis for Composition Lan-

guage CL (CMU/SEI-2002-TN-026, ADA407797). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,

2002. <http://www.sei.cmu.edu/publications/documents
/O2.reports/02tn026.html>.

[Plakosh 99] Plakosh, D.; Smith, D.; & Wallnau, K. Builder's Guide for Water-

Beans Components (CMU/SEI-99-TR-024, ADA373154). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon

University, 1999. <http://www.sei.cmu.edu/publications
/documents/99.reports/99tr024/99tr024abstract.html>.

30 CMU/SEI-2002-TN-033

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information Is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of Infonnation. Send comments regarding this burden estimate or any other aspect of this collection of
information. Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) REPORT DATE

December 2002
4. TITLE AND SUBTITLE

PECT Infrastructure: A Rough Sketch
AUTHOR(S)

Scott Hissam, James Ivers
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

REPORT TYPE AND DATES COVERED

Final

FUNDING NUMBERS

F19628-00-C-0003

PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2002-TN-033

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12.a DISTRIBUTION/AVAILABIUTY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
13. ABSTRACT (maxiiTiuin 200 words)

12.b DISTRIBUTION CODE

A prediction-enabled component technology (PECT) is an approach to achieving predictable assembly from
certifiable components. A PECT consists of a component technology that has been extended with one or
more reasoning frameworks that are used to predict how assemblies of components will behave. Developing
and using a PECT involves a number of different activities, many of which are practical only when supported
by automation. This paper investigates the nature of PECT infrastructures, summarizes the activities that a
PECT infrastructure should support, and proposes a design for the tools that make up a PECT infrastructure.
This paper also considers the reusability of such an infrastructure by evaluating the impact that three
possible changes to a PECT have on its infrastructure.

14. SUBJECT TERMS

prediction-enabled component technology, PECT, predictable assembly,
predictable assembly from certifiable components, PACC, component
technology

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

42
16. PRICE CODE

20. LIMrrATION OF ABSTRACT

UL

standard Fomn 298 (Rev. 2-89)
Prescril^d 1^ ANSI Std. ^5-18
2S8-1D2

