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Abstract. In 1993, Li and Mayo gave a finite-difference method with second order ac-
curacy for solving the heat equations involving interfaces with constant coefficients and
discontinuous sources [Proc. Symp. Appl. Math. Vol. 48, W.Gautschi ed., AMS, 1993,
p 311-315). In this paper, we improve the above result by presenting a finite-difference
method which allows each coefficient to be taken different values in different subregions

divided by the interface, that is useful in applications. Our method also has second order
accuracy.

1. Introduction

Consider the heat equation

where ¢ € [a,00) and (z,y) € Q, a rectangular region in R? with an irregular interface
I' which divides © to two subregions Q; and Q,. The solution u(z,y,t) and its normal
derivative u,(z,y,t) crossing the curve I are known to be discontinuous:

[W=v"—u = w(z(s),y(s),1), ~ (1.2)

[uﬂ] = “jz- U, = g(m(s)’ y(s)’t): k ~(I.3)
where s is a parameter of T, the superscripts + and - denote the limiting values of a -
function from one side in Q* and another side in Q~ respectively.

In 1993, Li and Mayo[3] gave a finite-difference method with second accuracy for
solving (1.1), assuming that f is discontinuous but S is constant. In this paper, we present
a finite-difference method for solving (1.1), which allows B to be taken different values in

different subregions divided by the interface, and which is useful in applications. More
precisely, we assume:




(B @aear,
By = {405 By a9

where 8%, 8~ are constants which can be distinct.

We organize the paper as follows: In Section 2, we establish local coordinate systems
around the interface. In Section 3, we give the correction terms for the finite-difference
method. In Section 4, we show that our method is second accurate. Finally, in Section 5,
we give some numerical examples, in which the actual solutions are known, to confirm the

_theoretical result. -
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2. Local Coordinate Systems

We first give local coordinate systems along the interface I" as [2,3]. When a point on
the interface is fixed for the origan , we use the normal direction as the &-direction, which
has an angle § with the z-axis. Rotating the £-direction by ninety degrees anti-clockwise,

we obtain the 7-direction. Now we express the curve I' as a function of the independent
variable 7 locally:

E=xm). | - (Y

- We express (1.2),(1.3) locally by using the 5 coordinate: |
] = w* —u= = w(n,f), )

{un] = ;i- U, = §(77= t)s , , (23)

where w, g are known in advance. From

_ [un]xn + [ug]

9= lun] = - (2.4)
V1+x2 |

Using differentiation w.r.t. 7, noting x(0) = 0, we have:

[ugl =wn,  [ugl =g, ‘ (2.5,2.6)

[ug] = ~9Xan + Wyn, [ugq] = WnXny + 9y- (2.7,2.8)
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- * Changing (1.1) locally, we have:*

Uy = Puge + Puny + (€,m,t), (2.9)

which implies ’ _
c) = fuec + | %] (2.10)
where o : , o ; o
| ch=owm-em= |2 am

In (2.5)-(2.11), all functions in the right-hand sides are known except [%] in (2.10) which
will be explored in the next section. ‘

3. Correction Terms

 We first discretize in both of the z-direction and the y-direction by mesh size h:
1 .
ﬁzg ~ ému,-g- = gg(u,--l,j - 2%:‘,5 +'ui+1,§): (31)

: |
Uyy B Oytij = o (Uijo1 = 2ui 5 + U 1) (3.2)

We group all the grid points in Q into two sets. The set Sreg consists the regular points,

each point in one subregion has no neighbor point in the another subregion. The set S;,,

consists the irregular points, each point in one subregion has at least one neighbor point

in the other subregion. For a regular grid point, the local truncation error of (3.1),(3.2)
from Buzs + Byy + f is O(h?). For an irregular grid point, we need add some correction

terms in (3.1),(3.2) such that the local truncation error is O(h), therefore the global error

of the solution for solving the heat equation is O(h?) after the discretization of time t in

certain way. ;

At first, we relate the jumps w.r.t. z and y to the jumps w.r.t. £ and #:

(2] = [ugleost — [uglsing,  [u,] = [uglsind + [uy]coss, (3.3,3.4)
- [tas] = [uga]s + [%] cos®9, (3.5)
where |
[Usa]1 = [ugelicos®0 — 2[ugy|cosOsind + [uqy)sin?6,
ol =l + | sino, 69
where

Uyyl1 = [uee]15in%0 + 2[ug,]cosfsing + [u.,,lcos20.
vy 39 (3] 17
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"By (2'5)-(2.11), all the terms in the right-hand sides of (3.3)-(3.6)are known except {‘:’g]
Now we consider an irregular grid point in z-direction, there are four cases:

(@) (zi,9;) €7, (zis1,95) € QY5 .(b) (z:,95) € QF, (zi-1,9;) € Q;

(@ (zi,9;) € Q1 (zig1,95) €97 (@) (zi,95) € Q7, (zi-1,7;) € Q.

~ For case(a), let the intersection of the line segment connecting (z;,y;),(Zit1,y;) and T is
(z*,y;). Using Taylor’s series around z*, we have: -

ﬁ{u(wi—z, Y;) — 2u(zs, ;) + u(Tig1,95)}

[Uza]
!

2=l @in = 2} +uz, + O(h),

1 *
= g{{%} + [uz] (@41 — 2*) +
which implies '

(%) (5341 — °)?

Uge = 02U 5 + Cxui,j - oh2 -+ O(h’)r | (37}

where

oty =~ luovns — 2%) + L oy — o).

Similarly, for case(b), we have

(311 —2*)”.

Uy = 6::“5,5 + Czﬁi,j + o2 — + O(h), - (38)

where

[Uaals

Cuts; = gl + al(o-s — %) + 22, — 57y2).

For case(c), we have

[#](@it1 — z*)?
2h2

Uzg = OgUij + Czué,_;? + + O(h), (39)

where - I o]
* U %*
Coui,j = E‘g'{[u] + [ug)(zip1 — z*) + —;?—l(xg_;.i -z )2}
For case(d), we have '
(% (zi-1 — 2*)?
2h?

Uy = OgU; j + Cruij — + O(h), - (3.10)

where

[Usas

1 . .
Couij = “‘ﬁ{[u] + [uz) (i1 — 2%) + 51 Yziy—z )?}.

4




Analogously, in y-direction, we also have four cases. We add correction terms such
that the local truncation is O(h).

Now using these correction terms in both z- and y- directions, we obtain a system of
ordinary differential equations:

) . m%)2 2
(wig)e = B{0ouij +Syuigt + fig+ 8 D {couij+ {%} Tzo(Ti 5 }:; Y eos t9}
; ‘ (ig,y*)ESirr

w{ 2  fewms+ || ool SV o, (e
T* Ui )ESirr
where ig =i—1lori+1,j50=7—1orj+1. 74, 7 =1or —1 according to (3.7)-(3.10).
We have w) 1 ] LT : ]
[E] =u; [-5-] + gt = [E] + g (3.12,3.13)
which imply ‘ .
| Fg'] = (ui,5)s [%] +O(h). (314)

Using (3.14), we have the following system of ordinary differential equations:

(ui,5)e = F(Ws,5-1,Uim1,j, Ui j, Uig1,j, Ui jgp1) =

B(0auij + 0yt + 30, y)es,,, Cotti + D (5 950 )€Sirn Coling) + fig

(3.15)

Te; (Tig—z*)%cos?0. Ty (Yjo—¥*)2s5in28 °
1- E(miesy*)esm '6[,%] . 82112 T E(sf,ysa)esgw 5%] = mzhg ,
At a regular grid point, the local truncation error of the right-hand side of (3.15) from

Buzz + Byy + f is O(h?). In the next section, we will show that at an irregular grid point,
the local truncation error is O(h).

Finally, we discretize time t by choosing At = h2. We use Crank-Nicholson method:

Ui k+1 = Wik + AL(0.5F (Ui 51k, Uin1 k) Ui j ko U1,k Ui j+1,k)
F0.5F (s 5 1,k41 Uie 1,5, k415 Wi j, kb 1y Uik 1,4, k4+15 Ui j41,k+1))s (3.16)

which implies the local truncation error for discretizing ¢ is O((At)?).(see [1,4].) To solve
4;,5,k+1 from (3.16), we use S.O.R. iteration with certain parameter w:

“§3'),k+1 = Ui, 5,k (3.17)

and

(n+1) (n)

U1 = (1= @) 7oy + @ik + 0.5F (Ui o1k, in1 j ks Ui g s Uit 1,5,k Ui j+1,5)

(n+1) (n+1) (n) (n) (n) _
+0.5F (“i,j—l,k-;-v Ui 1,5,k+10 Ui 5 k+1 Yt j k+10 "‘i,;;-z-z,k-;-z))r n=12,..

(3.18)




4. Accuracy Analysis

We first show that the denominator of the right-hand side of (3.15) is bounded below
and above by positive constants:

Lemma 4.1. Let D; ; =

; | | 1 _ Z F; [E} TEfg (ﬂ'?ia - 3:*)2{:(}829 _ Z 5 [E} ?-yjé {yjo - y*)zsinzg'

o 2 : T 9R2
| ; (z!‘o Y*)ESirr E 6 : 2h ; (?'7313'8)55"”‘ 5 2h o
| ' o EEE 4.1)
Then (8+.67) ‘
min(B8™,B” : Tt ‘ ;
| —_— 1z L. < + fad
| maz(B*, f-) = D;; <1+ maz(B%,B87) [5] , (4.2)

whereig =i—1lori+1,jo=j—1orj+1. Tzigs Tyso = 1 OF —1 according to (3.7)-(3.10).

Proof: At first we prove the lower bound. Look at the first summation. In x-direction,
we have four cases.

() (:,95) € Q7, (241, 95) € QF. Then x4y = 341, 70, = ~1, = -,
and S 213- Tagg = 1 — ;L; which is positive iff 8~ < g+.

(b) (zi,y;) € 9+ (zi-1,y;) € Q7. Then z;, = 231, 75, = 1, B = ¥,
and B Z},— Toig = 1— %4:— which is positive iff f+ < 8-

() (zi,y;) € ?’3 (@i41,95) € Q7. Then &3, = Ti41, 70, = 1, f = B,

and B % Toyy = 1— éLi which is goéii:ive iff gt < B

(d) (z1,95) € O, (@it1,9;) € QF. Then 2, = 731, Toyy =—1L, B=B7,
and é— Toyy = 1— %;,— which is positive iff f~ < g+,

For all cases, a term in the first summation is positive iff 8 = min{B*, ~}. Similarly
we can show that a term in the second summation is positive iff B = min{B¥,5~} too.

Only the positive terms will reduce the lower bound of the left-hand side of (4.1). So the
left-hand side is bounded below by

' min(Bt,87) min(B+,57) min(B+, )
s> — 1. — ————— ] — . - = .
Pei 21080 (5%, 57)) ~ 51~ (5, 7)) = mas(T A7)
Now we turn to the upper bound which can be proved directly from (4.1):

IR H 5

The lower bound in (4.2) is useful for the stability of the numerical scheme and the
upper bound will be used for the following theorem:

D;; <1+0.58

< 1+ maz(Bt,B7)

6
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- *Theorem 4.2.

F (51, Win 5 Ui iy Ui 1,5, Ui j41) — (Btia + Buyy + f)(zi,55) = O(h), (4.3)

where (z;,y;) is an irregular grid point in Q.
Proof: ~ From (3.15), (3.14), (4.2) and (3.11), we have:

F(ui 51, Uic1,, % gy Ui 5, Ui 1) = (uig)e =

B(bgu; ; + Oyt j + Z CzlUij + Z ey ) + fig
(zig ¥*)ESirr (=* Wig)ESirr

‘ - iﬁ_*z 2¢ . A — 1*)20in2
(uig)e ( Z 5{%}? W (T 2;23 )écos + E ﬁ{_l_]'fym (Yjo — ¥y )Asm 3)

2h2
(%ig ¥*)ESirr . (=* 99 )ESirr ﬁ :

*\2 2
u | 7z, (% — 2*)%cos20
=ﬁ{§zu£,:j + 53;“3',5} + fi,j -+ ,3 Z {C::’?f:i,j + [._t] s( o ) }

2
(xigsy‘)esirr ﬂ ) 2h
. us | Ty, (Yj — y*)?%sin28
+8 Y Aquig+ ['Bt'] Ho R oTE }+O(h)

{z* »WWio )ESirr
=(ﬁua:a: + ﬁuyy + f)(xi: yj) + O(h’)a
which proves (4.3). » S
At a regular grid point, the local truncation error for discretization is O(h?). At an

irregular grid point, the local truncation error is O(h) by Theorem 4.2. The discretization

of time is O((At)2) = O(h*). All these imply that the numerical solution has global error
O(h?). ‘

5. Numerical Examples

We choose some examples, in which the actual solutions are known, therefore numer-

ical error computations can be obtained to confirm the theoretical result of our method.
We choose

Q= 1,1 x [-1,1], t€[0,00], a (5.1,5.2)

QF={(z,y) eQ l2* +9% > 1/4}, Q7 = {(z,y) € Q |2®+y*<1/4}, (53,54)

I'={(z,9)eQ |*+y*=1/4}. (5.5)

7
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*The actual solution is known in the case f=0o

2

1 _=2
u(:z:, Y, t) = Ee—ﬁ{_'

(5)

We give the initial condition when ¢ = 1 and boundary condition when z or y=1lor -1

by using formula (5.6). We choose w=1.75 in (3.18). For different pairs of Bt and B~
t from 1.0 to 1.5, we obtain the following tables,

Euclidean norm:

h
- 0.100
0.050
0.025

h
0.100
0.050
0.025

h

0.100
0.050
0.025

h
0.100

0.050

0.025

Bt B error

1000 1 2.227782D - 04
1000 1 5.391984D — 05
1000 1 1.307318D-05
Table 5.1
Bt B error

1 1000 2.392997D — 05
1 1000 6.703319D — 06
1 1000 1.766744D — 06

Table 5.2

Bt B~ error
5 1 2.629529D — 04
5 1 6.351060D — 05

5 1 1.550294D — 05
Table 5.3 |
Bt B~ error

1 5 5.461059D — 05
1 5 1.309861D — 05
1 5 3.263757D - 06

Table 5.4

, in

in each the error is computed by using

ratio |
4.13
412

ratio

3.57
3.79

ratio
4.14
4.10

ratio

417
4.01

The tables show that when A is reduced to a half of it, the error is reduced approxi-
mately to a quarter of it. That confirms the numerical solution has second order accuracy.
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