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Abstract. In 1993, Li and Mayo gave a finite-diflFerence method with second order ac- 
curacy for solving the heat equations involving interfaces with constant coefficients and 
discontmuous sources [Proc. Symp. Appl. Math, Vol. 48, W.Gautschi ed., AMS, 1993, 
p 311-315]. In this paper, we improve the above result by presenting a finite-difference 
method which allows each coefficient to be taken different values in different subregions 
divided by the interface, that is ireful in applications. Our method abo has second order 
accuracy. 

1. Introduction 

Consider the heat equation 

Ut = {fiu^%^{Puy)y, (1.1) 

where t £ [a, oo) and {x, y) € O, a rectangular region in R^ with an irregular mterface 
r which divides O to two subregions Oi and fla. The solution u{x,y,t) and its normal 
derivative Unix,y,t) crossing the ciu-^e T are known to be discontinuous: 

[u] = u+-u-=u}{x(s),y(s),t), (1.2) 

W = «+-«-=^(a;(s),j/(s),t), (1.3) 

where s is a parameter of T, the superscripts -I- and - denote the limiting values of a 
fimction from one side in 0+ and another side in Q~ respectively. 

In 1993, Li and Mayo[3] gave a finite-difference method with second accuracy for 
solving (1.1), assuming that / is discontinuous but fi is comtant. In this paper, we present 
a finite-difi'erence method for solving (1.1), which allows fi to be taken different values m 
different subregioM divided by the interface, and which is useful in appUcations. More 
precisely, we ^sume: 



where 0^,fi~ are constants which can be distinct. 
We organize the paper as follows: In Section 2, we estabUsh local coordinate systena 

around the interface. In Section 3, we give the correction terms for the finite-difference 
method. In Section 4, we show that our method is second accm-ate. Finally, in Section 5 
we give some numerical examples, in which the actual solutions are known, to confirm the 
theoretical result. 
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2. Local Coordinate Systems 

We first give local coordinate systems along the interface F as [2,3]. When a point on 
the interface m fixed for the origan , we me the normal direction as the |-dkection, which 
has an angle 0 with the ar-axis. Rotating the |-direction by ninety degrees anti-clockwise, 
we obtain the jy-direction. Now we express the curve F as a fimction of the independent 
variable rj locally: 

^ = xin)' (2.1) 

We express (1.2),(1.3) locally by using the rj coordinate: 

[u] = u+-u-=uifj,t), (2.2) 

[«„] =«+-«-= ^(^, t), (2.3) 

where w, g are known in advance. From 

Using differentiation w.r.t. rj, noting x(0) = 0, we have: 

[ur,] = Urj,        [u^] = g, (2.5,2.6) 

[ur,n] =-gXm + ^vm        i^iv] ='^vXm + 9n- (2.7,2.8) 
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Changing (1.1) locally, we have:' 

which implies 

where 

[««] = Ndi + 

huh = 9Xm - (*>m 
r 

(2.9) 

(2.10) 

(2.11) 

In (2.5)-(2.11), all functions in the right-hand sides are known except [^] in (2.10) which 
will be explored in the next section. 

3. Correction Terms 

We first discretize in both of the a:-direction and the y-direction by mesh size h: 

1 / 
Ua>x^Sa;Ui,j = J^{Ui.ij-2Ui,j+Ui+ij), (3.1) 

Uyy   ^  SyUi^j   =   J^i^iJ-l   -  2Ui^j  + l^i.^+l). (3.2) 

We group all the grid points in 0 into two sets. The set Sreg consists the regular points, 
each point in one subregion has no neighbor point in the another subregion. The set Sirl 
consists the irregular points, each point in one subregion h^ at least one neighbor point 
in the other subregion. For a regular grid point, the local truncation error of (3.1),(3.2) 
from Pug,^ +0yy + f'm 0{h^). For an irregular grid point, we need add some correction 
teruM in (3.1),(3.2) such that the local truncation error is 0(h), therefore the global error 
of the solution for solving the heat equation is 0{h^) after the discretization of time t in 
certain way. 

At first, we relate the jumps w.r.t, x and y to the jumps w.r.t. | and rj: 

[u^] = [u^]cosd - [ur,]sine,        [uy] = [u^]sin0 + [u^]cos9, (3.3,3.4) 

where 

where 

lUxx] = [Uxxh + COS 0j 

[uxx]i = [u^ilicos^e - 2[u^jj]cos9sine + [ur,r,]sinH, 

[Uyy]   =   [Uyyll  + 
Ut 

101 
sin^O, 

[uyy]i = [u^^lisinH + 2[u^r,]cosesmd + [ur,rf]cosH. 
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*By (2.5)-(2,ll), all the terms in the right-hand sides of (3.3)-(3.6)are known except [^]. 
Now we coMider an irregular grid point in a;-direction, there are four cases:        ^ 

(a)    ixi,yj)€n-,ixi+i,yj)€a+',      .(6)    ixi,yj) ea+,{xi^i,yj) sQ-; 

(c)    ixi,yj)en+,ixi+i,yj)eQ-;        (d)    ixi,yj)€Q-,{xi-i,yj)eQ+. 
For case(a), let the intersection of the line segment connecting ixi,yj),{xi+i,yj) and T is 
(a;*,|/j). Using Taylor's series around a;*, we have: 

J^Mxi-i, yj) - 2u{xi, yj) + u{xi+i, yj)} 

= p{N + Mi^i+i - X*) + %l(a^i+i - x*f} + «-, + Oih), 

which implies 

where 

u^a^ = 4«i,i + Ca^Uij - -^ — + Oih), (3.7) 

Ca^uij = -^{[u] + Mixi+i - X*) + t^Ca^Hi - x*fh 

Similarly, for case(b), we have 

Ua;x = Sa^Uij + Ca;Ui^j + S—^^ -+0{h), (3.8) 

where 

O.rnj = ^{[u] + W(a.,_i - X*) + %li(a:,_i - x^h 

For c8Be(c), we have 

U^m = S^Ui^j + Ca;Uij + -^—^p + 0{h), (3.9) 

C.Uij = ^{[u] + [«.](a:,+i - :.*) + I^(a;Hi - x^f). 

For C8Be(d), we have 

r«t](a;^_j _ 2.*)2 
Ma:a: = 4Wi,i + C^Uij - -^ *— + 0{h), (3.10) 

where 

<^.«».i =-pIN + WN-i - a^*) + %li(a:,_i - a.*)2}. 
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Analogously, in j/-direction,' we also have four c^es. We add correction terms such 
that the local truncation is 0(h). 

Now using these correction terms in both x- and y- directions, we obtain a system of 
ordinary differential equatioi^: 

.2 X 2^5 

Ut 
——^p——} + Oih% (3.11) 

where io = « - 1 or i +1, jo = j - 1 or j +1. TO,^, Ty^ = 1 or -1 according to (3.7)-(3.10). 
We have 

= «♦ + M 
r' 

1 + o(^). 
which imply 

"*1      f      \ 

Using (3.14), we have the following system of ordinary differential equations: 

(3.12,3.13) 

(3.14) 

■ 1,T,.  {a!io-a;*)2cos2#. 

1    Z/(«,„,j,.)eSi„ ^IjsJ"^"     SP " ~ E(«%»io)6S,„ ^[|]- 
n%„(yio-r)'afa'g-    (^-^^^ 

2A2 

At a regular grid point, the local truncation error of the right-hand side of (3.15) from 
fiuxx + ^i,y + / is 0{h^). In the next section, we will show that at an irregular grid point, 
the local truncation error is 0(ft). 

Finally, we discretize time t by choosing At = h^. We use Crank-Nicholson method: 

-|-0.5F(ui j_i,fc+i, Ui-ij^k+u Ui,j,k+u Ui+i,j,k+u Ui^j+i,k+i))i (3.16) 

which implies the local truncation error for dkcretizing t is 0{{M)^).{see [1,4].) To solve 
«»,i,fc+i from (3.16), we use S.O.R. iteration with certain parameter w: 

(0) _ 
(3.17) 

and 

An) 
^ij,k+i - (1 - w)«4fc+i + w(wi,j,fc -I- 0.5F(«ij_i,fc, «i_ij,fc, uij^k, Ui+ij,k, Ui,j+i,k) 

Xn+l) ,(n+l) in) + 0 5Ff«^ ."^^^       u^''^'-'       M^"^       w^**^ «i*»^ ^^ «-1 9 

(3.18) 



'4. Accuracy Analysis 

We first show that the denominator of the right-hand side of (3.15) is bounded below 
and above by positive coi^tants: 

Lemma 4.1.       Let Dij = 

1-   E   /3 
1 1 TyioiVio-y*fsinH 

2^2 

Tien 
1 

(4.1) 

(4.2) 

where io = i-lori +1, JQ =j-lorj + l. TO,,^, Ty.^ = 1 or -1 according to (3.7)-(3.10). 

Proof:      At first we prove the lower bound. Look at the first summation. In x-direction, 
we have four caaes. 
(a) (xi, yj) e 0-, {xi+i, yj) € 0+. Then Xi^ = Xi+t, r^,.^ = -l,fi = fi-^ 

and 0 Txi^ = 1 - 1+ which is positive iff ^~ < ^+. 

(b) {xuyj) € 0+, (xi^uyj) € O". Then Xi^ = Xi-i, r^.^ =1,0 = fi+, 

and 0 i  Txi^=i-^ which is positive iff ^+ < ^-. 

(c) (xuvj) € 0+, ixi+i,yj) € n-. Then Xi^ = ar^+i, T^.^ =hfi = fi+, 

and ^  i  Ta;,^ = 1 - |i which is positive iff ^+ < ^-. 

(d) (xi, Vj) G 0-, (a:i+i,y^) € 0+. Then Xi^ = ^i_i, T^,.^ = -1, ^ = ^-, 

and ^  i  Ta;,^ = 1 - 1^ which is positive iff 0- <0+. 

For all cases, a term in the first summation is positive iff ^ = min{0+,0-}. Similarly 
we can show that a term in the second summation is positive iff ^ = min{0+,p-} too. 
Only the positive terms will reduce the lower bound of the left-hand side of (4.1). So the 
left-hand side is bounded below by 

■P:.- -- 1    0 5(1     ^^^(^^'^ h    0 5f 1     rnini0+, 0-)       min{p+ 

fi-y 
Now we tiu-n to the upper bound which can be proved directly from (4.1): 

Di,j < 1 + 0.5^ 
1 

-1-0.5^ 
1 

<l + max{P+,fi-) 
1 

The lower bound in (4.2) is meful for the stabiHty of the numerical scheme and the 
upper bound will be used for the following theorem: 



Theorem 4.2. 

Fi'Ui,i-i,n-i,j,Uij,Ui+ij,Uij+i) - {fiu^^ + puyy + f){xi,yj) = Oih), 

where {xi, yj) is an irregular grid point in Q, 

Proof:      Rrom (3.15), (3.14), (4.2) and (3.11), we have: 

F{tii,j-i,Ui-i,j,Uij,Ui+ij,Uij+i) = {uij)t = 

(4.3) 

dxio,y)eSi 

UTxf^Xi^ -x*fcoaH 
-iuuh{   E   ^[^]"'°'"°;.1^"""'+   E   0[h:«dy^^-v'^"''^'' 2^2 

(a:*.Wo)6S<, 
2^2 

--0{SmUi,j + SyUij} + fi^j + 0 E feWi,i + 
^«io(«»o-a:*)^cos2a 

2ft2 } 

=0«a:rB + ^%j, + /)(»i, ^j) + 0{h), 

Hi 
2^2 } + Oih) 

which proves (4.3). 
At a regular grid point, the local truncation error for discretization is 0{h^). At an 

irregular grid point, the local truncation error is 0{h) by Theorem 4.2. The discretization 
of time is 0{{At)^) = 0{h*). All these hnply that the numerical solution h^ global error 
Oih^). 

5. Numerical Examples 

We choose some examples, in whidi the actual solutions are known, therefore numer-- 
ical error computations can be obtained to confirm the theoretical result of our method. 
We choose 

0 = [-l,l]x[-l,l],    te[0,oo]. (5.1,5.2) 

n+ = {ix,y)€Q    \m^ + y^>l/4},    0- = {(a;,y)€Q    Ix""+ y^ <l/4},      (5.3,5.4) 

r = {ix,y)eQ   1^2 + 1,2 = 1/4}, 
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'The actual solution is known in the case / = 0: 

«(»,!/.*) = -e ^^. (5.6) 

We give the initial condition when « = 1 and boundary condition when xoxy = lot -I 
by using formula (5.6). We choose w=1.75 in (3.18). For different pairs of ^+ and ^-, in 
t from 1.0 to 1.5, we obtain the following tables, in each the error is computed by m'ing 
Euclidean norm: 

h        fi+     fi error ratio 
0.100   1000     1     2.2277821? - 04  
0.050   1000     1     5.3919841? - 05     4.13 
0.025   1000     1     1.3073181? - 05     4.12 

Table 5.1 

h      P+     p~ error ratio 
0.100     1     1000   2.3929971? - 05  
0.050     1     1000   6.7033191? - 06     3.57 
0.025     1     1000   1.7667441? - 06     3.79 

Table 5.2 

h      ^+   fi~ error ratio 
.100 5 1     2.6295291? - 04  — 

.050 5 1     6.3510601? - 05 4.14 

.025 5 1     1.5502941?-05 

Table 5.3 

4.10 

h       P^    P error ratio 
.100 
.050 
.025 

1 
1 
1 

5 
5 
5 

5.4610591? - 05 
1.3098611? - 05 
3.2637571? - 06 

Table 5.4 

4.17 
4.01 

The tables show that when h is reduced to a half of it, the error is reduced app: 
mately to a quarter of it. That confirms the numerical solution has second order accm-acy 

roxi- 
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