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ABSTRACT 

Biological evidence suggests that information 
encoding in the form of oscillatory patterns is 
advantageous compared to convergent, fixed-point 
type memories. Freeman's Kill model is an example 
of operational chaotic memory neural networks. 
Noise plays a constructive role in the model by 
maintaining and stabilizing aperiodic orbits. Gaussian 
noise components are injected to the model at 
different locations: at the input channels and also at a 
centrally located internal node. Depending on the 
noise intensity and bias, resonance effects have been 
identified in the Kill model. The observed noise 
effects have some similarity with stochastic 
resonance, but there are very essential differences. 
The interaction of noise with the oscillatory signal 
has a resonance character in the Kill model. The 
oscillatory signal in Kill, however, is not coming 
fi-om the external world, but it is the result of the 
interaction of the various internal components. 
Therefore, the signal has an intimate interference 
with the noise. These effects are illustrated in pattern 
recognition problems. 

Keywords: Chaotic Neural Memory, Noise, Freeman 
Network, Pattern Recognition. 

1. INTRODUCTION TO CONVERGENT AND 
OSCILLATORY NEURAL NETWORKS 

An overwhelming part of neural networks today uses 
fixed point convergence for information encoding. 
The reason of the wide proliferation of convergent 
NNs is their relative simplicity, the existence of firm 
mathematical foundations established during a latent 
period in the 60 s and 70 s, and the explosive 
development of this field in the 80 s. The past decade 
showed a wide range of impressive applications of 
NNs together with other connectionist, soft 
computing technologies in the field of, e.g., pattern 

recognition, system identification, and adaptive 
control, see Schwartz (1990). 

There is a growing number of neural network models 
that use nonlinear dynamics for information 
processing. Often these models use limit cycle 
oscillations for encoding and retrieving data Fukai & 
Shiino (1992), Wang (1998). Using bifurcation 
sequences of an attractor in a high-dimensional space 
can serve to that purpose. In equilibrium NNs, the 
stored memory patterns correspond to local minima 
of the static landscape of the network energy 
function. The shape of this energy function can be 
very complex and it may contain a lot of spurious 
local minima preventing the correct retrieval of 
certain patterns. Limit cycle-based NNs do not suffer 
from this problem as they encode the patterns not in a 
single minimum, but in a finite sequence of jumps. 

Another advantage of limit cycle encoding is memory 
efficacy. The number of patterns memorized by 
equilibrium NNs cannot exceed the number of fixed 
points of the dynamics, which, in turn, are strongly 
limited as the function of the number of processing 
elements. Bifurcative NN encoding schemes have 
higher memory capacity by realizing an encoding as 
a combination of jumps among the fixed points of the 
dynamics. As a whole, however, the memory is still 
linked to the fixed points of the dynamics in both 
equilibrium and bifurcative schemes. 

In typical equilibrium type encoding systems, the 
noise and the overlap of the pattern classes is 
undesirable. In non-equilibrium NNs, the noise can 
play a completely different, constructive role. 
Examples are the noise-mediated signal enhancement 
in stochastic resonance (SR) Gammiatoni et al. 
(1998) and the stabilization of aperiodic attractors by 
sensory and central noise in the Freeman Kill sets; 
Freeman (1994). 



excitatory (E) or inhibitoiy (I) KO sets, KI_E or KIJ 
sets are formed, respectively. The interaction of KI_E 
and KI_I sets constitutes the KII set. Finally, 
coupling several KII sets with excitatory, inhibitory 
feed-forward and feedback loops, one arrives at the 
Kill set. 

The Kill model is an example of layered networks 
with nonlinear units having the following types of 
coupling: (i) feed-forward connections between 
layers, (ii) lateral excitation or inhibition across 
certain layers, (iii) feedback connections between 
layers. Decade-long studies indicate that this class of 
networks can exhibit a wide range of dynamic 
behaviors, i.e., fixed point and limit cycle attractors, 
quasi-periodic oscillations and chaos. Kill models 
can grasp the essence of the observed dynamic 
behavior in certain biological neural networks, 
including that of the olfactory system. Freeman 
(1992). In the Kill model of the olfaction the layers 
correspond to: receptors (R), periglomenilar cells (PI 
and P2), olfactory bulb (OB), anterior olfactory 
nucleus (AON), prepyriform cortex (PC) and deep 
pyramidal cells (C). There is a general feed-forward 
structure from R to PI and OB, and from OB to AON 
and PC via the lateral olfactory tract (LOT). Lateral 
connections are incorporated at the OB at two levels, 
while feedback is directed from PC to AON, from C 
to OB, and from AON to OB and PI via the medial 
olfactory tract (MOT). The OB, the AON and PC are 
all examples of interconnected KII sets. 

The operation of the memory can be described as 
follows. In the absence of stimuli the system is in a 
high dimensional state of spatially coherent basal 
activity. The basal state is described by an aperiodic 
(chaotic) global atfractor. In response to external 
stimulus, the system can be kicked-off from the basal 
state into a local memory wing. This wing is usually 
of much smaller dimension than the basal state. It 
shows coherent and spatially patterned amplitude- 
modulated (AM) fluctuations. After the residence of 
the system in this localized wing, it returns to the 
basal state. This is a temporal burst process having a 
duration of about 100 ms. A memory pattern is 
defined therefore as a spatio-temporal process 
represented by the sequence of spatial AM patterns 
during the burst. 

The Kin model has been used to actually implement 
the above memory process. Using advanced 
optimization techniques, the system can be trained to 
learn a collection of given patterns (Chang and 
Freeman, 1996). There is a problem, however, in the 
utilization of the Kill model as a powerful dynamical 
memory device. It is the fragmentation of the global 

aperiodic (chaotic) attractor into quasi-periodic local 
atfractors, following input-induced state transitions. 
The optimized system is extremely sensitive to small 
changes in system parameters due to attractor 
crowding (Chang et al., 1998) which practically 
prevented effective generalization. This problem has 
been the impediment of fiirther progress in this field 
for several years. 

Attractor crowding is an unavoidable manifestation 
of the complexity of the high-dimensional chaotic 
Kin system. Highly evolved, fractured attractor 
boundaries are found, which produce a mixture of 
various attractors in a small neighborhood of a 
typical point of the state space. As the external 
conditions vary, the low-dimensional subspace into 
which the system collapses also changes. The 
complicated landscape indicates that fine-tuning the 
system parameters to a narrow section of the given 
attractor could be a daunting and practically 
imfeasible task. As an important development in the 
theory and implementation of dynamical memories, it 
has been shown that attractor fragmentation can be 
effectively utilized in building robust memories 
Kozma and Freeman (1999, 2000). Accordingly, we 
acknowledge the co-existence of a range of attractore 
in any actual realization of the system and build 
robust Kill dynamics in this way. 

The main idea is illustrated on the example of the 
relatively simple KII subsets. Various KII set can be 
identified in the olfactory system, as OB, AON, and 
PC. The impulse responses of these KII sets are 
decayed oscillations. There are, however, important 
differences in the asymptotic behaviors. 
Physiological evidence shows unbiased fixed point 
for the OB, and inhibitory and excitatory bias for PC 
and AON, respectively; see Freeman (1992). 
Parameter studies show that there are significant 
overlaps among the attractors, depending on the 
initial conditions. This behavior resembles the 
partially ordered phase-type attractors (glassy or 
intermittent) in globally coupled lattices, Kaneko 
(1990). Details of the dynamical behavior of KII sets 
are given in Kozma and Freeman (2000). In this 
paper, we concentrate on the highest level dynamics 
of the Kill model. 

4. PATTERN RECOGNITION USING 
SPACE-TIME ENCODING 

There are several requirements toward a biologically 
plausible model of chaotic memories. Remaining 
with the example of the olfaction, these conditions 
can be formulated as follows. Freeman et al. (1997): 



• broad band aperiodic fluctuations in the basal 
state of the olfactory bulb with 1/f- type power 
spectral densities, 

• spatially coherent behavior in the olfactory bulb, 
• temporal fluctuations at various levels should 

have close to normal distribution in the basal 
state, 

• the magnitudes of the wave density signals of the 
periglomerular (PG) cells should concentrate on 
the right of the maximum gradient of the 
asymmetric wave-to-pulse transfer fimction, 

• the magnitudes of the wave densities of the 
signals in the olfactory bulb should concentrate 
on the left of the maximum derivative of the 
transfer function, 

• phase transition should occur swiftly, within 
about 10 ms after the onset/termination of the 
stimuli. 

The Kill model satisfies these conditions and it can 
be considered as a biologically realistic model of 
measured EEG signals. 

In the Kill model, several learning tools are used. 
One is the Hebbian learning of stimulus patterns, the 
other is habituation of background activity. 
Habituation can be modeled as weight decay in the 
form of forgetting, as it is described in the previous 
sections. A third mechanism involves nonlinear 
adaptive control techniques aiming at the 
stabilization of the trajectories. All these learning 
methods exist in a subtle balance and their relative 
importance changes at various stages. As a read-out 
procedure from the Kill model, AM patterns are 
calculated for the 8x81attice on the Mitral level. 

Rather we have to rely of the sequence of somewhat 
blurred patterns with intermittent fluctuations in our 
classification task. 
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Figure 1 Spatio-temporal sequence of AM patterns; post- 
stimulus signal analysis of rabbit experiments with two 
visual stimuli; A and B. The time step of the image 
processing is 64 ms; sampling time is 1 ms. 

We used 5 patterns from both classes for the training 
in 10 sequential steps. Consecutively, the trained 
model has been used for classifying 30 untrained 
patterns (15 from each class). In the classification we 
have evaluated the Euclidean distance between a 
given pattern and the previously determined centers 
of the two classes. We evaluated these distances for 
the RMS patterns calculated on the OB level in the 
model and compared it with the classification based 
on the distances obtained for the original input data 
sets. 

The Kill model is used for the classification of the 
experimentally observed RMS data. Experiments 
have been conducted with rabbits which were 
chronically implanted with square arrays of 64 (8x8) 
electrodes. The rabbits have been trained to recognize 
two types of visual stimuli. The measured data in the 
form of 64-dimensional patterns have been used as 
input patterns to the Kill model. Readout is 
conducted at the mitral level (3"* layer) of Kill in the 
form of gamma-band (40Hz to 80 Hz) oscillation 
intensity. 

Examples of the EEG rms patterns are shown in Fig. 
1. One can see clear differences in the rms patterns 
corresponding to the different stimuli. At different 
time steps, the differences can become less obvious 
or even conftising, as it is seem in Fig. 1. The change 
of the spatial AM magnitude pattern during the input 
induced phase transition is clearly visible. However, 
there is no 'fixed' pattern of rms for identification. 

NOISE TO aONAL RATIO % 

Figure 2: Classification performance of Kill (solid line); 
the classification performance of the pure statistical 
clustering method is shown by dash. Note the significant 
improvement of the performance of the model at moderate 
additive noise levels. 

The results are summarized in Figure 2, where the 
correct classification rate of the Kill model is shown 
in solid line. The classification rate based on the 



original input EEG rms data (without noise) is given 
in dashed line. It is seen that, by applying moderate 
additive noise levels, we could achieve an improved 
classification performance by Kill compared to the 
pure clustering method. 

5. ROLE OF NOISE IN THE MEMORIES 

In this section, the relation between the aperiodic 
behavior of the Kill and typical low-dimensional 
deterministic chaos is discussed. Also, we explain the 
novel features of parametric noise effect in the Kill 
model in the context of stochastic resonance (SR). SR 
is another interesting application of information 
processing in noisy chaotic systems. SR has become 
a well-established research field during the past two 
decades and it is widely applied in various 
disciplines, from laser physics, semiconductor 
devices, through neurophysiology. SR effect can 
arise in a bi- or multi-stable system with an energy 
threshold between the states. External or internal 
noise can initiate a transition between the states. This 
effect has a resonance character and it can be used to 
enhance a weak (periodic) input signal, thus 
producing a high signal-to-noise ratio. For an 
overview of this field, see Gammaitoni et al. (1998), 
Assumian & Moss (1998). Examples of successful 
implementation in neural systems are Moss & Pei 
(1995), Bulsara et al. (1996), Mitaim & Kosko 
(1998), among others. 

It is very likely that brains use resonance effects in a 
more subtle way than it is suggested by the original 
SR theory. This issue will be elaborated further in 
connection with the properties of the Freeman Kill 
nets. Noise has a special role in the Kill model. 
There are Gaussian noise components injected at 
different locations: at the input channels and also 
centrally at the AON. The input noise is spatially 
independent and rectified while the central noise in 
centrifugal and uniform in space with possible bias. 
Depending on the noise intensity and bias, resonance 
effects have been identified in the Kill model. 

Brain chaos has been analyzed experimentally and 
theoretically and it is called stochastic chaos by 
Freeman (2000). These noise effect have some 
similarity with stochastic resonance but they have 
very crucial differences as well (Kozma & Freeman, 
1999). A comparison of SR and Kill resonance is 
given in Table I. SR has 3 main components: a bi- or 
multi-stable energy function, weak (periodic) input 
signal and noise. The addition of noise can enhance 
the signal-to-noise ratio which is of great practical 
importance for signal processing applications. The 
interaction of noise with the oscillatory signal has a 

resonance character in the Kill model as well. The 
oscillatory signal in the Kill model, however, is not 
coming from the external world, but it is the result of 
the interaction of the various internal KII 
components. Therefore, the signal may have an 
intimate interference with the noise in a Kill system, 
as compared with the pure input/output relationship 
in the case of SR. Another difference is that the 
energy function is fixed in SR while the complex 
energy function can be adapted in the Kill model. 

6, CONCLUDING REMARKS 

The Kill model produces biologically plausible 
results that are used for the interpretation of EEG 
measurements conducted in mammalian olfactory 
systems. Intensive future studies are required to 
discover the complexity of the dynamics of rules 
inferred from various neural networks and to utilize 
them in understanding intelligence in computational 
and biological systems. 
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Table I Stochastic Resonance versus Parametric Noise In Kill 

Stochastic Resonance (SR) Parametric effect of noise In Kill 

Fixed bi- (multi-) stable nonlinear system Continuously changing multi-stable nonlinear system 
Weak (periodic) signal transmitted The fluctuating carrier signal originates from inside 

External and internal noise magnifies the input signal by 
de-stabilizing chaos 

Input and central noise stabilizes the system and amplifies 
the chaotic signals 

Maximum signal-to-noise ratio at a well-defined noise 
level (resonance) 

Maximum amplification at some intermediate noise level 

Components are chaotic Components are not chaotic and chaos is the collective 
featare of Kill 


