
Box-Trees and R-trees with Near-Optimal Query Time

Pankaj K. Agarwal^
Center for Geometric Computing
Depairtment of Computer Science

Box 90129 Duke University
Durham, NC 27708-0129, USA

pankajOcs.duke.edu

Mark de Berg
Institute of Information
and Computing Sciences

Utrecht University, PO Box 80 089
3508 TB Utrecht, The Netherlands

markdbOcs.uu.nl

Joachim Gudmundsson
Institute of Information
and Computing Sciences

Utrecht University, PO Box 80089
3508 TB Utrecht, The Netherlands

joachimOcs.uu.nl

Mikael Hammar
Department of Computer Science

Lund University
Box 118

22100 Lund, Sweden
mikaelQcs.lth.se

Herman J. Haverkort*
Institute of Information
and Computing Sciences

Utrecht University, PO Box 80 089
3508 TB Utrecht, The Netherlands

hermanOcs.uu.nl

ABSTRACT
A box-tree is a bounding-volume hierarchy that uses axis-
aligned boxes as bounding volumes. The query complexity
of a box-tree with respect to a given type of query is the
maximum number of nodes visited when answering such a
query. We describe several new algorithms for construct-
ing box-trees with small worst-case query complexity with
respect to queries with axis-parallel boxes and with points.
We also prove lower bounds on the worst-case query com-
plexity for box-trees, which show that our results are optimal
or close to optimal. Finally, we present algorithn^ to con-
vert box-trees to R-trees, resulting in R-trees with (almost)
optimal query complexity.

1. INTRODUCTION

Motivation and problem statement. Window queries re-
port all objects of a given set that intersect a query d-
rectangle, that is, a d-dimensional box. Preprocessing a set
S of geometric objects in E"* for answering such queries is

^The work by P.A. is supported by Army Research Office
MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by
NSP grants BIA-9870724, EIA-997287, and CCR-9732787,
and by a grant from the U.S.-IsraeU Binational Science
Poimdation.
*The work by H.H. is supported by the Netherlands' Orga-
nization for Scientific Research (NWO).

A Ml version of this paper is available as PDF-file at
www,cs.uu.nl/people/hennan/cs/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
lepublish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG'Ol, June 3-5,2001, Medford, Massachusetts, USA.
Copyright 2001 ACM l-58n3-357-X/01/0006 ...$5.00.

central to many applications and has been widely studied in
several areas, including computational geometry, computer
graphics, spatial databases, GIS, and robotics [7, 17]. In
order to expedite and simplify the data structure, a win-
dow query is often answered in two steps. In the iirst step,
called the filtering step, each object is replaced by the small-
est box containing the object and the query procedure re-
ports the bounding boxes that intersect the query window.
(Instead of boxes, other simple shapes such as spheres, el-
lipsoids, cylinders have also been used.) The second step,
called the refinement step, extracts the actual objects among
these bounding boxes that intersect the query window [4,
19]. A few recent results show that under certain reasonable
assumptions on the input objects, the number of bound-
ing boxes intersecting a query window is not much larger
than the number of objects intersecting the window, which
makes this approach quite attractive; see the paper by Zhou
and Suri [21] and the references therein. There has been
much work on the filtering step, and we also focus on this
step. More precisely, we wish to preprocess a set S of n
d-rectangles in R** so that all rectangles of S intersecting a
query <f-rectangle can be reported efficiently. We will refer
to this query as the rectangle-intersection query. A related
query is the rectangle-containment query in which we want
to report all rectangles in S that contain a query point.

A number of data structxires with good provable bounds
for answering rectangle-intersection queries have been pro-
posed. Unfortunately they are of limited practical iKe be-
cause the amount of storage used te rather high: O(Tilogii)
storage and even 0(n) storage with a large hidden con-
stant are often unacceptable. Therefore in practice one usu-
ally uses simpler data structures. A commonly used struc-
ture for answering rectangle-intersection queries, rectangle-
containment queries, and in fact many other types of queries
is the bounding-box hierarchy, or box-tree for short, some-
times also called AABB-tree: this is a tree T, in which each
leaf is associated with a rectangle of the input set S, and
each interior node v is associated with the smaltet box B^
enclosing all the rectangles stored at the leaves of the sub-

124

Lite j fUsJtO i iUti J^iMi tiViCt^ i tk

Approved for Public Release
Distribution Unlimited 200305U 122

tree rooted at v. All the rectangles of S intersecting a query
rectangle R are reported by traversing T in a top-down man-
ner. Suppose the query procedure is visiting a node v. If
Bj/ n iJ = 0, there is nothing to do. If Bu C R, then it
reports all rectangles stored in the subtree rooted at v. Fi-
nally, if Bi/ n i? ,1^ 0 but Bv g R, it recursively visits the
children of v. We say that R crosses a node u if B^DRj^ <D
and B^ 2 R. If the fan-out of T is bounded, then the query
time is proportional to the number of nodes of T that R
crosses plus the number of rectangles reported. We define
the stabbing number of T to be the maximum number of
its nodes crossed by a rectangle. It is therefore desirable
to construct a bounding-box hierarchy with small stabbing
number.

In many applications, especially in the database appli-
cations, the set S is too large to fit in the main memory,
therefore it is stored on disk. In that case, the main goal is
to minimize the number of disk accesses needed to answer a
window query, and the performance of an algorithm is ana-
lyzed under the standard external memory model [2]. This
model assumes that each disk access transmits a contiguous
block of t units of data in a single input/output operation (or
I/O). The efficiency of a data structure is measured in terms
of the amount of disk space it uses (measured in units of disk
blocks), the number of I/Os required to answer a query, and
the number of I/Os needed to construct the data structure.
In the context of bounding-box hierarchies, several schemes
have been proposed that construct a tree as above but in
which the fanout of each node depends on t. Some notable
examples of external-memory bounding-box hierarchies are
various variants of R-trees; see the survey paper [11]. We
can still define the crossing nodes and the stabbing number
as earlier, and one can axgue that the number of I/Os needed
to answer a query is proportional to the stabbing number
plus the output size.

In this paper we study the problem of constructing bound-
ing-box hierarchies, both in main and external memory, that
have low stabbing number, and consequently, low query
complexity.

Previous results. As noted above, several efficient data
structures have been proposed for answering a rectangle-
intersection query. For example, Chazelle [5] showed that a
compressed range tree can be used to answer a d-dimensional
rectangle-intersection query in time 0(log'''"' n + k) using
0{n log**"' nf log log n) space (where k is the number of rect-
angles reported). This data structure is too complex to be
practical even in R^. As for bounding volume hiearchies, we
know of only one result on the query complexity of rectangle-
intersection queries (besides the results on R-trees discussed
later): if one maps each rf-rectangle to a point in M^'', con-
structs a kd-tree on these points, and converts the kd-tree
back to a box-tree, then the query time is known to be
0(n^"'^^^'' -1- k) [1, 15]. A number of heuristics based on
fed-trees have also been proposed to answer rectangle-inter-
section queries [1, 18]. Several papers [12, 14] describe how
to construct bounding-box hierarchies or other bounding-
volume hierarchies (for example, using fc-DOPs as bounding
volumes), but they do not obtain bounds on the worst-case
query complexity.'

Some of the most widely used external-memory bounding-
box hierarchies are the R-tree and its variants. An R-tree,
originally introduced by Guttmann [13], is a B-tree, each of
whose leaves is associated with an input rectangle. All leaves
of an R-tree are at the same level, the degree of all internal
nodes except of the root is between t and 2(, for a given pa-
rameter t, and the degree of the root varies between 2 and
2i. We will refer to t £is the minimum degree of the tree.
To minimize the query complexity, several methods have
been proposed [9, 10, 11, 16] for ordering the input rect-
angles along the leaves—varying from simple heuristics to
space filling curves—but none of them guarantee the worst-
case performance. In the worst case, a linear number of
bounding boxes might intersect a query rectangle even if
it intersects only 0(1) input rectangles. The only analyti-
cal results are by Theodoridis and Sellis[20], who present a
model that predicts the average performance of R-trees for
range queries, and Faloutos et al. [10], but they prove bounds
on the query time only in the 1-dimensional case when the
input intervals are uniformly distributed and have at most
two different lengths. Recently, de Berg et al. [6] described
an algorithm for constructing an R-tree on rectangles in R'
so that all k rectangles containing a query point can be re-
ported in 0{{(7 + logp) log n/ log t) I/Os. Here p is the ratio
of the mciximum and the minimum x-lengths of the input
rectangles, and a is the point-stabbing number of 5, that
is, a is the maximum number of input rectangles containing
any point in the plane. For a rectangle-intersection query,
the number of I/Os is 0{((T -I- log p -I- «J -I- fc)log7i/logt),
where w is the ratio of the x-length of the query rectangle
to the smallest x-length of an input rectangle.

Our results. In this paper we first describe several algo-
rithms for constructing box-trees, and we prove lower bounds
on the worst-case query complexity of box-trees. The lower
bounds actually hold for all bounding volume hierarchies
that use convex shapes as bounding volumes.

Our first algorithm, like the approach mentioned earlier, is
based on a kd-tree in R^"*. By changing the structure slightly
and doing a more careful analysis, we are able to obtain
0{n^~^^'' + k) query complexity for rectangle-intersection
queries. We also prove a lower bound showing that this
bound is optimal.

For disjoint input in the plane, we show how to con-
struct a box-tree that still has almost optimal query time for
rectangle-intersection queries, but much better query times
for point queries. In fact, it is already better for point-
queries when the point-stabbing number a of the input is
o(n/log''n): the time for rectangle-intersection queries is
0{y/n log n + \/alog^ n + k), and the time for point queries
is 0{\/alog^ n + k). We also develop a box-tree with 0{{a +
-Ja) log^ n+k) query time for use with query rectangles with
aspect ratio a. One would hope that similar improvements
are possible in higher dimensions. One of our lower-bound
results shows that this is not possible: in dimensions rf > 3,
the Q.{n^~^/^+k) lower bound on the query complexity holds
even for hypercubes as query ranges, and any bounding-box
hierarchy that achieves this query time cannot have a better
worst-case query time for point queries, even when the input
consists of disjoint 'almost-unit-hypercubes'.

'Barequet et al. [3] gave an algorithm to construct a
bounding-box hierarchy in R^, and they claimed that if the

rectangles in S are pairwise disjoint, then the resulting hi-
erarchy has O(logTi) stabbing number. But the argument
presented in the paper has a technical problem.

125

Finally, we give general methods to convert box-trees with
small query complexity into R-trees with small query com-
plexity. When we apply these results to our box-trees, we
improve the result of de Berg et al. [6]: our query complex-
ity does not depend on the parameter w (which makes their
query complexity linear in the worst case), and it is linear
in </a instead of in a. We also introduce the concept of
semi-R-trees; these are simDar to ordinary R-trees—^the de-
gree of each internal node, except for the root, is between t
and 2t for some given parameter *—except that the leaves
do not have to be at the same level. We give a general al-
gorithm to convert a box-tree with small query complexity
into a semi-R-tree with small query complexity; the bound
obtained here is better than that for R-trera. This leads to
semi-R-trees with (almost) optimal query complexity.

All box-tree construction algorithms in this paper run in
0{n log n) time, and all box-tree-to-(semi-)R-tree conversion
algorithms run in 0{n) time.

2. LOWER BOUNDS
In this section we give lower bounds on the query complex-

ity of semi-R-trees of minimum degree t in various settings.
Since semi-R-trees are more general than R-trees, the same
boun& hold for R-trees. By choosing t = 2, we obtadn lower
boun<te for box-trees.

We start with a simple generalization of the 2-dimensional
lower bound given by de Berg et al. [6].

THEOREM 2.1. For any n and d > 2, them is a set of n
disjoint unit bypercubes in E"* with the Mlowing property:
for any semi-R-tree T ofaunimmn degree t there is a query
box not intersecting any box from S such thai a query with
that box visits €l{{nltf~^l^) nodes in T.

PROOF. Consider a set of n unit hypercubes arranged in
an n^/'' x ■■■ x n^/^ grid, and the following set of query
ranges: for each axis, we choose n^'^ — 1 thin booc^ orthog-
onal to it and separating the 'slices' of the grid from each
other. Now any bounding box on t hypercubes intersects
at least d(t^/^ - 1) of the query ranges. Hence, the total
niunber of incidences between the rang^ and the bounding
boxes is at least il((n/t) -i^'^). As there are 0{n^''') ranges,
there must be one that intersects ft((T»/*)'~'/'') bounding
boxes. D

Next we describe a construction that proves lower bounds
on rectangle-containment queries and that is also useful for
a number of other cases. For any e > 0, we call a d-rectangle
an s-hypercube if the length of each edge is between 1 and
1 + e. We fix a parameter fi > 1 and construct a set
S = {6(0),... ,b{n - 1)} of ji e-hypercubes in R^. We also
construct two sets of query points Qi and Q2, called primary
and secondary point sets, that lie in the common exterior of
the rectangte in S and have the following property: for any
semi-R-tree T on S with minimum degree t, either a point
of Qi lies in at least u bounding boxes of T or a point of Q2
lies in n({nft)/ij.^^^^-^^ bounding boxes of T. From this
we derive the desired lower bounds. We first describe the
set S and then construct the point sets.

Let ni,..., n2d be the outward normals of a d-rectangle.
We can pair these normals into <f pairs (»iii,ni2), (n2i,n2a),
..., (ndijiidi) so that no pair contains opposite normals,
that is, mi # -na for 1 < » < d. Let hi be the 2-plane

spanned by the vectors nn and ma and containing the ori-
gin. Let 6 be a d-rectangle containing the origin. Since
nn ^ —na, the facets /ii,/»2 of b normal to nn and ni2,
respectively, share a (d - 2)-face fi, which is orthogonal to
the 2-plane h,. The intersection of /< and hi is a point a.
Conversely, by specifying a point a on each ftj, 1 < » < d,
we can represent a unique d-rectangle in which a lies on the
facets normal to nn and nn. We will therefore define each
rectangle b{j) € S by a d-tuple (ci(j),... ,Cd(j)), where the
facets of b(j) whose outward normals are nn and jij2 pass
through Ci{j). We next describe how to choose the points
Ci{j), for 1 < » < d and 0 < j < n.

On each 2-plane hi, we choose a line ti of slope —1; the
exact equation of ii will be specified below. We will refer to
Al as the primary plane, and to hi, for i > 1, as a secondary
plane. Set p, = /<*/(^"^J. We place n pointspi(0),... ,pi(n-
1) on li (sorted along ti by ascending nn-coordinate, and
consequently, by descending nj2-coordinate) and set ci{j) =
Pi(i) for every 0 < i < n. For each i > 1, we place p. points
Pi(0),...,Pi(fi - 1) on ti and assign Ci(j) to these points
as foUoTO. Let a(j) - (ao(i),. ..,a<i-2(i)) be the repre-
sentation of j mod/i in radix p., that is, I2*=o <** (j)A* =
i mod /«. For each » > 1, we set Cj(j) = pj(a<i_j(j)). Note
that nip points have the same value of Ci{f). We choose li
and the points on li so that each 6j is an e-hypercube, e.g.
by putting all points pj(i) a* a distance of at least 1/2 and
at most (1 -I- e)/2 fi-om the origin, both in their projection
on the Wji-axis and on the na-axis.

Finally, we choose a set Qi of n -1 points on the primary
plane fti and a set Q% of (d—l)(p—1) points on the secondary
planes, as follows. Suppose fti is the «ia;2-plane. For each
1 < i < n — 1, we choose the point q{§) = (a;i(pi(j —
l)))*2(pi(i))) and add it to Qi. In other words, if we regard
the points on €1 as the convex corners of a staircase, Qi is
the set of concave corners of the staircase. To construct Qi,
we repeat the same step for each of the secondary planes,
thM obtaining p — \ points on each of them. These points
will be on the boundary of some of the input boxes, but we
can shift them a little to make them disjoint from all input
boxes.

LEMMA 2.2. het T be any semi-R-tree of auninmm de-
gree t on the set S constructed above. Then either there
is a primary query point contained in n(/i) bounding boxes
stored in T, or one of the secondary query points is con-
tained in il(n/{tii^^^'~^^) bounding boxes stored in T.

PROOF. We first prove the lemma for box-tre^, which
are binary trees. Suppose that all primary query points
are contained in less than ftf2 bounding boxes stored in
the interior nodes in T. Then the number of incidences
between these points and interior nodes' bounding boxes is
at most (n — l)/i/2. Since there are n — 1 interior nodes
in T, they store at least (n — l)/2 bounding boxes that
contain less than p, primary query points. Observe that a
bounding box for input boxes b(J), b{j') 6 S contains \j —j'\
primary query points, because there are that many concave
corners in the staircase between corners a (j) and a (/). We
conclude that there are at least {n — l)/2 bounding boxes
that store boxes b{j),b{j') (and perhaps some more boxes)
with \j-j'\ < li. But if li - j'l < p then j ^ / (mod p), so
0(3) # a(j'). This implies that there is at least one i with
2 < »■ < d such that Ci{j) ^ Ci(J'). Hence, the bounding box

126

storing b{j),b{j') will contain one of the secondary query
points. So in total we have at least (n — l)/2 incidences
between secondary query points and bounding boxes, so one
of the {d — l){p - 1) = 0{fi^^^'^~^^) secondary query points
is contained in Q{n/fi^^^'^~^^) bounding boxes.

The generalization to semi-R-trees follows easily from the
observation that a semi-R-tree of minimum degree t has
Q,(n/t) nodes. If each primary query point is contained in
less than /i/2 bounding boxes, we then get Q{n/t) nodes
whose bounding box contains less than fi primary query
points. Prom that point on, we can basically follow the
argument above. D

We can use this lemma to prove lower bounds for several
settings. By substituting fi = (n/t)*"'^'', we prove the fol-
lowing lower bound for point queries.

THEOREM 2.3. For any n,d>2, and e > 0, there is a set
Sofn £-hypercubes in R'' with the following property: for
any semi-R-tree T of minimum degree t there is a point not
contained in any box from S such that a query with that
point visits n((n/t)*~^''') nodes in T-

Next, we modify the above construction so that the same
bound can be achieved in rf > 3 even if the input consists of
a set of n disjoint e-hypercubes and the queries are hyper-
cubes.

THEOREM 2.4. For any n, d > 3, and e > 0, there is a
set S of n disjoint e-hypercubes in R"* with the following
property: for any semi-R-tree T of minimum degree t there
is a hypercube not intersecting any box from S such that a
query with that hypercube visits n((n/f)'~'^'') nodes in T-

PROOF. We apply a variant of the construction above
with n = ■n}~^/^''~^^ to obtain a set of {d — l)-dimensional
boxes in the hyperplane xi = 0. The variation is that we
treat all planes on which we put the corners as secondary
planes. We use the remaining dimension to make the boxes
into d-dimensional e-hypercubes, and we translate each box
into the xi-direction such that they become disjoint and
intersect the xi-axis in the order fc(l),6(2),... ,b{n). In be-
tween every pair b{j), b{j + 1) we put a query point. These
n — 1 query points play the role of the primary query points.
The secondary query points are replaced by query ranges
which are hypercubes. We can do that in such a way that
the intersection of such a range with a secondary plane is
a square that misses S and that has one corner coinciding
with the secondary query points we had previously. It is
easy to see that the bound in Lemma 2.2 still holds. D

Finally, we observe that the proof of the preceding theo-
rem actually shows that in higher dimensions any semi-R-
tree with small (say, polylogeirithmic) query complexity for
points must have large (near-linear) query complexity for
ranges. More precisely, it shows the following result.

THEOREM 2.5. For any n, d > 3 and e > 0, there is a
set S of n disjoint e-hypercubes in R** with the following
property: for any semi-R-tree T of minimum degree t, if the
number of nodes visited by any point query is n, then there
is a hypercube not intersecting any box from S such that
a query with that hypercube visits f2(n/(</i^'''''~'')) nodes
inT.

3. FROM KD-TREES TO BOX-TREES
In this section we describe and analyze several methods to

construct box-trees using kd-trees. For convenience we will
allow our box-trees to have nodes of degree up to 2d -h 3—it
is easy to convert these trees to binary trees without affect-
ing the asymptotic bounds on the query complexity. Query
ranges (other than points) will be assumed to be open, while
input boxes, bounding boxes and cells in space decomposi-
tions are closed.

3.1 The configuration-space approacli

The basic method. Let S be a set of n arbitrary, possibly
overlapping, d-rectangles in R**, which we call the workspace.
As noted in the introduction, we can represent a rf-rectangle
b = ULil^TW'^ti^)] by a point (2:7(6),i;J(6), ...,a;J(&),
ii"(6),2:2^(6), ...,xj(6)) in R^'', which we call the configu-
ration space. We build a 2d-dimensional kd-tree on these
points.

A kd-tree is a binary space decomposition tree, which is
used to index points. Every node in a 2d-dimensional kd-
tree is associated with a cell, which is a 2d-rectangle, and
an axis-parallel splitting hyperplane. The splitting plane
divides the cell into two rectangular subcells, one for each
child of the node.

The root cell is chosen large enough to contain all input
points. The tree is then built recursively by determining
splitting planes for all cells. The orientations of the splitting
planes depend on the level in the tree, in such a way that all
possible orientations (2rf in this case) take turns in a round-
robin fashion on any path down into the tree. The location
of each splitting plane is chosen such that the numbers of
input points in the resulting subcells differ by at most one.
When a cell contains only one input point, we make it a leaf
of the tree and do not split it further.

To transform the kd-tree in configuration space into a
box-tree in workspace, proceed as follows. Replace the rep-
resentative point in each leaf by the corresponding input
box. Then, going bottom-up, store in each internal node
the bounding box of its children. We call the resulting box-
tree a configuration-space box-tree, or cs-box-tree for short.

In the introduction we pointed out that it can be used to
do rectangle-intersection queries in 0{n^~^'^ + k) time; in
this paper we will show how to improve the upper bound to
0{n'-''^-i-k).

For the analysis of the range query complexity of the cs-
box-tree, we need the following fact about kd-trees, given
here without proof

LEMMA 3.1. The number of cells at depth i in a d-dim-
ensional kd-tree that intersect an axis-parallel f-flat (0 <
f <d)isO{2*f''^).

A kd-tree and, hence, our box-tree has the following prop-
erty: the number of objects stored in the two subtrees of any
given node differ by at most one. We call such trees perfectly
balanced. The perfect balance in our box-tree will be advan-
tageous when we will convert it to an R-tree. We can now
analyze the range query complexity of a cs-box-tree.

LEMMA 3.2. Let S be a set of n possibly intersecting
boxes in the plane. There is a perfectly balanced box-tree for
S such that the number of nodes at level i that are visited by
a range query with an axis-aligned box is 0(2''^"^' ' -f- k),

127

where k is the number of boxes in S intersecting the query
range. The box-tree can be built in 0{nlogn) time.

PROOF. Let Q = T^i=^(Xi(Q),xf(Q)) be a query range.
We can restrict our attention to the interior nodes visited,
since the number of visited leaves is at most one more. We
distinguish two types of visited interior nodes v. The first
type is where at least one of the input boxes stored in the
subtree of *> intersects Q. Obviously there are only 0{k) such
nodes at a given level i. The second type is where all input
boxes in the subtree of v are disjoint from Q. The interior
of any input box disjoint from Q must be separated from Q
by a hyperplane through a facet of Q. Not all input boxes
are separated from Q by the same hyperplane, otherwise the
bounding box of v would not intersect Q and v would not
be visited. Hence; there are at least two such hyperplanes
separating Q from an input box in the subtree of u.

Assume w.l.o.g. that a;j = a:~ (Q) is one of these separating
hyperplanes, and let h be the input box it separates from Q.
Then we must have a:+(6) < x~{Q). But there must also
be a box h' with xf{h') > «J"(Q), otherwise the bounding
box of V would not intersect Q. We conclude that the points
representing 6 and b' in the configuration space lie on oppo-
site sides of the hyperplane xf = x~(Q). Consequently, the
hyperplane xf = x~{Q) intersects the cell in configuration
space of the node in the kd-tree corresponding to v.

We can apply the same argument to the second hyper-
plane separating Q from an input box (the hyperplane Xj =
xf{Q), for example), to show that there is a hyperplane
in configuration space with points on or on opposite sides
{xJ = xf(Q) in the example).

We can conclude the following. Suppose Q visits a node
V of the second type. Then in configuration space there
is a pair of hyperplanes, both of the form xf = x^{Q) or
x~ = xf{Q) and both intersecting the cell in configuration
space of the kd-tree node corresponding to v. But then
the cell is also intersected by the (2d — 2)-flat that is the
intersection of these two hyperplanes. By Lemma 3.1 there
are only o(y<-^''-^y^'') = 0(2«i-V''5) such nodes at level i.

For the building time, see section 3.4. D

This leads directly to the following theorem.

THEOREM 3.3. Let S be a, set of n possibly intersecting
boxes in the plane. There is a. perfectly balanced box-tree
tor S such that the number of nodes visited by a range query
with an axis-aligned box is 0(n^~^/'' + fclogn), wJiere k is
the number of boxes in S intersecting the query range. The
box-tree can be built in 0(n log n) time.

PROOF. Rrom Lemma 3.2 we get a bound for the stabbing
number on each level in the tree. Since a kd-tree has height
flogji], so has a cs-box-tree, and summation over all levels
yields a total query complexity of 2f=| "^ 0(2*^^-V"*) +fc) =
0(»ii-i/''-|-fclogn). D

Improving the query time. We now show how to reduce
the O(fclogn) term in the query complexity to 0{k). The
idea is the same as in a priority search tree [7]: input ele-
ments (boxes in our case) that have a high chance of being
reported are pushed to high levels in the tree. In our case,
the boxes that extend farthest in one of the rcj-directions are

stored high in the tree. More precisely, the construction of
the tree T for a set S of boxes in E** is as follows.

If |S| = 1, then T consists of a single leaf node storing the
input box in S. Otherwise we make a node u storing the
bounding box B„ of all boxes in S, and proceed as follows.

For each of the 2d iimer normals of the facets of B„, take
the box from S that extends farthest in the direction of that
normal. This results in a set S* of at most 2d boxes. Each
box in S* is put in a so-called priority Imf, which is an
immediate child of u.

If the set S \ S* of remaining boxes contains less than
two boxes, then this box (if it exists) is put as a leaf child
of V. If two or more boxes remain, we split the set of boxes
into two (almost) equal-sized subsets with an axis-parallel
hyperplane in configuration space. Like in a normal kd-tree,
the orientation of the spfitting plane depends on the level in
the tree, so that all 2d orientations take turns in a round-
robin fashion on any path from the root down into the tree.

The subset of boxes whose representative points lie to
one side of the cutting hyperplane aie stored recursively in
one subtree of v. The subset of boxes whose representative
points lie to the other side of the cutting hyperplane are
stored recursively in another subtree of u.

Next we analyze the query complexity of the tree resulting
from this construction, which we call a CB-priority-box-tree.
In our analysis we bound the number of visited nodes of a
given weight, where the weight of a node is defined as the
number of input boxes stored in its subtree. This will be
useful when we convert this box-tree into a semi-R-tree.

LEMMA 3.4. The number of nodes of weight at least w
visited by a query with a query box Q is 0({n/w)^~^f'' -|-fc).

PROOF. Let Q = TlUi(x-(Q),xf(Q)). We can restrict
our attention to the visited nodes of weight at le^t 2d, as
the total number of visited nodes is at most a constant times
larger than this number. Let v be such a visited node of
weight at least 2d. There are two cases.

The first case is where one of the priority leaves directly
below v stores a box intersecting Q. Clearly there are at
most k such nodes.

The second case is when all priority leaves directly below v
store boxes disjoint from Q. Thus each such box's interior is
separated from Q by a hyperplane through a facet of Q. We
claim that not all boxes can be separated by the same hy-
perplane. Suppose for a contradiction that there is a facet /
whose containing hyperplane separates all boxes of the pri-
ority leaves from Q. Then in particular it would separate
the box that extends farthest in the direction of the inner
normal of the facet /, contradicting that Q intersects the
bounding box stored at v. So we have two distinct hyper-
plames through facets of Q separating a box in the subtree
of V from Q.

The box-tree that we have constructed basically corre-
sponds to a kd-tree in configuration space, as before. The
priority leaves make that the tree in configuration space is
strictly speaking not a kd-tree, but it is easy to see that
Lemma 3.1 still holds. Moreover, there is still a one-to-one
corr^pondence between nodes of the box-tree and nodes of
the kd-tree in configuration space. Hence, we can use the
fact that there are two distinct hyperplanes through facets
of Q separating a box in the subtree of«/ from Q in the same
way as in the proof of Lemma 3.2: it impHes that there is

128

a {2d — 2)-flat in configuration space (defined by a pair of
facets of Q) intersecting the cell in the kd-tree corresponding
to u. It follows that the total number of nodes v to which
the second case applies at a given level i is 0(2'''"^'''*^).

To finish the proof, observe that nodes at the lowermost
[log(w/(2(i))J levels have weight less than w. Adding the
bounds for the second case on the remaining levels, we get

For the building time, see section 3.4. D

The following theorem follows directly.

THEOREM 3.5. Let S be a. set of n possibly intersecting
boxes in R**. There is a box-tree for S such that the number
of nodes tha-t are visited by a range query with an axis-
aligned box is 0(n^~'^'' + fc), where A; is the number of boxes
in S intersecting the query range. The box-tree can be built
in O(nlogn) time.

3.2 The kd-interval-tree approach
The cs-box-tree of the previous section has optimal query

complexity for point queries (and range queries) if the input
consists of arbitrary, intersecting boxes. Unfortunately, if
the input boxes are disjoint then the query complexity for
point queries does not improve. In this section we develop
a different box-tree, the kd-interval tree, whose query com-
plexity is much better if cr, the point-stabbing number of
the input set 5, is small. The query complexity for range
queries increases only slightly. This approach only works in
the plane; Theorem 2.5 states that a similar result in more
than two dimensions cannot be obtained.

The basic idea behind kd-intervaJ trees is again to use a
kd-tree, but this time in the workspace (which is now the
plane). Since the objects in the workspace are rectangles,
not points, many of them may intersect the cutting line.
These boxes are taken out and handled separately, like in
an interval tree. To make kd-interval trees more efficient,
we introduce priority leaves, like in the previous section.

The 1-dimensional case. First we describe how a set 5
of boxes all intersecting a given line E are handled. With
a slight abuse of terminology, we call a tree for this case a
1-dimensional kd-interval tree.

If \S\ = 1, then T consists of a single leaf node storing the
input rectangle in S. Otherwise we make a node u storing
the bounding box B„ of all rectangles in 5, and proceed as
follows.

For each of the 4 inner normals of the edges of B„, take
the rectangle from S that extends farthest in the direction of
that normal. This results in a set S* of at most 4 rectangles.
Each rectangle in 5* is put in a priority leaf.

Consider the set of intersections of the edges of the re-
maining rectangles with i. Let p be the median of these in-
tersection points. The rectangles in S \ S* containing p are
stored in a subtree of u that is a 2-dimensional cs-priority-
box-tree as described in the previous section. The rectangles
in S \ 5* completely to one side of p are stored recursively
as a 1-dimensional kd-interval tree in a second subtree of u.
The rectangles in S \ 5* completely to the other side of p
are stored recursively in another subtree of u.

We call the nodes in the main 1-dimensional kd-interval
tree ID-nodes. Such a node corresponds to an interval on
the defining line £. We call the nodes of the 2-dimensional
cs-priority-box-trees cs-nodes.

Figure 1: Querying a 1-ditnensional kd-interval tree
with a box Q.

We start by analysing the query complexity when we query
with a segment on the line i.

LEMMA 3.6. If we query a 1-dimensional kd-interval tree
storing a set S of n rectangles with a line segment on the
defining line i, then we visit at most 0(log n + k) nodes,
where k is the number of rectangles to be reported.

PROOF. Observe that the query segment s intersects a
rectangle (or bounding box) if and only if it intersects the
intersection of that rectangle (or bounding box) with i.

Consider a ID-node that is visited when we query with s.
When the interval corresponding to this node is completely
contained in s, then by the above observation all rectangles
in the subtree intersect s. Hence, there cannot be more
than 0{k) such nodes. When the interval is not completely
contained in s, then it contains an endpoint of s, and there
are only 0(log n) such nodes.

Now consider a cs-node u that is visited. Let p be the
point on £ common to all rectangles in the subtree of u. As-
sume w.l.o.g. that £ is vertical and p lies inside or above s.
Then the rectangle in the subtree extending farthest down-
ward must intersect s. This rectangle is stored in a priority
node directly below u, so we can charge the visit of u to this
answer. D

Next we analyze the query complexity when we query with
a box.

LEMMA 3.7. (i) If we query a 1-dimensional kd-interval
tree storing a set S ofn rectangles with a query box Q, then
we visit at most 0{\/a/w log n-\-k) nodes of weight at least
w, where k is the number of rectangles to be reported,
(ii) If a is 0(logn/loglogn), then the query time reduces
toO{logn-\-k).
(Hi) If the projection of Q onto the line £ that stabs the
rectangles in S contains the intersections of all rectangles
with £, then the query time reduces to 0{k).

PROOF, (i) See Figure 1. If Q intersects £ then the query
is equivEilent to querying with Q H £, so the result follows
from the previous lemma. Otherwise, assume w.l.o.g. that
£ is vertical and that Q lies to the right of £. Consider a
ID-node u that is visited when we query with Q. When the

129

interval corresponding to this node is completely contained
in the projection of Q onto I, then the rectangle in the sub-
tree extending farthrat to the right must be intersected. This
rectangle is stored in a priority leaf immediately below v, to
which we can charge the vteit of v. Hence, there can be at
most k such nodes. When the interval is not completely con-
tained in the projection of Q, then it contains an endpoint of
the projection of Q, and there are only 0(log n) such nodes.

Now consider a 2-dimensional cs-priority-box-tree that is
visited. Suppose the interval of the ID-node that is the
parent of this subtree is completely contained in Q. Then
we can argue again (iwing the priority leaves) that we can
charge all the visited nodes to rectangles intersecting Q. If
the interval of the ID-node that is the parent of this subtree
is not completely contained in the projection of Q, we argue
as follows. First observe that the interval must then contain
an endpoint of the projection of Q, so there are only 0(log n)
such parent nodes. In the 2-dimensional configuration-space
box-tree below such a parent, we apply Lemma 3.4 to bound
the number of visited nodes of weight w by 0{s/n'/w + k'),
where n' is the number of boxes stored in the cs-priority-
box-tree amd k' is the number of answers reported in this
subtree. Note that n' < a, since the cs-box-trera are used
only to store sets of boxes that share a single point. Hence,
the overall number of cs-nodes visited is O (s/ajw log n -f fe),
finishing the proof of part (i) of the lemma.

(ii) For the proof of part (ii), we analyze the number of
cs-nodes visited in a different way. Note that cs-nodes in a
single cs-priority-box-tree share a single point on t. If this
point is contained in the projection of Q onto €, then we
can iKe the priority nodes to charge all nodes visited in this
cs-box-tree to rectangles intersecting Q.

If the defining point of a cs-prority-box-tree lies outside
the projection of Q onto €, then all cs-nodes visited in this
cs-box-tree must have a rectangle that contains an endpoint
of the projection of Q. In all ra-box-trees together, there
can be at most 0{a\o%<i) such nodes in total, since at mm%
ta leaf nodes can contain one of the two endpoints, and all
cs-box-trees have height O(logff).

In total, we find a bound of 0(log n -I- a log tr -f fc), which
reduces to 0(log n -f A) if o- is 0(log nj log log ra).

(iii) If the projection of Q onto t contains the intersections
of all rectangles with t, it also contains all intervals corre-
sponding to the nodes in the box-tree. Therefore, we can
use the priority leaves again to charge all the visited nodes
to rectangles intersecting Q. D

The 2-dimensional case. Our kd-interval tree for a general
set S of rectangles in the plane is defined as follows.

If \S\ = 1, then T coiBists of a single leaf node storing the
input box in S. Otherwise we make a node v storing the
bounding box B^ of all boxes in S, and proceed as follows.

For each of the 4 inner normals of the edges of B„, take
the rectangle from S that extends farthest in the direction of
that normal. This results in a set S* of at most 4 rectangles.
Each rectangle in S* is put in a priority leaf, which is an
immediate child of v.

If the set S\S* of remaining rectangles contaim less than
two rectangles, then this rectangle (if it exists) is put as a
leaf child of v. If two or more rectangles remain, we split
the cell corresponding to v using a vertical or horizontal
line (depending on the level v in the tree). This splitting

line t is chosen such that the number of rectangles in S \ S*
lying completely to either side of I is at most [|S \ 5*1/2].
The rectangles in S \ S* lying to one side of I are stored
recursively in one subtree of v. The rectangles in S\S* lying
to the other side of ^ are stored recursively in another subtree
of V. The rectangles in S\S* intersecting I are stored in a 1-
dimensional kd-interval tree, as explained above. We call the
nodes of the main tree, which correspond to 2-dimensional
cells, 2D-nodes. Next we analyze the performance of the
kd-interval tree.

LEMMA 3.8. The number of nodes of weight at least w
that are visited by a, range query with an axis-aligned box
is 0(%/n/wlog n + ^/ajwlog' n + k), where k is the number
of reported answers. The number of such nodes visited by a
point query is 0(s/a/wlog^ n+k). If a is 0(log n/ log log n),
we may omit the sjafw factor.

PROOF. Consider a 2D-node that is visited when we query
with an axis-aligned rectangle Q. We distinguish four differ-
ent types of such nodes (see Figure 2 (i)). We bound their
number and the number of nodes visited in 1-dimensional
kd-interval-subtrees for each type separately.

Inner nodes: These are 2D-nodes whose bounding boxes
lie completely inside Q. The number of inner nodes is easy
to bound, since all rectangles in the subtree of such a node
intersect Q. Hence, the total number of such nodes, or nodes
in their 1-dimensional associated kd-interval trees, is 0(k).
Side nodes: These are 2D-nodes whose bounding boxes cut
exactly one edge of Q. In this case the rectangle that extends
farthest into the direction of the inner normal of this edge
must intersect Q. This rectangle is stored in a priority leaf
immediately below the node. The same reasoning applies
to their I-dimensional associated kd-interval trees. Hence,
the total number of side nodes or nodes in their associated
kd-interval trees is 0{k).
Piercing nodes: These are 2D-nodes that cut two opposing
edges of Q, but do not contain any corners of Q. From
Lemma 3.1 and the fact that all nodes at the lowermost
[log(t«/(2d))j levels of the tree must have weight less than
W; we conclude that the number of 2D-nodes with weight
at least w that intersect any edge of Q must be bounded by
E flog III —[Iog(iu/(2il))J /~t/ni/2\ rM l~~l—N XT A.X. feo 1- =\ " '"0(2') = 0{sjnlw). Now there are
two cases—see Figure 2(ii): the splitting line used at such a
node V is orthogonal to the intersected edges, or it is parallel
to them. In the former case we can apply Lemma 3.6 to ob-
tain a 0(log n-l-A') bound on the number of nodes visited in
the l-dimeimional kd-interval tree associated with v, where
k' is the number of reported answers. In the latter case we
can apply Lemma 3.7(iii) to get a bound of O(fe'). Hence,
we get a grand total of 0{s/nlw log n-kk).
Comer nodes: These are 2D-nodes that contain one or more
corners of Q. There are 0(log»i) such nodes. To obtain the
total number of visited nodes in the associated 1-dimensional
kd-interval trees, we have to multiply this by the bound of
Lemma 3.7, leading to a total of 0(^/aJwlog' n -I-fc) in the
general case, or 0(log* n -I- fe) if o- is 0(log n/ log log n).

There are no other types of nodes whose bounding boxes
intersect Q. Adding up the number of nodes for all four
cases gives the desired bound for box-queri«. Note that in
the case of point queries, we only have comer nodes. For
the building time, see section 3.4. D

This leads to the following theorem.

130

TT
inner V

piercing

side corner

a ^
r—I

^

Q

(i) (ii)

Figure 2: (i) Four different types of 2D-nodes with respect to a query range Q. (ii) Piercing nodes with
parallel splitting lines (to the left) and orthogonal splitting lines (to the right).

THEOREM 3.9. Let S be a, set ofn possibly intersecting
boxes in the plane, such that no single point is contained
in more than a boxes. There is a box-tree for S such that
the number of nodes visited by a range query with an axis-
aligned box is 0{y/n\ogn + y/a\o^ n + k), where k is the
number of boxes in S intersecting the query range. The
number of nodes visited by a point query is 0{\/alog^ n+k).
If a is 0{logn/log\ogn), this reduces to O(Iog^n). The
box-tree can be built in 0{n log n) time.

3.3 The longest-side-first approach
Recall that a kd-interval tree is basically a modified kd-

tree, where each node is split by a line. The orientations of
these lines depend on the level in the tree in such a way, that
orientations take turns in a round-robin fashion on any path
from the root down into the tree. An interesting Vciriation
of the kd-interval tree arises when we replace the round-
robin splitting strategy by the longest-side splitting rule as
suggested by Dickerson et al. [8]. In such a longest-side-first
kd-interval tree, the number of nodes whose corresponding
cell is pierced by a query rectangle is small if the query
rectangle is fat. We use this to prove the following lemma.

LEMMA 3.10. The number of nodes of weight at least w
that are visited by a range query with an axis-aligned box
is 0{{a -\- ■^/ajw) log'^ n-\- k), where k is the number of re-
ported answers. The number of such nodes visited by a point
query is 0{\/a]w\o^n + k). If c is C)(logn/loglogn), the
0(\/<7/u)) factor can be omitted from the bounds.

PROOF. In the analysis in the previous subsection, the
piercing nodes were responsible for the 0{^/nJwlogn) term
in the query complexity. This term arose because in a nor-
mal kd-tree there can be 0{\/nJw) piercing nodes, and
in each of the associated 1-dimensional kd-interval trees,
O(logn) nodes could be visited.

In the longest-side-first kd-tree, however, the number of
disjoint cells that cut opposing sides of a query rectangle
of aspect ratio a is 0(a log n) [8]. As before, we have two
types of piercing nodes: those with splitting lines that are
orthogonal to the intersected edges of Q, and those with
parallel splitting lines. For the first case, observe that such
splitting lines separate two disjoint cells that cut opposing
sides of the query rectangle. This implies that there can be
at most 0(a log n) piercing nodes with orthogonal splitting
lines, each of which can have a 1-dimensional kd-interval

tree in which O(logn-l-fc') nodes are visited. For the second
case, observe that the total number of piercing nodes on all
levels in the tree is at most 0{a log^ n), and each of them can
have a 1-dimensional kd-interval tree in which 0{k') nodes
are visited. Hence, we get a grand total of 0{a log° n -f fc)
for both types of piercing nodes.

Since the other cases in the analysis of the original kd-tree
still go through, the lemma follows. D

THEOREM 3.11. Let S be a set ofn boxes in the plane
with stabbing number a. There is a box-tree for S such that
the number of nodes that are visited by a range query with a
rectangular range of aspect ratio a is 0{{a + \/a) log^ n + k),
where k is the number of boxes in S intersecting the query
range. The number of such nodes visited by a point query
is 0{y/a\og^n -\- k). If a is 0(logn/loglogn), the 0{y/a)
factor can be omitted from the bounds. The box-tree can
be built in O(nlogn) time.

3.4 Building the box-trees
All boxtrees mentioned in this section, can be built in

0{TI log n) time. Since the construction algorithms are very
similar, we will explain them together.

We start by sorting all input boxes by a;]"-coordinate and
x+-coordinate for all dimensions 1 < i < d. This costs
O(nlogn) time. Using suitable list structures and cross-
pointers, we can now do the following operations:

• in 0(1) time, selecting a box with an extreme value
for one of the 2d coordinates and removing it from the
2d sorted lists;

• in 0(1) time, determine the bounding box of the set
(and, if necessary, determine the dimension in which
the bounding box is largest);

• in Oin) time, splitting the set of boxes in two, such
that all boxes whose value for a particular coordinate
is smaller than the median for that coordinate go in
one list, while the remaining boxes go in the other list,
and at the same time splitting the 2d sorted lists in
sorted lists for each of the two subsets.

• in 0{n) time, splitting the set of boxes in three subsets
S", S and 5"*" with respect to some discriminating
dimension i, such that there is a value x° such that all
boxes in 5" aire on one side of the hyperplane xt = x°,
all boxes in S"*" are on the other side, and all boxes in

131

S° intersect the plane, |S~| < n/2 and |S+| < n/2—
and at the same time, splitting the 2d sorted lists in
sorted lists for each of the three subsets.

With these operations we can do the construction of our
box-trees in time 0{nlogn). The details are omitted from
this abstract.

4 FROM BOX-TREES TO R-TREES
In the previous section we described severaJ algorithms to

construct box-trees with good query complexity. In this sec-
tion we give general theorems to convert them to {semi-)R-
trees.

We start with a general theorem that converts any box-
tree to an R-tree. Recall that the weight of a box-tree node
is the number of input boxes stored in its subtree.

THEOREM 4.1. Let T be a box-tree for a set of n boxes
in R such f Jiat any querj with a range of a given type visits
at most f{w) nodes of weight w or more. Then T can be
converted in 0{n) time to an R-tree of minimum degree t
where every query with a range of the same type visits at
most 0{f{t) log nf log t) nodes.

PROOF. We simply read out the leaves from T in order,
and then construct an R-tree where the boxes occur in the
same order in the leaves. We can build this R-tree bottom-
up, level by level. First we construct the R-tree nodes just
above leaf level by repeatedly taking 2f leaves from the list
and giving them a new R-tree node as their parent. We con-
tinue doing this until less than U leaves are without parent:
these leaves axe then divided into two groups (if there are
more than 2t) or made children of a single parent (if there
axe no more than 2* leaves left). Next, we consider the new
parent nodes just constructed as leaves, and construct the
next level of the tree, and so on, until we reach the level
where only one node is coimtructed (the root). In this way,
we spend 0(1) time for each node to connect it to a parent
node, thus getting a total running time of 0(n).

Consider a bounding box B stored in the R-tree. It is
the bounding box for some input boxes that were stored in
consecutive leaves in the box-tree T. Let v{B) be the lowest
common atncestor of these leaves. Since the minimum degree
in the R-tree is t, the weight of i/{B) is t or more. Rirther-
more, the nodes v{B) for the bounding boxes B stored at
a fixed level in the R-tree must be distinct, because their
defining sets form a partition of the leaves in T into consec-
utive sequences. Hence, we can charge the visited nodes of
the R-tree to visited nodes of weight t or more in T, in such
a way that a node in T does not get charged more than once
from nodes at a fixed level in the R-tree. Since the depth of
the R-tree is 0(log nf log t), the bound follows. D

The construction of Theorem 4.1 results in losing a logarith-
mic factor in the query complexity. Next we show how to
improve this result for perfectly balanced box-trees. Recall
that a box-tree is called perfectly balanced if for any node
the weight of its left and right child diifer by at most one.

THEOREM 4.2. Let T be a perfectly balanced box-tree for
a set of n boxes in R** sucA that any query with a range of
a given type visits at most /(») nodes at JeveJ i in T. Then
T can be converted in 0(n) time to an R-tree of minimum
degree t where every query with a range of the given type
visits at most o(J2g|»/'°««)-i /(ilog*)) nodes.

PROOF. We first prove that any perfectly balanced tree
has the following property: the weights of all nodes at a
fixed level in the tree differ by at most one. The proof is
by induction on the level. The statement is trivially true at
level zero (the level of the root). Now assume all nodes at
at a given level have weight w or w -I-1. Then the balancing
condition guarantees that the nodes at the next level have
weight w/2 or tu/2-H (in case w is even) or they have weight
(w + l)/2 - 1 or (w -I-1)/2 (in case w is odd). So in both
cases the weights at the next level differ by at most one.

We can now comtruct an R-tree from T as follows, ftom
the leaf level, walk up the tree until a level i is encountered
where all nodes have weight at least t. Thus there must be
at least one node with weight at most t — l on the level just
below », and therefore, by the perfect balance property, no
node on that level has weight more than t. This implies
that the weight of nodes at level i cannot exceed 2t. Hence,
all the nodes at this level can be compressed in a single
leaf (which will be a node in the R-tree node). Itecurse on
the new tree. The recuraion ends when there are less than
t leaves, which are compressed to a single node which will
form the root of the R-tree.

The bound on the query complexity immediately follows
from the construction. The details of a construction in 0{n)
time are omitted from this abstract. O

Finally, we can show that that we can also improve Theo-
rem 4.1 for the general case if we are willing to settle for
semi-R-trees instead of real R-trees. (Recall that the dif-
ference between a semi-R-tree and an R-tree is that in the
former we do not require all leaves to be at the same depth.)

THEOREM 4.3. Let T be a box-tree for a set ofn boxes
in R such that any query with a range of a given type visits
at most f(w) nodes of weight w or more. Then T can be
converted in 0{n) time to a semi-R-tree of minimum degree
t where every query with a range of the same type visits at
most 0{f{t)) nodes.

The proof is omitted from this abstract. The main point
is that during the conversion from box-tree to semi-R-tree,
we do not introduce new bounding boxes, no bounding box
in the box-tree appears more than once in the semi-R-tree,
and no internal nodes with weight less than t are put in the
semi-R-tree. By applying the conversion algorithms of the
theorems above to the structures from the previous section,
we obtain the following results.

COROLLARY 4.4. Let S be a set of n boxes in R** witA
stabbing number <r.

(i) There is an R-tree tor S of minimum degree t such
that the number of nodes visited by any box query is
0({nltf-^l^ + fclogn/logt), where k is the number
of reported answers.

(ii) There is an semi-R-tree for S of minimum degree t such
that the number of nodes visited by any box query is
0({nltf-^'^+ k).

(iii) When d = 2, there is a semi-R-tree for S of mini-
mum degree t such that the number of nodes visited
by any box query is 0(s/nft log n + s/ajt log^ n -I- fe),
and the the number of nodes visited by any point query
is 0(s/aJt\o^n + k). In both bounds, k is the num-
ber of reported answers. If a is 0(log nf log log n), the
0(s/ff/t) factor can be omitted from the bounds.

132

(iv) When d = 2, there is a semi-R-tree for S of minimum
degree t such thai the number of nodes visited by any
query with a. rectangle of aspect ratio a is 0{{a +
y/<y/t) log^ n + k), where k is the number of reported
answers. If a is 0(logn/loglogn), the bound reduces
to Dialog^ n + k).

(v) For the cases mentioned under (Hi) and (iv) there is
aJso an R-tree of minimum degree t for which the num-
ber of visited nodes is 0(log n/ log t) times the number
of visited nodes in the semi-R-tree.

All R-trees can be constructed in 0{n\ogn) time.

5. CONCLUSIONS
We have developed now algorithms to construct box-trees

(bounding-volume hierarchies using axis-aligned boxes as
bounding volumes) and we analyzed the complexity of rect-
angle-intersection queries and point-containment queries for
these structures. We also proved lower bounds showing that
our results are optimal or almost optimal. Finally, we gave
algorithms to convert our box-trees to (semi-)R-trees with
optimal or almost optimal query complexity.

The bounds that we get, except for the case of fat ranges
in the plane, are rather disappointing—even though they are
optimal. In practice, one would hope for much better perfor-
mance. It would be interesting to see under which conditions
one can obtain better bounds for, say, box-queries in R^.
We also would like to see how our trees behave in practice—
the lower-bound constructions are rather contrived—and to
compare them experimentally against trees constructed by
known heuristics.

In many applications it is important to support fast inser-
tions and deletions, and it would be interesting to develop
box-trees or R-trees that support fast insertion and deletion,
while still guaranteeing close to optimal query complexity.

6. REFERENCES
[1] P. K. Agarwal and J. Erickson. Geometric range

searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors. Advances in
Discrete and Computational Geometry, volume 223 of
Contemporary Mathematics, pages 1-56. American
Mathematical Society, Providence, RI, 1999.

[2] A. Aggarwal and J. S. Vitter. The Input/Output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116-1127, 1988.

[3] G. Barequet, B. Chazelle, L. J. Guibas, J. S. B.
Mitchell, and A. Tal. BOXTREE: A hierarchical
representation for surfaces in 3D. In Computer
Graphics Forum, volume 15, pages 387-396, 1996.

[4] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and
B. Seeger. Multi-step processing of spatial joins. In
Proc. ACM-SIGMOD International Conference on
Management of Data, pages 197-208, 1994.

[5] B. Chazelle. A functional approach to data structures
and its use in multidimensional searching. SIAM
Journal of Computing, 17:427-462, 1988.

[6] M. de Berg, J. Gudmundsson, M. Hammar, and
M. Overmars. On R-trees with low stabbing number.
In Proc. 8th European Symposium on Algorithms,
LNCS, volume 1879, pages 167-178, 2000.

[7] M. de Berg, M. van Kreveld, M. Overmars, and
0. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, 1997.

[8] M. Dickerson, C. Duncan, and M. Goodrich. K-D
trees are better when cut on the longest side. In Proc.
8th European Symposium on Algorithms, volume 1879
of LNCS, pages 179-190, 2000.

[9] C. Faloutos and I. Kamel. Packed R-trees using
fractals. Report CS-TR-3009, University of Maryland,
College Park, 1992.

[10] C. Faloutos, T. Sellis, and N. Roussopoulos. Analysis
of object oriented spatial access methods. In Proc.
ACM-SIGMOD International Conference on
Management of Data, pages 426-439, 1987.

[11] V. Gaede and O. Giinther. Multidimensional access
methods. ACM Computing Surveys, 30:170-205, 1998.

[12] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: a
hierarchical structure for rapid interference detection.
In ACM Computer Graphics Proceedings, pages
171-180, 1996.

[13] A. Guttmann. R-trees: a dynamic indexing structure
for spatial searching. In Proc. ACM-SIGMOD
International Conference on Management of Data,
pages 47-57, 1984.

[14] J. T. Klosowski, M. Held, J. S. B. Mitchell,
H. Sowizral, and K. Zikan. Efficient collision detection
using bounding volume hierarchies of k-DOPs. IEEE
TVansactions on Visualization and Computer
Graphics, 4(l):21-36, 1998.

[15] U. Lauther. 4-dimensional binary search trees as a
means to speed up associative searches in design rule
verification of integrated circuits. Journal of Design
Automation and Fault-Tolerant Computing,
2(3):241-247, 1978.

[16] S. Leutenegger, M. A. Lopez, and J. Edington. STR:
A simple and efficient algorithm for R-tree packing. In
Proc. 13th IEEE International Conference on Data
Engineering, pages 497-506, 1997.

[17] Y. Manolopoulos, Y. Theodoridis, and V. Tsotras.
Advanced Database Indexing. Kluwer Academic
Publishers, 1999.

[18] J. Nievergelt and P. Widmayer. Spatial data
structures: concepts and design choices. In M. van
Kreveld, J. Nievergelt, T. Roos, and P. Widmayer,
editors. Algorithmic Foundations of Geographic
Information Systems, volume 1340 of LNCS, pages
153-198. 1997.

[19] J. Orenstein. A comparison of spatial query processing
techniques for native and parameter spaces. In Proc.
ACM SIGMOD Conference on Management of Data,
pages 343-352, 1990.

[20] Y. Theodoridis and T. Sellis. A model for the
prediction of R-tree performance. In Proc. Annual
Symposium on Principles of Database Systems, pages
161-171, 1996.

[21] Y. Zhou and S. Suri. Analysis of a bounding box
heuristic for object intersection. In Proc. 10th Annual
Symposium on Discrete Algorithms (SODA), 1999.

133

