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SUMMARY 

During the period of performance a program of theoretical studies was carried out with the 

objective of quantifying the requirements for controlled precipitation of radiation belt particles 

in order to mitigate enhanced space particle effects, to address critical issues of antenna-plasma 

coupKng, and to develop a model of the effective radiated power of both dipole and loop an- 

tennas throughout the magnetosphere. In carrying out this effort, Stanford University worked 

in conjunction with AFRL/VSB scientists. As a result of these studies, Stanford University has 

developed a model which for the first time quantifies the radiated electromagnetic power in the 

1-10 kHz frequency range which is necessary to reduce the lifetimes of energetic electrons in 

the radiation belts by an order of magnitude. In addition, a method was developed to control 

the ion and electron sheaths which surround dipole antennas in a plasma. Without such control, 

the sheath effects strongly diminish the radiation efficiency of dipole antennas, and much larger 

transmitter power is required to produce the electromagnetic wave fields necessary to control 

the radiaton belts. 



FINAL TECHNICAL REPORT 

1. Contract Purpose 

The overall purpose of this work was to quantify the requirements for controlled precipitation 

of radiation belt particles in order to mitigate enhanced space particle effects, to address critical 

issues of antenna-plasma coupling, and to develop a model of the effective radiated power from 

dipole antennas throughout the magnetosphere. In carrying out this effort, Stanford University 

worked closely with AFRL/VSB scientists. Stanford University concentrated on: 1) developing 

a model to quantify the radiated electromagnetic power in the 1-10 kHz frequency range which 

is necessary to reduce the lifetimes of energetic electrons in the radiation belts by an order of 

magnitude, and 2) developing a method to control the ion and electron sheaths which surround 

dipole antennas in a plasma. 

2. Period of Performance 

The period of performance under this contract extended from September 30, 1999, through 

December 31, 2002. 

3. Work Provided 

During the period of performance of this grant, Stanford University carried out the following 

tasks: 

Task 1: Stanford developing a model to quantify the radiated electromagnetic power in the 

1-10 kHz frequency range which is necessary to reduce the lifetimes of energetic electrons in 

the radiation belts by an order of magnitude. 

Task 2: Stanford developed a method to control the ion and electron sheaths which surround 

dipole antennas in a plasma. 



Task 3: Stanford developed a method to calculate the near field and the radiated electromag- 

netic fields from dipole antennas in the radiation belts. 

Task 3: Stanford performed grant management, reporting, and technical overview activities 

of work. 

6. Results of Research Effort 

Detailed results of the Stanford research effort are reported in Appendix A. 

7. List of personnel contributing to report 

The fist of Stanford University scientists and engineers who contributed to the work reported in 

this document is as follows: 

Tim Bell 

Jacob Bortnik 

Tim Chevalier 

Umran Inan 



APPENDIX A. 
Progress Report for AFRL Grant F49620-99-1-0339 Entitled: 
Controlled Precipitation of Radiation Belt Particles 

AFRL Grant F49620-99-1-0339 has been carried out in cooperation with AFRL/VSB. 

Below in Sections A, B, and C we list the significant accomplishments resulting from 

work carried out predominantly at Stanford University STAR Laboratoiy. Joint work 

with AFRL/VSB personnel is discussed in Section D. 

A. Simulation Models. 

The first Stanford goal has been the determination of the radiation efficiency and input 

impedance of dipole antennas in the magnetosphere, including the effects of the plasma sheath 

surrounding each antenna element. An antenna operating at ELF/VLF frequencies in the 

magnetosphere will radiate waves with wavelengths of many kilometers. At the same time the 

sheath surrounding this antenna will have a scale which ranges from centimeters to meters as the 

antenna voltage is varied. To completely resolve this space from antenna to far field using a 

fixed cell size of 1 cm in a FDTD simulation would require lOOOOO' cells. This requirement is 

far greater than that which even the most powerful of contemporary supercomputers can satisfy. 

Thus it is necessary to partition the simulation space into regions in which different scale sizes 

prevail. As illustrated in Figure 1, we have chosen to partition the simulation space into three 

separate regions: 1) the plasma sheath region, extending out to a few meters from the antenna, in 

which either electrons or ions predominate according to the sign of the antenna voltage, and in 

which these particles are accelerated to high velocities by the quasi-elecfrostatic fields; 2) the 

nonlinear warm plasma region, extending from a few meters out to 100 m from the antenna, in 

which the plasma is essentially neutral but the acceleration due to the elecfric and magnetic fields 

produced by the antenna currents is large enough to preclude the use of a linear cold plasma 

formulation; and 3) the cold plasma region in which the plasma is essentially neutral and particle 

energization is small. 

In order to make progress on this topic we have developed a series of simulation models, 

each of which applies to one of the regions shown in Figure 1. To date we have tested 

and verified each model. Our ultimate goal is to combine the simulation models to 

produce a complete description of the particles and fields within the entire space. The 

most complicated simulation model is that which applies to region 2, the hot plasma 



region. The simulation here involves a 3-D fluid model of the dynamics of electrons and ions 

under the influence of the electromagnetic and quasi-electrostatic fields produced by the currents 

and charges on the dipole antennas. We discuss this model first below. The other models are 

described thereafter. 

Figure 1. Regions of Simulation Space 

A.1 Full EM Fluid Code 

The Full Electromagnetic Fluid Code is applied to region 2 of Figure 1 and includes Maxwell's 

equations for modeling the electromagnetic and electrostatic portion of the code, and a fluid 

model for determining the first three moments of the Boltzmann equation including conservation 

of number density, momentum, and energy for one species of ion and electrons. The equations 

are listed as follows: 



dt        ^ ' 

-|^+V-(puu) = -V.n + gn(E+iixJ) + iLS'P+S" 

dt \2 y-1   ) 2 y-1 2 

VxE = - 
& 

dt J=nA^,+n,gi^, 

S" = sources 

p = mass density 

p = pressure 

Tj = number Density 

u = Bulk Velocity of Particles 

E = electric Field 

B = Bg+B = Static Magnetic Field + Wave Magnetic Field 
m = mass 

n = pressure tensor 

L = heat flux 

J = current density 

A number of simplifications can be made depending upon where in the magnetosphere the 

antenna will be operating. Since it is envisioned that the antenna will be operating on a 

spacecraft near the magnetic equatorial plane at L=2 or 3, the electron and ion number densities 

will be relatively low compared to low Earth orbit. In this region the densities are on the order of 

10 /m , and the plasma is fully ionized and collisions are negligible. This means that all terms 

involving collisions are zero, and that shearing and viscous forces are non-existent, so that the 

pressure tensor is isotropic, given by the ideal gas law, and there is no diffusion. Using these 

simplifications, the fluid equations can be reduced to the following equations which are written 

in conservative form: 
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Maxwell's equations are used for the calculation of the both the radiation pattern of the antenna 

and quasi-electrostatic effects near the sheath. Used in conjunction with the fluid equations, the 

number densities and velocities are used to update the corresponding conduction current term in 

the curl equation for the magnetic field. 

Maxwell's equations are solved using a well-established FDTD (Finite Difference Time 

Domain) method. The fluid portion of the code is more complicated since it incoiporates 

nonUnearities which may give rise to a number of fluid phenomena such as shocks that would 

render many finite difference schemes unstable. The fluid portion of the code is solved using the 

method outlined in {Kurganov and Tadmor, 2000]. This method involves incorporating a small 

amount of artiflcial viscosity into the code to smooth out any numerical artifacts that come about 

due to the nonlinear terms present in the fluxes. The artificial viscosity is proportional to the 

maximum characteristic speeds in the plasma which can be found by taking a Jacobian of the 

fiux matrices. This technique has been proven very accurate for systems of conservation laws 

[Kurganov and Tadmor, 2000]. 

As in all finite difference methods, a mesh is used to discretize continuous space, and all 

the derivatives are solved using samples of this space. The configuration for this model is shown 

in Figure 2, representing a dipole in three-dimensional space. All fluid variables are located at 

the cell centers. Electric fields are located at the cell edges, and magnetic fields as well as fluxes 

are located at the cell faces. 



As a result of the FDTD method used to solve for the radiated fields, E + H are staggered 

in both time and space. The fluid variables must therefore take this into account. 

Since the fluid variables are solved using a forward time centered space (FTCS) representation, 

the fluid variables must be co-located in time with either E or H. We chose the fluid variables to 

be co-located temporally with the magnetic field. 

Because of this, both the old and new time steps for the electric field must be stored in different 

arrays. The temporal arrangement for the different variables is shown in Figure 3. 
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Figure 2. Mesh and Cell Configuration 
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Sinre the fluid variables U are solved witti a forward time scheme, U must be updated 
using values located at the previous time step and not halfway in between like FDTD. 
Therefore to solve for U"*^', the variables u^^.H"'-*, and the average of E" and £"-■> must be 
used. Hence the need to store the old values of Electric Field. 

Figure 3. Orientation of Variables along time axis 

In an FDTD method, the antenna is excited by applying a potential difference between the two 

conductors of a dipole as shown in Figure 4. Once the antenna is excited (via electric field 

enforcement) the fluid and magnetic field values are determined using the newly acquired 

electric field value, and finally the updated electric field is determined using the fluid and 

magnetic field variables that were just calculated. We use the Fluid code to find the antenna 

current distribution in the following way. The sinusoidally varying potential is applied 

in the gap between the conductors. The voltage and current waveforms propagate along the 

antenna setting up the correct distributions for a radiating element. The electromagnetic and 

induction fields are mapped from the vicinity of the antenna out to the sheath boundary assuming 

a 1/r variation. The effects of the sheath are introduced through a boundary condition on the 

Applied Voltage 

1.) Antenna Excitation 

2.) Solve for Fluid Variables (Number density, Momentum, and Energy) 

4.) Vx£ = . dB 
(Solve for H) 

dD 
5.) Vx// = J + — (Solve for E) 

6.) Repeat steps 1-5 until convergence 

Figure 4. Antenna Excitation 



radial component of the quasi-static electric field, at the sheath edge. 

A.2 Boundary Conditions 

The correct boundary conditions are perhaps the most important part of any simulation. 

Boundary conditions in this model are made for the truncation of both the FDTD and fluid lattice 

as well as the boundary conditions for fluxes onto the antenna surface. Since it is important that 

both electrostatic and electromagnetic waves do not reflect back from the boundary, absorbing 

boundary conditions have been developed for both the fluid and Maxwell's equations. 

Absorbing boundary conditions for the solution of Maxwell's equations are well known. 

Perhaps the most notable and promising is the PML (Perfectly Matched Layer) formulation 

introduced in [Berenger, 1994]. This requires a thin layer of cells around the FDTD space which 

simulate a highly absorptive media. A better implementation of this method is discussed in 

[Roden and Gedney, 2000] which allows for the absorption of evanescent modes and is 

completely independent of the host medium. This is the method of choice for the EM-fluid 

model presented here. Since the method utilizes a convolution operator, the equations must be 

approximately linear for the method to work. It has been shown that this methods has an 

effective absorption rate of up to 50-100 dB of the incident wave. 

The PML method works well for Maxwell's equations, however the nonlinear fluid 

equations are much more of a challenge. Some assumptions must be made. Equivalent methods 

for fluid dynamics are not yet available for non-linear equations [Hesthmen. 1997]. However, a 

number of aspects particular to the problem at hand allows for the use of this convolutional PML 

derivation. Outside of the sheath region, the bulk velocity of the plasma is essentially zero. 

Meaning that there is no mean fluid flow. All other quantities are small relative to the ambient 

values. This means that the eonvective terms in the fluid equations are essentially zero, allowing 

for the linearization of the fluid equations. Boundary conditions for a zero mean flow essentially 

reduce to those involving wave equations such as Maxwell's, thus we can apply the same PML 

scheme to the fluid equations. Absorbing boundary conditions must be implemented for each 

model region (refer to Figure 1) in order to prevent contamination from spreading into each 

successive calculation. 

Boundary conditions for the conductor must also be taken into account. In many papers, 

it is assumed that the particles hit the walls of a conductor with the thermal velocity. The 

unidirectional continuity flux of particles at the wall is thus given by: 

P    1 



[Lymberopoulos, Economou. 1995]. Some papers also include a secondary emission coefficient 

[Meezan, Capelli. 2001]. In the magnetosphere at L=2 in the magnetic equatorial plane, the 

plasma temperature is only about l/5eV. Therefore any potential in the kV range will accelerate 

electrons well above the thermal velocities and this must be taken into account. Therefore, 

boundary conditions similar to those found in [Lymberopoulos and Economou, 1995] are used 

in this model including secondary electron emission with the exception that the velocity of the 

particles is actually the sum of the thermal velocities into the wall and the bulk fluid velocity at 

the wall as shown in Figure 5. Boundary conditions involving thermal velocities are 

implemented for the continuity and energy equations. It is assumed the there is no gradient in 

any of the conserved quantities at the wall of the conductor. 

Wall 

v^- -<  
%m ^failk^ ^bulk^ 

Vw.ff=Vrt+V„, 

Figure 5. Fluid Boundary Condition 

A.3 Antenna Pattern 

Once the number densities reach a steady state distribution, the antenna currents and the currents 

within the sheath region are used to detennine the antenna pattern using a far-field 

transformation (Fig. 6). The far field transformation involves the use of the radiated 

electromagnetic fields E and H, Green's Theorem and the Surface Equivalence Theorem. The 

radiated fields within the problem space can be weighted by the free space Green's function and 

integrated around a closed surface to provide the far-field pattern of the antenna. 



Imaginary Surtece S 

(F.H) 

\ 
AitHtmy StoGftire ^^ 

1          JM^ = -Mxi 

1  
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Far-field obseivatlon point 

1.) The surface equivalence 
theorem is used to determine 
the equivalent electric and 
magnetic fields along a surface 
S (and hence tlie virtual 
currents M and J) suffounding 
the antenna. 

2.) Then b? utilizing 
Green's functions, and 
integrating around the 
surface, the pattern at a 
particular location can 
be found via 
contributicos fi-om each 
of the surface elements. 

Figure 6. Near-field to Far-fleld Transformation 

A.4 Requirements of the full EM-fluid formulation 

There are a number of requirements, which must be met in order to properly use the full EM- 

fluid model. In order for the boundary conditions to work effectively, the truncation of the space 

must occur in a region where the assumptions in which the boundary equations were formulated 

are satisfied. For instance, one must be in the far-field for the PML condition to work for 

Maxwell's equations, and for the fluid equations, the space must be far enough beyond the 

sheath region for the cold-plasma approximation to be satisfied, i.e. any non-linear equations 

must be well approximated by linear versions. Since both Maxwell's and the fluid equations are 

solved simultaneously, the far-field condition for Maxwell's equation (being the greater of the 

two) takes precedence. 
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An option exists to reduce the number of cells necessary for the simulations, known as the 

AMR (Adaptive Mesh Refinement) technique. It involves applying resolution only where it is 

necessary, such as around the radiating structure, where electrostatic effects such as sheath 

development must be considered. This method is useful in any model in which multiple 

wavelengths exist at once, such as the electrostatic sheath model, or in an anisotropic FDTD 

model where the refractive index changes with both frequency and angle with respect to the 

magnetic field, A diagram of this concept is displayed in Figure 7 where the dipole antenna is 

shown in the middle of the space. This method has been developed for variables that are located 

at cell centers or cell faces such as the fluxes and fluid variables in the fluid equations. However, 

in the case of FDTD for MaxwelFs equations, the electric fields are located at the cell edges, to 

allow for an accurate curl representation. The current AMR method is not applicable to this 

case, however we estimate that appropriate modifications to the AMR method for use in our 

simulations could be completed in 3-6 months. 

Concept of Adaptive Mesh Refinement (AMR) for Antenna Problem 
Largest Cell Size ~ 100m 
Smallest Cell Size ~ .01m 
This means that the problem requires about 14 levels of refinement if each level of 
refinement is considered to be a reduction by 2 in cell size 

Figure 7. AMR (Adaptive Mesh Refinement) 
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A.5  Poisson Model for the Sheath 

. At potentials in the kV range, the sheath may be on the order of a few meters in radius. Since 

the driving frequency of the antenna will generally be much less than both the electron and ion 

plasma frequencies, the sheath should reach a quasi-steady state at each point in the sinusoidal 

cycle. Therefore at each point in the sinusoidal variation, the sheath should expand and collapse 

with the potential of the driving elements. The characteristics of the sheath dimensions and the 

dynamics of the charged particles within the sheath can then be determined through a simulation 

involving a Poisson model. 

The Poisson model involves solving the fluid equations with electric field source terms 

determined through the use of Poisson's equation. 

Poisson's equation is solved using a fast-sine transform, which falls under the category of 

rapid elliptic solvers. This technique proved to be the most efficient method for solving elliptic 

equations of this sort. To place conducting objects at specified potentials, it is necessary to 

incorporate a capacity matrix method, which allows sources internal to the system to be placed 

inside the space and provide a correct solution of Poisson's equation [Hockney and Eastwood, 

1981]. 

In using a Poisson type technique it is assumed that the potential is constant along each 

dipole element. This is equivalent to assuming a triangular current distribution along the 

antenna, which is the distribution expected for antennas whose length is much shorter than a 

wavelength. In the Poisson approach, the potentials are applied on each of the conductors 

independently as shown in Figure 8, however the magnitude of the applied potentials is assumed 

to vary sinusoidally. 



Two constant potentials of+Vand- 
Vare applied across the entire 
conductor in this electrostatic case 
(The voltage waveform is a constant 
across the length of the conductor) 

Figure 8. Poisson Model 
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The timestep constraint for Poisson type models is well documented as being the minimum of 

either the inverse of the plasma frequency, that which is related to the maximum characteristic 

speed in the plasma based on thermal effects and bulk velocities, or the dielectric relaxation time 

if the plasma is collisional which is often the most restrictive of the timesteps. Since the plasma 

in the current formulation is collisionless, the last constraint does not apply. For the operating 

conditions of this model, the maximum characteristic speeds in the plasma are generally the 

determining factor. In our case, the timestep corresponding to the thermal velocities are more 

restrictive than those having to do with plasma oscillations. And for a 0.2 eV plasma, and 

applied potentials on the antenna of lOOOV or more, the bulk velocities almost always exceed the 

thermal velocities in a collisionless regime. 

Trying to resolve a steady state solution on small grids with very low frequency waves 

poses a challenging problem at the present time, but the complexity can be reduced to 

manageable levels using the AMR technique. An alternative approach exists which involves the 

solution of Poisson's equation for a slowly varying applied potential over subsections of the 

large antenna whose lengths are much larger than the sheath radius. By slowly varying we mean 

that the frequency of the applied potential is much smaller than either the electron or ion plasma 

frequency, which will generally be the case for the proposed VLF radiating system. In this way 

the sheath characteristics as a function of applied potential could be calculated along the entire 

antenna. Using these sheath characteristics developed in the Poisson model, it would then be 

possible to implement a dynamic sheath into an FDTD approach. Essentially, this involves 

merging the electrostatic and electromagnetic models as outlined in Figure 1. 
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A.6 Anisotropic Cold Plasma FDTD Model 

In region 3 of Figure 1, the simulation model involves the solution of Maxwell's 

equations in a cold plasma and the propagation of ELF/VLF waves in this inhomogeneous, 

anisotropic medium. Once the currents in regions 1 and 2 of Figure 1 are specified, the cold 

plasma model can then be used to determine the radiation fields produced by these currents. This 

is an alternative method to that shown in Figure 6. The model involved utilizes the method 

outlined in [Lee andKalluri, 1999]. This includes the solution of the following equations: 

ot 

dJ 2 
— + vJ = e^m   irJ)E + (o,{rJ) x J 
ot 

Here, EQ is the free space permittivity, |io is the free space permeability, v is the collision 

frequency, % is the plasma frequency, and ©b is the electron gyrofrequency. Warni plasma 

effects can be introduced through a pressure term when necessary SJoung and Brueckner, 1994]. 

These equations can be used to accurately model wave propagation outside of the sheath and hot 

plasma regions. To demonstrate the validity of the model, we present a series of plots showing a 

simple cold plasma regime with operating points specified on the w-k diagram shown in figure 8. 

flJvsff 
xlO 

0.05 
k In rad/m 

Figure 9. ot-k diagram 
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The model however, was thoroughly tested in 1-d for points on the ordinary and parallel 

branches as well. The model accurately depicted cutoff regions and displayed appropriate wave 

numbers for the test cases. 

In the following section, the validity of the multidimensional anisotropic model in a cold 

plasma is demonstrated. Both free space propagation and that within a plasma are presented. A 

2-dimensional coordinate system is set up to allow for calculation of both the free space and 

extraordinary modes on the w-k diagram. In the following 2-d models, the antenna is a VA 

dipole with Hz, Ex, and Ey as the field configuration and a static magnetic field directed in the z- 

direction. The antenna elements are in the x-y plane with the antenna oriented along the y- 

direction and infinite in extent in the z-direction as shown in Figure 10.  The antennas are 

excited via a potential difference across the gap between the elements in the y-direction (Ey 

excitation). 

A plot of the Fourier transform of the spatial frequency is also displayed. This will 

provide a comparison for the cold plasma case. The following figures will show the same dipole 

configuration for an antenna operating in the plasma at the location specified by the operating 

point in Figure 9.   The 2-d simulation plots shown with the exception of the free space diagram 

will be those representing the extraordinaiy branch of the w-k diagram. 

Z k BQI (static magnetic field) 

Antennas are infinite in 
extent 

Figure 10. 2-d antenna simulation 

Figure 11 shows the plot of the free space Ey field after 17 cycles at 491kHz. The spatial 

Fourier transform at this time step is plotted in Figure 12 and a zoom in of the FFT is displayed 
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in Figure 13. At an operating frequency of 491kHz in free space, the wavelength should be 610 

m and the spatial frequency should be about .0016 1/m. 
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Figure 11. Ey field in free space 
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Figure 12. FFT of Ev field 
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Figure 13. Enlai^ement of Ey field FFT 

It can bee seen from the plot that the spatial frequency is indeed 1,6e-3 1/m as one would expect. 

Figure 14 shows the propagation of the Ey field for the free space case over a period of 1 cycle 

of the operating frequency. 

To test the validity of the anisotropic model, the extraordinary branch at a frequency of 

625 kHz was modeled. At this frequency, the refractive index is equal to 2. Therefore the 

wavelength should be V^ of the free space value. For the anisotropic case, this spatial frequency 

should be ,0042 1/meters. The same set of plots is made for the Ey field in the cold plasma. 

Figure 15 shows the Ey field. Figure 16 and 17 show the FFT and enlargement of the FFT for 

this field after 17 cycles. Once again good agreement is obtained. Figure 18 is another sequence 

of the Ey field over I period for the anisotropic case. 
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Figure IS. Ey field In Cold Plasma 
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Figure 16. FFT of Ey field in Cold Plasma 
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Figure 17. Enlargement of Ey field FFT in Cold Plasma 
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Figure 18. Ey Sequence in Cold Plasma 
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The final case is a three dimensional run made at the location defined as the operating 

point on Figure 19 which corresponds to 15kHz. In this case all components of E, H, and J are 

used in the simulation. The model is being run at a frequency corresponding to the whistler 

mode. The same configuration of antenna and static magnetic field as in the 2-d case are used. 

The static magnetic field is oriented in the z-direction and the antenna along the y-direction in 

the x-y plane. The only difference is that the z-dependence of the variables is added. It can be 

seen, that as expected, the fields are directed toward the static magnetic field, which is in the z 

direction. Sequences of slides for the three slices through the antenna are shown on the following 

pages for the Ey component which is the field of excitation on the antenna. Evanescent modes 

are seen in the x-y plane, and propagation is seen within a very small cone centered along the z- 

direction as expected. Since in FDTD it is necessary to resolve the smallest wavelength in the 

system, collisions were added to control the effects at the resonance cone where X-^ 0. 
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Figure 19. (o-k diagram 
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Figure 20. XY plane through antenna 
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Figure 21. Ey field In X-Y Plane (Evanescent) 
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Figure 22. Ey field in X-Z Plane. Propagation along Z. 
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Figure 23. Ey field in Y-Z Plane. Propagation along Z. 
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B Antenna Input Impedance. 

A second main Stanford goal has been to determine the first order effects of the dipole antenna 

plasma sheath on the antenna input impedance and to devise methods to control these effects. In 

this study we have used numerical solutions to the combined Poisson's and Lorentz's equations 

to determine the sheath characteristics in two dimensions. We treat each antenna element as an 

infinitely long cylinder and determine the sheath capacitance per meter of antenna length. Our 

approach is similar to that of LaFramboise andSonmor [1993] 

Working fi-om our 2-D model, we have discovered a new method of controlling both the sheath 

dimensions and the sheath capacitance when the antenna is used to radiate VLF waves in the 

magnetospheric plasma. This is an important topic since the sheath capacitance is responsible for 

a large portion of the antenna input impedance. 

To illustrate the new control method, we first show in Figure 26 the predictions of our 2- 

D model for the sheath radius r as a function of applied antenna potential. It can be seen that the 

sheath radius varies from a few centimeters for no applied voltage up to a few meters at 1000 

Volts. This is roughly the range of voltages that would be applied to the dipole antenna during 

normal transmitting operations. 

Since the sheath capacitance is a function of r, we can expect similar variations in the 

sheath capacitance as the applied voltage is varied. Figure 27 shows the predicted sheath 

capacitance as a function of r for a long dipole antenna. It varies widely from approximately 25 

pF/m at low applied voltage to approximately 5 pF/m in the kV range. 

For a long dipole antenna, the sheath capacitance is responsible for a major part of the 

input impedance of the antenna. However if we drive the antenna with a sinusoidal voltage of 

roughly 1000 V it is clear that the sheath capacitance will vary greatly during an RF cycle. Thus 

it is not possible to define an input impedance in a normal sense for the antenna. This is a major 

problem. If the antenna cannot be tuned, the radiation efficiency of the spacecraft VLF 

transmitting system will be very low and mission success will be compromised. 

Using our 2-D sheath model, we have discovered that the problems inherent in a widely 

varying sheath capacitance can be mitigated by applying a DC bias to both elements of the dipole 

antenna. The bias can be either positive or negative. A large positive bias voltage can be applied 
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using a power source and an electron gun on the spacecraft. Negative current carried to the 

antenna by electrons is collected and expelled from the spacecraft using the power source 

and an electron gun. The maximum amount of bias achievable through this method, or similar 

methods, will be a subject for future study. 

To illustrate the concept, we assume that a positive DC voltage bias of 5000 V is applied 

to both halves of a dipole antenna and the AC voltage is then swept from -2000 V to + 2000 V 

about the bias voltage. Results from our 2-D sheath model are shown in Figure 28, The Figure 

shows the sheath capacitance as a function of the sweeping voltage. It can be seen that the sheath 

capacitance varies only by approximately 10% over the 4000 V sweep range. These results 

suggest that this biasing technique can be very effective in controlling the dipole sheath 

capacitance. 

For a positive bias of 5000 V, our 2-D model predicts that the electron current to the 

antenna would be approximately 20 microAmps/m, Thus a 100 m tip-to-tip dipole would draw 

about 2 mA, and the electron gun system would expend about 10 W in removing the arriving 

negative charge from the antenna. In addition there would be some power necessary to run the 

electron gun. The use of an ion gun along with a large negative bias might also be effective. The 

ion current arriving at the negatively biased antenna would be much smaller than the electron 

current expected for a positive bias of the same magnitude. Thus the power expended by the ion 

gun system in removing the arriving positive charge would be smaller, but more energy might be 

required to expel the ions from the ion gun because of their larger mass. There are clearly a 

number of questions that need to be addressed concerning this biasing technique. Nevertheless 

this method appears veiy promising. 

In the coming three year period we propose to determine the feasibility of using high 

power electron or ion guns on the transmitting spacecraft to stabilize the sheath capacitance 

and allow straightforward tuning of the dipole antenna. We will also examine the possibility of 

using an active tuning network that compensates in real time for the sheath capacitance variation 

during each RF cycle. 
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Figure 24. Antenna voltage and resultant plasma 
sheath radius for two values of plasma temperature. 
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Figure 25. Sheath capacitance as a function of sheath radius. 
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Figure 26. Sheath capacitance as a furctlcn of antenna 
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C. Other Accomplishments 

Additional goals of the Stanford effort have been: 1) the determination of nominal antenna 

requirements from wave-particle interaction models that are required to maximize particle decay 

rates for targeted populations, 2) the determination of the effects of Landau damping on the 

waves radiated from the antenna, 3) the determination of the energetic electron precipitation due 

to magnetospherically reflected whistlers, 4) the development .of a global overview of the total 

radiated VLF power from space necessary to match the effects of presently operating ground 

based VLF transmitters, and 5) the determination of the VLF input impedance of .large loop 

antennas in the magnetosphere. All of these topics must be considered when evaluating the 

feasibility of radiation belt control using space based VLF transmitting systems. 

C. 1. Antenna Length 

For a variety of spacecraft orbits, we have determined the optimum dipole antenna length for 

maximizing the radiation of ELF/VLF waves with the correct wave normal angles for 

precipitating target electrons in the 1-10 Mev energy range. This work is reported in [Inan et al. 

,2002]. 

C 2, Landau Damping 

We have used data from the POLAR spacecraft to determine the characteristics of energetic 

electrons in the 100 eV - 2 keV energy range within the radiation belts. These characteristics 

were then used to assess the Landau damping that would affect the amplitude of the radiated 

ELF/VLF waves as they propagated through the belts. Knowledge of this damping and its 

variation with wave normal angle is critical in the evaluation of the feasibility of the mission. 

This work is reported in [Bell, et al, 2002,] 

C.3. Particle Precipitation by Magnetospherically Reflected Whistlers 

Using Landau damping rates from the foregoing study, we have determined the energetic 

electron precipitation that is produced by magnetospherically reflected whistlers. This 

precipitation mode is one which we can emulate using spacebased ELF/VLF 

transmitters.[Bor^i^e? al., 2002]. 
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C.4. Global Overview 

We worked with Tony Tether of ARPA to provide a global overview of the number, 

placement, and radiated power of a fleet of ELF/VLF radiating spacecraft which would be 

required to precipitate energetic electron fluxes equal to those presently being precipitated by 

ground based VLF transmitters. This worlc is reported in [Inan et ah, 2002] 

C.5. The VLF Input Impedance of Large Loop Antennas 

We determined the ELF/VLF radiation characteristics of large (100 m radius) loop 

antennas deployed from spacecraft in both low and high altitude orbits. In general, loops used for 

radiating VLF waves must be roughly of this size in order to radiate sufficient power. This type 

of antenna would appear to have an important advantage over dipole antennas in low Earth orbit, 

since a loop antenna with constant current does not develop a large plasma sheath that would 

affect its input impedance. However our results suggest that even small spatial variations of 

current around the loop can greatly affect the input impedance. This work is reported in [Bell et 

ah, 2002], 

D. Joint Work 

During the duration of his Grant we have worked jointly on various topics with 

AFRL/VSB personnel. Our work with Dr. J. Albert has led to the presentation of a joint paper 

at the Fall 2001 AGU meeting on: "Optimal VLF wave parameters for pitch angle scattering of 

trapped electrons" and to the submission of a joint paper to the Journal of Geophysical Research 

concerning controlled precipitation of radiation belt particles [ Inan, et al, 2002]. 
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