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CHAIRMEN'S WELCOME 

Dear Colleagues - 

We are happy to open MMET*02 in Kiev, over-a-thousand years old capital of 
the eleven years old independent Ukraine. The venue of the conference, this time, is the 
largest technical university of Ukraine, NTUU-KPI, or Kyivska Politekhnika. 

As with the previous MMET conferences held in 1990-2000, we have tried to 
follow our several basic traditions. One of them is the idea that a cross-fertilization of 
mathematicians and microwave engineers is a natural necessity that should be promoted 
by all means. There are many other meetings covering only applied mathematics or 
computing and only microwaves or physics. MMET is a unique combination of the 
both. Therefore the technical program is a mixture of fundamental mathematical studies 
into boundary-value problems of wave scattering and studies into applications and 
implementations of various analysis methods. Another eternal idea is that interaction 
with the Western science has always been and still is very important for Ukrainians, 
Russians, Belarussians, Georgians, and other Eastern Europeans. Therefore we intended 
to attract as many as possible keynote speakers from the West Europe, America and 
Japan, from one hand, and good contributed papers from the East Europe, from the 
other hand. At the same time we still believe that having two working languages and 
massive poster sessions, as done sometimes, is a wrong way of international conference 
organization in our conditions. Instead, MMET gives one a chance to train in writing 
and presenting a paper in the major international science language, which is English. 
Still another traditional idea is to help young scientists from low-income regions come 
and participate, even if they travel from very far away. Humiliation of a 50-Euro a 
month salary of a scientist should be neutralized, at least once in two years, by an 
opportunity to join the holiday of MMET. 

This year the Technical Program Committee had invited 28 papers and accepted 
148 contributed ones, out of 161 submitted. We enjoyed working with all the members 
of Local Organizing Committee and Technical Program Committee. We are extremely 
thankful to the staff and executives of the Department of Radio Engineering and the 
Scientific Library of NTUU-KPI. All of us should kindly thank the editing group that 
prepared the conference proceedings and supported the Website of MMET*02. The 
generosity of the conference sponsors is greatly appreciated. 

We thank everybody of participants who have come to Kiev this September 
despite many other professional commitments. We hope to see you at the future 
conferences in Ukraine. 

Eldar I. Veliev and Alexander L Nosich 

It looks like MMET*02 has quite a nice program. Congratulations! Best wishes with the 
conference. 

W. Ross Stone 
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ABSTRACT 
Analytic expressions for phase radiation characteristics of a semi-infmite open-ended 
circular waveguide regardless of its aperture size and operating frequency have been 
obtained making use of the rigorous Weinstein's theory. The analysis of phase radiation 
patterns has been carried out for the dominant mode (TEn) as well as for the high order 
modes TMoi and TEoi, both for a single and multimode propagation. The measurement 
of radiation characteristics of an open-ended circular waveguide has been carried out at 
the DTU-ESA Spherical Near-Field Antenna Test Facility. It is shown that the 
theoretical results are in a good agreement with the experimental ones. 

ANALYTIC EXPRESSION FOR PHASE RADIATION PATTERN 

For the first time, a rigorous solution of the electromagnetic diffraction problem for an 
open-ended circular waveguide (OE-CWG) by the Wiener-Hopf method was proposed 
by L. A. Weinstein [1]. He obtained analytic expressions and carried out a thorough 
analysis of amplitude radiation patterns for the case of single mode diffraction at an OE- 
CWG. When an open-ended waveguide is used as a feed in an antenna system, both the 
amplitude and phase radiation characteristics are needed thus allowing the polarization 
characteristics of the feed to be calculated. In this paper, the analytic expressions for the 
phase radiation characteristics of a semi-infinite OE-CWG are obtained regardless of its 
aperture size and operating frequency. According to the Weinstein's theory the explicit 
expression for the amplitude radiation pattern contains finite products proportional to 
the number of high order modes propagating in the waveguide of the given size. The 
phase radiation pattern, in general, contains an infinite sum, such as: 

lim    2w„ 
M -^ 00 

K  = 
2Mn Tc arcsm- In ,  2J  "^^'""   I—;  (1) 

where V„ is a n-th root of the Bessel function of the first kind, v-^jk^~w^ is a 

transverse wavenumber, and w is a longitudinal wavenumber. 
In order to obtain an analytic expression for the phase radiation pattern, a method of 
summation of rational series using poly-gamma functions [2] has been employed. 
According to this method, there is an explicit expression for the following infinite 
series: 
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I! n    n + \IA 4 
"ViN) (2) 

where ^ is the di-gamma function [2]. Employing asymptotic expressions for the roots 
of the Bessel function and expanding arccosine function in a series for a small value of 
argument, the infinite series in (1) can be reduced to the summation (2). The similar 
technique has been employed to obtain analytic expressions for the phase radiation 
pattern of an OE-CWG for both the symmetric and the non-symmetric excitation 
modes. 
Investigation of the phase behavior on a whole radiation sphere has shown that the 
phase radiation patterns are not uniform for the symmetric excitation modes TMoi and 
TEoi as well as for the dominant mode TEn. At the same time, it is well known that 
calculation of the phase radiation characteristics for a circular aperture under the 
Kirchoff approximation without taking into account phenomena associated with mode 
transformation at the aperture and neglecting currents flowing on an exterior surftice 
gives a fictitious phase center located in the center of the aperture [3]. Therefore, 
accounting for mode diffraction at the open end of a waveguide leads to the conclusion 
that a radiator in the form of OE-CWG has no phase center regardless of the excitation 
mode. However, when an OECWG is used as a feed in reflector or lens antennas, the 
phase error over the aperture associated with the non-uniform phase radiation pattern is 
quite small. Thus for the dominant mode excitation (TEn). the deviation of the phase 
pattern within the main lobe at -3 dB does not exceed 2 degrees as compared to the 
direction of the main radiation maximum (See Fig. la). This remains valid for the whole 
operating frequency range of the single mode waveguide: 1.84< A:a< 3.83, where /: is a 
longitudinal wavenumber in the free space and a is the radius of the waveguide. For the 

ka=2.04 ka=8 

0 

b) 

60        90        120 

0,deg 

180 

Fig.l. Phase radiation pattern of the single mode (a) 
and the multimode waveguide (b). 
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case of TEoi excitation (4.75 <ka< 6.5), the deviation within the main lobe does not 
exceed 4 degrees, and for the TMoi case (3.0 <ka< 5.0), it does not exceed 5 degrees. 
The maximum deviation of the phase radiation pattern within the main lobe is observed 
near cut-off frequencies: for TEoi mode with ka = 4.0 it runs up to -21 degrees and for 
TMoi mode with ka = 2.5 it consists of 15 degrees. In the whole forward hemisphere 
the deviation of the phase radiation pattern can reach 30 degrees. The phase radiation 
pattern of an oversized waveguide can be considered almost uniform both within the 
main lobe and within first sidelobes (Fig. lb). 

NEAR-FIELD PHASE RADIATION CHARACTERISTICS 

The spherical wave expansion technique is used to analyze the general near-field 
radiation characteristics of an OE-CWG excited by the dominant mode TEn as well as 
by the higher-order modes TEoi and TMoi. First, the coefficients of the spherical-wave 
expansion are obtained by matching the expansion with the far-fields. Then, the 
coefficients are used to calculate the near field. 
An experimental verification of the calculated amplitude and phase radiation patterns 
has been made. The measurement of radiation characteristics of an open-ended circular 
waveguide has been carried out at the DTU-ESA Spherical Near-Field Antenna Test 
Facility. The measurement was performed at several frequencies for the dominant mode 
TEii and for the TMoi mode as well. Two orthogonal complex components of the 
radiated field were accurately measured on a full sphere ai'ound the open-ended 
waveguide by a dual polarized probe. The measurement data were then transformed 
both to the far-field and to the near-field [4]. The theoretical amplitude and phase 
radiation characteristics of the waveguide were compared to the results obtained from 
the measurements (see Fig. la). It is seen that the theoretical resuhs are in a good 
agreement with the experimental ones. Some differences yet observed can be explained 
by the difference between the simulated semi-infinite waveguide and the mQasMx^d. finite 
waveguide. 

CONCLUSION 

The investigation of the phase radiation characteristics of an open-ended circular 
waveguide has shown that it has no phase center regardless of the excitation mode. 
Maximum deviation of the phase pattern from a constant is observed for the single 
mode propagation. In the multimode operation the phase radiation pattern is nearly 
uniform within the main lobe. In the near-field the phase radiation pattern is not uniform 
both for the single and multimode waveguides. As the distance to the aperture 
decreases, the deviation of the phase radiation pattern becomes more pronounced. 
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ABSTRACT 

The inverse problem, which we consider is to determine the shape of two-dimensional 
open screen from the knowledge of the field on a curve for the electromagnetic plane 
waves scattering. 
Prof R. Kress in his papers has proposed to reconstruct the scatterer's - shape from the 
knowledge of the far field pattern [1-2]. We extend this approach to the inverse problem 
of determining the shape of a two-dimensional open scatterer from the knowledge of the 
scattered field on a curve. In particular, we investigate the Frechet differentiability of a 
field operator for scattering from an open screen with the boundary as prerequisite for 
the theoretical foundation of the gradient methods or Newton type methods for the 
approximate solution of this nonlinear and improperly posed problem. 
The aim of this paper is to provide a proof for Frechet differentiability with respect to 
the boundary of an operator, which maps the boundary of an open screen onto the 
scattered field and to obtain expression of this derivatives. 

STATEMENT OF THE PROBLEM 

We consider the scattering of time-harmonic electromagnetic plane waves by a thin 
infinitely long cylindrical screen with a cross which is section described by an arc 
/ e R' class C^[(:/.i^], i.e. / - {(x,/(x)): x e [ci.h]\ where f{x) is an injective and three 
continuously differentiable function. The inverse problem consists in determination the 
shape of the screen from the knowledge of the field on curve S. Mathematically this 
problem can be interpreted as the solution with respect to / of a system operator 
equation 

1/ 

Here, z = {x,y] - any point ofR~ ,.v' - arc abscissa of a point z' = {x',_y') of the contour 

/, HQ'{X) - Hankel function of zero order and of the first kind. g{z) - the given 

function on curve S and u{s) - a value of the incident field at the points of curve /. 

Let F the operator that maps a description f{x) of some admissible scatterer onto the 

corresponding scattered field g{z),zeS. In terms of this operator the inverse problem 
consists in solution of the nonlinear and ill-posed equation for the function /, 
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Ff = g (2) 
where g{z) is a (measured) scattered field. 
In order to use Newton's method for the approximate solution of (2) it is necessary to 
establish the differentiability of operator F with respect to /. 

TECHNIQUE OF SOLUTION 
To obtain characterizations of the derivatives we use a method, which is based on the 
classical theory of boundary integral operators [3]. From (1) we obtain 

F = SK-'Ru. 

Here 

5:d''«'(/)=>C^(G),    5((p;/)= j(p(^')D(z,z'V^', zeG; 

R:C'(R'):^C'{1), R{U;1)^U\,, 

with <I>{z,z')= ° ^   ^ , where z^ and z_, are extremities of the arc I ,G is any 
vk'-^ilk'-^-il 

domain of R^ for which G nl = 0. 
The first step of the proof of a differentiability of the operator F consists in establishing 
that the mapping f => K is Frechet differentiable from C^[6r,Z?] into the space of 
bounded linear operators L(c°"[a,6],C'"[«,&]) and that the derivative is given by 

h => K{-;f,h), where K{-;f,h) denotes the integral operator 

K'iip■f,h\x)= \  „,    ^^      . [k,{h;x,T) + k,[h;x,x)]^T 
0 J(T -aj(T -b) 

with 
^,(;z;x,x) = -^//('>KK(x)/Mz/fe)[;,(^)_/,(,)], 

'"/ 

k,{h;x,T)=HSikr,)-l^h'{x) 
Jf[x) 

In the second step of the proof it is shown that mapping f => S is Frechet differentiable 
from C^[a,6] into the space of bounded linear operators L(c°'"[a,6],C^[G]) and that 

the derivative is given hy h=> S'{-;f,h), where S{-;f,h) denotes the integral operator 

S'{rJM^)= f I.   "^t^        lsXh;x,T)+s,{h-x,T)}iT , 
„^\[x-alx-b} 

with 
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r - Jj[x) 

It is easily to convinced, tliat  f-=^R{-;f)  is Frechet differentiable one with the 

derivative R'{u;f,h)= u[\x,f{x))h{x). 

In the third step using the chain rule we finally obtain the Frechet differentiability of F . 
The derivative is given by 

Fif)h = Si^,-f,h)+s(K'{K'{^,-f,h);f)-f)+S{<\,,-f) 

where i;>^= K \R{u:f);f), ^,=: K^^{R'{u;f\h);f) For the actual numerical 

computation of the Frechet derivative of the operator F at first we determine (j), (x) by 
solving the integral equation 

Further, we have to solve the integral equation 

I-       ^i---^//S%)/,^>/x =r(ct,,;/,/,)+7?'(";/,/z) 
a ,;(T -C/J(T -b\ 

and at last we compute a sum 
F'{f)h^S%,-f.h)+S{^,-f). 

Hence, for numerical computation of the Frechet derivative it is necessary to solve two 
singular integral equations of the same type. The numerical methods for solving of such 
equations are known [4]. 
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ABSTRACT 

Effects of coupling of waves at plane with spatially oscillating surface impedance 
(anisotropic and/or gyrotropic) are theoretically considered. A combination of the two 
processes is investigated. The first process is reflection of surface waves propagating 
along impedance surface. The second process is input-output coupling of falling 
paraxial wave electromagnetic beams (both TM and TE type) with both surface TM 
waves. This electromagnetics problem is important for consideration of devices 
combining functions of nonreciprocal antenna and microwave generator. 

INTRODUCTION 

In open periodic waveguiding structures Bragg scattering can be observed in different 
forms [1]. Type of the wave transformation depends on from a value of perturbation 
period. If a perturbation wavenumber is twice as large as longitudinal wavenumber of 
surface wave, then coupling of two surface waves with opposite propagation directions 
occurs, that is reflection of surface waves is observed. If wavenumber of perturbation is 
equal to difference of longitudinal wavenumbers of surface and volume waves then a 
coupling of these waves secures, that is why we can obtain output of radiation from 
structure. Anisotropy of parameters causes coupling of waves with different 
polarization. If incident wave can excite surface wave reflected wave would be very 
differed from min-or one even if surface perturbation amplitude were small [2]. Open 
structures become more interesting when parameter perturbation is not periodic [3]. 

METHOD OF ANALYSIS 

In the paper physical effects of coupling of paraxial wave electromagnetic TM and TE 
beams falling on surface with spatially oscillating surface anisotropic impedance and 
two TM surface waves are theoretically considered. Moreover we suppose Bragg 
coupling (reflection) of surface waves. Asymptotic method [3] based on ideas of KBM 
method [4] is used. Perturbations are expressed as sum of sinusoidal components with 
small amplitudes smoothly varying along longitudinal coordinate. Amplitudes of 
incident TM and TE wave beams are smoothly varied across beam. The same small 
parameter p is used for all small values and as smoothness parameter [4]. For case 
d/dx=0 all components of electromagnetic field are expressed in terms of x component 
of fields 77,.. and E^. The potential fiinctions H(y,z) = H^ and E{y,z) = E^ are determined 
by the solution of the following boundary-value problem: 

d^H     d^H       2 S^E     d'^E     ,2^     „ 
—^ + ^+k^H = Q,     -^-+ - + k^E = Q, (1) 

Kii;v, UKRAINH. IX-TH INTI-RNATIONAL CONFHRHNCE ON MATHHrnriCAi METHODS IN ELECTROMAGNIITIC THEORY 



368 MMET*02 PROCEEDINGS 

dy dy y = 0 
= 0, 

^ dE ^ 
E + w,^-Z^H 

dy y = 0 
= 0, (2) 

Impedance parameters WH, WHE and WE as functions of z are expressed through 
components of surface impedance tensor Z in a form of sums of spatial harmonics 

j jJ 

j 

J J 

where XJ is wavenumber of theyth spatial harmonics of the perturbation; WHJ, ^VEJ, WHEJ 

and WEHJ are amplitudes of these harmonics, WHJ.I are amplitudes of the second order 
perturbation. Alongside with coordinate z we introduce a "smooth" variable C, = ^z [4]. 
The Bragg coupling of surface waves and TM and TE beams occurs, when the 
wavenumber mismatches r| K,J = k: + Xpv(j) -hs(s= 1,2) become small. Here k, is 
longitudinal wavenumber of the beams, hs is longitudinal wavenumber of the surface 
wave, and pv(s) is integer-value function that coincide with the number of a spatial 
harmonic of the perturbation ensuring Bragg coupling. The Bragg reflection of a surface 
wave is observed if wavenumber mismatches -qs.s.i = - 2Aj -x/ - Xpsuo are close to zero. 
The solution of the boundary-value problem (1), (2) are searched as an asymptotic series 
on orders of small parameter P [3, 4]. 

H = J^a, exp(- ih^z - wy) + ^a„(^ + ^ykjk^)exp(-ik.^z + ikyy)-¥ T„^a„ (c - ^ykjk^)x 
.s=l 

xQ%.p(-ik,z-¥kyy)+^uXa],a2,k,j,hz,xz,C,^y)+^^^2{"\^^2'k2^>hz,xz,C,,y) + ..., 

£ = p a,(C + mjk^ Jexp{- ik,_z + kyy)+ T,..p a,(C - mjk^)exp(- ik,j - k^y)+ 

+ pv,(fl,,fl2,A;_.z,/zz,x^,C.>')+P^V2(fl,,a2,A:,z,/?z,xz,i;,;^) + ..., 

where TE and TH are the reflection coefficients of plane waves from an undisturbed 

plane, k    = Jk^ - k^ , an and OE are distributions of amplitudes of wave beams, u„ 

and v„ (« = 1, 2,...) are 27c-periodic versus Lz, hsZ and %jZ functions. First derivatives of 
complex amplitudes a^ are expressed in form of asymptotic expansions too [3,4]. 
In a second approximation on small parameter value dajdz can be obtained as 

P' aAi + exp(-/ri^,zj(fl/,G,2_^,, + 0,0,^^,:)+ QJ,,2]exp(-/r|s,.,/^M.2.s,/   (4) 

(3) 

dz 

where  A 
s,2 

= -iw H,0 
^HJ^H,-J 

ik w H.O 

W H.0,0 Ih.. 
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Gs,2.V.H = 4ww,- pv(5) ky WH. O/[(2/2. + tl V,s)Qky - WH, o)],       G* 2,V.E= 4w//£,_ pv(.) ky WH. (,/ 

/[{2hs + Tl Ksiiky WE. O- 1)],     G„2,s.i = - i2 w//. o[W//, ps(.,o w //, / /(/A:3_.,/ -WH.O)- 

- ih-s.t WHK ps{../) W£//. //('^^ W£, 0- l)]/(2/2^ + n 5,.,/), 
Deciding the equation (4) we find variation of amplitude of the surface waves along 
longitudinal coordinate z. Then we can define the field, radiated from the surface. 

THE PHYSICAL EFFECTS 

Total physical effect observed in the considered structure is result of combination of 
five phenomena - "unperturbed" specular reflections of volume TE and TM waves 
(they are characterized by parameters YE and TH), transformation of these waves into 
two surface TM waves propagating in opposite directions along impedance surface 
(characterized by parameters Gs.iy.E and GSXKHX leaking and heat dissipation of energy 
of surface waves (characterized by parameters ^,,2), mutual transformation (reflection) 
of surface waves (parameters G„2,s,/)- If rigorous exponentiality of perturbations and 
incident wave is disturbed physical pattern changes fundamentally - structure can be 
exited by a surface wave going from " a minus of infinity " or energy of falHng volume 
waves can be transformed into energy to a surface wave going to " a plus of infinity " 
Structures considered in the paper have high frequency and angular selectivity. They 
can be used as nonreciprocal reflector, transmitting or receiving antenna. Gyrotropy of 
impedance causes that antenna patterns for reception and transmission are essentially 
different. Combination of impedance gyrotropy and corrugation tilt allows using these 
structures as circulators concerning surface waves and TE wave beams. 

CONCLUSIONS 

Asymptotic method based on method of Krylov, Bogoliubov and Mitropolsky have 
allowed us to consider phenomena of Bragg reflection and volume-surface coupling of 
surface waves and TM and TE waves in open anisotropic quasiperiodic waveguiding 
structure. Found solution is valid for small and not small values of mismatch; so we 
have no need to splice resonant and not resonant asymptotics. Obtained resuhs will be 
useful for analysis of wave scattering by structures with small surface nonperiodically 
oscillating gyrotropic perturbations of parameters and for designing resonators, leaky- 
wave antennas or nonreciprocal devices with untraditional properties. 

REFERENCES 
[1] C. Elachi, "Waves in active and passive periodic structures: A review," Proc. IEEE, vol. 64, 

pp. 1666-1698, Dec. 1976. 
[2] S. Tibuleac, R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, 

"Dielectric Frequency-Selective Structures Incorporating Waveguide Gratings," IEEE Trans. 
On Microwave Theory and Techniques, Vol. 48, No. 4, pp. 553-561, Apr. 2000. 

[3] V. F. Borulko, V. E. Ivanilov "Coupling of wave beam with surface wave at oscillated 
perturbation of surface impedance" in Proc. of XXVIII Moscow International Conference 
"Antenna theory and techniques". - Moscow (Russia). - 1998. - P. 180-183. 

[4] N. N. Bogoliubov, Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear 
Oscillations. New York 1961. 

KIEV. UKRAWI;, IX-TH INTERNATIONM. CONFERENCE ON MAWEMATICAI. METHODS IN ELECTROMAGNETIC THEORY 



370 MMET*02 PROCEEDINGS 

AXIAL SYMMETRIC WAVE DIFFRACTION BY A CIRCULAR 
WAVEGUIDE CAVITY 

D. B. Kuryliak", K. Kobayashi ^\ S. Koshikawa ^*, and Z.T. Nazarchuk " 

'^ Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine 
5 Naukova St., 79601, Lviv, Ukraine 

Tel: +380-322-637-038, Fax: +380-322-649-427, E-mail: kuryliak@ipm.lviv.ua; 
nazarch@ipm.lviv.ua 

^' Department of Electrical, Electronic, and Communication Engineering, Chuo University 
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan 

Tel: +81-3-3817-1869, Fax: +81-3-3817-1847, E-mail: kazuya@kazuya.elect.chuo-u.ac.jp 
^' Laboratory, Antenna Giken Co., Ltd., 4-72 Miyagayato, Omiya 330-0011, Japan 

Tel: +81-48-684-0712, Fax: +81-48-684-9960, E-mail: koshikawa@antenna-giken.co.jp 

INTRODUCTION 
In this paper, we shall consider a three-dimensional (3-D) cavity formed by a finite circular 
waveguide with a planar termination at the open end, and analyze the axial symmetric 
diffraction problem by means of the Wiener-Hopf technique. The method of solution is similar 
to that we have developed for the analysis of parallel-plate waveguide cavities [1], but is more 

complicated because of the cylindrical geometry. The time factor is assumed to be e"'"' and 
suppressed throughout this paper. 

WIENER-HOPF ANALYSIS OF THE PROBLEM 
We consider a 3-D cavity formed by a finite circular waveguide with a planar termination, as 
shown in Fig. 1, where the cavity surface is perfectly conducting and of zero thickness. The 
cavity is assumed to be excited by a hypothetical generator with voltage of unit amplitude 
across an infinitesimally small gap at z-d{-^L\). Thus the applied electric field becomes a 

uniform ring source given by el{p-b-0,z)=?){z-d), where 6(-) is the Dirac delta function. Let 

the total field ^'{p,z) be 

^/(p ^) = ft'(P'^) + <l>(P.2) for  0<p<6, ^j^ 
[ ^{9,z)  for p>b, 

where ^ '(p,z) is the field excited in an infinitely long circular waveguide due to the ring 
source, and ^{p,z) is the unknown scattered field satisfying the scalar Helmholtz equation. In 
the following analysis, we shall assume that the medium is slightly lossy. Applying the method 
established in our previous papers [1, 2], we derive the transformed wave equations as in 

f(I)(p,a)=0 in p>b fortr^Arj, (2a) 

f^_(p,a)=a/(p) in0<p<Z> iorx<k2, (2b) 

f[o,(p,a) + e'"''»F^(p,a)] = -ae-'"''g(p)   in  0<p<b   for x >-k2, (2c) 

where f= d^ I dp'^ + p'^ d I dp -y^ , &nd y ={a^ -k^y^ with Rey > 0. In (2b,c), /(p) 
and g{p) are unknown inhomogeneous terms. The terms on the left-hand sides of (2a-c) are the 
Fourier transforms of the functions appearing in (1), and are defined by 

+00 

<D(p,a)=(27t)-''^ J^(p,z)e'"-'rfz (3) 
—00 

with a= Rea+/Ima(3CT+/T) and 
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0(p,a) = *F(p,a) + Oi(p,a)-(D'(p,a), 
+iaL\ T(p,a) = e-'«'T_(p,a) + e+'«^T+(p,a), 

(4) 

(5) 

X" 

77^ 

Ring source 

Fig. 1. Geometry of the problem. 

(6) 

(7) 

where T_(p,a)=0_(p,a)+e_(p,a), 4'+(p,a)=<I>+(pA)+e+(PA), 
±00 ,        +i 

(D^(p,a)-±^ f(t)(p,zy"(-'^'-W, ^i(p,a) = -F= J*'(P,^y"-'^^ 
V27t ^-"^ V2TC _i 

Here C)'(p,a) and e±(p,a) are known functions. In (4)-(7), the subscripts ' ± ' imply that the 

functions are regular in the half-planes xl+k2, whereas the subscript '1' implies an entire 

function. In addition, the function 0(p,a) defined by (3) is regular for |T |< ^2 • 
Solving (2a-c) for the unknown functions on the left-hand sides with the aid of the radiation 
condition and the boundary condition on the termination, we may derive a scattered field 
representation in the Fourier transform domain. Taking into account the boundary conditions at 
p = 6, we derive the desired Wiener-Hopf equation. Applying the factorization and 

decomposition procedure, we finally obtain the exact solution with the result that 

E_{b,a) + M_{a) 

E^{b,a)-M^{a) 

4^a) + Z- 

J f(a)-H2: 
n=\ 

iy„ia-iy„) 

iy„{a + iy„) 

= M_(a)R_(a), (8) 

= MJa)R^(a)       (9) 

with 

J (1,2) 
±icB±k 

(«)=7  1 
e*2^^M±(v)E±(fe,v) dv 

2   i   Yv^o(Yv*o(Yv^)-'''^^o(Yv^)]^-«' 
(10) 

where R^(a) and M^ia) are known functions, and E^{b,a) are unknown functions denoting 

the Fourier transform of the z-component of the electric field at p =fe. In (10), IQ(-) and KQ{-) 

are the modified Bessel functions of the first and second kinds, respectively. Equations (8) and 
(9) provide the exact solution of the Wiener-Hopf equation, but are formal since they contain 

the branch-cut integrals J^'^^a) with unknown integrands as well as infinite series with the 

unknown coefficients E^(b,±iy„) for « = 1,2,3,---. Applying the approximation procedure 
developed in [1, 2], we can derive an approximate solution convenient for numerical 
computation, but the details are omitted here. 
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NUMERICAL RESULTS AND DISCUSSION 
We shall now present numerical examples of the far field pattern for various physical 
parameters to discuss the scattering characteristics of the cavity. We have computed electric 
field components |e* | =|e,(p,z)/?| and [e* | = |ep(p,z)i?| as R^<x, where {R,Q) is the 

cylindrical coordinates defined by 2 = i?cos9,p =i?sinG for 0<6 <n. 

0 30        60        90        120       150       180 

OBSERVATION ANGLE jdcgj 

0 30 60 90        120        150        180 

OBSERVATION ANGLE [degl 

(a) Far field amplitude | e. (b) Far field amplitude | e 

Fig. 2. Radiation pattern of electric field components e, and e^ for d/L = 0. 
Line 1: 2b ^lOX,L/b = 1. Line2:2b = 2X,Lfb = 5 . 

Figure 2 shows the far field amplitude of e, and gp as a function of observation angle. It is seen 

from the figure that the radiated field oscillates rapidly with an increase of the cavity dimension. 
This sharp oscillation for larger cavities is due to the effect of the multiple diffraction between 
the aperture and the back corner. Next we evaluate the power of TM waves radiated fi-om the 
cavity through the elementary surface dS = smMM^>. The radiated power P is found to be 

PCe) ~ 0.5(e /Vi)^'^ i e,(p,z)/sine \^ R^ . 

We investigate the power radiated fi-om the cavities as a function of the observation angle and 
cavity parameters. We also show that, with an increase of the cross section of the cavity, 
dominant peaks of oscillafions of the radiated power are formed in the region 75 °<e < 105 °. The 

focusing effect of the radiated power in the direction e =90 ° is found for short cavities. 
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ABSTRACT 
The analytic method of solution of nonuniform wave equation of the problem of 
radiation of the magnetic moment, moving uniformly in the waveguide of arbitrary 
cross section with time - space periodic dielectric filling is given. The fields and the 
analytic expression for the Cerenkov energy losses of the magnetic moment in the 
region of strong (resonance) interaction between the radiation wave and the modulation 
wave are found. 

Suppose that the source with magnetic moment w(0,0,m,) moves uniformly along the 
axis (oz - axis) of an ideal waveguide of arbitrary cross-section with nonmagnetic 
filling, whose permitivity is modulated in space and time according the periodic law 

f = £O[1 + WCOS(A:OZ-W/)], (1) 

where m is the modulation index, k„ and u are the wave number and the phase velocity 

of the modulation wave, £•„ is the permitivity of the waveguide filling in the absence of 

modulation. 
It can be shown that the longitudinal component of the magnetic vector H,{x,y,z,t) as 

a potential of the transverse - electric (TE) field (£, = 0,//, ^ 0) satisfies the following 
nonuniform partial differential equation 

A,//. + 
d-H,      1   d 

-L      -' n_2 8z'      c' dt 
s- 

dt 
- \nt^jn,   , (2) 

where A^ = 5^ Idx^ + 5^ /5y^ c is the velocity of the light in vacuum. 
In (2) let us pass to the variables 

z     u ^f    d^ 
^ = z-ut,r] = Y\     ' (^^ 

1-/?   - 
^0 

where b= 1 - /?",  p = ul c^. After any algebraic transformations we receive 
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AJL + 

where 

d^ 
\-P' 

dH_ 

'0 J d^ 

d~H 

p- 
drj 

f- = -Arrq)   , 

>o; 

(4) 

(p = -A^m_,m. = m^ 
S{x-x,)si 

Imu - n-v\ •' 
'dy, (5) 

H de 
u{v-u)      »,fj_^2^ 

(6) 

(xo,;^o) is the point of intersection of trajectory of the magnetic moment with the cross 

section of the waveguide, m^ is the magnetic moment of the point source. 

The equation (4) we can solve, suppose, that 

H,=Y^xy„{^.y)\e'-'HS^)dY^ (7) 

where y/„(x,j^) are the eigenfunctions of the second boundary value problem for the 

transverse section of the waveguide, and expanding the right part of equation (4) on 
eigenfunctions ^„(x,>').Thus from (4) we receive the ordinary differential equation of 

second order 

d_ 

d4 P' C^HX^) 

'0 J d^ 
+ ■ A n 

■HM) = 'W,X^)- (8) 
P' 

where 

.f\Mh 
2K\U - \\ "">„k^>'o). (9) 
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Y XI^'T^-K \-f — 
'oy 

The equation (8) in the variable 

5=*"'' i d^ 

375 

(10) 

(11) 
^0     i_y?^ 

has a form 

f 

x-p^ 
V 

/„(^), (12) 
'oy 

where 

LK\U - V 

(13) 

The equation (12) , as a Mathiew - Hill differential equation, we can solve, used the 
method, developed in our early articles [l-2]. Assuming a small modulation index m, 

after any transformations we receive the expression for H, in variables z and t to the 
first approximation with respect to m. It gives the possibility to investigate the character 
of radiation in the region of strong interaction between the radiation wave and the 
modulation wave and find the Cerenkov energy losses of the magnetic moment in this 
case in the form 

' dW\ 
rnn^ sgn 

dt 

1 
V 

uv 
1 2 ^0 (^-fi') 

Jn 
-l^'l^o.J'o)- (14) 

£o(w-vh—-e 2 '^O 

Note that the result for the case of stationary but nonuniform filling of the waveguide 
we can receive from (4) passing there to the limit when w -^ 0. 
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ABSTRACT 

An extension of a boundary integral method without using Green's function for solving 
electromagnetic boundary-value problems in layered media is presented. The 
generalization of the previous applications of that method to the case under 
consideration is achieved by using fractional cylindrical functions as the testing 
functions, which account for spatial inhomogeneity of the ambient medium. To 
illustrate advantages of such approach, numerical analyses are presented for 2D 
scattering problem involving penetrable cylinder of elliptical cross-section shape. 

INTRODUCTION 
Employment of fractional cylindrical functions for analysis of electromagnetic wave 
scattering in the presence of bodies with coordinate surfaces was offered in [1,2]. But in 
our opinion, such functions can be used to solve many others problems of modern 
electromagnetic theory. Therefore, the attempt of expanding implementation area of 
such functions was undertaken. Two-dimensional scattering problem for homogeneous 
cylinders of arbitrary cross-section shape embedded in a plane layer is considered. 

PROBLEM STATEMENT AND BASIC EQUATIONS 

Let suppose that as it shown in Fig.l a permeable cylinder of arbitrary cross section ,S'^^ 

is situated in one layer of the three-layer structure. Introduce a coordinate system XYZ 
and suppose, that the impress sources f of monochromatic {~exp (-ico I)) wave and 
layers boundaries belongs to surrounding domain S^.. Cylinder formative is parallel to 
axis OX. The medium inside inclusion is described by material parameter e^,(r) and 

Scattered field 

Fig. 1. Geometry oftlie problem. 
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wave number /t/F), and outside of inclusion- z,{7) and k(f) correspondingly. 

Fields amplitudes outside and inside of inclusion satisfies to such equations: 

377 

s(F)V^ 
1 

8(F) 
V .+k-{7) (1) 

(where r = (O, x, y), V^ =  0, 
d_ d_ 

dy' dz 

£(F)-/(F), (FGSJ 

0,        (r&Sp) 

/(F)-source density), and to boundary conditions: 

1 eu.     1 du 

"^^"^'s"^ SpSN 
;(7eL) (2) 

They also satisfy continuity conditions for functions w,, 1/e, duJdN, u^, l/e, 

dUp/dN on structural boundaries in 8^,8^ and «,, and satisfies radiation condition 

when r -^ +00. N - normal to L - contour of the scatterer, directed to S^. In the case of 

excitation by vertically polarized wave (H = {H,,0,OIE = {o,E^,E,}), it is suitable to 

choose an x- components of magnetic field vectors as a functions M„ M^. As a result of 

manipulations described in [3], one can obtain following formulae for the scattered 

field: 

"^(,,^)%i^_.^(^)^^(-^) dL'; (F &S^), (4) 
dN'       "'^"'     dN' 

where G{r,r')- Green's function of a regular problem. We'll represent an unknown 

functions u^ and duJdN as an expansions in terms of functions ^„ and dt,^/dN: 

u^r) ^ 'Za^U^l dufi)ldN = J^P, d^^{7)ldN . (6) 

Unlike previous papers, we'll choose the function £,^(F) in a following way: 

fm ('") cos(m(p) a = (m, e), m - 0,1,2,.. 
^^(F) = ] ;(p = arg(F), (8) 

/„, (;-) sin(OT(p) a = (m, o), m = 1,2,.. 

where f,„{r) = J,„Ar)l^nX^)^ -^Jr) " Bessel functions of order m. We'll compute the 
wave functions using the fractional cylindrical ones, as it was shown in [3]. 
A possibility of fractional cylindrical fiinctions application to the considered problem 
justified by presence of cylindrical inclusion with sufficiently smooth contour of cross- 
section. Unlike the results obtained in [2], the discussed problem is complicated by 
presence of dielectric layer and cylinder with sufficientiy arbitrary cross-section. 

DESCRIPTION OF NUMERICAL ALGORITHM AND ANALYSIS OF 
OBTAINED RESULTS 
In this section some numerical resuhs based both on the analytical techniques developed 
in previous papers and a new algorithm for evaluating scattering diagrams by means of 
fractional cylindrical functions are presented. The goal of numerical experiments was to 
determine effectiveness of the proposed approach. Computations performed for 
dielectric elliptic cylinders, immersed in homogeneous dielectric layer. They show that 
for cylinders with transversal dimensions less than wavelength application of fractional 
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cylindrical functions does not give noticeable advantage. This fact can be easily 
explained, if one take into account, that the basic advantages of fractional functions 
related to their smooth behavior attached to large index and argument values [2]. Also 
it's necessary to mention, that the most effective this procedure became in a case of 
circular cylinder. 
In Fig. 2 scattering diagrams, calculated by means of Bessel and fractional cylindrical 
functions are shown. Dielectric permeabilities of cylinder, layer, upper and lower half- 
spaces are equal to Cp =1.2, e, =3.0. e^, =1.0. e, =2.0 accordingly. Cylinder's radius 

is   2.0 A,, layer's thickness -   h=6X. an inclusion embedding depth -   Z^, =3?t. 

Incident wave length - X = \.5m. One can see. that when Bessel functions are used, 
scattering diagrams became steady only when M>30 (M maximum order of the 
scattering matrix). On the other hand, for fractional cylindrical functions analogous 
results can be obtained when M=20. and additional increasing of number of terms in 
decomposition does not leads to any changes. 

1,0 

0,8 

0,6 

0,4 

0,2 

0,0 

1,0 

0,8 

0,6 

0,4 

0,2 

0,0 

50 100 150 
Observation angle (f) 

a) 

200 0 50 100 
Observation angle < 

b) 

150 200 

Fig.2.Scattered field diagram obtained for Bessel functions (a) and for fractional cylindrical functions (b). 

CONCLUSION 
Obtained results show, that the fractional cylindrical functions within the framework of 
the null field method forms a successive base for solving a variety of scattering 
problems. Such problems in particular are essential elements in microwave and optical 
device design, nondestructive testing, remote sensing and thin film physics. The same 
technique can be applied to another diffraction problems (for example 3D problems) 
with only minor modifications. 
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ABSTRACT 

We have considered stationary electric and magnetic fields of fractal objects with the 
help of differintegration methods. The equations of fractal electrostatic and 
magnetostatic potential at integro-differential form are proved and introduced. The 
offered ideas can be useful for modification numeric fields modelling techniques to 
solve electromagnetic problems for real objects with material structure irregularities 
consideration. 

INTRODUCTION 

There are a number of modern numeric electromagnetic fields modelling techniques. 
Finite-Difference Time-Domain (FDTD), Method of Moments (MoM), and Finite 
Element Method (FEM) are the most popular and useful methods. The general essence 
of these methods consists in division of the approached ideal model of real physical 
object into elementary components the fields for which can be found on the basis of the 
classic Maxwell's theory. But the classic electromagnetic theory in which the object's 
geometry definition is based on concepts of point, line and plane (ideal objects) become 
impenetrable when the explanation of the field distribution of roughness fractal surfaces 
is needed. The examples of differintegration methods application for such complex 
electromagnetic problems were originally shown at [1]. 

MAIN PART 

Based on idea, that the fractal sets are adequate geometrical model for irregular contours 
and surfaces. Let us consider prefractal covering compact set, which is our proposed 
model of a contour with a current, as a limit of monotonously growing sequence of 
covering compact sets with the corresponding sequence of rising contours 
/ c /, <z... c /, d... /„. The current near by /„ contour can be found as: 

/W = ——-j^C jt//„_2... lp(x')dx'. 
^^V^^) a a a 

The obtained repeated integral may be summarize by Riemann's-Liouville's definition 
of fractional integral 

T{a) J (x - X ) 
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As a result of usage fractal contour (surface) covering by compact sets, we have reduced 
a problem to construction a smoothing Hausdorfs measure on a physically pre fractal 
layer with differintegration of an uniform electric charge density on a fractal point set 
projection to a smooth-faced segment [2]. 

Using of a-order differintegral definition of fractal electric charge density yo"(r') 

located at r' Eq. (1) enables to formulate the equations of classical electrostatics in 
terms of a -characteristics. In analogy with the fractal electrostatic case, we may define 

fractal electric current density j'^Cr) for magnetostatic field analysis. So the laws of 

electrostatics and magnetostatics for fractal objects can be summarized in two pairs of 
time-independent, uncoupled vector differintegral equations, namely the equations of 
fractal electrostatics 

V-E"(r) = ^^-^, (2) 

V-E"(r) = 0, 

and the equations of fractal magnetostatics 

VxH"(r) = //J"(r). (3) 

VxH"{r) = 0. 

The electrostatic field E"(r)  is irrotational and h may be expressed in terms of the 

gradient  of a  scalar  field.   If we  denote  this  scalar  field  by   - (f>" (r),  we  get 

E^Cr) = -V^'^(r). Taking the divergence of this and using Eq. (2), we obtain Poisson's 

equation 

VV'(r) = -V-E"(r) = -^^-^. (4) 

The solufion of Eq. (4) 

r(r) = -^|-f^rfv'-fc, (5) 

where the integration is taken over all source points r' at which the charge density 

p" {r') is non-zero and c is an arbitrary quantity which has a vanishing gradient. The 

scalar function ^"(r) in Eq. (5) above is called the fractal electrostatic scalar potential. 

Consider the equations of magnetostatics Eq. (3) we got fractal magnetostatic vector 
potential with definition from B"" (r) = V x A" (r) as 

A"(r) = ^fi^^v' + a(r). 
4;r J r - r 

(6) 

where a(r) is an arbitrary vector field whose curl vanishes. 

CALCULUS EXAMPLES 

As an example of using obtained expressions (Eq. 4-6) at FEM methods applications let 
us consider following problem 

VV = -1 inside B, D"(f)\^=C\ ({)[^ = 0, (7) 
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where A border is a circle defined as {x ■ cos(/); y • sin(0; 0 < / < 2;r} and B circle is 

infinity approximation defined as {x • 5cos(0; y • 5sin(0; 0 < / < ITV]. 

Fractal boundary condition D"(fi\^ = C translates into ^^"*[ =C/(x-&)'"", \<a<2. 

The problem (7) was solved for b = -5, C = l parameters by finite element method 
with the help of FreeFEM+ software. The obtained potential surface for « = 1.7 is 
shown in Fig. 1. We demonstrate the XOZ-plane cut of potential distribution for a- 
parameter varied from 1 up to 2 in Fig. 2._ 

4 
3 

?■! 
1 
0 

-5       -A       -3       -2       -1 3        4      X 

Fig. 1. 3D potential distribution for 
a = 1.7 

Fig. 2. Potential distribution for various a ■ 
parameter 

The problem (7) with a = \anda = 2  parameters of fractal boundary condition is 
equivalent of Dirichlet. 
More interesting that at « = 1.5 calculation result is equal to solving of mixed problem 
with Dirichlet and Neumann boundary conditions like (d^/dn)\^ +(p\^=x . 

CONCLUSIONS 

The application of fractional calculus enables to formulate the electromagnetic potential 
equations in terms of a -characteristics. Formally proposed equations agree with the 
classical, at imposing on a -characteristics additional boundary conditions. 
Numeric decision of typical problem of potential theory has shown that definition of 
boundary conditions in the integro-differetial form generalizes classical boundary 
conditions and is adequate for fractal surfaces with various levels of roughness. The 
offered ideas assumes to remove difficulties in investigations of singular distributions 
and can be useful for modification numeric fields modeling techniques to solve 
electromagnetic problems for real objects with structure irregularities consideration. 
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ABSTRACT 

We will consider the geometric and physical aspects that permit introduction of the so- 
called a-characteristics for studying the behavior of electromagnetic field components 
in the vicinity of a set of points with fractal properties. To estimate the a - 
characteristics, possible algorithms are formulated, namely a geometric one involving 
evaluation of the Hausdorff measure and an analytical algorithm permitting the 
Hausdorff measure to be evaluated through application of fractional derivatives and 
integrals. 

INTRODUCTION 

A great majority of real physical systems are of fractal nature in the respective range of 
scale sizes, characterized by the values of one or more respective fractal dimensions. 
Studies of a number of physical phenomena (such as small-angle scattering of X-rays, 
anomalies in the power-law dependences upon frequency of the electrical resistance or 
electrical energy dissipation [1], energy radiation and interaction of electromagnetic 
waves with impedance surfaces [2, 3], etc) have revealed the close relation of their 
performance to fractal properties of the boundaries and media involved. The possibility 
of the fractional calculus application to electrostatics was demonstrated in paper [4]. 

FORMULATION 

The well known technique of approximating to non-coordinate boundaries through 
covering the surface with simple compacts (like rectangles, circles, or ellipses) [5] 
permits application of numerical algorithms for solving boundary-value problems of 
electrodynamics. 
Let us extend the technique of covering the boundaries and domains of existence of the 
electromagnetic field to the case of a smooth contour possessing fractally distributed 
geometric points over its certain section (physically, a highly jagged (rough) portion of 
the contour). To that end, we will consider a model of the contour section showing the 
properties of local uniformity and local self-similarity. Let fractal portion of the contour 
be approximated to with a segmented line with the links Ar,,^) of constant length and 

the ends lying on the contour (k-number of covering generation). To represent the 
fractal contour approximately with points of the segmented line, let us cover it with a 
segmented line with links of a smaller length, Ar,(^,^,) < Av,^^). Apart from higher order 

small values, the number A^.,.      .,.    of the vertices of the segmented line with the link 
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length Ax,.(^+i) lying within one link of the segmented line with the link length Ax;,^^ 

will be equal to iV^ .^^,^^,_.^^^ =/(Ax,(,)/Ax,(,^,)). For a covering line with 

Ax,(,,2)<Ax,(,,,) , we obtain similarly iVAx-,,,„Ax-,,,„ =/(Ax,(,„)/Ax,„,2))- On the 

other hand N, ^ xN. . =N.^ A, . Introducing the notation 

w = Ax,.(^)/Ax,.(4+,) and v = Ax,(^)/Ax,.(^+2) we amve at a functional equation 

f{x)f{y/x) = fiy) whose smooth solution is unique in the form of a power law, 

/(x) = x". In this connection we are able to use the generalized measure of the 

manifold magnitude involving choice of a trial power function h{r) = y{a) x r", and 

covering of the multitude of points under study with elements 5, of length r, , with 

formation    of   the    Hausdorff   a-measure    //"(£) = lim//"(£) = inf{Y(a)yr," 
E->0 

: £ c y 5,, r, < 8} . That can serve as a measure of the extent and curvature of the 

continuous limiting line. 

RESULTS 

The   charge   (current)   density    j\,. of   (k + m)   generation   is   determined   as 

—    ■ XT ■     • ^'^ijk+m)        _    ■ ^Kk) 

The charge (current) in fractal set is determined now by the Riemann - Liouville 

fractional integral J(x) ={J^j){x). 

Differintegral D"; determines some the differintegral forms of a degree a on Q with 

value in J  (imaging Q in L" (Q c ^, F)): a" (x) • (1) = (D";)(^) • ^ • 

Theorem.   If   (p|,(p2v,(pp-   scalar   differentiated   functions   on   Q,   the   fractional 

differintegral forms J"(p| A(i"(p2 A... Atf"(p^ concerning some coordinate system in E 

can be represented as 

D'^((p,,...,(p ) 
(i"(Pi A(i"(p2 A...A J"(p^ =        2L,        '^ dXj^ AdXj^A...Adx^ . 

i<,,<...</^,<^i)"(x,.i,...,x,^) 

If  y"(x) - function in a coordinate neighbourhood {U,x) on E, the a - forms co" in 

this neighbourhood is noted as 7" (x)ti6C| A ... A fi6:„,. 

If the support of 7 " (x) belongs to t/ , on definition: j j" =    [7" (x)iiX| A ... A dx„^ . 
E x(U) 

The a - volume forms (i"F = 6f"x, A...A(i"x,„ on a m-dimensional Riemannian 

manifold E induces a borel measure, which coincides with the Hausdorff-measure 

H^(U) = \d"^V   for any open set U cz E. Hence, for any integrable a - forms j^ on 
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E equality   [/" = |(/",T/r><^//" , where x^^ - vector, defining tangential plane is valid. 
/:: /: 

We have installed the formula of connection between integrals of the second type (from 
the a - forms) and integrals of the first type (in respect of Hausdorff-measure). 
The further development of the theory is carried out on the basis of interpretation of 
Dirac delta-function, which is determined as the a - forms. 
Electromagnetic field in fractal medium follows Maxwell (Abel) equations in the terms 
of a - forms and a-characteristics: 

We obtain fractional Green's function for the Helmholtz equation in the terms of the a- 
characteristics with the relevant fractal boundary conditions [6-8]. 

CONCLUSION 

Generalizing the schemes outlined to include a -differintegral forms Dirac delta- 
function will promote construction and further analysis of such mathematical models 
that would permit an adequate description of actual electromagnetic processes at fractal 
boundaries or in fractal media themselves (e.g., in the problems concerning «artificial» 
dielectrics, complex media and metamaterials, or power emission by «thick» contours 
and surfaces, etc). 
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ABSTRACT 
In this paper the eigenwaves of periodic impedance diffraction grating (DG), reflection 
and transmittance on finite DG are under investigation. The approximate boundary 
conditions (ABC) were used for simulations. The refined expression for impedance 
dielectric strips is obtained. Singular part of approximate integral equations (IE) is 
extracted and analytically transformed. As the result the IE of second type with smooth 
kernel has been carried out and solved with collocation method (CM) and Galerkin 
method (GM). 
INTRODUCTION 
The application of impedance boundary conditions (IBC) greatly simplifies the solution 
of boundary problem for structure consisted of fine dielectric layers. It became a reason 
of huge amount of work appearance dedicated as to IBC obtaining, as to their 
application for concrete electrodynamics problems solution. For example, the problem 
of wave reflection from dielectric grating was solved in paper [1] with IBC method. The 
main disadvantage of IBC for dielectric structure is narrow frameworks of application. 
In theory these conditions are correct if a layer thickness is rather smaller than a 
wavelength. In practice these conditions give satisfactory accuracy if a layer thickness is 
smaller than a wavelength. IBC application area may be enlarged, for example, due to 
modernization described in [2]. In present paper we elaborate one more type of IBC. 
The IE described here are obtained by means of approximate solution of a rigorous IE 
[3]. Our IE become more simple in the case of £(0,0,i?) wave diffraction on two- 
dimensional structure (Fig. 1) 

E{x,yyE'{x,yye \x{x',y')E{x',y')g{x,x',y,y')ds',x,yeS (1) 
s 

where £"'(x,0) is the external field, x =8-E,, k- wave number, s,s, - dielectric 

permittivity of local inhomogeneity and surrounding environment, S - cross- section of 
the local inhomogeneity, g{x,x\y,y') - Green function (GF), in our case the GF is one 
f planar DW. The GF for planar DW consisted of an arbitrary number of layers is 
obtained. Half-analytical solution for this IE is already described in [4]. Let's consider 
the solution (1) for a single inhomogeneity. Process to large quantity of inhomogeneities 
is evident. Let's find an approximate IE solution for rectangular inhomogeneity. 
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Considering E{x',y')K. E{x')exp[-ik.yje y'j, where E{X') is unknown function, we have 

]E{x\y')g{x,x\y,y')dy'« g{x,x'y.y)]E{x\y')dy« g(x,x>,^)2'^"^^p'^' 
-a -a ^VS 

And as the result we arrive at following one-dimensional IE. 

JE{x')3{x,x')dx'-E{x)/k'5 =-E/{x,0)/k'b , 
■/ 

where C7(x,x') = ^{x,x',0,0). 

5=2^H^^x. (2) 
k^J£ 

At k^J£a «1 the expression for 8 is well-known 

6=2a(£-£j. (3) 

It gives us an ability to write the IE as follow 
/ 

jj{x'p{x,x')dx'- J{x)/k"b = -E'{xfi) , (4) 

where J{x) = k~5 E{X). We would obtain the same IE if use approximate IBC from [4] 

with supposition ./(x) = -/co |.i„[//(x,a)-//(x,-a)]. Considering 8 =oo in (4) yields the 

IE for inhomogeneity as metal strip. The current ./(x) has a singularity on the border of 
metal strip. One of the methods to avoid this singularity is to change variables as - 
x = /cos(p, /((p) = .//sin(p . Numerical experiments have shov^n that the changing of 
variables gives good convergence for impedance strips too, because the current on these 
strips increases at the border as well. Our IE (4) in this case may be written as 

n 

j/((p'k(9'(p'V9'-./'(<p)A'5 /sincp =-£'■(/coscp.O), (5) 
0 

where g((p,cp') = G(/cos(p,/cos(p'). Note, that the condition cp'-xp yields 

g((p,(p')« g„((p,(p') = -log|2(cos(p-cos(p')|/27i . Then we extract singular part of 

kernel IE (5) and transform this IE as follow 

j[/(9'k((P.9')-./(9ko(9,cp')W'+/(9)|^'o{9,9'V9'-/(9)/^'5 /sincp =-£'(/cos(p,0) (6) 
0 0 

The first integral in (6) has no singularity, the second one is equal to zero. Simplified IE 
(6) we solved with collocation method. To calculate the integral the highest calculation 
accuracy formula (formula of quadrangles) has been used. The second way to solve (6) 
is the Galerkin method (GM) with cos /cp' functions as basical ones. Upon transfer to 
the X coordinate they correspond to the first kind of Chebyshev polynomials. There is a 
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sense to usecoswcp only for metal strips, for impedance ones the function sinwcp may 

be applied. 
RESULTS AND CONCLUSIONS 
The methods elaborated have a good convergence. The number of collocation points 
and number of basical functions per one strip is from 3 up to 7. Therefore, the wave 
diffraction by high number of strips (up to 100) it is possible to investigate. The CM 
codes calculate ten time faster then GM ones. 
Therefore, the eigenwaves of periodic impedance diffraction grating are investigated. 
Dispersion characteristics, the windows of transparency and phase synchronism 
conditions for first and second harmonics (Fig 1, 2) have been obtained as the result of 
the investigation. Table illustrates the comparison of waves propagation coefficients 
(for DG placed over planar waveguide h=l; d/h=0,5; 8 =4,0; s,=4,0; 83=2,!; 83=1,0; 
a/h=0,2; l/h=0,25; N=l is a number of strips) we obtained by rigorous method (variant 

1) and by approximate one described above 
(variants 2 and 3). Clearly seen, that the 
impedance   we   introduced   gives   higher 

accuracy for thick strips (^Vsa<l). 
Analogous results are obtained for 
reflection coefficient \S,,\  from dielectric 

Variant 
X 

3,5 5,0 6,5 
1 1,7328 1,6827 1,6064 
2 1,7247 1,6996 1,6198 
3 1,6873 1,7284 1,6349 

inhomogeneity [3]. 
ISIII 
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1Rn ' If^ di yll2a 
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ABSTRACT 

It is shown the possibility of development of multifrequency frequency selective 
surfaces (fss) by means of complicating of the shape of elements, for example, using 
elements with composite fractal shape. In the paper the method of integral equations is 
applied for the analysis of scattering characteristic of these gratings. In the paper the 
possibility of applying of ffs with elements of the composite shape at development oi' 
multifrequency fss with reduced angular sensitivity on the basis of numerical 
experiment is shown. The obtained results can be used for choosing the most rational 
version of element shape of fss at a solution of some problems in antenna engineering. 

INTRODUCTION 

The frequency selective structures usually apply to ensure operation on many 
frequencies of reflective type antennas with several feeds [1]. The multifrequency 
frequency selective gratings are usually multilayer structures. However, to operate on 
several frequencies frequency selective gratings it is not necessary should be multilayer 
structures. The constructions of antennas with radiators, which have the shape of 
fractals, are known. Such antennas can operate at once on several frequencies [2]. in a 
paper [3] the frequency selective structure, which is composed from the fractal 
elements, is represented. The elements of this frequency selective structure have the 
shape of Sierpinski gasket. 
The purpose of the present work is the numerical analysis of scattering characteristics of 
frequency selective structures as gratings of metal plates and slots in the perforated 
screens, which have the fractal shape. 

THEORY 

The mathematical model foundation for the frequency selective structures is made in 
accordance with the concept of infinite periodic arrays. Such approach is reasonable 
because of consideration the multielement arrays with rather complicated element 
structure. An alternative way of modelling may be based on the basis of so called 
"element by element method" with taking into account mutual coupling between array 
elements. This way may become much more difficult because of necessity to solve large 
sized system of integral equations. 
The frequency selective structure is excited by plane electromagnetic wave. This plane 
electromagnetic wave has linear polarization. We enter to Cartesian system of 
coordinates. We direct axis Oz along the normal vector by the plane, where printed 
elements of the frequency selective structure are located. We assume that these printed 
elements have arbitrary shape. The steps of array along axes   Ox   and   Oy   equal 

accordingly d^ and (^2 • The permittivity of substrate is £ . The substrate represents the 
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flat layer, on obverse surface of which (plane z = 0) there are printed the array 
elements. It is necessary to determine the current distribution on the radiators of array, 
scattering polarizing, frequency and angular characteristic of the array. 
The boundary problem was solved by integral equation method. The equation is made 
on the basis of Lorentz's lemma in integrated form. The application of periodicity 
condition has allowed to reduce the solution to search of currents within the limits of 
one Floquet channel. The integral equation solution is produced by moment method. 
The array aperture magnetic current surface density is approximated by set of 
subsectional current functions. In this case the rooftop functions are useful. The currents 
obtained from integral equations system solution allow to determine all main 
performances of periodic printed frequency selective structure. Therefore, one can vary 
the mentioned secondary parameters of the printed frequency selective structure. It is 
convenient to use such a procedure in the interactive mode. In a number of cases, the 
processes can be made automatic by means of numerical optimization of some goal 
function reflecting the proximity of the synthesized parameters of the frequency 
selective structure to the given values. 
NUMERICAL RESULTS 
The first example of the numerical analysis is a solution of the diffraction problem of a 
plane electromagnetic wave on a periodic grating, which is composed from fractal 
dipoles. The dipoles are composed from two triangles. The shape of these triangles is 
Sierpinski triangle [2]. To create this geometric fractal the following algorithm is used. 
Let's take a triangular metal plate. Let middles of legs of this triangle are tops of a new 
triangle. This new triangle we shall delete from an initial triangle. It is clear, that the 
created now structure consists of three triangles. The sizes of these triangles twice are 
less than sizes of an initial triangle. In the further process of deleting of metal from the 
stayed triangular elements repeats similarly. The fractal element of N generation will be 
generated after a termination of N steps of this algorithm. 
The unit cell of a periodic grating, which is composed from such printed dipoles, is 
shown in Fig.l,a. The single dipole of this frequency selective structure consists of two 
Sierpinski. 

^ --*   .      IS31I 

triangles. These triangles are fractals of second generation. It is shown that the fractal 
element represents a self-similar structure, in which each triangular fragment represents 
a duplicate in the reduced scale of all fractal structure in whole. Here is designated: L = 
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7 mm — length of a dipole shoulder; W = 13 mm — foundation of a triangle; t/, - dj ~ 
15 mm — sizes of a grating unit cell. The frequency selective structure is excited by a 
plane electromagnetic wave with linear polarization. The vector of polarization of an 
excited wave is directed along axis of printed dipoles. The calculated frequency 
characteristic of an electromagnetic wave transition factor by such fractal frequency 
selective structure in case of co-polarization is shown in a fig. l,b. It is shown, there are 
two resonances of a full reflection, when 2L/>., = 0.32 and ILiX, = 0,72 in a single- 
wave range of a grating. The ratio of upper frequency of a rejection to the lower 
frequency is equal C, = 2,25. It is important to notice, that as against [3], in the given 
example the dipoles are located in knots of a grid with a rectangular cell. In a paper [3] 
the case has been considered, when the similar fractal dipoles locate in knots of a grid 
with a triangular mesh. The ratio of rejection frequencies in this case is equal C, = 2.9. 
Thus, the printed frequency selective structure composed from fractal dipoles has a 
property of a two-frequency rejection in a single-wave range of a grating. 
In further we shall consider performances of scattering of the perforated screens. Now, 
as against a grating of plates, in the perforated screen on some (resonance) frequencies 
the phenomenon of incident electromagnetic wave full transition is observed. It is 
possible to create a mode of full transition of electromagnetic waves through perforated 
screen at once on several frequencies. The realization such slots in the perforated 
screen, which have shape of fractal, will allow to achieve full transition electromagnetic 
wave on several frequencies. 
To check up a validity of this supposition such perforated screen is researched, in which 
slots have the shape of Sierpinski square. The perforated screen is considered, in which 
the slots are located so that the unit cell of a grating had the shape of Sierpinski square 
of second generation. The topology of a grating unit cell is shown in insertion of Fig.2. 

The grating unit cell has 
following sizes: t/, = <:/,= 10 
mm. If such perforated screen 
is excited by normal incident 
plane electromagnetic wave, 
then resonances are not 
present in single-wave range 
of an array periodicity, 
because the sizes of square 
slots in a screen are 
unsufficiently great. However, 
in case of an electromagnetic 

wave sloping incidence on a grating it is possible to observe effect of full transition of 
electromagnetic waves through such a frequency-selective structure. The relationship of 
reflection factor of an electromagnetic wave with parallel polarization in a sector of 
incidence angle close to a "sliding" incidence is shown in Fig.2. This characteristic has 
been calculated in a case, when /= 15 GHz. It is shown, that the resonance of full 
transition is observed with B/, =87,4". Thus it is necessary to notice, that as shown in |5], 

the screen with identical square slots has not resonances of full transition in an angular 
sector from normal incidence down to a "sliding" incidence of an electromagnetic 

0  Tpafl 

M".  1 
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waves. 
Thus, the modification of a unit cell shape of the perforated screen has reduced to 

emerging scattering modes of electromagnetic waves, which are not typical for 
frequency selective structures composed from simple (not fractal) elements. 

To achieve full transition of electromagnetic waves through the perforated screen, 
not only with sloping, but also with a normal electromagnetic wave incidence, it is 
necessary, that slots in a screen would have resonance sizes in a single-wave range of a 
grating. For example, the application of crosslike slots allows to create a mode of a full 
transition of electromagnetic waves through a screen also with a normal electromagnetic 
wave incidence [5]. By replacing square slots in Sierpinski fractal to crosslike slots we 
achieve necessary increasing of slots sizes down to resonance in a single-wave range of 
a grating. The size of a unit cell remains same, as in the previous example. The 
frequency characteristic of reflection factor of such perforated screen is shown in Fig. 3. 

It is shown, the unique resonance 
of full transition of 
electromagnetic wave through 
frequency-selective surface is 
observed in a single-wave range 
of wavelengths with £)/X, . Two- 
frequency mode of an 
electromagnetic wave transition 
such frequency selective surface 
does not ensure, because only 
central crosslike slots, which 
have large arm length "resonate" 
in a single-wave range of a 

grating. At the same time resonance frequencies of peripheral crosslike slots locate in a 
multimode range of a grating, therefore these slots do not influence to transition of an 
electromagnetic wave through the perforated screen in a single-wave range of an array. 
It is necessary to notice, that the similar result was obtained in paper [6]. In this paper 
the perforated screen as a periodic grating of slots was investigated. The shape of each 
slot of this grating is Jerusalem cross. Jerusalem cross is enclosed by simple crosslike 
slots, is similar to that is represented in insertion of Fig.3. 
Thus, for reaching multifrequency mode of operations of the perforated screen it is 
necessary, that all slots were resonance in a single-wave range of a grating. 

Last numerical example connects with the perforated screen, which unit cell has a 
topology shown in Fig.4, a. This grating has following parameters: Z, = 13,4 mm; Z, = 
7 mm. The size of a unit cell is same, as well as in two previous examples. The grating 
is excited by a plane electromagnetic wave of linear polarization. The normal incidence 
of electromagnetic wave is considered. The vector of electromagnetic wave polarization 
is directed along a diagonal of square, which limits a unit cell of the perforated screen. 
The frequency characteristic of a reflection factor of this frequency selective structure is 
shown in Fig. 4, b. It is shown, that such grating has two resonance frequencies in a 
single-wave range of array. These frequencies are just those frequencies, on which the 
full transition of an electromagnetic wave through the perforated screen is observed. If 

'0,1 0,3 D 0,5 

Fig. 3 

0,7 0,9 D 
X 
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D/X^ is equal 0,37, then the long wavelength resonance is observed. It is shown, that in 

this case LjX^ is equal 0,5. If D/X^ is equal 0,67, then the short-wave resonance is 

observed. It is shown, that in this case LjX-, is equal 0,475. So, it is possible to make a 

conclusion that a long wavelength resonance "ensure" longer slots (central slot of a unit 
cell of the perforated screen), and a short-wave resonance "ensure" more short, that is 
peripheral, slots. 

d 
M   

% T 

d2 

Fig. 4 

Thus, if the frequency selective structure is the perforated screen, which consists of 
fractal slots, then this structure has a property of electromagnetic wave transition on two 
frequencies in a single-wave range of a grating. 

CONCLUSION 

Basing on numerical experiment, in a paper it is shown the possibility to use printed 
arrays with the fractal elements for development of two-frequency electrodynamic 
frequency selective structures. These results can be used for a choice of the most 
rational variant of a frequency-selective structure geometry for a solution of the some 
problems of an antenna engineering. 
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ABSTRACT 
Reflection and transmission characteristics of double-layer two-periodic gratings of 
perfectly conducting infinite strips with a complex shape are considered. The structures 
with layers that have strips turned on 90 degrees and parallel are considered. The 
comparison of reflection properties of double-layer two-periodic gratings of straight- 
line strips with curvilinear ones is presented. 

INTRODUCTION 
Recently, new applications of periodic structures are very popular to design so-called 
electromagnetic crystals known also as photonic band gap (PBG) crystals for 
microwave devices. As a resuh, interest to two- and even one-dimensional periodic 
structures is renewed. Two-periodic plane strips structures are more attractive for 
application because of their possess resonance properties in the frequency band of 
single-wave regime due to a complex shape of the array elements and their very small 
thickness. The artificial electromagnetic crystals could find many applications for 
passive microwave devices such as filters, reflectors or antenna covers. The simple PBG 
crystals are made with only a few layers of periodic array. These multi-layered 
structures have of reflection or transmission frequency bands with sharp boundaries due 
to Febry-Perot effects. 
The reflection properties of complex layered arrays of metal strips of C-, S- and D. - 
shape placed in free space [1] and on dielectric substrates [2] were studied earlier. The 
main goal of this report is to study the reflected properties of two-layer periodic 
structures of curvilinear metal strips in free space. The element of grating is plane 
periodic metal strip having arbitrary shape on the grating period. The period of the 
grating is mach greater than its width. The width of the strip can change along the strip. 

OPERATORS OF REFLECTION AND TRANSMISSION OF TWO-LAYER 
GRATING 
Let's consider a system of two parallel gratings (Fig la). The '^        L 

parameter A is the distance between layers. Matrixes of the      -ji H— j^ 
operators of reflection and transmission of the first and second   kq 

gratings are written as r, , /, and rj ? ^ • The amplitude of the 
partial waves between layers (Fig.lb) satisfy the following set of 
equations, 

Rq = f^q +t^eB ,      ,   ', ^ 

T q ^^ t-) eA I'ii; l l in. nm inn ptitojiv s.rili!ia ol 
ciiiMlintsii niLtai sUips 

where  e is the plane-wave propagation operator in free space 
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between the surface of layers. After the eliminating vectors of A and B from equations (1) we 
obtain the expressions for matrixes of reflection and transmission of two-layer grating, 

T = /"2^(/ - f] ef^ ef i\ , 

where / is the unit matrix. Numerical analysis below was carried out without taking in to 
account evanescent partial waves in the case of one-mode regime. 

NUMERICAL RESULTS AND DISCUSSION 
The scattering characteristics of two-layer arrays in free space for the cases of different strip 
shapes arc presented and discussed bellow. Let us firstly pay attention to the frequency 
dependence of the reflection coefficients for a single array (Fig. 2). This is important for 
explanation the reflection properties of a two-layer structure. The reflection properties of single 
layer of curvilinear metal strips and all mathematical transformations have been considered in 
[3] more explicitly. 

Now we consider the structure, which has identical layers when it is illuminated by E- 
polarized (along the x-axis) wave. The reflection coefficient of the straight strips is represented 
on Fig. 3. Coincidence of the data obtained by a rigorous numerical-analytical method described 
in [4] and the present method is good. The resonance of transmission due to interaction between 
the layers of the structure is observed of the frequency parameter c/,, / A, ~ 0.6. A simple 

estimation of the interlayers resonant frequency can be made by considering the condition of 
equality of phases of the wave reflected by the structure's front boundary and the wave reflected 
by second layer taking into account a phase jump of wave propagated through a single array. 
The phase of the reflected by the first layer of the structure is vj/, -argi\. The phase of the 

wave reflected by the second layer at the plane of structure's front boundary is 
\\i 2 - ai-gr-, + 2(cirgtf + Ak). One can expect that the maximum of reflection occurs when, 

\|/, -V|/2 = 2nl. (2) 

and it will be minimum if, 
\,/i -vj/, =71^2/ + !;, (3) 

where / = 0,± 1,± 2  For a case of identical strips, \f A = d ^. / 2 the requirement equation (3) 

becomes 2(argt^ +TI d^. /Xj =nf2l + ]) . At or?/, =0, the minimum of a reflectivity would 

be observed at d^. />v=0.5 and for /=0, but as the orgt^ ;^0, the minimum is shifted to the 

greater frequencies. For the structure of wavy strips one more minimum generated by properties 
of the single layer is observed, except for a minimum of a reflectivity because of interaction 
between layers (Fig 4, curve 1). These two minimums practically coincide forming the band of 
almost total transmission, for structure of lines having the shape of rounded meander (Fig. 5, 
curve 1) . The band of reflection at near c/, /X -0.8 is generated by the complex shape of 

strips, but it is more widely and has more steep edges than in case of single layer. 
If the structure consist from identical layers and the incident wave polarized along the y- 

direction (Il-polarization) the grating of vary narrow straight strips do not rcflect(Fig 3, curve 
2). This effect looks like there is the incident wave simply does not see the grating. The change 
of the shape of strips leads to appearance of the band of reflection, which is more widely and 
has more steep edges ( than in case of one layer) because interaction between layers. For 
structure of wavy strips this band is narrow than for the grating of strips with the shape of 
rounded meander narrow (Fig.4,5, curves 2), because of different magnitude of the quality 
factor of a resonance for single layer of such strips. 
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The dependence of the reflection coefficient upon polarization of the incident wave is 
observed, if there is identical orientation of strips in layers. This polarization influence is not 
desirable sometime. It is possible to decrease this dependence by rotation of the second layer on 
90 degrees with respect to first one. Then the module of the reflection coefficient for normally 
incident waves polarized along axes of periodicity does not differ practically (curves 3 in a Fig. 
3, 4. 5). If the polarization of the wave is arbitrary then the absolute value of the reflection 
coefficient remain about the same magnitude. 
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Fig3. Magnitudes of reflection coefficients of metal straight 
strips. 2 layer. dx = dy. 2\v,>'dy-=0.()5, curve! - H-polarizatioii 
and identical layers, curve 2 - H-polarization and identical 
layers, curve 3 - layers that have crossed strips. 
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[•ig4. Magnitudes of reflection coetncienls of metal strips Fig,5. Magnitudes of reflection coetTicients of strips having 
ha\'ing ll\c shape of wavy line , 2 layer. d,x=dy. 2w/dy™0.0.5, the shape of rounded meander. 2 layer. dx~dy, 2w,'dy=0.05, 
cun'el - E-polarization and identical layers, curve 2 - curvel - E-polarization and identical layers, curve 2 - 
H-potarization and identical layers, curve 3 - layers that H-poiarization and identical layers, curve 3 - layers that 
have crossed strips.. have crossed strips. 

CONCLUSION 
The electromagnetic scattering by two-layer periodic grating of curvilinear metal strips was 
considered. The numerical study for normal incidence wave shows the possibility of making 
resonant layers, polarization sensitive, having frequency bands of total reflection and 
transmission with very steep boundaries. In contrast to a single array, a layered structure offers 
the possibility to obtain sharp and wide filtering zones. 
The author is grateful to S.L. Prosvirnin for the problem formulation and encouragement during 
the performance of this work. 
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GRATINGS 

J. Elschncr, A. Rathsfeld. and G. Schmidt 

Weierstrass Institute for Applied Analysis and Stochastics 
Mohrenstr. 39, D-10117 Berlin, Germany 

E-mail: elschner@wias-bcrlin.de. ratlisfeld@wias-berlin.de. 
schmidt@wias-berlin.de 

ABSTRACT 

For the numerical computation of efficiencies for optical gratings, there exists 
a huge variety of algorithms. Dealing with a l)OTmdary value problem for an 
elliptic partial differential equation, the application of finite element methods 
(FEM) is natural too. However, the oscillatory nature of the electromagnetic 
fields requires some modifications. The resulting FEM program can be used as a 
part of an algorithm to design optimal gratings. 

THE FINITE ELEMENT METHOD (FEM) 

The variational form of the boundary ])roblenis is well known and its c:oercive- 
ness is well established (cf. e.g. [6,1,3]). For example the variational equation 
for u{x,y) = v{x,y) ■ exp{—\(\x) with v the imknown third component of the 
amplitude of the scattered magnetic field in the case of TM polarization is 

I 1{V -f i(n, 0)}./ ■ {V + i(a,0)}^ - ^ u^ + ^ ^^(T+u)^ 

+^ f^jr~u)^ = -^ j^j:h3e-'f^'w.   ^ e Hl{n).        (1) 

The donrain fi is the rectangular cross section of the grating profile taken over 
one period and F"^ stand for the upper resj). lower boundary sides. The symbol 
k stands for the piecewise constant refi'active index taking the constant values 
k'^ resp. k" above resp. below the grating. The number a is the product of k^ 
times the sine of the incidence angle, V is the gradient, and T^ a hypersingular 
boundary integral operator. The test function y9 runs through all periodic (w.r.t. 
to the first variable .7;) functions in the Sol)olev space H^{Vt). A variational 
equation similar to (1) holds for the TE polarization. For the case of conical 
diffraction (incident i^lane wave with direction not in the plane perpendicular to 
the grooves of the grating), a coupled system of two such variational equations is 
to be solved. 

To get the FEM solution, the domain is split into triangles/rectangles.   An 
approximation of the magnetic field is sought in form of a contiiuious piecewise 
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linear/bilinear function, and the test functions in (1) are replaced by the piece- 
wise linears/bilinears. Substituting the numerical solutions for u over r=^ into 
well-known integral representations, we get the reflected and transmitted energy 
and the efficiencies of the reflected and transmitted modes. In contrast to pop- 
ular alternative methods, the FEM needs no Rayleigh expansion, no slicing of 
blaze gratings, and no solution of big dense systems of integral equations. The 
convergence of the method is well established. 

Example : 

\^^ 
0 

cover material : 
coating material : 
substrate material 
polarization : 
period : 
incidence angle : 

.X   '^^   ' 

Air 
Photoresist 
SiOs 
TM 
588 grooves/mm 
47.5° 

1,1'    €'»v#,)ll 

'l^oi'v   > 

inc_angl9 Iheta 

The figures show a coarse FEM grid of a coated lamellar grating proffie with 
overetching, the isolines of the real part of the solution w, and the efficiencies of 
the transmitted modes of order -2, -1, 0, and 1 depending on the incidence angle 
in the interval [40°, 50°]. 

GENERALIZED FEM 

Unfortunately, due to a mismatch of the frequency of the solution and the discrete 
frequency of the approximate solution, the FEM deteriorates with large wave 
numbers. Even if the function can be approximated in the space of piecewise 
linears with high accuracy, the error of the FEM solution of Eq. (1) may be 
large. To overcome this so-called "pollution effect", we have ffist implemented 
a generalized FEM for the case of lamellar (binary) gratings which is a finite 
difference scheme over uniform rectangular gratings (cf. [2,4]). Further, we have 
tested the partition of unity method together with mortar techniques (cf. [5]), 
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and we have implemented a new generalized FEM based on trial functions the 
restrictions of which to the triangles of the triangulations are solutions of the 
partial differential equation. These solutions are generated by an FEM over a 
fine uniform grid in the subtriangle. For a fixed accuracy, these methods reduce 
the storage requirements and, in some cases, the computing times essentially. In 
the table we present results for a coated echelle grating (wave length 160 nm, 166 
grooves per mm, width of MgF2 coating 25 nm, blaze angle 80°, apex angle 90°, 
cover material Air. grating material Al. TE polarization, incidence angle 80°). 

degrees of freedom memory for solver efficiency of order 74 (refl.) 

105 785 0.35 GB 37.931045 

263 624 0.70 GB 67.384460 

559 800 1.98 GB 68.390312 

OPTIMZATION OF GRATINGS (SYNTHESIS PROBLEM) 

The mentioned methods for the numerical solution of the direct diffraction prob- 
lem can be used as a part of an algorithm to design optimal gratings. We have 
implemented a code (cf. [4]) to minimize several objective functions including ef- 
ficiencies and phase shifts. On a set of coated lamellar grids containing a certain 
number of rectangular pieces with prescribed material properties, we determine 
an optimal grating by a gradient descent method. The latter is based on the 
efficient computation of the gradients by generalized FEM. 
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4 Krasnoznamennaya Street ,61002 Kharkov,Ukraine 
email: yachin@rian.kharkov.ua 

ABSTRACT 
The problem of electromagnetic wave propagation in a doubly-periodic 
magnetodielectric layer bounded by two uniform infinite media is solved by new 
method based on the rigorous volume integro-differential equations of electromagnetics. 

The Galerkin method is applied to reduce these equations to a set of second-order 
differential ones with constant coefficients in field functionals which contain 
information about geometry of the scattering structure. The special scheme of equation 
set solving is introduced in the case of thick layers to overcome usual numerical 
difficulties associated with the undesired exponential functions in the expressions. This 
method unifies the treatment of both TE- and TM-waves by replacing s by |a, ^ by s, E- 
components by H-components, H-components by E-components. 

METHOD 
Formulation of the problem is as follows: from the region 2 {z<-h) with complex 
relative permittivity S2 and permeability yn, a linearly-polarized plane electromagnetic 
wave is incident at an arbitrary angle cp on the double-periodic infinite layer (region 1) 
bordering the region 3 (z>0 ) with complex relative permittivity E3 and permeability ^3 
(Fig.l). 

REGION 3 

p Krb.. 

Figure 1. Geometry of the problem. 
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The periodic cell of the layer is an oblique-angle parallelepiped of arbitrary sizes along 
the r|i axis and the ri2 axis, Z,,^   and I,^   are periodicities of the layer in the TII and ri2 

direction, respectively. The parallelepiped is characterized by the complex relative 
permittivity S] (r\\, r|2) and permeability \i\ (r|i, \\2) and has the thickness h. We suppose 
that the incident wave is TE-polarized and a is the angle between the r\\ axis and the 
electric field vector E lying in the plane of the layer and consider the field components 
in the {r\, E,, z) ortogonal coordinate system connected with the incident field 
polarization. We have to obtain the transmitted and reflected fields in the immediate 
vicinity of the layer. The form of the integro-differential equations for the 
electromagnetic field is taken from [1]: 

E{r)^E,{r)+ ' {VV+ k~)U^'-\)E{r')G{r-r')dr'+ 

+ "^'   ^ ^- V X f( ^' - l)/7(r')G(ir - r')dr', 

Bir)^n,(r)+ / (VV + ^;)f(>^' -\)n{r')G(r-r')dr'- 

-'^'   ^^^- -Vx \fi--\)Eir')GCr-r')dr'. 

Here the Green's function is presented in the integral form, V is the scatterer volume, 

/t, =kJs2\X2 and ^ is a wave number. For beginning we suppose that the periods are 

partitioned into segments with constant material parameters. For each period segment 

numbered (kj) we can write the notations *,|^ ' <TI^. < /?,*, /?,',;' <ri2^ < b'^^, {?,(/•/,) = 8^., 

and ]x^(r^,) = \x„. 

Following the algorithm given in [2] we present the field in each period segment as an 
expansion in terms of the spatial harmonics numbered (/■,.v) and act on the equation for 
these fields by the linear operator 

A..  '•„, -„i-   .. ^ ' ),,;   -/(<-,, .^  'i 1    ""1 ""i c -'(^i*; in', -'(*-„,': )n; 

n,   >,, /,;///-'   ^2 

Thus we can obtain the set of linear differential equations for the field functionals. By 
summing these equations over all segments we can express the fields and field 
functionals for individual segment through the ones for another segment, e.g.: 

r*'   -hr(^M 1)/    *       /   )(ax''   av'   Y'E^' 

where 
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1    'II 

ax''    = \e ^   p-r T J 

1l   "ni 

2ll{p-r) 2JI(C/-.V) 

111 dr[i,    ay[^^ "n dr[ 2  • 

Next we solve the equation set for the field functionals and thus for the field 
components (the procedure in paper [2]). Using the extinction theorem at the last stage 
we express the internal fields of the structure (region 1 and 3) through the incident wave 
field. Upon separation the equation set to be solved onto the subsets including the 
exponential functions with a positive and negative real part of eigenvalues, we apply the 
iterative procedure developed for calculations of characteristics of scattering from a 
very thick losser doubly-periodic magnetodielectiic layer in a wide frequency range. 

RESULTS 

Presented in Fig.2 are the results of the transmission coefficient calculation for the 
periodic structure composed of the array of square parallelepipeds with s = 3+0.01i, 
1^ = 1, lying on the half-space with z-i = 2, \x.^= \,hlL^^=\Q, KJ^n 

L   =L   =L    a=25°,(p= 0.001°. The example demonstrates the iterative procedure 
111 12 11   ' ^ 

Stability for very thick doubly-periodic structures. 

= h   IL   =0.5 
^2 12 

L^IX 

0,2     0,4     0,6     0,8 1,2     1,4     1,6     1,8 

Figure 2. Transmission of the normally incident plane wave through the thick doubly- 
periodic array lying on the half-space. 

Our results are in a good agreement with data concerned thick periodic structures and 
presented by other authors (see, for example, paper [3], where the one-periodic grating 
of rectangular rods with hiL = A was considered). 
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SCATTERING OF ELECTROMAGNETIC WAVES BY 
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INTRODUCTION 
Recently, the refractive index can easily be controlled to make the periodic structures such 

as optoelectronic devices, photonic bandgap cry.stals . frequency selective devices, and other 
applications by the development of manufacmring technology of optical devices'". Thus, the 
scattering and guiding problems of the inhomogeneous gratings have been considerable inter- 
est, and many analytical and numerical methods which are applicable to the dielectric gratings 
having an arbitrarily periodic structures combination of dielectric and metallic materials''' 

In this paper, vv'c proposed a new method for the scattering of electromagnetic waves by in- 
homogeneous dielectric gratings with perfectly conducting strip using the combination of im- 
proved Fourier scries expansion method''' and point matching method'"*'. 

METHOD OF ANALYSIS 
We consider inhomogeneous dielectric gratings with perfectly conducting strip as shown in 

Fig. 1(a). The grating is uniform in the v-direction and the permittivity e(x,z) with respect to 
the position( = vi') is an arbitrary periodic function of- with period/?.The permeability is as- 
sumed to be //„. The time dependence is c\\>{-icot) and suppressed throughout. In the formu- 
lation, the TM wave is discussed. When the TM wave (the magnetic field has only the v- 
component jis assumed to be incident from x > 0 at the angle 0^^, the magnetic fields in the 
regions S, (x>0) and S,(x<-d) are expressed'^'as 

SAx>0) ,j(\] /*i(.-sin«„-.\cus('„) iA|;sinW,,   V^ di^'i*'' .2.W,,| 
; A:, = co^. ̂ i//„ (1) 

S,{x<-d) f/,'"=. I Ce 
-,{*;, ■"(A+./)-2.Tn:/;,] 

(2) 

/f,'," = y]'^i^^,/^\,-K, ; r„ = k, sin 0„ + liruf p , k, = ITT/A . ./ = I 3 . 

where /;| ' ,and /,' ' are unknown coefficients to be determined by boundary conditions. 

H,   or £", •   a ^ 

•^•. d 

P 

A', 

'T' I 
i./+1 

l = M 

y/,   d. 

(a)Coordinatc system, (b) Approximated inhomogeneous layers. 
Fig. 1 Structure of inhomogeneous dielectric grating with perfectly conducting strip. 
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Main process of our method to treat these problems is as follows (see Fig. 1(b)): 
(1) First, the grating layer (-c? < x < 0) is approximated by an assembly of M stratified layer of 
modulated index profile with step size  d^{ = dlM) approximated to step index profile 

£\z){=s{{l+Q.5)d^,z); l = \~M\, and the magnetic fields are expanded appropriately by a fi- 

nite Fourier series. 

S,{-d<x<0)   : //;/-^' = '£'r^a./"{-('-'V4^5,n^./.,"'(.v.«oL.Vsi..,. j^ uy""'!"      (3) 

where /;*" is the propagation constant in the x-direction.We get the following eigenvalue 

equation in regard to /z' * ^■'^. 

A,U"'={ /.">f A,U<'> ; A,^[7l'.:,], A.=[C]. ^ = 1~^' W 

where, U'" = \u%,• • •,M^",• • -M^' ] \ 7 : transpose , 

c=KC - 7. {y.iZ+2^ («- "O'?:,:: IP} ' ^»"=(^. ^^^^o+^^nip), (5) 

rji;i^lj^'{s^'\z)}e''''^"--"^'''dz,Cl=-i'{^^^^ m,n = -N,-,0,-N. 

For the TM case, the permittivity profile approximated by a Fourier series of N^ terms'^' 

and A^^ is related to the modal truncation number N{N = l.SN^^ ) '"'I. 

(2) Second, the strip region (y < / < y +1), see Fig. 1 (b), we obtain the matrix form combination 
of metallic region C and the dielectric region C using boundary condition at the matching 
points Zj. (= pk I{1N +1), A: = 0, ■ • •2N) on X = -/ • c/^ (/ = j) .Boundary condition are as follows: 

z,&C:\ El'->' = £!^'*" = 0] y' /!;'■' r .^V'e'"'''''^ - si" ]• Z «'''>'""'' = 0. ^^^ 

lf^ L   ■ J „t:'w   ' 

z, 6C:[/y|.^-" =//|,^''^"] 

'f]'[/(V'e"''""> + 51;'' ]• X ««.'>"'" = Z ['^■'''" + B\r"e''-''*""^ ]• £ "l.':,'"^'"-''- (7) 
N 

z, 6 c\E^'-'> = £'?■■>*'> 1: —^— y /!„'■'■' r ^v'e"''""-^ - 5;/' 1 • y ui/y 
'       •■   ' '       ■•     f'^'(z)lf:t   ■    L   • -J „ti,. 

2«+i ^    « ('e^ 

£''*"(z)f:i - - „.-„ 

In the Eq.(8), the boundary condition at £1'" = Ef-'*^^, it is satisfied in all matching points. 

Therefor, rearranging after multiplying both sides f,.(z)-f,+,(z) in Eq.(8) by using the or- 

thogonality properties of {e'^"""'''} ,we get following equafion. 

where        ^1^! ^ f u<^,C'   C^»^" = I <'<' « = -^,",0,-iV. 
!ii=-N m=-N 

By using matrix algebra in Eq.(9), we get following matrix form. 
0'''C'''[D'''A*'' -B'''] = T''*''C''''''[A''"''' -D*'"'''B''''''], (10) 

whereO<'> =[^,;:e],4^''"' ^^r']>C''> ^[/^y' •^,„,.,,,,J,D<'' ^[e'*'''-<5<„...,,J,^,„....,,.: 
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Kronecker's delta.We get following matrix form combined with Eq.(6) and Eq.(7). 

H'"'[D'"'A"' + D"'"B"'] = H"'""[A"'"' + D"'*"B"^"]     @     @     @    @  @  @ @     @(\l) 

H' (')_ f  z, ec 
•U"' , 

H (/-I). 

Mir/; ;A:-* 
e ■■■    e 

{   z, &c 

ec 

D""=[/;/''"'''-<?,„.v„,..], 

/; = /;'." ; z^ 6 c,   ;/ = 1 ; z, e F 

/; = -//,'" ; z,. e c , 77 = 1 ; Z( 6 F 

(3) Finally, we obtain the relationship between A    ,B    and A     ,B (.U)    n(M) 

B"' 0121     cl-' 

(2iA     fa S[' \     fc'"'      C<''''\ 

in    c" 
^2 

Cl.U!       ol.U) 

f \''''<\ S,    S3 

S3   s, 

r t.iM) 

B 
(12) 

where/;^,/ S^" =["'.v;,*:] k = \-4, l = \~M , 

(')jii ^ 1 r„(/) _L«i'i/,<'+i' //,<"1 .-''''"''> <'^'<'' -'" v'-'    '■|'''.'*V'I-'''"I''A 

•"^1',' =[v'::;. -^;::/ai ,A:" 1/2,'".::' = Uvm + ^,;'.'A,;::;'., A:'>>""--'^^ 

'"^■'^^^[KI'+D ""]'-[(V'K,-D-""^D"'"]   GV, ^ [>•;,';,] = [H""D""']"'{H""D""]   C 

V, =[V;,-J] = [H''''D"'''] ^[H''''''D'''-''],V,^[I;;';,] = [H''''D"''']'{H'''"''D'''*''] 

0 = [C'] = [c^"'] '{o"']"'{r'-'']{c""']. 
Using Eq.( 12), we get the following homogeneous matrix equation in regard to ^''*" . 

W-A'"" = F,    W = LQ,S,+Q,S,-(Q,S,+Q3SJQ-'Q,J, (13) 

The mode power transmission coefficients | 7'J'"" |" is given by 

|7::™'f^.,Re} A-;/'}|/n7(^:,A-r) " (14) 

CONCLUSION 
hi this paper, we have proposed a new method for the scattering of electromagnetic waves 

by inhomogeneous dielectric gratings with perfectly conducting strip using the combination of 
improved Fourier series expansion method and point matching rnethod. 
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SIMULATION OF THE FINITE PHOTONIC CRYSTAL- 
BASED ADAPTIVE ANTENNA 
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Laboratory of Applied Electrodynamics, Tbilisi State University 

e-mail: lae@access.sanet.ge 

ABSTRACT 

The present work is dedicated to the FPC based adaptive antenna structure simulation. 
The effectiveness of the photonic crystals in such implementation is discussed. Several 
types of antenna devices are presented. The influence of the inaccuracy during the 
technical realization of the device is studied. 

INTRODUCTION 

In the superhigh frequency band devices like mixers, separators, frequency filters, and 
splitter and so on are widely used. With the growth of operating frequency development 
of such devices also becomes complicated. In the sub-millimeter and optical frequencies 
range the devices of special type - so called photonic devices become efficient. The 
main part of such device is a crystal dielectric structure with the defects, introduced to it 
in special way. According to the nature of photonic crystals there are gaps in their 
spectrum, that causes some frequencies to be filtered out - and some - pass through. 
The ordinary absorbing media transforms the power of electromagnetic wave to heat. 
Instead, the band-gap does not dissipate power - it is accumulated and can therefore be 
supplied to necessary direction. The placements of defects in the crystal define its 
behavior towards the propagating wave - will it split, mix, or filter it. For example, one 
can introduce several "channels" to the crystal, that having different resonant 
capabilities will provide a way of exarticulation the carriers of different frequencies 
from the incoming signal. All these properties of the photonic crystals can be used also 
to develop an efficient antenna device having the specified parameters. Experimental 
way of developing and investigating such structures is either too time consuming and 
expensive, or quite impossible because some of the system's properties can not be 
easily changed continuously, or the defect's positions can not be arbitrary chosen. 
In the present work several types of antenna are discussed, developed using the 
specially created software for the field propagation in FPC structures numerical 
simulation for the device's parameters optimization 

MODEL 

As a photonic crystal a rectangular body has been taken with the defects represented by 
the metallic rods, located inside it. The excitation is applied at the arbitrary point inside 
the crystal and is simulated by the cylindrical wire. The numerical solution of the 
corresponding electrodynamic problem is fulfilled using MAS [1]. By means of the 
created software several numerical resuhs have been obtained, demonstrating the ability 
of such structure to serve as a core elements in complicated optical and SHF devices, as 
well as the capabilities of the software to analyze and simulate different configurations 
- to avoid expensive experimental development. 
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'■^ •r 
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Fig 1. FPC antenna layout Fig 2. Near field and radiation pattern 
The presented sandwich-like antenna structure consists of a two metallic plates with the 
dielectric photonic crystal located between them (Fig.l). A periodical structure is 
formed by the homogeneously distributed metallic cylindrical rods inside the antenna 
volume. A defect is a vacancy - absence of the rod in the given cell. The antennas' 
feeding is supplied by a coaxial cable and is simulated by the linear current. The 
resonant channels are formed by the defects introducing a phase delays to the 
propagating in them wave, thus promoting the directed radiation behavior of the 
antenna. The near field distribution at the resonant frequency and the pattern of 
radiation is presented on Fig 2. 

'.m m 

-IX devices. 

30.87 

Fig 3. Near fields. Fig 4. Frequency Response. Fig 5. Patterns 

In some application it is necessary for the antenna to be adaptive i.e. able to shift the 
beam of radiation electrically, for example, changing the phases of feeding currents. 
For this purpose, a slightly altered FPC structure has been developed, shown on Fig 3. 
The feeding is applied by the two phased sources. 
On Fig. 4 the frequency response of an antenna is shown. The presented near field plot 
correspond to the first peak's left slope. The nearer the frequency is to the resonant one, 
the more effective will be radiation, but the beam shifting possibility will be decreased. 
This rectangular antenna may be implemented when just slight beam steering 
capabilities are needed. 

'MiM 

Fig 6. The hexagonal FPC structure, its near fields and Patterns at different feeding phases sets 

More flexible and omni-steerable antenna can be built up using the symmetrical 
hexagonal lattice as the core for the FPC (fig 6). 
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Here three independent sources are placed symmetrically relative to the lattice thus 
providing a possibility to radiate in fact, in any direction, depending on the feedmg 
current's phases and amplitudes selection. The fig 5 show the near field distribution 
along with the corresponding patterns of radiation (fig 7). Such antenna can be used m 
some kind ofradar or autotracking systems. 

The important thing, which must be taken into 
account when developing such devices, is how the 
inaccuracy in the real technical realization of the 
device may affect the position and Q-factor of the 

k:. resonances and other radiation parameters. To 
:| I \/'   -<        investigate these conditions a possibility of giving 

.„    II /■ "'''' the    pseudo-random    displacements    to    rod-s 
ru^   / position and sized have been introduced and the 

...-^'      "^f      s,;        „/"■"'*•',.»       influence on pattern, near field, and position of 
Fig 8 Spectrum resonances has been studied. 

As an under test problem the rectangular antenna 

has been chosen, as having the quite narrow resonant peak i.e. high Q-factor. 

a) 2% b)5% _c)10% 
Fig. 9. Influence of inaccuracy during device implementation 

The resulting frequency responses for the different assembly precision are shown on Fig 
8. One can see that during realization of the device a precision of up to 5% is quite 
acceptable, and the lower precision lead to significant displacement of the operating 
frequency and completely changes the inner field distribution, leading to misfunctiomng 

ofthe device Fig 9. 

CONCLUSIONS 

FPC structures proved to be efficient for use as a core element in antenna devices, 
providing high degree of flexibility, and allowing to create complicated devices using 
simple core elements, such as metallic stocks, that is quite easy realizable by the modern 
technology. A software package has been developed allowing real time design and 
simulation of the FPC based devices, including the finite precision limitation of 
technical realization of the device, which makes it dhectly applicable for engineering 

calculations. 
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A COMBINATION OF UP- AND DOWN-GOING PLANE WAVES 
USED TO DESCRIBE THE FIELD 

INSIDE GROOVES OF A DEEP GRATING 
Yoiclii Okiino, Da-Qing Zhou, Koji Yoshimoto, Akira Matsiishima 

Kumamoto University, Kiimamoto 860-8555, Japan 
Toyonori Matsuda 
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INTRODUCTION 
The purpose of the present research is to extend the range of application of Yasuura's method 
[1,2] in solving the problem of diffraction by a grating. Although alternative terminology for 
the method (e.g., a least-squares boundary residual method or a modified Rayleigh method) 
exists, we employ the name throughout this paper. 
It is an accepted knowledge [3, 4] that Yasuura's method, in particular, the conventional 
Yasuura method with Floquet modes as basis functions does not have a wide range of 
application. Although the convergence of the sequence of solutions obtained by the method is 
proven, the rate of convergence is often so slow for deep gratings that we cannot find solutions 
with accuracy. Let D and 2H be the period and the depth of a sinusoidal grating made of a 
perfectly conducting metal. The period is assumed to be comparable to the wavelength, i.e., we 
are working in the resonance region. For an E-wave (s polarization) problem where 2H/D = 0.5, 
taking 71 Floquet modal functions, we can obtain a solution with 1 percent error in both energy 
conservation and boundary condition. Employment of additional Floquet modal functions 
easily causes numerical trouble in making least-squares approximation on the boundary. Mence, 
a practical limit in 2/7/D in the E-wave case is 0.5 so long as we use conventional double- 
precision arithmetic. Similarly, the limit in the H-wave (p polarization) case seems to be a little 
less than 0.4. 
To accelerate the convergence of solutions. Yasuura's method is equipped with a smoothing 
procedure [5, 6]. It has been shown that: in the above problem, we can obtain a solution with 1 
percent error using 17-41 modal functions (the number depends on the order of the smoothing 
procedure and on the polarization). Hence. Yasuura's method with the smoothing procedure is 
effective in making a systematic research that needs to handle problems with complicated 
boundaries, e.g., Fourier gratings. 
Although Yasuura's method with the smoothing procedure solves most of the problems for 
commonly used gratings, the limit in 2H/D has as yet been scarcely dealt with. There still is a 
limit at 2H/D = 0.7 or 0.8 even if we emplo}' 
the smoothing procedure. This limitation 
can be removed practically by the following 
way. Mere, praclically means that we can 
solve the problem with a profile deep enough 
for our research work in the direction of our 
interest. 

P(x.y) 

STATEMENT OF THE PROBLEM 
Let the cross section of the grating be 
periodic in A'as shown in Fig. 1. The depth 
is in y and 3' = /(.v) represents the profile. 

f{x) is a sinusoidal function with a period 

D and  a  depth  211.     The  profile   is  the 

♦ .X 

Fig, I. Geometry of the problem. 
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boundary between two regions U(7 > f{X)) and L(7 < f{x)) . U is a vacuum and L is filled 
with a dielectric with a relative refractive index n. We consider the problem to seek diffracted 
waves in U and L assuming a plane E-wave incidence that comes from the positive 7 direction. 

METHOD OF ANALYSIS 
The basic idea of the present method includes two strategies. First, in constructing an 
approximate solution inside the grooves in U (or in L), we employ down-going (or up-going) 
Floquet modes in addition to the up-going (or down-going) solutions. This would expand the 
function space spanned by the modal functions and make the boundary matching easy. Second, 
in consideration of the ill nature of higher-order evanescent modes (They strongly oscillate mX 
and rapidly increase or decrease in Y), we divide the regions inside the grooves into a couple of 
sub-regions and define approximate solutions in each sub-region. This may be understood as a 
kind of normalization of the modal functions. 
To do this, we first separate a groove region UG {f{x)<Y<H) from a free space region Uo 
{Y > H). UQ and Uo are sub-regions of U having a common border a\.Y= H. Another groove 

region LQ (-//< 7 </(X)) and a homogeneous half plane Lo {Y <-H) are defined similarly. 
Approximate solutions in Uo and LQ take the form of commonly employed modal expansion 
satisfying the radiation condition. That is, an approximate solution in Uo (or in Lo) is a sum of 
up-going (or down-going) plane waves. 
Next, we slice the groove regions to have Q layers. UG is divided into {U|, U2,..., Uy} and a 
horizontal line Y = (\>2q/Q)H {q = 0, 1,..., Q>\) is the boundary between U.^ and U^^+i. 
Similarly, LQ is divided into {Li, L2,..., Lg} by horizontal lines 7= {2rlQ < \)H (r = 0, 1,..., 
Q>\). Consequently, we have 2Q sub-regions in one period (0 < X < D). As a matter of fact, 
we have 3Q sub-regions because either UQ or LG should be partitioned into two. We, however, 
regard the groove region consists of 2g sub-regions because the latter partition is not essential. 
Each sub-region has its own local coordinates and modal functions are defined in each sub- 
region. It should be noted that: the set of modal functions in H,, includes not only up-going 
separated solutions but also down-going solutions. Similarly, the set in L,. includes both down- 
and up-going waves. An approximation in a sub-region (U^ or L,-: q,r= 1, 2,..., Q) is a finite 
sum of up- and down-going modal functions with unknown modal coefficients. 
Now we have 2{2N + \){2Q + 1) unknown coefficients in total: 2{2N + 1) for Uo and U; 2g(27V 
+ 1) for U,f, and 2Q{2N + 1) for L,.. Here, N is the number of truncation and summation should 
be taken from - A^ through N. The coefficients are determined so that the approximate solutions 
satisfy the boundary conditions. We employ the least-squares method noting that a sub-region 
is enclosed with two horizontal lines and a part of grating profile. 

NUMERICAL RESULTS AND DISCUSSIONS 

Results of numerical computation and a couple of comments are itemized as follows: 
(1) lf2H/D < 0.5, the result obtained by the present method agrees well with the results by the 

conventional Yasuura method. 
(2) Comparison with an existing data [7] shows good agreement at 2H/D = 1.0 for an E-wave 

incidence (Figs. 2 and 3 (g = 4, A^= 11, 0.04 % energy error)) and for an H-wave incidence 
(Figs. 4 and 5 (g = 13, #= 16, 0.9 %)). 

(3) A personal computer (Pentium 1.7 GHz, RAM 512 MB) can handle an E-wave problem 
with a depth 2H/D = 1.7 (g = 11, A^ = 7, 1 %; or 16, 5, 0.4 %). Because this limitation in 
2H/D comes from memory requirement, we can employ the technique of sequential 
accumulation [8] to extend the range of application. 

(4) If we construct approximations in U,^ (or in L,.) employing up-going (or down-going) waves 
alone, we cannot obtain convergent solutions for 2H/D > 1.0. This means that the 
normalization of the modal functions alone is not so effective as the combined strategies. 
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(5) We have succeeded in establishing a method of modal-expansion that solves the problem of 
deep gratings. We are planning to employ the method in solving the problem of a stratified 
grating in which the boundaries between layers have a common period but do not have a 
common profile. 
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SCATTERING AND ABSORPTION OF LIGHT BY NANO- 
THICKNESS NEGATIVE-DIELECTRIC STRIP GRATINGS. 

T.L. Zinenko*, A.I. Nosich, 
Institute of Radiophysics & Electronics NASU, ulitsa Proskury 12, 61085 Kharkov, Ukraine, 

Email: zinenko(a)ire.kharkov.ua 

In the innovative optoelectronics, "negative-dielectrics" (ND) are considered as 
promising materials. Metals, like silver and gold, are ND in visible light and near- 
infrared range. The goal of the present paper is to study the problems of the plane wave 
scattering of light by a thin flat grating made of penetrable ND strips or of impenetrable 
strips covered with ND from one or both sides. Strip gratings have been used in wide 
range of applications. Several techniques have been devised for building the numerical 
solutions to perfectly conducting strip gratings and also to penetrable imperfect ones, 
like resistive and thin dielectric strip gratings: the spectral Galerkin moment method [1], 
the Fourier transformation method [2], the singular integral equation method with 
projection to orthogonal polynomials [3], and the method of analytical regularization of 
dual series equations [4]. 

The problem formulation involves a set of 
generalized boundary conditions, relating 
tangential fields to effective electric and magnetic 
currents. The strip coatings are characterized by 
two surface impedances Z~ on corresponding 
sides. Notations can be seen in Fig.l. Accurate 
numerical solution is based on the Floquet- 
Rayleigh field expansions, which lead to the 
coupled pair of the dual-series equations for the 
series coefficients. To determine the unknown 
coefficients a„ and bn, we use two dual sets of 
boundary conditions that hold on the 
complimentary subintervals (the strip and the 
slot) of the elementary period. Further, we make 
an extraction and analytical inversion of the static 
part of the full-wave dual-series equations that 

needs combined application of the Riemann-Hilbert problem (RHP) technique and 
inverse Fourier transform depending on the equation features. This procedure leads to 

(aj.Mfl) 

\-2d 

£p   y A 

£""(E-wave)    \.-2d 
ir^(H-wave)    * 

Fig. 1. Geometry of the Problem 
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the simultaneous linear equations: 

CO 

I 
00 

I 
« = -oo 

+ A 11 
mn    ''E{H),mn x„ + A '2 d E{H),mn^n = B E{H),m 

,21 x„ +  5 + A 22 
E{H),mn-"n^r^m ^^E{H),mn dr- = B E(H),m 

(1) 

With the matrix and right-hand-part elements: 
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'E,nw    2{R/^.,)g„ 
S,„„ (6) 

,12 W 
S (9) 

E,mn        (R/C,^)   "'" 

BI   = ^—s,.,,.{e) 

1 
H ,mn 

A 

2{Q{;^)grr 

12 ^'' 

Smn (6 ) 

^■'"" iQ^o)   "'" 
s.„.AQ) 

(2) 
B H.>n (^^   ) 5„,o(e) 

B H.m = 2. 0 UnO O) 

,2J/2 
where r„„/e; and S„JQ) can be found in [4], g„=(l- (sin(^+l/K)-) \ r„=\n\ - jg„K 
K= dAo, and 0= 2nM'/d. The unknown coefficients are x„= c„g„, c„= a„+ h„, d„ a„- h„. It can 
be shown that (1) is a Fredholm second kind equation and therefore yields stable and 
accurate numerical solution with accuracy controlled by the truncation number N of 
each block. According to [5], three complex parameters. R, Q. and W, are electric, 
magnetic, and cross resistivities. W is responsible for different properties of the two 
faces and vanishes for a surface with two identical face impedances and for a penetrable 
ND strip grating. 
Numerical computations have been carried out for the reflected, transmitted, and 
absorbed power fractions as a function of the electrical and material parameters of the 
ND grating. In Fig.2. we present several samples of plots of the reflected, transmitted . 
and absorbed powers versus the normalized period of the gratings made of gold, silver, 
and platinum for the Il-wave case. These gratings are penetrable and W=0 in this case. 
One can sec that for the gratings made of gold and silver the reflected power prevails 
over transmitted and absorbed ones in the frequency range 0.6< d/?io < 0.7 whereas the . 
transmitted power prevails over the reflected and absorbed powers for most of optical 
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dJK 

Fig.2. Normalized powers for H-wave scattering by strip gratings versus the electrical period. 
2w/d=0.5, (p=0°, h/d=0.02, d=5*10"%. 

range starting with 0.7 d/A.o. The values of transmission are quite comparable and run up 
to 0.9. The absorption by the grating made of platinum exceeds the transmission and 
reflection in the frequency range 0.65< d/Xo< 1 and transmission prevails over 
absorption and reflection for the rest of optical range. The reflection stays low over all 
optical range. Fig.2 demonstrates a deep drop of transmission for all gratings and a rise 
of absorption for a grating made of platinum near the ± first Wood's anomaly (K =1, for 
the normal incidence). 
We have developed accurate numerical solutions to the scattering problems concerning 
the ND strip gratings in free space. The computations have been carried out for the 
reflected, transmitted, and absorbed power fractions as a function of the electrical and 
material parameters of the grating. 
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RECONSTRUCTION OF PERIODIC BOUNDARY BETWEEN 
DIELECTRIC MEDIA 

Jean Cliandczon', Anatoliy Ye. Poyedinclnik", and Nataliya P. Yashina'" 

' Universite B. Pascal, Clermont-Ferrand. France 
- IRE NASIJ, Kharkov 61085. Ukraine. Email: nataliya@lin.com.ua 

Boundary .shape analysis and reconstruction is impoilant area of research [1-4]. however there is 
a shortage of rigorous approaches. We propose a robust and clear modification of the known C 
method [5,6] for solving the wave scattering by arbitrarily shaped surface. This approach makes 
a reliable basis for solution of recognition problem: the reconstruction of surface profile and 
material parameters of media from known data on the scattered field. 
For the direct problem solution, the C-method in combination with a rcgularisation has been 
chosen [5,6]. This enables iis to reduce the original 2D problem of linearly polarized plane wave 
diffraction by an arbitrary boundary of dielectric media to operator equation 

aX + AX = C\ (1) 

where a is regularizing parameter , A is a self-adjoint positively defined compact operator in 

corresponding Flilbert space // =l^_xh. The entries of unknown vector X arc coefficients of 

scattered field that is expanded over eigcnfunctions of C-method (5.6]. Vector C is defined by 
the excitation field. For boundary shape between media and given dielectric parameters the 
equation (1) can be solved efficiently by means of truncation method. The choice of regularising 
parameter a may be done on the base of generalised residual principle [7,8]. The input data for 

correspondent inverse problem are complex amplitudes R = \R^^\}.))\^^ ^ of reflected 

propagating waves. ?L is a wavelength. We suppose that this data are known in certain 

wavelength range [A^,?^,]. Besides the period of boundary shape and dielectric parameters of 

media are also known. It is necessary do find out by these input data the function, describing the 

boundary of two media. Eet a = {a,X,- ■, ^'^ Fourier coefficients of this boundary function. The 

solution of operator equation (1) gives the mapping that associates set of t'= ('^-f,, )„..„., with set 

of complex amplitudes R:=(Rp.))l ^.. Thus, on certain set of vectors D,, czL the non linear 

operator 

is defined. Flaving found out from (2) the Fourier coefficients a = (a,, |^ _^ , we can, by 

summation of Fourier series with approximate in /,-space metric coefficients [7], derive the 

profile function. Formally, the scheme can be outlined as follows. Let }'(^), that is the solution 

of (2), is the set of operator  F  values. Introduce on   Yy)^) the norm according following 

formula  ||y?(/V|'= V|/^(X)| ——-. Here following notations are used:  9„   are angles of 
'     ■^ cosQ 

diffracted field, G is angle of incident field. Consider the functional that is given in definitional 

domain D,, ofoperator F 
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n=~0 m=\n=~P(X„) 

where y > 0, is the parameter of regularization, R>0 ,p^ = -^K„,£ y |a - «^ 

is  a period  of boundary,   X^&'^,,X2\,   (^h^)= ^^^r,^'"" ■  Vector   «y''=^„^^_ ,  which 

(3) 

n=~0 

provides the functional (3) with minimum we consider to be a solution to (2). 

Numerical experiments. On the basis of the approach developed the numerical algorithms for 

the solving (1) and (2) have been implemented. The search of vector a^^ is organized by means 

of regularized quasi Newton's method with step adjustment, using only fist derivatives. The 
minimum residual method is applied for the choice of regularizing parameter y . Based on (1), 

we simulated input data  i?''(A,„, ) = (i?,'(X,„, ))|^_^, m = 1,2... P   for several boundaries between 

media characterized by profiles: 

i,{y) = h 
6d \ d 

a,{y) = h 

11 , a,{y) = h 0.375 + 0.25 sini ^\ +0.125 cos\ (f) 
0.5-- cos 

2ny 1      f6n"\     1       flOn 
+ —003]     + COS]   

9      [d J   25      { d 

periodically continued from interval  [0,d] onto interval  (-oo,+ooj. Parameters  d  and  h 

satisfy the restriction 2nh/d < 1. The wavelength of incident plane E polarized wave was 

varying within the rangeO.5 < d/X < 3.5. Permittivity of the first medium has been chosen as 

8, = 1 and of the second one as s, = 2.25. Permeability of both media is |J, = 1. Functions 

a^[y),a2\y) are chosen for they belong to two essentially different classes. Namely, function 

ctjly) has a finite series of its Fourier coefficients. In the contrary, function ct^{y) and ct^[y) 

have an infinite Fourier series, which Fourier coefficients have algebraic type of decaying only. 
Results of numerical tests are presented in Fig. 1. Solid lines correspond to the exact functions 

a, [y], i - 1,2,3 Lines depicted as crosses are the graphs of functions a, [y) and a'^i [y] that 

have been defined via input data -^''(^,„) = (^,t(^„,)j„=_A, according to above described 
algorithm. As they almost coincide with graphic accuracy, the deviations 

10h   \ta-[y) — a i[yjj,i = 1,2,3 are presented in the same figures as doted lines. It worth to 

emphasize that maximum absolute value of deviation essentially decreases with value of points 
P increases (we remind that P is a number of values of incident plane wave wavelengths, for 
which the input data, /w= 1,2,. .. P, have been calculated) that is in compliance with given level 

of noise in input data R\X„,) = {R„{K,))„=.I^■ Rather good approximation used for starting 

values of Fourier coefficients guarantees the shape reconstruction with accuracy 10 ~ -10~\ 
These algorithms are efficient tools for the study of influence of input data errors on the 
accuracy of boundary shape reconstruction. 
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Figure 1.  Reconstruction of profiles given by functions fif, \y) (a),*?,!}') (b), and a,\y) 

(c) for the values 7^ = 6, e, =2.25 ,0.5 < t//A. < 3.5, 2nh/d = 0A. 

It is well known that one of the most complicated problems in solving unstable problems of 
reconstruction is the problem of matching regularizing parameter a  with given level of errors in 

input data /?,'„„. We have demonstrated that sucli tradeoff can be obtained be means of residual 

method [7, 8]. We shall demonstrate this statement for the test problem for reconstruction shape 

of the surface, described by the function f/jU')- Basing on the solution to direct problem we 

have calculated the input data /?'„„ = /?,',,(>t„){l 4-y ■Rand) for various levels of relative error 

y . The error  Rand   has been simulated be the generator of random numbers with normal 

distribution. One of the numerical examples is presented in Fig. 2. In fragment a) you can see the 
characteristic behavior of relative error of profile reconstruction has been estimated according 

formula 5(a) = I] 

-<1l+' 1 / 

V n / 

1/2 

calculated for numbers of 

a = 10"",n--1,2...N: N < 10 .   Flere   a^   are   exact   values   of function   ajyy)   Fourier 

coefficients. As it is clearly seen the function §(a) has pronounce minimum, that appears for all 

considered levels of error y . In pictures b) and c) the results of boundary shape recon.struction re 

presented. Relying on our numerical experiment we can conclude that reconstruction can be 

performed with best accuracy for that value of a , that provides minimum to function 5(a). 

The residual method can provide reliable determination of optimal value of a   according to 

relation a     = sup{a : \{y)<y). Here     A,^ = 

UK, 
is a relative residual of 

Ja 

input data./?',,,, and 7?,",,, that are the results of the solution of direct problem, calculated for 

function a"(v) found out from minimization of (3) for given y . From the results of numerical 

experiments we can see, that A^(y)   depends on a   monotonically, and, thus a„^„  is unique 

for each level of input data errors. The suggested algorithm, which performs reconstruction of 
shape of periodic boundary  between two dielectric media relying on  information about 
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diffraction harmonics that are known within certain interval of wavelength, requires certain 
starting approximation for Fourier coefficients of function a{y) describing boundary. Such an 
approximation can be constructed by generalizing results of [10]. 

point a point b 

b) 

Fig.2 

c) 
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REFLECTIVE PROPERTIES OF GRID STRUCTURES WITH 
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E-mail: demidvi@bsu.by 

ABSTRACT 

The based on the solution of an integral equation method for calculating electrodynamic 
characteristics of a half-wave dipole located above the grid screen with dielectric coat- 
ing is considered in the article. The acquired analysis results allovv' to estimate the influ- 
ence of geometric parameters of the screen and dielectric parameters on radiation char- 
acteristics. 

Grid screens are widely used in antenna techniques. They are used in various devices 
for electromagnetic protection, as reflectors of mirror and dipole antennas, as screens of 
passive retranslation. Depending on the function of antenna system application of a grid 
screen allows to solve such problems as mass reduction, wind impact reduction etc. 
While exploiting these systems quite possible is the formation of different kinds of thin 
coating, ice for instance, that can be approximated to an ideal dielectric. That is the 
practical importance of the research work concerned with modeling of electrodynamic 
properties of grid structures. 
Usually the reflective properties of grid screens are considered using the results of 
solving the task of a plane electromagnetic wave incident on the grid of infinite dimen- 
sions [1]. But in practice we deal v^'ith systems of finite dimensions. 
The purpose of this work is to model the radiation characteristics of half-wave dipole 
located above the grid screen covered with dielectric and to determine the dependence 
of these characteristics on dielectric permittivity and dielectric layer thickness. 
The solution of this task was found within the limits of thin-wire aproximation usig an 
integral equation which is an analogue of Pocklington's equation for thin ideal conduc- 
tors [2]: 

jl{s')K{s,s')ds' = kos,E[ (1) 
/, 

K{s,s') = -k^sS'G^, (.v..s-') + -^G„ {s,s') + ^^^G„ (.v„v') (2) 
£,. dsos £,.    osos 

where   s,s' - the curvilinear coordinates counted along the conductor, x,,x,' - cartesian 

coordinates of observation and source points, 8,. - relative dielectric permittivity of the 

layer, k - wave number, w- cyclic frequency, 2a - conductor diameter, d'=b-a - thickness 
of the dielectric layer, L - general length of the vibrator and all conductors of the grid, 

Kll-V,   LlKRMNIi.   IX-ril   INTI-RNATIOKM. C()NFERIif;CI' (;,V   MATHEMATICAL MiriHOnS IN El.liCTIIOMACKETIC THEORY 



MMET* 02 PROCEEDINGS All 

I(s) - the sought function of current distribution, E[ - tangential component of an elec- 

tric fields. 
The solution of IE (1) is found by the method of moments transforming it to a matrix 
equation, choosing step-function as the basis function and delta-function as the weight 
function [3, 4]. 

E,„=tK.nJ. ,K„,.= lK{s„,s')ds'  m,n = \...N (3) 
"=1 A.V,,, 

To provide solution convergence it is necessary to choose the optimal length of seg- 
ments of conductor fragmentation, the side of the cell should be covered with an integer 
number of segments [5]. The choice of wavelength is determined by the IE core behav- 
iour. In this connection the analysis of IE core dependence on dielectric parameters for 
thin-wire structures of different configuration covered with a layer of dielectric was car- 
ried out. It is found out that the optimal fragmentation for electrically long rectilinear 
structures is As/X = 0.04...0.05. 
The calculation of amplitude-phase current distribution for dielectric permittivity 
£ = 2...9and the thickness of conductor dielectric coating d/X = 0.05.. .0.4 was made. 
By the known current distribution the radiation field in far zone in 2 mutually perpen- 
dicular planes E and H was calculated. Using the results of calculation of orientation 
characteristic the width of the main lobe of half-power, the level of back radiation were 
determined. That allows to estimate the reflective properties of grid screens. The square 
screen was considered, its geometric parameters varied within the following limitations; 
side lengthZ^/A, = 0.8...2.4, square cell dimensions //A, = 0.08...0.3, conductor ra- 

dius a/?^ =0.005; 0.01. The half-wave dipole was located at the height h/X = 0.25 in 
parallel with grid plane. 
Calculation results  for the  grid  screen with parameters   LjX = 2.4,   //A, = 0.15, 

a/X = 0.005 are shown on fig. 1- fig. 4. 
On fig. 1 as an example the dependence of maximal level of back lobe (MLBL) p in 
planes H (curve fl)and E (curve b) on dielectric permittivity s is shown. MLBL is nor- 
malized on the radiation maximum of the main lobe. On fig. 1 also shown is the the de- 
pendence of mean level of back lobe (mean LBL) in planes H (curve c) and £'(curve d) 
on dielectric permittivity s. (mean LBL - the ratio of rear lobe area and the main lobe 
area). On fig. 2 the dependence of MLBL and mean LBL on dielectric layer thickness 
d/X is shown. On fig. 3 - 4 the change of the main lobe width of half power 26o.5 in 
planes H (curve a) and E (curve b) from dielectric permittivity (fig. 3) and dielectric 
layer thickness (fig. 4) is shown. 
The numerical investigation allows to make the conclusion that for a grid screen of fi- 
nite dimensions the increase of dielectric permittivity and dielectric layer thickness 
leads to decrease of shielding effect. This is found to be in good agreement with similar 
structures of infinite dimensions [1]. 
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The offered methods allow to estimate reflective properties of a grid screen of finite di- 
mensions covered with dielectric in dependence on geometric parameters, dielectric 

permittivity and dielectric layer thickness. 
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ABSTRACT 

Several integration schemes are applied to the differential method for a sinusoidal- 
profiled surface-relief grating made of an anisotropic and conducting material. The nu- 
merical results show the importance of the numerical stability and the advantage of the 
implicit integration schemes. 

DIFFERENTIAL THEORY OF GRATINGS 

We investigate the diffraction problem on a surface-relief grating ruled on an aniso- 
tropic and homogeneous substrate schematically shown in Fig.l. The grating grooves 
are parallel to the z -axis and the equation of the grating surface is ;; = p{x) where 
p{x) is a known periodic function with the period d and the depth h. The region 
y > p{x) is filled with a homogeneous and isotropic material described by the relative 
permittivity £, and the relative permeability |LI,, and the homogeneous and anisotropic 
material that fills the region y < p{x) is described by the relative permittivity matrix 

£2 and the relative permeability matrix fi^ ■ We consider only time harmonic fields as- 
suming a time-dependence in exp(-/co t), and deal with the plane incident wave propa- 
gating in the direction of polar angle 9 and azimuth angle (j). 
The differential theory [1,2] is one of the most commonly used approaches in the analy- 
ses of such gratings. Thanks to the periodic structure, the electromagnetic field compo 

y = /7(x) 

Figure 1: Geometry of the surface-relief grating under consideration. 
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nents can be approximately expanded in the truncated generalized Fourier series [2]; for 
example the x -component of E field can be written as 

£,(x. v,2) = Y.^.v.»(>')exp[/(a„x +yr)] 

with 

a„ = ^1 sin6 costj) +/? 
2Tr 

y = ^1 sinB sincj) 

(1) 

(2) 

where A^ is the truncation order, k^ is the wavenumber in the region y > p{x), and 

E^^,{y) ^^'^ ^'""^ /7th-order generalized Fourier coefficients which are functions of y 

only. Replacing all the periodic and the pseudo-periodic functions by their Fourier se- 
ries and using the Fourier factorization rules [3], Maxwell's curl equations are trans- 
formed into a coupled differential equation set in the form of 

'e^iy)] feAy)'' 
d_ 

dy ''Ay) 
= M{y) eAy) 

It Ay) 

ft Ay) 

(3) 

j 

where, for example, e^(y) denotes a (2/V-i-l)xl column matrix generated by the Fou- 

rier coefficients of E^ and M{y) is the coupling coefficient matrix. Then, the scatter- 
ing problem of grating is reduced to an integration problem of the coupled differential 
equation set with boundary conditions at the top and the bottom of the groove region. 

NUMERICAL RESULTS OF VARIOUS INTEGRATION SCHEMES 

One method for integrating the coupled differential equation set (3) is the rigorous cou- 
pled-wave method, which introduces the staircase approximation to describe arbitrary 
profiled gratings. The real profile in each step is replaced by the structure uniform in the 
_y-direction, and then the boundaiy-value problem can easily be turned into an eigen- 
value problem because of the absence of the >•-dependence. Another approach is based 
on the shooting method, which can transform the boundary-value problem into the ini- 
tial-value one. The initial-value problem can be solved by usual numerical integration 
schemes. In the narrow sense, this approach is called the differential method. In the 
method, the Runge-Kutta or the predictor-corrector Adams schemes are suggested for 
integration [2,4]. 
Here, several numerical integration schemes are applied to the differential method for a 
sinusoidal grating made of conducting material and the convergences of the TM dif- 
fraction efficiencies in -Ist-order with respect to the number of the integration steps are 
compared in Fig.2. The grating parameters are chosen as follows:  X^ = 0.6328 |j,w, 

e =30°, (j) =20°, d = Q.6\.vn, h = 0.5^wi, p(x) = {h/2){\ + cos(2nx/d)], s, =|i| =1, 

^'2... =^2.vv =^2.,~r =-8.19 + 716.38,     s,,.. =-£2,,, =-0.495-/0.106,     s,^,, =£,,,^. = 

^2,,. e,.,, =0, IAT-I , and TM (//, =0) polarized incident plane wave. To avoid 

the numerical difficulty for deep gratings, we used the scattering matrix propagation al 
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Figure 2: Convergences of diffraction efficiencies computed using various integration 
schemes (DM: differential method, RCWM: rigorous coupled-wave method, ERK: 
classical fourth-order Runge-Kutta scheme, EAS: predictor-corrector Adams scheme, 
IMS implicit midpoint scheme, IRK: implicit fourth-order Runge-Kutta scheme, IAS: 
implicit Adams-Moulton scheme). 

gorithm [5]. The rigorous coupled-wave method shows stable convergence but does not 
give reliable solutions for such a conductive grating as reported in Ref [4,6]. The ex- 
plicit schemes (ERK, EAS) show serious numerical instabilities and require large num- 
ber of integration steps for reliable solutions. On the other hand, the implicit schemes 
(IMS, IRK, IAS) are numerically stable even when the number of integration steps is 
small. Consequently, the use of implicit schemes reduces greatly the computation time 
and is highly suggested. 
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Periodic layered structures are considered. Each layer of the structure is an array of 
plane metal strips of complex shape placed on a dielectric substrate. The frequency de- 
pendencies of eigenwave propagation constants have been obtained. The reflection co- 
efficients from the half-space filled by such medium have been studied. The results for 
structures made of identical layers and for structures composed of pairs of different lay- 
ers are presented. 

1. Let each layer be constructed by using the plane C-shaped elements oriented in one 
direction (see Fig. la). In this case, on the array period small compared with the incident 
wavelength, the first or even the second current resonances are possible on the element. 
The periods of all layers along the OX and OY axes are identical. The layers are posi- 
tioned perpendicularly to the OZ axis (see Fig. lb). The field near this array may be 
presented as the sum of an incident field and the field reflected by the array. The re- 
flected field may be presented as the sum of spatial harmonics (see [1]). We shall con- 
sider the case when only one spatial harmonic is propagating. Its propagation constant is 
equal to k. 
The matrix elements of the reflection and transmission operators (r and ;) for 

CC 
cc 

cc 
cc. 

cc 
cc 

cc 
CC" 
F •ig. la. Fig. 2a 

one layer can be obtained by using the method of moments. As we take into account 
only a one harmonic and consider two orthogonal polarizations, the reflection and 
transmission operators look like square 2x2 matrixes. And as the chosen structure of the 
layer is symmetric, there will be no transformation of polarization of the reflected and 
transmitted field. Thus the matrixes r and / will be diagonal. The operator equations 
describing the eigen waves in such medium is possible to derive in the same manner as 
in [2]. They are: 

(/-e ""7-e)^; -reA^ =0 (la) 

r^e^;-(/-e'P'7-e)J; =0 (lb) 
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where e is the operator describing change of a field propagated from any layer to the 
neighboring one; A^ are the ampUtudes of eigenwave partial constituents in the interval 

between; andy+l layers (hereinafter the "+" and "-" superscripts refer to propagation of 
the wave from left to right and from right to left, respectively); L is the period of the 
structure; p   is the propagation constant of an eigenwave. 

Re (PL). Im(pL) 

Re (PL) 

/ 

"""^/^ •i- Im(|3L) 

, , , 

Re(|3L).Im(pL) 
Re (PL) 

0.0 02 0.4 0,6 0.8 1,0 
ilX 

0.0 0.2 0.4 &X 

Fig. 2a. Fig. 2b. 

The dispersion dependencies for the eigenwaves propagation constants are solved nu- 
merically. They are presented in Fig. 2a (the eigenwave is polarized in the OX plane) 
and Fig. 2b (the eigenwave is polarized in the OY plane). 
Consider semi-infinite structure of layers described above. The reflection operator for 
such a structure may be obtained in the same manner as in [3] as a solution of equation 

K=r^+ reKe(I - r-eKe)'' f . (2) 

Equation (2) is solved numerically by an iterative method. As an initial approximation it 
is possible to take, for example, the reflection operator of a positive partial constituent 
of eigen wave for semi-infinite structure. This operator is possible to find from (la) and 
(lb) in the form 

R:=(I-t-ee'^'^)-'r\ (3) 

Fig. 3a. 

00 0.2 0.4 

Fig. 3b. 

0.6 0.8 1.0 

d/X 

Frequency dependencies of the matrix elements -^oo xx and R^, yy are represented in 
Fig.3a and 3b. Curve I in both figures refers to the reflection coefficient for a semi- 
infinite structure, a curve II - for the reflection coefficient of one layer. Comparing de- 
pendencies in Fig. 2 and Fig. 3, we can see, that the zones of total reflecfion from this 
artificial medium refer to the cutoff zones for eigenwaves in this medium. It can be seen 
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that in those areas where the reflection factor for one layer is close to unity, a sharp in- 
crease is observed in the imaginary part value of the propagation constant. This increase 
can be explained by the total reflection of the incident field from each layer, and there- 
fore the eigen wave cannot be excited as a propagating wave. Thus, the imaginary part 
of its wave number tends to infinity. 

2. The difference between the reflection coefficients for different polarizations may be 
undesirable in creating of microwave devices. To avoid this strong polarization depend- 
ence, we shall rotate each second layer through 90*^' around the OZ axis. Consider a new 
layered medium constructed from pairs of layers, one of which is rotated through 90". 
Let the distance between layers in pair be equal to /?, h< L. Reflection and transmis- 
sion operators for a pair of layers (/? and 7) is possible to obtain in the same manner as 
in [4]. 
The 1 subscript refers to a layer oriented, as in Fig. la. and the subscript 2 to the layer 
rotated through 90 . The equations governing the eigenwaves in this medium looks 
analogously to (1). And the equations (2) and (3) can be rewritten too. 

oc 02 04 06 oe 

Fig. 4a 

Tl 

06 08 

Fig. 4b 

Now the solutions for the dispersion equation coincide for both polarizations. The re- 
flection coefficient for this medium also will be identical to both polarizations. Its fre- 
quency dependence is presented in Fig. 4b. 
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MATHEMATICAL MODELS OF ELECTROMAGNETIC WAVE 
SCATTERING BY TWO-ELEMENT STRIP GRATING WITH A 
PERPENDICULARLY MAGNETIZED GYROTROPIC MEDIUM 

Y.V. Gandel, V.V. Khoroshun 
Kharkov National University 

PI. Svobody 4, Kharkov 61077, Ukraine 
E-mail: gandel@ilt.kharkov.ua 

ABSTRACT 

Two mathematical models are proposed for analyzing a linearly polarized plane wave 
scattering by a strip grating placed on isotropic-gyrotropic media interface in the case of 
oblique incidence, the first mathematical model is based on reducing the original 
boundary value problem to the Riemann-Hilbert problem. The second model is based on 
reducing the same problem to a singular integral equation of the first kind with Cauchy 
kernel and its numerical solving by the discrete singularities method. 

In this paper, the results obtained in [1-3] are generalized for the case of periodic struc- 
ture consisting of two strips of different widths per period (two-element grating). This 
results in richer diffraction phenomena in comparison to simple grating because of ad- 
ditional control parameters. Moreover, unlike papers [1-3] here the case of oblique inci- 
dence of an H-polarized plane wave on a two-element grating is considered. The center 
of coordinate system is chosen in the middle of one of the strips. 
The following set of dual series equations is mathematical model of a structure 

ZAYy"^=Yop e„,<(p<e„';^ (1) 
n 

j:Ar/"'=-Po, e:;'<(p<ei:i„ (2) 
n 

where y„, = ^k^nf -h^,   n, = ^s^,   K = ^o«i sinC +-?"" > 

fn = 1 + — '        Y„2 = Jkh I u,, - h^,, 1 ~ 

i?-s-'     L-       ^" k - — iV-fcj^,       1^ - 2 2' '^0"~~» 

I is the grating period, d is the slot width, X is the wavelength, C, is the incidence angle. 

Denote 4, = A/n + Po^on' ^^d 5o„ for the Kronecker symbol. 
Then initial set of dual series equations takes the form: 

XV^=o, e„,<(p<e,;"; (3) 
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H>0 '„ /KO '',, 'o 

(1)   ...    .rv       (1) e„;"<cp<e„,..;", (4) 

IV"=-A.^     0„;"<5„,<e,„;'\ (5) 
The set of equations (3)-(5) can be reduced to non-homogeneous conjugation problem 
(Riemann-Hilbert's problem) with a complex-valued coefficient in the case of account 
of dissipative losses. 
To calculate matrix elements of final matrix equation, it is necessary to introduce poly- 

InlGl 
nomials 0,(u„,,p) [3], where p =^. w„, =cose„,, (m=l,2). 

In the case of multi-element gratings, an efficient numerical-analytical method for 
solving these dual series equations was suggested in [4]. The method consists in reduc- 
ing them to a singular integral equation of the first kind with the Cauchy kernel on the 
set of segments, and its following solution by the method of discrete singularities [4,5]. 
Integral equation is of the following form 

■ni),,,, 1 -j^-^i/£ + - |"A"{.T.^)F{^)dt = fix).    xeL 
n '-^ -X n f 

where L ^\J{ci„,h,) .-'x>< a, < h, < ... < a,,, < b,„ < +cc; 

(6) 

/(x), X e L; /C(x.£,). xe L.'t, e L are known smooth functions, and function 

F(£,),£, 6 L is sought in the functional class whose restriction on interval (c^i^h^^): 

can be represented in the form 
V (£) 

FiL) = -^= " a  <L<h„ 

where   v^(^),   £, e [a^, h^^ J is a smooth function. 

The sought function F (£,), ^ e L satisfies additional conditions, which in general case 

are of the following form: 

-\s,X^)F{^)d^^C,„    p = l...,m. (7) 

where S^^it,),   £, € [<^',,,i^/J is a known smooth function, and C^ is a known constant. 

In conclusion we shall present the discrete mathematical model that is a set of linear al- 
gebraic equations for numerical solution of the integral equation (6) with additional 
condition (7). 
Denote 

/, =cos Tc,    / = ],...,«; /(I  =cos—71,    7 = 1....,77-1; 
In n 
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l"pj =Sp(to'j),   j=\,...,np-\;p = \,...,m 

To calculate approximate values |v^^„ (£,))™ of the desired functions v^(t,),q = l,...,m in 

principal    points     |^,""|,=i'    we    have    a    set    of   linear    algebraic    equations 

(where i?(x,^) = -^+i:(x,^)) 

m "q 1 

The values of the physical characteristic of scattered field, 

are expressed in terms ofthe functions v^^(^),   £, e[a^,b^],   q = \,...,m, 

where H^(L,),   £, e[ay,b^] are known functions. 

Approximate values of 

are calculated in numerical experiments. 
Obtained results can be applied in the design and elaboration of various devices con- 
taining periodic structures with ferrite substrates or in plasma. 
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DISPERSIVE AND DIFFRACTION ANALYSIS OF INTEGRATED 
PERIODIC WAVEGUIDE STRUCTURE 

T. I. Bugiova 
Radio Engineering Department of Zaporozhye National Technical University 
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ABSTRACT 

A semi - infinite homogenious nonmagnetic shielded slab with grating of thin metallic 
strips that arc printed symmetrically on both sides of the slab was considered. The main 
wave of the dielectric slab falls under arbitrary angle on the boundary between slab and 
grating. The dispersive equation of periodic structure was obtained and solved by nu- 
merical-analytical method. The diffraction problem was formulated and solved by Vie- 
ner-Hopf technique. 

THE EIGENWAVE PROBLEM 

Let us consider a homogeneous nonmagnetic dielectric shielded slab of thickness 2d. 
Gratings of thin metallic strips with 21«X width, where >. is a wavelength in slab me- 
dium, are printed symmetrically on both sides of the slab. Coordinates are assumed as 
shown in Fig. 1.The eigenwaves of the structure considered in our case are assumed to 
be solutions of a boundary value problem for an electromagnetic field. These solutions 
exibit a harmonic dependence on the x axis of exp(-jxx) and quasiperiodic dependence 
on the z axis of type E(z)=E(z+nP)exp(JPnP). where x and p are spectral parameters 
determining the wave propagation direction, and n is the strip number. The electric field 
amplitude time dependence exp()cot) is omitted for simplification. An electric or mag- 
netic wall can be placed in the structure symmetry plane y=0. In the present article we 
shall limit ourselves to analysis of waves corresponding to the magnetic wall case. Be- 
cause of thinness of the grating strips, the longitudinal components of currents are much 
more then cross components. So we can use only one boundary condition for the for- 
mulation of the problem. It is assumed that Ex=0 for perfectly conducting metallic 
strips. 
Let us obtain the approximate dispersion equation. This equation couples the structure 
spectral parameters x and pwith nonspectral ones: P/A.. 2d/?^, 2\/X, and s, - relative di- 
electric permittivity of the slab. Keeping in mind the equal spacing of the grating, let us 
set periodic conditions for the strip currents at Ln=Ioexp(-iPnP). where lo - current den- 
sity on zero strip. It is known that the cross-strip current distribution is given by the 
Maxwell function (l-(z'/l)^ ^'^ [1]. Taking into account the above approximation and 
using the boundary conditions, we shall formulate the integral equation as 

I io< x,x';z.z')/(-v)exp(-/p/7/'Xl -(z7/)') '' VxW - 0, (1) 

where 
n=0,±L±2,...- the strip number. The function G can be obtained by the Fourier integral 

G(x,x';-,z') = j^K^,a)exp(-/^(x-x')-./a(z-z'))J^^/a. (2) 
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where g(^,a) is a icnown function. Let us evaluate an integral on a in (2) according to 
Cauchy theorem. An integral on x' in (1) is evaluated trivially, assuming the current 
variability along the strip to be I(x')=exp(-jxx'). It is equal to 2TI:5(^-X), where the sym- 
bol 5 denotes the Dirac delta function. To avoid a z' dependence in (1) let us use the 
Galerkin method. As a rule in a slab two modes are propagating ones. They are the TEi 
and TM2 modes with ai= ah and a2= ag. The term with n=0 is calculated numerically. 
As a result we obtain a rather simple relationship reducing the integrals on z' and n a in 
(1) and (2) to a double series. Evaluating an integral on ^ we obtain 

ZD^D, + 7X.^oP^"' ^HX,P)D, + JX^'k,-\h:' sin(x,P)A = 0. (3) 

9       7   1/7 
where De,h = cos(xe,iiP) -cos(pP), r^s, Z are definite functions of x, and Xe,h=(Pe,h -X ) • 
For the grating considered, as a rule, single - mode conditions are not satisfied because 
even in a shielded slab without a grating TEi and TM2 waves exist. In the grating they 
are converted into HEn and EH21 modes with similar structure. However, by proper se- 
lection of structure parameters, we can create the situation where only the main HEi 1 
mode propagates. Cutoff conditions for HE12 and EH21 modes were obtained from the 
dispersion equation 

„i;      = P   arccos 
.P„2(0) 

THE DIFFRACTION PROBLEM 

^°     sin(P,P) + cos(P,P)) P..„"" = P.- 

The diffraction problem was solved by Viener-Hopf technique. A semi-infinite homo- 
genious nonmagnetic shielded slab with grating of thin metallic strips that are printed 
symmetrically on both sides of the slab was considered. The main wave of the dielectric 
slab falls under arbitrary angle on the boundary between slab and grating. The transfer 
strip current approximation was taken as Maxwell function. The longitudinal compo- 
nent of strip current was found from the integral equation formulated for boundary con- 
ditions. Using the field expression through the Green's function G and using zero 
boundary conditions we obtain an integral equation: 

1 J,(s') Z(s-s' )ds' + E,(s) = 0, (4) 

where E, and /, are the electrical field and current components that are tangential to the 
strip axes. The function Z(s - s') can be defined from the function G.The evaluation of 
an integral in (4) is carried out along the strip axes. Using the Galerkin technique and 
the transfer current approximation by the Maxwell function, we succeeded in obtaining 
a one-dimensional equation from the two-dimensional one. It is convenient to solve 
equations like (4) by using the Viener-Hopf technique [1]. Hence, we can obtain an ex- 
pression for I,(s) in the Fourier integral form. Evaluating the residue of the integrand at 
the point a= Xh, coincides with the root corresponding to the HEn wave, and describes 
the current component of our interest (ITHEII)- 
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NUMERICAL RESULTS 

Dispersive equation (3) was solved numerically. Figure 3 shows variation of the HEn- 
wave longitudinal normalized propagation constant v=xo/ko versus cross-strip normal- 
ized transverse propagating constant p/ph for relative dielectric permittivity £r=9.8. It is 
shown that when p=0 (longitudinal wave propagation) the retardation factor is equal to 
that of a dielectric slab H] - wave for any structure parameters, because in this case an 
electric field has no longitudinal components (E,=0) and is not perturbed by thin grat- 
ing strips. If the direction of wave propagation varies (P^^O). the retardation factor in- 
creases. It is characteristic for the dependence of HE12 and EFI21 - wave factors on p/Pi, 
for various structure periods that from the onset of some critical P value, the HE 12 - 
wave retardation factor decreases rapidly. 
Due to solving the diffraction problem we can obtain the conversion factor T~ of an /// 
wave into an HE\\ wave as a ratio of wave powers transmitted normally to boundary. In 
Figure 2 the dependences of 7^ (fp) for various 9 angles and the period P/k == 0.45 are 
shown. High values of r" is seen in the range of angles cp from -45° to +45°. At some 
angular points T/cp) is equal to unity. It takes place when the incidence angle (p is equal 
to the angle between the direction normal to an array boundary and strip axes 9. The 
main-mode incident wave does not interact with the grating. We observe complete 
transmission for rp = - 9. In this case the transmitted wave is perturbed by the grating 
strips. This effect is similar to the whole transmission with the Brewster angle in the 
case of wave diffraction on the boundary between the two dielectric media. In some an- 
gles the 7'^((p) dependence has sharp breaks. They appear when E2 and FTTi waves be- 
come nonpropagating ones, turning into an attenuating mode from a propatating one. 
This is characteristic for so-called Wood's anomalies, when the derivative on 0 for 
transmission factor and for reflectivity is striving to infinity at some points. 
The proposed structure can be used as a basis for integrated beam-forming networks for 
multibeam antennas. 
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CALCULATION OF ELECTROMAGNETIC FIELD IN NEAR 
FIELD ZONE OF REFLECTOR ANTENNA WHITH EDGE RADAR 

ABSORBING COATING 
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Kharkov Military University, Kharkov, Ukraine 
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ABSTRACT 

In the paper technique of electromagnetic field calculation in near-field zone of 
parabolic antenna with reflector edges covered by toroidal radar absorbing coating is 
presented. The calculation technique is based on the applying of the integral 
representations obtained using Lorentz lemma. For calculation of the reflector edge 
parts contribution to the total antenna field the solution of model scattering problem for 
half-plane with radar absorbing cylinder on the edge, sounded by plane electromagnetic 
wave, is used. Calculation results for different values of radius of radar absorbing 
coatings are presented. 

INTRODUCTION 

In a number of situations the radar systems antennas may be positioned nearly one to 
another. In this connection the problem of electromagnetic compatibility and 
interference immunity of such systems is of importance. One way of improvement of 
antennas interference immunity in back half-space is the reflector edge coating by radar 
absorbing materials. Therefore the problem of calculation of electromagnetic field in 
near-field zone of antennas with radar absorbing coating on the edges is of interest. 

THE TECHNIQUE OF SOLUTION 

The parabolic-reflector antenna with reflector edges covered by toroidal radar absorbing 
coating is located in the free space (Fig. 1). Let's consider a case, when the antenna feed 
is the pyramidal horn located in antenna focal point. 
Near the reflector surface antenna feed creates the following field: 

Eix)^^p''''¥:K^^\p)^F[6.cp). (1) 
^   '    An R[X + P) 

Here, according to Fig. 1 R!^ is unit vector sounding direction from antenna feed to the 
point A on the reflector surface, the angel 9 characterizes a direction of a vector R 
concerning an antenna axis, and angel (p characterizes position of the point A with 
reference to the plane xOz, p is the radius-vector, directed from the focal point to 

vertex of reflector, p' - -z—f-—ir-f is the polarization of wave incident in direction 
\R'y-[pxR')\ 

R° {pis the vector antenna feed polarization), //g, ^Q are permeability and permittivity 
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of free space, k^ = co-yfeju^ . The function F{0,(p) defines dependence of antenna feed 

field amplitude and phase in a far- 
field zone for angular coordinates 
6 and (p. 
The field of the antenna in 
observation point can he 
represented as the sum of the feed 
field E'{XQ) and field scattered by 

antenna reflector E' (x„): 

E{x,)=hy{x,;)+Fj{x,).     (2) 

As a main calculation formula for 
determination of scattered by 
reflector field we shall use an 

integral representation of a field obtained using Lorentz lemma 

2./^o''  r. 

[FQ X E^ )ds 

.jk,r 

JK/' 
JK 

\ 

P H^ds + 

(3) 

where S is arbitrary closed surface which encloses the antenna reflector. E^ =nxE, 

H^ =nx fl, h is the internal normal unit vector./I is the receiver polarization, /";, is 

the unit vector of the direction from a point on the surface S to the observation point. 
p =(^.rj/"^|, p^- = p-{p-rg)r^^. r is the distance between the point on the surface .S' 

and the observation point. Let's select the surface of integration as a surface coinciding 
with reflector surface everywhere except the some neighborhood of the edge. Then the 
integral in (3) (we shall denote it as /(^n)) '^ is possible to represent as the sum of 

integrals on the reflector surface .S",, not including a neighbourhood edge, and surface 

SQ , enclosing edge neighborhood 

/(xj = /,(x„)+/,,(.fj. (4) 

h fe) we shall calculate using the solution of the model scattering problem for half- 

plane with radar absorbing cylinder on the edge, sounded by plane electromagnetic 
wave [1]. Since the electrical sizes of the antenna reflector arc great, the contribution of 
the surface 5, in total field we shall carry out in Kirchhoff approximation. 

RESULTS OF NUMERICAL CALCULATION 

Using described technique the calculations were cany out for a case when k^-^a = 30 

(c/is aperture reflector radius), k^f = 26 ( /   is the reflector focus distance), the feed 

created distribution of field amplitude reducing to antenna edge on 15 dB, the 
observation point located on the plane yOz. the absorber is made of the material with 
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relative electrical parameters // = 1.35 + 7O.8 and ^ = 20 + 70.1. In figures 2 and 3 the 

dependences of normalized amplitude of antenna field from the angle y/ between a 

direction of observation point and axis Oz are presented. Distance from the origin of 
coordinate system to the observation point was 17A (Ais the wavelength). The figure 2 
corresponds to the case, when the vector of feed polarization is parallel to axis Ox, in 
the figure 3 the feed polarization vector is parallel to axes Oy . In figures 2 and 3 bold 

solid lines correspond to a case, when the absorber on the edge is absent, a thin solid 
line corresponds to a case when the absorber radius is equal to 0.21, dashed line 
corresponds to the case when the absorber radius is equal to 0.41. 

20 40 60 80 100 120 140 160 180 
V 

Fig. 2 

20 40 60 80 100 120 140 160 180 
y 

Fig. 3 
The analysis of simulation results has shown, that the using of the absorber with radii 

0.21 and 0.41 reduces the antenna radiation at y/ = 177°.. 180° at the average on 7 dB. 

For different polarizations the value of lowering antenna lateral radiation is also 

different. So for ^ = 140°.. 170° at the figure 3 we can see rather strong radiation 

reduction for the antenna with radius absorber equal to 0.21. 
It is necessary to denote that choosing of absorber parameters should be carried out for 
each specified construction of antenna. 
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ABSTRACT. 
The reflector directional characteristics determination method grounded on the usage of 
the second kind Fredholm integral equations for "jumping" of the current surface 
density is offered. 

When using the thin absolutely conductive unenclosed shield as an antenna, the exact 
calculation of the distant side and backward radiation is possible if we use the Fredholm 
first kind integral equations. The solution of the second kind integral equations for the 
diffraction problems on unenclosed shields with boundar\' conditions the Dirichlet and 
Neumann types are considered in [1, 2]. However it is difficult to algorithm the 
obtained three-dimensional problems solutions in the special functions class. 
This limits the feasibilities of the numerical method usage when calculating real 
unenclosed constructions. The purpose of this article is the development of the 
Fredholm second kind integral representations operation theory for calculation of 
reflector spatial characteristics as a paraboloid of rotation in quasi-optical range 
{D/X=\0). When calculating exactly it is necessary to bear in mind that the behavior 
character of surface currents in the central part of a reflector and in the boundary zone 
can considerably differ from each other [4]. The calculation and registration of "edge" 
currents allow to calculate exactly the intensity of the distant side and back radiation. 
If we enter a concept of the current surface density "jumping" [1] on a surface, defined 

as K = {ff±) ~[^±) - -A? ^-^S - the solution of the delivered problem outside an 
ideally conductive surface S can be expressed through tangent components of electrical 
and magnetic vectors on the surface S 

H{M)=HQ{M) + ^<\Lradp ^^P^" '''^''^^ x K{p)\dS . (1) 
4^ ^^ [ RMP J 

Where RMI> - the distance between the M and P points (P - a point on a surface S. M - a 

view point), (//i) ,(^^l)    " '•^^ normal to a surface of a component of a magnetic 

intensity on the internal (lighted) and external (shadow) mirror surface sides, Js^Js - 

the area current density on the internal and external reflector sides. 
If we multiply (1) by rip   and to aim on a normal the M point to the Po point of the 

surface S, then, using the properties of a simple stratum potential normal derivative, we 
shall receive the Fredholm second kind representation: 
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ife(''o) + -?s(''o))=^?(fo)-f K 
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dS      (2) 

The task of determining the volumetric current density distribution is reduced to a 
repetitive process, at each stage of which the Fredholm second kind integral equation 

concerning the area current density on the lighted J^ or on the shadow Jg side of the 

reflector with an updated right side, is solved. The iterative procedure application allows 
to update the area current density value on both sides of a reflector in the boundary area 
essentially influencing the distant side and back radiation. It allows to reduce the 
integration area and to reduce the run time. For implement a numerical algorithm 

determining the area current density ^^(-Po) or /^(/o) oi^ the surface S, it is dissected 

into N of not intersected cells. The sizes of the cells can be selected Q,\X (k - 
wavelength) [3]. The Pocks equation for the surface current density, for example, on the 
external side of S, will look like 

y-siPoh^^n^iPo) Jg[p)x gradp 
exp (-ikRpp) 

R PP. 

dS = 

2Jl{Po)-J-s{Po)-^ln%Po) Js{P)^gr<^dp 
exp [-ikRpp] 

R PPa 

(3) 

dS 

Because of the boundary conditions the Meixner conditions for the surface current 
density will be as follows: components which are orthogonal to the edge will have the 

feature of the aspect p~ '   , and components which are parallel to the edge will have the 

aspect p'    [4]. Then the solution is searched as 

^;/" = p^/' i^„^«,   V" - p-'/'i4^«,   j;^"- = P^/' ZQT„, (4) 
«=i «=i «=i 

where p is the distance to the edges of a mirror, A„,B„,Cyj are unknown factors, 

^„ is known system of functions, N is amount of surface segments. 
When we hold numerical calculations a collocation method is used. The Haar system of 
characteristic functions was selected as ^„ [3]. If the integration points coincide the 

kernel has a feature, to eliminate which, it is excised by a circle with the radius s=10"^A, 
[3]. The presence of the feature allows to generate a system of linear algebraic equations 
with a dominant principal diagonal. In fig. 1 the relation of the Ky component of the 

surface current density for f=lGHz is shown. Curve 1 corresponds to the physical optics 
approximation, curve 2 - current density obtained on the basis of the integral equations 
solution considering the boundary conditions. From fig. 1 we make an important 
conclusion that when we determine the currents it is necessary to carefully calculate the 
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boundary area making approximately 0,5X 

from the mirror edge, and we can use a 
physical optics approximation for the rest. 

Knowing the distribution of currents on a 
surface, we can determine the directivity 
diagram in a far-field region (fig. 2). 

Fig. l.The K^, component 
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Fig. 2. The pattern of a reflector (f=l a GHz) 
( 1 - total field, 2 - field created by a boundary part, 3 - field created by a central part) 

From the data, shown in the figures, it is possible to make some more important 
practical conclusions concerning reflector characteristics calculation: 1. The   basic 
contribution to distant side lobes is given by the edge, which at angles more than 15 
determines the shape ofthe whole pattern: 2.   The   registration   of  "becoming  numb" 
currents allows to determine the level ofthe reflector back radiation - it diminishes with 
the increase of frequency and makes about -40 dB for this construction. 
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TO A PROBLEM OF THE ANALISIS OF DIELECTRIC ROD 
ANTENNAS 
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ABSTRACT 

A number of problems arising at designing and the analysis of dielectric rod antennas is 
reviewed. The complex propagation constants for the /ffi,, wave in a dielectric rod are 
obtained. The field disribution along the rod of finite length with allowance for 
reflections from the rod ends is analyzed. 

INTRODUCTION 
At present time decimeter and centimeter bands are widely used by different 
telecommunication systems. Requirements to antennas depend on their field of 
application. To protect antennas against climatic factors different covers are put on the 
open surfaces or the streamer is mounted, that can result in changes of an input 
resistance, distortion of antennas patterns, rereflections of a signal etc. The dielectric 
rod antennas, exciter of which is completely submerged in a dielectric rod from 
polystyrene or ceramics less depend on aggressive environmental factors and can be 
widely used by different telecommunication systems. 

THE WAVE PROPAGATION ALONG THE ROD 
The hybrid wave //£,, is the main wave of dielectric rod of circular cross section. It has 
both magnetic and electrical longitudinal components of an electromagnetic field. From 
a condition of continuity the tangent components on a surface of a rod it is possible to 
receive the following equation: 

A-n--f--g--n   -(s-l)   Ic   =[s-M/i-i  V,   , ,     ^   ~ p^~^' '^   /?   r A„ \   ' R'^ RJ„(\\i^)       R /?-A:„(V|/2)       R 

* 
^^'      R-J„i^O      R'   ^'       i?-i^„(V2)      R   ■ 

2      A-Ti^-f^-E-R^ 2      . m2 

Where: c ,   Z\ transversal wave number m a rod, 

¥2= 2 -S    ={l2-R) ^, . ^ 
c ,   Xi transversal wave number outside of a 

rod,      g = hR = Re(g) - / • lm{g), hisa longitudinal wave number. 
Numerical solution of the given transcendental equation rather g  at known /, R, s, n 
allows to find required propagation coefficients of an interesting type of wave. 
The obtained results for two materials are shown in the fig.l 
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Fig. 1. The /ffi,, longitudinal wave numbers 

REFLECTION FROM THE ROD END 
As the first approach the hybrid wave reflection from the rod end can be considered as 
the sum of reflections of different polarization inhomogeneous waves.[l] 

^2 cos^-ff, cos6' 
/ii = — --^   

W^ cos^ + fF| cos 6^ 

E" 

.j{H,.Y +{H. y      co.sf; = + .l-sin'O 

COSffl   =    ^-r.^--   -r---'-:^_^.-..-.,    : 

K     K ■ sin 0 
-     H^ Hi 

sin(9 = ^Is, ■  

R2- 
W\ cos.(p-W^ cos^ 

W^ cos (p + W^ cos 6* 

El 
W,cos(p=    ' 

ctg6 ■■ 
co%6    +vl-sin'6' 

sin^ sin^ 

sin 6* = ^^^1 -sin^ = .'f. 
0x2 ±'{Ey+{E:) 
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When the square radix sign is chosen, it is necessary to take in to account that 
abs{R^^)<\ 

The obtained results for the reflection coefficients depend on distance from the rod axis. 
The antennas pattern calculation uses the rod surface field distribution, that's why the 
reflection coefficient values when r = i? are used mostly. 
Thus for s = 2.5- 0.001/,  / = 2.5GHz,  R = 3.5cm following results were obtained: 
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\ 

R,      --0.064-0.637/ 
' r=R 

R,      =-0.587-0.317/ 
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Fig. 2. The reflection coefficients for the different polarizations 

Usually one end of the rod is leaned against waveguide metal wall. In this case the 
reflection coefficient is equal -1 or +1 (depend on polarization of the falling wave). 
Thus for the components E^,H,.,H, the reflection coefficient from first (metallized ) 

end is equal i?o = -1 from the second end (in free space ) is equal R^. For the 

components H^,£,.,E, the reflection coefficient from the first end is equal RQ=\, 

from the second one is equal i?2. 
The field distribution along the rod of the finite length L can be obtained as 
superposition of multiply wave reflections from the rod ends. In the general case the 
each component distribution along the rod can be presented as 

U(a,z) = [/()(«)•£ -'■''--^0    ^ + ^i2-e 
-2ih(L-z) 

\-R,-K2-e 
-2ihL 

where /z is a longitudinal wave number, ^Q is an initial phase, U^ {a) is the angle 

component distribution (variety sin(ci;)  or  cos(a) ). 
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STATISTICAL ANALYSIS OF INTERNAL PARAMETERS OF 
RADIATING SYSTEMS WITH REACTANCE ELEMENTS 

V.V. Ovsyanikov 

Dniepropetrovsk National University, Ukraine 49050. Dniepropetrovsk, 
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ABSTRACT 

The mathematical model of the statistical analysis of a standing-wave ratio of a voltage 
on an input of the radiator is offered depending on small random fluctuations of values 
of reactive elements, included into the radiator and from coordinates of their inclusion. 
From the results of a statistical estimation it follows, that minor random deviations of 
parameters of reactive loads of the short vibrators from design values result in essential 
changes of a standing-wave ratio, that must be taken into consideration at designing and 
using of similar radiating systems 

One of the important internal radio parameters of radiating systems (RS) with 
impedance elements is the standing-wave ratio of voltage (K^ ) on input connectors RS, 

which as is known is expressed through active (/?/„) and reactive (A'',„ ) components of 

input impedance at given frequency as follows [1]: 

Ks +     1-47?" i\+R'iy+x"; 1-47?" (l + /?^)2+^«- 

(1) 

where Rj^^ , A'//, are normalized on a wave impedance of a feeding channel (Wrj) 

components of input resistance of a radiating system. 

In their turn components 7?,", and X"„ are functions of values ( x ,• ) of geometrical 

parameters RS (c/./;,), included in it of impedances (Z) and coordinates of their 

inclusion (h^), operational frequency (/ ) of an exciting source (/, wave impedance 

Wr^/ etc (see fig.l). These relations can be presented as: 

/?;;, = R (x,, X2,.... x^;) = R(x,),   / = 1. 2,.... A': 

A^;;,=X(x,,X2,...,x^;)=X(x,),    / = 1,2....,A- (2) 

Taking into account, that 7?,",, X"„ , x/ are random quantities and regarding systematic 

components of errors of values 7?",, X", and parameters x,-, which can be defined and 
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eliminated, we consider expressions (2) with the account of only random errors (A^. ), 

the estimation of which is fulfilled below. 
Let's expansion (2) in a Taylor's series near to average values of x,-   or their 

mathematical expectations [2]: 

(=1 '=1        ' 

( = 1 
2^   dx\ 

(3) 

Provided that the random errors A^. are small in comparison with values x,- we 

neglect addends containing hjwers of A ^. above the first. Further, subtracting (2) from 

(3) we receive values of random errors as: 

i=\ 
dxi tl   ^^'• 

(4) 

Powering both parts of expressions (4) in a square and taking into account absence of a 

correlation between parameters Xj , we determine dispersions of components R"„ and 

At known dispersions (5) we determine a dispersion K^, considering similarly to the 

previous making of expressions (5) provided that the random errors A^„ and A^„ are 

small in comparison with values ofthe relevant components R"„ and X "„ : 

-HKS) = 
dK,     dK, + - 

ydRi„     dXj„^ 
.aiR^„)-aixr„). 

Derivatives from K^ for expression (6) is determined from (1) as: 

(6) 

dRl 

A\R';^ -xi -i^ 

(i+i?fj+xf/ 4i? 

(l + ^,^f + ^/« 

1-11- 
AR in 

(l + i?,^f +   Xly, 

(V) 
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dK, _ 8P" Y" 

dX'^„ 
' I              \2              2 " 
\ + Rin )   + ^in 

2 4R" i" 
/               \2              2 

1- 1 - 
AR" 

f  \2 '^ 
^ + Rill j   + ^in 

-i2 
,    (8) 

and dispersions of expressions i?,", and X "^j for the studied radiator we shall find from 

the formulas (5). 
Thus, with the help of expressions (4) - (8) it is possible to design a statistical estimation 
any RS with included reactive elements. Thus, it is necessary to know particular 

relations such as (2) for 7?,", and X "„   and derivatives from them on the conforming 

parameters x,. 

Let's put the results of a statistical estimation   K^   on an input shortened twice 

{ci=0,\2X) concerning resonant length of the symmetrical vibrator with included in 
radiating branches the inductive loads depending on random fluctuations of values of 
these loads and places of their connection (fig. 1). An estimation is designed by method 
with usage of the theory of an equivalent long line. 

The results of research are shown in 
a fig. 1. As follows from the charts 
of  a   fig.   1   random   changes   of 

^hi = van- parameters  of included  reactances 

0 0,05 Ahj^/lii 

Relative the variations L and h^ 

Fig.l. Dispersion Ks versus the random errors 
L and hi, 

with the purpose, for example, dilating of frequency range or the correction of the 
directional diagrams do not result in such sharp of variations the input characteristics. 

resuh in essential oscillations  K^. 

For small-sized radiators of such 
type it is possible to explain this 
phenomenon by narrowing of their 
bandwidth because of linear 
shrinkage of length. 
Let's mark, that in the not shortened 
radiators of a fluctuation of 
reactances, included for correction 
distribution  of a  current  in  them 
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FOR THE DUAL SHAPED SYMMETRIC REFLECTOR ANTENNA 
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ABSTRACT 

The algorithm 3l"the sidelobe levU optimization for the dual shaped symmetric reflector 
antenna with the; aperture diameter D > 20?^ is presented. It is based on the method of 
the far-field pattern estic^ion by the aperture distribution. The maximal aperture 
efficiency is the criterion offhe aperture distribution optimization on the condition that 
the far-field pattern estimation answers to recommendations ITU-R. Optimization 
parameters are defined by the function of the aperture distribution that is described as 
analytical function with shadow area at the center aperture, uniform area and transition 
regions. 

INTRODUCTION 

Modern communication reflector antennas with the high aperture efficiency for ground 
stations are to comply with international norms and parameters. If antenna for ground 
station operating with geostationary satellites put into commission after 1995 then its 
radiation diagram must satisfy to ITU-R recommendations. 
Traditionally such antennas are designed by using of the geometrical optics technique to 
synthesize the reflector surfaces [1]. The resulting surfaces S Q and iS„. (Fig.l) are 

determined by the solution of the system of differential equations when ftinctions of the 
aperture power density l{r) = f^{r) and the primary feed pattern F{B) are chosen. As a 
rule the ensuring of maximum aperture efficiency is the main requirement for the choice 
of the function described the aperture power density. Execution of ITU-R 
recommendations for the sidelobe level supposes a finding of amplitude distribution 
function f{r) as a result of decisions of the pattern synthesis problem. 
In this paper the choosing of the form of the amplitude distribution function is discussed 
and possibility of its parameters optimization for providing the specified sidelobe level 
without essential reduction of aperture efficiency is analyzed. 

A DESCRIPTION OF THE METHOD 

As known, the physical optic technique for the far-field calculations becomes equivalent 
to the aperture distribution method when the aperture diameter of the reflector antennas 
is Z) > 20A,. Therefor in this paper the sidelobe level evaluation is fulfilled valued by 
the aperture method, and the antenna gain is determined on the base of the aperture 
efficiency il „(/('")) calculation. 
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The amplitude distribution in the aperture of the axially symmetric dual reflector 
antenna may be expressed as the difference of analytical functions: 

/('•) = /,('-)-/2('-), (1) 

where 

/,('-) = 

/,('•) = 

I    r < a, 

exp(- h{{a, - r)/{a, - \)f ]    a,<r<\ 

cos I ((/--a,,,,,,)/(«,-«„„„))' 

0.    a, <r<\ 

(2) 

«„„„ ^r<^'i 

r = R/R,„^^ is the normalized coordinate of the amplitude distribution function. 

r    =R    IR      is the relative radius ofthe shadowed central area, a,,   a, are relative 
'mill        ■'^miii / -^  max 

radii of intermediate areas, the coefficient h = -ln(/(l)) define the field level at the edge 

of the aperture (Fig. 2). This type of analytical function is suitable for problem decision 
of the aperture efficiency optimization: 

^amax =max{^^,{a,,a„h)) . (3) 

However the expression (2) can't be used for the analytical calculation of the radiation 

integral K ■' (G ,(p) = JE' exp(./A:p • i „ )ciS^, which is required for the estimation of the 

reflector antenna far field: 
Jk E(/?.e,(p) = --^exp(-.A/?)i,x(i.+iJ-K^ . 

4nR 
(4) 

Fig. 1. Shaped feed 
system for the reflector 

 1 1 1 h- 
0 02 04 0.6 O.S 

rmm 3l 

Fig.2. Amplitude distribution at the aperture 

So the amplitude distribution function (1) is approximated as difference of series: 

./;,„„ ('•)=i; A (i--0' 
/=0 

f^B,(\-{r/aJ-),   0<r<a, 
/=o 

(5) 

0, a, <r <\ 

KIEV. UKRAINE. !X-rn INTERNATIONAI. CONEEREKCE OK MATIIEMAIIC.V. METiions i\ EiMimMACNEnc THEORY 



MMET*02 PROCEEDINGS 451 

where 4, B, are approximation coefficients of functions /,(r), /2(r), accordingly. 

Matching points along radial line of the aperture coincide with zeros of Chebyshev 
polynomials T,{^ -Ir'). This choice of match points allows minimizing the maximum 

error. 
Substituting (5} into (4) and carrying out the integration using the properties of the 
Bessel function [2] we have the resulting expression for K'^: 

K^(e,(p)=Kf(e,(p)-K^(e,(p), 

^,^(e,(p) = 27ri?„Jexp(7z.cos(p)X42'r(/ + l)^%|^, (6) 
/=0 

K:^{Q,<^) = lTi{a,R^^J exp(7w, cos(p)|;5,r(/ + l) Jl.A ("l ) 
/+1 

/=0 

where u = M,,,^^ sin9   and w, =a^u . 
When the geometrical optics syntheses of antenna surfaces is fulfilled for the amplitude 
distribution given by function (5), the expression (6) describes the far field without the 
loss of accuracy. 
Resulting dependencies are presented on Fig. 3 

G(9) G(S)       D=58;v b) 

q,.=(^ q=Ca ^=Q4 /(I)=Q2 

I>IOO>, 

^,=Ql q=Ql ^=Q9§ /(D=Q3 

Be. 3. Radiation nattem of the dual symmetric reflector antenna 
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ABSTRACT. 

Yagi - Uda antennas is the one of most simple type of wire antennas in different 
applications. A design of these antennas turned of to be the complex problem. It is 
connected with complexity of definition of current distributions on antenna's vibrators. 
This currents distribution can be used for account of external and internal antenna 
parameters. These parameters are used for fitness function calculation, which allowing 
finding the optimum decision of designing problem. The chosen fitness function should 
include both external, and internal antennas parameters. Hallen's integral equation 
applicafion for current distribution definition on Yagi - Uda antennas vibrators is 
considered in this paper. It is shown, that the examination of frequency dependences of 
input resistance and currents amplitudes distributions can in addition simplify a design 
of the antenna. 

INTRODUCTION 
Modern computer-aided modeling tools permit to calculate external and internal 
antennas parameters. Most popular tool isNEC2 [1, 2]. The application of this software 
allows to simplify the decision of tasks of antenna design optimization. The main role 
in reduction of time of the optimization task decision is defined by a choice of fitness 
function. The large reduction of decision time can be achieved in a case, when fitness 
function includes parameters, which reflecting basic physical processes proceeding in 
the antenna. At a choice of such parameters it is desirable to use integrated antenna's 
parameters. Such parameters are antenna's complex input resistance, pattern width, side 
lobe level and so on. Besides at generation of an initial population it is necessary to take 
into account the theoretical and experimental results received earlier for a chosen 
antennas type. In another case received solution may be very far from optimal solution, 
or can not be realized. It can occur because the considered software uses the 
approximated laws of currents distribution in antennas vibrators. Thus the put task can 
overstep the bounds of methods applicability used at creation of this tool. Other reason 
of similar mistakes can become not enough detailed structure of fitness function. It can 
occur when fitness function includes only external or internal parameters. 
As example of such fitness function can be considered 
function, which was used at the decision of optimization 
of the Yagi - Uda antennas construction problem, 
considered in [3]. In the given paper the design of the 
antennas from 14 elements ensuring work in a 
frequencies bandwidth near 12 percents is developed. 
Thus the thickness of antennas vibrators relied identical 
and equal 3 mms.  But the analysis of experimental '^' 
researches of such antennas shows, what even for the      Antennas construction 
five-element antenna it is difficult to receive a pass band 
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in 10 per cents [4]. It is necessary to use active vibrators of the special form or to 
increase their thickness for expansion of such antennas passband. 
Besides it is necessary to note, that at such disorder of the vibrators sizes some 
vibrators will have the large complex part of entrance resistance. It will result that the 
current amplitude in them will be much less, than in vibrators, which length is close to 
half of working wavelength. Hence they will not influence to antennas pattern 
formation and can be excluded from the antenna construction. 

APPROACH DESCRIPTION 
Let's consider a task in the following statement. There is the Yagi - Uda antenna in the 
free space, which consisting of N linear elements (fig. 1). Its active vibrator is coincided 
by a dot source, which located at its centre. The vibrators thickness is much less, than 
working wavelength. It is required to choose a method of ciirrents distribution 
calculation on the antennas vibrators, which permit to have an opportunity to define its 
external and internal parameters. 
The opportunity of two types integral equations application for the decision of the put 
task was investigated. It was shown, that the poklington's system of the integral 
equations does not permit to receive the steady solution of a considered problem. The 
current distribution on antennas vibrators was received on the basis of the decision of 
hallen's integral equations system: 

A' 

z 
n=\ 

-ikR 

\Jnzi^')- 
pq 

R, 
-dz' = a cos(Pz)-'^"^ 

60 
sm (P|z|), (1) 

-/„ "P9 

Where z - an*angement coordinate of an auxiliary source 
z' - coordinate of integration point on the vibrator surface with number m; 
Ln - length of the vibrator with number n, 
Um - the voltage amplitude stimulating in a backlash of the active vibrator, 

R M 
,)    + JJ  nm ■ 

v(4 ,r+a' i/ 

^m ^ -^M' 

^m ^ ^/7' 

R 
P^^ - distance between a point of an auxiliary source and middle of the active vibrator. 

The constant Cm can be found directly from (1) when z is equal to the 0. Using a 
designation 

-ikR pq -ikR 
K      = ■ 

R. 
—cos(Pz)- 

pqQ 

R, 

Transform expression (1) to the following 

decomposition of series: 

m 

60 
in(P|z|) smi 

(2) 
p=\ hn 

The input resistance of antenna is calculat 

^ 
-^ 

~~ ^ ^ - 

  Real part of input resistance 

  complex part of input resistance 

1,20      1,22      1,24      1,26      1,28       1,30      1.32      1,34      1,36       1,38 

meter 

Fig. 2 
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EXPERIMENTAL RESULTS. 

For the decision of the put taslc three harmonics in series (2) were used. The received 
currents distribution was used for calculate of antennas entrance resistance and its 
pattern in main planes. It was shown, that the pattern's form in E- plane changes 
insignificantly in the specified frequency range. But in the H- plane there are large 
changes of the pattern's form and side lobe levels. Also the large changes are tested by 
input resistance in the working frequency bandwidth. It is equal to the 39,7-j63,9 Ohm 
at the frequency 219 MHz, 70-J17 Ohm at frequency 235 MHz, and 49,3+j6 Ohm at 
frequency 250 MHz. Dependences of an active and complex components of antennas 
input resistance from working wavelength are shown in figure 2. Such character of 
entrance resistance changing specifies to resonant character of processes, which 
proceeding in the antenna. The abrupts of active and complex components of antennas 
input resistance in a working strip complicate its connection with feed line. Ihese 
abrupts can be eliminated by introduction of the additional agreeing device into 
antennas construction. It will complicate a design of the antenna and can decries the 
working bandwidth. 
Distribution of currents amplitudes at the centers of vibrators in a working frequencies 
bandwidth was investigated. It is shown, that the currents amplitudes on short vibrators 
of the considered antenna can be in fifty ore one hundred times less, than currents 
amplitudes in resonant vibrators in working frequency range. It allows making the 
conclusion that such vibrators can be excluded from antenna's construction. 
Change of behavior of antenna entrance resistance in frequency range also was 
examined at increasing of vibrators thickness. To not leave from borders of applicability 
of a using method the vibrators by thickness of 6 mm were considered. The analysis of 
results shows, that in this case it is possible to reduce jumps of a complex component of 
antenna entrance resistance. 

CONCLUSION 

Thus is shown, that the introduction in fitness function in [3] input resistance of the 
antenna would allow essentially changing a construction of the developed antenna. 
After examining the antennas construction, developed in [3], we can say that this 
antenna is not Yagi ^ Uda antenna, because the classic phase relationships between the 
vibrators currents are not required in this construction. In additional we note, that 
application of classic relafionships between antennas elements sizes and distances 
between vibrators provided the reduction of calculation efforts. 
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ABSTRACT 
Accurate field strength measurements for EMC conformance testing can be obtained by usmg antennas 
which have reliable antenna factors (AF). AF is a major component in calculating the uncertainty budget 
of an EMC test. So AF must be highly accurate and the equipment used for measurement must be 
traceable to a national standard. In a calibration process, it is important to obtain reliable data on two 
important characteristics : traceability and uncertainty. In this study, we report the evaluation of 
uncertainty budget in antenna calibrations. Parameters acting in this budget are explicitly presented. Apart 
from providing precise information about the characteristic uncertainty of device, such a budget permits 
the overall evaluation of the system so that one could think about possible innovations for reduction of 
measurement uncertainty [1]. 

INTRODUCTION 
A measurement could be distinguished as a calibration under appropriate circumstances, if and 
only if, traceability and uncertainty information are included as a part of this measurement. In 
this study, we present the evaluation of uncertainty of antenna calibrations in the frame of 
conventional uncertainty estimation where partial derivatives of the fundamental formula 
constitute the basis of uncertainty budget [2,4]. Both A and B type factors, coming from random 
effects and known uncertainty values of devices respectively, are concerned in the evaluation 
process. 

THEORY 
Those equations that can be concerned as the starting point are listed below: 

AF, = lOiogfM-24.46 +l/2[ EDmax+Ai+Aj-Aj] (1) 
AF2 = lOlogfM-24.46 +l/2[ Eomax+Ai+Aj-Az] (2) 
AF3 = lOlogfM-24.46 +l/2[ Eomax+Az+As-A,] (3) 

where; Ep'^''     is the maximum received field at separation distance R from the transmitting 

antenna,    ^F, 23  are the antenna factors of antennas 1,2 and 3 in dB(l/m), A 1,2,3 are the 

measured site attenuation results in dB./is the frequency in MHz [3]. 

In the scope of the uncertainty evaluation, partial derivatives of the starting equation with 
respect to the included parameters are constituted in the following manner: 

dfkf ^^Dxn^-. 5J, S^2 54 

Absolute values of these partial derivatives yield, 10/fM, 1/2, 1/2, 1/2, 1/2 respectively, and the 
uncertainty of the system could be established on this basis as follows:  

U = ^{\M^f^fi,U{mf AEo^ax' +(1/2)'AA,2 +(1/2)'AA2' +{mf ^A,^   (5) 

where U is the total uncertainty and A terms represent the individual uncertainty values of the 
corresponding quantities. In the numerical step, evaluation all terms inside the square root are 
expressed either by certificate values of the devices in use (i.e. B type), or statistical evaluation 
of the data of the measurement (i.e. A type). In the case of A type uncertainty, repeatability of 

Kmv, UKRAINE, IX-TH ImmNATioNAi. CoNFinuiNCE ON MATHIMATICAL MHTHODS IN Ei.iiCTROMAGm-nic THEORY 



456 MMET*02 PROCEEDINGS 

the measurement plays an important role and reliability of this factor increases as the number of 
measurements increase. It is a convenient preference to multiply the obtained uncertainty value 
U by 2 so that an extended uncertainty is concerned and this situation is generally denoted as 
uncertainty at k=2. 

EXPERIMENTAL RESULTS 

We have applied ANSI C63.5-I998 Standard Site Method (SSM) in an Open Area Test Site 
(OATS) [3]. UEKAE has a large flat outdoor ground plane which has been shown to act as a 
near-perfect mirror at VHP frequencies. The SSM, based solely on horizontally polarized 
measurements, provides antenna factor measurements from 30 MHz to 1000 MHz. The 
measurement distances are 3m and 10 m. transmiting antenna heights are Im and 2m, and 
receiving antenna search heights are from Im to 4m. The methods are used for horizontal 
polarization on a standard antenna calibration site. The SSM requires three site attenuation 
measurements under identical geometries using three identical antennas taken in pairs, as shown 
Figure 1. 

AF|+ AF2=A,+ 20log (fM„.) -48.92 + E.w (6) 
AF|+ AF3=A2+ 201og (fM,„) -48.92 + E„„„, (7) 
AF2+AF,i=A3+ 201og (fM,,,) -48.92 + E,,,,,,, (8) 

There are two measurement procedures that may be used to determine site attenuation: discrete 
frequency method and swept frequency method. We have used swept frequency method 
controlling the test equipment by using a computer interface (Figure 1). 
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Figure 1. Test Setup for Determining 
the Antenna Factor 

Figure 2. Antenna Factors of 
Schwarzbeck Biconical Antenna 
(s/n: 443) 
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We have obtained the antenna factors of Schwarzbeck biconical antenna (s/n:443) with a very 
good agreement between the NPL measurement results (Figure 2). 

Table 1. Estimated Uncertainities (30MHz-1000MHz) 
Description of uncertainty Coverage factor Biconic Antenna Log-Per Antenna        | 

3m 10m 3m 10m 
Cable Attenuation Normal k=2 ±0.3 ±0.3 ±0.3 ±0.3 

Receiver Specifications Rectangular k=V3 ±0.2 ±0.2 ±0.2 ±0.2 

Preamplifier Rectangular k=V3 ±0.4 ±0.4 ±0.4 ±0.4 

Attenuator Rectangular k= Vs ±0.3 ±0.3 ±0.3 ±0.3 

Height Measurement Rectangular k= VJ ±0.6 ±0.4 ±0.6 ±0.4 

Distance Measurement Rectangular k= ^3 ±0.6 ±0.4 ±0.6 ±0.4 

Site imperfections Rectangular k= ^3 ±0.04 ±0.04 ±0.05 ±0.05 

Maximum measured Standard deviation ±0.6 ±0.6 ±0.8 ±0.8 

Combined standard Normal k=2 0.84 0.765 1 0.93 

Expanded uncertainty Normal k=2 1.69 1.53 2 1.86 

By using equation (5) combined standard uncertainty can be calculated as follow: 

,,     \Q3^     0.2^ + 0.4^ + 0.3^ + 0.6^ + 0.6^ + 0.04^     "T    ^ „^ 
U = A + + 0.6   =0.84 

CONCLUSION AND DISCUSSION 

The antennas were identical biconic and log periodic antennas covering the frequency range of 
30 MHz to IGHz. The data were measured at 800 frequency points using spectrum analyzer, 
low loss cables, and a positioning with 1cm . The test was performed at 3 and 10-meter 
separation, 1.5-meter transmit height, and 1-to 4-meter scan height per ANSI C.63.5 on an open 
area test site (OATS).The standard deviation of 12 (biconic and log periodic) antenna factors 
and their maximum deviations from the average are calculated. Another systematic error 
contribution is the max-hold height step. For continuous height scanning, this is a function of 
sweep time versus tower speed. The final and most troubling contribution is site imperfections. 
For this purpose, scattering objects nearby are cleaned, measurement site is wiped with 
sandpaper and painted. Directivity of antennas are positioning of the cables are adjusted so as to 
minimize reflections. Recording of the measurement resuhs are perfomed automatically in order 
to overcome uncertainity due to personnel failure in reading. The estimated uncertainties in the 
measured antenna factors are listed Table 1. 
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ANTENNA ARRAYS SYNTHESIS ACCORDING TO 
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ABSTRACT 
The synthesis problem of linear antenna arrays has been solved numerically by multi- 
parametric regularization method (MRM). The synthesis power directivity pattern was 
given by a sector pattern with prescribed width and direction of pattern main lobe, low 
level of side lobes. The investigations of the synthesis problem quasi-solutions and their 
properties have been carried out. 

PROBLEM STATEMENT AND METHOD OF SOLUTION 
As known, the nonlinear synthesis problems of radiation systems according to the 
prescribed amplitude or power directivity pattern (PDP) are the most complicated. 
These problems belong to the set of ill-posed inverse problems [1]. The field directivity 
pattern of radiation system with linear polarized radiators has the following view: 

G(e,(p)=ia„,/„,(e,(p).-'*''"'''^\ (1) 
w;=l 

where /,„ (0,(p) is the partial directivity pattern of radiator with Cartesian co-ordinates 

(x,„,>'„,,z,„)  of its phased center(with unit current on it). To registrate the mutual 

coupling we must calculate or measure directivity pattern, when other radiators are 
passive.    N    is   the    quantity    of   radiators,    k=2n/X    is    the    wave    number, 

r,„(9,(p) = x,„ sinGcoscp + j',,, sinGsincp + z,,, cosG, a = {a^,a2,...,a^) is the excitation 

vector of radiation  system,   (G, (p) € ff = {(G, cp): 0 < G < TI, 0 < cp < 27r}.  The  PDP  of 

radiation system  is determined  by the  expression   F(G.(p) = iG(G,(p)|   .  The  sector 

f 1,(0,,,.., -/?< (p < cp,,,,,.- +h .  ^ , 
function      5(x9,(p.(p,„,„,/7)=    ^n \, ,/ J      defines     the ■"" la(pe[-90",(p_-/7)u(cp„,, +W'J 

directivity pattern in the planeG = 7i/2, where 2h{") is the width of sector and (p,,,,,^ is 

the direction of the pattern main lobe. 
According to the MRM we consider a system of control directions  \|/, =(G,,(p,), 

i=l,2...,L. In our case all of the points are located in the plane G=7i/2. Some of the 
points V|/,, i= 1,2,...,M (M<L) are in the region of main lobe VI (| cp, - (p,,,,,.^    <h),and 

\j/, = (9,,(p,)     for     i=M+l,...,L     are     in     the     region     of    side     lobes     Vo 

((p, e[-90",(p,„„, -/?)U((p„,a.x +h,90"]). The tolerant values of PDP are given by the 

inequalities in the region of main lobe Vi: 

^, <F,(a)<c,.  fori=l,2,...,M, (2) 
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and in the region of side lobes V2 
F;(a)<c,  fori=M+l,...,L, (3) 

C;,<i, are positive numbers, F,.(a) = -F(0,,9i) = (B,.a,a), B; is a complex N-dimension 

Eremite matrix with elements (B,)„,/=7,„*(6,'9,)-7/(9,=9,)' where 

i;^(0.,(p.) = f^^(ei,(pj)-e~'"'™<^'''P''. Inequalities (2) and (3) define the tolerant set D of 

vectors a eXpj. The synthesis problem according to the prescribed PDF of the antenna 

array is formulated as minimization problem of smoothing functional: 

i?(a,u) = e(a) + Ew,F,(a), (4) 
1=1 

where g(a) = (A(a-ao),(a-ap)) is quadratic functional, w,,   i = \,...,L , are some 

real weight parameters, a^  is the given vector. We consider the next minimization 

problem 
min i?(a,u) for ueU. (5) 

i?(a,u) is the positive definite quadratic functional with respect to excitation vector a 

for all ueU. 
The quasi-optimal synthesis problem for antenna array is formulated in the next form: 

min/'(a),    where K =KQ,KQ = U arg min{i?(a,u)}, (6) 

P(a) = Zmax{0, t/^ - F,.(a), F,.(a) - c,.} +   Zmax{O, F;(a) - c,-}. It is proved [2], that 
;=1 i=M+l 

the problem (6) has solution even in the case, when tolerant set D is empty. Hence, there 
is a vector aeK, which minimizes the function F(a). We have convergent iterative 
process with respect to u [2], which minimizes errors of synthesis PDP in the control 
directions. On each step we may choose vector ueU by making use of well-grounded 
special way and must solve the minimization problem (5). As the synthesis PDP the 
sector directivity pattern S{Q,(p,(pjj^^,h) is chosen. Inequalities (2) and (3) are given 

with the next parameters: c, =1 + 0.01,   d^ =1-0.01 for (p, eF,, c, =0.01 for cp, eFj. 

NUMERICAL RESULTS AND DISCUSSION 
The synthesis problems were solved for antenna arrays, which had different parameters. 
In particular, we considered various radiators, linear antenna arrays with different 
quantity of elements N and radiators distance. We changed the width of the sector and 
direction of the main lobe of PDP. As an example, the synthesis problem of antenna 
arrays with several isotropic radiators, where /,(9,(p) = l, was considered. In this case 

the gotten excitation vector a had the constant amplitude distribution and the linear 
phased distribution. The condition of existence of single main lobe with low level of 

The maximum level of side side lobes fulfilled for sector of angles cpe [-40°,40'' 
lobes was equal to -25 dB. 
Also,  we  considered antenna arrays when the  distance  between radiators was 
d/A,=0.2<0.5. For some values of the scanning angles of main lobe the iterative process 
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didn't converge to the single point in Xj^ . We got several quasi-solutions for different 

parts of this process. This example corresponded to the case, when die period 'r=27i/d 
of array directivity pattern is greater than interval of real angles [-k. k]. where PDP 
was defined. 
Directivity pattern with the narrowest main lobe for antenna arrays vv'ith parameters 

d/X=0.6, fj(e,(p) = (cos(p)'''^ N=21 is described in Figure 1(a). In Figure 1(b) the 

result of the PDP synthesis is represented for antenna arrays with parameters d/>^=0.6, 

f.(e,(p) = (cos(p)^'^. N=20. h=0.14rad. 

F (e,cp) ,d 1 
0 

-lO' 

-20 

-30 

-40 H 

F(e,(p).dB 

.50-4©ooi 
0 20 

-•— W = 2 0,d,a= 0.6, *' 
•o---h= 0 .14rad (8), 9    =20 

10 
A/= 2 !,<;///.= 0.6, 

■•••o----/;=0.02rad(1.15"), (p„,„,= 20" 

(a) (b) 
Figure 1. Sector PDP with the width of sector 2h in the plane 6=7i;/2 with direction 
of the main lobe (p„„„=20"and synthesis PDP for the equidistant antenna arrays. 

CONCLUSIONS 
Computer codes for solving antenna array synthesis according to the prescribed PDP 
have been developed using multiparametric regularization method. These codes enable 
to find quasi-solutions of the synthesis problems for different types of antenna arrays 
with the given partial directivity patterns of radiators and the given geometry of the 
antenna arrays. 
In spite of complication of the MRM for creating program codes wc marked 
convenience in the application of this method and good convergence of the algorithm, 
especially, for the given sector patterns. We analyzed the class of quasi-solutions 
according to the sector power directivity patterns with different width and directions of 
main lobe. It was shown, that the synthesis problem had nonunique solution in die case, 
when radiators distance d/A.<0.5. The examples of the synthesis will be presented. The 
arrived results prove high effectiveness of multiparametric regularization method. 
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ABSTRACT 

Conventional method of moments (MoM), when directly applied to integral equations 
arising in numerical solution of electromagnetic(EM) scattering problems , leads to a 
dense( fully populated) matrix which often becomes computationally ungovernable 
even for supercomputers, especially when the electrical size of the scatterer becomes 
large. To overcome this difficulty, wavelet bases have been used recently which lead to 
a sparse matrix that can be solved easily by an efficient sparse solver. Using wavelet in 
solving EM integral equations has been widely studied. The purpose of this paper is to 
develop a strategy for efficient wavelet solution of integral equations by connecting and 
using efficient studies have been done in this area. Numerical results are provided to 
illustrate the validity of the proposed approach. 

INTRODUCTION 

A large class of EM scattering problems can be formulated by the following integral 
equation 

\f{s')G{s,s')ds'^g{s) (1) 

where f(s) stands for the induced surface current, G{s,s') is the Green's function, and 
g(s) stands for the excitation source. Generally, equation (1) has no closed-form 
solutions and the MoM is used to solve it numerically. As well known, the use of 
traditional basis and testing functions for solving in the MoM results in a dense matrix 
equation. A direct solution of a dense matrix equations needs 0(^^) operations, and an 
iterative solutions requires 0(N^) operations per dense matrix-vector multiplication, 
where N is the number of unknowns in the discretized integral equations. Therefore, 
traditional MoM is not of practical use, as the number of unknowns increases, due to the 
large memory requirement and high computation time necessary to solve matrix 
equation. 
To overcome these difficulties, recently, EM researchers used wavelets, primarily 
because of their local supports and vanishing moment properties, to solve EM integral 
equations. There are currently two approaches to introducing wavelets in the MoM: In 
the first, the integral equation has been directly expanded and tested with wavelet bases 
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functions [l]-[2]. However, since few kinds of wavelets can be solved in closed form, 
this approach requires considerable numerical effort to efficiently evaluate the integrals, 
which dims the use of wavelets in the MoM. The other approach is to use a 
conventional basis and testing functions to convert integral equation into matrix 
equation and then perform a discrete wavelet transform on the resultant matrix equation 
[3]. More recently, the authors have proposed an effective circulant wavelet transform 
method, which can be adaptively used to solve efficiently a wide range of EM problems 
[4]. In this study, therefore, we use the approach used in [4]. 

FORMULATION 

By using the MoM, we obtain the matrix equation 

ZI = V (2) 

where Z is a dense impedance matrix. Introducing a wavelet matrix W, the matrix 
equation in (2) then transformed as 

ZT = V (3) 

where 

Z' = WZW'\    I' = {W')'l.    V' = WV. (4) 

Here T stands for the transpose of a matrix. For a given threshold value x (0 < x < 1), 
(3) becomes a sparse matrix equation which can be efficiently solved by a sparse solver. 
Once /' is solved, the desired solution is obtained as 

I = W'r (5) 

The construction of the wavelet matrix W can be found in[4]. In constructing W, among 
the wavelet types, Daubechies' wavelet is chosen, because of its compactness and 
orthogonality properties, to effectively construct sparse wavelet matrix, which reduces 
the computational, cost [5]. Finally, an appropriate choice of the number of vanishing 
moments of wavelets is made as 8 from [4] to obtain fast and accurate solution in the 
numerical experiments. 

NUMERICAL RESULTS 

In this section, the results of a study of matrix sparsity as a function of the problem size 
are presented. Scattering of plane wave from 2-D rectangular cylinder is computed 
numerically using a constant number of test functions (20 pulse) per wavelength. The 
system sizes studied ranged from N = 64 ( contour length of 3.2 A,) to N = 2048 (contour 
length of 102.4 A.). The sparsity of truncated Z' and the associated relative error of 
current distribution on the contour surface for several thresholds is shown in Fig. 1. 
Here the percent .sparsity is S = ({N^,-NJ/NQ)X\00 where No is the total number of 

elements and N, is the number of remaining element after the truncation. The relative 

error caused by the truncation is e=||/(, -/„.||YI|A)||, where lois the solution obtained by 

the MoM and 1„ is that obtained from the wavelet method. 
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Fig. 1   Matrix Sparsity(a) and Relative Error in Current(b) as a Function of Size N 

CONCLUSION 

The EM scattering from a 2-D rectangular cylinder has been successfully analyzed by 
using the wavelet matrix transform approach. Numerical results have shown that the 
present approach does highly sparsify MoM matrices, especially as the problem size 
increases, and hence dramatically reduces the computation time by a efficient sparse 
solver without causing much error in the solutions. 
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ABSTRACT 

Symbolic Computations are veiy important since to get closed formula solutions in 
many applications. One of the computer code is MACSYMA that is written in program 
language LISP for the performing symbolic and numeric mathematical manipulations. 
The purpose of this paper is to present a number of MACSYMA applications that show 
how the new MACSYMA possibilities can be used in electromagnetics. To understand 
the procedure easily, rectangular aperture antenna analysis has been studied and the 
results have been illustrated. 

SYMBOLIC COMPUTATION OF A RECTANGULAR APERTURE 

The analysis of apertures begins by considering the radiation from the elemental area 
oriented in the x=0 plane as shown in Figure 1. The elemental area is part of some 
arbitrary aperture bounded by the curve C. The spherical coordinates of the elemental 
area is (r',7r/2,e') and the fields are to be evaluated at the point P(r,(t),0). 

j>Pi..>.- 

Figure 1. Elemental area Figure 2. Rectangular aperture 
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Since the elemental area being analyzed can be excited by both electric and magnetic 
fields, It is convenient to use both the magnetic and electric vector potentials[2]. 
Therefore, the magnetic (A) and electric (F) vector potentials become, respectively 

(c1)     ((^sclafcHl\a.)f,vAmMAS,\ejiM1Ah1}, rmnsmSar), depef!dsf|i«,Wi, frp,pf!ip.tfieiapJ)/S 

(c2)      \s:v6ct_exprsss(mifexp(--%!'-k''rr\n/(4*%pi'r),spherical): 
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4 K r 4 jt r An r 

where N and L are the radiation vectors. The far electric field from the electric and magnetic 
vector potentials becomes 
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Since the far field distance is large, terms which vary inversely with the distance can be ignored 
compared to the other terms so that for the far electric field 

(c6)     (kK[0M47],pari(k}JJ'2A})]Ae:siibstJmii=k''\^0/wMi)Ae:umiistrib(\^^^ 

(d6) 
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A rectangular aperture of finite dimensions can be analyzed in terms of the elemental area. 
Consider an aperture in the x=0 plane with sides of lengths a and b in the y and z directions, 
respectively, as shown in Figure 2. Let the electric field be aligned with the y axis and the 
magnetic field be aligned with the z axis to give a plane wave traveling in the x direction. If the 
aperture is uniformly illuminated, the electric field is constant in amplitude and phase over the 
aperture. For this case, the electric and the magnetic surface current densities are 

(c7)     (n:j'1.0,0], Wl:i$.kti.O/, \hI:l&Md/}A2ill,\i:\Ynyxpr^fmii-Ahlj. \m:w/ct expn>ss(-n--\BT)}$ 

The radiation vectors for the rectangular aperture become 
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The far electric field vector is obtained as 

(c13) 
(c14) 
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The electric field pattern is 

(c15) 

(c16) 

(c17) 

(c18) 

E pattern {a=b=0.1*Iambda) 

fi-OC     -b' 

CONCLUSION 

Symbolic computation results of a uniformly illuminated rectangular aperture have been 
obtained and the electric field pattern have been illustrated as a numerical example. So, 
how the symbolic computation techniques can be applied to electromagnetics has been 
shown. 
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ABSTRACT 

The expressions are submitted, allowing to make transformation E-plane waveguide the 
tasks containing 5 component of an electromagnetic field (for example 
H^,H,, H., Ey, E.), to the scalar 2D task containing to 3 unequal zero components of 

an   electromagnetic   field   {H^,Ey,E^).   At   such   transformation   the   magnitude 

appropriate to magnetic permeability it becomes frequency dependent. It corresponds to 
dielectric permeability of plasma, if plasma frequency corresponds to cutoff frequency 
of a wave//„,o. This fact has allowed to use for the analysis in time domain E plane 

waveguide facility earlier developed effective programs 2D the electromagnetic 
analysis. The example of the analysis in time domain of the filter constructed on the 
basis of a rectangular waveguide with variations of the geometrical sizes in E plane is 
given. 

INTRODUCTION 

In engineering practice are frequently used E-plane waveguide devices . For the 
electrodynamics analysis of such devices in frequency domain were developed effective 
procedures [1-3]. Now all greater attention is given investigations directly in time 
domain: tasks of a location supershort impulse and signals with a wide spectrum. In 
view there was a task of development of the technique used usually in frequency 
domain to have an opportunity to investigate characteristics of devices directly in time 
domain. The historical moment is interesting also. During absence of computing device 
for analog modeling plasma were used waveguide devices, and in the present work it is 
offered for the analysis in time domain waveguide devices to use the developed 
effective programs for the analysis of non-uniform plasma. 

STATEMENT E-PLANE PROBLEM IN THE RECTANGULAR WAVEGUIDE 

Let's consider the structure were the E-plane device on the basis of a rectangular 
waveguide with metal walls, which is represented on fig. 1. Inputs of the device are 
rectangular waveguides, which are raised by a wave i7^,,g. 
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Fig. 1. Geometry E - plane device on the basis of a rectangular waveguide. 

Devices of such type refer to E-plane, as all changes of geometry occur only in a plane 
of a vector of intensity of electric field E (plane ZOKsee Fig. 1.), and the width of the 
device remains to a constant and is equal a. From the mentioned above conditions 
follows, that should the following ratio will be executed [4]: 

E=Q (1) 

£,,(x,>',z) = sm        E^iy.z) 
a 

£_(x.3^,z) = sm        E_{y\z) 
a 

H^(x.y.z) = sin        //,(>'. z) 
a 

(2) 

(3) 

(4) 

For the decision of a problem it is necessary to write down Maxwell's equations a in the 
chosen Cartesian system of coordinates (see fig. 1) and to substitute in the received 
system of the equations of a condition (1) - (4) in view of that foreign electric and 
magnetic currents inside analyzed area are equal to zero 
By virtue of that ratio should will be executed at any values x, we receive the equations, 
not dependent on it. Analyzing these equations, we shall find final system of the 
differential equations which after use of properties of a permutable duality [4], can be 
written down in the following kind: 

icofi^,H^{y,z) 

dE,(y,z) 

dv 
= i(OfiJLiy.z) 

dI-L{y,z)    dH^Xy.z) 

Qy dz 
= -ico£^,{(o)E^{y,z) 

(5) 

(6) 

(7) 

The fact of concurrence frequency dependences permittivity is interesting in case of 
plasma and at the decision waveguide tasks that allows to investigate directly in time 
domain mode non-stationaiy processes for E Plane waveguide devices, using effective 
algorithms and the programs developed for the decision of bidimcntional problems of 
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dispersion from non-uniform plasma formations in time domain mode on the basis of a 
method of impedance analogue of electromagnetic space [6]. As an example of similar 
research we shall result analysis E plane rejector the filter. 

RESEARCH E PLANE REJECTOR THE FILTER 

As an example we shall investigate characteristics E plane rejector the filter submitted 
on (fig. 2.) 

u.i 
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^ 
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r\ 

j 

Fig. 2. Geometry E plane device on the basis of a rectangular waveguide. 

All sizes of topology designed waveguide the filter, width 28.5mm, represented on (fig. 
2.) in a plane of a vector E, specified in millimeters. On (fig. 3 and 4) time 
dependences of amplitudes reflected (it is designated square) and past (it is designated 
cross) waves suppressed frequency band on frequency f=7.170 GHz and in a passband 
on frequency f=8.425 GHz are shown. 
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Fig. 3. Dependence on time of amplitude of the reflected and past wave at inclusion of a 
sinusoid with frequency of filling 7.170 GHz. 
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Fig. 4. Dependence on time of amplitude of tiie reflected and past wave at inclusion of a 
sinusoid with frequency of filling 8.425 GHz. 

In the present work the expressions which are carrying out transformation E-plane 
waveguide of problems to a scalar 2D problem with permeability, having frequency 
dispersion that has allowed to use for the analysis in time domain mode E plane 
waveguide devices earlier developed effective programs 2D the electromagnetic 
analysis are given. 
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ABSTRACT: In this paper the more accurate calculation of the direct leakage of magnetic 
field through the diamond shaped holes is shown by using an early work [1] on the planar mesh 
surfaces. The exact geometry of the diamond shaped holes is taken into account. The details of 
the calculation are shown step by step. 

INTRODUCTION 
The braid structure made by strands of helically interwoven wires and there are 
diamond shaped holes at the crossing point of the strands. Since the braid structure 
includes diamond shaped apertures, some of the magnetic flux lines penetrate from 
these apertures through to the interior conductor. Leakage from the apertures on the 
braid surface is calculated in literature by making some assumptions on the hole 
geometry [2]. The most famous one is assuming the diamond shaped geometry as an 
elliptical aperture. With this assumption it is possible to use the elliptical functions on 
the calculation. On the other hand, Ikrath [1] done a detailed calculation on the exact 
geometry of the diamond shaped apertures. But it is assumed that the cable surface is 
unlimited and planar. In real geometry, the geometry of the screen surface is cylindrical 
and in limited size. We modified the results of Ikrath by taking into account the exact 
geometry of the cable. 

2nR/(M/2, 

Fig. 1. a) H field on aperture from single wire,     b) Braid geometry on planar form 

Magnetic Field Leakage on Cylindrical Braid Geometry 

Coaxial braid structure includes M carriers and in each carrier there are iV wires (Fig.l). 
It is assumed that the total disturbing current, / , flows from each wires equally 
{i'=I/MN). The normal component of surface magnetic field to the hole surface is 
calculated by superposition of each single wire to the hole center. As a first step we 
consider only the effect of the nearest wires to the hole center. (Fig.2). 
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Fig.2. H field near the diamond shaped aperture 

(3) 

On the z-axis, the total magnetic field distribution is zero. In the diamond-shaped 
aperture, the total H-field can be calculated by summing up the four H-fields originating 
from the nearest wires (1). Since the H field is normal to the current direction, we have 
to define new axis as and normal to the each wire direction. Aperture size is 
related with braid geometry (2) and perpendicular axis to the wires could be 
transformed from x-z plane by (3). In order to find the whole wire's II field to the 
aperture center, it is necessary to formulate the distance from the any wires to the 
aperture center (Fig.3) (4). At the center along the z-axis. each H fields cancel each 
other. By the way the magnetic field lines enter to the inside of the interior layer from 
the upper triangular part of the z axis and go out from the lower part. Since the II fields 
must close around themselves a rotation occurs around the z-axis. Therefore, there is an 
e.m.f. produced per unit length of the z axis [1]. In Fig.4. the more detailed geometry 
for the circular form is given. The radial distance on the circular surface of the braid 
from any wire to the aperture center should be converted to the shortest distance as in 
(7). The radial distance is equal to the /•„,„ and shortest distance is equal to the R,,,,,. 

-Hole center 

ebOQCP   ^'   GBQGQ— ''"- = ^'"-'^'''"^^""'^'^ + 
W-{N-\)d 

(4) 

Fig.3. Distance from any wire to the aperture center in planar form. 

For the total H field distribution in any point on the diamond shaped aperture, the 
effects from the all wires should be summed referred to the circular geometry (8). This 
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total term can be simulated via numerical calculation for digitized 77 and ^ axis points 
(Fig.5). 

^2 2     2 2 

Hole center 

^iv = H^„.ds ^H^= //„„ cosx 

^5 =2i?sin P. 
Pmn = -J-   ('■'^   radian) 

(6) 

(7) 

Fig.4.Distance from any wire to the aperture 
center in circular form. 
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(8) 

Fig.5. Simulated value of H field. The values out of 
the border of the diamond shall be omitted.(M=24, 

N=8, d=0.15mm, i= lAmp (X=nl6) 

CONCLUSION 

The direct magnetic leakage term of the diamond shaped apertures of the coaxial 
braided screen are modified for the real geometric conditions of the cylindrical shield 
structure as if including the curvature and the limited number of the wires. One can 
calculate the total H field leakage by using this field distribution on one aperture, 
multiplying the hole number in unit length. 
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ABSTRACT 

This paper presents an efficient technique for analysis of arbitrary closed perfectly 
conducting (PEC) scatterers in layered media. The technique is based on a method of 
moments (MoM) solution of the combined field integral equation (CFIE). The high 
efficiency is obtained by employing an accurate expansion of the multilayer dyadic 
Green's function along with a higher order hierarchical discretization scheme and a 
rapidly converging iterative solver with prcconditioner. 

INTRODUCTION 

Numerical analysis of electromagnetic scattering by PEC objects has attracted great 
attention for many years. Naturally, available computational resources limit the size of 
objects that can be analysed by numerical techniques. The situation becomes even 
worse when layered medium is considered. Furthermore, for objects penetrating the 
interface (interfaces) between the layers, conventional methods can not efficiently 
handle the different wavelength in different media. 
In this paper, a new efficient MoM scheme, combining fast calculation of dyadic 
Green's functions for multilayered media with higher order hierarchical basis functions, 
is presented. This technique allows the number of unknowns to be decreased in 
comparison with conventional techniques employing low-order discretization schemes. 
The relaxation of memory requirements is especially pronounced when the scattcrcr is 
located in two or more layers. Further improvement in computational efficiency is 
achieved by employing a rapidly converging iterative solver with prcconditioner. Fhe 
technique is validated with examples available in the literature. 

INTEGRAL EQUATION TO BE SOLVED 

The electric field integral equation (EFIE) and the magnetic field integral equation 
(MFIE) each fail at a set of discrete frequencies for closed PEC objects. Being a linear 
combinafion of EFIE and MFIE. CFIE provides stable and reliable solutions at all 
frequencies. EFIFi is a well-known and quite elaborated technique for analysis of 
scattering by PEC objects both in free space and in layered media. At the same time, 
MFIE is usually applied for scatterers in homogeneous media, 'fhere are very few 
papers devoted to MFIE in layered media and only conducting bodies of revolution 
have been treated thoroughly by MFIE [1] (the MFIE-BOR method). In this paper, we 
apply the MFIE (as an essential part of CFIE) to arbitrary closed PEC objects in layered 
media. 
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DYADIC GREEN'S FUNCTIONS FOR MULTILAYERED MEDIA 

The dyadic Green's functions for multilayered media are implemented using the 
Formulation C for the mixed potential integral equation [2]. Under this formulation, 
only three different Sommerfeld integrals arise in the solution. They are computed in a 
very efficient way using the discrete complex image method (DCIM) [3] which allows 
spatial Green's functions to be represented in closed form in terms of complex images. 
If the scatterer is confined to one layer, the coefficients of the complex image expansion 
are invariant with respect to the coordinates of the source and observation points. 
Otherwise, the coefficients depend only on the z-coordinate of the source point and the 
layer the observation point belongs to. It is worth noting that the coefficients of the 
complex image expansion are reused in both EFIE and MFIE. 

DISCRETIZATION TECHNIQUES 

Higher order hierarchical basis functions [4] based on orthogonal Legendre polynomials 
are employed for discretizing the CFIE. The hierarchical property of the functions 
provides a very efficient discretization scheme especially when the scatterer is not 
confined to one layer. The order of the polynomial expansion can be selected separately 
on each patch depending on the wavelength of the layer in which the patch is located. 
This allows a very low number of unknowns and a uniform mesh despite the different 
wavelengths. In contrast to this, conventional low-order methods are forced to use a 
patch size based on the shortest wavelength, which introduces unnecessary unknowns 
and leads to a poor condition number of the resulting MoM matrix. Alternatively, 
conventional methods may employ a highly non-uniform mesh that is difficult to 
construct and also leads to a poor condition number. The higher order hierarchical basis 
functions are here employed on second-order curved patches that provide accurate 
geometrical modeling of smooth surfaces. 

IMPLEMENTATION AND NUMERICAL RESULTS 

The described technique has been implemented in an efficient computer code that is 
well parallelized on both shared and distributed memory multiprocessor systems. The 
most time consuming part of the analysis is the calculation of the dyadic Green's 
functions for multilayered media. On a multiprocessor workstation, it can be done in 
parallel for different pairs of source and observation points. Furthermore, due to reusing 
of the Green's function expansion in both EFIE and MFIE, the CFIE matrix filling time 
increases only by 10% with respect to MFIE alone. 
The presented technique was validated by comparison with the results obtained by the 
MFIE-BOR method [1] for scattering by a PEC sphere in the presence of the interface 
between two contiguous half-spaces. For instance, Fig. 1 shows the currents on a half- 
buried metallic sphere illuminated by a plane wave. It is observed that the results of the 
new technique are in excellent agreement with those of [1]. Fig. 2 presents a new result 
for a geometry that can not be treated by the MFIE-BOR method [1]. Both a first-order 
discretization scheme (rooftops on a uniform mesh) and a hierarchical discretization 
scheme are used. In the first case, significant overdiscretization in the free space is 
observed (709 unknowns per square wavelength, see Table 1). In the second case, the 
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hierarchical discretization allows the total number of unknowns to be reduced by more 
than a factor of three while the accuracy is maintained (Fig. 2). 
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Fig. 1. Current on the half-buried PEC sphere illuminated by a plane wave. 
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Fig. 2. Scattered near-field from the half-buried PEC tube illuminated by a plane wave. 
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ABSTRACT 

The mathematical methods, used for solving acoustic and electromagnetic wave 
problems, defined in two dimensions, are analogous in many cases. The analytical and 
numerical results of a field in the outside domain of curvilinear rectangle are presented 
in this paper. Based on the wave equation, boundary conditions and radiation condition 
the structure of the field is determined. The method of the partial regions is used. For 
the acceptability criterion of the quantity of the members by which the field is 
calculated, the fulfillment of boundary conditions on the radiating surfaces and the 
fulfillment of conjunction conditions between the partial regions were observed. The 
results are applicable to the optimum design of acoustic and electromagnetic antennas. 

INTRODUCTION 
It is known that in the 2-D case the Maxwell equations can be transformed in two 
independent equations for the vectors of electrical and magnetic fields [1]. By this 
reason in 2-D the solutions of acoustic and electromagnetic problems coincide. Using 
the technique of partial region [2,3], many interesting problems can be solved and 
results can be implemented in the two areas. 

BOUNDARY-VALUE ANALYSIS AND ANALYTICAL RESULTS 

The geometry of the problem is shown in Fig. 1. This is an outside boundary value 
problem, i.e. a problem in the infinite domain. The curvilinear rectangle is limited by 
the arcs with radii r\ and r2 = a, and the segments AD and BC. It is assumed that the 
surfaces 6 = +9o, r\<r<a are acoustically rigid. Sound field is generated by the 
surfaces r = r\ and r = r2, 9o < I 9 | < TT, on which the distribution of particle velocity is 
assigned: 

-—=0),r = r, (1) 
or 
8F 

-—=^(0),r = r, (2) 
or 

where F-velocity potential. In order to analyze a sound field with time dependence 
factor exp {-mt), which is created by the radiating body, shown in Fig., the boundary 
value problem for the Helmholtz equation in cylindrical coordinates must be solved: 

AF(r,0) + ]^F(r,Q) = 0 (3) 

where:    F(r,9) - velocity potential; A = V   - Laplace's operator; k - wave number. 
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The whole field is divided in parts. In each partial 
region there must exist a solution of the Helmholtz 
equation (3), which satisfies the boundary 
conditions of some part of the whole surface and 
the conjunction conditions of the boundaries of 
the  neighboring  partial  regions  [2].  Using  the 

      orthogonal    properties    on    the    corresponding 
B        C   segments of the functions, which describe the field 

/jN in regions 1, 2 and 3, the functional equations can 
^    -^ be   transformed    into    the    following    infinite 

^ simultaneous linear algebraic set of equations for 
Fg ®   the complex coefficients, v4„, i?„,, C„,, and A : 

Fig. 1. Geometry of the problem 

oo 

-lja,„. Ukpci) A, +    S,„ J„,„ (kpa)5„, +     4 K^^^ (kpa)C,„ 

k 

= 0 
»=0 

/=0 

(4) 

where « = w = / = 0, 1, 2 N,...; a. 
mn 

e. 

§n = 

2K , n = 0 

71, 13 > 0 
§. - 

'2QQ, m = 0 

Qn, m > 0 
;Si = 

2n, 1= 0 

71, 1> 0 

_     2sm(iieo) 2gm(:Bo) 
Pn - ;Pi- . 

12 i 

Ya,„n 

Ya^I 

2a ;r? 
S3n 

a 

2a, 

n 
m(a^0o)cos(27eo) 

2l7 
sm 

a 

a. i 
sm &i(a^eo)cos(£o)- 

21 

n 
&2(a^0o)cos(i3eo) 

a. f 
S3n m(a^0o)cos(Do) 

The prime (') means a derivative of the whole argument. Except this, it is accepted that 

:f(9) = ^(0) - 1- This simplification has not meaning of a principle [4]. 
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Solving the set, the complex coefficients A„, B^ , Cm , and D/ can be obtained. The 
velocity potential of the field F(r, 9) in each point of the outside domain of the 
curvilinear rectangle can be found. 

NUMERICAL RESULTS 

In Fig. 2 the modulus of the potential F\ for determined wave parameters near the 
geometric focus is shown. As can be seen, the structure of the field is complex and 
optimization of the main parameters (9o,p,a) is recommended to obtain the necessary 
intensity and focus spot. In Fig. 3 the equipotential curves are drawn. It is clear that real 
focus spot is shifted (9 = 0, r = 0,3). This effect can be explained with edge points 
diffraction and radiation of the surface CD. 

0.4 

;p0.3 

0.5 
tita[rad] 0 0 

Fig.2.Modulus of potential F\ 

CONCLUSION 

Fig.3.Equipotential curves 

The results, obtained above, can be used to the optimum design of acoustic and 
electromagnetic antennas in 2-D space. 
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DIELECTRIC PARAMETERS RECOGNITION BY USING A 
WAVEGUIDE CAVITY AND 

A RIGOROUS PROCESSING ALGORITHM 

Anatoliy Ye. Poyedinchuk, Anatoliy A. Kirilenko and Nataliya P. Yashina 

IRE NASU, Kharkov 61085, Ukraine. E-mail: nataliya@lin.com.ua 

INTRODUCTION 
Measurement of scattered electromagnetic field and further permittivity or permeability 

reconstruction based on experimental data and adequate mathematical model is the key 
issue in dielectric materials study [1. 2]. Here, accuracy of measurements and adequacy 
of mathematical model is of principal importance. Today, special attention is attracted 

to the study of thin dielectric films with tg\5)~ 10~ -^W . In this paper we consider 
a resonator that can be used for a thin film study, its electromagnetic model, and 
advantages and capacities of corresponding numerical algorithm. 

DESCRIPTION OF THE ALGORITHM 
Our solution to inverse problem is based on accurate 
and efficient soludon to direct problem. Suppose that 
the diffraction of one of the modes of small circular 
waveguide by the chamber (Fig.l) is reduced to a 
functional relation Y = f{x). Here X = fXi.x.,Xj....x,„) 

is the set of input data (frequency, £", geometry, 
amplitude of incident wave A, etc.) and 
Y = {)'!,}',,...,yj is the set of output data - reflecfion 

coefficients Ri,R,....R^^, normalized by A. Assume that 

a part of input data is known (frequency and geometry) 
and given by the values x",x'l,...x]' {l < m) from the 

set X of all input variables. Suppose also that values 
Y" = (v",v''....>'!) of output variables are known. The 
problem of the model identification is reduced to a 
necessity of finding x,^, x„, from equation 

r' = /(x;....x;',x,„...x„,) d) 

In our case, we have to find unknown dielectric constant £• = s' + ie". The accuracy of 
the parameter evaluation depends on several factors: 
1. The error of reproduction of the relation between output data Y, known input data 
X/,x,,A-^...,x„,, and unknown parameters in the form of equation (1), that is called 

inadequacy of the model to the phenomena simulated. 
2. Errors of measuring the known parameter values, that is Y", x".x]....x"i . 
3. Errors of the numerical algorithm applied to solving equation (1). 

^ ■=* \ 

-\— 
^'Ji 

—/- 
/ ■ ■ ^ 

Hi 

'"^ /\ 

Fig.l 
JL 
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As a functional relation we choose the solution of the considered problem obtained by 
the semi-inversion method [4, 6]. Here, we reduce it to numerical solution of a matrix 
equation of the second kind /?" - HR'^ =B with exponential convergence. This approach 
allows us to find out with given accuracy the amplitudes of reflected modes 
R';',R2 ,...,R" if the frequency, geometry, and dielectric constant s = e' + ie" are known, 

so that R^ =f^{tc,s,A) depends on geometry, frequency parameter K-ajX {a is 
characteristic dimension, see Fig.l), and e. The accuracy of calculation of 7?,, is limited 

by the capacity of the computer utilized. For the solution of direct and inverse problems 
we used the ideas of [7, 3-5]. We pose the inverse problem as a minimization one, see 
[6,3,4]. After caring out numerical investigation of various types of functionals 
according the scheme of [4], we arrive at the conclusion that the most efficient is 

(2) 
m=l n=l 

where  /^M) = JW| . Due to analyticity of functions   R^{K,£,A)  in  K   and   s, the 

functional  in (2)  (within the  considered level  of input  errors)  does  not require 
regularization and we can put (2) a-0. 

NUMERICAL EXPERIMENTS 

In the parameter reconstruction of thin films,PL<X, with small tg{5) there are two 
most important criteria: 
- influence of the error of input data on the accuracy of parameter reconstruction, and 
- range of parameters, within which accuracy ofed by the algorithm is sufficient. 
To simulate experimental _input data we used (see also [3, 4]) a generator of random 
numbers with normal distribution: 

Rl [K, S) = |7?f [K, S){1 + y ,Random)exp\arg\R'^ {'<^>^%1 + y2Rcmdom)), 
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where - 7 < Random < / . We studied the relative errors of reconstructed parameters 
and algorithm properties according to the formulas: 

tg{S),-tg{SU^.    ^  Je],-sl, ^.^^^ 
^    = L±f..l_^Jl  -^1.^.^- :^;    A. 

tg{Sl '    ^' s[, ^ = iLKi^y 
as functions of input data errors. Relevant curves are marked as 1,2,3 in Fig.2, 
respectively. In all experiments we accounted 21 frequency points in functional (2). 
Fig. 2 presents the variations of relative errors when input data errors for amplitudes y, 

and arguments v^ change from 0% to 10%. In Fig.2-a we fixed y^ = 3% and in Fig,2-b 

it was y, ^ 5%. Here we had to present curves 2 corresponding to the values of 

4 -700 in order to be visible within the common scale. The errors change randomly, 

however around certain increasing with rise of errors level mean values. The input 
errors in arguments influence the accuracy more crucially, and it is clear that better to 
accept errors less than 5%. Due to the high accuracy of the algorithm of direct problem 
solution, there is no restriction on reconstructed parameters if one has "hypothetical" 
situation with accurate input data, i.e. if X/ = /j = ^ • However, from numerical 

experiments we conclude that if the error in input data is y, >W% (for normalized 

amplitude that is deviation of 0.1) and y^ > 5% (that is 18°) it is necessary to apply 

regularization to (2). 
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ABSTRACT 

This paper is dedicated to the EMC/EMI problems from the standpoint of the efficient 
and safe mobile equipment antenna structures development and to investigation of the 
influence of such antennas on the user's head. The dielectric monopole drop-shaped 
antenna has been proposed and the numerical investigations of its behavior taking into 
account its interaction with the feeding cable and user's head have been carried out. The 
corresponding EM problem is solved using Method of Auxiliary Sources (MAS) [1]. 

INTRODUCTION 

For the antennas used in the modern personal communicational systems it is necessary 
to be small in size and have wideband radiation. For the real radiating systems 
simulation in the framework of EMC problems it is very important to take into account 
the interaction of the under study subsystem with the surrounding objects - in case of 
antenna these are the user's head, free space and the feeding cable. 
In this paper we consider a drop shaped monopole antenna fed by the coaxial cable 
located in the close proximity of the user's head. The head is simulated by the IEEE 
Standard Head Model. The problem of obtaining a good matching of the antenna both 
with the feeding cable and free space has been resolved throughout the proper choice of 
the antenna shape. Also an attention was paid to the SAR distribution in the user's 
tissues. Based on MAS [1] the engineer-oriented software package has been created to 
perform the necessary numerical experiments. 

NUMERICAL RESULTS 

In the [2,3] the drop shaped antenna covered with thin dielectric layer has been 
introduced and its 
diffraction properties have 
been investigated. The next 
stage of such type of an 
antenna development is a 
real anterma-cable 
structure simulation 
(Fig.l). In this paper the 
antenna of a certain type 
has been investigated and 
its properties versus its 
shape       and       material 

Return Loss 
, S11 [dbl 

experJmenlal 

Fig.l Antenna 
geometry 

Fig. 2. Comparison of the numerical and 
experimental measurements 
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parameters have been investigated. Varying the antenna shape one can control the Q- 
factor, while the dielectric layer of high permittivity helps to keep the antenna size small 
and shift the resonant frequency down. 
The first step was investigation of a simplified flagpole antenna and comparison of the 
calculated data with that measured experimentally. Fig.2 shows the return loss versus 

frequency       for      this 

0 snWiL. antenna. 
Next,     the 
mvestigation 

\ 
/ 't 

ill  flGHz] 
6,00 

Fig. 3 Return loss versus frequency for 
different antenna's width 

a)0.13cm b)0.4cm c)0.6cm d)0.8cin 
e)l .0cm 

Fig.4 Near field 
distribution at the 

resonance frequency 

numerical 
of     the 

given      drop      shaped 
antenna structure 
dependence on the 
various material and 
geometrical parameters 
have been performed. 
Fig.3 shows antenna 
return loss versus 
frequency for different 
antenna's width having 
its height fixed. In this 

figure there are two curve families corresponding to the two presented geometries of 
antennas. The leftmost and rightmost families correspond to the geometry 1 and II 
respectively. In the first case the cable is separated from the antenna by the metallic disk 
while in the second case antenna is directly connected to the cable. The numerical 
experiment shows that in the first case the resonance frequencies are shifted to the left 
compared to the second one. With the increase of antenna width the radiation band also 
increases and the radiation efficiency diminishes. In Fig.4 the near field at the resonance 
frequency for the case II is presented. Analysis of the near field structure have shown 
the absence of the reactive component in it that means that the antenna is well matched 
with the cable and free space. 
Under the certain optimal choice of antenna's shape it is possible to increase the 
radiation frequency band. From the obtained results one can see that the resonance 
frequencies for the presented antenna (3.0-4.0 GHz) do not fit into to the current 
standards for mobile communications (0.9-2.8 GHz). In order to conform to them the 
electrical size of the antenna should be enlarged. This is possible by covering the 
antenna with the thin dielectric layer of high permittivity. In order to obtain good 
matching between the dielectric layer and the free space it is necessary for the 
corresponding wave impedance at the antenna surface to be equal to that of the free 
space. This can be achieved by the suitable choice of the layer's material parameters. 
Modern technology is able to provide a material with the negative permittivity. The 
created software allows for such media to be simulated. 
The next aim of the investigations was to study the influence of the antenna on the 
user's head. The one of the main demands antenna must satisfy is the safety to the user - 
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Fig.5 SAR distribution inside head at l.OGHz Fig.6 Radiation pattern 

i.e. the SAR in the user's tissues must conform existing standards and be as low as 
possible. As a head model an IEEE Standard Head has been taken. Its averaged material 
parameters are s=45, G=0.9S/m. The Fig.5 and Fig.6 show the SAR distribution in 
different sections and radiated pattern when using a conventional monopole-style 
anterma at 1 .OGHz. The absorbed energy in the head is approximately 70% of the 
feeding power. An optimized antenna structure for the SAR minimization has been 
developed. The corresponding results will be also presented. 

CONCLUSION 

The presented antenna configuration allows one development of the desired antenna 
structure, conforming to the EMC demands and possibly other restrictions applied. The 
radiating capabilities of the presented antenna prototype on its material and geometrical 
properties dependence have been studied. The real antenna-cable-head system has been 
investigated and EMC and SAR issues considered. 
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Generalized algorithm to build descriptor matrices of convex politope Trefftz finite elements is 
introduced in the paper A finite number of plane waves is used to expand electromagnetic field 
inside the elements. Projections of the intra-element field on an additional set of basis functions 
defined on the element surface are used to build admittance matrix descriptors of the element. 

INTRODUCTION 

As a generalization of the method of minimum autonomous blocks, introduced by V.V. 
Nikol'skii and T.l. Lavrova in the late 70s [1], Trefftz Finite Element method (TFEM) 
has been recently introduced into the computational electromagnetics [2], [3]. As the 
conventional finite element method (FEM), the TFEM is based on a division or 
decomposition of a boundary value problem for Maxwell's equations into a set of 
elements. Though, instead of polynomial functions, plane-wave solutions of the 
Maxwell's equations are used as the intra-element basis functions to expand electric and 
magnetic fields inside the elements. Though, the basic concepts of the method are quite 
general and are outlined in [2], [3], there is no formalized procedure to build descriptors 
of complex polytopc structures such as polygonal prisms, tetrahedrons and so on. This 
paper introduces such formalized procedure to build the admittance matrices of convex 
polytope elements. 

BUILDING DESCRIPTORS OF 3-D ELEMENTS 

Let us consider a 3-D boundary value electromagnetic problem in the frequency 
domain. The problem is described by the Maxwell's equations and boundary conditions 
in a Cartesian coordinate system. The problem is subdivided into a set of small convex 
polytope elements. All external and internal boundaries of the problem are mapped on 
the boundaries of the elements. An element can be represented as a convex polytope 

Q.p in three-dimensional Euclidian space with JV^„^^, polygonal faces ^„, " = I,.--, ^/„»■ ■ 

The element is uniformly filled with an isotropic medium. Let us expand the polytope 
element interior field using A^,,,, pairs of plane wave solutions of the Maxwell's 

equations. The field distribution inside the element can be expressed as 

A+ "I" e'*"'"'" + A: 
-iki,k,„-*r 

H{f)} 

where symbol * denotes scalar products, symbol x denotes vector product, A:,„ is the 

unit vector of propagation direction of the plane wave number m, r is a radius vector of 

a point inside the polytope or on its boundary, £(,„, is the unit electric field vector of the 

plane wave, //Q„, is the magnetic field vector of the wave, y^J, and /!,„ are unknown 

magnitudes of the waves or expansion coefficients, k^ is a propagation constant of the 

plane wave, and Z„ is a characteristic impedance of the plane wave: 
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k = co-^Js/u, Zg = ^M/S . (2) 

A/i„, magnitudes of the plane waves in (1) are considered to be linearly independent. 

To provide connectivity of the element interior with the surrounding elements and to 
impose the inter-element boundary conditions, an additional set of basis functions is 
defined on the faces of the polytope element. Let us choose Z„ vector basis functions 

defined on the polygonal faceF„ for the electric field expansion and Z„ basis functions 

on the same face to expand the magnetic field. The total number of pairs of the surface 
field expansion functions is 

Nfoce 

n=\ 

Designating the surface basis functions defined on the face F„ as e^^,^ and /?„(,), the 

electric and magnetic fields on the surface of the polytope element can be expressed as 
follows: 

Esurf =   Z Z ^"(0 ■ ^"(/)       '      ^^urf =   Z Z'"(/) • Kl) ^"^^ 

where v„(/), /„(/) are unknown expansion coefficients. The total number of the boundary 

field expansion coefficients in (4) is 2iV,„/^. It is in addition to the A/'^„, independent 

interior expansion coefficients (1). The number of the interior basis fianctions A^;,,, can 

be chosen equal to the number of the electric or magnetic field surface basis functions 
N^^^ . It provides a possibility to uniquely define a matrix descriptor of the element. To 

do so, we can project the interior field on the surface basis functions [2], [3]: 

where E and ^ are values of the electric and magnetic fields defined by (1) taken on the 
face F„  where basis functions e,,^/) and \(,^ are defined. Either point matching or 

Galerkin projectors can be used in (5). Constant vector basis fimctions may be used with 
the point matching projectors defined as 

P„{A^,(O}=:D(^,(/))*^"(/)(^«(/))'   ^ = 1V..,4,   n = \,...,N,„^^ (6) 

where D  is either EoxH,  b^^i^is, eithere„(/) or ^„(,), r^^/^is the radius vector of a 

matching point on the face F„ for the basis function /. The matching points can be 

defined as centroids of the polygonal areas where the corresponding face basis functions 
are defined. Galerkin or averaging projectors can be defined as 

Wm\F„ 
A^„(/Jare the norms of the where the integral is taken over the surface of F„, and 

expansion functions. Substituting (1) into (5) we can obtain the following relations 
between the interior field expansion coefficients and the surface expansion coefficients: 

V=M;-I"+M;-I-,       J = M;-I" + M;-Z-, (8) 

KiHV, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



'-(/)> (^Q^ 

490 MMEr-02 PROCEEDINGS 

where Z'and A^ are vectors with JV„„ coefficients /l,^ and v4;, (1), /and v are 

vectors with A^„„y components defined as 

~i = fcVJA.,„„ j,'; = t'„(i)'-''"(/.")l" ^=h'-'%„ 1'""" = k(i)'-'^»(/.")I' (9) 
where symbol' denotes transposition. 
Matrices M*and M* are A^,„,^ by A^„„ complex matrices of projections of the interior 

basis functions (1) on the boundary basis functions with the elements defined with 
either projectors (6) or (7) as 

M = l,...,/V„„,   / = l,...Z„,« = l,...,^/„„, 

A descriptor matrix of the polygonal element can be deduced by eliminating unknown 

interior field expansion coefficients  A'   from (8). From here on we assume that 

A/^,^^1 = A^^^^^.^ = N, which leads to square A^ by vV matrices M * and Mj;. An assumption 

of the equality of two terms in the magnetic field projection sum or alternatively in the 
electric field projection sum (8) leads to two alternative additional expressions to 
construct the descriptor matrix: 

A~=T„-T\T„={M;,r'-M: (11) 

I" = T^.■ A', T;, = (M;)^'• M; (12) 

Now, an admittance matrix descriptor of the element relating the unknown boundary 
expansion coefficients can be defined as 

J = Y-v, Y = M,-M;\ reC''^\ (13) 

where M^ = M* + M] ■ T^, „,   M„ = M; + M, ■ T,., „. 

The linear independency of the element interior basis functions is the necessary 
condition of existence of a non-degenerate descriptor of a polytope element. Plane 
waves propagating in the directions perpendicular to the sides of a convex polytope 
provide such a system of functions. Assembling of the admittance matrices (13) into a 
global admittance matrix is a simple and straightforward procedure and is described in 
[2]. 

CONCLUSION 

Trefftz finite element method has been generalized in the paper on the problems 
subdivided into a set of convex polytope elements. The boundary value problem has 
been reduced to a building and re-composition of admittance matrices of the polytope 
elements. Generalized matrix formulas are derived to build the admittance matrix 
descriptors of the elements. 
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CALCULATION OF NEAR-ZONE ELECTROMAGNETIC FIELDS 
SCATTERED BY COMPLEX SHAPE AIRBORNE OBJECTS AND 

ESTIMATION OF THEIR ANGULAR COORDINATES BY 
ONBOARD ANTENNA SYSTEMS 

N.V. Barkhudaryan, A.Z. Sazonov, O.I. Sukharevsky 

Kharkov Military University, Kharkov, Ukraine 
E-mail: sukharevsky@euro.dinos.net 

The technique of calculation of near-zone electromagnetic fields scattered by complex 
shape airborne objects is present. It is shown that the direction line defined by a 
direction finder differs from true one and depends on geometry of the object, its 
electrical sizes and also on mutual location of the transmitting antenna, object and 
receiving antenna. The results of numerical calculations for the object such as "airplane" 
are represented. Calculation was carried out in a centimeter band, separately in a plane 
of course and pitches one, radiation - monochromatic. The angle of object elevation is 
constant and it is equal to three degrees. 

Most of modem airborne objects have complex geometrical shape of its surface. The 
character of reflections depends from orientation of object with reference to the 
direction of sounding. The scattered field incident on the antenna aperture is the result 
of interference of waves reflected from separate units of object surface. The 
contribution to the resulting field of components with different amplitudes and phases 
results in the not plane phase front of the scattered electromagnetic wave. The distortion 

of phase front causes to deflection of 
the measured target angular position 
from true one as the direction line is 
defined as a normal to a phase front [1]. 
The calculation technique includes 
simulation of the object surface by the 
system of triangular facets [2]. In a 
Figure 1 the model of a standard 
airplane with a wings span of 20 meters 
is represented. The calculations of 
scattered field consist of a numerical 
integration of surface current densities 
for each facet in barycentric 
coordinates. The calculations were 
carried out by means of special 
cubature formulas permitting to 
evaluate integrals of high-oscillatory 
functions [2]. 
The electrical dimensions of the object 
are large. In this case acceptable 

Kirchhoff approximation. Let a plane electromagnetic wave incidents on perfectly 
conducting scatterer with surface S located in the free space 
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g''(x) = pexp(-jk(R''x)}   rt''(x) = (pxR°)pexp(-jk(R°x)), (1) 

where R" is the unit vector of sounding direction; p is the vector of polarization; kg is 

tlie wave number of free space; SQ'MO ^•'^ permittivity and permeability of free space 

accordingly; x is the position vector of object surface point (Figure 1). 

If E(X), H(X) are vectors of total field then scattered field will be defined by formula 

E^(x)= E(X)- E"(X). Let in some point XQ somewhere outside of S the electric dipole 

with the vector-moment p is located. Vector p is arbitrary on the value and direction. 

This dipole creates a field. Applying a Lorentz lemma, we have 

jupi^(xj=lrt-^(x)E;^(x/S^,p)-i-^(x)H";^(x/x^,^ (2) 

where 

H iixH E-hhE       Ef = E„ nE H cl rixH (3) 

the tangential components of electrical and magnetic fields,  fi  ~ is the unit normal 

vector to the object surface.  For the perfectly conducting scatterer   E^ ls=0   ^'^d 

consequently the integrand function is zero. 
The field of an electric dipole can be represented in the form 

E;>'(X/XO,P) = —[v(!3v)G + k2j3G]. (4) 

jkj 
where G = e    °   Anx;  r" = x   - x 

' \   n 
r; r = X 

0        V 0 

± 

X I - the distance between object and 

receivmg antenna; p = p"+p^ are longitudinal and tangential component of 

polarization vector. Taking into account that in Kirchhoff approximation formula (2) for 
a scattered field 

i5EMx )- 27rjk       r 
0 s 

R»(pii)-pfR»ii k^ + 
jk r-1 

0 
P'- 

2Uk r-l) 

r^ 

(5) 
jk r+ R"x 

•'ds 

where   Sgis   "illuminated"   part   of  object   surface.   Using   the   representation   (5) 

calculations of scattered field were carry out for P = 0...90   and £ = 75  ,85  ,95    .For 

example, in Fig. 2 results of calculation for 8 = 75 and r = 200m are presented. 
Direction finding accuracy depends on the type of angle discriminator and amplitude- 
phase distribution (APD) in antenna aperture. In this paper we simulated combined 
calculation accuracy is given by the antenna: in p -plane - amplitude method of 
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direction finding; in e -plane - phase one. 
Such finding direction functioning is 
described by expression 

where Aj 2(xo) is APD in antenna aperture 

for two channels of receiving antenna, S^p 

is aperture area. Deviation of measured 
object bearing from true one is determined 
by expressions r(c) = Re[U5Uj /UjU* - 

for course-plane and 
for    pitch-plane,     where u,=u, + u,. 

Fig. 2 

r(p) = Re[u,U;exp(j7r/2)]/U,U:      - 

U^ = U, -U2. For example dependences of r(c) andr(p) from angle P are shown in 

Figures 3, 4. 

course-plane pitch-plane 

Fig. 3 Fig. 4 

The analysis of Figures 3, 4 have shown that in the course-plane the deviation can be 
obtained the values 1,7-2,3 degrees. In the pitch-plane it possible to obtain 15 degrees. 
For azimuth 60° in the s -plane the angular deviation is more than object angular size. 
By using proposed technique one can efficiently calculate the errors in airborne object 
direction finding appearing in short-range radar. 
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MATHEMATICAL METHODS IN SOME DIFFRACTION 
PROBLEMS FOR DOMAINS WITH DEFECTS 

Alia A. Gousenkova 
Department of Applied Mathematics, Kazan State University 

18, Kremlyovskaya, Kazan, 420008, Russia 
e-mail: gaa@ksu.ru 

Mathematical methods in diffraction problems for elastic time-harmonic waves on 
defects are considered. It is assumed that the body forces are absent and the defect may 
be disposed on the plane in the homogeneous isotropic space or on the media interface 
of two homogeneous isotropic half-spaces. It is obtained systems of singular integral 
equations equivalent to the problems. Considered mathematical methods may be useful 
for solving some form researched in [1] diffraction problems for electromagnetic time- 
harmonic waves on defects. Some approaches to elastodynamic problems in the case of 
the anisotropic elastic medium are considered too. It is get analogues of the Lopatinskii 
condition and boundary conditions of an elliptic boundary value problem in the half- 
space. It is shown that both approaches are equivalent. 
To solve these problems the classes of outgoing from o plane solutions are introduced. 
The Fourier transformation in the class of generalized functions of the slow growth at 
infinity and presentations of solutions of the problems hy potential fiinctions are used. 

SOME ANISOTROPIC ELASTODYNAMIC PROBLEMS. 

One considered harmonic oscillations of the anisotropic elastic half-space {x, > 0}. 

Assume that the body forces are absent. In this case we have the equations 

tc,„^^ + pv'i'.=0,   / = 1,2,3 

where   u{u^,u,,Uj)   is   the   complex   displacement   vector,   M(X,/) = Re{w(x)e"'"}, 

W(M,,W2,W3)   is  the  displacement  vector,   p   is  the  density   of the  body,   Cy^., 

{i,J,k,l = 1,2,3) are the elastic constants, C,^^., = Cj,^., = C^,,,. 

A solution u(Uj,u,ah) of the equation for x, > 0 we will to call outgoing from the 

plane {x, = 0} to the half-space {x, > 0} [2], if u,(x,,x,,x.) (/ = 1,2,3) are distributions 

of the slow growth and 
supp u, (x,, x,, X3) e {x, > 0},    / = 1,2,3 

sing supp U, (^,, ^,, ^3) n {^3 < 0} = ^, / = 1,2,3 

where the Fourier transforms of the unknown functions are denoted by capital letters. 
For solving this problem with some boundary conditions on the plane {x, = 0} the 

Fourier transformation with respect to all variables in the space of distributions one 
used. Therefore one get some auxiliary conditions. One can show that the boundaiy and 
auxiliary conditions at this approach for solving of the problem are analogous to the 
Lopatinskii condition and the boundary conditions at the considered in [3] approach for 
solving of the elliptic boundary value problem for the half-space. In [3] the Fourier 
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transformation does not take with respect to all variables. Therefore one get a system of 
ordinary differential equations for the Fourier transforms of unknown functions. But we 
get the system of linear algebraic equations for the Fourier transforms of «,(•,-,•) 
(/■ = 1,2,3). 
If the roots with the positive imaginary part of some equation are known, then the 
solution of the boundary value problem for the half-space can be written in the obvious 
form. In this case one can obtain presentations of solutions of the boundary value 
problems by stress and displacement jumps on the plane {x, = 0}. And it is convenient 

to research, for example, diffraction problems for the elastic time-harmonic wave on a 
defect disposed on the plane {X3 = 0}. 

SOME ISOTROPIC ELASTO- AND ELECTRODYNAMIC PROBLEMS. Let Q 
be an infinitely thin defect disposed on the plane  {Xj = 0}  in an isotropic elastic 

medium. Assume that the dependence from the time is harmonic for the components of 
the stress vector and for the components of the displacement vector, the body forces are 
absent. One searched the complex amplitudes of the functions, the time factor e^'"" one 
omitted. ^-^ 

It is well known that by made assumptions the elastodynamic equations have the form 
(A + //) graddiv u + //Aw + pk^u = 0   in   R^ \Q. 

where  A = d^/dx^ +8'/dx^+d^/dx^   is the Laplace operator,  1,//  are the Lame 
constants, p is the density of the body. 
In the case of a soldered hard screen, for example, the boundary conditions have the 
form 

w,|^ =-u°(x,,X2),   / = 1,2,3   on   Q 

where w° (•,•) (i = 1,2,3) are the known functions. 

For solving this problem it is convenient to consider an auxiliary jump problem. One 
searched solutions of the Lame equations for {x^ > 0} and for {X3 < 0} in the class of 

solutions outgoing from the plane {X3 = 0}. On the plane {X3 =: 0} the stress and 
displacement jumps are given 

[", ] IA = ^n, (^1' ^21    k/3 ] L = «.„ (^1, X,),    / =: 1,2,3    On    A 

where A is the plane {X3 =0},  [/]|^ =/(x,,X2,0 + 0)-/(x,,X2,0-0). Functions in 

the right-hand sides of the conditions are the given functions on the plane {x^ = 0}; we 
will to call its the potential functions. 
For solving the jump problem it is convenient to use the longitudinal and lateral 
potentials (p(;;-) and y/= iiy,(y,-),y/^(;;-),if,^{.,.,.)) 

u = grad ^ + rot ^^,    div ^ = 0 
and the Fourier transformation with respect to all variables in the space of distributions. 
For the functions (p{;;-), ^, (•,-,•) (/ = 1,2,3) we have the Helmholtz equations 

A^ + A:,V = 0,   A ^, + kly/. = 0, / = 1,2,3   in   R' \ Q 
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where k, = k/c, (i = 1,2) c, = -JiX + l/u)/ p, Cj = -Jp/ p   are the velocities of spreading 

of longitudinal and lateral waves in the isotropic elastic medium. 
In some electrodynamic boundary value problems systems of Helmholtz equations may 
be obtained too, when boundary conditions for unknown functions do not separate. In 
these cases solutions of Helmholtz equations we will search independently, if the 
Fourier transformation in the class of distributions one used. 
Boundary conditions for the potentials <pi;;-) and ^ do not separate in boundary value 

problems for an isotropic space with the defect Q on the plane {x, = 0}. But the 

problems for the Fourier transforms of the functions (p{;;-) and y/, (•,-,•)(/ = 1,2,3) in the 

auxiliary jump problem one can consider independently, if we will take the Fourier 
transformation in the space of distributions. 
For solving the jump problem we take the Fourier transformation with respect to all 
variables in the Helmholtz equations. One can to obtain presentations of solutions of the 
diffraction problems for the elastic time-harmonic wave on a defect Q. by the potential 
functions. One obtained systems of singular integral equations (SSIE) equivalent to the 
boundary value problems in cases of some defects Q. For example, one can shown that 
in the case of a soldered hard screen in presentations of solutions of the boundary value 

problems the functions a„ (•,•) (/ = 1,2,3) are equal to zero identically and the functions 

a^ (-,•) (/ = 1,2,3) are non-zero on Q only. One obtained SSIE for defining the 

functions a^ (•,•) (/ = 1,2,3) on the screen. Equations of the system have the logarithmic 

singularity with respect to all variables. 

In the considered in Seel, 2 dynamic problems longitudinal and lateral potentials are 
used in the auxiliary jump problem only. It is convenient, because to take the Fourier 
transformation to the independent Helmholtz equations is more easy than to the system 
of the connected Lame equations. And the problems for the Fourier transforms of 
functions (p{;;-) and ^,(-,-,-) (' = ^^2,3) are separated in the jump problem, if one used 

the Fourier transformation in the space of distributions. Usually in analogous 
elastodynamic problems the Fourier transformation does not take with respect to all 
variables. And problems for longitudinal and lateral potentials do not can to consider 
independently. 

REFERENCES 

[1] A.S. Ilyinsky, Yu.G. Smirnov. Electromagnetic wave diffraction by conducting screens 
(Pseudodifferential operators in diffraction problems), VSP, Zeist, 1998 

[2] A.A. Gousenkova, The potential functions method in the problems of the elasticity theory 
for bodies with a defect, Prikl. Mat. i Mekh. (3) 66, 470-480 (2002); English transl. in J. 
Appl. Maths Mechs (3) 66 (2002) 

[3] Yu.V. Egorov, Linear differential equations of the principal type, Nauka, Moscow, 1984 (in 
Russian) 

[4] A.A. Gousenkova, Diffraction problems for electromagnetic wave on a strip and for elastic 
wave on a defect in comparison, Proc. Int. Conf Mathematical Methods in Electromagnetic 
Theory MMET 2000, Kharkov, Ukraine, Sept. 12-15, 2000, vol. 2, 426-428 

KII;K UKRAINK, IX-TII iNrr.RNATiohiAi. CONI-ERRSCI-: OS MATnaiAiicAi. MIJUODS AV ELFXTROMACNU'IIC THKORY 



MMET*02 PROCEEDINGS 499 

APPLICATION OF THE METHOD OF AUXILIARY SOURCES 
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ABSTRACT 
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving 
spherical impedance scatterers. The MAS results are compared with the reference 
spherical wave expansion (SWE) solution. It is demonstrated that good agreement is 
achieved between the MAS and SWE results. 

INTRODUCTION 
The Method of Auxiliary Sources (MAS) is a numerical technique applicable to 
electromagnetic scattering problems. In the general case, a set of spatially impulsive 
electric and/or magnetic sources is introduced to radiate an approximation to the 
unknown scattered field. These so-called auxiliary sources are located on an auxiliary 
surface, typically conformal to, and enclosed within, the physical surface of the 
scatterer. Point matching of the boundary condition on the physical surface is enforced 
to determine the complex amplitudes of the auxiliary sources. The MAS originates from 
an application of a special case of the Method of Moments (MoM), utilising spatially 
impulsive expansion and testing functions, to a generalised surface integral equation 
formulation [1]. An overview of MAS is given in [2]. Utilisation of MAS for numerical 
solution of various 2D scattering problems and 3D PEC and dielectric scattering 
problems has been reported eariier [3], [4], [5]. The purpose of this work is to 
investigate the performance of MAS when the method is applied to scattering problems 
involving spherical impedance scatterers. The spherical wave expansion (SWE) solution 
is developed and used as a reference. The scattering problem under investigation is 

illustrated in Figure 1, together with the 
introduced Cartesian and spherical co-ordinate 
systems. The spherical scatterer of radius ro is 
illuminated by an jc-polarised uniform plane wave 
(E',H') of wavelength X and propagating in the z- 
direction. The Standard Impedance Boundary 
Condition (SIBC) holds on the physical surface of 
the scatterer, fx(Exf) = ^fxH. The chosen 

auxiliary sources are pairs of crossed 6 - and ^ - 
directed electric Hertzian dipoles located on a 
sphere of radius ro-S. The auxiliary source pairs, 
as well as the matching points, are placed 
equidistantly in the angular co-ordinates (9,^). 
The total number of source pairs is denoted by N. 

physical surface 

\ 

auxiliary surface 

Figure 1: The scattering problem geometry 
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The SWE solution is given by (see  [6, Chapter 2]  for definitions of symbols) 

a = /"+' V;r(2«. + 1)(-1)4-^-"' 7?f_\^^/?(;), (-5,,, (5„,, + 5„,_,) + 5,,2(5,„,-i - ^,«,i))" 

NUMERICAL RESULTS 
We define the boundary condition error (BCE) by 

1      '^'^ 
BCE = —- X I r,„^„ X (E,„_„ Xf,„ „) - Q r,„ „ x H,„ „ I (1) 

MN IE' I w,« 
The summation is performed over the scatterer physical surface. Figure 2 shows the 
BCE as a function of A^ for four different scatterer surface impedances C, and three 
values of 5{^: 5/?i=0.2,1: 6/X=0.5, s : 8/X-0.8). In all cases, roll^-l is chosen. It is 
observed that the BCE attained for 5/X=0.5 is the lowest, and that it starts with a rapid 
decrease, whereafter it attains a constant level. 

Figure 2 
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In Figure 3, the normalised bistatic radar cross section (BRCS) results obtained using 
MAS for four different scatterers and for two different planes of observation i(p=0 and 
(p=n/2) are compared with the corresponding SWE results. In all cases, ^=100+jl00n is 
chosen. There is a very good correspondence between the MAS and SWE results. The 
small discrepancies can be diminished further if A'' is increased. 
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■■:](■■ 

te \/V ̂ ^^ — 
 ; .    , . 

L ...:....(|)=Q.,  ,  ■  

Figure 3 

CONCLUSION 
It is seen that the initial decrease in the boundary condition error of the MAS numerical 
solution is relatively fast. Also, the limiting error level achieved is small enough for the 
MAS to be able to produce good approximations to exact results at a relatively small 
computational cost. However, the existence of a finite limit level for the MAS boundary 
condition error indicates that the present numerical implementation of the method is not 
convergent. Bistatic radar cross section results obtained by MAS are found to be in 
good agreement with the reference spherical wave expansion (SWE) solution. 

REFERENCES 
[1] Y. Leviatan et al, IEEE Trans. Antennas Propagat., vol. 36, 1722-1734, Dec. 1988 
[2] D. I. Kaklamani, European Congress on Computational Methods in AppUed 
Sciences and Engineering, Barcelona 11-14 Sep. 2000 
[3] S. Eisler et al., JEE Proceedings, vol. 136, 431-438, Dec. 1989 
[4] H. T. Anastassiu et al., IEEE Trans. Antennas Propagat., vol. 50, 59-66, Jan. 2002 
[5] Y. Leviatan et al., IEEE Trans. Antennas Propagat., vol. 38, 1259-1263, Aug. 1990 
[6] J. E. Hansen, Spherical Near-Field Antenna Measurements, Peter Peregrinus 1988 

KIEV, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



502 MMET*02 PROCEEDINGS 

Galerkin Method for Solving of Singular Integral 
Equation of Diffraction Problem* 

Srairnov Yu.G., Tsupak A.A. 

1    The statement of the diffraction problem 

Let P = {x : 0 < Xi < a, 0 < 2:2 < 6,0 < xa < c} be a resonator with perfectly conducting boundary. Let 
Q be a three-dimensional body, located in P. Q is characterized by tensor permittivity e and constant 

permeability /ZQ- We suppose that components of e are smooth functions in Q and [f^ - Ij is invertible 

inQ;QndP — 0. Let P/Q be homogeneous and isotropic medium. Incident and diffrac-tion fields depend 
on time variable as e~'"'. 

We will find electromagnetic diffraction fields E and H, satisfying Maxwell's equations m P\dQ : 

rot H = - iujiE + j| ,.. - 
rot E = iuj^H - j^    . 

The complete field should have continuous tangent components at dQ : 

nxE'W     = IftxH'^W     =0 
i\dQ      L i\dQ 

and must satisfy the following boundary condition: 

E'r\dP=0- (2) 

2    Integro-differential equations for the diffraction problem 

We will express the solution of the stated problem in terms of vector potentials AE and AH [4]: 

^E=     GE[x,y)jE{y)dy ,^H = / GH{x,y)jH{y)dy , 

.      «-,.«, (3) 
E = ioj^ioAs - 'i^O^C'd div AE - rot AH , 
H = iujeo AH - -^^^grad div AH + rot AE ■ 

Here/jB;=j^-|-j^, JH=]%+JH^ UE' JH ^^ polarization currents). GE,GH are Green functions for 
Helmholtz equation, conforming to the arbitrary currents JEIJH- 

GE,GH are known [3] to have the form of diagonal tensors (the components of GE are written out 
below): 

r^   -V    V     2e„      ,.„.,< ^n^  Uin^'^'"^  \rn<.l^^n, Uinr"™,, -,/shTXs sh7(c - ys), X3 < ys ijir=/j   / ^   1. ,1, „ COS I—ii) smi-T—io) COS!—j/i) smi-j—J/2 )<  , ,   / ^       ^ ^    „^o^i°''^^^^"=      ^ "■   '■'     ^ b    ■'I      \ai"-i     V i> ''''■'|^sh7y3 sh7(c-X3), X3 > ya 

^^ -££o^^^^iS^^'"(-^^)^»^(-^^)^"^(-^i)^"^(-2'^)|sh7y3 sh7(c-X3), X3 > y3       (4) 

Gi =E   E ^4:7J«in(^Xi)sin(^a;2)sin(^2/Osin(^2/2)|*'^^^ 'J^i' " ^'\ ^^ < ^' ^    „^i ^1°'^^''^'^      W   i^     \ b    ^1     \aii^i     ^ *■     '^ich7y3ch7(c-X3), X3 >y3 

"supported by Russian Foundation for Basic Research, greint 01-01-00053 
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Here 7 = \/{^)^ + (^)^ - "^o i^^^ proper branch for square root is chosen as in [2], §2,3), EQ = 1 and 
e„ = 2forn = l,2,3,... . 

We can obtain the following integro-differential equations (under the condition p, = JUQJ in P): 

£f(a;) = i°(x) + klJGE [^ - / E{y)dy + grad div j 6E 

Q 
and we have 

Hix) = H°{x) - iuiEo rot  f GE [■ 

£0 
&{y)dv, 

Q 
and we have (5) 

\M-i\E{y)dy, x€Q. 
So 

Q 

We can extract singularity of Green function G. Using Fourier transformation and interpolation poly- 
nomials we can obtain: 

GE{x,y) = -;—I T- ■ I + diag{gi{x,y),g2{x,y),g3{x,y)}, 
47r \x-y\ 

where gu are smooth functions. 

3    Galerkin method 

Let us introduce the following auxilary function 

G{x,y) = -E  E SB4^sin(^xx)sin(^X2)sin(^y0sin(^l/2)x 
n=lm=l      '     ' (6) 

^ rsh7X3 sh7(c - ys), X3 < y3 
\sh7y3 sh7(c - X3), X3 > ys 

The derivatives of G are connected to the derivatives of G\; through the equalities: 

fi = |^.  < = 1,2,3. (7) 
oxi      ayi 

Before describing the method itself we should make some transformations of equation (5). Denoting 

(^ - /)     as I and (^ - IjS as Jy/e obtain the following equation 

AJ:= iJ{x) - kljGEJ[y)dy - grad div j GEJ{y)dy = Eo{x) (8) 

Q Q 

We can write vector equation (8) as a system of three scalar equations: 

Y.tiiJ\x) - klJG'E{x,y)j\y)dy-^dw,JG{x,y)J{v)dy=El{x),    I = 1,2,3.        (9) 

i=l Q Q 

We will determine the components of approximate solution J in the following way: 

^"'=Ea*/fc'W,  P=Y.hfl{x),  P = Y.c,fl{x), (10) 

where /,5 are basis "hat"-functions dependent essentially on x'. The explicit form of fl is given below. 
Let Q be a parallelepiped: Q = {x : ai < x^ < 02,61 < s^ < h^, ci < s^ < C2}, Q C P. We will cover 

Q with smaller parallelepipeds 

.        7, (11) , O2 — Ol , 2        , „ O2 — 01 ,       !! „ C2 — Cl 
Xfc = ai -I fc, X, = Oi -I- 2 1, x^ = Cl + 2 m; 
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where fc = 1,... ,n - 1;    /,m = 0,1,..., | - 1. 
Denoting {xk - Xk-i) as h^ we get the formulas for /^,^ 
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fklm — ' 

T.1   _T.l ' 

or 

«/a;i €[xl_.^;xl] and xenli^ 

^^,ifx'€[xl;x\^,]andx€Ul,^ (12) 

Functions /^,,„ and /^,„ should be determined by similar formulas. Since 

/wmlx'e{xi^,,xi^J = 0, A',„|x=e{xf^,,xf^J =0, /Itelx3g{x3._,,x:;,^,} =0 , (14) 

every component of approximate vector solution vanishes at some side of Q. However the constructed set 
of basis functions does satisfy the necessary approximation condition. 

Introducing total enumeration for basis functions we get 

fkT fkifk'     k — 1, ■ ■ ■ ,N, 

where N - \{n^ - n^). 
It is convenient to represent the augmented matrix for determining unknown coefficients ak,bk,Ck in 

block form: 
(All All Aiz 

A21 A22 A23 

A31    A32    A33 

where columns S/t and matrices A,.i are determined by formulas: 

Bi = {Elff); (16) 

Bi \ 
Bi (15) 

A^i = i^kif'j,f^)-Skikl ijG'kix,y)f'jiy)dy,fHx) 

fc = 1,2,3;    « = 1,..., iV. (f,g) determines the scalar product in L2, (/, p) = / f{x)g{x)dx. 
Q 

Applying the formulas of integration by parts to both internal and external integrals and taking into 
account (7) and (14) we obtain: 

4^=    j   ^kif](x)fHx)dx-6kikl j jG%{x,y)f]{y)ff{x)dydx- 

n^ n'. 

(18) 
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RADAR CROSS SECTION OF A PERFECTLY CONDUCTING, 
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DIELECTRIC, LOSSY HALF SPACE: 

A CLOSED FORM, PHYSICAL OPTICS EXPRESSION 
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ABSTRACT 

The Physical Optics approximation is employed in the derivation of a closed form 
expression for the Radar Cross Section (RCS) of a flat, polygonal, perfectly conducting 
(PEC) plate, located over a dielectric, possibly lossy half space. The well-known "four- 
path model" is invoked in a first order approximation of the half space contribution to 
the scattering mechanisms. Numerical results are successfully compared to a reference, 
Moment Method solution. The analytical expressions derived can facilitate very fast 
RCS calculations for realistic scatterers, such as ships in a sea environment, or aircraft 
flying low over the ground. 

INTRODUCTION 

Radar Cross Section (RCS) estimation of electrically large, complex targets is usually 
performed via high frequency techniques, such as Physical Optics (PO). A target of 
complex geometry is routinely decomposed into an aggregate of elementary surfaces, 
and the total scattered field is computed as a superposition of the elementary scattering 
contributions. Since the simplest possible shape of an elementary patch is a flat 
polygon, accurate RCS calculation for such a geometry is extremely important. Most 
papers in the literature are related to RCS calculations in free space, which is not a 
realistic situation in several cases, such as a floating ship, or a low - flying aircraft. RCS 
analysis in the presence of a half space can be performed via use of the "four-path 
model" [l]-[3], yielding good results for special geometries, e.g. [4]. The purpose of this 
paper is to extend Gordon's [5] important PO analytical expressions for the RCS of a 
flat, PEC, polygonal plate, so that they are valid in the presence of a dielectric, possibly 
lossy half space. The objective of such a work is the reduction of the computational cost 
associated with RCS calculations of electrically large, complex targets in the presence 
of sea or ground, since utilization of a closed form PO expression implies avoidance of 
time-consuming, numerical, surface integrations. 

MATHEMATICAL ANALYSIS 

The geometry of the problem to be analyzed (Fig.l) consists of a PEC, polygonal, flat 
plate with Q vertices, vanishing thickness, located over a half space, which is filled with 
a dielectric, possibly lossy material of relative electric permittivity e^ and conductivity 
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a. The half space is assumed to He in the far field region of the polygonal plate. The 
interface between free space and dielectric is assumed to lie at the z=0 plane. A 
spherical coordinate system (r, 0, (j)) is defined as shown in the figure. The images of the 
associated unit vectors with respect to the half space boundary are denoted by subscript 
"r" in Fig. 1. A plane wave illuminates the plate target, impinging from an elevation 
angle 9. In order to simulate the half space effects in a simple fashion, the well-known 
"four-path model" [l]-[3] is invoked. Assuming ray optical behaviour of the fields, the 
total backscattered field can be expressed as a cumulative result of four separate 
mechanisms (see Fig.2). Although the four-path model is not exact, it yields accurate 
results under certain limitations [3]. To apply the four-path model in the problem, the 
general, far field expression for the PO scattered field is utilized four times. Summing 
all contributions, the monostatic RCS o////. rr of the flat plate is finally expressed as 

n 
i- ■ nl{2r)+ (f + ?,.)• A/(f + r,. )^ M + f, • n/(2f,. (1) 

exp 

where the upper line is valid for horizontal, and the lower for vertical polarization, /?// 
and Ry are the respective Fresnel reflection coefficients for the half space and « is the 
unit vector normal to the plate, whereas 

A:(v-V'nnj   ,,-i L-^ 

where, by definition, r^ is the location of the cf^ vertex, r^,., = /■, and v, ware not parallel 

to each other. If v, n are parallel to each other. (2) is not valid, but reduces to 

/(v)=.4exp{/A'v-r„} (3) 

where A is the area of the polygon and r^ is an arbitrary point on its surface. It should 

be pointed out that (1) was derived under the PO assumption that both sides of the plate 
can be illuminated, either by the direct or by the reflected wave. 

NUMERICAL RESULTS 

The expression in (1) was validated via comparisons with reference Moment Method 
(MoM) results [6]. A square, PEC, 2X by 2A. flat plate was located vertically, in the >'z 
plane, over a half space (Fig. 3), with relative permittivity £,.=80-/70 (simulating sea 
water). The center of the plate was located at a distance d'=\OX from the interface. The 
RCS results at the (()=0 cut. as a function of the 9 angle, and for horizontal polarization 
are depicted in Fig. 4, showing excellent agreement, for a wide range of elevation 
angles. For 9 angles closer to 0, the agreement is expectedly not as good, since the PO 
approximation fails in the region of grazing incidence. 
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ABSTRACT 

The 3D electromagnetic model of the aircraft intake terminated with blade structure is 
based on the utilization of equivalence theorem and integral expressions for 
electromagnetic fields. Acceptable numerical efficiency is achieved due to 
implementation of the special algorithm of successive electromagnetic field calculation 
trough the sectioned air duct from inlet aperture to the termination section and 
backwards. The equivalent surface currents over the apertures separating the sections 
and conducting walls are calculated iteratively in separate processes for each section, 
wall smoothness and large dimensions of the duct are taken into account to reduce 
computational cost. Rigorous integral equation technique exploiting rotational 
periodicity of the impeller is employed to treat the termination. Far field is evaluated via 
integrating currents over the intake aperture. Computed data are close to reference 
results (including experimental ones). 

ELECTROMAGNETIC MODEL DESCRIPTION 

It is well known that scattering from engine intake of modern jet aircraft constitutes a 
main contribution to the total backscattered field at the front illumination aspects. The 
specific feature of the scattering is its dependence upon the properties of the intake 
loading to be the blade structure. Our previously reported results [1] referred to the 
developed 3D model based on the utilization of equivalence theorem and integral 
expressions for electromagnetic fields. Corresponding numerical techniques are highly 
time and computer memory consuming. To achieve sufficient computational efficiency 
the special algorithm of successive electromagnetic field calculation trough the 
sectioned air duct from inlet aperture to the termination section was developed and 
applied. Recently we found in literature analogous technique of duct subdivision [2], the 
main difference is that in our approach we have no need in evaluation scattering 
matrices of the duct sections. The surface currents over the apertures separating the 
sections, on the conducting walls and termination blades were calculated in the iteration 
processes. But further investigations revealed that when treating especially complex 
realisfic termination sections (like impeller discussed below) the iterative physical 
optics (IPO) technique [3] tend to be divergent. So we turned to the rigorous integral 
equation (IE) approach in order to investigate the blade structure with the high 
precision. To make IE computer implementation suitable for the large (in terms of 
wavelength) real-sized blades we have exploited the rotational  periodicity of the 
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scatterer resulting in the reduction of the computational domain to a single blade 
according to Prof. E.N. Vasiliev's ideas [4]. Similar approach was also discussed in 
literature (see, e.g. [5], where Green's function of the PEC circular waveguide was 
used). We applied Green's function of the free space that enabled us to solve 
corresponding electric field IE for a single blade A^ times (A^ being the number of blades 
rather than the number of circular waveguide modes) with respect to the unknown 
Fourier-harmonics of the surface currents. Besides, we preserved opportunity to account 
for presence of coating on the termination section walls. Galerkin's technique (moment 
method with the roof-top basis and testing functions defined on the rectangular cell 
grid) was used to convert lEs into the linear algebraic equation systems. Having defined 
scattering by the blades, the total scattered field was evaluated via the similar successive 
calculation of waves propagation through the sections of the duct from the termination 
to the inlet aperture. The reciprocity principle (see, e.g. [2]) was not applied since we 
took in mind the possibility of treating some other objects that might be placed into the 
duct, or cope with the specific properties of coating. Besides, while processing 
backwards, the contribution of wall current defined earlier (at "forward" propagation 
calculation) may be used to refine Kirchhoff s approximation. Far field is evaluated via 
integrating currents over the intake aperture. Possible coating of the interior walls was 
taken into account via its equivalent impedance and corresponding spatial, polarization 
and angular dependencies. 
The communication discusses the accuracy and numerical efficiency of the approach 
comparing to IPO and pure PO treatment of the termination. Selected examples 
illustrating features of the technique are presented in Fig. 1 (comparison to modal 
expansion solution, [2]) and Fig. 2 (comparison to our experimental investigations of 
the model shown in Fig. 3); here calculated data are shown with solid curves. Example 
of numerical evaluation of the coating influence is depicted in Fig. 4 {Z/Wo=OA-i0.3, 
Wo=l20n, Ohms; note, section 4 remained uncoated). 
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FINITE ELEMENT ANALYSIS OF SCATTERING FROM 
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ABSTRACT 

A number of techniques suggested for numerical analysis of scattering from 2D-objects 
with complex border shape and/or arbitrarily changing electromagnetic parameters (for 
brevity, from 2D-objects of arbitrary composition) is very large indeed, even if to take 
into account only the approaches based on finite element method (MFE). Nevertheless, 
some methodological and "technological" questions of MFE application have been 
under consideration ever since first implementations of the method. The task of correct 
field behavior description near the border, where the electromagnetic parameters change 
abruptly, belongs to the first group of questions. The convenient means of problem 
statement, such as specification of scattering object geometry and its electromagnetic 
parameters variation, is an important "technological" task. 
The aim of this paper is to present the MFE-based numerical procedure to evaluate the 
RCS signature of 2D-objects of arbitrary composition, including dielectric, metal and 
plasma-like objects. The scattering of waves of two polarizations (H-wave with E., 

H^    components, and E-wave with H^, E^     components) is calculated. The original 

variants of solutions to the two above-mentioned questions were implemented: the 
weighted residual minimization type condition is implemented on the border of 
scattering object in order to achieve the continuity of tangential to the border field 
components, and AutoCAD is used for data input. 

CHARASCTERISTIC FEATURES OF THE NUMERICAL PROCEDURE 

Wave equations for £_ or H^ components are solved with the nodal FE. The objects 

with arbitrary cross sections are placed inside the rectangular region, where the MFE is 
used. The rectangularity permits a simple adjustment of the mesh with respect to the 
objects' borders. 
The AutoCAD possesses the convenient user's interface; it is widely used in industry. 
That is why AutoCAD was chosen for inputting data on the geometry of the problem 
and electromagnetic parameters distribution. The borders of objects are outlined with 

2 3 
cubic spUne  r(u) = OLQ + dyu+0,2-u   +613-w  , where dj 

K^'iyj 

/ = 0-4-3; the 

electromagnetic parameters can either be set analytically or as a surface z(x, y) above 
the cross section. The data are read from AutoCAD output file, and then the mesh is 
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adjusted with the use of parametrical object's border representation, see the examples of 
AutoCAD drawing and automatically generated mesh in Figl a,b). 

Fig.] 
b) 

The distribution of E. or H. is found as a solution of the problem. In comparison with 

tlie known edge-based finite element technique [I] the reduction of resuhing SIAli 
order is achieved, white the process of SLAE creation is simpler. 
The question of the tangential field component {H^ for Il-wave or A'.,  for l>wavc) on 

the border of two media is solved by the corresponding boundary condition imposition, 
analogously to [2], but again with respect to the only z-component of the field. 
Generally the equation of SLAE has the form R^+a ■ R-) =Qi. where R\ and Rj are 

the weighted residuals, corresponding to satisfying wave equation and tangential field 
component continuity on the border of two media, a is a coefficient. Tiie calculated 
field distributions for plane H and E-wave diffraction by dielectric cylinder with 8=4. 
kj- = 3 are shown in Fig.2, where the direction of incidence is indicated with arrows. 

(J *~ 

The solution very close to reference eigen function solution can be obtained in wide 
range of a here - in case of E-wave. The criterion of the best choosing a is under 
investigation now. 
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Fig. 2 
The other features of the procedure are quite traditional for finite methods; the 
absorbing boundary conditions are imposed upon the scattered field at the mesh border, 
the scattering diagram is calculated with the Kirchhoffs formula and from the 
assumption of far zone observation point location [3]. 
There exists an opportunity of immediate visualization of field distribution within the 
calculation area, becau.se such a distribution is just the output of wave equation solution. 
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Fig. 3 

distribution within the slab resulting 
transversal standing waves, can be seen. 
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presented in Fig.4. 
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the inhomogeneous media. 
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X^/4 = X^/2        (half-wavelength 

passing through without reflection) 
is shown in Fig.3. Wavy disturbance 
of the field near the edges, regular 

from interaction between going through and 

10000 ^ koCT      Backscattering RCS pattern. 
Metal plate of width 60 (=10?.) and thickness jt/4. 

h 

m 

i i 
iiS I!! ii ft 
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RADIOABSORBING MATERIAL OPTIMAL USING IN THE 
REDUCTION OF AIRCRAFT RADAR CROSS-SECTION 

Vitally A. Vasilets. Stanislav A. Gorelyshev. Konstanlin 1. Tkachuk 
Kharkov military university. Kharkov. Ukraine 

E-mail: vasilets@;euro.dlnos.nct 
ABSTRACT 

It's well known, local scattering parts on a smooth convex object elements make the 
most important contribution to reflected signal energy. So these surface parts of 
complex shape objects are coated by radioabsorbing materials (RM) in camoullagc 
purpose. As a rule, the radioabsorbing coating (RC) has the sizeable weight and the 
cost. In this case the problem of optimal using of RM on the object surface has been 
occurred. The optimal coating method for the reduction of radar cross-section (RCS) 
has been obtained for a certain illumination and reception directions in limitation 
conditions for a quantity of the RC using. Optimal coating has been realized due to 
decision of some integer linear programming problem. Using this method we have had 
RCS numerical results for reductive aircraft model partly coated by RM. 

BASE CALCULATION RELATIONS 

The object construction and coating technology determine the surface fragmentation on 
some parts. These ones may be have RC or may be perfectly conducting. In this case 
object RCS is approximately represented as sum of RCS of these parts 

a(e)=Ia,(e). (1) 

where N is the number of object surface parts. 0 is an illumination or reception angle 
and RCS is a function of this angle. Finally, the values of object RCS averaged in some 
range of illumination or reception angles will be interested by us and RCS 
representation by (1) is reasonably for calculation. The method offered in [1] may be 
used for calculation of RCS separate object parts. Let a mean RCS for whole object and 
a mean RCS for i-th surface part for angle range 9| < 0 < 62 : 

,6, 1       ^^ 

^^kT^nW^^^^-  ^i = ur~^hi^^- (2) 

Calculating the range averaging for (1). we obtain 
.V 

a = Zay. 0) 
i=\ 

We'll minimize the sum (3) of separate part RCS averaged  in a finite range of 
illumination or reception angles. Let  a,i is a mean RCS of i-th part with perfectly 

conducting surface,  a/2 is a mean RCS of the same part in case of using RC on a 

surface of this part. The RCS of completely coated object is 
A' 

^2 = Z^/2 • (4) 
/=1 

If subtract (4) from (3), we'll obtain 
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N,       _.N_N 

^-^2 = Z(^/-^/2)= Z^/lf^/l -^/2)= H^A^i ■ (5) 
/=] /=1 /=1 

Here K/ is binary factor, which equals zero if i-th part uses RC and equal one if this 

surface part is perfectly conducting. Let SQ is as much as a possible square of RM on 

an object surface, 5 is the total square of an object surface and 
N 

S=ZSi. (6) 
/=1 

The RC square limitation using K,(Z = l,...,N) can be written as 

SK,-5,->5-^0- (7) 
i=\ 

The problem of RM optimal distribution on an object surface comes to problem of 
integer linear programming - determination of binary factors K,- series, that minimize 

representation (5) and satisfy the limitation condition (7). The solution of this problem 
may be obtain by any standard method, for example, additive method or method of 
branches and boundaries [2]. 

NUMERICAL RESULTS 

The reductive aircraft model (Fig.l) has been used for numerical calculation. The model 
includes the surfaces of 4 ellipsoids. The model length is 18m, width is 22m, height is 

4.25m. The model RCS has been calculated 
for sounding frequency lOGGz. The RC 
parameters are: thickness 1.3mm, permitivity 
ei = 2(h-i0.\, permeability |i| = 1.35 +/0.8 . 
This material reduces plate RCS by 15dB for 

^^"   ■ a normal incidence of sounding signal with 
given frequency. The object surface has been broken into 140 parts TV = 140. The 
dependence of aircraft averaged RCS on optimal used RM square has been represented 
on Fig.2 for azimuth range -10°...+10° relatively aircraft axis and elevation angle 
(range 0°...-8°) relatively wing plane (monostatic case and illumination from a lower 

RCS, m^ 10 RCS, m^ '0 

11   I   I 

15 25 35 45 55 65 75 
S,m^ 

I   I 1- 

!5 25 35 45 55 65 75 
S,in- 

Fig.2. Fig.3. 

half-space). The similar dependence for bistatic case for front sounding and bistatic 
angle by azimuth -10°...+10° and by elevation 0°...-8° has been represented on Fig.3. 
In bistatic case the averaged RCS decreases quicker than in monostatic case. This is 
determined by lesser displacements of local scattering centers on object surface in 
bistatic case and, therefore, by different optimal distribution of RM. The acceptable 
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RCS values have been obtained by RM optimal using on 20-25% of object surface. The 
similar results have been represented on Fig.4 (monostatic case) and Fig.5 (bistatic case) 
for bigger average angle range (azimuth -20°...+20°, elevation angle 0°...-20°). 

Fig.4. Fig.5. 

The RC optimal distribution for averaged RCS in azimuth range -5°...+5° and elevation 
range -3°...+ 3° has been represented on Fig.6 (Fig.6a is the model view from upper 
half-space and Fig.6b - the same model from lower one. RC places pointed by gray 
color and frames. RC square is 40m^. Averaged RCS for this model is 0.68m . RCS for 
perfectly coated model is 0.26m^ and for completely conducting one is 8.11m . 

Fig.6a Fig.6b 

The RC optimal distribution for averaged RCS in azimuth range -20°...+20° and 
elevation range 0°...+ 20° has been represented on Fig.7. RC square is 40m . RCS for 
this case is 0.74m^. RCS for completely coated model is 0.23m^ and perfectly 
conducting one is 6.8 Im^. The picture analysis shows the visible difference between 
optimal distributions of RM limited quantity for two mentioned ranges of illumination 
and reception angles. 

Fig.7a Fig.7b 

The RCS reduction estimation in finite range of illumination and reception angles has 
been proposed in RM optimal using on the part of object surface. It can conclude that 
the essential and actually complete reduction of RCS has been obtained for wide range 
of fighting angles at using RM only 20-25% of an aircraft model surface. 
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MINIMIZATION OF THE FIELD DIFFRACTED FROM A 
CONVEX IMPEDANCE BODY TO THE SHADOW REGION 

A.A. Zvyagintsev, A.I. Ivanov 

V.N.Karazin Kharkiv National University 
Svoboda sq., 4, Kharkov, 61077, Ukraine 

mladyon@rian.ira.kharkov.ua 

INTRODUCTION 

Modern means of transport, such as aircrafts, can contain several dozens transmitting 
and receiving antermas aboard. Each of these antennas is the potential source of the 
interference for the others. That is why the developers have to take appropriate steps to 
decrease the undesirable reciprocal effects. This can be made, for example, by means of 
the optimal positional relationship, or directional patterns correction, or by means of the 
various coverings. 
This work presents a method of the body impedance (or covering) distribution 
determination, under which the field of the first antenna is the lowest on the second one. 
It is based on the well-known asymptotic methods of field determination - Geometrical 
Theory of Diffraction (GTD), Uniform Asymptotic Theory (UAT) [1] and Ritz method 
for functional minimization [2]. 

PROBLEM SETTING 

Let us consider the following problem: The point of observation M is situated in the 
shadow region relative to point source M^ (fig. 1). The body is bounded by the smooth 

curve /. 

Fig. 

The curvature radius of / is p{s), where s is the natural parameter of /. The impedance 
of the body g{s) can be any smooth complex function of s with the only restriction 

\g{s)\ = 0(1). This restriction will be explained later. Enter the coordinates {s, n) where 

n is the length of the perpendicular dropped to the body from a point, and s is the natural 
parameter of the meet point of the body and the perpendicular. The field at the point M 
can be calculated using GTD formulas for the creeping waves if both the point source 
and the observation point are far enough from the body. If the points are close to the 
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body, the asymptotic formulas of V.M. Babich and V.S. Buldyrev [1] should be used: 

n~-'r, /j^O 

' 2i 

/^^ 

v«y 
[p{s)p{s,)] 

exp 
. ,^.W3. 

i^r. 

exp 

^5 c/.v r    as        r      a.v + - 
2)    IP'^S)   lp{s)g{s)    6k'" P{^) Pi^a) 

ik{s-s„ ) :). 

(I) 

.«i()(^^0-«ioC^o) 
,1/3 

+ 0{k''')  w,{T{^M,))w,{T{L,M)) 
k' j 

where    W|(X),M'|'(X)    are   the   Airy   function   of  first   order   and   its   derivative 

1-7 yj^ iM^^{z)^2e''-^Ai{ze-'"'^)); £,^ is the p-th root of the equation M',(^,,) = 0; v = nk-' , 

and «|o,r((^,M) are defined by the following formulas: 

«,„(.) ^ 2'"-^^; jp--(.) -^+—p'\s)-—p(s)p"(s) ys 
60    135 43A^v ^/- V ^r 

>i/3 

T{^,M) = ^-v\ 
Pis), 

,1/3 
■ + 0(A"'') 

It is evident that the formula (1) can't be used if the impedance becomes too small by 
absolute value. That is why the present method doesn't allow the passage to the limit 
g(.v)^0. 
We are  interested  in the function   g(.v),  which minimizes one  of the  following 
functionals: 

F,{g{s)) = \u[g{s):M.M,,k)\ 

F,{g{s)) = max\u{g{s)-M + 5M,M,.k)\ 

F,{g{s)) = max\u[g{s)-M,M,+5M^,kY 

F,{g{s)) = m^x\u{g{s)-MM,.k + 5k)\ 

The functionals F,, ^ can be used if the source, the observation point or the frequency 

varies within the defined limits. They also allow estimating the stability of the results to 
the deviafions of the initial conditions. 
The problem  of functional  minimization  can be reduced to problem of function 

A' 

minimizafion if we assume that g{s) = ^a^,/^,(.v) + /?^.(.9) where/^(,y) are the members 
p 

of a set of orthogonal functions that is complete on the defined space, and R>^{s) is the 

remainder [2]. There is a great variety of function minimization methods. In the present 
work the method of Nelder and Mead [3] has been used, though the other methods, for 
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example [4], are also applicable. 

NUMERICAL RESULTS 
In order to test the present method, it was applied to the problems of scattering on 
circular, elliptic and parabolic cylinders. 

0,000035 - 

0,000030 - 1        \ 
1          \ 

 Re(g)=-1 
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0,000004 - 

0,000003 - 

■ lm(g)=2 
-lm(g)=-2 

Fig. 2 

angle 

Fig. 4 

Fig. 3 

Fig.5 

The fig. 2,3 shows the field amplitude dependencies in the point M on the real and 
imaginary parts of the impedance (SQ =0;s = 7v;n = n^^ =0.1; p = l;kp = \0). On the fig. 

2 Re(g(^)) = const = ±1, and on the fig. 3 Im(g(^)) = const = ±2 . The dependencies 
have extremums at small real (imaginary) parts of the impedance, and have the common 
limit if Re(g)->±oo (Im(g)^±oo). This allows to solve both the problem for 
minimization and maximization of the field. It is evidently from fig. 2,3 that the 
minimum of the field for the circle can be reached only if the real part of the impedance 
becomes negative at least in a small sector, and the maximum - only if the real part 
becomes positive at least in a small sector. The fig. 4 shows the impedances that 
minimize the functional F^ ig(s)) (the geometry is the same as in the previous example). 
Both distributions are symmetrical relative to the point ;r/2 accordingly to the 
reciprocity principle. The optimal imaginary part of the impedance for the parabolic 
cylinder    is    shown    on    fig.5    (kF=10    where    F    is    the    focal    distance; 
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s^^-F-,s = F;nO = Q.05F;n = OAF;Re(g{s)) = -\). The minimum of the field is still 

observed only for the negative real parts, but the distribution is no longer symmetrical 
and parabolical. 

CONCLUSIONS 

The proposed method of field minimization in the shadow region has shown that it can 
be used for various optimization procedures provided that ^a -lOor larger, where a is 
the typical dimension of the scatterer. It can also be generalized to the 3-dimensional 
case and improved by accounting surface waves in the case lmg(>v)<0; Re^(.s')>0. 
As the formula (1) actually presents the Green's function, the method can be easily 
modified to deal with distant sources. 
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INFLUENCE OF DEFECTS ON ELECTRODYNAMIC 
PROPERTIES OF A SEMI-INFINITE PERIODIC SEQUENCE OF 

THE METAL-DIELECTRIC SCATTERERS 

Vyacheslav.V. Khardikov,     Vadim.B. Kazanskiy 

Kharkov National University, 4 Svobody sq., Kharkov, 61077, Ukraine 
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ABSTRACT 

A semi-infinite periodic sequence of the metal-dielectric scatterers with defect in A^ 
basic element is investigated. The analysis of the dynamic of electromagnetic properties 
of investigated structure was carried out for different polarization of the exciting field 
and degree of the electrodynamic connection between resonance volume. 

OBJECT OF RESEARCH 

The dynamic of the monochromatic (exp(-/c0r)) fields of the scattering of the 

symmetric TJEQ,, -, TMQ^ - waves of the circular waveguide on a semi-infinite periodic 

sequence of the metal-dielectric scatterers, if the geometric and electric parameters of 
the N basic element are changing, is investigated. The structure and the coordinate 
system is depicted schematically in Fig. 1. The base element, which has length L 
(period), consist of the two dielectric layers, which characterized by the thickness' d^, 

the wave conductivities F^, permitivities s^ and permeabilities fi^ (7=1, 2). Between 

the layers is placed the resistive film (it has conductivity Y^) (fig. l.a) or the ring 

a) b) c) 

Fig. 1. Geometry of studding structure 
(fig. 1 .b) or radial (fig. 1 .c) diaphragms. The diaphragms are infinitely thin and perfectly 
conducting and have a period  /   and a separation between conducting tape   d 
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{ii = cos(nd/I) is the filling parameter of diaphragm). The characteristic dimension of 
the  diaphragms   is   supposed  to  be   significantly   smaller  than  the  wave   length 
(K = / / X « 1), therefore the phenomena of the transformation of the wave types are 
absence. In this approaching the transfer matrix of the basic elements (T ) was defined 
in[l]. 
The reflection coefficient (i?^) from the perfect semi-infinite periodic sequence can be 

defined as the root of equation 

which less then 1 (|/?^,| < 1). t,j is the elements of transfer matrix of basic elements. 

The reflection coefficient  R   from the defect semi-infinite periodic sequence (the 
parameters of the N basic element is changed) can be found from operator equation: 

A   A 

RA 

    -T^ A  - I -T^ f 

oj 

^   A        ^ 

KA,.,j 
(2) 

Where T' is transfer matrix of defect basic element, the elements of the degree of the 
transfer matrix (T'^ ' ) were presented in [1] by the analytical formulas through the 

Mauguin polynomials P^y., (A''), where A' = (/,, +/,,)/ 2 . 

RESULTS 

There are a two type zones on the dependencies of the reflection coefficient of perfectly 
semi-infinite sequence of diaphragms on the frequency (fig. 2-3). The one of them has a 
relatively high value of reflection coefficient (stop band) and the second has a relatively 
small value of i?,, (pass band). The value of the 7?^ in pass band depends on degree of 
electromagnetic connection between the basic elements. For the low degree connection 

0,6 - 

■\ ■\ 

re,, - wave 

' A/ = 5 

-; /r        n c 

 c/,/t = 0.495     \ 
i  d.lL = 0.49       1 

TMj, - wave 

W = 5 

d/L = 0.5 
d,/L = 0 45 
d./L = 0 55 

<2S:x2Sx; 
0,016 

a) b) 

Fig. 2. The dependencies of the reflecfion coefficient from sequence of ring 
diaphragms on frequency. 8^ =2, \i^ =1, I// = 100, rjl = AQ, dJL = Q.5. 

a) u = -0.9 \h)u = 0,9 

(TTTQI -wave for ring and rMg, -wave for radial diaphragms) the value i?^ -1, in other 

case i?,„ ~ 0. 
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The resistive film is the active local conductivity. As its volume Y^ is much less of the 

wave conductivity of the waveguide channels, then the changes of the relative volume 
AF /r   on the 10% or less resuh to the minor change of the average level of the 

reflection coefficient in the pass band. These changes does not depend from the type of 
the exciting field and position of the defect. 

0.98 

—   0,94 

0,92 

0,90;!! 
0,0 "• 

— d,/L = 0.5 
— d,/L = 0.49,   N=& 
■•■•• d,/L = 0,49.   A;=9 

'^ 
Cj = 2 + ; 0.002 I 

 u = -0.9    j 
  u = -0.81   i 

-0.9    ; 
  u = -0.81   i 

a^ b) 

Fig. 3. The dependencies of R from the semi-infinite sequence of ring 
diaphragms on frequency, fi^ = 1, L/l = 100, r, // = 40, u = -0.9 , 

J,/Z = 0.5.a) s^ =2-f/0.002;b) N = 7 . 

The reactivity of the diaphragms and the thickness of the layer determine the phase 
properties of the system. The changes one of these parameters in the N basic element 
result in the appearance of the high frequency oscillations in the pass bands (fig. 2). 
This fact is explained by exciting eigen oscillations of the set from A'^ -1 identical 
elements loaded by the defect. The amplitude and number of high frequency oscillations 
is depended to the value of the defect and its number (TV) (fig. 2-3). 
The system with low electromagnetic connection between the basic elements is very 
sensitive to the phase defect (fig 2.a). The degree of influence of the defects can be 
decreased by the using in such system of the dielectric with low dissipative loses 
(fig. 3). The degree of the influense is decreased if the disipative loses or number of 
defect elements increasing. 

CONCLUSIONS 

The dynamic of the dependencies amplitude characteristics on the frequency with the 
change of the composition or geometric and material parameters in one of the base 
elements was determined in long wave region. The analysis of this dynamic was carried 
out for different polarization of the exciting field and degree of the electrodynamic 
connection between resonance volume. 
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WAVEGUIDE FILTERS ON THE LUMPED ELEMENTS 

A.R. Sorkin 

Krasnoyarsk State Technical University. Krasnoyarsk, Russia 
E-mail: sorkin@fromru.com 

In mobile microwaves systems traditional waveguide filters appear to be too big. A way 
out is the application of structures on the lumped elements. The ways of realization of 
this idea are below described. 
Filters with quarter wave couplings. The improvement of selective properties can be re- 
ceived when replacing a parallel resonant circuit by a pair of rejection circuits (fig. \a). 

71 ilr-t- 

 1^ _-»^  ^ 

JI 

-5. Ma) / *Tr i ■" 
:eie« 

,5 ,03, Li    \ _\ ; 
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a) b) c) 
Fig. 1. Three-section filter with quarter wave couplings when replacing one resonant circuit by a 

pair of rejection circuits: a) circuit, h) a design, c) frecuency responce 

At the allocation of two resonators on the distance less than 90" the characteristic 
turns out to be double-humped (fig. 2h). At the replacement of one passing circuit by a 
pair of rejection circuits the characteristics on Cauer type are received. 
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a) h) c) 
Fig. 2. A passing cascade section at the replacement of one passing circuit by a pair of rejection 

circuits (a), its frequency response {t>) and design (c) 
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B,(f,,)   l!,(lp) B„<f|,)      „_(,-,)   ,j,(f,,) 
.L 
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a) h) 
Fig. 3. Transformation of a polynomial filter into the filter with poles: a) in the bottom stopband 

(quasi- high-pass filter); h) in the top stopband (quasi-low-pass filter) 
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Practically such a filter is carried out as a short waveguide insertion (fig.2c). The 
original filter - a flange with the electric length 60-70° (~A/5 - A/6) is received. Its 
characteristic is shown on fig.26. 
Passband filters with direct couplings. If in the filter with direct couplings the jet 
irregularity is replaced with a rejection circuit we shall receive the filter with the 
asymmetrical characteristics (fig.3). The method of synthesis of such filters - prototypes 
is developed. On fig. 4 the design of a similar filter and its frequency characteristics is 
shown. 
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e 3,4 
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Fig. 4. The design of three-section filter 
and. frequency characteristics of a quasi- high-pass filter 

Waveguide filters with a ladder structure. It is experimentally proved, that in 
waveguides it is possible to realize a ladder circuit without introduction of inverters of 
immitances. Two circuits of a five-section filter (fig.5) have been examined. 
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Fig. 5. Ladder circuits of five-section filters 

 '• *  A senton i 
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Fig. 6. A design of the filter 
under the circuit fig. 5 6 

The filter design according to the scheme of fig. 5b, is shown on fig. 6. Here quality Q^ 

is formed by a pair of rejection circuits. On fig.6 these rejection circuits are executed as 
resonant posts 1. Parallel circuits realized as a resonant diaphragm with the U-shaped 
aperture. Q-factor is determined by the size of shift of the ends of a slot. The length of a 
slot is made a little bit shorter than that of the resonant one. The tuning screw, located 
near a longer horizontal part of a slot, is shifted along a waveguide with regard to a 
plane of a diaphragm. Series circuits represent two short-circuited stubs included into 
the opposite wide walls. The filter is executed from two identical units between the 
flanges of which central diaphragm Qp^ is inserted. Two filters executed according to 
the schemes of fig. 5a and 5b have been experimentally investigated. In a passband the 
loss of both filters does not exceed 0.2 dB. The length of filters: according to the 
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T 

scheme of fig. 5a - 48 mm, according to the scheme of fig. 5h-- 44 mm, that is a bit less 
than half of a wave length in a waveguide. 

Rejection  fillers with direct couylin^. At low requirements to a 
^    L|| I   \ slope steepness it is possible to build a stopband filter on cu-cuils 

4     '     with  direct  coupling  (fig.   7).   Resonant  posts  are  placed   in 
'   reference planes T of the E-plane Junction. As the experience 

] shows, at such connection the equivalent qualities of a stub and 
I   especially posts are reduced due    to the additional coupling. To 

■ !   reduce this coupling it is possible      to        use diaphragms or ~ 
;   which is easier structurally - to carry out a   stub on a waveguide 

¥\g. 7.Rejection filters of a smaller section, 
with direct couplings 

Filters with a   Unv-pass filter structure. Capacitor elements are carried out as fiat 
capacitor diaphragms. The opportunity to reduce sizes of series inductances follows 

from the expression for wave resistance of a w-aveguide:  Z„. -hA/ a-yj\-{X/laY , 

where y^ - is a constant dependent on a method of wave resistance definition . 
      3        4 5 6 7        8       r,<;ii7 

nl "I- \ 

"^1^ 

a) h) 
Fig. 8. The low-pass filter on capacitor diaphragms 

Hence it is clear, that for the wave resistance increase the height h is increased or the 
wide wall a is narrowed. It allows to make the inductive elements length much smaller 
than the wave length i.e. to receive practically lumped elements. This idea is used when 
creating LPF (fig. 8) and the transformer for connection of waveguides with different 

Lj      ,, height. In the latter case the filter from |1| was a 
low-frequency protot\'pe. The transformer connects 
waveguides with the section 58x25 and 61x10 mm. 
The quarter wave transformer similar in parameters 

■ contains three links and has length 3/f/4 . Thus, the 

trans- former considered gives a gain in a length 
approximately 4.5 times. In the band of frequencies 
3.2^4.2 GHz'vSWR did not exceed the value 1.16. 
The transformer has 6 reactive elements. 
Structurally it represents a package of linings in 
which windows of different section (fig.9) arc cut 

Fig.9. The design of transformer out. The full length of the transformer is 20 mm. 
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ABSTRACT 
A novel full-wave solution of the problem of electromagnetic wave scattering by a 
circular post in a straight or continuously curved rectangular waveguide is presented. A 
rigorous mathematical model is based on the domain-product technique. It allows to 
construct an efficient series representation for the field in the interaction region. As a 
result, the initial boundary value formulation is reduced to a matrix equation with the 
fredholm operator. The last has the form of a sum of several products of the hilbert- 
schmidt operators provided the post does not touch the boundaries of the interaction 
region. The kernel matrix operator predetermines the fast convergence of the numerical 
approximations for a wide range of curvature variation, any possible radius of the 
cylinder and arbitrary location of the obstacle in the interior of the guide. 

INTRODUCTION 

A variety of techniques has been applied to the problem of electromagnetic wave 
scattering by cylindrical obstacles in the straight rectangular waveguides, which has 
been examined for many years (see, for instance, [1-4, 6]). The well known works deal 
exclusively with the special situation of relatively thin and centered posts [1, 2]. 
Recently these tight constraints have been overcome [3, 4], but, as a rule, the data 
obtained are validated by computational experiment in the form of "practical 
convergence" and comparative checks. Rigorous analysis of a post in continuously 
curved rectangular waveguide did not carry out at all. 
We present an alternative rigorous analytical approach for solving the outlined class of 
problems that is quite straightforward, effective and well substantiated. The method of 
analysis is the domain-product technique (DPT) [5]. We consider the region of field 
determination as a common part of several auxiliary domains with separable geometry. 
After projective procedure the initial formulation is reduced to a matrix operator 
equation with respect to expansion coefficients that are associated with the auxiliary 
region related to the post. Functional properties of the matrix operator obtained are a 
subject of our investigation. The approach is described for a circular perfectly 
conducting post in a common 2-D waveguide structure, which is a generalisation of 
both straight and continuously curved rectangular waveguide. 
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DPT MODEL OF INDUCTIVE POST 

The configuration of interest and the co-ordinate systems used arc shown in Fig. la. The 
circular post of a radius /• placed across the guide parallel to the narrow wall and 
arbitrary centered. The mode incident upon the post is IA/|o. To take the advantage of 

the physical symmetry plane the problem has been partitioned into two sub-problems 
corresponding to the symmetric and anti-symmetric excitations. 
The interior of the guide is divided into the interaction region and two regular semi- 
infinite waveguides. Their fields are bound by the matching conditions on the common 
boundary lines. According with DPT. a field inside the interaction region can be 
represented in the form 

/-I 

as a superposition of partial solutions of the Helmholtz equation for five specially 
constructed intersecting domains [6]. In the expression (1) 

^/'■'(/^'.^>Zx„expM')4P^.    p'>r.-^<0'<^ 

is a solution in the exterior to the post, which meets the condition at infinity. The 
expansion coefficients |.T„} are sought in the Hilbert space 

Using confinuity of the tangential electric and magnetic fields inside of guide and 
homogeneous boundary conditions on the conducting parts of the boundaries of the 
interaction region we obtain the matrix equation 

x + Ax = b,bG/?, (2) 

after familiar algebraisation. 

PROPERTIES OF MATRIX OPERATOR 

The matrix operator A : /?, -^ /?, from (2) has the form 

A = (T,+iT,F,)D,+(T3+|T,F3)I)3+^T,(F,-G) (3) 

It compactness follows from asymptotic estimates of some integrals, which are 
Fourier's coefficients of the functions being differentiable infinitely many times. For the 
elements of matrix operators T^ from (3) we have relations 

I'"I'"'"f=^ 0-^0) . r>0. / = 1.3 

The conditions C,   <1. / = 1.3. mean that the post does not touch the boundaries of the 

interaction region. Under the same condition, we get 

y|/-"-'f <c», yl|/?''""f <cc:. /-ij 
/  ly mil     I '   /   ;      I'   / I ■ 
III.II III.II '' 

where p""'"' = (.C',\g,„„.<C'') ■ ^t proves that A : /?, ^ /;, is the kernel operator. 
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Let x'^''*^ be the solution of a "truncated" counterpart of the matrix equation, then in the 
sense of the /z, -norm the relative errors of approximation tend to zero with M,N -^co. 

Fig. lb. 
-2 

10 

d=0.8a; t=0.2a 

^I2^=^.2 
M>7 

I I I I l_ 

10 2030405060708090100 
Number of v/aveguide modes N 

(a) (b) 
Fig.l. Geometry of the problem (a) and 

convergence of approximate solution in norm (b) 
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ABSTRACT 

A new design of capacitivcly cotipled bandpass filter, that provides suppression of 
spurious passbands for tlie dominant and the second waveguide modes without any 
extension of the filter dimensions, keeping the same return loss within the passband. is 
presented. Spurious passbands suppression is pro\'ided by eutting in iris strips additional 
pair of slots. Cutting the additional slots leads to the appearanee of attenuation poles, 
which are placed in the spurious passbands. fhe /^-in\erter of corresponding two-side 
double-slot iris changes slightly and may be easily fine-tuned. Numerical examples are 
presented for the three-section 5% filter in vvr90 waveguide. 

INTRODUCTION 

Directly coupled bandpass filters are widely used structures in practical design of space 
and ground-based microwave systems. However it was found in practice |1| that if a 
bandpass filter is used in a complex microwave 
system,   the   spurious   second   harmonic   mode 
appears in supposed attenuation band. This may 
cause a serious interference problem, leading to a 
degradation of the I'dter frequency response. As it 
was proposed in [1] one should use asymmetric 
filters with improved attenuation band ore ridged 
filters, in which the second harmonic mode cannot 
propagate through the filter. ^..    , r.   ,•   ,- ,   , !       ,? ^ ,    . ,, Fm. 1. r^raftol the bandpass filler 
In   this   report   we   propose   a   new   design   oi ba^ed on the two-side double-slot 
capacitivcly coupled bandpass filters that provides capacitive iri.scs 
effective suppression of the spurious harmonic 
passbands for both the dominant and the second 
waveguide modes. It is achieved due to the cutting additional horizontal slots in the 
strips of coupling irises (see Fig. 1). In contrast to ridged filters the second waveguide 
mode can propagate through the filter under consideration. Although we foiled to 
suppress it's the main passband. we succeeded in suppression of its spurious passband. 
the dominant mode spurious passband and in increasing the attenuation level of the 
dominant mode in the frequency range corresponding to the main passband of the 
second waveguide mode. Moreover, we succeeded in significant reduction of electric 
field strength magnitude within the coupling irises. 
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^60 

15.0   20.0   25.0   30.0 

Frequency, GHz 

Fig. 2. The modification of return loss 
response for the double-slot two-side 
strip in WR90 with decreasing the slot 

width, /=0.5 mm. 

RESULTS 

The salient feature of the slotted strips to 
reject waveguide modes is on the base of 
achieved results. It was shown in [2] that 
cutting additional slot(s) in the iris strips 
(symmetrical central-placed or two-side) 

'aixbl= provides a resonance of total rejection in the 
4x0,5 mm2   response. The location of this resonance is 
,      mainly determined by the slot width a\ (see 

Fig. 2), whereas its quality depends 
primarily on the thickness of the metal 
"bridge(s)", separating the main iris slot and 
the new ones, and on the resonant slot height 
b\. Note a rejection can be provided in the 
whole operating range of rectangular 
waveguide up to the frequency band of the 
second longitudinal resonances of the filter 

35.0 

parasitic 
it     is 

multislot 

1.0 

0.8 

_ 0.6 
w 

0.4 

0.2 - 

sections    that    form    the 
passband.     Moreover,     as 
demonstrated   in    [2]   the 
configurations    are    able    to    reject 
simultaneously not only the dominant 
mode but also the higher ones in the 
two- or three-mode fi-equency bands. 
Four configurations of the slotted strip 
that  is  able  to  reject the  dominant 
mode are shown in Fig. 3. Two-side 
double-slot    strip    has    the    richest 
properties as to a frequency harmonic 
mode   suppressor   of  the   resonance 
type. There is a quadruplet of eigen- 
oscillations symmetrical and 
asymmetrical    in   the    OX   or    OY 
directions  with very  close  real  and 
imaginary   parts   of   their   complex 
eigen-frequencies. This fact makes possible to reject three modes simultaneously: TE^ 

|TEio 

15.0 20.0 25.0 
Frequency, GHz 

30.0 

Fig. 3. Reflection coefficients of the dominant 
and higher modes from double-slot two-side- 

strips with flixZ?i=6.0x 0.5 
/=0.5 mm 

mm^ in WR90, 

10' 

TEjQ, and TM,,. This configuration has been chosen as a modified coupling section for 

the filter under consideration. 
Numerical results are demonstrated by two examples of a 5% third order filter in WR90 
(Fig. 4). Left-hand side and right-hand side responses from the Fig. 4 correspond to the 
classic BPF and the BPF with two identically modified (two-side and double-slot) 
interior coupling irises, respectively. Black solid and dashed curves correspond to the 
insertion loss for the dominant mode and the second mode, respectively. Modified 
interior sections of the latter filter provide attenuation poles in the spurious passband for 
the  dominant mode.  As  a consequence, the  spurious passband  is  shifted with 
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simultaneous improvement of stopband attenuation in general. It is clear that the i'llter 
configuration shows an excellent opportunity to suppress the main part of the spurious 
passband for the second waveguide mode. Notice that the frequency responses are 
almost identical within the passband. Besides, the electric field strength magnitude in 
modified iris sections is approximately equal to the one for the corresponding 
inductively coupled filters. 

CONCLUSIONS 
A new design of the bandpass filters provides the improvement of frequency response 
regarding to the bandstop attenuation for both the dominant mode and the second modes 
as well. By choosing the appropriate set of slots it is easy to implement several 
attenuation poles, suppress the parasitic passbands and to achieve the better passband 
separation. Moreover cutting the slots in the iris strips provides a considerably lower 
magnitude of the electric field strength within basic of the slot iris. For all the filters the 
new properties are achieved without increasing both the transversal and longitudinal 
filter dimensions. 
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ABSTRACT 

The paper goal is to describe a geometrical data preprocessor, which is used at 
realization of the generalized mode-matching technique (GMMT). Its destination 
consists in processing of the geometry specification of the cross-section a complicated 
waveguide line by the manner that allows the unificate the process of the matrix 
operators required to find the mode basis. 

In spite of widespread using of finite difference and other lattice methods the MMT 
[0,0] is still the most attractive procedure of the waveguide problem solution regarding 
to common efficiency-universality estimation. Nevertheless the drawback of this 
method is an individual approach to each of problem under consideration. This makes 
MMT algorithms relatively time-consuming ones both at analytical and numerical 
consideration of the solutions and at testing and tuning as well. Really this reason 
increases the time of waiting of the final results and hampers somewhat the practical 
usage of MMT. 

The goal of our work was to generalize the MMT, making it possible to unificate 
the process of the numerical algorithm development for initially unpredetermined 
geometries of a wide class. Saving the well-known efficiency and accuracy of MMT 
algorithms this brings such GMMT solutions to lattice methods [0] regarding to both the 
easiness of usage and the universality of approach as well. 
We consider such a generalization of MMT as a procedure that creates the MMT- 
algorithms without any preliminary analytical consideration. Here we describe the part 
of this algorithm that responsible for processing of a geometrical data. We named it 
"preprocessor" by analogy with corresponding parts of the software based on the lattice 
methods. Its function here consists in the data preparing for implementation of MMT 
matrix equation at calculation of the full mode bases for a waveguide line with arbitrary 
cross-section having the coordinate piecewise-linear boundary. 

A waveguide line that may be considered as a rough approximation of the coaxial 
line is presented in Fig. 1. The line cross-section has to be divided into a set of 
nonoverlapping rectangular subregions. This fragmentation may be performed in Y or 
in X directions meaning that all such the subregions have metallized sidewalls parallel 
to Y or X axis (Fig. 1 demonstrates typical Y-fragmentation). The sidewalls of these 
subregions are metallized and the upper and low walls may be open or closed by 
electrical (PEW) or magnetic (PMW) walls. They may appear at consideration of the 
lines with symmetrical cross-section. In other words the cross-section will be presented 
as a set of peaces of plane-parallel waveguides that make it possible using the transverse 
resonance method to obtain the mode basis. 
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Fig. 1 The possible sets of subregions for different configurations oftJie coaxial line formed by 
a cross internal conductor within the crossed waveguide. 

The number and coordinates of the rectangular subregions forming the line cross- 
sections provides really the full information required to calculate the mode basis. 
Naturally the situations exist when a weak geometry varying may require not only 
corresponding changing the geometrical parameters but also rearranging the set of 
subregions and even their total number as well. Such a situation is illustrated by the left 
and right pictures of Fig. 1. This is a reason of the necessity of the preprocessor 
operations not only at the initial stage of calculation but at any variations of the 
geometrical parameters as well. 

The main purpose of the preprocessor consists in fragmentation the cross-section 
specified by a simple and easy in use manner into the set of subregions. Initial 
specification may consists, for example, of several contours spccitled by arranged sets 
of vertex points. Fig. 2 illustrates successive steps of preprocessing procedure. 
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Fig. 2 The stages ot the subregions set forming according to specified piece-wise coordinate 

contours which describe the cross-section, 
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Fig. 2a shows two initial contours forming the cross-section. The dark circles mark 
the vertices. At the first step the ensamble U of the y-coordinates, which characterize 
the points of the uniformity breakdown in vertical direction have to be found. After that 
the corresponding to U additional vertices are inserted in all contours. The light circles 
in Fig. 2b mark them. 

Using the all set of vertices the set of vertical line pieces are formed. They represent 
the sidewalls of the future subregions (Fig. 2c). 

The next steps of subregion ensamble forming presented in Fig. 2d-¥ig. lo. They 
are the following: 

— The found pieces set is successfully looked through to find the "pairs". The pair 
is two pieces with the same height and placed at the same coordinates. 

— The pair of the nearest on horizontal pieces forms the subregion. The pieces 
generative it are moved away of the set of pieces. 

— The process is continued until the pieces set is not empty. In principle this step 
finished the stage of cross-sections segmentation. 

The following steps are aimed to prepare the data for MMT matrix operators: 
— The matrix of the subregion couplings is formed. Each geometrical coupling 

matrix element is a data structure that determine : a) if the subregion I is coupled by an 
open aperture with subregion j; b) if ''Yes", the what are the coordinates and the 
placement peculiarities of a common aperture. The determination of the geometrical 
subregion coupling matrix is performed by successive looking through all set of 
subregions and analyzing the type of subregions' contact. 

— After that it is possible to extract the subsets of noncontacting subregions that 
describe possible separate waveguides (for example a hollow waveguide within the 
hollow waveguide). This accelerates the computational process in times. 

At the calculation of a TEM mode field distribution it is required to know the 
potentials of the subregions sidewalls. The equipotental contour to which a sidewall 
belongs is determined according to the number of contour to which the wall belonged 
initially. 

To facilitate the mode basis search for the lines with symmetrical cross section the 
dividing the problems into two or four ones is foreseen. These subproblems are the 
boundary value problems relative the halves or the quarters of initial cross-section with 
PEW or PMW in the planes of symmetry. Sometimes these subproblems have to be 
divided in its turn etc. Except of rarefying the roots of dispersion equation this enables 
to avoid the root omission for twinned cutoffs of the TM-modes, when the field is 
totally concentrated in the left part or in the right one of a cross-section. 

Above discussed steps of preprocessing provides all required data to create the 
matrix operators of generalized mode-matching technique. One way to create dispersion 
equation is to use the matching operations immediately for the subregions fields at their 
common boundaries defined by the coupling matrix. The role of unknowns here play 
the amplitudes of the field space harmonics within subregions. Though it is the simplest 
approach, however it is immediately applicable to the situations when all subregion 
couplings may be described as a contact a "big" subregion with a "small" one. In the 
opposite case the intermediate zero-length virtual subregion has to be implemented. 

Another way is to use the matching procedure basing on the unknown field 
distributions on the subregion coupling apertures. Except of a possibility to reduce 

KiKV, UKRAINE, IX-TH INTHRNATIONAI. CONFURENCI; ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



538 MMET*02 PROCEEOINGS 

somewhat the number of unknown amplitude vectors there is essential advantage to use 
special bases for the field distribution expansion. They may take into account all types 
of the fields behavior near coupling aperture ends: rectangular or sharp edge, electrical 
wall or magnetic wall. Such algorithms have shown very good convergence on a range 
of partial configurations [0,0]. Last time they came to attention again [0]. 

The above-described preprocessor and the electromagnetic solver corresponding to 
first of MMT approaches was realized in the frames of AutoCAD based electromagnetic 
software for analysis and synthesis of waveguide devices MWDOI. Detailed description 
of the solver background, realization and numerical peculiarities are the subject of a 
separate message. See, for example [0]. 

Here we present a set of the field distribution of the main and high modes of the 
waveguides with complicated cross-sections. 

Fig. 3 Fig. 4 I'ig. 5 

The Fig. 3 presents the field of the dominant TEM-mode of a ridged rectangular bar 
line that used in special types of the bandpass filters. The Fig. 4 demonstrates a like to 
TEOl-mode of circular waveguide distribution of a higher TE4 mode of the rectangular 
quadruple ridged waveguide. The origin of this mode may be treated as a difference of 
ihe TE20 and the TE02 modes of the square wa\eguide. By the same manner the origin 
of the higher TE5 mode of the rectangular quadruple ridged waveguide (Fig. 5) may be 
explained as the sum of the TE20 and the TE02 modes. 
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Fig.. 8 Fig. 8 

Fig. 6 demonstrates the TE4 mode of the crossed rectangular waveguide with the 
axially symmetrical distribution of the transversal electrical field as well. Fig. 7presents 
the field of the main mode of the grooved waveguide. It confirms the possibility to 
calculate the groove mode a mode of crossed waveguide (TE3). The cross-sections 
similar to shown in Fig.8 are used at design of the waffle-iron low-pass filters. Finally 
the Fig.9 presents the dominant mode field of the waveguide with a serpentine cross- 
section. Due to such type of the cross-section it has a very low cutoff 
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MODE-MATCHING APPROACH FOR THE CALCULATION OF A 
WAVEGUIDE TEE DISTORTED BY SEMI-PLATES IN THE 

BRANCHING REGION 
Sergey Kulishenko, Anatolv Kirilenko. Sergey Senkevicli. 

IRENASU, 111. Proskury 12, Kharkov 61085, Ukraine; E-Mail: ksf@krla.ire.kliarkov.iia 

One of configurations of OMT is a tee with metal plates in one of the straight arms. 
These plates form a system of cutoff waveguides and reflect the mode of one of the 
polarizations. The simplest example is a waveguide tee with one plate within the direct 
port and no overlapping of the plate and the branching region (Fig. la). This 
configuration, as shown in [1], provides a good matching of side arm in a narrow 
frequency band only and has increased dimensions. These facts limit OMT application. 
The authors have pointed that MMT can be used only if there is no overlapping of plate 
and branching region ([1], p. 388). 

J    L 

(a) (b) 
Fig. I. OMTs based on the tee with metal plates 

(c) 

As it turned out later, one can solve the of mode diffraction on a tee with coordinate 
discontinuities in branching region by using MMT (se [2] for configuration in Fig. lb). 
However the calculations have shown that a low return loss can be obtained in direct 
arm for the single-plate case only in the beginning of operating frequency range. This is 
caused by too deep penetration of the electromagnetic field into the cutoff regions. Due 
to this fact the plate and below-cutoff waveguides cannot "imitate" the mitered bend. It 
is obvious that increasing the number of plates can facilitate the problem solution. 
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Fig. 2. Tee with three plates and its division to subregions 

In this paper we use the modification of MTT published in [2]. The field in branching 
region (Fig. 2a) is represented as a superposition of two fields: a) horizontal 
configuration with PEW on the top and b) vertical configuration with PEWs on right 
and left side waveguides. We consider the case of E-field parallel to semi-plate edges. 
The field matching for the inner regions of the subproblem geometries can be performed 
independently for both subproblems A and B. 
Fig. 3 shows some elementary cell formed by subregions "6", "7" and "2" belonging to 
subproblem/I (Fig. 3a) and subregions "13", "2" of subproblem B (Fig. 3b). 

Kii-:i: UKRAINE. IX-TII INTERNATIONAI. CONI-ERENCE ON MAri-iEMAiicAi. METHODS IN Ei.EcrnoMAONETic I'III-OR) 



MMET*02 PROCEEDINGS 541 

^ -^ ffjtt 

^ 
"6" - 

i 1 
+ 

^— II f)!' 

, „i^ 

- 

i 

+ 

X 

i 

+ 

"72"    - 

i 

"13" 
1 r 

+ 
W     " ■) " 

(a) (b) 
Fig. 3. Field matching in the elementary cell 

Transverse field in subregions can be expressed as a superposition of eigen waves of 
parallel-plate waveguide: 

£r=E 
«=! 

+       //,',"'--"" 
Pn-^ + P~„-^ 

-,>*"*(--<'"-/>"") 

/?r=Z'>; (p) 

n=\ 

+  A'"^"" 
Pn-e Pn-^ 

-,><"'(.("'-/,<"')■ 

where   p   is  the   subregion  number,   p^   and   p\^    are   the   mode   amplitudes, 

I^KP) ^nn/^^   and  rlf^ =Jk^ -(^i,^^)     are transverse and longitudinal wave 

numbers. The field must satisfy the following boundary conditions: 

£;"'=£;" onaperture"6"-"7' 

0     on metall 
//(^)=//y)onaperture"6"-"7" 

^(6) ^^(13) ^^(2) onaperture"6"-"2' 
£f'=£;'^n aperture "6"-"2" 

Now we  can perform field matching and project it on the basis functions of 
corresponding subregions. Resulting equations are presented in matrix form as follows: 

M'''Y''E'H^ -M^'Y'^6- =^N^'Y^r -N^'Y'E^''r, 

where ^ =K}' N^'^ = diag^^y^^, E^^^ = diag[e'^'''''"\ 

r'''=diag {/:'},   /^'''=diag{/3!^''},   /^> = J/«g{(-l)"},   ^ = 1,2,3,.... 

Here M^^^^ are the matrices of conventional coupling integrals and the elements of 

matrices Mef^^ are the following integrals: 
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Me\'"'^]     = fsin(y5,|/"x)-exp(/y);"x)-fl'x. Note, that the electrie field has been 

matched on the wide cross-section (subregion "6"), and the magnetic field has been 
matched on the two narrow ones (subregions "7" and "2"). 
The field matching on each of apertures results in 21 equations with 21 unknown 
vectors of field expansion amplitudes. This allows us to form the matrix equation of the 
2nd kind with a block type operator. By solving it we obtain the .S-matrix of lull circuit 
and also the internal field. A study of the obtained solution numerical convergence 
shows that it has non-monotonous character. Nevertheless, taking into account 40 
modes in port "0" (number of modes in the each of other regions is proportional to its 
width according to Mittra's rule [3]) is quite enough for rather good accuracy. Power 
disbalance between incoming and outgoing modes is less thanlO '. Under these 
conditions the calculation of .S-matrix per requency point takes about 2 sec on 1100 
MHz PC. In examination of the algorithm certain instabilities were revealed. The are 
accompanied   with   a   sudden   change   of the   matrix   operator  condition   number 

cond(A) (by several orders). Simultaneously the power conservation 

law fails. This phenomenon causes sharp spikes on frequency response curves. The 
spike width decreases with increasing the matrix dimension. It is determined that the 
positions of spikes coincides with the eigen frequencies of the branching region (the 
resonator formed by assuming PEWs of subproblems A and B simultaneously). 
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Fig. 4. Frequency response of optimized construction 

In order to obtain a good matching of the device under consideration, optimization 
procedure was applied in two frequency bands. Corresponding results are shown in Fig 
4. In the optimization within operating range of the waveguide (8-12 GHz) it is possible 
to ensure the return loss less than 28 dB (Fig. 4a). For a wider band (8-18 GHz) the 
return loss is about 22 dB except of the resonance area near 13 GHz(Fig. 4b). Fhis 
resonance is caused by the appearance of the second mode and has the same nature as 
discussed in [4]. 
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THE EFFECTS OF RESONANCE ENERGY ABSORPTION IN 
LOSSY WAVEGUIDE-DIELECTRIC RESONATORS 

Lyudmila B. Minakova, Leonid A. Rud 

IRE NASU, ul. Proskury 12, Kharkov 61085, Ukraine; 
E-mail: rud(a)ire.kharkov.ua 

ABSTRACT 

The effects of a half and total resonance absorption of the input power are studied with 
the developed qualitative theory and exact numerical models for the case of waveguide- 
dielectric resonators buih on e-plane rectangular lossy-dielectric posts in a rectangular 
waveguide. 

THEORY AND RESULTS 

A qualitative theory of the microwave power resonance absorption is developed for 
lossy waveguide-dielectric resonators (wdrs) operating on a first higher oscillation and 
loaded with two identical waveguides. The theory is based on the assumption that the 
s -th natural oscillation of a lossless resonator is characterized by a complex-valued 
natural frequency,  co^ = (o[ - ico". The imaginary part co"  determines the resonator 

radiation ^-factor, g, ^„^ = a>l I Ico'l. Assuming that due to introducing the filling losses, 

the natural frequency of the above-mentioned oscillation changes as 

3^=d}:-m: = il + aM-ii^ + J3.M- (1) 

Similar to [1], we succeeded in finding the following formula for calculating the 
absorption power input with the dominant mode incident from one of the resonator 
waveguide ports 

K'=Z ^TT^-V (2) 

In (1), a^col is the frequency shift and /]^.o}" is the additional attenuation caused by the 

absorption, ^^=2Q^[co-&[)ld)[  is the resonator detuning parameter. The following 

expressions for the reflected and transmitted powers of the incident mode have been 
derived as well: 

(i+A)=(^,M)'        (i+Ar(4=+i) 

The parameter /?^ can be interpreted as a loss coefficient and the value /3^ = 1 as a 

critical loss for which the equality of the radiation and intrinsic ^-factors is fulfilled. In 
this case, from (2) - (3) it follows that the maximum absorption Wj-'^ = 0.5 and the 

equality PF|'^ = W-l'^ = 0.25 are reached at the resonance frequency, ^, = 0. 
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The qualilative theory conchisions are conilrmcd by the results of the exact numerical 
calculations for the WDRs formed by fJ-planc rectangular dielectric posts in a 
rectangular waveguide. It is considered as a section of a partially filled waveguide 
included into a hollow rectangular waveguide. Three exact algorithms are worked out 
that allow 1) to synthesize the post geometry according to the required complex-valued 
natural frequency. 2) to calculate the natural Irequency spectrum for the post-resonator 
with a fixed geometry, and 3) to calculate the full-\va\'e scattering matrix in the ZT:,,,,, 

mode basis. These algorithms are based on the mode-matching technique [2]. 
The special investigations have been carried out for the WDRs operating on the first 
higher TE-,^^ oscillation and providing a single resonance of the 50% absorption of the 

incident rs,,, mode power. At first, the lossless WDR geometry providing the given 

values of the C>-factor and the resonance irequency is searched for using the first above- 
listed algorithm. Further with the aid of the second algorithm, the value of tanr>" 
corresponding to the desired coefficient /?-,„,  is obtained. 'I'he comparative analysis of 

the exact and approximate WDR responses, illustrated by Fig. 1(a) for the case of the 
critical loss, shows their good agreement. In Fig. 1 and further,  K = OXII2T[C is the 
frequency parameter where c is the free-space light velocity, a is the waveguide widtli. 
An evident total absorption phenomenon should be waited when two in-phase  TE^^^ 

modes are incident simultaneously from both of wa\eguide ports. In this case, the 
structure with the magnetic-wall symmetry' occurs. According to [l], the absorption 
losses in such a structure has to be determined as W?" = 2rF^  where W,   is calculated 
after the formula (2). The responses in Fig. 1(b) confirm this conclusion. 
We have found that the loss additivity principle in the form of 

w^=fj]r (4) 

Is valid if a wdr maintains n natural oscillations in the considered frequency range. 

Fig. 1. Rectangular dielectric post responses calculated with the exact (solid curves) and 
approximate (dotted curves) models in the case of the critical loss. /^ = l . (a) Rxcitation 
from       one       port.       (b)       Fxcitation       from       two       ports       simultaneously 
(//« = 0.084. /•/(/ = 0.05l. /; = .50(l+/0.n28.V) ). 

To realize the condition for the total resonance absorption, one has to operate with 
degenerated natural oscillations having equal ^/-factors and the dilTercnt symmetry along 
the wdr longitudinal axis. 
As an example of a multimode wdr, we will consider the lossless dielectric post with 
//a = 0.217, /7^/=:0.514. and ^-' = 15. The location of the complex-valued eigen- 
frequencies of its 7'£„,„„ natural oscillations is shown in fig. 3(a) by empty circles. We 

see that TE-^^^ and TEy^^ oscillations of the different .symmetry have the coincide eigen- 

frequencies /c"!,,, -/r^,,, == 0.941. In the vicinity of this point, a total transmission is 

observed in the scattering problem (see the dashed-dotted curve in fig. 3(b)). 
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Further, we have found the value of 
tan<J = 0.0183 providing the critical loss 
for the above-mentioned oscillations. The 
eigen-frequency location for the lossy 
dielectric post is presented in Fig. 3(a) by 
black circles. The exact responses of the 
transmitted and absorbed power for the 
lossy post are shown in Fig. 3(b) by the 
dashed and solid curves, respectively. 
The effect of a practically total 
absorption is realized at the point 
fc = 0.940. 
To verify the validity of the loss 
additivity principle (4), we have 
calculated the loss coefficients y5,„(,„ for 

all the oscillations from Fig. 3(a) and 
have used them in calculating the 
dependence W^[K)  with using (2) and 

(4) (see the dotted curve in Fig. 3(b)). 
We can conclude that the representation 
(4) gives very exact results elsewhere 
over the single-mode waveguide range if 
the values of ^„,o„ and 4,o„ are exactly 

defined for all the natural oscillations 
taken into account during the 
calculations. 

K 

(b) 

Fig. 3. (a) Location of the eigen-frequencies in 
the complex plane K for the lossless and lossy 
dielectric posts, (b) Frequency responses of the 
lossless and lossy posts. 
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DIFFRACTION ON THE EIGEN WAVES 
ON AN INCLINED MEDIUM INTERFACE IN THE WAVEGUIDES 

WITH METALLIC BOUNDS 

Pleshchinskii I.N., Plcshchinskii N.B. 

Kazan State University 
P.O.Box 234 Kazan, 420111. Russia e-mai: pnb@ksu.ru.   pnb@kzn.ru 

ABSTRACTS 

Tlie electromagnetic wave diffraction problems on an inclined medium interface with a 
metallic plate and without it in the plane waveguide and in the rectangular waveguide 
are considered. It is shown that these problems can be reduced to boundary value 
problems for the Helmholtz equation or for the Maxwell system in a bounded 

rectangular domain. 

INTRODUCTION 

Let the infinite cylindrical waveguide with metallic bounds be separated by some 
surface into two parts filled up by the dielectric with different dielectric indexes. Let the 
eigen electromagnetic wave run on the medium interface (from the left, for example). It 
is necessary to calculate the scattered field. 
The main idea of our method is to isolate some bounded domain containing the medium 
interface and to replace the rejected semi-infinity parts of waveguide by boundary 
conditions of special form. These conditions can be obtained by solving over- 
determined Cauchy type problems [1] for the Helmholtz equation or for the Maxwell 

system. 

SEMI-INFINITE PLANE WAVEGUIDES 

Consider the auxiliary boundary value problems. It is necessary to seek in the semi- 
strips S, : -«)< X < 0. 0 < z < /7 and S, : g < x < +oc. 0 < z < /? of the plane (x.z) 

solutions of the Helmholtz equation 

—- + —^ + kiiix.z) = 0 (U 
av'    dz- 

belonging to the classes of outgoing into infinity solutions satisfying the conditions 

w(x,0 + 0) = 0.     z/(x,/7-0) = 0. (2) 

It is shown in [2] (see also [1]) that 

Lemma 1 The solvahility coiufil ions for these problems can he written down in the non- 

local integral form 

h 

w(0-0,z) = -/f—(0-0./) /C,(/.z) t//.     Q<z<h. (3) 
0 

„(^r + 0.z) = /f—(g + 0,/)/:,(/,-) t//.     0<z</;, (4) 
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2-A   1      .   mn:t   .   mnz [7^        ;      7777 

h t^x Tj,,,, h h 

The boundary value problems (1), (2) and 

w(0-0,z) = Woo(z),  ^(0-0,z) = Wo,(z)    or   u{g + Q,z) = u^,{z),  -^{g + 0,z) = u^,{z) 
ox ox 

define all eigen waves of semi-limited waveguides outgoing into infinity. 

INCLINED BARRIER IN THE PLANE WAVEGUIDE 

Let /: z = xtan6', tan6' = g//2, 0<x<g be the inclined medium interface in the 
plane waveguide. We give the typical conjunction conditions on the / 

w(x + 0,/7x/g) = w(x-0,to/g),    -^(x + 0,/2x/g) = -^(x-0,/2x/g),    0<x<g,(5) 
an on 

here d/dn = d/dxsinO-d/dzcos0. We denote w°(x,z)the potential function of the 
external wave and u(x, z) the unknown potential function. 

Theorem 1 The diffraction problem for TE-wave on the inclined interface medium is 
equivalent to the boundary value problem for the Helmholtz equation (I) in the classes 
of outgoing into infinity solutions with boundary conditions (2), (5) and 

h p, 

u(0 + 0,z)^-i\—iO + 0,t) K,(t,z) dt + 2u°(0-0,z),    0<z<h, (6) 
Jax 

. rdu 
uig-0,z) = i\—(g-0,t)K,(t,z)dt,    0<z<h. (7) 

idx 

In [3] the numerical method for solving this boundary value problem is constructed and 
is investigated by abstract approximate scheme [4]. 

SEMI-INFINITE RECTANGLE WAVEGUIDES 

Let Pf| : 0 < X < a, 0<y<b, -co < z <0 and W^ : 0 <x <a, 0<y<b, 0 < z < +co 
be two semi-infinity rectangular domains (semi-beams). We consider the Cauchy type 
problem for the Maxwell system 

rotH = icos^sE,   rotE = ICOJUQ/UH (8) 

in the domain W^ with boundary conditions 
E^=0,  E.=0  for  x-0,  x = a;    £^ = 0,  £, - 0  for   y = 0,  y = />;      (9) 

E^ix,y,0) = eix,y),    H^ ix,y,0) = hix,y), (10) 

here E^,H^ are the tangential components of vectors E,H. 
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Lemma 2 The Cauchy type problem (8) - (10) has a sohition in the class of oiilgoin^ 
into infinity solutions if and only if 

a h 

e{x,y)= ^^K{sj:x,y)h{sj)dsdt, (11) 
0 0 

here K{sj\x,y) is the functional matrix Ixlwith elements of the form 

const 2_^2^— (p.„„(-''-')y'„J^-y)- 
"      III    7 mil 

.   mis       mnt mis    .   mnt 
(Piiiiii^J\ ¥„„,(^%.V) = SI" — cos-^    or     cos--- sin-y, 

Y,„„ = ^kle^-innla)' -inmlh)'. 

INCLINED MEDIUM INTERFACE IN THE RECTANGULAR WAVEGUIDE 

Let the planes x = 0, x = a. y = 0, y = /) be the walls of rectangular waveguides and let 

the rectangle P : z = x tan 6*1+>'tan ^, separate the waveguide into two parts with 

different dielectric indexes. 

Theorem 2 The diffraction problem of electromagnetic ^vave on the inclined interface 
medium is equivalent to the boundary value problem for the Maxwell system (H) with 
boundary conditions (9), non-homogeneous boundary condition of the form (11) on the 
sides z = 0, z = c and conjunction conditions on the rectangle P. 

METALLIC PLATE ON THE MEDIUM INTERFACE 

If the metallic plate M is placed on the medium interface, then the conjunction 
conditions arc to be replaced by the following ones: the tangential components of vector 
E are equal to zero on M and the tangential components of vectors E and H are 
continuous on the other part of the barrier. This fact is insignificant for the formulations 
of Theorem 1 and Theorem 2. but the calculation scheme will be more complicate. New 
unknown variables are added to the set of variables during the direct action of 
calculation for every node placed on the metallic plate, and size of linear algebraic 
system will increase. 
The numerical method for solving this boundar>- value problem is constructed and is 
investigated by abstract approximate scheme also. 
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THE SECOND OR THE THIRD HARMONIC GENERATION ON A 
NONLINEAR FILM IN A BRAGG RESONATOR 

V. F. Borulko 

Dept. of Radiophysics, Dnipropetrovsk National University, 13 Naukova St., 
Dnipropetrovsk 49050 Ukraine 

Tel: 38 056 7254592, E-mail: borulko@hotmail.com 

ABSTRACT 

A resonator formed by nonperiodic Bragg structure and nonlinear film is considered. 
Effects of the second or the third harmonic generation are theoretically investigated. 
System of nonlinear equations for amplitudes of time harmonics is obtained. 
Phenomenon of resonant increasing of amplitude of the higher harmonic caused by 
combination of nonlinear and Bragg effects is discovered. Reason of instability of 
numeric algorithm for "optimal" case is revealed. Ways for overcoming this instability 
are found. Bistable behavior of scattered waves is observed for cubic nonlinearity. 

INTRODUCTION 

If a harmonic plane wave falls on a nonlinear film scattered field contains higher 
harmonics (the second harmonic for quadratic non-linearity or the third one for cubic 
non-linearity). As a rule values of non-linearity and amplitude of fundamental harmonic 
is not very large so that amplitudes of generating higher harmonics are usually small 
[1]. Higher-harmonic amplitude is increased under phase-matching condition that can 
be achieved more easily in nonlinear spatially periodic waveguiding structure [2]. 
Amplitude of wave falling onto nonlinear film can be increased also by situating 
nonlinear film into resonator. Non-periodic Bragg structures used as resonator reflector 
[3] have flexible frequency characteristics so that they can be useful for devices 
operating on some frequencies simultaneously. 

METHOD OF ANALYSIS 

In the paper physical effects in a resonator formed by non-periodic Bragg reflector and 
non-linear film situated on metal plane are theoretically considered. The boundary-value 
problem for Hx contains spatial inhomogeneity in wave equation and non-linearity in 
quasiimpedance boundary condition 

d'H    IdedH    E{y)d^H _ 

dy^     s dy 8y      c    dt 

dH     I  5' 

0, (1) 

oy     c  dt 
<2) 

where WQ is unperturbed values of impedance parameter, WN is parameter describing 
non-linearity of film, q = 2 (quadratic non-linearity) or ^ = 3 (cubic non-linearity). For 
quasiperiodic Bragg structure permittivity as function of coordinate y has form: 

e{y) = £^ + ^J^s,(f^y)exp[i^fj{y)\ (0<y<yt) (3) 
j 

\\ij(y) = ixi(^y)dy, yb is coordinate of Bragg-structure beginning, 6 is small parameter [3]. 
If the non-linearity is very small, undepleted pump approximation could be used [4]. 
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This approach is easy for implementation, but it does not allow one to take into account 
changing energy of fundamental harmonic. We suppose that plane time-periodic wave 
{T ^ 27r/co is time period) falls on the structure. Along with real function H(yJ) we 
consider complex function HciyJ). The solution of the boundary-value problem (1), (2) 
for H{y,t) and HdyJ) will be searched as a sum of monochromatic waves 

N 

//(>.,?)= Re[//,(>^,/)]= Xk(:v)cos(;7Q)/)-«,„(>')sin(wo/)l (5) 

A linear spatial problem must be solved for each frequency harmonic to obtain 
transmission matrices of Bragg structure. 

d'ci.„     1 de dct.„      i \ ^,^        r\   i       / u\  ^  + siyh'k'ci,. = 0, k()^oj/c. (6) 
dy      £ dy  oy 

lfy>yh functions cicniy) express propagation of direct and opposite plane waves 
«„, (y) = ^'hjn expKj' - y,, )k„ ] + «,,„, exp[- /(>■ - y, )k„ I 

where k,, = k^^^E{y,,), atdn and fl/,„„ are complex amplitudes of direct and opposite plane 

waves in beginning of Bragg-structure (y = >'/,)• 
Resuh of solving equations (6) is transmission matrices T„ , that couple amplitudes of 
direct and opposite waves in beginning and end of Bragg structure 

Cledn = T„\ xClhdn + T„\2Cli,„„. Clcon - T„2\ahdii + 7"»22'^'AOH. ( ' ) 

where Oedi, and a^„„ are amplitudes of direct and opposite waves on surface of nonlinear 

by film (v = 0). They are connected with values a„,o = <r/n,(0) and c/„„ =—- 
dv y = 0 

following relations: 

OcnO = Clcdn + C'eon -      d 'aiO = ikeiciedn " (-h'on ).        ^, = ^Q V'^ (O) ■ (8) 

Granting nonlinearity of boundary condition it is more convenient to operate with real 
function H{y,t) and real spatial functions cimiy) and a,„iy) in (2). Taking into account 
expression (5), boundary condition (2) can be written in the form 

F[t)^H,-k\',H,,-k\,qHl%ci-\)H;+H,H,]=i\ (9) 

where Hd, //o, H,, H„ are auxiliary functions of time coordinate / 
N ,V 

^A/ = Z[^''o" COS(/7CO/)- O,;,, Sin(/7COO].        //(, = Zt''0" cos(/7(o/)- f/,o„ sin(77co/)} 

N \ 

H, = -X«ko„sin(«co/)+ fl,o„cos(nco/)],   H„ = -J]n'[a,.,„cos{mol)-a,,^,sm{nat)l 
ii=\ 11=] 

Real parameters a '„,()- cimo, ci ',„o. a,„o are expressed in terms of complex parameters a V/,() 
and UcM 

cirno = Re(a,v,n),    «,„o =lm((r/„,o),    a V»o = Rc(<:/ 'c/,o).    a ',„o = lm(<:/ V/K))- 

Introducing frequency-harmonic expansion into boundary condition (9) in discrete time 
points on time period we get system of non-linear equations with respect to harmonic 
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amplitudes on output from Bragg structure. Here we consider that amplitude of falling 
fundamental wave is specified on outer interface of Bragg reflector. Obtained non-linear 
system has been solved by numerical method based on Newton method with finite- 
deference approximation of derivatives. 

THE PHYSICAL EFFECTS 

The most interesting phenomena occur at resonance and middle values (close to optimal 
ones) of non-linearity. In this case amplitude of fundamental harmonic near the film 
multiply exceeds the amplitude of falling wave, the amplitude of the reflected 
fundamental wave on outer interface of the resonator is close to zero, energy of falling 
wave almost completely transforms to energy of higher harmonics. Unfortunately near 
optimal values of parameters quasi-Newton method collapses. To overcome difficulty 
of algorithm convergence we describe the fundamental harmonic not by the wave 
amplitudes on outer boundary of the Bragg structure but by the amplitudes of the direct 
and reflected waves on the surface of the non-linear film. 
Obtained solutions essentially depend on from type of non-linearity. For cubic non- 
linearity the amplitude of the wave falling onto the resonator as function of the 
amplitude of fundamental harmonic on the film is not monotonic thus dependences of 
amplitudes of all scattered waves have hysteretic character. 

CONCLUSIONS 

Physical effects of scattering of a monochromatic plane wave on non-linear films 
situated in Bragg resonator are theoretically considered. Mathematical model of 
processes of higher-harmonic generation are derived. Influence of phase and amplitude 
parameters of Bragg reflection on amplitudes of scattered waves is investigated. 
Conditions of appearance of bistable regime are found. Obtained results can be used for 
designing generator, transformer and digital devices. 
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ABSTRACT 

The electromagnetic properties of an artificial layered material with negative 
permittivity and permibility are studied analytically. To analyses the translation matrix 
method is employed. The translation matrix for multilayered structure is found in 
analytical form. The reflection and propagation coefficients of multilayered plate arc 
written in analytical form. The propagation conditions of a wave within periodic layered 
structure with negative parameters are obtained in analytical form. 

INTRODUCTION 

Materials with negative permittivity and permibility are very interesting at last time for 
theoretical and experimental investigation. The wave behavior within homogeneous 
material has been described in [1] at first. The experimental research proofing of 
existence of such media has been presented in [2]. The possible kinds of different 
material with negative parameters have been described in [2,3,4]. Probable applications 
of such material have been considered in [5]. Possibility of having negative permittivity 
and permeability in omega media for certain range of frequencies has been shown in |6] 
However the periodic structures with negative parameters have not been considered. 

The problem of propagation and reflection by an inhomogcneous (layered) plate is also 
interesting for our consideration. 

STATEMENT OF THE PROBLEM 

The layered medium with negative parameters (.i and s of the layers is considered in 

this work. Our purpose is investigation of the propagation conditions of the wave within 
an infinite periodic layered medium with arbitrar}- number of layers and the propagation 
and reflection coefficients of a multilayered plate. The translation matrix method is used 
for analysis. The translation matrix relates the field components and derivations at end 
of the period to these at beginning of this period. The propagation conditions will have 
been found in the analytical form also. Using the translation matrix the expressions of 
the propagation and reflection coefficients will have been written in analytical form. 

TRANSLATION MATRIX 

Translation matrix of a layer with negative permittivity and permibility is 

cos^lr    / k sin k x 
M, = ■ / 

■ sin k z     cos kz 
\k     ' 

The translation matrix for a multilayered structure is found as production of matrices of 
the layers and after mathematical transformations we can write 
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,7V-1 

L(A)= Z Y-\fq,N4hJh^e>=^ 
^-'     (    k^faAV^ 

1+- 
'^iJq,i xL, 

where 

-7 

'JM^/V 

COS 

sin 
A/ 

j\ I kik^ sin 

i=\ 

C/V 
COS 

/=1 

/  -^zgJsin ^^y"",  .(2^-1) 

is the optical thickness of the i-th wave, fgj is the function introduced in [7]. 

According with the stable theory the propagation conditions in an infinite medium is 
determined by the expression trL = ±2. Thus for the considered case we have 

>A'-l 

z 1 
fa 

V ^1      ^N J 

1+ 
Jq,i+\ 

'^iJqJ 9.'   ; cos 

7=1 
;=1 

= 2. 

PROPAGATION AND REFLECTION COEFFICIENTS 

The propagation and reflection coefficients of multilayered plate are written in the form 
analogous to ones for an isotropic layered plate 

(MJ , + Mj 2a2 ) ai + (M2 1 + M^^C52 ) Ki+^12^2)^1 +(^21+ ^22^2 ) 

Here aj 2 is the wavenumbers in first and second medium accordingly, Mj^i is the 

element of the translation matrix. 

NUMERICAL EXAMPLE 

with        the        parameters 

is      considered.      Wave 

For       example       the       two-layered       medium 

£1 =-1.1 82=12^1] =-1^2=-l£/l =7xl0~^fi?2=0-l 
propagation normal to the interfaces is studied. 
The dependence of the module of the eigennumber of the translation matrix on 
frequency is shown in Fig.l and Fig.2. As it is seen that in low frequency region there 
are propagation regions, but in high-frequency region there only points of propagation 
instead regions. 
The dependence of the reflection coefficient on frequency is presented in Fig.3. In 
region to 5 GHz the reflection coefficient has resonances. The physical reason of this is 
the fact that the wave is not extinguished completely in the layer with negative 
parameters. 
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ABSTRACT 

The method of electrodynamic analysis of single conducting fibres having various configuration is 
offered. Numerical experiments on studying the influence of wire elements geometry on properties 
of a scattered field are carried out and the possibility to control these properties is shown. 

In recent time much attention of researchers is given to creation of various types of artificial 
composite materials having gyrotropic and anisotropic properties in microwave range. Such 
materials allow to project various waveguide microwave devices that can transform polarization of 
electi-omagnetic waves. Generally composite materials are a collection of particles of arbitrary 
geometiy and internal stincture embedded in a dielectiic. Thus the main task is to define the effective 
material parameters of artificial medium knowing the sizes of separate inclusions and the nature of 
particle disbibution in a dielectiic. 
The composite materials on the basis of 
conductive   fibres   are   of interest  for 
creating     media     with     controllable 
properties. In this work the method for 
analyzing the properties of single fibre 
scattering is offered. This method can be 
used for later reconstruction of material 
parameters of a composite material. The 

"Z 

cb 
Fig. 1. 

analysis is based on the numerical solution of Poklington's integral equations for 
current distribution in a thing conductor (the so-called thin-wire approximation) by the 
collocation method with step basis function application [1]. Knowing the current makes 
it possible to define the field parameters scattered by the particle. 
The wire structures that are widely used for constructing composite materials were 
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considered: a spiral particle with attached conductors, few-coil helix and omega- 
particles (fig. 1). The estimation of electrodynamic properties was carried out on the 
basis of analysis results of the radar cross section a (RCS). 
On fig. 2 the frequency dependences of co-polarized (fig. 2a) and cross-polarized (fig. 
2b) RCS components for back-scattered radiation are shown at various vibrator lengths / 
of a parficle represented on fig. la (/.■ 7 - 0; 2 - 2mm; 5 - 4mm; 4 - 8mm). The direction 
and polarization of the incident wave are chosen so that the H vector was polarized 
along the axis Z. In this case the most effective interaction between an incident 
electromagnetic field and a particle is provided. The spiral radius is (;/=5mm. wire width 
is ro^O.2 mm. The spiral loop works as a receiver providing particle excitation, and 
vibrators of the particle are the source of the field parallel to axis Z. On fig. 2a one can 
see that the increase of vibrator length leads to little changes of copolarized RCS. It is 
the result of the vibrators being perpendicular to the copolarized field and not 
contributing to its production. At the same time the value of crosspolarized RCS (fig. 
2b) is greatly increased when the vibrators length rises. 
Similar dependences can be received by varying the spiral radius. In this case the 
variation of spiral radius a gives the considerable changes of copolarized RCS only at 
2na<X. Change of radius almost does not influence the crosspolarized RCS. In work [2] 
the research of interaction between similar particles was also carried out. 
At the analysis of few-coil helices (fig. lb) the direction of an incident wave is chosen 
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so that the H vector was polarized along the axis Z. On fig. 3 the frequency dependences 
of the back-scattered RCS from a winding angle a of the three-coil helix are given (a: 
7 - S*'; 2 - 15°; i - 30°; 4 - 60°). The total length of a helix Isp is constant and equal 
/5P=40mm. The results of calculation have shown, that the variation of the angle is 
effective up to the certain value (up to 30°) and essentially influences only 
crosspolarized RCS. The general features of dependence are determined only by the 
total helix length, not by the number of coils. 
In case of an omega-particle (fig. Ic) the E vector was along the vibrators and the H 
vector was perpendicular to the planes of a particle loop. On fig. 4 the frequency 
dependences of back-scattered RCS on various length of vibrators / (fig. 4a. a=5mm; 
length of vibrators /: i - 0; 2 - 2mm; 3 -4mm;.3 -5nim) and various loop radius a of 
the omega-particle (fig. 4b. /=5mm; loop radius a: 1 - 0; 2 - 1mm; 3 -2mm;.i -5mm). 
are shown. Apparently, the change of wire element geometry does not lead to 
considerable changes of scattered radiation power. 
The results of calculations also show that RCS dependence from frequency has 
oscillatory feature that is caused by the resonance phenomena when the total length of a 
conductor is approximately equal to the whole number of half-waves. The empirical 
results and other authors' data [3] verify the similar character of frequency dependence 
RCS for chiral elements as few-coil helices. 
In paper [4] the method for calculating effective material parameters of composites with 
known scattering characteristics of a single particle and the information about the whole 
structure is given. On this basis within the scope of thin-wire approximation the method 
for computing the effective dielectric permittivity and magnetic permeability of the 
composite materials containing conducting particles considered above is developed. 
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ABSTRACT 

A simple equivalent circuit of recently introduced split ring resonator (SRR) is proposed in this 
paper. It is shown that in the vicinity of resonant frequency, the SRR can be thought of 
electrically small, capacitively loaded loop antenna. Due to resonant behaviour of the antenna 
current, intensity of the magnetic field of the incoming plane wave may be locally decreased 
yielding a stop-band with negative effective permeability. Theoretical analysis was verified by 
measurements of the transmission coefficient of experimental structures in rectangular 
waveguide, in 10 GHz frequency band. 

INTRODUCTION 

Recent introduction of'left-handed' (or 'backward') meta-material (material with both e <0 and 
|i<0) [1] has attracted a lot of attention. In such a material, the wave vector k and Poynting 
vector P are anti-parallel, causing reversal of some basic electromagnetic phenomena such as 
Snell law and Doppler effect. In original design [1], the negative permittivity was achieved with 
an array of thin wires, for which is well known to have dielectric function similar to that from 
dilute plasma. Negative permeability was achieved by a new type of inclusion coined 'split ring 
resonator', (SRR). So far, properties of SRR have been analysed numerically [I] and literature 
is sparse of simple engineering model. 

ANALYSIS OF SPLIT RING RESONATOR 

The split ring resonator used in design of the first backward meta-material [i] is sketched in 
Fig.l. 
The SRR comprises two conductive rings printed on a thin dielectric substrate and separated by 

dl 

Fig. 1 The split ring resonator     Fig. 2 a) 
(SRR) ^      b) 

a) b) 

The complete equivalent circuit of the SRR 
The simplified approximate equivalent circuit 

a narrow gap. Each ring has a slit, and rings are oriented in such a way that slits arc on the 
opposite sides of line of symmetry. The electrical dimensions of the SRR are much smaller than 
a wavelength of the impinging plane wave. Bearing this fact in mind, one can think of the SRR 
as two mutually coupled small loop antennas. The voltage induced in each antenna can be 
simply calculated from Faraday law: 

K = ->^o/(//, . (1) 

Here, F stands for induced voltage, co stands for radial frequency, A and \xi) stand for the loop 
area and free-space permeability, respectively. The symbol //.stands for incident magnetic field, 
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which is assumed being perpendicular to the loop. The induced voltages are modelled as simple 
voltages sources located at point A (the source Vo - outer ring) and point B (the source F, - inner 
ring). The complete equivalent circuit is sketched in Fig. 2a. The symbols R' and L' stand for 
distributed resistance and inductance respectively, C,,/„ stands for capacitance of the slits and C 
stands for distributed capacitance of the gap between rings. In circuit from Fig. 2a one identifies 
two main loops (inner and outer ring) which are connected across the gap via distributed 
capacitance C'. It is important to notice that voltage VQ is always higher than voltage V, by the 
ratio of areas formed by outer and inner ring, respectively (square of the ratio of radii of outer 
and inner rings). In SRR developed in [1], voltage VQ is approximately two times higher than 
voltage Vi. Thus, current essentially flows from the outer ring into inner ring across the gap. It 
flows through many branches formed by distributed capacitance C. Due to this branching, 
current in outer ring changes with the location at the ring. It is maximal at point A, then 
decreases along the ring and reaches minimal value at the slit. All the currents, which flow from 
the outer ring into the inner ring, of course, contribute to the net current in inner ring. Therefore, 
the current in inner ring exhibits maximum at the location of voltage source Vi (point B), then 
decreases along the ring and reaches minimum at the slit. Contribution of the current which 
flows across the slit (through the C,/„) to the net ring current is negligible, thus one can actually 
consider that C,./„ = 0. Now, taking into account fact that currents flow predominantly across the 
gap, one can approximate the whole circuit with a much simpler circuit sketched in Fig. 2b. It 
comprises a single voltage source and a serial tank circuit. It actually means that a single, 
electrically small loop antenna loaded with a capacitor should behave very similarly to the SRR. 

The  simple analysis  published elsewhere  [3]  shows that the magnetic  field across the 
capacitively loaded loop antenna illuminated by a plane wave exhibits resonant behaviour: 

H = H, 1-7- 
A^cof^o^ 

(2) 
R + ycoZ - y'/coC ^ 

Here, R and L stand for intrinsic resistance and inductance of the loop, respectively, K \% & 
constant, which describes geometry, and C denotes capacitance of the load. Alteration of the 
local magnetic field by the scattered field given by (2) is behaviour analogues to the 
magnetization of the magnetic material. Calculated intensity of the resultant local magnetic field 
(normalised        on        the        incident        field)        is        sketched        in        Fig.        3. 

7.692       7.694 

frequency [GHz] 

Fig. 4   Left Experimental SRR 
Right Experimental capacitively 

loaded loop 

Fig. 3   Calculated local magnetic field 
Loop parameters: /C=lm"'/?=0.1 Q, 
L=26 nH, C= 0.016 pF, 5=0.07 cm^ 

It can be seen that intensity of the resultant local magnetic field can be either higher or lower 
than intensity of the incident field. Thus, it is possible to achieve both paramagnetic (|-i>0) and 
diamagnetic (p.<0) behaviour. Please note that curve in Fig. 3 is analogues to the curve of 
relative permeability of the SRR published in [2]. 
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EXPERIMENT 

Two experimental structures have been fabricated on the ComClad substrate (thickness 0.5 mm, 
e,=2.6). The first structure (Fig. 4 - left) is the SRR, dimensions of which were scaled from 
those in [1] in order to achieve resonance around 9 GHz. The second structure (Fig. 4 - right) is 
a single loop loaded with a capacitor (narrow gap). The capacitance and inductance were 
calculated using approximate equations from the standard handbook [4]. Each structure was 
inserted into standard rectangular X-band waveguide. The structures were always oriented in 
such a way that there is a component of the magnetic field perpendicular to the loop (or rings), 
i.e., the substrate was perpendicular to the waveguide walls. The waveguide was excited in 
dominant TE 01 mode and S21 parameter was measured by HP 8720B network analyzer. The 
measurement results are given in Fig.5 and Fjg 6. 

Fig 5. Magnitude of measured S21 parameter        Fig 6. Phase of measured S21 parameter 

One can notice that resonant frequencies of SRR and loaded loop are different, which is 
consequence of approximate equations used for design of the loop. Apart from this, behaviour 
of these two structures are very  similar.  Both structures exhibit a notch  in transmission 
characteristic (Fig. 5) which correspondences with the serial resonance. Also, the curves of 
phase of S21 parameter (Fig.6) are very similar. It proves that SRR can indeed be thought of a 
small capacitive loaded loop antenna and background physics is essentially the same.  By 
extension of above analysis, the approximate equation for effective permeability of an array of 
capacitively loaded loop antennas was derived. Also, the appropriate negative permeability 
meta-material was designed, fabricated and successfully tested. Details of this research can be 
found elsewhere [3]. 

CONCLUSIONS 

It is shown that SRR can be thought of capacitively loaded loop antenna. Such an antenna may 
increase or decrease local intensity of magnetic field of the incoming plane wave yielding both 
paramagnetic (|LI>0) and diamagnetic (|i<0) behaviour. 
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THE ANALYTICAL METHOD OF INVESTIGATION OF 
FARADAY CHIRAL MEDIA 

K. Vytovtov 

Radiophisics Department, Dnepropetrovsk National University, Dnepropetrovsk-50, 
Ukraine 49050, e-mail: vytovtov@mailru.com 

ABSTRACT 

A plane-parallel homogeneous bianisotropic plate under an oblique incidence of a plane 
harmonic wave is considered. The bianisotropy axis is not coinside with a normal to a 
plate. The propagation and reflection coefficients are found in the analytical form. 

INTRODUCTION 

Electromagnetic of chiral and bianisotropic media is developing very extensively.. 
Wave behavior within infinite bianisotropic media have been analyzed in [1]. The 
phenomena at an interface between isotropic achiral and isotropic chiral materials have 
been studied in [2]. In that paper reflection and transmission by a chiral slab have been 
considered. Waves refracted by interface between an isotropic achiral and a 
bianisotropic materials have been investigated in [3]. The problem of reflection and 
propagation for an omega-slab has been considered in [4]. The problem of realization of 
soft-and-hard surfaces have been studied in [5]. Analogous problem has been studied in 
[6]. A bianisotropic slab under a normal incidence of a plane harmonic wave is 
investigated analytically in [7]. In this paper a bianisotropic slab under an oblique 
incidence of a plane harmonic wave is studied analytically. It is assumed also that the 
bianisotropy axis is not co-inside with a normal to a slab. 

STATEMENT OF THE PROBLEM 

The homogeneous lossless bianisotropic medium described by the constitutive relations 

D = sE + CB  fl = ^ + |i~B (1) 
is considered in this paper. The constitutive relations (eqn.l) contain four constitutive 

dyadics, 8, L,, C,, |-i, in gyrotropic form: 

*xx J'^xy 

a = J^xy      ^xx        0 I (2) 
0 0       a^i 

Our purpose here is to find the propagation and reflection coefficients of the 
homogeneous plane-parallel plate under an oblique incidence of a plane harmonic 
wave. It is assumed also that the bianisotropy axis is not coinside with a normal to the 
plate. For this it is necessary to obtained the wavenumbers of the refracted waves, to 
write the translation matrix for a plate, and to express the reflected and propagating 
fields as functions of the incident field. 

METOD 

The wavenumbers of the refracted waves are obtained by using the dispersion relation 
for the infinite bianisotropic medium and Snell's law taking into account the geometry 
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of the problem: 
4 3 ^ 

'^4^refr / + '^3^refr filKdr i + "^l^refr / + % ='0 

1        r n    ';2 ;2       •    2 ; •     o    • ^ ("^^ cosa =   cosp,;A:refr/ -"^inc^'"   aj^^, + A-j^^sinpsinajpccos\)/ 
^refr / ^ ' -^ 

where p is the angle between the bianisotropy axis and a normal to the interface, \|/ is 

the angle between the incidence plane and the plane including the bianisotropy axis and 
a normal to the interface, the coefficients in the first equation (3) are: 

4 2 3 
«4 = -^44 COS   a + ^42 COS   a + ^1140 ; ai^ - A^^ cos  a + Ai^\ cos a ; 

a2=A22Cos   a + AjQ',  a^-A\\co?,a;    UQ = AJ^Q. (4) 

Aj^l are the coefficients expressed in terms of the constitutive dyadic. 

After algebraic transformations we obtain the dispersion relation for refracted waves in 
the form: 

c^k^+C(^k^+c^k'^+C2k~+CQ =Q . (5) 

The translation matrix can be written using tiie wel]-i<no\vn technique [8]: 

YllM/   ybM,   Y^,My   yiiM^; 

Ud)=y^   ^2lM/  Y22M/   y'^iMi  7^2^/1 ^^^ 

^'=ly^,M,   Y^3M,   y^3M,   y^3Mj ' 

y!l,M,   y^4M,-   y^4My   y^4M,-! 

where 

,.              cos[k,id) -^ sm[k,id)                                      det(B2/+,,2/+i) 
M; = k. j ;   y    , = 2/99,,,, 1 7/, 1  ,--,          .  (7) 

.,        .   U      A (,       ,\              "'■'          2»; + l,2, + i          ^^ .g 
- jk^ i sm\k. jdj cos\k. jd j                                                    ^  ' 

B is the 8x8 matrix obtained directly from Maxwell's equations. B2/+1 2/+1 is the 

minor of the element with the indices 2/+1, 2/+1 of the matrix B. M/ is the 2x2 

matrix analogous to the one for an isotropic medium. 
\\d) is 8 X 8 in general case, but considering the particular cases it is possible to obtain 

4x4 translation matrix. This matrix (6) relates the field components and them 
derivations at both surfaces of the bianisopropic plate. The tangential field components 
are continuos at an interface, but for them derivations it is necessary to write the surface 
matrix. One must relate the field components and them derivations at both sites of an 
interface. Such matrix can be found directly from MaxwelTs equations 

^bianis - '^^isotr (^) 
U is the column-matrix including the tangential field components and them derivations. 
Therefore it is possible to write 
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-£Pr(^)/P2 

ya2£P™P(j)/p2 

-ya2£Pr(^)/p2 

= Li(j) 

^'^ (o)+£f.'(o) 
^refl/ ■7a,i4';l0)-£S(0) 

^refl £Z(o)+£gi(o) 

£i^(o)-4'i'(o) 
,refl/ 

7^1 V^JOT 

'xi 
rrefl. 

7<^,1 \Efm (0)+£f,«(0)|Pi 

«(o)- 
■7C7i' te(o)+£fi'(o) pi 

(9) 

where  Li(<i) = I    LI. After algebraic transformations the  2x2   matrices relating 

incident, refracted and propagating fields are written as following: 

E refli 
X 

refl 

-inc 
R 

^prop 

^prop = T 
E 

incj 

£3, 
(10) 

CONCLUSIONS 

The bianisotropic plate described by the constitutive relations (1) with all dyadic in 
gyritropic under an oblique incidence of a plane harmonic wave is studied. The 
translation matrix of a homogeneous bianisotropic slab is written in analytical form. The 
reflection and propagation matrix of plane-parallel plate under an oblique incidence of a 
plane harmonic wave is found in analytical form. 
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SCATTERING OF A WAVE BEAM BY INHOMOGENEOUS 
ANISOTROPIC CHIRAL LAYER 

A.V. Malyuskin, D. N. Goryushko. A.A. Shmat'ko. S.N. Shulga 
Kharkiv National University, Svobody Sq., 4, Kharkiv 61077. Ukraine 

E-mail: Alexander.V.Malyuskin@univer.kharkov.iia 

ABSTRACT 

Wave beam scattering from uniaxial unidirectionally inhomogeneous lossy chiral layer 
is studied using Fourier spectral method. As an example reflection of the H-polarized 
Gaussian beam is analyzed and distinctive features of the reflected beam field 
distribution is revealed and graphically illustrated. 

INTRODUCTION 

Layered chiral media with unidirectionally inhomogeneous parameters are potentially 
attractive for optoelectronic and microwave device design, e.g. for the fabrication of 
matching layers, which simultaneously transform the EM wave polarization. Plane 
wave scattering from layered chiral structures has been investigated in detail by many 
authors [1,2]. hi practice, however, electromagnetic fields of real sources and apertures 
substantially differ from plane waves but as a rule can be represented as partial plane 
waves continual superposition - wave beams [3,4]. In the present study we consider the 
problem of the H-polarized Gaussian wave beam scattering from unidirectionally 
inhomogeneous anisotropic chiral layer. 

FORMULATION OF THE PROBLEM 

Let us consider H-polarized Gaussian beam obliquely impinges on uniaxial chiral layer 
with material parameters varying with depth (Figure 1). The axis z of the global 
Cartesian coordinate system xyz is coincident with the axis of layer stratification. 
Material parameters of the slab are described by the second rank tensors 8, A, K . that 

relate the components of the time harmonic. exp(-/co/), plane wave electric displacement 

b and magnetic induction B with fields E, H 

D = e-E + k-H B = -k-E + ^i-H (1) 

Fig.    1.   Geometry   of   the 
problem 

Due to the uniaxial symmetiy material tensors can be 
written in the form 

fi = ri^/_L +ri|,i(,^0' 

where /j = .Y(,XO + >'oJ\)- and 

Function /(z) specifies inhomogeneity profile of the 
slab. Magnetic field of the incident wave beam is 

polarized along the x direction, //"" = /'/""-^o- '^"^''' 
spatial magnetic field distribution represented as a 
continual sum of partial plane waves over spectral 
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parameter A:,„, 
00 

HT = j^feJ exp/fe,;^,, -y,„zj dk,„. (2) 
—CO 

In Eq. (2) y,.„ = -J^o - ^l ' ^o = «/^ • Physically ^;„ and Y,„ determine the components 

of a partial plane wave vector in the local basis set X;„y/„Z;„. The spectral density U{k„) is 

assumed to be U{k^„) = exp (- b^k^ /4)H„ (A:,„Z)/V2), where 2b is a beam width, H„ (•) is 

Hermite polynomial of the n-th order [5]. In the frames of spectral method the scattering 
beam field distribution is represented in the Fourier integral form 

00 

//; = IR^^ {k) U[k,„) exp i{ky + Y z) dk,„, (3) 
—00 

00 

£; = JRjkpikJ expz(Ay + yz) dk,„, (4) 
—00 

where k and y determine the components of a partial plane wave vector in the global 
coordinate system, Rss and Rps are the partial plane wave reflection coefficients. The Rps 
term describes EM wave polarization transformation due to chirality of the slab. The 
reflection coefficients Rss and Rps are obtained numerically using the finite-difference 
algorithm [2]. 

NUMERICAL RESULTS AND DISCUSSION 

As an example we consider the slab with material parameters Sj^ = 2.1 + 0.2z, 
£|l=5.6 + 0.2/,|i^=1.10 + 0.1/,^, = 1.22 + 0.1/, Kj^=-0.01+ 0.2r,K||=-0.01 + 0.2/, 

homogeneous and inhomogeneous with barrier and transitional profiles f(z), which are 
schematically indicated in figure 1 as "BP" and "TP" respectively. 
Figure 2 delineates how the changes of the material inhomogeneity profile affect the 
partial plane wave reflection coefficient module and phase. The main interesting feature 
is the Brewster angle and phase steepness behavior. It should be noted that the crucial 
role plays chirality parameter K^ : increasing of K^ leads to smoothing of the sharp 
variation of the reflection coefficient phase and module and to shifting of the Brewster 
angle position in the incidence angles scale. Scattering beam field distribution in the 
near zone (z = 0) is shown in the Figures 2b and 2c. Gaussian beam of the width 4A, 
with spectral density described by the first order Hermite polynomial incident on the 
slab at the angle cp = 46.8°. Fig. 2b illustrates strong distortions of the beam shape - 
refiected beam splitting (occurred in the copolarized component) and the beam axis 
displacement. These distortions are caused by sharp variations of the partial plane wave 
refiection coefficient module and phase near the critical angle. In the case of 
inhomogeneous slab with described profiles reflected beam splitting is absent, but 
beams axial displacement, proportional to the first derivative of the reflection 
coefficient phase, is still substantial. In the far field zone the reflected beam spatial 
distribution becomes smoother. 
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0 30 60 90 

incidence angle cp, deg 

(a) 

-1 0 1 

beam cross section, X 

(b) 

-1 0 1 

beam cross section, A 

(C) 

Fig.2. Partial plane wave reflection coefficients (2a) and scattering beam field distribution (b,c) 
in the near zone. Curve 1- homogeneous layer, 2 - inhomogeneous layer, barrier profile, 
3 -transitional profile. For fig. 2a solid curves - Rss. dashed curves - Rps 

CONCLUSION 

The problem of Gaussian wave beam scattering from anisotropic lossy inhomogeneous 
chiral layer is solved using spectral Fourier method. It has been shown that for the case 
of H-polarized beams strong distortions - reflected beam splitting and beam axis 
displacement - dependent on the material parameters inhomogeneity are occurred. 
Results of the undertaken investigation can be applied in the theory of the wave beam 
shaping control and remote sensing of chiral media. 
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MODELING OF ELECTROMAGNETIC FIELD FROM MOBILE 
PHONE DISTRIBUTED IN THE HUMAN HEAD PHANTOM 

Victor Goblyk, Yevheniya Yakovenko 
Lviv National University "Lvivska Polytechnica", Lviv, Ukraine 

This work is a development of ideas originally presented in [1, 2]. In the work [1], a 
general equation for the modeling of electromagnetic field in a inhomogeneous 
dielectric environment was given. In the work [2], this approach was used for the 
hyperthermia problems solution. In our work the modeling of electromagnetic field 
from a mobile phone distributed in the human head phantom was carried out. The 
modeling was done by the integral equation method with unknown polarization currents 
induced by the mobile phone antenna. The induced current distribution was determined 
in inhomogeneous environment with complex-valued dielectric permittivity. 
Existing EMC standards take into consideration thermal influence of EM fields and 
restrict the average specific absorption rate (SAR) in the human body. But in the case 
when the wavelength in biological environment is smaller then the body size, the EM- 
field distribution becomes irregular and its level can be higher than limit value. With 
increasing of mobile phone frequencies this problem becomes more and more actual. 
For investigations of EM field from mobile phone distributed in the human head, a 
mathematical model has been elaborated. In this model development, we have modified 
the approach used by authors of [2] for solving hyperthermia problems. 
The model used in [1] and [2], was changed according to specific radiation source. The 
human body electromagnetic properties were characterized by complex-valued 
dielectric permittivity varying from point to point. After that the problem of dielectric 
inhomogeneous body heating by radiation source was solved. When solving integral 
equation with unknown polarization currents, we used a numerical method. 
As initial one, the following integral equation was taken: 

^^i-.fgraddiv + kM. jj(r')-G(f-r)dV + : /^l,     i-E'"(f) ,(1) 
i-co-s V i-co-[Sairj-8j 
where J=i-co-(Sa'-s)-E is the polarization current, G is the Green's function, E'" is the 
incident EM-field amplitude. 
The use of the grid method and by presenting the polarization currents as a 
superposition of trial functions enables us to transform integral equation (1) into linear 
equations system. At the first stage of the model elaboration the case of a body with 
constant shape and electromagnetic parameters along the Z-axis was studied. 
Polarization currents in every cell were characterized by piecewise-linear functions. 
Special features of EM field distributed in human phantom were obtained and analyzed. 
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THE MECHANISMS OF GRAVITO-PHOTOPHORESIS 
FOR AEROSOL AGGREGATES IN THE FREE-MOLECULAR 

REGIME 

A.A. Cheremisin, Yu .V. Vassilyev 
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The gravito-photophoretic forces in the free-molecular regime are calculated for 
the some types of aerosol particles by using the Monte-Carlo method to estimate 
molecular transfer. The absorption cross sections of aggregate components are 
calculated according to the results of the light scattering theory for fractal systems 
obtained within the framework of Berry-Percival's method and in the work by S.D. 
Andreev. 

It is shown that two types of gravito-photophoresis can contribute to the 
levitation of aerosol particles absorbing the Sun and the Earth's radiation. There is a 
well-known Aa-gravito-photophoresis [1] caused by a difference in the thermal 
accommodation coefficient, and there is a Ar-gravito-photophoresis. when the aerosol 
aggregate consists of individual particles differing in temperature due to a difference in 
the physical properties and the radiation absorption power. 

Both mechanisms can induce large-value lifting forces able to provide a vertical 
transport of aerosol particles into the upper atmosphere. A connection between the 
existence of aerosol layers at the altitudes near 20, 50. 70-100 km in the real Earth's 
atmosphere, according to the results of our space observations in the ultraviolet range 
[2], and a condition of the balance of photophoretic and gravity forces is shown. 
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THE PLANE H-POLARIZED WAVE DIFFRACTION BY A METAL 
GRATING WITH A MAGNETOACTIVE PLASMA 

A.V. Brovenko, P.N. Melezhik, and A.Ye. Poyedinchuk 

Institute of Radiophysics and Electronics, NAS of Ukraine 
12 Academic Proskury Str., 61085, Kharkov, Ukraine 

E-mail: chuk@ire.kharkov.ua 

A periodic grating of infinitely thin, perfectly conducting metal strips is considered in 
the yOz plane. The d -spaced strips are extending along the oZ axis, the grating period 
is /. The subspace x < 0 is occupied by a magnetoactive plasma with the magnetic field 
having the oZ direction. The plasma is characterized by the tensor 

Si      i&2     0 

s = -/£2     £i      0 

0        0     83 

where £] =1- 
Up 

2_    2 
X       Xc 

S2 = 
UplLc 
2_    2 

X\X       Xc 

,      In , CO/ 
, £3 =1 T' and X = 

X 2K c 
X D 

271: c 

OiJ 
Xc =     ; CO = A;c is the incident field frequency, co „ and CO^ are, respectively, the 

2K c 
plasma and electron cyclotron frequencies, c is the velocity of light in vacuum. 

From above  (x>0), a plane //-polarized electromagnetic wave e"'   is normally 

incident on the grating plate. The time dependence is chosen to be e       . The field of 
the wave diffraction by the grating-plasma structure is necessary to find. 
The diffraction field (function Vi{x,y) and V2{x,y)) sought in terms of the boundary 
value problem: 

^AV2{x,y)+k^(ey -sf )2(^';^) = 0-   ^ < 0; 

AV^{x,y)+k\{x,y)=0,   x > 0; 

Vj{x,y±l) = Vj{x,y),j = 12; 

'dV2(0,y)    .^dV2(0,y)^ 
dx 8y      j 

= 0, on metal. 

MM-,- ik, on metal, 

X 

dx 

dV^(0,y)    8V2(0,y) ^.^dV2(0,y) ^ .,j^^ 
dx dx dy 

= 0, over grating period. 

{V2(0,y)-n(0,y)) = \,ms\ot. 

(1) 

(2) 

(3.a) 

(3.b) 

(4) 

(5) 

KIEV, UKRAINE, IX-TH INTERNATIONAI. CONEERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



574 MMETH)2 PI<OCI:I:DINGS 

In addition,  functions   V^{x,y)  and   Vjix.y)   must fit the Meixner and  radiation 

2       2 
conditions on any compact set in tlie  xOy  plane. Here  X = — , x = —. and 

£, £] 

functions V\{x,y) and F2(x,>') are related to the scattered field component H-{x,}') as 

follows 

rr I     \    \,      V\{xy):x>(). 

''--^"^^ = |(e.?-e|h(-^)-<0. 
Satisfying boundary conditions (3)-(5) gives the system of dual  series equations 

27C 

s 1+x     11     ^r'">' 
 ^^—Hx,^e ' ^'   ^^-   -^^    V      l+^_z^U,-5„eT'''-: 

1 + V>^ 
(xo+2)-f   X ^n^'n^ on   metal, 

2K . 
(6) 

-/»v 
Vx„e '      =0, w   slot, 

(n) 

with XQ = hQ 1 + 2,     where h^ = 7^(1 - «o),x „ = .s'/^'/?^;?). 

For all « ^ 0, x„ = 1- C+'^« 
/'«■ ^«=,ft-i.^;=>\-i. ^'«=- 

Ki+'^>i 

The values to find are amplitudes fir„ and b^^ of the diffraction spectra: <:?Q and h^ arc, 

respectively, the reflection and transmission coefficients. 
The authors' analyfical regularization procedure suggested in [I] makes it possible to 

convert (6) into the infinite system of linear algebraic equations of the type 
+CO 

The matrix elements look like 

X/(l + ei -e?) , „        f. 

(-l)'"|/«|5,„A,„/^0/;/     .■" = 0,«?^0, 

M'„=^ 

2x/n + ei -£2^ 
1 + V^ 

2/771+£] -ti) 

1 + V^ 

/loo ■■" = 0 

r-l/'/i„o-"'^0- 

1 .• n > 0, 

The y4,j„j expressions can be found in [1] and A„ =<^ 1 + £| -£2 . „ ^ A   For large w , 

+ £| +£2 

the smallness parameter 5, 
\2mj 

1 + £] -£2 .■ m > 0 

l + £] +£2 : fn<0. 
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So, it has been shown that matrix ||-S^„||^'°^^_^ generates the Hilbert-Schmidt operator 

in I2, and w„ e /2. Hence the solution of (7) can be obtained by truncation with any 

preassigned accuracy. 

No wave transmission is found if X=^jlc+lp ^^^ X'=l:(^jlc +^lp -Ic) because 

at these frequencies the plasma acts as a perfect reflector. 
In the long-wave region, the reflection and transmission coefficients take the form 

^   ^ X'-4oo(l + £l-£2)+l-V^ ^ ^^ ^ ^^/^  _ (8) 

X'^Oo(l + £l-£2)-l-V?^ ' ^ + ^-VAQQ{\ +8^-82) 

l-i-si+82 ^ 1+S1-S2 ^nn^y 

where   p = JL/„i±£iZll,   0 =;c  1_^  ;i^(p,e)=     V     ^--^P„_i(-p,e)   with 
271      1 + S]+S2 I       /; «=-oo,«^0    " 

P„(p,9) being the Pollachek polynomials. Notice that if X/j ^^^ Xc ^^^ ^'^^^ ^^^° 

together, expressions (8) turn into the standard Lamb formulae for a grating at no 
plasma medium. 

T- 1+Sl -&2    ^ A For  < 0, 
I + S1+E2 

^00=-^ ^a-e^^^ ) ^^^-- + -^  Lsin(\^ln ^^-j^cp- 
25/2r7ip/ S2-£i-l7r TT       f „-.§-^ 0 ^w- 

2 

1   ,   82 -£i -1 
where p =—In— —. The integral in ^QO presents no calculation problems since 

271       82+8]+1 

it can be represented as a well convergent series expansion in the polynomials 5„ given 

in[l].For p= 0,^00 =--• 
71 
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WAVE DIFFRACTION BY AXIALLY SYMMETRICAL SYSTEM 
OF FINITE SOFT CYLINDERS 
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ABSTRACT 
A new strong mathematically rigorous and numerically efficient method for solving the 
boundary value problem of scalar wave diffraction by a system of infinitely thin circular 
cylindrical screens is proposed. The method is based on a combination of Orthogonal 
Polynomials Method [1-2] and Analytical Regularization Method as used in [3.4,5]. The 
solution is generalization of the investigation done for one cylinder [6] and the method has been 
demonstrated on flat soft circular ring [6,7,8]. As a result of the suggested regularization 
procedure, the initial boundary value problem was equivalently reduced to the infinite system of 
the linear algebraic equations of the second kind, i.e. to an equation of the type {I + H)x = h, 

X, iie/, - in the space l^ of square summable sequences. This equation can be solved 
numerically by means of truncation method with, in principle, any required accuracy. Pilot 
experiments show good perspective of such cylindrical reflector for development of individual 
antenna tag for rescue radar or broadcast systems in mm waveband. 

Let surface S have the following property, 

.S'is a system of finite circular cylinders located on z-axis defining, (Figure 1) 
5^. ={(z,p,(p):ze[^,.-I^.,^,. + Z,|p=a,,(pe[-7r.7: ]},,/•=/.2 A'. (2) 

s, 

The following integral equation of the 
first kind is equivalent to the diffraction 
problem posed. 

= -»'■(./) ••^/^'^     (3) f^{p).G{cj.p)ch 

s 
where, u'(q) is known incident wave, 
Jpijy) is unknown function i.e. current 
density like. Jp(j?)-[d(j?)t^ H{ji), 
peS. where f/(/;) is a smooth function on 
surface .S' , d(p) is the distance to the 
nearest edge of a ring. G(q.p) is the 
Green's function of free space. 
The axially symmetricy of the system of 
obstacles leads to an infinite system of 
one dimensional, non-interacting integral 
equations of the first kind below. 

Figure 1 
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;v     ^y+^. 
111 X aj    \zi (zp JGi;' \zp - z^ \}dzp = g^ (z^ }     z^ G [Z,,Z^ / = 1,2,..., N, (4) 

in terms of Fourier coefficients. 

Proper parametrization of the variable in the equation is required to use the Fourier- 
Chebyshev expansions defined on the interval [-1,1]. The parametrization to reduce the 
points on each Sj surface to such an interval is the following: 

zJ =riJ(v) = Cj+LjV, 

z' =ri'(u) = ^,+L,u, 

ve[-l,l]; 

ue[-l,l]. 

(5) 

(6) 

Then we have (4) reduced to: 

N   1 

-U   " J y = l-i 

we[-l,l], /= 1,2,...,7V (7) 

Here K,';' are sufficiently and G,/;' are infinitely smooth functions and it is possible to 

express those functions and the unknown function Z j (v) using Fourier-Chebyshev 

series. 

Therefore the final algebraic system of the first kind that (5) will be reduced to is 

s=0 
I^Jf z ^ + 

N 
ns^s   '   / ins 

y=i 
= bl, n=0,l,2-     1=1,2,3...N (8) 

and will be subject to analytical regularization in the same manner done for single 
obstacles (as done in [6-7-8]), easily by introducing new variables zl = 2^4„  and 

I   \\/2 

multiplying each term in (8) by Y^^. Here, Yo = (in2)"'^^;  y„==|«|    ,  « ?i 0, for every 

m=0,±l,±2,±3... z[ and z^ are the Fourier - Chebyshev coefficients of the unknown 

function, o ^^   is Fourier - Chebyshev coefficients of the excitation term, klj and k'J^ 

are Fourier - Chebyshev coefficients of the smooth kernels in (7). 
Numerical resuhs of the system kai=2, ka2=6, ka3=10, kLi=kL2=kL3=4 in case of a 
normally incident plane wave, are following. In figure 4 the approximate locations of 
the surfaces are indicated. 
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33^10  kLl-k!:---ki ?.^. 

Figure 2: Current Density 
Near (total) fielil. ka1-2. ka2=6. ka3=10 

kL1=kL2-l(L3=4 
Figure 3: Far Field 

^ 

Figure 4: Near Field 
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DIFFRACTION BY A SCREENED CHIRAL LAYER 
WITH A GRATING 
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Institute of Radiophysics and Electronics, NAS of the Ukraine, 
12 Academic Proskura Str., 61085, Kharkov, Ukraine, 
E-mail: panin@ire.kharkov.ua; chuk@ire.kharkov.ua 

ABSTRACT 
Polarization characteristics of the reflecting structure like a chiral layer combined with a 
dielectric layer, both in between a diffraction grating and a screen, are considered. Due 
to the analytical regularization procedure derived from the Riemaim-Hilbert problem 
method, the correspondent diffraction vector problem is solved in the form available for 
effective numerical treatment. The numerical investigation shows a number of the new 
diffraction features caused by the chiral medium presence. 

INTRODUCTION 
A chiral inclusion can do more than vary one or another characteristic of the system, 
which takes it in. In cases, it imparts novel properties even to well-known structures, for 
example a cross-polarized component in the reflected field of a linearly polarized wave 
incident normally on an ordinary strip grating, attached to the isotropic chiral half space 
[1]. In view of the circular polarization of the chiral medium eigenwaves and due to the 
boundary conditions, the chiral medium binds both linear polarizations. On the one 
hand, this gives rise to the new interesting effects, but on the other hand it complicates 
the problem, which becomes then a vector one. 

PROBLEM FORMULATION AND SOLUTION 

The structure of interest is shown in Fig.l. A half-space h\<z is a dielectric 

characterized by permittivity s j and permeability \i i. The dielectric layer (0 < z < /zj) 

with the constitutive parameters £2' 1^2 ^'^'^ ^^e chiral one (-/z2<z<0) with £3,^3 

and the chirality parameter y are placed between the perfectly conducting screen 

(z = -/z2) and the grating (z = /zj) composed by infinitely thin and perfectly conducting 

strips parallel to the OX axis. The grating period is /, the slot width is d . 

S2>   ^2 -M}=1 

I i I I I I I 11 n -h, 

Fig.l. The structure profile. 

The   wave    E'=Eoexp(/(k'r-to/|     H'=Hoexp(/(k'r-a)r))    with    EQ = (e ,0,0)    and 

RQ =\h,0,Oj  {e,h   are complex)  is obliquely  incident on the  grating  so that 
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k' =-27:^e||ii/A,OX(0, sina, cosa), where a  is the angle between the incident wave 

vector k' and the OZaxis. We seek to find the diffracted field. 
In so far as the incident field is x - independent and the grating extends infinitely in 
thex direcfion, the problem can be solved in two-dimensional terms (d/dx = 0). For 

existence and uniqueness of the solution, the conditions [2] to satisfy are: Maxwell's 
equations; radiation condition; boundary conditions; quasiperiodicity condition, and 
condition of the field energy finiteness. For the considered two-dimensional problem, 
the field in the homogeneous chiral medium looks like [3] 

E = E++E",  H = H++H~=-/(E+-E')/P3, 

A^,.ir+Ic'ir=0,   E~ =u~(y,z),   k" Ey =+dir jdz,   k~ Ez =±du~ jdy, 

where k- =--kT,{\±r\\ki =(O^&Q&j\XQ\ij,r\=y j^z^V^T,' 9'r-^V^oV^j j^o^^j ■ Thus all the 

field components are expressed through the E~ . The eigenwaves are right and left 

circularly polarized waves with the propagation constants k~ . The discussed problem 
requires vector approach because the sought fields have all the components. 
In view of that the medium interfaces coincide with the coordinate planes, our approach 
to this boundary problem solution is by the method of separation of variables. 
Anticipating existence of the solution, the grating periodicity along the OY axis enables 
the problem solution to be expanded into Fourier series for each structural region. 

Substitution the series in Helmholtz equation (A^-w + kju = 0 for the / = 1,2 domains 

+ +2    + 
and Ayrir +k'~  w^ = 0 for j =3) gives the field representation, which coincides with 

the Rayleigh expansion of the diffracted field as an infinite series of partial waves of 
spatial spectrum. The wave propagation character is clear from the obtained field 

representation: the propagation constants of the n-harmonic are £,,; =2nn/l~ki.siiTL along 

the 07 axis and c,/j^.^^ =^(^,F-|J , ^ *! .^3 =#*F "fe J ' (^'"C/-^OJ  along 

OZ . The wave complex amplitudes are unknown Fourier coefficients. 

Applying the boundary conditions to each surface one can relate the sought Fourier 
coefficients in the partial domains and obtain the two coupled systems of dual series 
equations involving trigonometric functions. The obtained systems are equivalent to an 
operator equation of the first kind in the Hilbert space given by the Meixner condition 
[2]. These systems are ill-conditioned, therefore the truncation technique is generally 
unappreciable. The analytical regularization can help us to get rid of this ill- 
conditioning and arrive at the form admitting effective numerical and analytical 
treatment [2,4]. 

NUMERICAL RESULTS 

Introduce the structure efficiency in the «-order of spectrum /?;)./?/) , which determines 

the relative part of scattered energy spread from the structure to the upper half-space by 
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the traveling ^-harmonic ^„ >0J with the wave vector k„ = (O, 1,^,11,„j. The upper 

indexes respectively relate to the field of E- and H- polarizations (E-polarization when 
EIJOX  and H-polarization when H||OX). Let us call major polarization that of 

incidence, then the cross one is that normal to it. The values RQ, RQ as a functions of 

X = //A-o and if2 = ^2/^ ^^^ represented in Fig.2. 

H: 
0,7 

0,6- 

0,5 

0,4- 

0,3 

0,2 

0.1 
cf/=0,5 

0,4     0,5     0,6     0,7 

a) 
0,9    1,0    1.1 

^■■■^ 

0,9    1,0 
X'" 

Fig.2 Efficiency in the 0-order of spectrum: 
a-main polarization; b-cross polarization 

(e =l,/^ = 0,a =0°,/2i// = 0.03,ei =1,S2 =83 =4, nj =1,Y =0.3). 

CONCLUSION 

The analytical regularization procedure for solving the vector problem considered has 
been constructed. Our approach based on the Riemann-Hilbert problem method lends as 
a reliable and effective tool. An incident plane-polarized field can be totally converted 
into the regularly reflected cross-polarized field. The character of the polarization 
conversion is influenced by the grating and by the resonance properties of the grating- 
screen volume. The laws of the polarization conversion have been established as well as 
the possibilities for the enhancement of the structure efficiency and broadbandness. 
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ABSTRACT 

A rigorous solution of the problem of a TE wave scattering by a finite number of slots 
in a PEC plane backed by resonant cavities is given. The scattering problem formulated 
in terms of system of singular integral equations has been solved by the method of 
analytical regularization. Application of the regularization procedure allowed obtaining 
an accurate and numerically efficient solution. 

INTRODUCTION 

The problem of scattering of a TE wave by a slot in a PEC plane, backed by a resonant 
cavity, or by a trough in a plane, has been discussed by many authors [l]-[2] in the 
context of the method of moments and the mode matching method. A numerically 
efficient solution of the problem, which works well on resonant and non-resonant 
frequencies, can be obtained, if a procedure of regularization is applied to an initial 
integral equation or a system of linear algebraic equations. As, there is no a "standard" 
procedure of regularization [3], for each problem a regularization algorithm, if exists, 
must be derived independently. The regularization algorithm employed in this paper 
originally was designed for elasto-dynamic problems and described in [4]. Lately it was 
used in different scattering problems [5], [6]. Applicafion of the regularization 
algorithm [4] to the problem of a TE wave scattering by a cavity backed slot allows the 
transformation of initial integral equation into infinite system of linear algebraic 
equations. As the system of equations is well conditioned its solution can be found 
numerically, with desired accuracy, from a truncated system of equations. In the case of 
a narrow slot, slot width doesn't exceed one tenth of wavelength, the solution of the 
problem can be obtained in an analytical form. An efficient solution of the single slot 
problem provides a possibility to obtain solutions for more complicated structures, such 
as a collection of a finite number of cavity-backed slots, with the same high accuracy 
and numerical efficiency. 

PROBLEM FORMULATION 

Consider N cavity backed slots as shown in Fig.l. The problem of a TE wave scattering 
by slots loaded on resonant cavities is formulated by using Green function formalism. 
Green functions of the upper half-space and of a rectangular cavity for the Neuman 
boundary condition under assumption that y - y' = 0 are defined as follows: 

G„{x,x') = -^H\^\k\x-x'\), (I) 

G„,(x,x') = --j^-|:^coth(Y;»cos(^(x + ^J)cos(^(x' + ^J) 
'ill II 
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where k = ^TT/   ^ HQ^\Z)     - Hankel function of zero order of the second kind, W- 

1     TITT 
free space impedance, s„ = 1,   m^O,   SQ = 2,      y"' = J( f + k^ . The subscript 

m in (2) corresponds to the cavity number. The cavity parameters - a„,, ZJ„, , c„,, and 

J„, are defined as shown in the Fig.2, where 2a„, - cavity width in the X direction, ^„, - 

cavity depth, 2c,„ - slot width and <i,„ -defines slot position with respect to the upper left 

corner 

/ 

Z 

Fig. 1 The original problem. Fig.2 Geometry of the 
cavity-backed slot. 

of the cavity ( t/,,, = a„, corresponds to the case when slot center is positioned at the mid 

point of the interval [-a„,,a„, ] ). If the system of N slots is exited by a TE wave, a 

system of N integral equations for the problem can be formulated as 

J E,„ (x')[G„ (X, x') + G,„ (X, x')]dx' = -2 fix) - 2^ H, (x), (3) 

where £■„, (x) - is an unknown magnetic current on the slot m, /(x) - the incident field, 

Hi{x)- is a secondary incident field produced by the magnetic current on the slot i. 

The system of singular integral equations    (3) can be reduced, by the method of 
analytical regularization, to a system of linear algebraic equations of the form 

M N    M 

(4) 
/=o /=1   /=0 

where Z,'„ are unknown Tchebyshev coefficients of magnetic current on the slot i. The 

system of equations (4) allows us to calculate M unknown coefficients in the unknown 
magnetic current expansion for each slot, once these coefficients are calculated the 
scattered field is determined at any point in the upper half-space and inside resonant 
cavities. 
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NUMERICAL RESULTS 

The far field diagram of N slots is defined as 
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1        ikc^, COS{(p )Xr 

1 ikx„ cos (()) x'    Hi r-    ' 
kc„e       2.^/ J r=^— (5) 

where the polar angle cp is counted counterclockwise of the OX axis. Fig.3,4,5 presents 
graphs of the scattered field at the point (p =71 /2 , versus the frequency parameter ka 
calculated by the formula (5). The incident field is a plane wave normally incident on 
slots. Fig.3 presents scattered field of a single slot, and Fig.4,5 present graphs of 
scattered field by two slots. In the case of two slots both of them have the same slot 
width and cavity size, here « = a, = Oj. Fig.3 presents graph of |//| for a single slot 

with the following cavity parameters /?, =2fl,,c, =0.2a^,d^ =<;/,. Maximums in the 
scattered field occurs at resonant frequencies of cavity, coupled through the slot with the 
upper half-space. Fig, 4 presents graph of scattered field by two slots for the case of an 
optimum coupling between slots on the //QO mode, the distance between slots is defined 

by the formula kx, =2ka + 0.95. Fig.5 shows the effect of the resonant coupling 

between slots on the TE^^ mode, in this case the distance between slots is defined by 

Ax, =2ka + 2.5. Presented numerical resuUs demonstrates, that the mutual coupling 
effect can drastically change the scattering properties of cavity-backed slots at resonant 
frequencies 

Fig. 3 Scattered field at cp = rr /2 , one 
slot, kb=2ka, kc=0.2ka, kd=ka. 

20 1 

Fig.4 The effect of the resonance coupling 

on thc//,)„ mode. 
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4 5 

ka 

Fig. 5 The effect of resonance coupling on the TE^Q mode 

CONCLUSSION 

In this paper the exact solution of the problem of a TE wave scattering by a collection of 
finite number of cavity- backed slots is given. The method automatically includes the 
effect of singular behavior of a tangent component of the electric field on slot aperture. 
The solution has no limitations on cavity size and is numerically efficient. The 
examples presented in the paper demonstrate the coupling effect on the scattering 
properties of cavity- backed slots. It has been shown that the method works with the 
same efficiency on resonant and non-resonant frequencies. 
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ABSTRACT: The aim of this paper is to obtain accurate reference data for the relatively large and 
realistic reflector antenna systems. Previously it has been done for a parabolic renector antenna in E-case 
and now it is similarly performed for the H-polarization case. Directive primary feed is modeled by the 
complex source point method and the relative accuracy of the results is verified. 

INTRODUCTION: Reflector antennas play an important role in the modern communication systems, 
and hence attract research efforts for efficient numerical analysis and optimization. Although two- 
dimensional (2D) modeling relates only to cylindrical reflectors, it is still interesting in terms of advanced 
solutions and some practical applications. The scattering from a 2D reflector can be veiy accurately 
simulated by analytical-numerical techniques. One of them is the Riemann-Hilbert Problem (RHP) 
technique which reduces the canonical circularly curved screen problem to a Fredholm 2"' kind matrix 
equation af^er explicit inversion of the static part [1]. In [2], we had combined this solution with the 
complex source-point (CSP) method that enabled us to model realistic feed patterns in the both 
polarizations. However most of the realistic reflector surfaces are parabolic ones. This necessitates a 
modification of RHP technique to arbitrarily curved strips. In [3] we performed the analysis of 2D 
reflectors of conical-section profiles in the E-polarization case. Here we used a dynamic singularity 
extraction and inversion, as proposed in [4], to convert a logarithmic-singularity integral equation to the 
Fredholm 2-nd kind matrix equation. Furthermore the application of the FFT algorithms enabled us to 
treat electrically large geometries. In the H-polarization case, the basic integral equation has a strong 
singularity. It is worth to mention that similar problem was considered in [5]. Here, the integral equation 
was reformulated into a dual series equation (DSE) with trigonometric kernel. Then it was regularized by 
using a specialized method developed earlier for the equations with Jacobi polynomials. Eater on. in [6] it 
was proposed to regularize the same DSE by the RHP technique. In the both studies, although a method 
was outlined, no numerical data were given for arbitrary profiles. 
In this study, we regularize Electric Field Integral Equation (EFIE) obtained for the parabolic reflector 
antenna in the H-polarization case. EFIE is discretized by transforming it into the spectral domain and 
also written as DSE. To make regularization the static part is inverted analytically by the RHP technique 
since the static part of DSE constitutes a proper canonical form. Furthermore we can say that this is 
equivalent to the semi-inversion of the original IE containing hyper-type singularity in the kernel static 
part. In the details we used the FFT algorithm to perform computations of the double Fourier Series (FS) 
coefficients more rapidly. All these provide us to solve relatively large reflector antennas compared to the 
previous results with the semi-inversion techniques. This is the continuation of the work in [2,3] and the 
results can be used to check the accuracy of the asymptotic and numerical techniques. 

FORMULATION: The geometry of the problem can be defined so that infinitely thin PEC curved 
reflector surface having parabolic profile is illuminated by a directive feed (Figure I). Parabola is a 
special case of an arbitrary profile. In the real space, the feed is located at the geometrical focus of the 
parabola. To perform regularization, parabolic reflector surface is completed to the closed contour C by a 
circle having its origin on the x-axis. Its radius, a. is chosen so that, at the connection points, the slopes of 
the parabola and circle are matched. So the contour first derivatives are continuous and the discontinuities 
in the second derivatives are finite. The boundaiy value problem can be stated as the satisfaction of the 
Helmholtz equation. Sommerfeld radiation condition, and PEC boundary condition on reflector surface 
M. By usung the free-space Green's functions in 2D, i.e. G\, =G">//-^ H,!"(k„\r{(p) - r'(({>')\). the 
tangential electric field can be written in terms of auxiliaiy vector and scalar potentials depending on 
tangential surface current (J,) and surface charge (p) densities. 
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E'\i = /CO i.F-V(|) A = /co|Li \{t.t')J,{r')Gf, ir,?')dr-i.V j[ - jp(F')G* (F,?')^?/' (1) 

Then by applying equation of charge conservation, i.e., V.J = /(x)p, and PEC boundary condition to the 

above equation and after manipulations the following integral equation is obtained: 

-£r(5)P(5) = /con }j,(y)cos(^(5)-^(5'))P(5)P(5')G„'^(i,y)<:/y-f-^H ][~;J,('')\ Gt{s,s')ds'      (2) 

where ^(s)=r(s)/cos(Y(s)), ^(s) is the angle between the contour normal and the x-direction, and y(s) is 
the angle between the contour normal and the radial direction. Besides the closed contour C is 
characterized by parametric equations x=x(s), y=y(s), 0<s<2% and the current density function J, is 
assumed zero on the part of C complementary to M. The above IE is defined on M. On the slot part the 
current density is zero. The spectral versions of these two equations constitute a DSE. However a special 
care is needed for the Green's functions to find a regularized solution. Therefore we define the following 
new auxiliary regular ftinctions, 

H(s,s') = H^'^\k\r(syr{s')\)-H^'^\2ka\s.m{s-s')lt) (3) 

G(5,5') = cos(^{s)-^{s')) pis) p{s')H^^\k\7{s)-r{s')\)- P\s)H^^\2ka\im{s-s')12|) 

(4) 
These functions H(s,s') and G(s,s') have continuous first derivatives and second derivatives with respect 
to s and s' and belong to Z-p. For reguiarization these functions are expanded into double FS and the 
corresponding expansion coefficients rapidly decay like 0(l/(\n\\m\f^" '^). Then by using (3) and (4), DSE 
is written in certain canonical form and solved by RHP technique. The main problem in this process is an 
efficient computation of the double FS coefficients. We perform this by using FFT algorithms and exploit 
the fact that the second terms in (3) and (4) are expanded into FS analytically. All this provides us to 
handle larger problems than can be treated with earlier methods. 

NUMERICAL RESULTS: Firstly the convergent nature of our algorithm is shown in Figure 2. The 
relative error in the computed surface current is max\x/"' ' - x„'^"]/max\x„'^"'\, that decreases quite rapidly 
with larger A',,.. It can be said that 0.1% accuracy can be obtained with N,r=2ka + 15. Figure 3 presents a 
comparison of the radiation patterns obtained by the presented method and Physical Optics solution. It 
shows that excluding the back lobes the two methods show quite similar patterns but still some 
disappearances are observed in the penumbra region. 

CONCLUSION: Two-dimensional parabolic reflector antenna illuminated with directive feed is solved 
by the analytical reguiarization in the H-polarization case. Presented numerical results have uniform 3- 
digit accuracy although the algorithm can generate them with machine precision. Application of the FFT 
codes provides us to solve larger problems, and our data can be used as a reference to validate purely 
numerical or asymptotic methods. 
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Figure 1: Geometry of 2D reflector antenna system 
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Figure 3: Comparison of radiation patterns 
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Feed directivity factor is kh=].5. 
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ABSTRACT 
The problem of electromagnetic wave scattering by a perfectly conducting thin long 
bicone is considered. The bicone consists of a slotted cone and an isotropic one. The 
solution method is based on using the Kontorovich-Lebedev integral transforms and the 
semi-inversion method. Both analytical and numerical results are presented. 

INTRODUCTION 

Cones and bicones are omnidirectional and super-w^ide band in radiation pattern and 
matching. The structure under consideration is a model of a specific bicone reflector and 
a slotted cone antenna. The task of this work is to study effects of slots and isotropic 
cone on scattering characteristics. 

FORMULATION AND SOLUTION METHOD 

Let us consider the scattering of incident electromagnetic waves from a thin perfectly 
conducting long circular slotted bicone. The geometry of the bicone configuration is 
shown in Fig.l; (r,9,(p) are spherical coordinates with the origin at the bicone tip. The 
bicone structure S consists of a semi-infinite cone with periodical longitudinal slots 
I2:6 =Y2 and an isotropic one S, :e =7, (E = E, uZj). The period I = 2n/N and the 
slot width d are angular values. The source of an incident 
field is a magnetic radial dipole (the time dependence is 
assumed to be   exp(mt)) that is located at the point 

5o(rQ,9o,(pQ),   y2<Oo.  The vectors   £and   //of total 

fields   satisfy  the   system  of Maxwell  equations,  the 1,    I // Bir ,Q f€ ) 
boundary   condition   on   the   bicone:    E^^^^\^=0,   the Wl   -^ 

condition of finite stored energy and the infinity 
condition. The conditions mentioned above guarantee the 
uniqueness of solution. In order to find it, it is convenient Fig.l Bicone structure 
to  use  Debye  potentials,  which  satisfies the  three- 
dimensional homogeneous Helmholtz equation outside the bicone and the source, the 
Neumann boundary condition on the bicone, the principle of ultimate absorption, and 
the edge condition in the proximity of boundary singularities. In accordance with the 

structure of the total fields E = E^'^ + E'-'^, H - //^'' + H'-'^, we represent d in the form 
9 =0^'^+0*^'', where indices (/) and (s) correspondence to dipole fields and fields 
scattered by the bicone respectively. We look for the solution in the form 

S''>(r,e,(p) = -- fx sinh7TTe"^a,^"(e,9)    " ii   ^ dr, 
2 0 Vr 
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Z[p„„,^:;';^r:(cose)+L„p:;;^^(-cose)]e'<"-"^'', Y,<e<Y„ 

where H^^\kr) is the Hankel function, ?"(cose) is the associated Legendre function. 

a„^ are given; p,„„, ^„,„, TI„„, are unknown coefficients and expressed via >'„. The 

boundary condition imposed on the bicone and the field continuity condition on the 
slots yield the dual series equations those are reduced to the matrix equation of the 
Fredholm second kind [1] hke {I-A)Y = B, Y = {>>„}. Coefficients y„are independent 

of the wave-number k; it is convenient for finding the field both near the vertex 
(kr « 1) and far from it (kr » 1). The solution of the matrix equation exists, is unique, 
and can be approximated by solving a truncated matrix equation. For a cone with 
narrow slots (d, /I«1) one can solve the equation by method of successive 

approximations. 

ANALYTICAL RESULTS 
For a cone with narrow slots we obtain the asymptotic expansion of potential 
0^'' at a large distance from the slots in terms of parameter (1 -z/)«1, 

u = cos[nd-,/I) in the following form (cp^ =0,9o =Tr ,m = 0) 

"^  n2..(cosY,)^/^'3.„(-cosY,) 
+0((l-i/)), Y2<e<7r;     C[ 

A/ _ dy,  dy. 

^P'UA-cosy,)^P%,^A<^osy,) 
dy, dy. 

_   CJTKX 1 1 p 1  

" "nsin^Y, (T^+{)?-;,,„(cosY2)/',U(-cosY2)l-CLu.o'   " " A "I^ZR^, ' 

C =-    ., ^ ,, X,  e„=0(A^ '(?7+v)") ,   /7A^ » 1.-1/2 <v< 1/2,/). is given. 
ln{{l-w)/2) 

NUMERICAL RESULTS 
We'll discuss the far field scattering characteristics of the bicone based on numerical 
examples of cp -plane scattering patterns. Let the source be at the  z -axis ((p„ = 0, 

9p =71: , /r? = 0) and A^ = 1. Thus Fig.2 depicts the dependence of the far field scattering 

Klh:i;   llKRAINIi,   IX-ril   iNlHRNAriOKAI. CONI-HRI'NCK ON   MATIIEMATICM. MinilODS IK ElMCmOMAdM-rnc iHliOlty 



MMET*02 PROCEEDINGS 591 

on the angle y, for an alone slotted cone (the isotropic cone is absent). The ray (p = 0° 

coincides with the slot axis. The slot lobe is symmetrical with respect to the slot axis; 

the main lobe of the slot radiation is centered in the direction (p = 0°. The effects of the 

isotropic cone on the scattered far field are shown in the Fig.3 - Fig.5. 
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CONCLUSIONS 
The problem of exciting the slotted cone with the isotropic one inside by the magnetic radial 
dipole has been considered. The analytical solution for narrow slots is analyzed. The scattered 
field structure contains the isotropic cone contribution and the narrow slots one. Scattered field 
patterns are given to investigate slots effects and the isotropic cone presence both. 
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ELECTROMAGNETIC BACKSCATTERING FROM A 
TRIANGULAR DIELECTRIC CYLINDER 

Lyudmila N. lUyashenko 
IRE NASU, ul. Proskury 12, Kharkov 61085, Ukraine. E-mail: lyusi@vil.com.ua 

Sa.7^™requations (lEs) are an accurate and versatile tool in the electromagnetic 
scatterhs by smooth cylinder [1], especially when it is combmed with analytical 
pre3ionh,g 2] An oHginal approach to the E-waye scattering by PEC polygons was 
deyeloped°n [3] to study a trlngular prism. Here the boundary of the scatterer was conformally 
mapped on a circular cylinder [4], and a log-singular IE was treated by a s^P e jme,. 
method We combine this idea with the method of analytical regularization (MAR) and study 
Te scattering by triangular dielectric cylinders. Applications of this analysis are expected in the 
design of microwave and optoelectronic prism sensors and couplers. 

FORMULATION AND INTEGRAL EQUATIONS 
The geometry of the problem is shown in Fig.l. A plane 
electromagnetic wave //' = e'*""'"*"'"' is incident on a 
uniform dielectric cylinder whose cross-section is an 
isosceles triangle of the base 2d and height /?, having 
relative permittivity 8. The field functions have to satisfy 
the Helinholtz equation in free space and in dielectric, for 
r € n(/- eex/Q) and r e Q , respectively. On the contour 
L the transmission conditions should be satisfied. The 
scattered field must also satisfy the Sommerfeld radiation 
condition at infinit\' and condition of local power fimtness. 
We will seek the solution of the problem in the form of a 

pair of single-layer potentials with unknown densities (p e C(aQ) and V|/ e CX5Q) By using 
the conditions on L and the properties of the normal derivative of a single-layer potential when 
crossing the contour of integration [1 ], the following set of singular lEs is obtained: 

Fig. !:Skatieri>ig geometry andi-iofatiom 

[^{r'p,{ry)ds' - lyv{r')G{ry)ds' = H'{r) 

(p(r) + -[^>{r')§-GAry)ds' + 
y(r) 

Jl. I 

(2) 

2s      s ^ ' ^   'dn   ""      ' 2       * ' '  'dn    "      ' dn 
To faci itate building a fast algorithm, which is able to solve the scattering by cylinder with a 
contour arbitrarily close to triangle, we shall use the following continuous parametric 
approximation of curve L: 

x(t) = ^(smt + f^a,sm{3k-\)t],y{t) = ^\-^ost + J^a,cos{3k-\)tl        (3) 
M A-=: 

*=! 

n(5-3./) 
^<k = 

;=l 

3'(3k-\)k\ 
(4) 

One can obtain these formulas by conformal mapping of the region outside a regular polygon 
from Z- plane iZ=x+iy) to the (U) plane, where 0 < / < 2;: , and by using the transformation 

formula first derived in [5]: 52/5/= C(cos(3//2)f \ where C is a complex coefficient 
depending on the size and orientation of the polygon. If ^-^co then the curve given by (3) tends 
to a triangle, however by truncating the series in (3) at the ^-th terms a smoothed contour is 
obtained having the corner radius of curvature h inverse proportional to K. By changing the 
variables in (1) to / and t', we arrive at lEs as follows (see also [2]): 
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\p{t')K\t,t')dt'- \q{t')K{t,t')dt' = f{t) 
0 0 

im^m^ \^t')M^ (t,t')dt' - \(nMit,t')dt'=7(o 
c     0 9 J r 

(5) 

£   2        2      „ 

Here the following notations have been used: 

K\t,t') = -Hl,'ik4^Rit,t')), K{tj')='-H'^\kR{t,t')), 

Jx{t)-x{t'),..^   y{t)-y{t')^„„ 
M' {t,t') = -4^Hl'ik4^Rit,t')i 

R(t,t') 
-yxn- 

R(t,t') 
xV) 

Mit,t') = -Hl'^{kRit,t')) -^^)-<^'\yy)-y^lz41x'{t') 
R{t,n R{t,t') 

(6) 

(7) 

(8) 

R{t,t') = -y/(x(r) - x{t')f + (3^(0 - y{t')f   is the distance between two points on L. Besides, 

in the right-hand parts we have: 
f{t) = exp(zl(x(0 cosy + yit) siny )) (9) 

fit) = k{y'{t) cosy -jc'(0 siny )exp(^(x(0 cosy +;;(Osmy))       (10) 

REGULARIZATION AND DISCRETIZATION 
As a curve given by (3) is smooth, we can solve (5) by projecting them onto the set of global 

basis and testing functions {e'"" }Z-r. ■ Here the key step is to split the IE kernels by adding and 
subtracting the terms corresponding to canonical scatterer, i.e., a circular cylinder [2]. Thanks to 
the fact that the singularities of actual kernels are the same as of canonical ones, and that 
angular exponents form a complete set of orthogonal eigenfunctions of the canonical operators, 
the resultant infinite-matrix equation is of the Fredholm second kind. It has a (2x2) block 
structure generated by (5) in obvious manner. Therefore this specialized Galerkin projection 
procedure can be regarded as an analytical preconditioner, which leads to an always-stable 
numerical solution whose accuracy is easily understood and controlled. Namely, if the 
intermediate computations have been done with superior accuracy, then the error in matrix 
inversion is controlled by the size A^ of each block, so that large enough N guarantees a uniform 
accuracy. An important point of the MAR-algorithm efficiency is fast computation of the matrix 
elements, which are the double Fourier transform coefficients of the twice-continuous functions 
formed by the differences of actual and canonical kernels of lEs. Here various versions of FFT 
and the like numerical algorithms can be successfully implemented. We shall demonstrate the 
features of the developed method by presenting the dependences of the matrix condition number 
and inversion error as a function of the matrix block size iV for various triangle sizes, dielectric 
constants, peak curvatures of smoothing parameterization, and frequencies. 
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INTRODUCTION 

Communications and information technology stimulate a development of various antennas. 
Because of their simplicity, slot fed circular microstrip antennas (MA) [1] seem to be attractive. 
Even more attractive are MAs conformally printed on curved surfaces, such as spherical- 
circular MA (SCMA) because of their higher degree of freedom. However, conventional 
numerical methods, such as Moment-Method (MM) or FDTD need very high computer 
resources and do not guarantee a convergence because of ill-conditioned matrices, numerical 
instabilities, and vulnerability to high-Q resonances. Besides, many applications need special 
properties: agile scanning beam, multibeam capability, scanning in a large field of view, etc. 
Here, a very attractive candidate is a discrete Luneburg lens (LL) [2,3,4], which is a layered 
dielectric sphere. Spherical geometry of both SCMA and LL enables one to simulate them with 
the same method. Here, we shall use the Method of Analytical Regularization (MAR) [5-7], 
sometimes called semi-inversion method. Generally, it converts a first-kind singular integral or 
series equation to a well-conditioned second-kind Fredholm matrix equation, and therefore 
serves as a perfect pre-conditioner of an ill-posed problem. Then both numerical convergence 
and efficiency is achieved and matrix-truncation error is controlled. 

ELECTROMAGNETIC MODELING 

Suppose that the layer #/ is characterized by its material properties c,., and //,„ outside radius /•„ 
and the size of corresponding PEC spherical disk. 9,, like in Fig. 1. The used excitation is a 
tangential magnetic dipole (TMD). Spherical geometry offers to expand electromagnetic t1eld in 
terms of vector spherical modes involving/"',,, associated Legendre functions, vvith coefficients 
a,,"'' and /)„''. 
The first step concerns the application of so-called dual boundary conditions. This yields a set 
of 4Nshell coupled dual series equations (DSE): for 0<6 <9,,/ = 1... A',/,,,//, a = e. o. 

and also, for 6, < 8 < Tt, / = 1... A',,./,t,//. o = e, o. 

S,,.,  [ci-Xl,-X^,::-f^'^'\p!,{co,Q) = a{-\\C", cote/2 

I... k-A-L-<-'"')-^-!(-^e) = c,"cote/2,^  ^ 
where A'^/"'' are vectors corresponding to the slot feed field modal description, C„ and C„ are 
matrices related to the structure without metallic elements. The unknowns are the vectors X„. 
n>\, Xj=[a,^-'...a,;''''"'"']\ X,,,," = [b,,'- ... h,,'-'"""-'/. Cr and C/ correspond to 
auxiliary constants to be determined. a{-I) = +1 if o = o and a{-J) = -! otherwise. Besides, the 
power boundedness condition determines the allowable class of the unknowns as 

l„>i  ||ci;,-C / «|| '<+«= s„>„,  \\n-cl;„-xi\\ '<+co. 
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N     +1 PEC, cap 

Fig. 1: Definition of the structure. 

Far field pattern for (|) = 0 

90°  OdB 

180 

Far field pattern for (j) = 7t/2 

90°   OdB 
120° 

180' 

270° 

angular position 8 

2W 

angular position 6 

Fig. 2. Far field pattern for a SChdA fed LL with k„r„u,sid(i = iO.O. 

Far field pattern for (ji = 0 

90°   OdB 

150; 

180' 

21 a 

Far field pattern for ^-KJ2 

90°   OdB 
120° 

150; 

180' 

210' 

270° 270° 

angular position e angular position e 

Fig. 3. Far field pattern for a TMD fed 40-layer LL with kgr lens = 10.0. 
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MAR TREATMENT 

Mentioned above DSEs are collectively the l" kind equation which can be written as CX= fin 
terms of operators. Unfortunately, C is not directly invertible and its numerical inversion is not 
convergent. According to [6,7], C can be cut in such a way that C = (Ci + C2)'C„, with Cf a 
known operator. Then, the l" kind problem becomes the 2"'' kind problem Z+ AZ=-- Z,,. where 
2„ = C/'T, Z= CijXmA aho A = Cf'^Cj. A \s a Fredholm operator provided that !Mi|/.< +». In 
our problem, MAR technique is easily applied thanks to some simple variable changes: Q^//- 
Ga„;Za,r^n{n+l)CjX„r, and f2n+l)Q,a-G,J-Z„r = rifn+])Cj-X,„r,      ^   for 
0<e <e,./ = l...A\/„,//. with Cla and Q/, two constant matrices, and, (2n+ l)Z„i^ = n{n+ ])C„„"Xai", 

and Zi,„''= n(n+l)Ci,/'X,„", forQ, <Q <n.i = \...N,i,,ii. By the use of the Mehler-Dirichlet 
expressions, the set of4N,h,ii coupled linear equations reduces to a set of 2'" kind equations: 

Z*^ +y    ,A      ,2" =z''-/t'«/    VOT>1. 

By collecting the unknowns into a double infinite vector Z" = [Zai!^ ,Zh° , Z„/" ,Z/,/ , 
Za2.Zi,2 ■...], and also Zo=[ZJ .Zi,o . Z„/ ,Z/,/ , /„? ,Z/,i ,...7 , and oy 
defining an infinite matrix A having (2Nshci&2) x (2N,M&2) infinite blocks composed of the /!„,,„ 
matrices, the whole set of the 2'"' kind can be written as Z" + AZ" = Z,,". Each A,„,„ is a product 
of two terms, A„,„ = A\;A''„,,„. where A'„ depend on the sliells characteristics (r„ e,„ ^,„ 
i=l...Nshell) and /i''„,» on the disk ones (Q„ i= 1 ...N,i,,u)- Moreover, A%, behave as 0(l/n), and 
A'„,,„ as 0(l/(n-m)) if m^^;?, and like Of/; otherwise. As a consequence, A is compact as 
||Z«|| < +00 that ensures the existence of unique solution, which can be approached as closely as 
wanted thanks to point-wise convergence. 

RESULTS 

In order to ensure a 3-digits accuracy in solving the matrix all the computations were done with 
N=\20. Figs. 2 and 3 present far field patterns of LL fed by SCMA+TMD and a simple TMD 
feeds, respectively. Here, the patch is the inner (smaller: 6,„s„/r = 1-^°)) conductor, and the 
ground surface is formed by the outer (larger) metallic cap (Q,nas,de = 3.0°). The focusing effect 
is clearly seen, as well as the shadowing by SCMA. MAR technique is a very powerful and 
economic method to study complete SCMA-LL radiation problem. It enables one to highlight 
with controlled accuracy the effects of finite ground size, curvature, several types of resonances 
connected with SCMA, ground and coating, and LL focusing, etc. 
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ABSTRACT 

The transceiver horn antenna used in multifrequency microwave measurements for 
probing the structure under the test and receiving reflected power has two reference 
discontinuities. This causes obtained reflectivity dependency to be a superposition of 
two similar echoing characteristics, so that clear discerning reflectivity signal peaks and 
estimating their parameters is impossible in the most part of uniqueness range of Fourier 
transform, which is used for viewing the dependency in spatial area. The Filter for Horn 
Antenna Multifrequency Data Processing is designed for extracting single echoing 
characteristic from said dependency. This allows productive using almost all the 
uniqueness range provided that in the far-field region the reflectivity ratio of reference 
discontinuities and electric length of the horn do not depend on distance to structure 
under the test. 

INTRODUCTION 

The multifrequency reflectometers [1] implement the principle of synthesising radio 
pulse envelope [2] using data of reflectivity module measurements carried out in free 
space on a discrete frequency grid with the presence of reference discontinuity. 
Reflectivity is obtained as ratio of incident and reflected wave power, which is 
respectively irradiated and gathered by the transceiver antenna serving also as reference 
discontinuity (-ies). Complex-valued spatial echoing characteristic is obtained by 
inverse Fourier transform of measured frequency response. 

GROUNDS FOR DEVELOPING THE FILTER 

Practical usage of horn antennas in multifrequency reflectometer looks more preferable 
in comparison with simpler antennas like the open-ended waveguide (OEW), especially 
when remote testing is necessary (in industrial conditions, for example) because of their 
high gain (of about 25 dB). However, analysis of reflectivity dependencies derived with 
horn antennas in their primal view leaves unused the greater part of distance range of 
uniqueness of Fourier transform. The main difficulty is that direct measurement data 
represents a superposition of echoing characteristics corresponding to cross-correlation 
functions (CCFs) of reflectivity of structure under the test with that of throat and 
aperture of the horn. Thus for structure with electric width exceeding the electric length 
of the horn the clear interpreting of synthesised signal peaks is impossible. Removing 
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one of the characteristics (by some method) would allow using practically all the range 
of a uniqueness of measurements, only limiting the aperture-structure distance by 
structure's electric width. 

MATHEMATICAL DESCRIPTION 

We have researched the simplest of possible processings (further - horn antenna data 
filter) extracting a unique echoing characteristic. It is built using the following 
statements. The echoing characteristic F(co) obtained with horn antenna is a 

superposition of three functions: F^{(i)) +F^((a) + F^((i)) (typical look is shown on 

fig. la). The first of them corresponds to correlation of structure's echoing characteristic 
with that of the first reference discontinuity (horn's throat, for example), the second - 
similarly with the second (accordingly, aperture). The third is attributed all the rest, in 
particular auto-correlation funcfions of discontinuifies, CCF of reference discontinuities 
and other (possibly unexpected) components. Further, in spatial domain it is possible to 
consider the funcfion F,{z) as kF^{z + Az), where Az is the shift along the 

measurement axis (equal to electric length of the horn), k is a complex multiplier 
taking into account the ampUtude ratio and phase difference of reflection signals 
corresponding to CCF structure-aperture and structure-horn's throat. It is supposed that 
k = const in the far-field region. Specified parameters are subject for experimental 
determination, because of their individuality for each horn in concrete frequency band 
and measurement installation calibrations being in use. 

|RI  /—\ 
0 0016-  (a)- 
0.0014- 

3 0.0012- 

0 001- -^ 
0.0008- 

0.0006- 

0.0004- 

0.0002- 

Fig 1: a - typical view of raw synthesised spatial signal for single-layer structure 
(1, 2, 3 - components of /^ , F,, F^ respectively, 1+2 - a case of superposition of F^ and 

i^ ); b - single echoing characteristic F^, derived with the filter 

Thus, in frequency area F2(co) = ^/^(co)exp(/co -At) where At = , c is the speed of 
c 

light in vacuum, and 2 is the multiplier taking into account forward wave propagation 
up to the structure and backwards after reflection. To use this relation we delete the 
component F, in spatial area (in working realisation of the filter it is done by applying 

trapezoidal window with transition width, which equals to 0.5% of the uniqueness 
range, but is not less than 3 discrete spatial samples). Now in frequency area the 
echoing characteristic appears as (l + it-exp(/co ■ A/))-F|(o), so the desired echoing 

characteristic may be obtained by dividing by the expression 1 +A: •exp(/fo • A/). 

Treating the result of division with Fourier transform, we gain the unique spatial 
echoing characteristic (fig. lb). 

Kiiii; UKRAINH, IX-ni INTI'MNATIONAI. CONI-I'.IU'M'E ON MATHI-MATICAI. Mi-rniODs ix Ei.i-:crii()\iA(:.\'i:ric TIIHORY 



MMET*02 PROCEEDINGS 601 

In real conditions the most of assertions, on which the fiher is based, are disturbed a 
little by random factors: unreproducibility of measurements, dispersion in 
experimentally determined filter parameters and their light nonconstancy conditioned by 
properties of and distance to structure under the test. Some of them may be 
compensated, for example, non-linear distortions and modulation of frequency 
response, other may not, for example, inexact concurrence of reflection signal shapes 
and levels for horn's aperture and throat causing either under- or over- or improper 
compensation of is. These effects may be considered as additional component F^, 

which cannot be deleted by spatial window for Fj or in other known ways. Dividing F^ 

by \-\-k- exp(7co • A/^) produces in a spatial domain the characteristics looking as 

k'F^{z + ilsz), where / = 1,2,3.... Thus any uncompensated parasitic peak will give a 
series of peaks with the increasing (on | A: |> 1) or decreasing (on | A: |< 1) amplitude. So 
limiting | A: | by value close to one (for example 0.9) and extracting the greater of two 
echoing characteristics and also using the horn with as possible lower \k\ is necessary 
for the exception of "spawning" the parasitic components. Ideally, as well as in the case 
of OEW, absence of the second reference discontinuity makes the filtering unnecessary. 

APPLICABILITY OF THE FILTER 

Considered filter takes plenty of computational resources (it thrice uses the Fourier 
transform - first before applying spatial window, further returning to frequency area 
with subsequent dividing by \ + k- exp(7© • A/), and at last obtaining the final spatial 
echoing characteristic). Nevertheless, this is not a serious problem for modern computer 
technology - the most part of the computer time is still spent on the obtained 
characteristics visualisation, so real-time measurements are anyway possible. 
The results of applying the filter to actual reflectivity data give the basis for 
recommending its usage in reflectometers with a horn probe. For example, the 
measurements in 8-12.5 GHz range with the purpose of determining the dielectric 
constant (s ) for single-layer structures showed that the variation of filter parameters 
(separately) by ±6 mm for Az (at the wave length of 30 mm!), ±0.1 for \k\, and ±0.3 
rad for arg(A:) resuhs in e estimation deviation not greater than 0.11 for 8 of about 3. 
The actual deviation of Az, \k\ and arg(A:) at different distances to the structure in far- 

field region measurements makes correspondingly ±0.7 mm, ±0.02, ±0.07 rad, that 
results in the s estimation error imported by the fiher not greater than 0.02. It must be 
marked that the most preferable is applying the filter with the antenna of such a 
construction, which minimises | k \ maintaining its independence from the distance. 
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ABSTRACT 

The necessary and sufficient conditions in terms of antenna array geometry for unique 
estimation of azimuth-elevation-carriers (AEC) of narrow-band signals are introduced. 
These conditions make h possible to solve the problem of joint AEC estimation based 
on spatial samples taken by the volume array without using the large number of 
temporal samples. 

INTRODUCTION 

The problem of joint azimuth-elevation-carriers (AEC) estimation of narrow-band 
signals arises in communication, radar, radio astronomy, sonar and many other 
applications. An important issue related to this problem is the unique estimation of 
signal AECs via array of given geometry. This issue called also as the identifiability 
problem (see [l]-[3] and references herein). The standard formulation of this problem 
involves determination of the number of harmonics that can be resolved for a given total 
sample size. The solutions to be proposed are obtained under conditions of equispaccd 
samples, existence of all samples along all the array dimensions and difference of all 
harmonics to be resolved. These conditions significantly restrict the practical 
implementation of the theory. In this paper we present the necessary and sufficient 
conditions for unique AEC estimation by volume array those are given in terms of the 
number of the antenna array sensors and array geometry. 

DATA MODEL AND PROBLEM FORMULATION 
We assume that there are M point sources that are emitting the unknown narrow-band 
complex deterministic signals i',„(/), m=--l...M in the direction of the measurement 
system. For every signal the parameters of interest are the azimuth p„,, the elevation 

s„, and the carrier/,,. To describe the signal parameters let us introduce a vector 

M,„ =f„,eJ.Lar^R\ M,„eU^, ={//.■ P e [O, TT], Ee[0.n] / e [/;„,„,/„,,,]}, where 

e,„=[cos^„,cos£„„ .S7>?P„,CYW8„„ sim„,f is the unit vector in the Cartesian coordinate 
system and {■)' denotes transpose. It is assumed that the measurement system consists of 
A^ omnidirectional point sensors. Then the model of antenna array output in noiseless 
case can be represented as follows: 

Z(/) = ^^(/)EC"'^', / = 1...I. (1) 
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where A={a{\xi)... a{\XM)\&C^'''^ is a matrix of steering vectors, a{\im)=\\, exp{j27i; 
d2^\x.m}, ■■■, exp{j27T; dN^^m}]^ ^s a steering vector, </„ = dji^c/f^^^ is a vector of the nth 

sensor position {dj=0), d„ is a distance to the nth. sensor, /„ is a unit vector toward the 

nXh sensor position, D=[di... dNJ^R^'^^ is a matrix that specify the antenna array 
geometry, s(t)eC "^ is a vector of the signal waveforms, L denotes the number of data 
snapshots  available.  We  assume,  that the  sampled  covariance  matrix  of signal 

waveforms P = {Ly^l:^^^s{t)s"{t)e C^""^ has full rank, that is rank[p)= M, and the 

number of signals M is known. 
The problem to be solved is formulated as follows: to determine the basic requirements 
for the number A'^ and positions D of array sensors, that guarantee the unique estimation 
of any distinct set /<, *...^ fif^ et/^ of signal parameters. 

IDENTIFIABILITY OF AEC ESTIMATES 
The necessary and sufficient conditions for identifiability of IJ^ are [1] NSCl: the set 

of steering vectors a(\x) is known; NSC2: for any //, ?^... ^^ /^^ e f/^ the matrix A has 

full rank rank[a{fi])...a{fii^ )]=mm{N,M)-M < N; NSC3: the number of sensors A^, 
the rank R of matrix P and the number Q of parameters per signal satisfy to the 
following inequality N>R + Q = M + 3. The NSCl and NSC3 hold if the antenna array is 
calibrated and its geometry D is known, and the maximum number of impinging signals 
M <N-3 . Therefore, the problem to be solved can be reduced to the determination of 
the requirements for the sensor positions D that guarantee the implementation of the 
NSC2. 
Theorem: For any fi^ ^... ^ fi^ G U^ the matrix A has full rank if i) the array has a 

subarray with K < N sensors, such that the number A^^^ of the parallel planes that can 

be passed through the points </,,...,<//, satisfy the conditions A^^ = K-2> M, and ii) 

the maximum distance J,„^^ between any nearest sensors of subarray is less then half of 

minimum wavelength d^,, < X„„„ / 2 = c /{2f„,^^). 

Proof. The proof is based on the fact that the rank of matrix A is defined as follows 
rank{A) = min{N-K^,M~K^), where  K^  is the number of rows and K^  is the 

number of columns that are coincident to any other row or column respectively. 
Condition ii) means, that the maximum sampling frequency in spatial domain is higher 
then the Nyquist rate, therefore the vectors  ft   giving  A^^ > 0   columns that are 

coincident to the column a{fi^) are the roots of the following set of equations 

iln = c^, n = 2...K, (2) 

where c„ = /,[//,. The vectors fi^"> that satisfy to the nth equation of (2) represent the 

set of points lying on a plane 5(/„,c„)ei?^ that is orthogonal to the vector /„ and 

located on the distances |c„ | < 1 from the origin. Therefore the set U'^ of roots of (2) 
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are      the       intersection      between       ^7^       and      the       planes       E(/„,CJ: 

f/V('2-'\-)=^,nLs(/,„cj. 
Observe, tliat tlie set U^ is a space between two hemispheres of radiuses /„,„, //„,,„ 

and   1.     Tlierefore,   if tlie  vectors   d^.df^   do  not  lie  on  the   same  plane,   i.e. 

rank^d^ ...d^ ]) = 3, then the set U'^ is a point and only point U\, = j//,} • It means, that 

if  the   subarray   is   a   volume,   then   for   any    //, ;^... ^^//,,/ G ^j, the   inequality 

«(;/, )?i... ^ a{fin, ) holds true and K^=0. Observe also, that if A:, < ^ sensors lie on 

a plane, then the set U'^^ [h-^K^] i^ ^ section and consists of infinite number of 

elements. Hence, for any distinct //, :?i...?t//„ G ^/^ 1'2-'A| )'  -^i  equations of (2) 

hold and K^ rows of the matrix   [a(//,)...«(//^^)] are equal, i.e. /C,. =K^. The /T, -1 
rows can be rejected without loss of information. Therefore, to ensure the full rank of 
the matrix A the number of sensors lying in nonparallel planes has to satisfy the 
condition  Np> M . Since the plane can be passed through any three sensors, the 

minimum size of the subarray is K = N^+l. 

CONCLUSION 
An important corollary of the theorem is that the joint AEC estimation of narrow-band 
signals can be performed by means of spatial samples taken by volume antenna array. 
The temporal averaging is needed to ensure a full rank of the covariance matrix of 
signal waveforms as well as to increase the signal-to-noise ratio. In practice analogue 
tools can successfully carry out this procedure that is very important for the MW 
measurements systems. Another conclusion is that the arrays with irregular geometry 
have advantages in comparison with the periodic arrays from the identifiability point of 
view. 
The possible applications of the considered theory could include the wide-range 
spectrum monitoring direction finders, Doppler radar systems, wireless communication 
systems and other. 
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ABSTRACT 

We compare two standard techniques for satisfiability (SAT), which are basic for 
verification of microprocessor systems. We propose an approach for construction of 
shorter resolution refutations based on a standard approach called DPLL. 

INTRODUCTION 

Specification  | ^v/       A\ 

Many problems in different fields, including software verification, electronic design 
automation, verification and diagnosis of faults in hardware can be naturally encoded 
into the satisfiability problem for propositional logic(SAT) and then solved by a SAT- 
solver. 
A digital signal processor is a special type of microprocessor chip. The design of 
increasingly complex digital circuits includes 
many levels of model transformation starting from 
high design level where device is presented as a 
model specification (description) to circuit layout 
(realization) moving through many intermediate 
design levels. Each circuit design level has to be 
verified before production can take place. If it can 
be proven that an implementation satisfies the 
given specifications then the chip design is 
functionally correct (Fig.l). 
Various techniques to formally verify discrete systems have been developed within last 
decade. These techniques can be roughly divided into theorem proving and model 
checking. Last ones are restricted to systems with a small number of variables due to a 
large computational effort. 
Methods of propositional logic are applied for formal verification of discrete systems 
with large number of variables. 
In our paper we consider some aspects of formal verification based on propositional 
formulas validity. This provides a formal mathematical proof that the functional 
behavior of the specification and the implementation coincides by means of proving of 
equivalence of two propositional formulas. 

Fig. 1. Equivalence checking 
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It is well-known that the satisfiability problem for the prepositional calculus is NP- 
complete. Roughly speaking, it means that any algorithm to the satifiability problem 
will have exponential worst case complexity. 

PROPOSITIONAL FORMULAS AND SATISFIABILITY 

A propositional formula F is a combination of propositional variables x,,...,x„, where 

each variable intended to get a value false or true, in a meaningful way with symbol 
V (or, disjunction), A (and, conjunction), -. (negation),-^ (implication), <->(iff). 
Verifying a property P and Q are equivalent means provmg that P<^Q \s always 

true, which is equivalent to ^(P o Q) is not satisfiable. 
Here satisfiability means that there is an interpretation for the variables such that the 
formula becomes true, otherwise the formula is unsatisfiable. 
We consider methods for formulas in conjunctive normal  form (CNF)   being a 
conjunction of clauses, where a clause is a disjunction of literals, and a htera  is a 
variable or the negation of a variable. A particular case of a clause is the empty clause 
which can be considered as a representation of false. Any formula m propositional 

logic can be converted to a formula in Conjunctive Normal Form (CNF). 

SOME TECHNIQUES FOR PROVING UNSATISFIABILITY 

One of the simplest and widely investigated method for proving unsatisfiability of 
propositional formulas is resolution [5], Essentially, this method consists of a single rule 
stating that from knowing x v C and ^ v D one may conclude CvD. An application 
of this rule is called a resolution step. The particular case of resolution when Cor D is 
empty is called a unh resolution. 
A CNF is unsatisfiable if and only if the empty clause can be derived by resolution. 
Such a sequence of resolution steps ending in the empty clause called a resolution 

refutation. m   ,, r  .     . i     -t 
The original resolution based algorithm was DP procedure  [1].  Unfortunately, it 
consumes a large amount of space. ,    •   r 
A related method is the DPLL procedure [2]. DPLL based procedures are basis for 
almost all complete SAT solvers, including the fastest ones. This method consists ot a 
combination of unit resolution, doing case analysis upon xand ^, and going on 

recursively. 

TRANSFORMING DPLL TO RESOLUTION 

In [6] we have analyzed the relation between DPLL and resolution in detail. We have 
proved that if in the arbitrary DPLL procedure .v unh resolution steps are executed and 
r recursive calls are done then there exists a resolution refutation of length at most 

s-r/2. 
Adding the restriction that all possible unit resolution steps have to be done after eveiy 
recursive call we get the stronger upper bound s-r. 
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We have proved for suitable formulas that the second upper bound is tight and no 
shorter resolution refutation exists than we give by our transformation. 
Based on this theoretical result we give a construction of resolution refutation of length 
less than number of unit resolution steps executed during DPLL. 

CONCLUSIONS 

Recently there has been interest in using resolution in combination with DPLL search 
[4]. It is shown that algorithms combining resolution and search are more efficient than 
DPLL. 
We have proved that if in the DPLL procedure s unit resolution steps are executed and 
r recursive calls are done than the resolution refutation of length at most s-r can be 
constructed. We implemented this procedure in C. Since DPLL allows freedom of 
choosing branching variable it is difficult to draw general conclusions from a one 
particular choice. For examples we have made experiments it turned out that for some 
formulas had length less than presented upper bound. 
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MODIFIED METHOD OF GEOMETRIC ELECTROMAGNETICS 
FOR THE ANALYSIS OF RADIO FIELD IN MARINE 

TROPOSPHERIC WAVEGUIDES 

Anatoly Bychkov, Alexei Bychkov 

Dept. Radio Engineering, Sebastopol Navy Institute, Sebastopol, Ukraine 

The interest for practical use of tropospheric waveguides (TWG) above the sea 
surface is still high. This is because there are many new tools for remote sensing of the 
atmosphere boundary layer and efficient methods for calculation of radiowave fields. 
Those TWG often form over the Black Sea. 

An efficient method for calculation of radiofields is the method of geometric 
electromagnetics (GE) based on the Brillouin conception. It has been used to determine 
radiofields and parameters of dielectrics waveguides and microwave devices [1]. The 
method GE had been developed for waveguiding systems with "rigid" boundaries of 
layered environment. However, a sea TWG is not a system with "rigid" boundaries. The 
first "wall" of TWG is the surface of the sea with parameters £3, [13, a3 that reflects 

incident radiowaves. The layer of atmosphere having a lower value of the relative 
dielectric permittivity 82 will be the second "wall". At the same time in the TWG. up to 

the height, h^, the permittivity S| varies to £2 smoothly. If a superposition of plane 

waves (e.g., incident and reflected waves) satisfies the boundary conditions, then 
guided-wave propagation is possible. The equation for the resulting field in TWG 
accounts for this circumstance. 

The Poynting vector 77 of a plane radio wave propagating in TWG (Fig. 1) forms 
angles 9^, 9 ,,, 9 _ with the axes of coordinates: 

cos  9 ^^e„ ^ + 005"^)^. + COS   9. 1. (1) 

r\$K ̂2n 
\ 

X    \ 
4 ' 

h     '^^C^^l Sl[il 

0 

Sj^L3 

Fig. 1 
At the height of TWG h^ the dielectric permittivity £| starts changing smoothly 

and reaches £2 at the height /22, hence to characterize the plane radio wave in the 

environment with a variable index of refraction we can use the equation. 
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j[at-k[cosQ^-x+cosQy-y+cos6.-z)\ _ j-,     ■' 
CO 

(0?—nWQ{x,y,z) 

whQVQCOsQ^, cosQy, cosQ^ areprojectionsoftheunitnormal to wave's front, and 

n = ^£, is the index of refraction. Equation for a smoothly varying environment is 

W{x,y,z)= nWQ{x,y,z)-const, (3) 

where function W\x,y,z) is the eikonal: 

grad[W) = n or 
fdW 

dx 

\^ 
+ dW + 

dz 
n (4) 

For TWG under consideration, the function W{x,y,z) can be simpHfied because 

cosQ^ ~0, The function W[y,z) might be presented as minimum of the linear 

integral  \n[S)dS taken from S — 0 to S = h^. The minimum is reached if the curve 

S coincides with the ray trajectory in troposphere: 

1 ^' 1 ^' W 
min— [n{s)dS = — \n{y)iy = —. (5) 

h 0 h 0 h 
The equation (5) is used for determining the phase of radio waves reflected from 

the "upper wall" of TWG. A superposition of the incident wave and the reflected from 
the media interface yields the following electric field amplitude: 

E-E^\cos{^t + kyY-y-k^^ '^)+ cosi^t-A^j • _y-A:^! • -^ + (p/,]J= 

2E m 

f 
COS ^y\ ■ y cos\ (at -k^] ■ z + z\ ' 

9/z 
(6) 

2 ;       V ^' 2 
where ky^ =k^ -cosQy, k^^ =A:, -cosQ^, (p;^/2 is the phase of the coefficient of 

reflection from the "upper wall" of TWG. 
The equation (6) is valid under the conditions of total interior reflection of radio 

waves. As far as "upper wall" of TWG is "soft" (no "rigid" boundary between layers 
with 8 j and S2), the current phase of the coefficient of reflection depends on the angles 
of incidence of radio waves and on the variation of the relative index of refraction: 

«W=(V^-i)-io'+^=[«W-i]-io'+^.    (7) 
^E ^E 

where R^ is the radius of Earth, y is a current height of TWG for the waves with 

horizontal or vertical polarization, and the proper phase of the coefficient of reflection. 
To account for the vector structure of the field it should be transformed to new 

system of coordinates, OX', OF', and OZ'. This transformation is characterized with 
the Eiler angles. If a radio wave has vertical polarization and jU] = )Li2 = 1, 

a I = c 2 = 0, then we can write the final equation for (p ^^ /2: 
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9/, 
9/j ■^-^ ^ arctg 
2 

M 
e2(y)cosQy^ 

Isin^Qyi —- M 
(y) 

arctg 

1 \nHy)dy 
hi 

••I 

\n {y)dycos^. 
h 

sin 9 1 
h 

1   ^'   2 \n^{y)dy 
2 //, 

1^' 

2  /7, /?, 
j«"(:^^V;^ 

(8) 

where  n{y) is calculated after (7). The coordinate  y  varies from 0 through the 

inflection point of the profile  M(_y), i.e.  y-h\, then to height  h2  that is the 

coordinate of curve M\y) where the atmosphere is standard. 

The value of (p;j/2 obtained from (8) can be used in (6) to calculate the field both 

inside TWG and outside it at the heights from h^ to hj ■ If dielectric permittivity of 

troposphere is complex-valued (conductance a ^ 0), then the equations (5)-(8) derived 
in this work can be used to calculate the energy losses in marine TWG. 

The modified GE method that has been discussed in this work enables a more 
complete account of TWG effects during the waving. The evaluation of a frontier 
conditions by the "low wall" TWG above the Black Sea shows that radio waves with 
length about 10 cm experience almost specular reflection. The absolute value of the 
reflection coefficient is in the range of 0.87 to 0.95. The phase of reflection is n for the 
vertical and horizontal polarizations for "weak" and "strong" waveguides of evaporation 
having /?] -\0 m and near-surface TWG having h^ up to 500 m when the sea waving 

reaches 2 to 3 units [2]. 
Modification of the GE method allows estimation of important parameters of 

wave propagation in the TWG: wavelength, maximum phase and group velocities, 
critical angle G^.^.  limiting the range of wave propagation. The radiation patterns of 

radio devices must be oriented into angular sector that is determined by 9^.,., therefore 

knowledge of 9^,. has great practical value for proper feeding of TWG. Our theoretical 

results have been confirmed in radar experiments. 
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NONLINEAR STAGE OF PROPAGATION OF WAVE 
DISTURBANCES IN THE TOPSIDE IONOSPHERE 

V. B. Ivanov, M. V. Tolstikov 

Irkutsk State University, Irkutsk, Russia 

664047, Irkutsk, Russia, Deputatskaya Str.lO, 123. Phone 8 295 227 05 42. 

e-mail: ivb@Ivb.baikal.ru 

ABSTRACT 
This paper is continued investigations of propagation of disturbances of plasma 
concentration in the topside ionosphere. A mathematical modeling of the nonlinear 
stage of instability development has been carried out. It is shown that in the region of a 
maximum enhancement of perturbations, the relative fluctuations of plasma density can 
make up several tens of percent. 

In [1,2,3] these authors showed the possibility of an enhancement of plasma density 
wave disturbances during their downward propagation in the topside ionosphere. The 
physical setting of the problem was as follows. A harmonic disturbance of plasma 
density with a typical period of tens to hundreds of seconds was specified on a certain 
upper boundary (700-800 km). Sources for such disturbances can be provided, in 
particular, by different types of oscillations of the neutral atmosphere, such as AGW 
and IGW, and effects of magnetospheric origin. The propagation of this disturbance 
along geomagnetic field lines was considered. It was shown that as the disturbances 
propagate downward, their amplitude can increase significantly, so that a region of 
strong plasma density fluctuations with the vertical size of the disturbances on the order 
of several tens of kilometres can be produced at about 500-600 km altitudes. Because 
the spatial growth rates of enhancement of the disturbances were quite significant, it is 
of interest to evaluate the range of validity of the linear approach and examine nonlinear 
questions arising in the case of the propagation of intense disturbances. 
In previous work the basic equation describing the dynamics of small disturbances of 
electron density in plasma n, for the case of the ambipolar motion of charges along 
geomagnetic field lines, was derived from linearized equations of motion and continuity 
for electron-ion gas in conditions of the nightside mid-latitude ionosphere. In carrying 
out the linearization, the plasma density and hydrodynamic velocity were represented as 
the sum of the time-independent background part and a small, harmonically time- 
dependent addition: A^ = A/'Q+«*e™',F = Fo+v*e™', and terms of second order of 

smallness were n*v discarded. In accordance with the character of the phenomenon 
under study, a nonlinearity of the form n*v will manifest itself in the generation of 
higher frequency harmonics of external action co. In order to take the higher harmonics 
into account, the following mathematical description of the nonlinear processes was 
developed. Let the plasma density and hydrodynamic velocity be represented as the 
sum: 

KIEV, UKIWNE, IX-TH INTERNATIONAL CONEERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



612 MMET* 02 PROCEEDINGS 

in z * /'*   /'(O t 
V •     e A^ - A^o + 2.^/^        '^ = ^o + Z. ^i • -        • (1) 

7 = 1 -/■=' 

next, we substitute (1) into the equation of motion and continuity of electron-ion gas: 

 = - gN   -vvVV-c N 
dt 

 + + [37V = 0 

dz 
(2) 

(3) 
dt       dz 

By combining terms with identical exponentials, we obtain the equation for background 
density and m equations describing harmonics with the fundamental in m respectively. 
A natural assumption is made that harmonic amplitudes decrease with the harmonic 
number. Furthermore, higher harmonics are generated by lower harmonics like forcing 
actions. Equations for the fundamental (4) and second (5) harmonics are given below, 
and we may limit our consideration to them. 

d'n    dn , \       1 
(— 

/coV, 

d'z     dz  Hp   Hv+m      c 
'-) + n\{ 

HH. c'H V+/CO 

dV 
/CO—^ + (P +Ko)(v +m) 

dz       -]-0.    (4) 

—i- i-( h h—T-^J+n? ( -)—^—)  
d':    dz  Hp   Hv+2im      e MH,,    c'll  v+ico 

1=^{- (i(o+v)// 
:«iv,) 

(5) 

In the above equations the axis z is pointing down, and the origin of coordinates lies at 
800 km, H is the height scale of the main component of the neutral atmosphere, atomic 
oxygen, Hp is the plasma height scale, v is the collision frequency of ions with neutral 
atoms, Vo is the hydrodynamic velocity of plasma (vertical component), c is the ion 
sound velocity, and p is the linear recombination coefficient. The quantities v and p 
were assumed to be exponentially dependent on the height, and the velocity Vo was 
calculated in terms of a numerical model of the ionosphere and is also a function of 
height. The other parameters were taken to be constant. The conditions of the nightside 
ionosphere of middle and moderately high latitudes were considered and modeled. 
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Fig. 1 presents the fundamental (with the frequency 00=0.05 c"') and second harmonics 
in the linear regime. An essentially nonlinear regime in a state of saturation will occur 
whenever the second harmonic becomes comparable with the fundamental harmonic - 
the initial assumption about decreasing amplitudes does not hold. It is the estimates of 
this state that are of the greatest interest. 
Fig. 2 plots the dependence of a maximum of the ratio of the second harmonic to the 
fundamental versus ratio of the fundamental to the background for the frequencies 
co=0.1c~' H©=0.01c"'. 
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Figure 2. 
As can be seen from the figure, a developed nonlinearity in the saturation regime will 
occur in the case of disturbances of the fundamental harmonic in the region of its 
maximum on the order of 20-30% of the background. Such strong disturbances can 
penetrate below the F2-layer peak and, hence, the results obtained in this study can be 
used to explain the well-known F-spread phenomenon at vertical-incidence radio 
soundings of the mid-latitude ionosphere. 
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IONOSPHERE WAVEGUIDE PROPAGATION 
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ABSTRACT 

The technique based on waveguide approach for calculating of ionosphere oblique- 
incidence sounding signal characteristics taking account of ionosphere waveguide 
excitation is offered. The comparison of given technique calculation results and 
experimental ionograms on the path Alice-Springs (Australia) - Irkutsk (Russia) is 
given. 

INTRODUCTION 

Within the framework of waveguide approach in ISTP SD RAS the technique for 
calculating of characteristics of signals that propagate on an inhomogcneous path in any 
of the existing Earth-ionosphere waveguides (for example, waveguide between the 
ground and E-layer of the ionosphere or waveguide between the ground and F-layer of 
the ionosphere) was designed. The stationary condition that allows defining interference 
properties of a series of normal modes and the structure of a field in waveguide is the 
basis of this technique. It is equivalent to a requirement: 

2K 

- the phase difference of the neighboring normal modes is multiple IK . Here  /  is a 

frequency, n is a number of normal mode, O;; is its phase in a point r , I' is an 

integral nonnegative numbers (number of hops). For given number of normal mode the 
stationary condition determines the geometric localization of a field of group of normal 
modes with this central number, i.e. propagation trajectory of packet of phased normal 
modes. 
Really there are cases, in which the modes of propagation spreading at first in one 
waveguides, and then transferring in other one. In particular there are the ionosphere 
propagation modes, i.e. which propagate in the ionosphere waveguide on a part of a 
path. 
To calculate the characteristics of the ionosphere propagation modes, it is necessary to 
take into account transitive groups of the normal modes, which were not considered in 
the standard scheme. Those are such groups of normal modes, which propagate in one 
waveguide on a part of the path, and in other waveguide on another part of the path. 
Such an account is possible, if we introduce the continuity condition for propagation 
trajectory of packet of phased normal modes as is in geometric optics. 
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In the report the approximate scheme of the calculation of the ionosphere propagation 
mode characteristics based on such hybrid approach is given. All characteristics of a 
signal field in the Earth-ionosphere and ionosphere waveguides are calculated using the 
above-mentioned standard technique. In points of transition from one waveguide to 
other one weaving is made, based on continuity condition for propagation trajectory of 
packet of phased normal modes. 

THE SCHEME OF CALCULATION 

The scheme of calculation is as follows. First, the group of normal modes, which is 
effectively incited by receiver and weakly penetrates through the ionosphere, is 
selected. From this group the subgroup is separated, which propagate in the Earth- 
ionosphere waveguide on all path. For this group of modes the calculation of the signal 
characteristics is carried out using a standard technique. 
Further the rest group of normal modes, which participates in transitions between 
waveguides, is considered. The number of normal modes in this group is determined by 
variation of maximum and minimum waveguide numbers along a path of propagation 
and can reach several thousand for equatorial paths. 
The calculation is carried out in a cycle on central numbers with some step. Central 
number of a packet of phased normal modes is adiabatic invariant and does not vary at 
propagation in the waveguide except for transition points. Therefore for each of them 
the transition point from one waveguide to other one is determined using dependences 
of maximum and minimum waveguide numbers on the longitudinal coordinate. Using 
(1) in the transition point, the height of localization and propagation delay of the normal 
mode packet in this waveguide is calculated. On these data the waveguide is defined, in 
which this packet of normal modes transfers. The condition of the propagation 
trajectory continuity actually means that the angle a between tangent to a trajectory of 
the packet and horizontal should vary continuously. As it is follows from equation 

Y a = arccos —   " , (2) 

where y ^ - spectral parameter, y relative radial and 6 angular - spherical coordinates, 

£(j,9) - permittivity of the ionosphere, the dependence of spectral parameter on 

coordinate along the path y„(0) should be continuous too. This requirement in view of 

the normal modes spectral equation gives that central number of the packet at transition 
from one waveguide in other one changes by bound. The value of this bound is 
determined by volume of adjacent waveguides (for example, ionosphere waveguide will 
be an adjacent waveguide at transition from E to F waveguide). 
After central number of the packet in the new waveguide is obtained, the new transition 
point is determined and the calculation for the new waveguide is iterated or, if the end 
of the path achieves, the characteristics are calculated using standard scheme. 
In a point of the receiver arrangement the resulting interference function and resulting 
propagation delay of the normal mode packet are determined by the formulas 

L,,{Q,y)^Y.^„^' (3) 
k 
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Fig.l. Experimental ionogram (a) and results of the calculation (b). 

(4) 

Here AL„^, AT are additives to interference function and delay at propagation of the 

packet in k waveguide under the account along the path. 
The obtained dependence of interference function on central numbers in the point of the 
receiver arrangement (3) is approximated by splines, and using the stationary condition 
central numbers of packets giving the contribution to a signal field near the ground are 
determined. 
Making similar calculation for a series of frequencies, we obtain a standard ionogram 
with distance-frequency dependences of transition modes of propagation. 

RESULTS OF CALCULATION 

As an illustration on figure 1 the results of the calculation (b), which has been, carried 
out using the  designed  approximate  scheme,  and  experimental  ionogram  (a)  for 
equatorial path Alice-Springs (Australia) - Irkutsk (Russia) 04 UT on March 9, 1996 are 
shown. 
The frequency range of the experimental ionogram and of the calculation results don't 
coincide.  It is possible to  explain this by  the  underestimated  maximum  F-layer 
frequency along the propagation path of the used ionospheric model. 
On the figure lb one can see two transition propagation modes (k2 - three-hop and kl - 
four-hop), which propagate a part of the path in the ionosphere waveguide. They 
qualitatively explain a bend of 3F2 mode curve in the low-frequency area, which we can 
see on the experimental ionogram. 
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ABSTRACT 
This paper is concerned with the problem of the current excitation in the receiving 
antenna in the HF field. The solution of the problem is performed in terms of a 
waveguide representation of the HF field in the spherical Earth-ionosphere waveguide. 
Structurally, the antenna is treated in the form of a conductor of a finite length and 
arbitrary configuration. 

INTRODUCTION 
A variety of research problems require creating a structural physical model of the radio 
channel. By a radio channel is meant here the portion of the communication link in 
which the information signal acquires a spatial distribution. The structure of the HF 
radio channel consists of receive-transmit antenna-feeder systems and the Earth- 
ionosphere waveguide. The receiving antenna is an important element of the radio 
channel that requires an electrodynamic approach in a mathematical simulation. The 
researchers' attention to receiving antennas is inversely proportional to the factor by 
which their number exceeds the number of radiating antennas. 

FORMULATION OF THE PROBLEM 
The electrodynamic model of the receiving antenna is determined by the representation 
of the incident electromagnetic field. The representation of the field, in turn, is 
determined by the method of solving the electrodynamic problem for radio wave 
propagation. The model was constructed in terms of a waveguide representation of the 
HF field in the spherically symmetric Earth-ionosphere waveguide. It was assumed that 
the receiving antenna does not disturb the structure of the incident field. Use was made 
of the geocentric coordinate system with the polar axis passing through the phase center 
of the radiating element (the radius-vector is r, = (r^.,0,(pj). The field was calculated 

on the basis of the method of normal waves [1-3]. 
The antenna is regarded as a conductor of finite length with an arbitrary configuration, 
and when treated electrodynamically, it represents a long uniform line with the 
distributed (along it) electromotive force (EMF). Current is excited by the electric field 
component E, along the conductor axis. In calculations, E, is taken at points infinitely 

close to the conductor surface. 
In the spherically symmetric waveguide the incident electromagnetic field breaks into 
the field of TM waves (with the symbol "e") containing the Er and EQ components of the 
electric field, and the field of type TE waves (with the symbol "OT") containing the E^f 

KIEV, UKRAINF., IX-TH iNrmmATioNAL CONFERENCE ON MATHFMATICAE METHODS IN EI.ECTROMAGNETIC THEORY 



513 MMET02 PROCEEDINGS 

component. An expression for EMF induced at the element dl of the antenna may be 
written as: 

j£=^£^'+c/E'"=[(e,e,)£,(r,) + (eoe,)£o(r,)]j/ + (e^e,K^(r,V/. (1) 

Here e,., ee and e^ are unit vectors of the coordinate system; r, = (r,,e/,(p/) is the radius- 

vector of the antenna element; and e/ is the unit vector along dl. In the general case the 
expression for thej component of the field is a series for normal waves: 

EM=^-Y^AAXr,)D,Xy<^y''''-''^ (2) 

Here A,, is the amplitude factor; D„ stands for the coefficients of excitation of normal 

waves by the radiator with a given distribution of current I which characterize the 
distribution of radiated energy in normal waves; and i?„ and v„ are the eigenfunctions 

and the eigenvalues of the respective boundary-value problems for TM and TE waves. 

COEFFICIENTS OF RECEPTION OF NORMAL WAVES 
The induced EMF generates two running current waves: from dl to the receiving end of 
the antenna and to the end of the antenna with load resistance ZR. At the ends of the 
antenna the waves are partially reflected and partially absorbed in load resistance or 
escape via the feeder line to the receiver. To calculate the current we used the method of 
superposition of running waves [4]. By summing all components of the running and 
reflected waves, it is possible (according to [4](p.l89)) to obtain the expression for the 
current at an arbitraiy point of the antenna. The value of the current at the receiving end 
of the antenna may be written as: 

JX^M^g (3) 

Here-  Y(l)= ^'        /'  ZPi£ll ; w is the wave resistance of the 

conductor; L is the antenna length; p^ = {W - ZY)/{W + Zp) and PR = {W- Zn)/{W + ZR) 

are the coefficients of reflection of current from the ends of the antenna; and Z| is the 
input resistance of the feeder line loaded by the receiving device. The function Y(l) 
defines the distribution of current in the antenna with regard for the load conditions at 
both ends. Substitute (1) into (3) by using the expressions (2) for the components of the 
field. The value of total output current is determined by integrating along the length of 
the receiving antenna: 

•/o=lAkc^""'''+A:c^^"'"') (4) 
The integration used the condition of the smallness of the antenna's linear size 
compared with the distance to the radiator. The functions: 

Y(l) 
P" = f^ 

"     J w,- ,Wr, 
^dKir,) 

ki) IKE dr 

(5) 
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constitute the essence of the electrodynamic model of the receiving antenna in terms of 
a waveguide representation of the exciting HF field. They characterise the level of 
induced current by the components of the TM and TE field of a separate normal wave 
and are determined by the parameters of the receiving anterma. It is therefore logical to 

call P/'" the coefficients of reception of normal waves of corresponding polarisation. 

RECEIVING ANTENNA EFFECTIVE LENGTH 
A key characteristic of the receiving antenna is believed to be the effective length 
defined as the ratio of the current strength at the receiving end to the value of the 
incident field strength at the phase center of the anterma. It is natural to select, as the 
phase center of the antenna, its receiving end with the radius-vector rp. If the expression 

for 7(7) is transformed to the form [4](p.l94): Y(l) = Y(l)/{Z + Z,), (here Z is the input 

resistance of the antenna with Z,^ taken into account), then the expression for output 

current may be written in terms of the antenna effective length: 

J.-^, (6) z^+z, 
by defining the expression for hd as: 

where P/ and P"' are determined by formulas (5) with the replacement of Y{I) by 

Y{1). 

CONCLUSIONS 

The electrodynamic model that has been constructed here for the receiving antenna in 

terms of the method of normal waves is represented by the coefficients P/ and PJ" 

They represent the influence of the characteristics of the receiving antenna and, 
primarily, its directed properties, when the energy of the incident TE and TM waves of 
the field transforms to the energy of current oscillations. 
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ABSTRACT 

It is well known, that nowadays one of the actual problem in the troposphere 
investigation is to connect solar activity with meteorological processes in the 
troposphere. But to present day there is no model, which explains all problem of solar 
terrestrial links. Investigation of influence of variation solar and cosmic rays on 
condition in the low and middle atmosphere take a significant part in determination 
parameters of this model. Experimental measurements of the low and middle 
atmosphere temperature profile [1] show, that it was changed after strong solar flares 
(Fig. 1). Theoretical model proposed in [1] explains this phenomena using atmospheric 
absorbent or reflective layer, with heights from 5 till 20 km. Good agreement between 
experimental data and numerical simulation was achieved for layers with 14-16 and 8-9 
km height respectively, and coefficient of transparency about 90%. 

Fig. 1 Variation of temperature profile: 1- experiment. 2 - model with reflective layer 
on height 8-9 km., 3 - model with absorption layer on height 14-16 km. 

INTRODUCTION 

Lets consider a model wit4i reflective layer as more preferable. This layer may consist of 
macromolecular complexes witch include both atmospheric gases ions and water. Lets 
assume, that aerosols concentration proportional to ion's concentration on this height. 
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During strong solar flare this concentration may increase from 100 cm"  to 1000 cm' 
[2], so aerosol concentration increase too. It is well known, that about 97% of solar 
energy located in the wave-length of 0.2-3*10"^ m. (Fig. 2) [3] and this energy is stable 
in  time,   so,  we  have  considered  the  aerosol  influence  of on  transmission  of 
electromagnetic energy only in this wave-length range. 

200- 

3vO     X, ju,m 

Fig. 2 W(A,) - Solar radiation density. 

As a result of small water permittivity imaginary part value of [4] we have examined 
only mechanism of backscattering from the little drops and didn't evaluate absorption of 
electromagnetic energy in water drops. 

EVALUATION OF THE ATMOSPHERIC AEROSOL PARTICLE SIZE IN THE 
REFLECTIVE LAYER 

It is well known, that the atmospheric aerosol particle size lies in wide range so, we 
have to calculate electromagnetic scattering on aerosols using Mie equation: 

where: 

x = - 
2nr 

(1) 

(2) 

a„ = 4, (f"X)^ „ (^) - m^^ 'n (^) . u ^^n ('"^V „ (^) -¥ ,', (^) 

A('«^)^„W-'«^,',W 
h=- 

OT4,(mx)^„(x)-^'(x) 

Tixr 

V"W = i/y^„.;^W' 

Ttx, 

2 -  «+/2 ^ '    ^    '      -"'Yi 

y„(mx) 
4,(wx): 

\(/(W7X) 

(3) 

(4) 

(5) 

(6) 
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Where Jn+1/2 and J.n-1/2 are Bessel function; m=v-ix=1.322-i0.00001 is complex water 
permittivity in wave-length range 0.2-3*10" m. [4]. 
To calculate Mie coefficients a,, and bn (3,6) we have used Deirmenjian algorithm [4,5]. 
Weakening factor (dB/km) was defined by Buger low: 

K^^^^,(x,m) = 1.346439* 10"^ Jr'Nf{r)K,^(x,m)dr (7) 

where, N is concentration of aerosols, cm"^; r is radius of drops, |im;   f{r)   is 
distribution density of drops size. 
For simplicity sake lets assume, that radius of drops is a constant, due to similarity of 
the physical conditions for their appearance. Integral coefficient of transparency in 
wave-length range 0.2-3*10"'': 

W{r) = ^\K^^.J^)W{X)dX, (8) 

where Wo is the solar constant (Wo=1373±20 WW [3]). 
Calculation results for reflective layer with thickness 1 km are present in Fig. 3. As 

shown, supposed aerosol particle radius (0.2|im, approximately) don't conflict with 
physical nature water aerosols. 

Fig.3 Coefficient of transparency; 1-for layer with N^lOO; 2 - for layer with N=1000; 
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ABSTRACT 

Use of ADC with high resolution allowed us to embrace dynamic range both signal and 
powerful narrow-band interference and on this base to implement a compensative real- 
time algorithm for suppression of narrowband interference. The developed algorithm 
provides suppression of "wings" occurred due to incommensurability of a time interval 
of a signal that undergo to the spectral analysis and a period of a narrowband 
interference. Preliminary results of observations of extremely low frequency (ELF) 
natural electromagnetic background (Schumann resonance) performed within urban 
areas are presented in the paper. We demonstrate both possibilities of registration of 
average spectra of the Schumann resonance background signal and ELF-transients. 

INTRODUCTION 

A phenomenon called Schumann Resonance (SR) is observed in spectra of the natural 
terrestrial radiation in the ELF range as a number of peaks at frequencies 8, 14, 20, 26 
Hz. SR is excited by the worldwide lightning and represents natural oscillations of the 
Earth-ionosphere cavity. SR carries information both on electromagnetic properties of 
the lower ionosphere and ELF sources. SR measurements are used for inferring 
thunderstorm activity total level and its spatial distribution with the purpose of 
monitoring for global environmental changes [1,2]. In particular realization of idea of 
worldwide lightning tomography [2] will require creation of global network of the SR 
observatories. In this paper we consider possibility of SR observations within urban 
environment that would provide more regular and careful control on the receiving 
equipment and extending of the number of probable observation points. 
As a rule the most powerful interferences are the power-line harmonics 50(60) Hz 
hitting into the studied frequency range. They essentially cut down the dynamic range 
of recorded signals. The use of traditional notch filters becomes sometimes not effective 
due to the suppression fails because of fluctuations of the power line frequency. Using 
synchronous notch filters with phase self-tuning of the rejection frequency [3] can solve 
the problem but relative complexity and complication in their tuning limits its using in 
portable systems. A data acquisition system with high resolution embracing dynamic 
range both signal and interference that permitted both to realize the signal filtration in a 
digital form and to reduce to the minimum using analogous components in the receiving 
system was used in the present work for the SR observations. 

METHOD FOR COMPENSATION THE NARROW-BAND INTERFERENCE 

The monochromatic signal 5(0 = i3cos(coo/' + 9)multiplied by the rectangular time 
window [0..7] is used as a model of narrow-band interference. The spectrum of this 
signal includes two peaks with frequencies ±coo with a width that is determined by the 
number of hitting, into the interval [0..7], of periods of the high-frequency infill. The 
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p. 
E 
< 

Continuous spectrum: 

Discrete spectrum 
cS = 0 ~^_ 

6 = 0.4\ " 

width of these peaks will be 
up to the realization duration 
and the high-frequency infill 
period ratio when the 
transition to the discrete 
spectrum takes place. If the 
integer quantity of periods 
misses to T, then the infinitely 
narrow lines will result on the 
high-frequency infill 
frequencies in the spectrum 
(see Fig.l). The value of a 
fractional part 5 is the result 
of the division the interval T 

by the high-frequency infill period /o=27i/coo and defines both the amplitude of peaks 
and appearance of "wings". These "wings" can essentially distort a spectrum at far 
enough frequency range. 
Taking into account only positive frequencies after elementary transformations we got 
the next representation for the spectral density in discrete form: 

(1) 

Frequenc) 

Fig.l. Formation of discrete spectrum of the 
bounded in time signal for fractional and integer 

ratios between duration of the analyzed signal and 

2 7:(«-«o-oj 
where n is the current point in the spectrum, m is the result of integer dividing MO by 
the value of ITTA/; where 4/= l/Iis the frequency resolution of the discrete spectrum. 
To compensate the interference signal we need to determine exactly its frequency co* 
phase (p, and amplitude a, that is performed by finding of parameters of two points in 
the discrete spectrum around the narrowband signal frequency on the basis of eq.l: 

S{n,)+S{ny (2) 

a =. 1 r^(,   ) + s{n,)]■ '^^i^-A);   o)o = 2TCA/(«O + §);   cp = argS{n,) -n (8 + «« + D 
T sinno 

SOME RESULTS OF THE SR OBSERVATIONS 

The problem of SR measurements includes two parts that reflect spectral and time 
presentation of a signal. This is an accumulation of average spectra of background 
signal formed by overlapping pulses from the aggregate of lightning discharges 
occurred all over the Earth. Also this is a separation of ELF transients - signals 
generated by the distance powerful lightning discharges and exceeded the background 
amplitude in 3-10 times. One of the basic problems for measurements is a radiation of 
power lines harmonics with amplitude exceeding the level of natural signal on 40-70 
dB. 
"Wings" from the strong narrowband interference can essentially distort the spectrum of 
measured weak signals even when high resolution ADC is used. This situation is 
demonstrated in Fig.2 where spectra are represented both with use compensation and 
without this. The effect of using of compensation method for separating the impulse 
signal (ELF-transient) is demonstrated in Fig.3. The suppression effectiveness is high 
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enough under condition if interference parameters are stable on the interval of analyzed 
time span. Sensitivity to sudden changes in both phase and amplitude of the narrowband 
interference can be reduced by fragmentation primary interval to shorter ones. 
An advantage of the proposed compensation method of filtration is concluded both in 
absence of distortion of spectra due to its multiplying by the proper transmission 
characteristics when analog, digital-analog or digital filters are used and its applicability 
for signal separating both in time and in frequency domain. 

Average 5-minute SR spectra 
29/11/2001 
Kharkov 

4000 - 
ELF transient 
28/11/2001 16:26 UT 
Kharkov 

0.1 

0.01  - 

lE-3d 

2000 - 

A 

f\J\-\^^\p\\^Vv%^^Pf^ 

-2000 - 

Yv 
■|—i—]—i ;—I 

0 10 

',b   i 

\J\/%^it>ti^Jt*«i¥*mt0''^K^^^ 

Filtered signal Initial signal 

20 30 
f Hz 

40 

~7~     -4000 - 

50 0.0 0.5 1.0 
t. s 

1.5 2.0 

Fig.2. Average spectra of a SR background      Fig-3. Revealing an ELF transient from a 
signal with compensation the power line signal by using compensation of the 50 Hz 
interference and without this. power line interference. 

CONCLUSION 

A compensation algorithm for narrowband interferences filtration is developed and 
realized that provides both to eliminate the influence of "wings" on the form of spectra 
of analyzed weak signals and to separate waveforms of impulse signals. Realization of 
the proposed algorithm for interference suppression is based on the using ADC with 
high-order resolution embracing dynamic range of signal and interference. 
Resuhs of Schumann resonance observations are demonstrated performed under 
condition of high level of industrial interferences within urban areas. 
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ABSTRACT 

The paper deals with the theoretical investigation of the hysteresis effects and bistability 
states arising from the excitation of the ^'-polarized surface polaritons (SP) with the 
attenuated total reflection (ATR) technique at the nonlinearly conducting 
antiferromagnet boundary. We emphasize the analysis of influence of the electron 
plasma frequency on the conditions of bistability appearance. It is found that there exists 
a critical value of the plasma frequency at which the bistabiliy vanishes. 

INTRODUCTION 

Today the investigations of semimagnetic semiconductors attract many efforts [1-3]. 
This interest is stipulated by the fact that semimagnetic semiconductors possess 
magnetic and electron subsystems, which influence on each other. Semimagnetic 
semiconductors in the phase of antiferromagnetic ordering are of great interest from the 
viewpoint of millimeter and submillimeter wave applications. This phase is interesting 
because the antiferromagnetic resonance frequency of semimagnetic semiconductor lies 
exactly in this waveband. It can be used for both noncontact diagnostics of parameters 
of semimagnetic semiconductors and for the creation of radically new devices of 
semiconductor microelectronics. 

As known, surface polaritons (SP) can exist in conducting antiferromagnets [4,5]. The 
propagation of large amplitude SP (nonlinear SP) results in a number of new features, 
which are concerned with the dependence of the dielectric permittivity of semimagnetic 
semiconductor on the electric field intensity [6]. For nonlinear SPs the dependence of 
their spectra on the electric field intensity at the media interface and the monotonic and 
non-monotonic character of the decaying electromagnetic field in the nonlinear medium 
are typical. 

The present paper deals with the theoretical investigation of the hysteresis effects and 
bistability states arising from the excitation of nonlinear SP with the attenuated total 
reflection (ATR) technique at a nonlinear conducting antiferromagnet boundary. As 
conducting antiferromagnets, we use semimagnetic semiconductors in the phase of 
antiferromagnetic ordering. We place emphasis on the investigation of the influence of 
the electron plasma frequency on the conditions of bistability appearance. 

THE PROBLEM STATEMENT 

We assume that a semimagnetic semiconductor is in the phase of antiferromagnetic 
ordering   and   can   be   simulated   by   an   easy-axis   two-sublattice   conducting 
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Fig.l. The geometry of the problem. 
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antiferromagnet with 
a magnetic perme- 
ability //, [4,5]. 
Fig.l shows the 
geometry of problem. 
Media 1 and 2 are the 
dielectrics with the 
dielectric permittivi- 
ties     £^     and     £•„ 

respectively. Medium 
3 is a semimagnetic 
semi-conductor. We 
suppose that ^^, > s^ 

and the external 
wave, which is 
incident at the 
boundary, y = -cl, 
propagates at an 

angle 6 exceeding the angle of total external reflection. The easy axis of the 
antiferromagnet (the z-axis) is directed along the media interface. We shall consider s- 

polarized nonlinear SP (£, = Ey= H-_= 0), the wave vector k of which is directed along 
the X-axis. The antiferromagnet dielectric constant s{co) is supposed to depend on the 

electric field intensity \E.f and has the form^C^^^) = S^Q^ {CO) + 5\E, \ , where ^,o)(^^) i^ 

the linear part of the dielectric constant, S is the nonlinearity parameter, co is the 
nonlinear SP frequency. 
We have shown previously that on the antiferromagnet-dielectric boundary there exist 
the nonlinear SPs with both monotonic and non-monotonic decay of the electromagnetic 
field in the nonlinear medium [6]. The frequency co of the nonlinear SP is found to 
depend on the value of Q^ =co^lco,., where co^  and oo^  are the electron plasma 

frequency and antiferromagnet resonance frequency, respectively. 
In this paper we have found a reflection coefficient R of the external wave which is 
incident  at  the  boundary >- =-J.   We  have  revealed  the  bistability  states  in  the 
dependence of R  on the intensity of the incident wave. It has turned out that the 
appearance of the bistability depends also on the value of Q p. It has been found that 

there exists the critical value Q„,, at which the bistabiliy vanishes. The dependence o\^ 

on the value of dimensionless frequency Q. -col co^. has been investigated. Q ^c- 

NUMERICAL RESULTS 

Fig.2 shows the dependence of the reflection coefficient R (left coordinate axis, solid 
lines) and the reflected wave intensity /^ (right coordinate axis, dashed lines) on the 

incident wave intensity /, for the nonlinear SP with a monotonic decay of the electric 
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Fig.2 
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field       at       Q = 1,004«,, 

J = 0,8c/6),,      v = 0,0l6>,, 

r = 0,000 lo^ for two values 

of Q^:  1 -  Q^=0,5; 2 - 

Q^ =Qp^ =0,641. (c is the 

velocity of light, d is the 
dielectric-gap thickness, v 
and r are the energy loss 
parameters in electronic and 
magnetic subsystems of the 
semimagnetic semiconduc- 
tors, respectively) The 
intensity of the reflected and 
incident waves are given in 

I i2 
the     units     of      E,^,,   , 

Emax =ica^Ql(o)^2l\i^\ 

is the amplitude of the nonlinear SP, a^Q =k^ -a? i^^a^,^-^ /c^. It is evident from Fig.2 

that at Qp =Qp^ (curves 2) the bistability of the reflection coefficient of the nonlinear 

SP vanishes. 

CONCLUSIONS 

To conclude, it should be emphasized that bistability states arising from an SP 
excitation on a nonlinear conducting antiferromagnet boundary can be used for the 
creation of the memory elements in microwaves. Besides, switching devices having 
parameters depending on the electron concentration in the conducting antiferromagnet 
can be developed. 
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ABSTRACT 

The paper deals with the theoretical investigation of intrasubband plasmons in weakly 
disordered array of quantum wires (QWs), consisting of finite number of QWs. The 
array of QWs is characterized by the fact that the density of electrons of one "defect" 
QW is different from that of other QWs. It is shown that the amount of plasmon modes 
in weakly disordered array of QWs is equal to the number of QWs in array. The 
existence of a local plasmon mode, whose properties differ from those of usual modes, 
is found. We point out that the local plasmon mode spectrum is slightly sensitive to the 
position of "defect" QW in array. At the same time the spectrum of usual plasmon 
modes is shown to be very sensitive to the position of "defect" QW. 

INTRODUCTION 

Quasi one-dimensional electron systems (IDES) or quantum wires (QWs) are artificial 
structures in which the motion of charge carriers is confined in two transverse directions 
but is essentially free (in the effective mass sense) in the longitudinal direction. 
Collective charge-density excitations, or plasmons in QWs, are the objects of great 
physical interest due to some unusual dispersion properties. Firstly, the plasmon 
spectrum depends strongly on the width of QW [1]. Secondly, ID plasmons are free 
from the Landau damping [2] in the whole range of wavevectors. 
From the point of view of practical application so-called weakly disordered arrays of 
low-dimensional systems, containing some defect, are the objects of interest. Recently 
the plasmons in weakly disordered superlattice, formed of finite number of equally 
spaced two-dimensional electron systems (2DES), were theoretically investigated [3]. 
This paper deals with theoretical investigation of plasmons in finite weakly disordered 
array of QWs consisting of a finite number M of QW located in the planes z=/(/(/= 0. ... 
M-1 is the number of a QW. d is the distance between adjacent QWs). We suppose that 
all QWs possess equal ID density of electrons A^ except one "defect" QW whose density 
of electrons is equal to A^d- So, the density of electrons in /-th QW can be expressed as 
Nr(Nd-N)5pr^-N. Here/? is the number of "defecf QW arranged at the plane z--pd, 5pi is 
the Cronecker delta. QWs are placed into a uniform dielectric medium with dielectric 
constant z. We consider the movement of electrons to be free in the x-direction and is 
considerably confined in the directions along the y and z-axes. At the same time we 
suppose that the width of all QWs is equal to a in the >-direction and is equal to zero in 
thez-direction. 

DISPERSION RELATION AND NUMERICAL RESULTS 

To obtain the collective excitation spectrum we start with a standard linear-response 
theory in a random phase approximation. We also take into account only the lowest 
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subband in each QW. The dispersion relation for intrasubband plasmons can be 
represented in the final form as 

det '// -U^'Uir = 0. 

where 

Uiv = 
8e 2   a/2      a/2 

sa 
\dy'  I dyK,[qJ(y-y'f^{l-lfd^]cos'^'y 

-a/2    -a/2 ^ ^ 

{ ^,\ 
COS 

\a ) ^ a 

(1) 

(2) 

Ko(x) is the zeroth-order modified Bessel function of the second kind, n   is the 
noninteracting ID polarizability ("bare bubble") function, which at zero temperature 

and in the long-wavelength limit (where qx->0) can be written as U  = *       2 
m   CO 

Fig.l shows the intrasubband plasmon spectrum in a weakly disordered array of QW in 
the case where M=5, d=15a, a=20a\p=0 for two values of the density of electrons of 
"defect" QW: (a) N^N=0,5, (b) NyN=l,5. Thej^-axis gives the dimensionless frequency 
co/coo {(Oo^=2Ne^/£ma^ is the plasma frequency), and the x-axis gives the dimensionless 
wavevector q^* {a=£f?/me^ is the effective Bohr radius). As seen from Fig.l, the 
intrasubband plasmon spectrum in finite array of QW contains M modes. So, the 
number of modes in the spectrum is equal to the number of QWs in the array. At the 
same time the propagation of plasmons in weakly disordered array of QW is 
characterized by the presence of local plasmon mode (LPM). In the case where 'N^'N, 
the LPM lies in the lower-frequency region in comparison with the usual plasmon 
modes (fig.la). lfNd>N, the LPM lies in the higher-frequency region (fig.lb). 
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Fig.l 

Now we consider the dependence of plasmon spectrum upon the value of 1D electron 
density in "defect" QW. Fig.2 presents the dependence of plasmon dimensionless 
frequency CO/COQ upon the ratio AVA^ in the case where qyfi = 0,04 and for three cases of 
the "defect" QW position in the array: {a) p=0, (h) p=l, (c) p=2. As seen from Fig.2, 
the frequency of LPM increases when the value of ratio Nc/N is increased. Also from the 
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Fig.2 
comparison of Fig.2a,b,c it follows that the LPM spectrum depends weakly upon the 
position of'the 'defect" QW in array. However, the spectrum of usual plasmon modes is 
more sensitive to the position of "defect" QW in the array. At the same time, the usual 
plasmon mode spectrum is characterized by such a feature. As/?=0 (Fig.2a) when the 
value of ratio ///A^ is increased, the frequency of all usual plasmon modes also 
increases. However if/7=7 (Fig.2b) the frequency of one of the usual plasmon modes 
(curve 2) does not practically depend upon the value of the ratio 'NJ'N. In the case where 
p=2 (Fig.2c), there are already two plasmon modes (curves 1 and 3) which possess such 
a particularity. 

CONCLUSION 

In conclusion, we calculated the plasmon spectrum of finite weakly disordered array of 
QWs, which contains one "defect" QW. It should be emphasized that the above- 
mentioned features of plasmon spectra can be used for diagnostics of defects in QW 
structures. 
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CALCULATION OF IMPEDANCE OF A SHARP PLASMA 
BOUNDARY WITH A MIXED-TYPE ELECTRON SCATTERING 

IN ANOMALOUS SKIN-EFFECT CONDITIONS 
V.I.Miroshnlchenko', V.M.Ostroushko^ 

'institute of Applied Physics NASU, ul. Petropavlivska 58, Sumy 40030, Ukraine 
^National Scientific Center "Kharkov Institute of Physics and Technology" 
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Some aspects of calculation of impedance change caused by oblique incidence of 
electromagnetic wave on a sharp plasma boundary with mixed-type electron scattering 
in anomalous skin effect (ASE) conditions are considered. Though the corresponding 
Riemann-Hilbert boundary problem can be reduced [1] to the integral equations of the 
Fredholm type, formal limit transition to extreme ASE causes kernels singularity. The 
transformation of the equations to ones with bounded kernels is made by means of 
partial inversion of the integral operator. 

An oblique electromagnetic wave reflection from a sharp plasma boundary with a 
mixed-type electron scattering can be described with the functions ^p,(kz) and T^(kz), 
the linear combinations of the Fourier transforms of electric field components in plasma 
domain (z>0). They should be analytical in the half-plane lm(kz)<0, together with the 
functions O^C-kz) and <E)x(-kz), and should meet two functional equations [2], 

[l-Q'q,(Pk,z)][^;.(kz)+pY,(-kz)]=a),(kz), 
[l-kxz'-n'q.(Pkxz)][T,(kz)-p^.(-kz)]=(D.(kz), (1) 

and the equalities  ^;^(±tkx)=±t^,(±(kx). Here P=VFCO[c (co+iv)] ', n=G)e[oo(co+iv)] 
2,1, 2N1/2 

V kxz=(kx +k2) , c is the speed of light, co is the frequency, ooe is the plasma frequency, 
is the collision frequency, vp is the velocity of electrons at the Fermi surface (spherical), 
kx is dimensionless (in units oo/c) transverse wave number (sine of wave incidence 
angle),   PG(0,1)   is  the   fraction  of electrons  with  specular  boundary   scattering, 

q^(x)=3x"'{(2x)''ln[(l+x)/(l-x)]-l},qx(x)=3(2xV{l-(2x)~'(l-x')ln[(l+X)/(l-x)]}. 
The problem is considered under the approximation P«l, A»l, where A={f,Clf'^, so, 
the distance traveled by an electron during the oscillation period is large compared with 
the effective field penetration depth. 
Introducing new variables and functions, one can write (1) in the form 

X,(u)+pQx^(u)X,(-u)=Y,(-u),    X,(u) -pQ,^(u)X,(-u)=Y,(-u), (2) 

where X,(u)= Y,(0)-' ^,(({pu)-')Q,"(u), X, (u)=^,(-c,u)Q/(u), c^^-lcaAp-', 
C3=exp(i7t/3). Here and further, a function with the upper index + should be analytic in 
the half-plane lm(u)>0, and it should be built for the corresponding function without 
upper index in accordance with the identity Q"'(u)Q"'(-u)=Q(u). A corresponding 
function with the upper index x is determined by the identity Q''(u)=Q''(u)[Q"'(-u)]"'. 
The functions Qx(u) and Q,(u) correspond to the first factors in the (1) left hand sides 
multiplied with the constants. The identity for Q"^(u) remains its sign indefinite, and 
therefore the signs are chosen to provide Q;,''(ia))=l and limu^ioo[QT*(u)/u]=c,. 
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By using (here and further) the tilde symbol for the Fourier transforms over all real u 
axes, from the first of (2) one can obtain the following equation: 

X, (4-)+p]d^Q: (^+^)x, (^)+PQ: (^)=0   (c>0), (3) 
0 

(3) can be solved by iterations [3], and some values, in particular, the quantity ¥x= 
limu-,ioo{iu[Q?,"'(u)-X;,(u)]}, can be efficiently calculated. The function X,(u) can be 
written as linear combination of the functions X(±p;u) determined by the equations 

X(p';u) -p'Q,^(u)X(p'; -u) =Y(p'; -u) (4) 

(for p^p and for p =-p), and with the requirements that the functions X(p';u) and 
Y(p';u) are analytic and bounded in the half-plane lm(u)>0, and the condition X(p'; 
ioo)=l is satisfied. From (4), an equation similar to (3) can be obtained and the quantity 
^,1=1 limu_.ioo[uX(-p;u) - Cx~' QT''(U)] can be calculated, however to calculate some 
other quantities one has to transform the equation. Taking a>0, for the Fourier 
transforms of the functions x( a ,p';u) = X(p';u)({a +u)"', g( a ;u)=Qx'(u)(i a -u)(i a +u)"', 
h(a ,p';u) = Y(p^;la )(ia +u)~', one can obtain an integral equation: 

CO 

x(a,/.';C)=p'p^(a;^ + ^)x(a,/7';^)+^(a,p';C)    (^>0). (5) 
0 

The function |g(a;C)| for 1«^«A is close to (KQ"', SO, in the limit of A->oo, (5) is 

not a Fredholm-type equation. For p'=p and bounded A, one can take a = \ and write the 

equation x(l,p;^) = ;?jJ^[;z-(^+ ^)]'x(l,j9;^)+//(C), where the term H{C) involves 
1 

the integrals with the unknown function x{\,p;C) and kernels bounded with some 

functions ([(C+Q"'ln(C+^)+A-'(C+^)] for {Ce(l,A),^G(l,A)}, A(C+^r' for 
max(^,^)>A, and max(l,(;,^)"' for other domains. In brackets, here and further the 
factors independent on C„l„ and A are omitted. Considering the function //(<^) as 
known, one can build the solution of the last equation applying the second of two 
methods used in [4]. The kernel of the corresponding regularization operator is bounded 
with the product min(<^,<^)"'" max(i^,^)''""' (where Kp=7i:"'arcsin(p)), and the kernel of 

the obtained equation, for t:,e{\,A), is bounded with the functions C*'' , 

C^'""'^-'+v4'>Y"''% and /^^'^C"'-^'' in intervals ^G(0,1), ^e(l,A), and ^>A, 

respectively. The introduction of the variable ^ and the function x[^], so that the 

products of derivative di^jdi^ with some factors (1 for I!;G(0,1), i^"""'' for C,e{\, A'''), 

A{C I A)'"'" for i;e{A"''' ,A), C^ / A for (; > A) leads to the bounded limits for fixed ^ 

if A-^oo. The value x(^)/x{\,p;(^) is equal to 1, C''% and C^^''" in the intervals 

^G(0,1), C^e{\,A), and C,>A, respectively. All this yields an equation with the kernel 
bounded even for A-^oo. 
In the case p=-p, to keep the sign in the estimation of the product p'g{a;<^) for 

\«C^«A, it is reasonable to take positive 5i~A~' and consider (5) for a = (J,. Denoting 
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Ca=C3^A"',5o=-iCa'^^, Ci=-iX(p;{5o)<5o'''',  Co=-iX(-p;i5o)<5o~''''  ^nd  using  the  Euler 

gamma-function,    for     \«C,«A,    one    can    obtain     x{l,p-X)r[Kp)«C^C'''~\ 

x(<^i,-/>;i^)r(l - Ar^j^Co^""". In the limit of A—>-oo, the quantities Ci and Q tend to 

finite real values, which can be effectively calculated from the solutions of the equations 
with bounded kernels obtained from (5). 
Suppose that the functions Xc(p';u) and Ya(p^;u) are analytic and bounded in the half- 
plane lm(u)>0 and obey the functional equation 

X,,(p';u) -p'Q,\cJu)X^ip'; -u) =Y,ip'; -u) (6) 

and the condition XCT(P^; ioo)=l. Then the identity X(p^;u)= X(p';0)Xa(p';Ca/u) takes 
place. Applying the limit transition to the explicit solution of the equation, in which the 
fimction Qx'^in) is approximated with the relation of the polynomials, one can obtain the 
equality X(p;0)X(-p;0)=l. From (6), an equation similar to (3) can be obtained and the 
quantity ¥^=i limu_^ioo{u^(5/5u) ln[X<j(-p;u)/Qx"^(Cc/u)]} can be calculated. Besides, (6) 
can be treated similarly to (4), and can equation similar to (5), but with another function 

instead of g{a;^ + ^), may be obtained. For the quantities Cc\=-iX„(-p;i5o)S^'', 

Cao=-iXa(p;15o) (5(, "^ (which one can effectively calculate considering now the cases 

p=-p, a=l and p=p, a = J, and evaluating the solutions of the corresponding integral 

equations for large Q, and for the quantity F^ =X(-p,0)(c3A)"", the identities 
CoCcri" =Fi: =CaoCr' take place. 

Under the assumption {A»l, P«l}, for dimensionless impedance Z one can obtain 

approximate identity P(AZ)~'a^*F,iexp(i7r/3)+kx^P^A"'"^'''' exp(-2l7tKp/3) Fz, in which the 
quantities ^^i and Fz=(Fx,-F^)Fx^ in the limit {p^O, A-^oo} turn positive. The complex 
factors in the expression for the impedance are obtained explicitly due to introduction of 
convenient variables, for which the corresponding functions in the functional equations 
in the extreme ASE limit become positive for real values of arguments. 
The quantities Ci, Co, and ^xi can also be calculated with the method of [5]. 
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ABSTRACT 

The results of the study of characteristics of a microwave radiator based on cold plasma 
of a gas disharge are presented. A method of determining the plasma conductivity in the 
given frequency band is proposed and discussed. 

As plasma always contains free charges (electrons and ions, see [1]), its excitation 
by a source of alternating voltage results in appearance of alternating current. For a 
certain electrical size of plasma segments this leads to the radiation of time-varying 
electromagnetic field [2]. 

Experimental research of a loop radiator based on cold plasma of a gas discharge 
[3] has shown that the bandwidth properties of its radiation characteristics and input 
impedance considerably exceed those of antenna based on conductors of similar 
configuration. 

For a physical substantiation of this phenomenon we should take into account that 
the concentration of free carriers in gas-discharge plasma is approximately 7 orders 
smaller than their concentration in metals [1]. Therefore, in a plasma radiator (PR) the 
resistance to current exited by an external microwave field is much greater than in a 
conductor, especially in a perfect one. This results in the attenuation of a wave of 
current reflected from the end of PR antenna, establishment of a mode close to a 
traveling wave, and hence to stabilization of the input impedance and radiation 
characteristics of PR in a wider frequency band. 

PR can be considered as an imperfect conductor with continuously distributed 
impedance along its length. 

We are interested in estimation of conductivity of a PR shaped as a pole of plasma 
by using experimental values of input impedances PR obtained in [3] according to the 
following technique: 

1) Excite, in the frequency band 150-350 MHz. the studied volume (configuration) 
of plasma and measure the set of values of the input impedance Z pi[f) of the 

radiator in this range, 
2) Solve, in accurate formulation, the problem about the distribution of current and 

find the input impedance Z^i{f,a) of PR with finite and varying values of 

conductivity a, 
3) Solve the problem of optimization of a variation by using the criterium of a 

minimum of objective function Z{a) in the given frequency band: 

min Z(a) (1) 
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/e[l50;350]M/fe;   cr &{CT„(7^) 

In accordance to the above mentioned techniques, we solved the problem of 
optimization, where the following functions were chosen as the objective ones: 

Zi(a) = 

U^pi[fj)-Kci[fj,<y)} 
7=1 

N 

y=i (2) 

Kpi[fj)-K,i[fj,cy) 

(3) 

N Kpi[fj)-K,i[fj,a) 

^pAfj) 
(4) 

N 

Z4W4E 
7=1 

Kpi(fj)-K,i[fj,cj) 

KpAfj) 
(5) 

where A'' is the total number of discrete frequencies in the given band, / is the number of 
the frequency value in the given band, ^p/(//) and Kci{fi,a) are experimental and 

calculated values of the voltage standing wave ratio (VSWR) in the given frequencies, 
respectively. 

The values of VSWR were measured and calculated in the range of 150 to 350 
MHz with the interval of 10 MHz. The calculations of objective functions (2), (3), (4) 
and (5) in the given frequency band were performed with MATLAB. Here, 29 
computed values, K^i, for the conductivities in the range of 0 < a < 20 .SOT were 
examined. 

The results of calculations are presented as plots in Fig. 1, where the curves are 
numbered in accordance to the numbers of objective functions (5). From these plots, we 
can see that all the studied objective functions display global minima at values of 
conductivity approximately equal to 0,5 - 0,6 Sm. 

The studied PR attracts an interest of microwave researchers since it allows to 
combine radiation of electromagnetic power in considerably different frequency bands: 
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optical and microwave. Agreement between the values of optimal conductivity of PR 
found during optimization with different objective functions proves a reliability of the 
obtained resuhs. 

100 
Objective function, % 

0 10 

Conductance, Sm 

15 20 

Fig.l. Objective function versus conductivity of plasma of PR 
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ABSTRACT 

The new elementary radiation mechanism due to the oscillatory character of a radiation 
friction force appearing when a relativistic charged particle moves along a periodic 
structure without external fields is studied by analytical methods. The equation of 
motion for the charged particle driven by the radiation friction force is solved by the 
perturbation method. It is shovm that the non-synchronous spatial harmonics of the 
Cherenkov-type radiation (CR) can cause an oscillatory motion of the particle, which 
therefore generates an undulator-type radiation (UR). In the frequency range where the 
diffraction of the generated waves is essential, the radiation manifests itself in the 
interference of CR and UR. The undulator radiation takes place only in that spectral 
region where the wave diffraction can be neglected. 

As known, a charged particle moving with a constant velocity along a periodic 
structure emits Cherenkov-type radiation [1]. The fields of this radiation called wake- 
fields can be expressed as spatial-harmonic series according to the Floquet theorem. The 
action of the synchronous with the particle spatial harmonics of the self-wakefield on 
the particle results in energy losses associated with CR. The non-synchronous spatial 
harmonics can cause the oscillatory particle motion resulting in generating the 
undulator-type radiation. This radiation is subject for discussing in this article. 

As a periodic structure, we will consider a hollow corrugated waveguide with 
metallic surface. Suppose that a particle of charge e and of mass m moves with an 
ultrarelativistic velocity v along the structure with the period D. The radiation friction 
force and the radiation power are sought for. 
By using the Hamilton's method developed in [2] we can obtain the radiation friction 
force as 

¥{y{tlr{t)j)-. 
e" 

^'^   '^ tot 

A, (r(r))  ^(^)''^^^^'^(''(^)) 

A   i f w   v(/)xro/A;(r(/)) 
I0)i 

(1) 

e-''"''jy{t')A;{r{t')y'"^''dt'\ + K.c. 

where coz is an eigenfrequency. Seeing the force of radiation friction does not depend on 
the particle size ro, so cox < CIVQ [2] (c is the velocity of light). V,orMVceii, where we 
assume that the structure contains M^x cells of volume Vceii and is enclosed in a 
"periodicity box". A^Cr) is the set of the eigenfunctions of the vector potential which 
can be represented in the Floquet form [1] 
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00 

A.(r)=i:^l"H'-,>'V-, (2) 

where ^^"^^ri) is the amphtude of the n-th spatial harmonic; h is the parameter of the 
interval: (-n/D^n/D); h„=h+2mi/D is the propagation constant. The set of (2) is 
limited above on frequency by the electron plasma frequency cOpc in metal. As known, if 
m~(f)pc. the diffraction conditions in the periodic structure are violated. So, for the range 
0)x > (i)pc the vector potential can be expanded in terms of the plane waves of free space 

A,j(r) = cJ4;ra,,e'''' (3) 

where k^ is the wave propagation vector; «/./ is the real unit vector of polarization 
(/=1,2) perpendicular to kz- 

The equation of the motion driven by the force (1) can be solved approximately in 
ultrarelativistic limit. As a zeroth-order approximation, we will consider the motion 
with a constant velocity parallel to the stricture axis 

v=Vo=Voe__, r(r)=ro.^+v,/ (4) 

In this case, inserting (4) and (2) into (1), we obtain the self-wake force of zeroth order 
in the frequency band COA « (Opc 

00 

F(t) = -e^ £H'('V"'+^.C., (5) 

where we have introduced Q.=2nvo /D and defined the amplitude of the pih spatial 
harmonic of the wake function as 

4c F„,// „=o X) 
VQ- 

dCD;) 

,("+p) _ ; ^0 y     An+p) _ QP     in+p) 
(6) 

dh     X=>.; 7 

Here gy = gzvo L)' ^"^ rx>;. satisfies the resonance conditions co^ -hw^ =fTCl. 

The force (5) is a periodic function of time with the period D/VQ. The synchronous 
harmonic of this force, -e^2M'_-**", determines the energy losses associated with CR in the 
frequency band co;i « copc- 
In the region cox > cOpe where the structure can be considered as free space, the radiation 
is absent in zeroth order approximation, i.e. at vo=const. 

If the particle is off-axis, it experiences a periodic action of the transverse component 

of the non-synchronous harmonics of the self-wake force (wi'' ^0). The radiation due to 
the periodic motion we will call undulator radiation. Solving the equation of the motion 
driven by the force (5) we find the corrected law of motion 

I/''     _       .. ,. <;■ "    "'' 

v(/) = Vo+vJ/) = Vo+/cX -e"^-',   r{/) = ro,,+Vo/ + *,(/) = ro.,+Vor + ^X   .^^^"''(7) 

where   *^' is the dimensionless vector    ^''' s w^^^''' + w^'"'''     and I a^''^ «1. 

Inserting Eq.(7) and Eq.(2) into Eq.(l) we can obtain the power radiation as 
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P = -lim^ {y{t')F{v{t')Mt'),t')dt'■■ 

e'D 

2Vcel! : 
IE 

=0 A,- 

1 

' dh 

\PO^AY. 
{p) 

p*0 2np   ^^--''! ■tg 
,n+p) 

+ 0 Iff ̂l/') 
(8) 

X=A! 

Here <y^ is a frequency found from the equation 0);^ -/TVQ =r£l, j^'is Lorentz factor. (8) 

shows that in the region 0}x« cOpe, the radiation manifests itself in the interference 
between CR and UR. 
For the region cox > cOpe it is interesting to consider the radiation of a high energy 
charged particle satisfying the condition cOpe «2Vlf. Inserting (7) and (3) into (1) and 
for simplicity applying the dipole limit kx5ri_{t)«l'K we obtain the UR power by 
analogy with (10) 

Pv^ 
1 

lim' \\{t')s{y{t'\x{t'\t')dt' 
r->co t X 

4e' P«P\m 

3m^c^ 
r 

p=i 

u> (p) + w {-PT (9) 

where the number of harmonics in the sum is limited by the condition of the small value 
of the oscillation amplitude resulting mp«p\\m=27vyAnax{a'-'''^}. 
As follows from (9), the power grows up as square of the particle energy, so in the 
region co» cOpe the UR power can exceed the CR power emitted in the band co« cOpe. 
It should also be stated that, if a bunch of A'^ electrons moves in the periodic structure 
and the bunch dimensions CT: and cr± satisfy the conditions cr:«D/(2q/) and 
o-±«D/{2qy), then the radiation with the frequency co< 2qQy'^ is coherent. Moreover, 
for the range cOpe « co< 2qf2)^ the UR power would be proportional to A^"^ 

4g6^4 , _ _^ 2 

^^^c'-t W (p) + w i-p] (10) 

Finally, it should be noted that in the future super-high-power electron rf linacs there 
will be beam energy loss associated with the undulator radiation emitted by the electrons 
in the fields of the spatial harmonics of both the accelerating mode [3] and the 
wakefield, due to the deviation of beams from the linac axis. On the other hand, the 
considered above radiation mechanism can be used in the undulators based on periodic 
RF waveguides without external fields, where the non-synchronous wake-harmonics of 
an electron bunch implies a wave pump. The development of such wake-field undulators 
with submillimeter periods may open new frontiers in generating X and gamma rays 
without employing external periodic magnetic fields and RF sources. 

I am grateful to Ya.B. Fainberg for the proposed method of solution and fruitful 
discussions. 
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ABSTRACT 

The paper presents a theoretical study of electrostatic oscillations in a cylindrical 
system, which represents an electron beam surrounded by a semiconductor of finite 
thickness, adjacent to a dielectric or a perfectly conducting metal. The system is placed 
in a finite axial magnetic field. The results of the analysis show that space charge waves 
(the drift waves) and cyclotron waves could be unstable. It is also shown that, as the 
external magnetic field or the collision frequency of electrons increases the growth rates 
of the instabilities decrease. 

INTRODUCTION 

Investigating interactions of charged particles beams with natural oscillations in 
plasmas is among the important topics of microwave plasma electronics. By now there 
is a great number of papers devoted to the electron beam-plasma interaction. 
Interactions of this kind are of considerable interest since they can be used for 
amplificafion and generation of electromagnetic oscillations of various wavelengths [1]. 
Also they can bring ample information on physical properties of the medium. In current 
literature, great attention is focused on the interaction of electron beams with the 
eigenmodes in plasmas of cylindrical and tubular geometry. The reason is that plasma 
amplifiers and generators are chiefly built around plasma formations of cylindrical 
geometry [2]. 

The interaction of electron beams with tubular solid-state plasmas of finite 
thickness without external magnetic field was already studied [3]. However, at 
conditions of experiment, the beam-plasma systems are always situated in an external 
magnetic field, which prevents lateral motions of electrons in the beam. This paper is 
aimed at investigating oscillatory processes in a cylindrical structure representing a 
quasi-neutral charged particle beam surrounded by a semiconductor of finite thickness 
adjacent to a dielectric or a perfectly conducting metal. Collisions of electrons in the 
semiconductor are taken into account. 

PROBLEM FORMULATION. DISPERSION RELATIONS 

Let the spatial domain a<p<h in a cylindrical coordinate system {p,(p,z) be 

occupied by a semiconducting material. The spatial domain 0 < p < a is filled with a 

dielectric of permittivity £•,/,, while the domain p>h is filled with another dielectric of 
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permittivity s^^ or with a perfectly conducting metal. Tlie structure under analysis is 

infinite along the z-axis and is situated in a finite strength axial magnetic field H^. We 

will analyse the interaction of a straight, quasi-neutral nonrelativistic electron beam 
propagating trough the domain 0<p<a, with electrostatic magnetoplasma oscillations 
existing in the cylindrical semiconductor structure. 

Making use of Maxwell's equations, equations of motion, continuity equations 
for each region of the structure, boundary conditions at p = a andat p = b, and taking 
into account that the field magnitude should be finite at the axis of the cylindrical 
structure and (infinitely) far from it, we can find the dispersion relation to describe the 
interaction of magnetoplasma waves in the structure with the beam under analysis. The 
dispersion relation has the form 

Fia,b,q,l,(o,v,(D^,co„^,cOi„cOfjf„V,) = 0, (1) 

where q and / are, respectively, the axial and the azimuthal wavenumbers; co is the 
signal frequency; v is the effective collision frequency of electrons in the 
semiconductor; a^ , co„^ and co^, o}„^ are, respectively, the plasma frequencies and the 

cyclotron frequencies in the semiconducting material and in the beam; V^ is the 
equilibrium velocity of electrons in the beam. 

If the semiconductor borders on a metal at p = b or if b»a, then the 
dispersion relation takes the more simple form. 

NUMERICAL RESULTS AND DISCUSSION 

(1) was solved numerically using values of parameters appropriate for n-type 
InSb, i.e., the permittivity of the crystal lattice ^g = 16; the effective mass of electrons 

m =0.015w; the equilibrium concentration A^Q =5xl0'^cm"\ Throughout the 

discussion a = 10-'cm, d = {b~a) = \Q-'cm, co,=\(fs-\ F^ =3xlO'cm/s. 

A numerical solution of (1) shows (see Fig. 1), that the interacfion of charged 
particle beam with magnetized collisional 
solid-state plasmas gives rise to a broad-band 
instabilities of the space-charge waves 
{co^qV^) and the cyclotron waves 

((0 = qVQ-CL>f^^). The growth rate of any 

considered instability attains its maximum 
value under resonance conditions, when the 
frequency of the unstable wave coincides with 
that of natural oscillations of the 
semiconductor cylinder. 

Account of two boundaries to the solid- 
state plasma (tubular geometry of the plasma) 
shows the domain of instability to be in fact 
divided into bands of stable and unstable 
states. 

qa 

Fig. 1. The growth rates of unstable 
space-charge waves (solid line) and 
cyclotron waves (dashed line) for the 
structure under consideration: / = 0; 
A=(OHS Icop ~ 0.9; r= v/(Op =0.1 
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The growth rates of the instabilities are strongly influenced by the external 
...„gnetic field and the effective collision frequency. As the magnetic field or collision 
frequency increases, the growth rate of the instability decreases (see Fig. 2 and Fig. 3). 
ma 

1,2x10 

1,0x10 

8,0x10    ■ 

6,0x10"* 

2j0xl0 

r= v/iO, 

Fig. 3. The growth rates of unstable 
space-charge waves (solid line) and 
cyclotron waves (dashed line) as 
functions of parameter r=v/cOp: I = 0; 
A = coHslcOp»0.9; 

3j0xl0 

Fig. 2. The growth rates of unstable 
space-charge waves (solid line) and 
cyclotron   waves   (dashed   line)   as 
functions of parameter A = cons l(Op. 
/ = 0; r= vAy„= 0.1 

Fig. 4 shows that the maximum value reached by the growth rate at the negative 
values of the azimuthal wave number is higher than at the positive values of the 
azimuthal wave number. 

If the cyclotron frequency in the 
semiconductor is greater than the plasma 
frequency, then the surface waves in 
considered semiconductor structure don't 
exist. In this case, electrons of the beam 
interact only with spatial oscillations of the 
semiconductor plasma. The growth rates of 
the instabilities for this kind of interaction 
are much less, than in the case of interaction 
with surface oscillations. 

In order to observe the amplification 
effect for the space-charge wave, it is 
necessary to preliminary modulate the 
charge-particle beam. 
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Fig. 4. The growth rate of unstable 
space-charge waves as a function of 
the azimuthal wave number /: 
A=mu lcop» 0.9; r= v/cop = 0.1 
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ABSTRACT 

We apply a method of Linshtedt, also called improved expansion, to solve the equations 
of motion and obtain single-particle trajectories of electrons moving in crossed static 
magnetic fields of a hybrid non-relativistic free electron laser. Making use of a natural 
small parameter, the ratio of the amplitude of spatially periodic magnetic field and the 
guide magnetic field, one can re-write the motion equations for an electron in a form, 
which allows their solution by an asymptotic series. In such a way the non-linear 
frequency shifts and renormalized mean electron velocity are calculated analytically. 
The analytical results are in a good compared with numerical simulations of the electron 
trajectories. 

INTRODUCTION 

Initial analysis of properties of an electron-optical system (EOS) is performed in the 
approximation of geometrical optics. Namely, for unneutralised electron beam in 
external magnetic fields it customary to study in succession single-particle 
approximation, approximation of magneto-hydrodynamics and, finally, kinetic equation 
formalism. It turns out that even rough single-particle approximation can provide 
valuable insights into basic dynamics of an electron beam propagating along the studied 
EOS. 
Attempts to find analytical expressions for description of single particle trajectories go 
back to the 1970s [1-3]. However, no one approach, going further the zero- 
approximation expression for the helical magnetic field setup [4] and the well-known 
formulas for the equations of mathematical pendulum in the case of absence of the 
guide magnetic field, has been presented [5]. This situation is rather unfortunate, since 
in the case of a free electron laser (PEL) with a giuding magnetic field [6,7] at non- 
relativistic and intermediate energies (< 600 keV) such an expression could be very 
helpful. It can provide a qualitative analysis because of relative accessibility of the 
necessary values of the guiding magnetic fields for the utilization of resonances on the 
characteristic pump field and cyclotron frequencies. 
In the present contribution we present an analytical solution by an asymptotic series of 
the problem of an electron motion in the harmonic transversal undulator magnetic field 
and strong, but finite, longitudinal magnetic field. 
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IMPROVED EXPANSION 

Consider the electron motion in the following static magnetic field: 
// = [0,-//jSin(2;E//)-//„]. 

Here / is the space period of the transverse to the injection direction static magnetic 
field. Non-relativistic equations of motion of an electron take the form 

dv       e      - 

at       c 
where mo is the electron's rest mass, e is the absolute value of its charge and v is the 
electron's velocity vector. Let us also introduce the following notations: 

T:=(o^t, YQ-=(oJa)^, e = co^ Ico^, , MQ = 2;rv' //, co^ =eHJm^c, co^ = eH^ Im^,c. 

^ = xlUr] = yll,<!; = zll, 

where    Vj|    is    the    z-component    of   the    initial    velocity    of   the    electrons, 

d^ldr[r = 0] = l/2;r and the rest of the initial values of the velocities and coordinates 
are equal to zero. Thus we can write the non-linear equations of motion in the 
dimensionless form 

^ + yl^ = -s^s\n{2KO,   ^-S,=s]^smi27rOdT,   ^ + ^„^ = 0. (1) 
dr dr dr ^ dr dr 

Here YO is the dimensionless oscillation frequency and 5^ = d^/drlr = 0]. It is easily 

seen that the first two equations of the system (1) define the dynamics of electrons 
completely. 
We are interested in analytical solutions for the dimensionless frequency y^, greater 

than 2 and the values of s less than '/2. According to the Linshtedt method [8,9], we 
shall expand <^(r), ?;(r), <^(r), the true nonlinear-shifted frequency y and mean 

electron velocity S into series in £ : 
^(r) = 4 (yr) + e^, (/r) + e'^._ (/r) + s'^, {yx) + s'^, {yr) + ... 

ar) = c,{yr) + <, in) + £'^2 in) + ^'Cin) + ^XAn) + ■■■ 
y = y,(\ + £f[ + £-J\ + £\fy + s\f\ + ...) 

5 = S^{\ + £g, + s'^g, + s^g, + e'g, + ...) 
Equating coefficients at each order of £  for the system of equations (1), we find 
linearized sets for the functions and coefficients of (2). These sets are iterative linear 
non-homogeneous systems of equations, which are integrated one after another. 

To o( £^) order the solutions have the form 

^(^) =     ,  . ^..^c-,-n {si"[rr] - ir 12;r5)sin[2;r^r]}, 
y\y- -{InSy] 

r,(T) = ^^''^ ^    ,   {l - cosiyv] - [y I InSj (1 - cos[2;r<:5r])), ^^^ 
y\y' -{ln5y\ 

K5-£^-      \S\V\[4KST]    s,m[{y + 2rtd)z]    sm[{y -2K5)Z]\ 

^^^^'   ^^ y' -{IKSYX \6n'8' y ^InS       ^      y-ln5      \ 

The frequency y and the average electron velocity <5, up to the same order, are 
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7 = 7^ \ + s' 
4(ro -1)' 

5 = dr \-s' 7o+^ 
(3) 

We have accomplished the calculations to the next meaningful order, o{£^). They show 
that there exist a number of resonances at odd ratios 

CO.ICOQ ~y I 2K5 = 2k + \, k &Z. (4) 

In the limit ^o ^ ^ formulas (2) and (3) provide the trajectories in the FEL without the 

guide magnetic field (e.g. [5, p. 37]). They as well confirm the assertions on the form of 
one-body trajectories of electrons in such ideal FEL magnetic field, which are usually 
made in the literature (cf [1-3]). 
Since  in  the  trajectory  approximation  the  vector  potential  and  components  of 
electromagnetic field in the wave zone are dependent on the time derivatives of the 
electron coordinates, one can expect that resonances existing in those expressions will 
also be present for the power of the spontaneous emission. These higher resonances one 
would expect to observe for experimentally accessible values of the guide magnetic 
field. 
Numerical simulations accomplished by us for the initial system of integro-differential 
equations (1) verified these analytic solutions to the accuracy of 1%. 

CONCLUSIONS 

As a result of this work, we are able to provide analytical solutions for electron 
trajectories in an ideal hybrid free electron laser-oscillator and calculate dependence of 
the trajectories on the parameters of the pumping magnetic fields. We have also 
prepared the machinery for treating the real undulator magnetic field. Thus one will be 
able to calculate the polar pattern of the emitted radiation in the single particle 
approximation in the both cases. 
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This paper is devoted to investigation of the interaction between the charged particle 
flows passing through the boundary of plasmalike media and surface oscillations. 
Suppose that an external flow of charged particles crosses the boundary between the 
media of different electromagnetic properties, for example, dielectric (vacuum)- 
semiconductor. Let a semiconductor occupy the space region y>Q and vacuum 

(dielectric with e,) is at 7 < 0. It follows from Maxwell's equations that there are the 

surface electromagnetic oscillations with spectrum 

q' =— -\\;     £.(co)=£o--^;     8,(CO)<0,     £|>0, (1) 
c e, +£21^] m" 

where   co  is the frequency of plasmon,   q   is the wave vector along the surface, 

COQ =47ie"/7o/m  is the plasma frequency; n^ is the electron concentration,  m  is the 

effective mass of electron. If c ^ co, the dispersion law is « = (n^l -^jz^ + £, . 

Hamiltonian of the system has the following form: 

H = H <'■ > + H *'■'+ H <'"'\ (2) 

where H *'' =-^ ^'«,yF,/ (0<^l/(0 + ^r/(0^,)(')] is the Hamiltonian of electromagnetic 

field (surface plasmons), H *''= 2^8^4(0^A (/) is the Hamiltonian of an electron 

system; S^. =trk-/im is the dispersion law of electrons; k is the wave vector of tlie 

electron;       a^ (/) = a,; exp(/w,/),       fl„ (/) = ci^^ exp(- /co/),       h; (/) = h; exp{iS,l/h), 

4 {l) = b^- exp(-7Si/"///), r/,^ ,fl,^, h^: ,bi. are the birth and annihilation operators for the 

plasmons and the electrons in the states q and k ; 

kyk' 

is the Hamiltonian of the electron-plasmon interaction. 
To find the expression for the matrix element W\^^^^. it is necessary to use the expression 

H("'"=--tjj(r,/)A„(r,/Vr, (4) 

where 
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eh 

^m^V k,k' 
Y,{k + k')b:{t)b,{t)cxviik'-k)r 

is the operator of an electron current density, 

K{r,t) = j: 
ATCHC' 

Fco 
1  J 

is the operator of the vector-potential of the surface wave electromagnetic field; e^ is 

the unit polarization vector:  e^ =e^^ =6^^ =[qJ\q\)^L\q\l{&\ +£o),  S\y =-^2y -'^^> 

e, = {qjq^)e^, qi,2 = {<lx'+^'^:\ V = LS is the volume of the interaction space, S is 
the cross-section of the sample. 
Carrying out the standard procedure [1,2] we obtain the following kinetic equation 
which describes the change of the surface plasmon number A'^^^ as the result of their 

radiation and absorption with the electrons «^ 

d 

where [2] 

W 
m, 

Tie^qff 

50)    (Sn  +£, ^</V^0 

(6) 
'V 

From here for A'^^ » 1 we obtain the expression for the decrement or increment of the 

surfaceplasmons, y = {1/2)N^^{pN^ldt). 

Suppose    that    injected    electron    energy    is    distributed    near    some    value 
8,,n = pl/lrriQ = h^k^/lniQ . Then one can present the electron number n^ «1 as '/to 

noi,{2nn) 
3 hHk,-k„}        h'{j<hk}f 

2m.:r 2m„T 

[Inmi^TY^ 

where  «o^ = ^ «^/F = J/7^ i/k/(27r)^   is the density,   T  is the temperature of the 

electron beam. 
Taking into account the conversation lows and the conditions   P^ JlmQ »hai^^ , 

PQ llm^ » T, co^^ /VQ » ^, we obtain 

Sne^qhv 
W, 

k,'lk2 

''. 
FZoo^(so +s,) 

If the condition T » ^co^, is fulfilled one can consider that n, -n, =      ''      ^' 
^yX   ^^.1 

(8) 

After 

integration of equation (5) over the wave vectors  kjand  ky^ont can obtain the 

following expression for the decrement of the surface plasmons: 
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Y 
co;,   '      ''     /;;„(8„+s,) 
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(9) 

However, the induced radiation processes dominate over the absorption ones under the 

condition P^; J2m^^ » f/co,^ » T . In this case we obtain 

y 
2"o/. 

L\m„\ —    ^ 
h'  \k      k 

(10) 

V,., = V 0 • where k^=k^± a\^ /v„ 

This is due to tlie fact that the probability for the electron to pass to the state with a 
smaller energy exceeds the probability to pass to the state with a higher energy. In the 

former case the probability is proportional to A','. This mechanism of the instability of 

the oscillations takes place at the different inhomogeneous solid state structures: 
semiconductor superlattice [3]. two-dimensional gas [4], and other [5J. In finding the 
increment (10) we put 

Thus, when a directive electron beam crosses the boundar)' of a plasmalike media, the 

surface plasmons fade away if the conditions P,,' /2/»„ » T » tno^^ are met (classical 

case).  However,  at  low temperatures,   P~ jlm^^ »h<S)^i »T   (quantum  case),  the 

radiation processes begin to dominate over the absorption ones and the surface 
oscillations grow up with increment 

Y = ^^^. (11) 

These processes are very important for the diagnostics of the surface of solids. 
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ABSTRACT 

The excitation of nonlinear plasma oscillations by a monoenergetic electron beam of 
low density moving through a semiconductor is considered by the particle-in-cell 
method. An electron beam is assumed to be a sequence of electron bundles with 
constant density. It has been assumed that the electron collision frequency in a 
semiconductor is greater than the hydrodynamic increment of instability in collisionless 
plasma but less than plasma electron frequency is investigated. The influence both of 
nonparabolicity of electron dispersion law and intervalley electron transitions on the 
plasma-beam instability is taken into account. The nonparabolicity is shown to lead to 
the decrease of the maximum of the electric field amplitude while the intervalley 
electron transitions lead to the appearance a plateau on the temporal dependence of the 
slow amplitude of the electric field. 

PHYSICAL MODEL 

We consider a homogeneous semiconductor GaAs placed in the strong magnetic field. 
Let the x-axis be directed along the direction of the magnetic field, which is parallel to 
the direction of a nonrelativistic monoenergetic beam moving with the velocity 
VQ « c (where c is the speed of light in empty space). Hereinafter we consider a one- 
dimensional problem. We assume that the collision frequency in the semiconductor v 
satisfies the following condition: 

ro<y<^p, (1) 

where ^.p^^^Ane^N^Is^m is the electron Langmuir frequency in the semiconductor 

plasma, e is the charge of an electron, N^ is the equilibrium electron density in the 
semiconductor plasma, ^Q =12.53 is the dielectric constant of the crystal lattice of the 
semiconductor, m = O.Qeim^ is the effective mass of an electron in the semiconductor, 

7o =v3/2'"^Q^(«o/7Vo)""^ is the maximum growth rate of hydrodynamic instability, n^ 

is the equilibrium electron density in an electron beam. In the case under consideration 
the most unstable oscillations are characterized by the frequency co^Q.  «ytoVg and the 

growth rate of hydrodynamic instability Y = ^alCLpl2v Ky^^ [1]. Here co^ = y[47re\h^ 

is the electron Langmuir frequency of electron beam and k^ is the wave vector of the 
most unstable mode. 
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The case described above can be realized in the highly compensated semiconductor 
GaAs at the liquid helium temperature. Let us consider a sample of GaAs with an n-type 
impurity concentration of about A^,, =5 10'^cm'^ and the electron concentration of 

NQ =4 10''cm"^ (Q, =4.0 10'^s"'). In GaAs in a thermodynamic equilibrium state the 

majority of electrons occur in the valley with a minimum energy at the center of the 
Brillouin zone (the <000> valley). The next several higher valleys with minimum 
energies in the <100> directions are separated from the <000> valley by the energy gap 
A ~ 0.36 eV. The effective electron mass in higher valleys is OT<,,OO> ^ '^^r>hooo> ■ Since the 

density of states is proportional to irr''^, the density of states for the valley in <100> 
directions is higher than for the <000> valley. Therefore it far more probable for 
electron whose temperatures exceeds A to occur in the <100> valleys than in the <000> 
valley. The emission or absorption of optical phonons accompanies the electron 
transitions between the valleys. The relaxation frequency of an electron momentum 
changes abruptly from v ~ 5 • 10" s'' to v «10'" s''. 

NONLINEAR STABILIZATION 

With the aid of the particle-in-cell method [1] we have obtained that the valley-to-valley 
transitions cause the considerable changes in the temporal dependence of the slow 
amplitude of the wave electric field £,(/) (i.e.. \dE/dl\«Q^E). The dependence E,{T) 

(where T = xt)\s shown in Fig. 1. 

The plateaus in Fig.l appear due to the frequency v increases abruptly. This increase 
causes the abrupt decrease the growth rate of hydrodynamic instability y. This 

situation continues until the most of beam electrons are trapped. 
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Fig. 2 

The influence of nonparabolicity of electrons dispersion law in GaAs is shown in fig.2. 

In this figure the curve "1" corresponds to the dependence E^[T) without taken into 

account the nonparabolicity and the curve "2" corresponds to the opposite case. The 
influence mentioned above is taken into account with the help of the dependence of the 
electron effective mass on their temperature w(rj : 

.•(,,) = .py. (2) 

where 0^ is the energy gap between the valence and conduction bands. Fig.2 shows that 

the nonparabolicity causes the decrease of the maximum of £, in which the most of the 
beam electrons are trapped by the wave. 
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ABSTRACT 

Eigenoscillations near cascade of thin disks between the pair of parallel planes are 
studied. The sufficient conditions of existence for eigenoscillations are found. The 
dependence of eigenfrequencies on the geometric parameters of structure is 
investigated. It is shown that the frequencies of eigenoscillations of given structure are 
discrete and they formed a bundle of resonance frequencies which is under specific 
conditions act as a continuous band of resonance frequencies. The number of resonance 
bundles is calculated. 

PROBLEM FORMULATION 

The present work generalized the results 
obtained in [1] for periodic chain of thin disks to 
the structure which is shown on Fig.l. 
Mathematical statement of the problem based on 
the Helmholtz equation in cylindrical coordinate 
system, the assumption of rigidity of all 
boundaries together with the condition of local 
energy finiteness and could be write down in the 
following form: 

z * 

ra 
H 

R 

\V2 
Fig.l. Region of oscillations and 
basic designations. 

l_d_ 

r dr 
du 

V  orj 

o u 
+ 

dz' 
+ X^u- ■0, 

du 

dn 
= 0    E{u) dQ < 00 (1) 

r Q 
Here we assume that the process is steady-state, so the time dependence is taken to be 
exp(-mt) and the solution is independent on polar angle, T is the boundary of domain 
of oscillations including walls and cascade of thin disks. The meaning of all other 
designations is evident form Fig. 1. 

GENERAL APPROACH 

Owing to the fact that we have set the cascade of disks as a symmetrical array with 
respect to channel walls we can expand given problem (1) and solve it in all 3D space 
but with additional conditions (2) on imagine boundaries set up by the collection of 
parallel planes at n = lx,y,z):z = H 

du 

dn 

+ k\, keZ 2T 
u 
3 = 0,at nj^,keZ (2) 
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The general form of a solution for this new problem in a free space (x +y >R') could be 
written in the form (3) with help of Floquet theorem: 
u{x,y,z) = v{x,y,z)cos{^z),v{x.y,z + \) = v{x,y.zl^=^Y^,n = 0...{N-\)      (3) 

This follows that the solution of the problem could be understand as a stationary wave 
in case 1,^0 with phase shift in each interdisk space and as a stationary wave which is 
synphase in each interdisk space when ^=0. 
In [2] it was shown that if R>Qjn , here Bo is the first zero of Bessel function of zero 

order than the periodic chain of disks possesses the waveguiding properties for any t,^0. 
In case E,=0 the existence of resonance frequencies is proved for R>0.342. Coupled with 
existence proof the formulas (4) for dependencies of waveguiding and resonance 
frequencies on the geometric parameters of the chain were obtained. 

sin[5((>..^)] = 0,here 

,     ,      n             JAXR)    X, ,^.          .   X         'I        (     k    ]         . f     A,     M   ^      .(X 
Y(L£) = arcli^-——^ + -ln(2 -arcsm^- -V-^arcsin    +arcsm   UXarcsin — 

cosa (A„j^) = 0.here 
(4) 

^ arcsin 
yjX'-n-       14.        .   \ yJX'-1t'' 

\                      / 
;V 

+ ^arcsin 
n = 2 

J                                V 

here N is a parameter, natural number, which control the approximation accuracy 

The fact is that the waveguiding and resonance frequencies of the problem with 
additional condition (2) correspond to the eigenfrequencies of the problem (1) if one 
chose the appropriate values for ^ parameter (3), so the eigenfrequencies of problem (1) 
are discrete. 

RESULTS 

From analytical and numerical investigations of expressions (4) follows that the 
eigenfrequencies are group into certain number of bundles in case £,^^0 and forms a 
finite set of isolated frequencies in case ^=0. The distant between the boundary of these 
bundles depends on geometrical parameters of disks cascade. Using the Neumann- 
Dirichlet bracket we were able to prove the following statements. 
Statement 1. The number of resonance frequency bundles K is determined by the 
expression |.i„ < A: < |i, where [i\ is the number of the roots for Bessel function Ji which 

are contained in the segment [0,7iR]. 
Statement 2. The number of isolated resonance frequency A can be estimate from the 
expression \io< A< |.i, where m is the number of the roots for Bessel function Jj which 

are contained in the segment [0, Rn v3]. 
The boundary of resonance frequency bundles and isolated resonance frequencies are 
show on Fig.2. The dependence of eigenfrequencies on phase shift parameter (^) is 
illustrated on Fig.3. 
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In terms of this investigation one 
could conclude that since the 
position of the boundary of 
resonance bundles continuously 
depends on the geometrical 
parameters of the disks cascade the 
methods of reduction of 
objectionable resonance pheno- 
mena which are based on breaking 
symmetry of the structure given 
had no fundamental basis. The 
second conclusion could be the 
following. Since the increasing of 
the number of disks in cascade lead 
to gaining of the number of 
resonance frequencies per bundle 
and due to non-linear phenomenon 
called "Capturing of resonance 
frequencies" we could finally get 
the continuous band of resonance 
frequencies instead of set discrete 
bundles of resonance frequencies. 

Resonance frequencies /  ^^^^^ boundary of the bundle 
l    Low boundary of the bundle 

Fig.2. The dependence of boundaries of the bundles 
of resonance frequencies and isolated resonance 
frequencies on the disk radius 

Fig.3. The dependence of eigenfrequencies on phase shift 
parameter (^). Here R is the disk radius, N is the number of disks in cascade. 
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The spectral task is solved for open prolate spheroid that made from homogeneous 
isotropic crystal and has small distance between its focuses. The approximate dispersion 
equation is obtained at satisfaction of the tangential component continuity conditions of 
electromagnetic field strengths for resonance oscillations on the spheroid surface. It 
allows to study spectral characteristics of resonance oscillations. 

INTRODUCTION 
The open dielectric resonators are widely applied to determine the parameters of 
materials and to create of stable microwave standards and to use in the precision 
metering equipment. Thus, the measurement and research of spectral characteristics of 
resonance oscillations have important value. The rigorous solution of a set of Maxwell 
equations satisfying the radiations on infinity and the boundaiy conditions of 
electromagnetic field components was only determined for some limited dielectric 
structures. The numerical analysis of spectral characteristics made for the lowest types 
of resonance oscillations in an isotropic dielectric sphere [1]. The capability of 
excitation independent TE (£,. = 0) and TM (f/, = 0) wave modes was shown. In each 
of them there is a frequent degeneration at which the same frequency has 2« +1 modes 
with various dependence from the azimuth coordinate cp. Here n parameter is polar 
index determining number of field variations on the polar coordinate 9 . The influence 
of weak azimuthal non-uniformity leads to removing the degeneration and to arising 
independent EH and HE oscillations for which all six field components are not zero. 
The resonance oscillations independent from azimuthal coordinate (5/5(p sO) were 
studied in open spheroidal structures [2-4]. The mention above effects does not arise in 
these approximations. 

THEORETICAL CONSIDERATION 
We consider an open spheroid made from homogeneous isotropic dielectric with 
permittivity £,, and permeability \ij . The prolate spheroidal coordinate system (£,, r), 

q)) obtained by rotation of plane elliptical coordinate system around of a large axis 
(Figure 1) is used for the solution of the spectral task. In this system £, 6[0,2TC); 

rie[-I,l]    and   (pe[0,27r],   and   the   metrical   Lame's   coefficients   are   equal 

J^T:^ ;     K =^fYI^ ; K =W(^'-1)(1-T1^), where x is 
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between focal points. The surfaces ^ = const are prolate spheroids in 
spheroidal coordinate system. The value r| = 0 corresponds to 
crossing of the spheroid with a plane z = 0, and r| = ±1 correspond 

to spheroid poles placed on the z axis [5]. At the coordinate ^ = ^^ it 

is limited by the medium with permittivity s^ and permeability \i,,. 

For fields proportionate to exp/(w(p -ro^O, where oo^ is the 

frequency of p -th mode oscillation and m is azimuthal index, the 
study of the set of Maxwell equations is reduced to the solution of 
two coupling differential equations about E^ and H^ components 

Figure 1. 
ie^kxAjh^E^^ =-—Ljh^H^^;ilXjkxAjh^Hj^ 

5(p ^A^A- 

(1) 
Here k = (Siplc, c is the light velocity and subscript j takes the value d inside or b 

outside of spheroid. The A^ and L. operators are equal 

^'-1   d A, = -1 
J        ^„^./'P5^+^^l3^p2 

.,     a^     ,^. 1; L, 
8r\ 

-I 1 
^"'l-^' d^ 

where g^^ and gj^ operators are reverse for operators of 

5 An        2x   d 

d^^-r]' dr] 

gjr, =(l-Tl')K + 
d   ^'-l   8 

V,g 
1 

79 (1-TiO^ ^ ^^-1    a^ 
Let us consider an isotropic dielectric sphere with a small ellipticity along the z axis. 
The transformation to spherical coordinates (r, 0 , cp) in (1) is carried out in the 
assumption cp = (p , r] = cosG and tendency x ->■ 0, £, -> oo so that the multiplication 

T^ ^ r remained final [5]. We introduce potential functions U^j by the expression of 

gjJJ] = h^Sj^, where gj^ =a^^d' Idl^^, a. == 8^^^l\ ^ and S takes the value E or 

a.        For        large £, values        and        t] = cos 6 we        obtain 

g]-!\ 

becomes 
V    di,' ./9 -^ + ^ + 0{^-'). The system (1) 

sm 6     ^ 

(A.o-A„)^J -^;o-^cose--^^ 
^■ 

5(p5^ 

(A^,-Ay,)f/;«^ ;0 

, 2/e IT S't/f 
'—'-—cose—'- 

^' Scpa^ 

where 

A, =• 
1 

Ayo=A^+^'g^.o, A,, =g, 

1    d' 

Oj + ^JO ^' sine ae 
5 . 3n e sm e  

ae 

8' 

acp'a^' 

(2) 

-sme — + 
sine ae     ae   sin-e acp' 

and go operator is reverse for operator of g ;0' 
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At neglect by values of the order ^ " the system (2) breaks up to two independent 

subsystems describing TE and TM types of resonance oscillations in the spheroid. The 
resonance frequencies of them are accordingly determined by solving the equations 

./v(„)(^</) Konix,,) 7v(„)(^</) «v(«)V^/J 

where x, = ^^^x^o; .A,,„(^) = AA^W2J„„,,,(X) ; K'/Jx) = 4^^^HZ,{X) , 

v{n) = n + \l2, ./,(„)(x) and //,!J|,)(x) are the Bessel and first-kind Hankel cylindrical 

functions of the n -th order. 
In the equations (3) the azimuthal index m is absent. Hence each resonance oscillation 

mode is 2n + \ -fold degenerate. 

The taking into consideration of the addends proportionate to ^ " in (2) allows to study 

the   influence   of ellipsoidal   non-uniformity   upon  the   parameters   of resonance 
oscillations. The TM oscillations are transformed in the HE and TE are transformed in 
the EH oscillations for which all six field components are already not zero. In this case 

the solufions of system (2) are proportionate to functions of ./v(».</)(-\/^^) inside and 

f^y(l h)i-i^,^) outside of the spheroid, where v{n,J) = [in + \/2f +(m' +Y„)a, /n(n + \)f'\ 

y„= f„.,f,„A^n\n+ \y--m'(In-+2n+ 3)] and f„ =l/(2« + l). 

The resonance frequencies of oscillations are determined by solving the equations 

^ " ^"  /       (X )~^'-''^'' h'''    (X ) 

for EH and 

I ;  Jvln.,1) \^d ) I        ; "v (n,A)  i^h ) 
/        \ V r /'      " n    , (I)        ,       \ 

for HE types. 
The dependence of v(/7,/)   parameter from the azimuthal index  m   arising under 

influence of the ellipsoidal non-uniformity of dielectric sphere removes the frequency 
degeneration for resonance oscillations. 
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ABSTRACTS 

The problem of calculating the eigenwaves of planar dielectric waveguide with arbitrary 
refraction index profile is considered. The iterative process based on the exact solutions 
of this problem in the case of piecewise constant profile is investigated. The abstract 
perturbation theory for operator equation with spectral parameter is extended. 

INTRODUCTION 

Let the layers of planar dielectric waveguide be separated by the planes z = 0 and 
z = h. The potential function F{x,z) = exp(ikf^nx)f(x) of the TE-waves is a solution of 

the Helmholtz equation and satisfies the conjugation conditions for z = 0 and z = h. 
The function /(x) is a solution of the boundary value problem 

f"(z) + k',[n}iz)-n']fiz) = 0,    0<z<h, (1) 

/•(0)-p,/(0) = 0,   f'ih) + ^Jih) = 0, (2) 

here n is the unknown spectral parameter (longitudinal propagation constant), 

"v "o, n^(z) are the refraction indexes of the substrate, of the external medium and of 

the waveguided   layer respectively. The conditions (2) are to be replaced by other 
conditions in the case of TM-waves. 
If nj-(z) = const then the exact solutions of the problem (1), (2) can be written down in 

the analytical form. We discuss the possibility of using these solutions for approximate 
calculating of the solutions of problem (1), (2) in the general case. 

ITERATIVE PROCESS 

In [1] an iterative method is proposed to solve the following spectral problem 

f"iz) + Ciz,X,p)fiz) = 0,  f'(a) + AiX)f{a)^0,  /•(P) + 5(^)/(P) = 0 .     (3) 

Let the solutions of the problem (3) be well-known for;7 = 0, and be unknown for 

p = l .We introduce the increasing set of values z?*"^ = 0,/>'",...,/»^"^=' =1. Let the 
increments 5A,, 5/(z) correspond to the increment 8p. The linearized equations for the 
calculating of increments have the form 
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[/(z) + 5A^)], (4) 

(5) 

^ A 

5/'(a) + ^(^)5/(a) = -—5X[/(a) + 5Aa)], 
OK 

5/'(P) + 5(^)5/(P) = -|^5X[/(P) + 5/(P)], 
oX 

= -hp\f{z)^[f{z) + bf{z)\lz . (6) 

ABSTRACT APPROXIMATE SCHEME 

To substantiate the numerical metliod we consider more general  abstract spectral 
problem. 
Let y4  be a linear operator acting from the space X into Jf,  y^   be a linear operator 

acting from the space X into Z, the space X approximate the space X  and ?i   be a 

complex parameter. The correspondence between the spaces X and X is established by 

the interpolation operator T : X -^ X and the approximation operator S : X -^ X, here 
ST = I [2] . Let the exact spectral problem 

Ax-hc^O,     xeX (7) 

be replaced by approximate spectral problem 

Ax-Xx = 0.     xeX  . (8) 

We introduce new spectral problem 

2x-?a = 0,     xeX.     A = SAT. (9) 

If XQ,XQ are the eigenvalue and the eigenelement for the problem (8), then 

?i(,,Xo =5xoare the eigenpair for the problem (9). Therefore the eigenpair for the 

problem (8) can be obtained in the form 

X = XQ + Ax,     ^ = A-o + A>^ 

with auxiliary normalization condition. 

The equation 

(^-A,(,/)Ax = AA,(X(, + Ax)--A4(Xo + Ax),      Ax e X  |   (x,Xo) = 0 (10) 
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is an abstract analogous of the problem (4), (5), 

AX=(A^(Xo+Ax),Xo) . (11) 

The operator AA = A-A  defines the closeness between the exact and approximate 
operators [2]. 

CONVERGENCE CONDITION 
It follows from (10), (11) that 

Ax = TPiAx), (12) 

here Tis a linear operator (inverse operator for A-X^I) and Pis a nonlinear operator. 

It is shown that the equation (12) can be solved by iterative process if the condition 

|i77"(Ax)||<^<l   or   3||r|| ||A^||<g<l 

is fulfilled. 
Let A{X) be a linear operator from the space XintoX and A, be a complex parameter. 
Let the exact spectral problem 

AiX)x-hc = 0,     xeX (13) 

be approximated by problem 

^(A.)x-Ajc = 0,     xeX , (14) 

here A(k)  is a linear operator from X into X. In this case the equation (12) is 
replaced by set of equations 

AX = {[A(X + AX) - A(X)] (x + Ax), X ) , 

(15) 

Ax = [A(X) - Xl] ^' [AXI - AiX + AX) + A(X)] (x + Ax) . 

The sufficient condition for the convergence of the iterative process for the system (15) 
is obtained. 
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ABSTRACT 

Eigenvalue problem of (-A) operator with the finite-energy and Neumann conditions 

are investigated . The classification of possible eigenoscillations is carry out by the 
theory of group presentation. These modes of eigenoscillations are proved to exist and 
their quantity is found. Eigenvalues are studied numerically. 

STATEMENT OF PROBLEM 

A system of two equal strips forming a cross in the infinite channel of circular cross- 
section is considered. The line of strips' intersection divides it to half-and-half. All 
notations are shown in figure 1. Eigenoscillations with harmonic time dependence is 
assumed. 

///////////////v////////// 
B 

B 

T 
Q 

O X 

n >>))))) 
* ;: ^ b 

a) b) 
Fig. 1. Geometrical parameters of system of two strips forming a cross: a) top view; 

b) cross-section. 
Mathematical statement of problem for potential function u(x,y,z) is: 

lS,u-\-X'u = 0 

du   ^ 

d n 

inCllBIT     -    wave equation 

on ByjT      -   Neumann condition 

[  (zr-i-(Vw)M(;/n„ <oo      Cl^czQ.      -   finite-energy condition 

(1) 

CLASSIFICATION AND EXISTENCE OF EIGENOSCILLATIONS 

The self-adjoint extension of (-A) has positive continuous spectrum. The main 

difficulties is that discrete spectrum of problem (1) is imbedded in continuous spectrum 
of operator (-A). 
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Symmetry group of the cross in the channel contains subgroups D^, C^ (rotation on 

Tc/2 in the plane parallel to OYZ) and D"^^ (mirror symmetry with respect to plane 

OYZ) [1]. Subgroup D^^^^ means that the admissible solution space can be decomposed 

into solutions, which are odd and even at variable x. 
Generating elements of subgroup D^ are r and s, where r is rotation at n/4 with respect 

to  axis  OX and s is mirror symmetry with respect to plane  OXZ.  Irreducible 
representations of subgroup D^ are shown in the table 1. 

Vi V2 ¥3 V|/4 

r' 1 1 (-1/ (-1/ 
sr' 1 -1 (-1/ i-lf 

Table 1. Irreducible representation of D^, where \j/„ / = 1,..,4 are their characters. 

Irreducible representations x^ of group C^ are xJc^'] = QXTp[i%km/2), where 

k,m = 0,1,2,3, so the admissible solution space can be decomposed into solutions, 

which have next property:  C^<u(x,y,z)>=exp{inj/2)-u(x,y,z),  where 7 = 0,..,3. 

Oscillations with 7=3 andj-1 are identical, they are equal to a wave moving clockwise 
and anticlockwise respectively. 
Note that even eigenoscillations with respect to variables y, z can't exist [1]. So there 
are only 3 independent mode of oscillations (without consideration of evenness/oddness 
at x): 1) mode corresponds to \|/2 (it will be called a-mode); 2) traveling wave at7= 7 (P- 
mode); 3) mode corresponds to \|/4 (y-mode). 

Let |-l„^ denote k-th root of equation (/„(x)) =0,  J^{\x^ j^) ^ 0, k eN.Let o^ be the 

point of the continuous spectrum of (-A). Value Og  for a, p, y-modes is equal to 
2 2 2 

|a4|,|i,,,|i2| respectively. Now it is possible to investigate discrete spectrum of 

problem (1) located below G^ . 

Theorem 1. a, p, y-modes of the eigenoscillations always exist independent of 
geometrical parameters of the cross and the channel. 

Lemma 1. The a-mode eigenfrequencies belong to interval ( )J.2 1» ^41 )• 

Lemma 2. Quantity K of eigenvalues located below the cut-off of problem (1) 

satisfies     to     next     inequalities     for     a-mode:     max( 1, bJ[il^ -\ilJn-] )<    K< 

b^\xl^ - 1I21 /TI +1; for P-mode: max(l,^|Li||/Ti:-1)< K<b\x^Jn +1; for y-mode: 

max( 1,6)12,1/^ -!)</:< bpi^Jn +1. 

Theorem 2. Finite-energy condition in any vicinity of plate edge is equivalent to 
next conditions (in cylindrical coordinate system chosen along a plate edge): 
1) at the middle of the plate edge u[b / 2 +x, p,(^) ~ f(x)+p cos{(p) gix); 

2) at other points of plate edge w(6/2 + x, p,(p)-/(x) + ^cos((p/2) g(x), 

at p-^0, fix),g{x)eW^(R). 
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Lemma 3. a- and y-modes have finite energy in any vicinity of plates edges. 
Finite-energy condition in any vicinity of plates edges for p-mode is equivalent to next 

conditions (Vm, e N): 

NUMERICAL INVESTIGATION 

The  linear infinite  system  (2)  for coefficient of solution's  expansion in domain 

Q n {x ^ 0,5b} is obtained by sewing method 

I*, ■((Y+y>''""+Hy(Y-y>""")7Tr£T 
/),«;= 1 

f\ri)-g\n,) 

X ir Jn„(^/(.,,nr)j,„X\^,,.^,,nj]dr = ^   Vm„/7, GR 
(2) 

where y{n,m) = yln-{n-+m-)-X\j ^y (/(n),m),Y, =y{gin^),m^): for g-mode: 

/(«) = 4?7,g(«,) = 4/7-2; for p-mode: f{n) = 2n-l,g{n^) = 2n-2; for Y-mode: 

f{n) = 4n- 2,g(n,) = 4«,- 4; and / is even (odd) for even (odd) oscillations by x. 

The system (2) was reduced to square and triangular partial sums, which were studied 
numerically. There are good coincidence between them. Figure 2 shows the variation of 
the eigenvalue X with the cross-length h received by the first method. 

I am grateful to Dr. S.V. Sukhinin, l.S. Chikichev for a number of useful notes. 
This work was supported by the Russian Foundation of Basic Research, Grant 02- 

01-06264. 

f.14 ] =5,3 1 7553 1 26 

I I I I I I M I 

0.5     1       1.5     2      2.5     3 
Fig. 2. Variation of the eigenvalue X with the cross-length h. 

RESULTS 
1. It is proved that 

eigenoscillations always 
exist. 

2. It is founded the 
quantity of mode of 
oscillations. 

3. The diagrams 
eigenvalues against length 
of cross are obtained. 
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ABSTRACT 
The paper deals with the problem of eigenoscillations near the obstacle with the 
arbitrary sufficiently smooth shape of boundary immersed in three-dimensional 
waveguide of rectangular cross-section. Assumed that the guide and the obstacle are 
rigid. For a wide range of the obstacle geometry the existence of eigenwaves has been 
proved and their frequencies are embedded in the continuous spectrum. 

INTRODUCTION 
The investigation of eigenoscillations in unbounded waveguide regions is very 
important in many physics fields. First of all, the interest to the given problem is 
stipulated by the aeroacoustic resonance phenomenon the investigation of which is 
actual, e. g. when turbomachines designing (gas, vapour and hydraulic turbines, pumps, 
compressors), pipelines etc. (some experimental works review is in the paper[2]). A lot 
of papers (we'll mention only some of them [1,4-6,8]) are devoted to the investigation of 
eigenwaves in guide regions in two-dimensional case. The eigenwaves existence in 
three-dimensional guide regions has been investigated less completely. Let's note the 
paper [3] where the existence of the eigenoscillations being localized near sphere of the 
sufficiently small radius being situated in the center of the waveguide with the constant 
circular cross-section has been proved and also let's note the papers [7,9], where the 
cases of the thin-shelled obstacles in waveguides have been considered. 
In the given paper by using the variational principle the sufficient conditions of the 
eigenwaves existence in three-dimensional waveguide with rectangular cross-section, 
where the obstacle with sufficiently arbitrary geometry possessing some symmetry 
conditions, have been obtained. 

STATEMENT OF THE PROBLEM AND THE MAIN RESULTS 

The domain Qo is being considered: 
no={ix,y,z)e R^:xe(-dudi),y e {-dj^dj), z e R }, dp-O (r=l, 2). 

The bounded obstacle B is placed in it. This obstacle may be disconnected. According to 
the obstacle type the following cases will be considered: 
A. 5 is a compact set being bounded by the piecewise smooth surfaces and it is such 

one that \i2,{B)>0. (Here and further 1^3 means A:-dimensional measure). It is 
supposed that B is symmetrical with respect to the plane j=0. 

B. B is an infinitely thin plate with sufficiently smooth boundary, such one that 
0<\i2{B)<co. It is supposed that B is situated in the plane y=Q. 

C. 5 is a compact set being bounded by the piecewise smooth surfaces and it is such 
one that \x.j{B)>0. It is supposed, that B is symmetrical with respect to the planes x=0 
and_y=0. 
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D. B is an infinitely thin plate with sufficiently smooth boundar>' which is situated in 
the plane JK=0 and 0<|-i2(B)<oo. It is supposed, that OZ axis is a line of symmetry for 
the obstacle B. 

Fie. 1. 

Waveguide regions geometry is represented in figure 1. 
We seek the non-trivial solution u{x,y,z) of the boundary value problem for the 
equation: 

Aw + Az^=0   (l > O) in Q=Qo\5, (1) 

satisfying to the Neumann boundary condition on dQ.: 
du 

dn 
= 0 

and to the condition of finite energy: 

E{u)= |||(|wf+|Vwf)^Q < 00. 

(2) 

(3) 

Here, n is a vector of the external normal to dQ.. 
Further, we'll call the problem (l)-(3) as the problem A^. Besides, we are going to 
consider the problem A'"'^ - the solution finding u"'^{x,y,z) of the boundary value problem 
(l)-(3) which is odd in y for A and B cases, and the problem A'" - the solution finding 
u"{x,y,z) of the boundary value problem (l)-(3) which is odd in x and _y  for C and D 
cases. 
The parameter value X for which the non-trivial solution of the problem N    (of the 
problems N"'^ and N" correspondingly) exists is called the eigenvalue of the problem N 
(of the problems V' and hf correspondingly). In addition, the self non-trivial solution is 
called the eigenfunction of the corresponding problem. 
It is known, that the Neumann Laplacian possesses a continuous spectrum [0,+ oo) for 
the   domain Q and the eigenvalues of the problem A'^ (if they exist) turn out to be 
embedded in the continuous spectrum. It is obvious that the eigenvalues of the problems 
A'"'^ and A" are the eigenvalues of the problem 7V^. 
Let us introduce the notations: 

Q:={(X,>',Z)GQ„:   X>0,   ;^>0},   5"=5nQ[, 

Q"^ ={{x,y,z)eQ,:   ;; > 0 }, 

Q"=QnQ:;,   Q""=OnQr 
B"" =BnQ';;', 

The following lemmas are valid. 
Lemma 1. The continuous spectrum of the problem A"'^ ( A" ) is the semi-axis [A„p^,+co) 

9 1 
([Aa ,+00) correspondingly), where A„  ' '■up n^lAdj^, KhTi^lAd\^+n^lAd2^. 
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Lemma 2. Let 

jJIW^f^Q 

Hi 

Qiip-" 2"r-     _ 

Q'P.O 

Then Xo"^< A^/p^ ( h"< A/ correspondingly). More over, if ?io"^< A„/   (;io''< A«^ 
correspondingly), then Xo"'' ( A,o°) is the lowest eigenvalue of the problem N"^ (N"), 
and if ?^o"^=A„/ (A,O''=A/), then the eigenvalues of the problem N"^ (N" ) do not exist 
in the interval (-oo,A„/ ) ((-00, A^^) correspondingly). 
Using these lemmas, the existence of eigen waves has been proved. 
Theorem. Eigenfunctions of the problem N"^ exist: 
in case A, if the following inequality holds: 

ff'p 

cos 
7ry_ 

. "2 j 

dQ>0: (4) 

in case B - exist always. 
And the lowest eigenvalue XQ"'^ belongs to the interval (0, A„/). 
Eigenfunctions of the problem A'" exist: 
in case C, if the following inequality holds: 

1 liii^ d 
cos 

TTX 

d, 1 J 

exist always. 

1 
+ —^cos 

\^2 j d,     d. V"^i 

cos 
7tX 

2 J d^ 
cos 

n:y 

\"-2  J 
dCl>0; (5) 

in case D 
And the lowest eigenvalue XQ" belongs to the interval (0, A/). 

Corollary. Eigenfunctions of the problem N"'^ exist in case A, if the obstacle B is 
included in the set {(x, y, z)eQo: \y\< d2/2 }. And the lowest eigenvalue ?^o"^ belongs 
to the interval (0, A„p^). 
Eigenfunctions of the problem N" exist in case C, if the obstacle B is included in the 
set {(x,y,z)eQ.o:\y\< d2/2 ,\x\<di/2}. And the lowest eigenvalue A,o" belongs to 
the interval (0, A^^). 
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ABSTRACT 

The real Kummer function, the ordinary and modified difference Bessel functions are applied to 

derive the characteristic equation of slow TEof, modes in the circular waveguide, containing 

azimuthally magnetized ferrite cylinder and dielectric toroid. A lemma on a remarkable property 

of the real zeros of the equation is formulated, based on its numerical solution. Essential fea- 
A 

tures of the slow TEo\ mode are found out, investigating its graphically shown phase curves. 

INTRODUCTION 
A few of the attributes of the slow waves in the azimuthally magnetized circular ferrite 
waveguides are known only [1]. The task for their propagation is rather interesting since 
such modes cannot be sustained, if the filling is isotropic. Very attractive in view of the 
variety of expected resuUs are the stratified configurations, not treated until now, the 
simplest of which is examined here. 

BOUNDARY-VALUE ANALYSIS 
The knowledge of the roots of the equation: 

\-a ^2 O(a,c;ydxo) 
2     0(fl -1, c - 2; yCKo) 2p2   ' 

1   a 

In 
dy^ 

-hsn„-,{h-vo) 

w, 0 3^0 
In 

q>0 

g = p = 0 

,    p^ jq>id. 

(1) 

is a necessary condition for the study of eigenvalue spectrum and phase characteristics 

of the circular waveguide (radius i\) with azimuthally magnetized ferrite rod (radius 
A 

r,) and dielectric toroid under slow TE^f, modes excitation, if the axial switching wire 
is dimensionless. (All quantities, related to waves mentioned are real and are marked by 
a hat "^" which may be omitted provided no ambiguity might arise.) The ferrite has a 

permeability tensor with off-diagonal element a = '}M,.lco {y - gyromagnetic ratio. 
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M^ - remanent magnetization, O) - angular frequency of the wave). The relative per- 

mittivities of inner and outer media are e^ and £^, resp. The left-hand side of eqn. (1) 

involves real Kummer functions [2]. The first and third forms of its right-hand one are 
written by ordinary and modified difference Bessel fimctions [3]. The symbols 
bsn^ (j)o - VQ ) ^^^ bsh^ ("o ~ ^o) stand for the m th order ordinary and modified dif- 

ference Bessel sine (m - an integer) [3]. It holds a=l.5 + k, c-3, k = &PI\1P2], 

0.5{{£j/£,il-(2k/a^)]/{l-a^)+{2k/a^)y\ UQ=PXQ, WQ=PUQ, p = jq, m = 0. 

The phase constant, radial wavenumber, guide and rod radii are normahzed as follows 

The condition q (p)- real positive or ^ = ^ s 0 needs application of the first (third) or 
second form of eqn. (1). A numerical proof is given to the statement: 

Lemma i'-^^ ^r l{£r,£d^P^^) be the «th real positive root of characteristic equation in 

XQ provided a, c, XQ -real, XQ>0, C = 3, ^<0 (k = a-c/2), £^>0, £d>0, 

0< p<l, the infinite sequences of numbers ||1'=) [ and ] k(^i^l \ are convergent for 

k -^-°o and their limits are 0 and L, resp. where L = L{c, £"^, £^, p, a, h). 

SOME PROPERTIES OF THE SLOW TE ^j MODE 

Using the roots ^r^ of eqn. (1) and the relations between barred quantities, the struc- 

ture's phase characteristics are drawn in Figs. 1,2 for £,. -£^=l and p = 0.9. The 
analysis shows that propagation is possible for negative magnetization in two areas, 

subject to the terms^ <■'« <«(').P) <«™?, /^.f <?„»««<?o»^g». 

iW.U)<f(a(2)<^(W2), }i»<pUj%,„ MS>P'>Mg where «»=-!. 

M/2" p{2)   _o 4li«,=0,   4S=-'   4L=-3.   n^j,   =   i<>)/[|«<')|(l-[A(.)f) 

The superscripts (1), (2) signify the zone to which given quantity is related; the sub- 

scripts "left", "right" - its limits. The symbols TE l\ and TE f^ are used in the first and 

second region, resp. In contrast to the ferrite case [1] the slowing down of waves grows, 

the transmission area of TE ^^\ mode expands towards smaller r^'' (compare the enve- 
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6 10 16 20 26 

NORMALIZED dUIDE RADIW    TOPO^T 

Fig.l. y^C) (fi^^) curves of TE [,',' mode for -1 < ft-C) < 0. 

lopes, bounding it from the 

left git, and En^, for the 

layered and ferrite geome- 

try, resp.) and a domain of 

double-valuedness appears 

(of Fig. 1). 

CONCLUSION 
The propagation conditions 

are fixed and certain cha- 

racteristics of the slow TEoh 
modes in the azimuthally 
magnetized femte-dielectric 
circular structure are ex- 
plored. Inseparable part of 
the study is a lemma on its 
eigenvalue spectrum. The 
principles for solving a new 
class of boundary-value 
problems are oudined. 

I 

I 

10 rrp—II \ I >' k—^1—V" 

\ \ \ 

_\ 
-20 

1 1 1— 

-3.15 

^  a('^=-3.2 

 -3.3^ 

- - --3.4 
- - __-3.6 

-J_ 
-iO 

\vmf(M^ =3 _    , .'rtsM 
limi^uf,_rig^,-1 
S^%o 'r'...A_ 

p=0.9 TE„ 
■(2) 

% 
I I 1 

0.6 1.0 

NORMALIZED GUIDE RADIU0    foPo^r 

1.5 

Fig.2. ^W(^(^)) •(2) curves of TE Q^   mode for -oo <:a^^' < -3 (2) 
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ABSTRACT 

The present article is devoted to some problems of implementation of concept of a 
periodic impedance of walls in the process of studying wave propagation in 
waveguides. It enables to approach the calculation of different waveguide devices from 
the unified position. The implementation of such approach is shown on an example of 
absorbing filter of harmonics representing a sequently located round holes in a narrow 
or wide wall. It is shown that such tasks can be solved as Helmholtz equation with 
impedance boundary conditions for tangent components of electric and magnetic fields 
on the wall's surface. 

SURFACE IMPEDANCE OF A NARROW WAVEGUIDE 
WALL WITH THE SYSTEM OF HOLES 

Let's study a rectangular waveguide having a periodic series of round holes on a 
narrow wall along the line parallel to axis z . 
Let's introduce a rectangular system of coordinates which beginning coincides with one 
of the tops of the waveguide and cylinder system of coordinates which beginning 
coincides with the center of the first hole circle. Then the chosen systems of coordinates 
can be connected in the following way: 

z = / + p-cos(p,    y = d + p-sin(p. (1) 

where 1 -distance from waveguide aperture to the first hole centre, d - distance from the 
wide waveguide wall to the holes system centre. 
From the task geometry it is clear that the  surface impedance is equal to zero 
everywhere on the narrow wall except for the holes surfaces. Let's assume that on the 
holes the surface impedance coincides with the characteristic    resistance of the 
secondary round waveguides connected to the holes. 
Let's disintegrate the surface impedance in the plane YOZ into the double Fourier series 
on the orthogonal system of functions in the rectangular (0 <= y <= b, 0 <= z <= h, h - 
distance betv^eenj^ie holes centers). 

-^svy>zj=   L    L  Vmn • (Amncos ,   y• COS     z + Bj^nSm      y-cos     z + 
m=On=0 b h b h 

^^ m5      .   nd      ^      .   md      .   n6 , 
+ Cmncos ,   y • sin ,   z + Z^^^sin      y • sin ,- z) (2) 
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where Anm, Bmn, Cmn, Dmti - disintegration coefficient of Fourier series. Value Vmn  is 
equal to 1, V2, '/4,depending on the values of m and n. 
Coefficients Bmn, Dmn are equal to zero and coefficients Anm, Cmn are found from the 
following relations: 

A mn ■^ cos       fl-cos      /•  y S}j      \ 

m ?i n. 

hh 
(3) 

mil 
\6KZ^       mn ,   .   nn.   „  Jm.n) 

Cmn- "COS a-sm — /• 2^ S),       , 
hh b /^     ^.0  ^ 

m?t n. 

where 

S 
{m,n) 
P 

h b h b ^   b        ^   h 

' mn ^ ' nn ^ 
(4) 

CALCULATION OF PROPAGATION CONSTANT OF A RECTANGULAR 
WAVEGUIDE WITH AN IMPEDANCE NARROW WALL 

Let's Study the magnetic waves propagation in a rectangular waveguide with a narrow 
impedance wall. As follows from the above said the impedance of a narrow wall is 
Stipulated by the presence of round holes on it. A field in such a waveguide is 
determined through a longitudinal component Hz which satisfies the Helmholtz 
equation 

dx 
■ + - 

d^H. 

df 
+ riH,=o, (5) 

as well as boundary conditions on a narrow wall with    E^, - ~Z^ {y, z)H.. 
On other walls having ideal conductivity the component Ey = 0. 
Due to the fact that the surface impedance is a periodic function from coordinate z the 
field components will be represented in the form of Floquet series 

H- 
n5 

Z I A;;^COS/:^^;X-COS —y-e 
n=Os=-'» D 

■JA- 

(6) 

Ey = -jcoMa Z Z 

(s) 
/ xn (S)c ,(s). n6 
(,)2An sinr^n'x-cos—ye JA-- 

n=Os=-cx) /^^ 
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where 

A=/3+/'f,rif i'-Pl 
r    A2 

\ o j 

Using the boundary condition and expressions for the field components (6) as well as 
the orthogonality of the transverse eigenfunctions of the waveguide from (5) it is 
possible to receive the following system of homogeneous linear algebraic equations in 
regard to the field amplitudes 

k=0 

1    00  / 

+ 7~ Tr(^+'-) A^+r) 

(8) 

where 

■^pr "~ ^pr jCpf.,  Zpj.—^      +_/C ^pr pr 'pr- 

u<') 

■(s) I xn 
^k      -J       (s)2 ^^" ^xk ^• 

rik 
5nk - the Kronecker symbol. 

Non-zero solution of the system (8) enables to receive the dispersive equation in a 
matrix form from which we determine the propagation constants in the structure under 
study. Properties of body and surface waves in an impedance waveguide are examined 
by numerical method in a wide range of parametres changes. 
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THE PROBLEM OF ORTHOGONALITY OF EIGENWAVES IN A 
WAVEGUIDE PARTIALLY FILLED WITH A LOSSY 

DIELECTRIC 
L.P.Yatsuk, A.A.Komyachko, Yu.V.Zhironkin 

V.'N.Karazin Kharkov National University, 4, Svobody Sq., Kharkov, 61077, Ukraine 
Tel. (0572)45-75-48, Email: Ludmila.P.Yatsuk@univer.kharkov.ua 

The eigenwaves orthogonality is investigated for the rectangular waveguide having a 
lossy dielectric slab inside it. It is shown analytically that eigenwaves of such 
waveguides are energetically non-orthogonal. The interaction of pair of non-orthogonal 
eigenwaves is discussed. The numerical estimation of their non-orthogonality has been 
carried out for the various slab dimensions, its permittivity and losses. Calculation 
results are presented. 

INTRODUCTION 
The property of eigenwaves orthogonality is very important one while solving scattering 

problems. According to [1] there are two definitions of the orthogonality: 

Mathematical orthogonality 

' \KR..YdS = 8^,.N, (1) 

and energetic one 

ll[E^,ff:VdS = a^,.P,. (2) 

Here 5 is a Kronecker symbol, JV^ is a norm. P^, is a longitudinal /J - mode complex 

flux of power. The equality (1) is fulfilled always. As to the equality (2), it has been 
shown in [1], that the pairs of complex waves with propagation constants ±y^^ and + y* 

are energetically non-orthogonal. Their joint existence results in arising active and 
reactive power fluxes over a waveguide cross section. We have shown that not only 
these waves but the modes with y^ T^ y^, in a waveguide filled with a layered dissipative 

dielectric are energetically non- orthogonal. 

SOME POINTS OF THEORY 
The rectangular waveguide of ax6 cross section with a  lossy dielectric slab of a^^h 

cross section (Fig.l) is considered.. The E and /7 fields of LE- and LM-modes modes 
can be found using the magnetic Hertz vector IT" = x^W" and electric one IT' =jf"n'| 

correspondingly. Components IT" and n'[. can be represented as 

U:^'\x,y,z)^^>''''\x)f''''\y)e''-'"'"'\ (3) 

where (p"'(x), cp^Cx) - scalar functions which satisfy the following equation 
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MMET* 02 PROCEEDINGS 6 81 

f&4ar)\-r{.)=o (4) 
and corresponding boundary conditions on the metal walls and dielectric interfaces. It is 
easy to show from (4) that for two solutions with |j, and v numbers of the dispersion 
equation root it is easy to obtain the following result. 

f.=U"U{fnxjfd.=    ;°f'^ . j<'"(x).(<"-)(.))-&.(5) 

If E" ^0 and x^-x^ ^a the right side of (7) differs from zero. It proves, that scalar 

functions ^f'^ix) and (p"'*"'(x) are energetically non-orthogonal. The real part of the 

integral (2) for ZE'-modes with indices )i and v takes the following form: 

ReP^,=ARej[^-,(^f)'k^^ = 

(6) 

If the electromagnetic field in a waveguide consists of two eigen waves fields 
E = E^+E^, R = ff^+R^ (each wave of unit amplitude for simplicity), the total flux 

ofenergy of this field P =-Re fe^'W^ consists of four fluxes: 

P-P,, + K.+P,. + K,- (7) 
Two of them (P^^ and P^^) may be named eigen power fluxes of the waves with 

indexes |a and v. The two others (P^^ and P^^) - mutual fluxes caused by field 

combinations of various modes: [E^ , i?J ] and [^^, ^* ]. 

The eigenwaves E^,ff^ and E^,R^ propagates with different velocities. Therefore a 

phase shift between E^ and R^ (E^ and R^ as well) changes along z-axis. As an 

effect so does the phase of the complex vectors [E^,RI] and [^,,i?;;]. It causes 

variation not only magnitudes of the real part of these vectors but their sign as well. So, 
due to the interference effect, the mutual fluxes P^^  and P^^ depending on z may 

increase or decrease the total flux in comparison with P^^ + P^^. This process is 

analogues to the vector addition on the phase plane. The square length of the sum vector 
according to the cosine theorem may be equal, less or greater than sum of squared 
lengths of vectors, which are summarized. As an effect of this the total flux of energy in 
the waveguide cross section oscillates depending on z around the exponentional curve, 
representing the sum P^^ + P^^ (Fig.4) 
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CALCULATION RESULTS 
Calculations were carried out for the waveguide 23x10 mm^ , various values of s, /g5 
and dimensions of dielectric slab. It was determined, that the orthogonality of 
eigenwaves can be confirmed only if the eigenvalues are determined with high accuracy 
(10"'^-10"'^). The value of the integral cD^^, (5) is represented on the Fig.2. Along the 

|a,v -axis root numbers change, along x-one -width of the slab, 8 = 10, tgh = Q,\. The 

Fig.3 represents /;,, and P^^, when \x = \, v = 3, e = 15, /g-5 = 0,l. The same 

parameters were used for the Fig.4. 

epsi      :   ep»2 cps3 

y 

Fig.l 

0,14 
OIJ' 

0.1 

0.05 

-0,05 

-0.1 

-0.15 

-0.2 

-0.25 
-0.2(55 -0 3 

■to 

•f^i-mutual power 3 tn 1 mods 

PJ2-mutual power 1 to 3 mods 

2D^ 

Fig.2 

■f- fi-ill mutual pov^er 

Pi^ - main mode pov/er 

0 \ X 

Fig.3 Fig.4 

CONCLUSION 
It has been shown that the energetic non-orthogonality of the eigenwaves is the more 
noticeable, the higher the e and tgh of dielectric is. By 8<5, /g5<0,01 it can be 
neglected. The non-orthogonality effect diminishes with rising slab width and vanishes 
at all when the lossy dielectric fully fills the waveguide. 
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ROTOR STATOR ACOUSTIC INTERACTION, DEATH AND 
BIRTH OF RESONANCE FREQUENCY 

Eugene R. Bartuli 

630090, Novosibirsk, RUSSIA, E-mail: bartuli@comunder.com 

Guiding and resonance phenomenon near a periodic double cascade of plates has been 
investigated. Much attention has been paid to the difference from the oscillations near 
single periodic cascade of plates. It has been demonstrated that the mutual influence of 
the two periodic cascades decrease rapidly with the increasing distance between them, 
but at short distances the distortions in the oscillations localised near one periodic 
cascade of plates caused by the interference of the other become substantial. 

PROBLEM FORMULATION 

In the present paper an elementary double cascade of plates resulting from shifts 
multiple to 1 of the fundamental area of the group of translations along Y axis is 
studied. (Fig 1) 
Steady state oscillations near the structure are described with the function u{x,y) which 
is the potential of acoustic speed perturbation or the pressure field. In the oscillation 
area this function satisfies the Laplace equation: 

(A + i> = 0, (1) 

Here /I is a dimensionless oscillation frequency and it is assumed that (A > O). 
On the cascade elements the Neuman conditions should be fulfilled: 

^1 -n (2) 

In any boundary area Q^ which is a subarea of ^ the local energy finiteness 
condition should be fialfilled: 

<oo (3) 

As the structure according to the problem formulation has a translational symmetry, the 
function u{x,y) should satisfy the condition: 

u{x,y + \) = e'^u{x,y) (4) 
Where function v{x,y) satisfies the condition v(x,;;) = v(x,;; +1). Here we suppose 
that 0 < ,^ < ;r . The problem (1) - (4) will be further referred to as problem B{^) . 

Y 

G, 
' helw 

X 

L-d 0 
■d    „. ", d 

Figl. 
L^ +a 
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Definition. Wavegiiiding function of tlie problem B{^) is a generalized eigenfunction 

localized in the neighborhood of the cascade of plates, i.e. u{x,y) -> 0 

THEOREM OF EXICTENCE 

Definition. The solutions of problem B{^) u(x,y), which satisfy the condition 

u(-x,y)==u(x,y) or u(-x,y)=-u(x,y), are called symmetrical («)or anti-symmetrical 

(y^) modes. 
Theorem 1. If I, = L, then there are symmetrical modes for any geometrical 

parameters of the system and for all ^. 
Theorem 2. If I, = L^>\ than there are anti-symmetrical modes. If L^ =L2<1 then 

there always exists such d that anti-symmetrical modes exist. 

DISPERSION RELATION 

The dimensionless wave frequencies X can be considered as functions of wave number 
E, These functions are so called dispersion relations. 

Jj_^2,(.,-,./„,j(j_^2„rv../.))_g2., 
2/(fl, t/l/,,-2«u'lan   -^ j) 

-e 
2i(0^-OJ.2   2iac\3n\ — j) 

\-e ^""^ 

J 

= 0     (5) 

J 

2iln(2)    , 
0, = ^^ + 2 arctan 

TT \^0 J       "=1 
arcsm arcsm 

27rk + <^ 
- arcsm 

^/l^ 

\7Tkj 

e^ = _^^iM^ _ 2S,d + 2/ arctan 
;T 

^ arctan + arctan - arctan 
V 

These relations were numerically investigated. 

NUMERICAL INVESTIGATIONS 

Fig. 2-5 show the results of numerical invesfigafion of the dispersion relafion (5). Fig.2 
shows the dependence of eigenwave frequencies X on the wave number ^ provided 

that L| = Lj =2 and the distance between the cascades d = \. It coincides entirely 
with corresponding dependence for a singular cascade with the same geometrical 
parameters [2]. 
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Fig 2. Fig 3. 

Fig 3 shows the dependence of eigenwave frequencies A on the wave number ^ for 

Z, = ^2 = 2 and the distance between the cascades d=0.1. The frequencies can be seen 

to part into symmetrical («) and anti-symmetrical [p] ones for each oscillation mode 
in the contrast to a singular cascade. This process can be called as "birth" of resonance 
phenomena. 

The frequency parting process is shown on Fig. 4. One can see the rapid 
decrease of the mutual influence.. Fig 5 shows the effect of the symmetry break 
(Z, = 0.6, Zj = 0-5 ) on the waveguiding eigenvalues for ^ = n 

ACNOLEGMENT 

The author is indebted to S. V. Sukhinin, for this friendly help and useful discussion. 

0,2     0.4    0.6     0.8       1       1.2     1.4     I.e     1.8      2 

Fig A. 

REFERENCES 

[1] Sukhinin S.V. «Waveguiding and anomalous properties of periodical knife-type grating», J. 
Appl. Mech. Tech. Phys., (1998), V. 39, .N22. 
[2] Bartuli E. R. Eigen oscillation Near the System of Strips in a Channel, Internationa] 
Conference on Mathematical Methods in Electromagnetic Theory, Ukraine, Kharkov June 2-5 
1998), Vol.-2, Page 841-843. 8. 

KiHv. UKRAINE, IX-W ImmNArioNAi. CONFURRNCR ON MATHIMATICAL METHODS IN ELECTROMAGNETIC THEORY 



686 MMET* 02 PROCEEDINGS 

CHARACTERISTICS OF SPATIALLY-DEVELOPED 
SQUARE MULTIMODE RESONATORS 

Viktor I. Naidenko, Hryhorii A. Borsch* 

National Technical University of Ukraine "Kiev Polytechnic histitute", 
37 Prospect Peremogy, Kiev, 03056. Ukraine 

E-mail: v_naidenko@yahoo.com; *E-mail: gborsch@hotmail.com 

ABSTRACT 

By mode matching technique a problem of calculation (as well as control) of resonance 
frequencies and inherent Q-factors of a square resonator with final conductivity of walls 
loaded by square dielectric samples of complex scalar permittivity and a height, equal to 
the height of the resonator, has been solved. 

INTRODUCTION 

When designing electron devices a problem of suppression of unwanted modes arises 
[1-3]. To solve this problem it is possible to use dielectric absorbing samples of finite 
dimensions. In the present work the dependence of resonance frequencies and inherent 
Q-factors of a square resonator against locations of dielectric samples, their dielectric 
properties and conductivity of the walls is analysed. 

FORMULATION OF THE PROBLEM 

It is considered a square resonator measured a, ly, h on axes X, Y. Z accordingly. On the 
height of the resonator /,. a restriction is imposed, so that in a considered frequency 
range there is no field variation on this direction. Modes are classified in the XZ-plane. 
Suppose that m half-waves arc kept within X-dimension of the resonator, no one within 
y-dimension and n half-waves - within Z-dimension. Under such conditions is-modes 
(relative to X- or Z-axe) do not arise in the resonator. Identical square dielectric samples 

are located arbitrarily (the only restriction 
ensued from the mode matching technique is 
shown below) within the resonator in parallel 
to axis F(fig. 1). The centre of the /-th sample 
in plane XZ has coordinates /•, and ^'„ 
accordingly. The length and the width of a 
sample are 21 and the height is ly. The 
permittivity of the /-th sample is 
E^ = E] - js",  the  permeability  is /.IQ.  The 

resonator area outside samples has electrical 
characteristics of free space. The metal walls 
permeability is jJn. conductivity is a. The 
dependence on time expf-Jcot) is omitted. 

X A 

r, - - 

^^ 

21 

Fig. 
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CALCULATION OF RESONANCE FREQUENCIES 

The problem is solved by the mode matching technique. Planes, perpendicular to axis Z 
and tangent to sides of the samples, separate the resonator into partial regions. Thus 
dielectric samples should be placed so as not to be intersected by partial region 
boundaries. Also samples should abut on a partial region boundary solely either from 
the left or from the right. 
Fields are expressed in the usual way. To determine transverse mode functions 
inhomogeneous partial regions have been broken into partial sub-regions by planes, 
perpendicular to the axis X and tangent to the sides of the samples. 
System of functional equations received as a result of satisfying boundary conditions on 
dielectric samples was transformed by Galerkin method into the system of 
homogeneous linear algebraic equations (SLAE). A non-trivial solution of this SLAB 
can be received when its determinant equals to zero. So, we have an equation of 
inherent resonance frequencies of the resonator. The order M of the determinant is 
defined by the following formula: M=N*{K-\), where N is the number of summand 
in field expressions taking into account, K is the number of partial regions. So, for a 
resonator with 8-0-8 working mode, N = 32 and i^ = 13 the number M will come to 
about 400. 
To find roots of the equation and to solve the SLAE a computer program has been 
developed and calculations have been carried out. In a particular case, when the sample 
of small relative dimensions is in the maximum of electrical field, calculated resuhs 
agree well with the results, received by the perturbation formula [4]. 

CALCULATION OF Q-FACTORS 

Q-factors have been calculated using electrical conductivity of the walls and imaginary 
part of the complex permittivity of samples s". (The influence of s" on resonance 
frequencies was neglected). 

NUMERICAL RESULTS 

Calculations have been carried out for resonators with the following dimensions: 
a = 300,3 mm, b = 300 mm, ly = \0 mm; a = 600,6 mm, b = 600 mm, /^ = 10 mm; 
a= 1201,2 mm, b = 1200 mm, ly= \0 mm. The width a of a resonator is 0,1% larger 
than its length b in order to segregate such modes as 1-0-2 and 2-0-J etc. The working 
mode of the first resonator is 2-0-2, of the second - 4-0-4, of the third - 8-0-8. These 
resonators are loaded by 3, 8 and 15 identical dielectric samples, accordingly. The size 
of a sample is 2/ = 15 mm, the permittivity £=3 -jO,03. The centre of a sample is 
situated at the zero field value of the working mode. The metal walls conductivity is 
a=MO^(Q-m). 
Table 1 shows calculated resonance frequencies / and inherent Q-factors Q of the 
corresponding m-O-n modes. Fig. 2-4 shows Q-factor of different modes as a function of 
S = lg(tg5) (e' =3) for the resonators with the working modes 2-0-2, 4-0-4, 8-0-8, 
accordingly. It is evident that proper placing of dielectric absorbing samples (in zero 
value of the working mode and non-zero value of parasitic modes) allows to make the 
working mode competitive comparing to parasitic ones. 
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Table 
m n /GHz   ■ 

Q 

working mode 2-0-2                   \ 

1 1 0.6921585 147.941 

2 1 1.1047685 .292.625 

2 2 1.4123048 2171.401 

4 4 2.8249589 3339.534 

1                   working mode 4-0-4 
1 1 0.3507614 344.459 
2 1 0.5542424 341.500 
1 2 0.5556760 456.495 
2 2 0.7025874 444.960 
3 3 1.0461435 381.377 
4 2 1.1133991 909.652 
4 4 1.4124070 2359.210 

Q      - .,.]... 
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Fig. 2 
CONCLUSION 

m n /GHz 
Q 

working mode 8-0-8 
1 1 0.1762527 570.377 
1 2 0.2788432 725.184 
3 1 0.3935335 593.533 
3 2 0.4486148 556.588 
2 1 0.2785330 618.258 
2 2 0.3525262 720.958 
3 3 0.5273501 492.919 
2 4 0.5571264 768.097 
4 2 0.5578370 1026.604 
4 4 0.7053032 1238.020 
6 6 1.0564086 1042.188 
8 8 1.4124681 2361.398 

Q 
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By mode matching technique a problem of calculation of resonance frequencies and 
inherent Q-factors of the square resonator with final conductivity of walls loaded by 
square dielectric samples of arbitrary complex scalar permittivity and a height, equal to 
the height of the resonator, has been solved. Calculated data agree well with already 
known. A fundamental opportunity to control the resonance frequencies and Q-factors 
of the resonator by certain placing within it dielectric absorbing samples is presented. 
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