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CHAIRMEN’S WELCOME
Dear Colleagues —

We are happy to open MMET*02 in Kiev, over-a-thousand years old capital of
the eleven years old independent Ukraine. The venue of the conference, this time, is the
largest technical university of Ukraine, NTUU-KPI, or Kyivska Politekhnika.

As with the previous MMET conferences held in 1990-2000, we have tried to
follow our several basic traditions. One of them is the idea that a cross-fertilization of
mathematicians and microwave engineers is a natural necessity that should be promoted
by all means. There are many other meetings covering only applied mathematics or
computing and only microwaves or physics. MMET is a unique combination of the
both. Therefore the technical program is a mixture of fundamental mathematical studies
into boundary-value problems of wave scattering and studies into applications and
implementations of various analysis methods. Another eternal idea is that interaction
with the Western science has always been and still is very important for Ukrainians,
Russians, Belarussians, Georgians, and other Eastern Europeans. Therefore we intended
to attract as many as possible keynote speakers from the West Europe, America and
Japan, from one hand, and good contributed papers from the East Europe, from the
other hand. At the same time we still believe that having two working languages and
massive poster sessions, as done sometimes, is a wrong way of international conference
organization in our conditions. Instead, MMET gives one a chance to train in writing
and presenting a paper in the major international science language, which is English.
Still another traditional idea is to help young scientists from low-income regions come
and participate, even if they travel from very far away. Humiliation of a 50-Euro a
month salary of a scientist should be neutralized, at least once in two years, by an
opportunity to join the holiday of MMET.

This year the Technical Program Committee had invited 28 papers and accepted
148 contributed ones, out of 161 submitted. We enjoyed working with all the members
of Local Organizing Committee and Technical Program Committee. We are extremely
thankful to the staff and executives of the Department of Radio Engineering and the
Scientific Library of NTUU-KPIL. All of us should kindly thank the editing group that
prepared the conference proceedings and supported the Website of MMET*02. The
generosity of the conference sponsors is greatly appreciated.

We thank everybody of participants who have come to Kiev this September
despite many other professional commitments. We hope to see you at the future
conferences in Ukraine.

Eldar I. Veliev and Alexander 1. Nosich

It looks like MMET*02 has quite a nice program. Congratulations! Best wishes with the
conference.

W. Ross Stone

Kirzv, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY
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ABSTRACT

Analytic expressions for phase radiation characteristics of a semi-infinite open-ended
circular waveguide regardless of its aperture size and operating frequency have been
obtained making use of the rigorous Weinstein's theory. The analysis of phase radiation
patterns has been carried out for the dominant mode (TE;;) as well as for the high order
modes TMy, and TEq, both for a single and multimode propagation. The measurement
of radiation characteristics of an open-ended circular waveguide has been carried out at
the DTU-ESA Spherical Near-Field Antenna Test Facility. It is shown that the
theoretical results are in a good agreement with the experimental ones.

ANALYTIC EXPRESSION FOR PHASE RADIATION PATTERN

For the first time, a rigorous solution of the electromagnetic diffraction problem for an
open-ended circular waveguide (OE-CWG) by the Wiener-Hopf method was proposed
by L. A. Weinstein [1]. He obtained analytic expressions and carried out a thorough
analysis of amplitude radiation patterns for the case of single mode diffraction at an OE-
CWG. When an open-ended waveguide is used as a feed in an antenna system, both the
amplitude and phase radiation characteristics are needed thus allowing the polarization
characteristics of the feed to be calculated. In this paper, the analytic expressions for the
phase radiation characteristics of a semi-infinite OE-CWG are obtained regardless of its
aperture size and operating frequency. According to the Weinstein's theory the explicit
expression for the amplitude radiation pattern contains finite products proportional to
the number of high order modes propagating in the waveguide of the given size. The
phase radiation pattern, in general, contains an infinite sum, such as:

lim 2 2M M
Yol T - z arcsin

w,
K = [,2 2 [ 20 2 |’ M
M —>© 7 vV, +4V, —X Wy n=N, +1 vV, — U,

where V, is a n-th root of the Bessel function of the first kind, v=AVE -W isa

transverse wavenumber, and W is a longitudinal wavenumber.

In order to obtain an analytic expression for the phase radiation pattern, a method of
summation of rational series using poly-gamma functions [2] has been employed.
According to this method, there is an explicit expression for the following infinite
series:
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= (] | ~ ] ~
L - LR 2
Z,;(n n+l/4) [W(AUJ \P(N)j’ )

where WV is the di-gamma function [2]. Employing asymptotic expressions for the roots
of the Bessel function and expanding arccosine function in a series for a small value of
argument. the infinite series in (1) can be reduced to the summation (2). The similar
technique has been employed to obtain analytic expressions for the phase radiation
pattern of an OE-CWG for both the symmetric and the non-symmetric excitation
modes.

Investigation of the phase behavior on a whole radiation sphere has shown that the
phase radiation patterns are not uniform for the symmetric excitation modes TMy, and
TEy; as well as for the dominant mode TE,;;. At the same time, it is well known that
calculation of the phase radiation characteristics for a circular aperture under the
Kirchoff approximation without taking into account phenomena associated with mode
transformation at the aperture and neglecting currents flowing on an exterior surface
gives a fictitious phase center located in the center of the aperture [3]. Therefore,
accounting for mode diffraction at the open end of a waveguide leads to the conclusion
that a radiator in the form of OE-CWG has no phase center regardless of the excitation
mode. However, when an OECWG is used as a feed in reflector or lens antennas. the
phase error over the aperture associated with the non-uniform phase radiation pattern is
quite small. Thus for the dominant mode excitation (TE,). the deviation of the phase
pattern within the main lobe at -3 dB does not exceed 2 degrees as compared to the
direction of the main radiation maximum (See Fig. 1a). This remains valid for the whole
operating frequency range of the single mode waveguide: 1.84 <ka<3.83, where £ isa
longitudinal wavenumber in the free space and a is the radius of the waveguide. For the
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Fig.1. Phase radiation pattern of the single mode (a)
and the multimode waveguide (b).
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case of TEq excitation (4.75 < ka < 6.5), the deviation within the main lobe does not

exceed 4 degrees, and for the TMg; case (3.0 < ka < 5.0), it does not exceed 5 degrees.
The maximum deviation of the phase radiation pattern within the main lobe is observed

near cut-off frequencies: for TEq; mode with ka = 4.0 it runs up to —21 degrees and for

TMo; mode with ka = 2.5 it consists of 15 degrees. In the whole forward hemisphere
the deviation of the phase radiation pattern can reach 30 degrees. The phase radiation
pattern of an oversized waveguide can be considered almost uniform both within the
main lobe and within first sidelobes (Fig. 1b).

NEAR-FIELD PHASE RADIATION CHARACTERISTICS

The spherical wave expansion technique is used to analyze the general near-field
radiation characteristics of an OE-CWG excited by the dominant mode TE;; as well as
by the higher-order modes TEq; and TMy;. First, the coefficients of the spherical-wave
expansion are obtained by matching the expansion with the far-fields. Then, the
coefficients are used to calculate the near field.

An experimental verification of the calculated amplitude and phase radiation patterns
has been made. The measurement of radiation characteristics of an open-ended circular
waveguide has been carried out at the DTU-ESA Spherical Near-Field Antenna Test
Facility. The measurement was performed at several frequencies for the dominant mode
TE,; and for the TMy, mode as well. Two orthogonal complex components of the
radiated field were accurately measured on a full sphere around the open-ended
waveguide by a dual polarized probe. The measurement data were then transformed
both to the far-field and to the near-field [4]. The theoretical amplitude and phase
radiation characteristics of the waveguide were compared to the results obtained from
the measurements (see Fig. 1a). It is seen that the theoretical results are in a good
agreement with the experimental ones. Some differences yet observed can be explained
by the difference between the simulated semi-infinite waveguide and the measured finite
waveguide.

CONCLUSION

The investigation of the phase radiation characteristics of an open-ended circular
waveguide has shown that it has no phase center regardless of the excitation mode.
Maximum deviation of the phase pattern from a constant is observed for the single
mode propagation. In the multimode operation the phase radiation pattern is nearly
uniform within the main lobe. In the near-field the phase radiation pattern is not uniform
both for the single and multimode waveguides. As the distance to the aperture
decreases, the deviation of the phase radiation pattern becomes more pronounced.
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ABSTRACT

The inverse problem. which we consider is to determine the shape of two-dimensional
open screen from the knowledge of the field on a curve for the electromagnetic plane
waves scattering.

Prof. R. Kress in his papers has proposed to reconstruct the scatterer’s - shape from the
knowledge of the far field pattern [1-2]. We extend this approach to the inverse problem
of determining the shape of a two-dimensional open scatterer from the knowledge of the
scattered field on a curve. In particular. we investigate the Frechet differentiability of a
field operator for scattering from an open screen with the boundary as prerequisite for
the theoretical foundation of the gradient methods or Newton type methods for the
approximate solution of this nonlinear and improperly posed problem.

The aim of this paper is to provide a proof for Frechet differentiability with respect to
the boundary of an operator, which maps the boundary of an open screen onto the
scattered field and to obtain expression of this derivatives.

STATEMENT OF THE PROBLEM

We consider the scattering of time-harmonic electromagnetic plane waves by a thin
infinitely long cylindrical screen with a cross which is section described by an arc
le R’ class C3[a.b], ie. I={(x f(x):xe [a.b]} where f(x) is an injective and three

continuously differentiable function. The inverse problem consists in determination the

shape of the screen from the knowledge of the field on curve §. Mathematically this

problem can be interpreted as the solution with respect to /of a system operator
. equation

[j(sYH D (kr)ds' = g(z). zeSs,

!
[j(sVH S (kr)ds' =u(z). zel. (M
I

Here, z = {x,y} - any point of R?.s" - arc abscissa of a point z’ = {x’,y'} of the contour
I, HY(x) - Hankel function of zero order and of the first kind, g(z) - the given
function on curve S and 7(s) - a value of the incident field at the points of curve /.
Let F the operator that maps a description f (x) of some admissible scatterer onto the
corresponding scattered field g(z),z € S. In terms of this operator the inverse problem
consists in solution of the nonlinear and ill-posed equation for the function f,
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If=g 2)
where g(z) is a (measured) scattered field.

In order to use Newton’s method for the approximate solution of (2) it is necessary to
establish the differentiability of operator F' with respect to /.

TECHNIQUE OF SOLUTION

To obtain characterizations of the derivatives we use a method, which is based on the
classical theory of boundary integral operators [3]. From (1) we obtain

F =SK'Ru.

Here
K :Cl)(1)= "), K(p:l)= J‘(p(s')l)(z,z')ds', zel;
!
S:Cl() = C*(G), Slosl)= I(p(s’)ib(z,z')ds’, zeG;
!

R:C*(R?)= (1), R(wl)=u

s
HY (kr)
|s'—z,||s’—z_]
domain of R? for which G N1 =O.

The first step of the proof of a differentiability of the operator F consists in establishing
that the mapping f = K is Frechet differentiable from C’ [a,b] into the space of

bounded linear operators L(C O [a,b],C L [a,b]) and that the derivative is given by
h=K (-; f ,h), where K (-; f ,h) denotes the integral operator

with ®(z,2')=

, where z; and z_, are extremities of the arc /,G is any

Klof )= 2O () k(e e

oG —a)e -b)

with
b ) =1, 1, )LL) o)

Py

k,(h;x,t)= Hél)(k}f/ )—5’—((?)/1’(1 )

In the second step of the proof it is shown that maﬁping f = 8 is Frechet differentiable
from C>[a,b] into the space of bounded linear operators L(CO’“ [2,5],C?[G]) and that
the derivative is given by h=> S'(; f,h), where S(-; f,h) denotes the integral operator

5103 = [ 2l i

with
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s, (hix,t)= —kH,“)(kr)J_, (x )y%f(”h(t ). s, (hyx.t)=H" kr) ‘;‘I((i))h’(r ).

It is easily to convinced, that f:>R(‘;f) is Frechet differentiable one with the
derivative R'(u; f,h)= u, (x, £ (x)h(x).

In the third step using the chain rule we finally obtain the Frechet differentiability of F .
The derivative is given by

F(f =810 fh)+SK (K@ f 1)L f)+S0s:1)

where ¢ =K '(R@:f).f). ¢,=K'"(R(@ f.h).f) For the actual numerical
computation of the Frechet derivative of the operator F at first we determine ¢, ( ) by
solving the integral equation

h

= o =74l s = R(. ),

Further, we have to solve the integral equation

b
el o Dkr, @)t = K'(py: £ 1)+ R'(us £ 1)
a. (t —a) - b)
and at last we compute a sum
F'(f ) =S"@p:f-h)+S@,:1).
Hence. for numerical computation of the Frechet derivative it is necessary to solve two

singular integral equations of the same type. The numerical methods for solving of such
equations are known [4].
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ABSTRACT

Effects of coupling of waves at plane with spatially oscillating surface impedance
(anisotropic and/or gyrotropic) are theoretically considered. A combination of the two
processes is investigated. The first process is reflection of surface waves propagating
along impedance surface. The second process is input-output coupling of falling
paraxial wave electromagnetic beams (both TM and TE type) with both surface TM
waves. This electromagnetics problem is important for consideration of devices
combining functions of nonreciprocal antenna and microwave generator.

INTRODUCTION

In open periodic waveguiding structures Bragg scattering can be observed in different
forms [1]. Type of the wave transformation depends on from a value of perturbation
period. If a perturbation wavenumber is twice as large as longitudinal wavenumber of
surface wave, then coupling of two surface waves with opposite propagation directions
occurs, that is reflection of surface waves is observed. If wavenumber of perturbation is
equal to difference of longitudinal wavenumbers of surface and volume waves then a
coupling of these waves secures, that is why we can obtain output of radiation from
structure. Anisotropy of parameters causes coupling of waves with different
polarization. If incident wave can excite surface wave reflected wave would be very
differed from mirror one even if surface perturbation amplitude were small [2]. Open
structures become more interesting when parameter perturbation is not periodic [3].

METHOD OF ANALYSIS

In the paper physical effects of coupling of paraxial wave electromagnetic TM and TE
beams falling on surface with spatially oscillating surface anisotropic impedance and
two TM surface waves are theoretically considered. Moreover we suppose Bragg
coupling (reflection) of surface waves. Asymptotic method [3] based on ideas of KBM
method [4] is used. Perturbations are expressed as sum of sinusoidal components with
small amplitudes smoothly varying along longitudinal coordinate. Amplitudes of
incident TM and TE wave beams are smoothly varied across beam. The same small
parameter B is used for all small values and as smoothness parameter [4]. For case
8/6x=0 all components of electromagnetic field are expressed in terms of x component
of fields H,. and E,. The potential functions H(y,z) = Hy and E(y,z) = E, are determined
by the solution of the following boundary-value problem:

0%E 62E 2

—7 + '——2' +k7E = 0, (1)
0z oy

0’0 #*H 4
"—2—+—2—'+k H =0,
0z Oy
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oH oE 15) )
—+w, H+w =0, {E+w,—-Z_ H =0,
(6y Wy HE 6y}y=0 ( E By )y=0 2)

Impedance parameters wy, wyz and wg as functions of z are expressed through
components of surface impedance tensor Z in a form of sums of spatial harmonics

Wy, =I0eZ_, =Wy, +l32WHJ Bz)exp(zx z)+B ZWHJ, Bz)exp(zx Z+ 1Y, 2 )
—iZ, /(o) =we, + ﬁZwE, (B2)expli =),
Wyp =82 /1L = BZWHE,j ﬁz)exp(isz), Z =_BZWEH,1(BZ)eXp(inZ),

where 7y, is wavenumber of the jth spatial harmonics of the perturbation; wy,, W, Wre,
and wgy; are amplitudes of these harmonics, wy;, are amplitudes of the second order

perturbation. Alongside with coordinate z we introduce a “smooth” variable § = Bz [4].
The Bragg coupling of surface waves and TM and TE beams occurs, when the

wavenumber mismatches Ny,s = k- + Ypvs) — A5 (s = 1, 2) become small. Here £, is

longitudinal wavenumber of the beams, 4 is longitudinal wavenumber of the surface
wave, and pv(s) is integer-value function that coincide with the number of a spatial
harmonic of the perturbation ensuring Bragg coupling. The Bragg reflection of a surface
wave is observed if wavenumber mismatches Mss; = — 2As —X; — Xps(s,) are close to zero.
The solution of the boundary-value problem (1), (2) are searched as an asymptotic series

on orders of small parameter 3 [3, 4].

H= ia.‘. exp(— ih,z —wy)+ Ba,, ((; + Bykz/ky)exp(— ik z + ikyy)+ T, Ba, (C - Bykz/ky)x

X exp(— ik,z + kyy)+ Bu,(a,,a,,k.z,hz,%2,(,y)+ B u,(a,,a,,k.z,hz, 2, ,y)+
E=Ba,(C +Byk./k, Jexpl-ik.z+k,y)+ T, a,(C — Byk. [k, Jexp(-ik.z — k,y)+
+ By, (al .0y, k. z,hz,y 2,6 ,y)+ B 2vz(al,az,k:z,hz, x 2,6 ,y)+

where I['r and 'y are the reflection coefficients of plane waves from an undisturbed
plane, y = 1/k 2 g 22 , ay and ag are distributions of amplitudes of wave beams, u,

and v, (n=1,2,...) are 2n-periodic versus k.z, 4,z and y,z functions. First derivatives of
complex amplitudes a, are expressed in form of asymptotic expansions too [3, 4].

In a second approximation on small parameter value da,/dz can be obtained as

3)

da

E_B l:a‘A\z'*'exP( an‘ZXaH 92VH+ale2VL)+a3— Zexp( lm‘/Z)G.mJ 4)
Wy Weo _dk_. W, W, _. :

where 4, =—iw My By od TRy /h,,
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Goavi =W pvs) by Wi o/ [Qhs + M)y = wr 0)],  Gs 2.1 E= AwyE - pvis) ky wh. o/
N[hs + M o)k, we o= 1], Gs250= = 12 W 0pWH, psts) W H, 1 (k351 =W H 0) —
— iks-50 WHE. psts.ny Wen, i (iky Wi, 0~ D/(2hs + M 5505
Deciding the equation (4) we find variation of amplitude of the surface waves along
longitudinal coordinate z. Then we can define the field, radiated from the surface.

THE PHYSICAL EFFECTS

Total physical effect observed in the considered structure is result of combination of
five phenomena — “unperturbed” specular reflections of volume TE and TM waves
(they are characterized by parameters T'r and I'y), transformation of these waves into
two surface TM waves propagating in opposite directions along impedance surface
(characterized by parameters G2 v.g and Gz v.n), leaking and heat dissipation of energy
of surface waves (characterized by parameters A;»), mutual transformation (reflection)
of surface waves (parameters Gjas)). If rigorous exponentiality of perturbations and
incident wave is disturbed physical pattern changes fundamentally — structure can be
exited by a surface wave going from “ a minus of infinity ” or energy of falling volume
waves can be transformed into energy to a surface wave going to * a plus of infinity ”
Structures considered in the paper have high frequency and angular selectivity. They
can be used as nonreciprocal reflector, transmitting or receiving antenna. Gyrotropy of
impedance causes that antenna patterns for reception and transmission are essentially
different. Combination of impedance gyrotropy and corrugation tilt allows using these
structures as circulators concerning surface waves and TE wave beams.

CONCLUSIONS

Asymptotic method based on method of Krylov, Bogoliubov and Mitropolsky have
allowed us to consider phenomena of Bragg reflection and volume-surface coupling of
surface waves and TM and TE waves in open anisotropic quasiperiodic waveguiding
structure. Found solution is valid for small and not small values of mismatch; so we
have no need to splice resonant and not resonant asymptotics. Obtained results will be
useful for analysis of wave scattering by structures with small surface nonperiodically
oscillating gyrotropic perturbations of parameters and for designing resonators, leaky-
wave antennas or nonreciprocal devices with untraditional properties.
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INTRODUCTION
In this paper, we shall consider a three-dimensional (3-D) cavity formed by a finite circular

waveguide with a planar termination at the open end, and analyze the axial symmetric
diffraction problem by means of the Wiener-Hopf technique. The method of solution is similar
to that we have developed for the analysis of parallel-plate waveguide cavities [1], but is more
complicated because of the cylindrical geometry. The time factor is assumed to be e ™ and
suppressed throughout this paper.

WIENER-HOPF ANALYSIS OF THE PROBLEM

We consider a 3-D cavity formed by a finite circular waveguide with a planar termination, as
shown in Fig. 1, where the cavity surface is perfectly conducting and of zero thickness. The
cavity is assumed to be excited by a hypothetical generator with voltage of unit amplitude
across an infinitesimally small gap at z=d(<|L|). Thus the applied electric field becomes a

uniform ring source given by ef;(p =b-0, 2)=5(z—d), where &(-) is the Dirac delta function. Let

the total field ¢ '(p,z) be
(p.z)+ ,2) for 0<p <b,
¢(p,z) for p>b,
where ¢ ‘(p,z) is the field excited in an infinitely long circular waveguide due to the ring
source, and ¢(p,z) is the unknown scattered field satisfying the scalar Helmholtz equation. In

the following analysis, we shall assume that the medium is slightly lossy. Applying the method
established in our previous papers [1, 2], we derive the transformed wave equations as in

T®(po)=0 in p>b forft|<k,, (2a)
TY_(p,0)=0f(p) in0<p <b fort <k,, (2b)
f[d),(p,a)+e'“"‘l’+(p,a):]=—ae_'“"g(p) in 0<p<b fort >—k,, (2¢)

where T=d?/dp*+p~'d/dp —y?, and y = (@? —k2)"? with Rey >0. In (2b,c), f(p)
and g(p) are unknown inhomogeneous terms. The terms on the left-hand sides of (2a-c) are the
Fourier transforms of the functions appearing in (1), and are defined by
+00
O(p.a)=(2m)™"? [b(p,2)e* dz 3)

with o= Rea+/Ima (=o +it) and
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O(p,a) =¥(p,a)+ D (p,a)-P'(p,a), 4
Y(p,a)=e Y _(p,a)+ eI, (p,0), )

Ring source

e _iT R _—

Fig. 1. Geometry of the problem.

where ¥ (pa)=0_(pa 0 (pa), ¥.(pa)=D.(pa)+0,(pa), (6)
1 7 io(=F 1 e oz
D, (po)=1* ﬁijf(p,z)e FDgz, @) (p,0) = \[2—{_£¢'<p,z>e “dz . (7

Here ®'(p,a) and Q, (p,a) are known functions. In (4)-(7), the subscripts ¢+’ imply that the

functions are regular in the half-planes Tk, , whereas the subscript ‘1’ implies an entire
function. In addition, the function ®(p,a.) defined by (3) is regular for |t [<k,.

Solving (2a-c) for the unknown functions on the left-hand sides with the aid of the radiation
condition and the boundary condition on the termination, we may derive a scattered field
representation in the Fourier transform domain. Taking into account the boundary conditions at
p=b, we derive the desired Wiener-Hopf equation. Applying the factorization and

decomposition procedure, we finally obtain the exact solution with the result that

E_(bo)+M_ (a)\:Jg) @)+ i M, Gy )E_(b,-1Y ,)

: , =M_(a)R_(a), )
n=1 lYn(a_lYn)

w —4y,L . .
E,(b,0)~M,() Jfgz)(on)+ze 1"4+(1Yn)-E+(b,zy,,)
n=1 iy (o +1iy )

}Mﬁu @R, (@) )

with

tiotk

1 VLML WIEL(bV) dv
2 2 2Ky DKoy, B) - inIoly, BV~

where R,(a) and M, (o) are known functions, and E, (b,o) are unknown functions denoting
the Fourier transform of the z-component of the electric field at p =b.In (10), [,() and K,()

are the modified Bessel functions of the first and second kinds, respectively. Equations (8) and
(9) provide the exact solution of the Wiener-Hopf equation, but are formal since they contain

JE? @)= (10)

the branch-cut integrals J 2’2) (@) with unknown integrands as well as infinite series with the

unknown coefficients E,(b,t#,) for n=1,2,3,---. Applying the approximation procedure

developed in [I, 2], we can derive an approximate solution convenient for numerical
computation, but the details are omitted here.
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NUMERICAL RESULTS AND DISCUSSION

We shall now present numerical examples of the far field pattern for various physical
parameters to discuss the scattering characteristics of the cavity. We have computed electric

field components |e; | =le,(p,z)R| and |e; |=le,(p,2)R| as R—> 0, where (R,9) is the
cylindrical coordinates defined by z = Rcos0,p = Rsin® for 0<0 <.

LS 1o
le* | fe* | \ /

1.2 0.8

| niy |

o 04+ A I\H b
e RA(ATTRITIIT I

: A R ,
T T oc X 1]
0 60 %0 120 150 180 0 30 60 90 120 150 180

00

(=3
.
‘
l
(%) Shg -
i
:c:

OBSERVATION ANGLE [deg] OBSERVATION ANGLE [deg|
(a) Far field amplitude |e: | . (b) Far field amplitude | e; | .

Fig. 2. Radiation pattern of electric field components e: and e; for d/L=0.
Line 1: 2b=10A,L/b=1.Line 2:2b=2A,L/b=5.

Figure 2 shows the far field amplitude of e: and e; as a function of observation angle. It is seen

from the figure that the radiated field oscillates rapidly with an increase of the cavity dimension.
This sharp oscillation for larger cavities is due to the effect of the multiple diffraction between
the aperture and the back corner. Next we evaluate the power of TM waves radiated from the
cavity through the elementary surface dS =sin8d0de . The radiated power P is found to be

P®)~0.5(c/p)""? |e.(p,z)/sind |* R?.
We investigate the power radiated from the cavities as a function of the observation angle and
cavity parameters. We also show that, with an increase of the cross section of the cavity,
dominant peaks of oscillations of the radiated power are formed in the region 75 °<@ <105 °. The

focusing effect of the radiated power in the direction ¢ =90 ° is found for short cavities.
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ABSTRACT

The analytic method of solution of nonuniform wave equation of the problem of
radiation of the magnetic moment, moving uniformly in the waveguide of arbitrary
cross section with time — space periodic dielectric filling is given. The fields and the
analytic expression for the Cerenkov energy losses of the magnetic moment in the
region of strong (resonance) interaction between the radiation wave and the modulation
wave are found.

Suppose that the source with magnetic moment 7(0,0,m,) moves uniformly along the
axis (0z — axis) of an ideal waveguide of arbitrary cross-section with nonmagnetic
filling, whose permitivity is modulated in space and time according the periodic law

£=50[l+mcos(koz—ut)], (N

where m is the modulation index, k, and u are the wave number and the phase velocity
of the modulation wave, &, is the permitivity of the waveguide filling in the absence of

modulation.
It can be shown that the longitudinal component of the magnetic vector H_(x,y,z,t) as

a potential of the transverse — electric (TE) field (£, =0, H, # 0) satisfies the following
nonuniform partial differential equation

ALH:+6'H~' 1 g[ 0H,

— & =47A m_ , 2
ozt o ar) e @
where A, =8%/ox* +8° /0y’ c is the velocity of the light in vacuum.

In (2) let us pass to the variables

¢
z U d
N e e 3)
u c Ol—ﬂzﬁ
£

0

where b=1- >, B =ulc,/¢,. After any algebraic transformations we receive
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, , & \oH. 0 H .
aH +S1op L e ey 4)
Y : ) 7

where

5()(— Xy )5(}/ - J’o) !

p=-Am..m_=m,; J‘e"“(" "y (5)
R 27[!14—\’ °
y 1% dé
My = ( ¢ )‘“‘“J. - P (6)
uly —u u“l—ﬂz—
80

(xo, yo) is the point of intersection of trajectory of the magnetic moment with the cross
section of the waveguide. m, is the magnetic moment of the point source.
The equation (4) we can solve. suppose. that

H. = Zy/ (v.y) fe i, () . (7)

n=0 ¥

where (x, y) are the eigenfunctions of the second boundary value problem for the

transverse scction of the waveguide. and expanding the right part of equation (4) on
eigenfunctions y, (x,y).Thus from (4) we receive the ordinary differential equation of

second order

d , & dH (&) 7’
—|1-p" = ! + L HAE)=—4n (&). 8
dg[[ L) } e ®)
5()
where
* )2’;-’] 171
.f”((f):—:)m(%e ‘h’l//n (x(]‘.y())v (9)
._72'111-—\’
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2
2 =—775—Ai[1—ﬂ2i] . (10)
c LA
The equation (8) in the variable
S=’2‘°bf dg - a1
& "1t
B .
has a form
d*H (s) 4&lx} , €
& "H (s)=—-4x|1-p°— s), (12
o 1) ) )
where
my A, “’51 v—f;‘l $
fi(s)=s"e ey v, (X0 70). (13)

B 27z|u - v‘

The equation (12) , as a Mathiew — Hill differential equation, we can solve, used the
method, developed in our early articles [1- 2]. Assuming a small modulation index m,
after any transformations we receive the expression for in variables z and t to the
first approximation with respect to m. It gives the possibility to investigate the character
of radiation in the region of strong interaction between the radiation wave and the

modulation wave and find the Cerenkov energy losses of the magnetic moment in this
case in the form

w2 (%o, ¥, )- (14)

Note that the result for the case of stationary but nonuniform filling of the waveguide
we can receive from (4) passing there to the limit when u — 0.
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FOR ELECTROMAGNETIC WAVES SCATTERING ANALYSIS

D.V. Golovin, D.O. Batrakov.

Kharkov National University, Ukraine
Dmitry.O.Batrakov(@univer.kharkov.ua

ABSTRACT

An extension of a boundary integral method without using Green’s function for solving
electromagnetic boundary-value problems in layered media is presented. The
generalization of the previous applications of that method to the case under
consideration is achieved by using fractional cylindrical functions as the testing
functions, which account for spatial inhomogeneity of the ambient medium. To
illustrate advantages of such approach. numerical analyses are presented for 2D
scattering problem involving penetrable cylinder of elliptical cross-section shape.

INTRODUCTION

Employment of fractional cylindrical functions for analysis of electromagnetic wave
scattering in the presence of bodies with coordinate surfaces was offered in [1,2]. But in
our opinion, such functions can be used to solve many others problems of modern
electromagnetic theory. Therefore, the attempt of expanding implementation area of
such functions was undertaken. Two-dimensional scattering problem for homogeneous
cylinders of arbitrary cross-section shape embedded in a plane layer is considered.

PROBLEM STATEMENT AND BASIC EQUATIONS
Let suppose that as it shown in Fig.1 a permeable cylinder of arbitrary cross section S,

is situated in one layer of the three-layer structure. Introduce a coordinate system XYZ
and suppose, that the impress sources f of monochromatic (~exp (-iw t)) wave and
layers boundaries belongs to surrounding domain S, . Cylinder formative is parallel to
axis OX. The medium inside inclusion is described by material paramecter e,(r) and
A Z
Incident field Scattered field

I 4

Fig. 1. Geometry of the problem.
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wave number &, (7), and outside of inclusion - &,(7) and k(¥) correspondingly.

Fields amplitudes outside and inside of inclusion satisfies to such equations:

1 ue(’_;) S(F)f(lj), (;ESC)
[e(?)VL-—rvi+k2<F)} = ) (n)
e(r) u,(F) 0, (FeS,)
(where T =(0,x, y),V, = [Oai—aa—j, #(¥)-source density), and to boundary conditions:
y 0z
U =u -l?ﬁ:_l_%;(;em. (2)

© PTedN g ON

They also satisfy continuity conditions for functions u,, 1/e, du,/ON, u,, l/¢,

ou, /aN on structural boundaries in S,,S, and u,, and satisfies radiation condition
when r — +00. N- normal to L - contour of the scatterer, directed to S, . In the case of
excitation by vertically polarized wave (fl :{HX,O,O},E ={O,Ey,Ez}), it is suitable to
choose an x- components of magnetic field vectors as a functions u, u,. As a result of
manipulations described in [3], one can obtain following formulae for the scattered

field:
o [ G 8GEED] s
u, = ng@)[G(r,r,,) o -—ue(r,,)—?&,——}ﬂ; (Fes,), (4)

where G(F,7')- Green's function of a regular problem. We’ll represent an unknown

functions u, and du, /6N as an expansions in terms of functions &, and 8& /ON :
U, (F) = D 0 (F); du,(¥)/ON = D B, 05, (F)/ON . (6)

Unlike previous papers, we'll choose the function &, (r) ina following way:

£, (r)cos(mg) o =(m,e),m=0,12,.
E,(r )= ;@ =arg(r), (8)

£, ()sin(mp) o =(m,0),m=12,.
where f,(r)=J,, (") J,(r), J,(r) - Bessel functions of order m. We’ll compute the
wave functions using the fractional cylindrical ones, as it was shown in [3].
A possibility of fractional cylindrical functions application to the considered problem
justified by presence of cylindrical inclusion with sufficiently smooth contour of cross-
section. Unlike the results obtained in [2], the discussed problem is complicated by
presence of dielectric layer and cylinder with sufficiently arbitrary cross-section.

DESCRIPTION OF NUMERICAL ALGORITHM AND ANALYSIS OF
OBTAINED RESULTS

In this section some numerical results based both on the analytical techniques developed
in previous papers and a new algorithm for evaluating scattering diagrams by means of
fractional cylindrical functions are presented. The goal of numerical experiments was to
determine effectiveness of the proposed approach. Computations performed for
dielectric elliptic cylinders, immersed in homogeneous dielectric layer. They show that
for cylinders with transversal dimensions less than wavelength application of fractional
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cylindrical functions does not give noticeable advantage. This fact can be easily
explained. if one take into account, that the basic advantages of fractional functions
related to their smooth behavior attached to large index and argument values [2]. Also
it's necessary to mention. that the most effective this procedure became in a case of
circular cylinder.

In Fig. 2 scattering diagrams, calculated by means of Bessel and fractional cylindrical
functions are shown. Dielectric permeabilities of cylinder, layer. upper and lower half-
spaces are equal to e, =12, £, =3.0. ¢, =1.0. ¢, =2.0 accordingly. Cylinder’s radius
is 2.0-A, layer’s thickness - h=6-1. an inclusion embedding depth - Z =3-%.
Incident wave length - A=1.5m. One can see, that when Bessel functions are used,
scattering diagrams became steady only when M>30 (M maximum order of the
scattering matrix). On the other hand. for fractional cylindrical functions analogous

results can be obtained when M=20, and additional increasing of number of terms in
decomposition does not leads to any changes.

u,
10p >

1,0} . -
NE ——Mm=20 |

0,8 08} t,

0,6 06+

0,4} 04}

0,2} 02}

0,0} 0,0+ A . . . ,

0 50 100 150 200 0 50 100 150 200
Observation angle ¢ Observation angle ¢
a) b)

Fig.2.Scattered field diagram obtained for Bessel functions (a) and for fractional cylindrical functions (b).

CONCLUSION

Obtained results show. that the fractional cylindrical functions within the framework of
the null field method forms a successive base for solving a variety of scattering
problems. Such problems in particular are essential elements in microwave and optical
device design, nondestructive testing. remote sensing and thin film physics. The same
technique can be applied to another diffraction problems (for example 3D problems)
with only minor modifications.
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ABSTRACT

We have considered stationary electric and magnetic fields of fractal objects with the
help of differintegration methods. The equations of fractal electrostatic and
magnetostatic potential at integro-differential form are proved and introduced. The
offered ideas can be useful for modification numeric fields modelling techniques to
solve electromagnetic problems for real objects with material structure irregularities
consideration.

INTRODUCTION

There are a number of modern numeric electromagnetic fields modelling techniques.
Finite-Difference Time-Domain (FDTD), Method of Moments (MoM), and Finite
Element Method (FEM) are the most popular and useful methods. The general essence
of these methods consists in division of the approached ideal model of real physical
object into elementary components the fields for which can be found on the basis of the
classic Maxwell’s theory. But the classic electromagnetic theory in which the object’s
geometry definition is based on concepts of point, line and plane (ideal objects) become
impenetrable when the explanation of the field distribution of roughness fractal surfaces
is needed. The examples of differintegration methods application for such complex
electromagnetic problems were originally shown at [1].

MAIN PART

Based on idea, that the fractal sets are adequate geometrical model for irregular contours
and surfaces. Let us consider prefractal covering compact set, which is our proposed
model of a contour with a current, as a limit of monotonously growing sequence of
covering compact sets with the corresponding sequence of rising contours
Icl c..cl c.. . The current near by /, contour can be found as:

X I I
A([l n) J.dln—l J‘dln—zu_ J.,O(x')a’x’,

The obtained repeated integral may be summarize by Riemann's-Liouville's definition
of fractional integral

I(x)=

o ol LT e
(DI = s j o (1)
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As a result of usage fractal contour (surface) covering by compact sets, we have reduced
a problem to construction a smoothing Hausdorf's measure on a physically prefractal
layer with differintegration of an uniform electric charge density on a fractal point set
projection to a smooth-faced segment [2].

Using of « -order differintegral definition of fractal electric charge density p“(r')
located at r' Eq. (1) enables to formulate the equations of classical electrostatics in
terms of « -characteristics. In analogy with the fractal electrostatic case, we may define
fractal electric current density j“(r) for magnetostatic field analysis. So the laws of
electrostatics and magnetostatics for fractal objects can be summarized in two pairs of
time-independent, uncoupled vector differintegral equations, namely the equations of
fractal electrostatics

V'E”(r) — ,0 (r) , (2)
£()
V-E“(r)=0,

and the equations of fractal magnetostatics

VxH(r) = 1,j"(r) . (3)
VxH"(r)=0.
The electrostatic field E“(r) is irrotational and it may be expressed in terms of the
gradient of a scalar field. If we denote this scalar field by —¢“(r). we get

E“(r)=-V¢“(r). Taking the divergence of this and using Eq. (2). we obtain Poisson’s

equation

V¢ (r)=-V-E“(r)=- p;(r) : “4)
The solution of Eq. (4) 0

¢ (r) = Tne ,j ’/:'{I—(l;‘?i v'+c, (5)

where the integration is taken over all source points r' at which the charge density
p“(r') is non-zero and ¢ is an arbitrary quantity which has a vanishing gradient. The
scalar function ¢“(r) in Eq. (5) above is called the fractal electrostatic scalar potential.

Consider the equations of magnetostatics Eq. (3) we got fractal magnetostatic vector
potential with definition from B*(r) = Vx A“(r) as

[ s rl
A (r) = 2o I )
4dr ! | r-r ‘
where a(r) is an arbitrary vector field whose curl vanishes.

CALCULUS EXAMPLES

As an example of using obtained expressions (Eq. 4-6) at FEM methods applications let
us consider following problem

Vig=~1inside B, D¢, =C. 4|, =0. (7)

' +a(r). (6)
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where A border is a circle defined as {x ~cos(f); y-sin(f); 0<r < 27[} and B circle is
infinity approximation defined as {x -5cos(t); y-Ssin(t); 05t < 27[}.

) =Cl(x-b)"", 1<a<2.

Fractal boundary condition D“¢| , = C translates into o

The problem (7) was solved for b=-5, C =1 parameters by finite element method
with the help of FreeFEM+ software. The obtained potential surface for ¢ =1.7 is
shown in Fig. 1. We demonstrate the XOZ -plane cut of potential distribution for « -
parameter varied from 1 up to 2 in Fig. 2._

Fig. 1. 3D potential distribution for Fig. 2. Potential distribution for various & -
a=1.7 parameter

The problem (7) with o =landa =2 parameters of fractal boundary condition is
equivalent of Dirichlet.
More interesting that at & =1.5 calculation result is equal to solving of mixed problem

with Dirichlet and Neumann boundary conditions like (8¢/8n)| Lt ¢[ L=

CONCLUSIONS

The application of fractional calculus enables to formulate the electromagnetic potential
equations in terms of « -characteristics. Formally proposed equations agree with the
classical, at imposing on « -characteristics additional boundary conditions.

Numeric decision of typical problem of potential theory has shown that definition of
boundary conditions in the integro-differetial form generalizes classical boundary
conditions and is adequate for fractal surfaces with various levels of roughness. The
offered ideas assumes to remove difficulties in investigations of singular distributions
and can be useful for modification numeric fields modeling techniques to solve
electromagnetic problems for real objects with structure irregularities consideration.
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ABSTRACT

We will consider the geometric and physical aspects that permit introduction of the so-
called o -characteristics for studying the behavior of electromagnetic field components
in the vicinity of a set of points with fractal properties. To estimate the o -
characteristics, possible algorithms are formulated, namely a geometric one involving
evaluation of the Hausdorff measure and an analytical algorithm permitting the
Hausdorff measure to be evaluated through application of fractional derivatives and
integrals.

INTRODUCTION

A great majority of real physical systems are of fractal nature in the respective range of
scale sizes, characterized by the values of one or more respective fractal dimensions.
Studies of a number of physical phenomena (such as small-angle scattering of X-rays,
anomalies in the power-law dependences upon frequency of the electrical resistance or
electrical energy dissipation [1]. energy radiation and interaction of electromagnetic
waves with impedance surfaces [2. 3]. etc) have revealed the close relation of their
performance to fractal properties of the boundaries and media involved. The possibility
of the fractional calculus application to electrostatics was demonstrated in paper [4].

FORMULATION

The well known technique of approximating to non-coordinate boundaries through
covering the surface with simple compacts (like rectangles. circles, or ellipses) [5]
permits application of numerical algorithms for solving boundary-value problems of
electrodynamics.

Let us extend the technique of covering the boundaries and domains of existence of the
electromagnetic field to the case of a smooth contour possessing fractally distributed
geometric points over its certain section (physically, a highly jagged (rough) portion of
the contour). To that end, we will consider a model of the contour section showing the
properties of local uniformity and local self-similarity. Let fractal portion of the contour
be approximated to with a segmented line with the links Ax,;, of constant length and

the ends lying on the contour (k-number of covering generation). To represent the
fractal contour approximately with points of the segmented line, let us cover it with a
segmented line with links of a smaller length, Ax, .,y <Ax,,. Apart from higher order

small values, the number N Aty A of the vertices of the segmented line with the link
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length Ax, ., lying within one link of the segmented line with the link length Ax;,
will be equal to Ny e, = f(Ax;4y ! Axyyppy). For a covering line with

i) M)
other hand, N, = N, oy - Introducing the notation

iy NA"i(k+2)AYi(k+n
u=N Mg,y and v =Ax,, /Ao, we arrive at a functional equation
F(x)f(y/x)= f(y) whose smooth solution is unique in the form of a power law,
f(x)=x*. In this connection we are able to use the generalized measure of the
manifold magnitude involving choice of a trial power function h(r) =y(a)xr®*, and
covering of the multitude of points under study with elements B; of length r, , with

formation of the Hausdorff o-measure H%(E)= ling HJ}(E)=inf {y(oc)z rt
£—> .

Ec UBI ,r; <&} . That can serve as a measure of the extent and curvature of the

continuous limiting line.

RESULTS

The charge (current) density ij,(k ) of (k+m) generation is determined as
H(Kk+m

. _ R A\'i(/riHn) s Axl(")

ij/(an) - JAXi(k)NAxi(km)A“i(k) > ’]AXI(A'-HH) (A\‘i(“m))l"“ - JAX:’(.{») (Ax,(,{))"a :

The charge (current) in fractal set is determined now by the Riemann - Liouville
fractional integral J(x) =(,1; j)(x).

Differintegral D*j determines some the differintegral forms of a degree o on Q with
value in J (imaging Q inI*(Q < E, F)): ®*(x)-(X) = (D"j)(x) - X .

Theorem. If @,¢,,....,¢, - scalar differentiated functions on €, the fractional

P
differintegral forms d®@, Ad®@, A...Ad"¢, concerning some coordinate system in £

can be represented as

Da((pla'":(pp)

d*eynd®ey A.nd®p, = =
I<i <.<i <N D™ (x

dc, ndx; An..Adx; .

1 2 P
.
If j%(x) - function in a coordinate neighbourhood (U,x) on E, the o - forms ®% in
this neighbourhood is noted as j*(x)dx, A...Adx,,.
If the support of j*(x) belongs to U, on definition: I Jj¢ = J JE(xX)dx; Aondx, .

E x(U)

The o - volume forms d®V =d®“x; A..Ad"x,, on a m-dimensional Riemannian
manifold E induces a borel measure, which coincides with the Hausdorff-measure

H*(U) = fd *V  for any open set U < E . Hence, for any integrable o - forms j* on
U
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E equality _[j“ = J'(j“,'cg)dl‘[“ , where 1, - vector, defining tangential plane is valid.
E E

We have installed the formula of connection between integrals of the second type (from

the o - forms) and integrals of the first type (in respect of Hausdorff-measure).

The further development of the theory is carried out on the basis of interpretation of

Dirac delta-function. which is determined as the o - forms.

Electromagnetic field in fractal medium follows Maxwell (Abel) equations in the terms

of a - forms and o -characteristics:

daE(a) — ___(_%[;,(a) _‘7’§]c1)~ du]:'](a) — %D(a) +\7{Ea)’ da[)(u) :pi)a)’ daB(u) — pflrlt).
We obtain fractional Green’s function for the Helmholtz equation in the terms of the o -
characteristics with the relevant fractal boundary conditions [6-8].

CONCLUSION

Generalizing the schemes outlined to include o -differintegral forms Dirac delta-
function will promote construction and further analysis of such mathematical models
that would permit an adequate description of actual electromagnetic processes at fractal
boundaries or in fractal media themselves (e.g., in the problems concerning «artificial»
dielectrics, complex media and metamaterials. or power emission by «thick» contours
and surfaces. etc).
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ABSTRACT

In this paper the eigenwaves of periodic impedance diffraction grating (DG), reflection
and transmittance on finite DG are under investigation. The approximate boundary
conditions (ABC) were used for simulations. The refined expression for impedance
dielectric strips is obtained. Singular part of approximate integral equations (IE) is
extracted and analytically transformed. As the result the IE of second type with smooth
kernel has been carried out and solved with collocation method (CM) and Galerkin
method (GM).

INTRODUCTION

The application of impedance boundary conditions (IBC) greatly simplifies the solution
of boundary problem for structure consisted of fine dielectric layers. It became a reason
of huge amount of work appearance dedicated as to IBC obtaining, as to their
application for concrete electrodynamics problems solution. For example, the problem
of wave reflection from dielectric grating was solved in paper [1] with IBC method. The
main disadvantage of IBC for dielectric structure is narrow frameworks of application.
In theory these conditions are correct if a layer thickness is rather smaller than a
wavelength. In practice these conditions give satisfactory accuracy if a layer thickness is
smaller than a wavelength. IBC application area may be enlarged, for example, due to
modernization described in [2]. In present paper we elaborate one more type of IBC.
The IE described here are obtained by means of approximate solution of a rigorous IE
[3]. Our IE become more simple in the case of E(0,0,E) wave diffraction on two-
dimensional structure (Fig. 1)

E(x, y)=E*(x, y - K Ir (x, y’)E(x',y’)g(x, X, y,y)ds', x,yeS (1)

N
where E "(x,O) is the external field, t =¢ —¢,, k- wave number, €,&, - dielectric
permittivity of local inhomogeneity and surrounding environment, S - cross- section of

the local inhomogeneity, g(x,x’, ¥, y’) - Green function (GF), in our case the GF is one
f planar DW. The GF for planar DW consisted of an arbitrary number of layers is
obtained. Half-analytical solution for this IE is already described in [4]. Let's consider
the solution (1) for a single inhomogeneity. Process to large quantity of inhomogeneities
is evident. Let’s find an approximate IE solution for rectangular inhomogeneity.
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Considering E(x',y')= E(x’)exp(— ik\/; y'), where E(x’) is unknown function, we have

« “ i k
IE(x',y')g(X.x'sy, yr)dyvz g(x, x'y- y) J-E(X’..y’ﬁy’z g(x’ x'y’y)z Slnk! J\{/;E‘(I!

And as the result we arrive at following one-dimensional IE.
jz: H(x,x")dx' — E(x)/k*8 = - E“(x.0)/k?5 |

where G(x,x’): g(x.x',0,0).

5 22 sm!k«/—a !r @)
e
At kvea<<1 the expression for & is well-known

8=2a(e-¢,). (3)

[t gives us an ability to write the IE as follow

/

J.J(x'x}(x,x')dx'—J(x)/kzé‘) =-E‘(x.0). (4)
-1
where J ( )— k8 E(x) We would obtain the same IE if use approximate IBC from [4]
with supposition J(x)=—io p,[H(x.a)- H(x.—a)]. Considering & = in (4) yields the
IE for inhomogeneity as metal strip. The current ./'(x) has a singularity on the border of

metal strip. One of the methods to avoid this singularity is to change variables as -
x=1Icoso, [ ((p):./ [sing . Numerical experiments have shown that the changing of

variables gives good convergence for impedance strips too, because the current on these
strips increases at the border as well. Our IE (4) in this case may be written as

/(0" klo-0')do’~ 1(0)/& Ising =~ (1c0s.0) )
0

where  g(p.¢ ) Gl cosq.lcoso ) Note, that the condition ¢'—¢ yields
g((p,(p )~ go((p,(p )= —log|2(cos<p —cost’X/Qn . Then we extract singular part of
kernel IE (5) and transform this IE as follow

i

[[r@)elo.0)- 19z, (0. 0o /(o) j 2 (@.0'Ho'- l0)/k78 Ising =—E* (Icos9,0) (6)

0 0

The first integral in (6) has no singularity, the second one is equal to zero. Simplified IE
(6) we solved with collocation method. To calculate the integral the highest calculation
accuracy formula (formula of quadrangles) has been used. The second way to solve (6)
is the Galerkin method (GM) with cos jo' functions as basical ones. Upon transfer to

the x coordinate they correspond to the first kind of Chebyshev polynomials. There is a
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sense to usecosm only for metal strips, for impedance ones the function sinm¢ may
be applied.
RESULTS AND CONCLUSIONS

The methods elaborated have a good convergence. The number of collocation points
and number of basical functions per one strip is from 3 up to 7. Therefore, the wave
diffraction by high number of strips (up to 100) it is possible to investigate. The CM
codes calculate ten time faster then GM ones.

Therefore, the eigenwaves of periodic impedance diffraction grating are investigated.
Dispersion characteristics, the windows of transparency and phase synchronism
conditions for first and second harmonics (Fig 1, 2) have been obtained as the result of
the investigation. Table illustrates the comparison of waves propagation coefficients
(for DG placed over planar waveguide h=1; d/h=0,5; € =4,0; £,=4,0; €,=2,1; €,=1,0;
a/h=0,2; 1/h=0,25; N=1 is a number of strips) we obtained by rigorous method (variant
% 1) and by approximate one described above
Variant (variants 2 and 3). Clearly seen, that the

1 1:;’3528 12’8027 12’056 1 impedance we introduced gives higher

2 1,7247 | 1,6996 | 1,6198 accuracy for thick strips (kJEasl).
3 1,6873 | 1,7284 | 1,6349 Analogous results are obtained for
reflection coefficient |S”| from dielectric

inhomogeneity [3].

n 18111
1.80 s 0,45 : -
0 ~ s : :
1,85 é a/h=0,15 0.40 - f’{ B
» % 17h=025 ; [ A o
1,80 1 o 40 : 0.35 § o e ey
S B - 0.30 + Cemd 0
| 5 a0 025 - =40
= P Leq=dd
1.70 s €:=2,1 020 .- ‘ :M
1653 8e £;=1,0 0.15 £o=2 1
1,60 88 N:] 010 : . : 1533 1.0
155 P . 0,05 Srpedind 2
150 i : : ~ 0.00 “5F < R S
335 355 375 395 415 435 2.95 3,05 3,15 325 335
® strict |E o ABC ® N=10 —o— N=30 &~ N=50
Fig.1 Fig. 2
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WITH FRACTAL ELEMENTS

A.O.Kasyanov, V.A.Obukhovets

Taganrog State University of Radio Engineering
44 Nekrasovsky street. GSP-17A, Taganrog. Russia, 347928,
Phone (8634) 371-883. E-mail: vao@tsure.ru

ABSTRACT

It is shown the possibility of development of multifrequency frequency selective
surfaces (fss) by means of complicating of the shape of elements. for example, using
elements with composite fractal shape. In the paper the method of integral equations is
applied for the analysis of scattering characteristic of these gratings. In the paper the
possibility of applying of ffs with elements of thc composite shape at development of
multifrequency fss with reduced angular sensitivity on the basis of numerical
experiment is shown. The obtained results can be used for choosing the most rational
version of element shape of fss at a solution of some problems in antenna engincering.

INTRODUCTION

The frequency selective structures usually apply to ensure operation on many
frequencies of reflective type antennas with several feeds [1]. The multifrequency
frequency selective gratings are usually multilayer structures. However, to operate on
several frequencies frequency selective gratings it is not necessary should be multilayer
structures. The constructions of antennas with radiators, which have the shape of
fractals, arc known. Such antennas can operate at once on several frequencies [2]. In a
paper [3] the frequency selective structure. which is composed from the fractal
elements. is represented. The elements of this frequency selective structure have the
shape of Sierpinski gasket.

The purpose of the present work is the numerical analysis of scattering characteristics of
frequency selective structures as gratings of metal plates and slots in the perforated
screens, which have the fractal shape.

THEORY

The mathematical model foundation for the frequency selective structures is made in
accordance with the concept of infinite periodic arrays. Such approach is reasonable
because of consideration the multiclement arrays with rather complicated element
structure. An alternative way of modelling may be based on the basis of so called
"element by element method" with taking into account mutual coupling between array
elements. This way may become much more difficult because of necessity to solve large
sized system of integral equations.

The frequency selective structure is excited by plane electromagnetic wave. This plane
electromagnetic wave has linear polarization. We enter to Cartesian system of
coordinates. We direct axis Oz along the normal vector by the plane. where printed
elements of the frequency selective structure are located. We assume that these printed
clements have arbitrary shape. The steps of array along axes Ox and Oy equal

accordingly @; and d,. The permittivity of substrate is € . The substrate represents the
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flat layer, on obverse surface of which (plane z =0) there are printed the array
elements. It is necessary to determine the current distribution on the radiators of array,
scattering polarizing, frequency and angular characteristic of the array.

The boundary problem was solved by integral equation method. The equation is made
on the basis of Lorentz's lemma in integrated form. The application of periodicity
condition has allowed to reduce the solution to search of currents within the limits of
one Floquet channel. The integral equation solution is produced by moment method.
The array aperture magnetic current surface density is approximated by set of
subsectional current functions. In this case the rooftop functions are useful. The currents
obtained from integral equations system solution allow to determine all main
performances of periodic printed frequency selective structure. Therefore, one can vary
the mentioned secondary parameters of the printed frequency selective structure. It is
convenient to use such a procedure in the interactive mode. In a number of cases, the
processes can be made automatic by means of numerical optimization of some goal
function reflecting the proximity of the synthesized parameters of the frequency
selective structure to the given values.

NUMERICAL RESULTS

The first example of the numerical analysis is a solution of the diffraction problem of a
plane electromagnetic wave on a periodic grating, which is composed from fractal
dipoles. The dipoles are composed from two triangles. The shape of these triangles is
Sierpinski triangle [2]. To create this geometric fractal the following algorithm is used.
Let's take a triangular metal plate. Let middles of legs of this triangle are tops of a new
triangle. This new triangle we shall delete from an initial triangle. It is clear, that the
created now structure consists of three triangles. The sizes of these triangles twice are
less than sizes of an initial triangle. In the further process of deleting of metal from the
stayed triangular elements repeats similarly. The fractal element of N generation will be
generated after a termination of N steps of this algorithm.

The unit cell of a periodic grating, which is composed from such printed dipoles, is
shown in Fig.1,a. The single dipole of this frequency selective structure consists of two
Sierpinski.

NN
0,6' \ /
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<%

091 03 p 05
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Fig. 1
triangles. These triangles are fractals of second generation. It is shown that the fractal
element represents a self-similar structure, in which each triangular fragment represents
a duplicate in the reduced scale of all fractal structure in whole. Here is designated: L =
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7 mm — length of a dipole shoulder; W = 13 mm — foundation of a triangle; d =d,=
15 mm — sizes of a grating unit cell. The frequency selective structure is excited by a
plane electromagnetic wave with linear polarization. The vector of polarization of an
excited wave is directed along axis of printed dipoles. The calculated frequency
characteristic of an electromagnetic wave transition factor by such fractal frequency
selective structure in case of co-polarization is shown in a fig. 1.b. It is shown, there are
two resonances of a full reflection, when 2L/x, = 0.32 and 2L/%, = 0.72 in a single-
wave range of a grating. The ratio of upper frequency of a rejection to the lower
frequency is equal £ = 2.25. It is important to notice. that as against [3], in the given
example the dipoles are located in knots of a grid with a rectangular cell. In a paper [3]
the case has been considered. when the similar fractal dipoles locate in knots of a grid
with a triangular mesh. The ratio of rejection frequencies in this case isequal § =2.9.

Thus, the printed frequency selective structure composed from fractal dipoles has a
property of a two-frequency rejection in a single-wave range of a grating.
In further we shall consider performances of scattering of the perforated screens. Now,
as against a grating of plates. in the perforated screen on some (resonance) frequencies
the phenomenon of incident electromagnetic wave full transition is observed. It is
possible to create a mode of full transition of clectromagnetic waves through perforated
screen at once on several frequencics. The realization such slots in the perforated
screen, which have shape of fractal, will allow to achieve full transition electromagnetic
wave on scveral {requencies.
To check up a validity of this supposition such perforated screen is rescarched, in which
slots have the shape of Sierpinski square. The perforated screen is considered, in which
the slots are located so that the unit cell of a grating had the shape of Sierpinski square
of second generation. The topology of a grating unit cell is shown in insertion of I'ig.2.
ST S T A S A R The grating unit cell has
08 L : following sizes: d, = d,= 10
mm. If such perforated screen
is excited by normal incident
plane elcctromagnetic wave,
then resonances are not
present in single-wave range
’ of an array periodicity,
because the sizes of square
slots in a scrcen  are
Fig. 2 unsufficiently great. However,
in case of an electromagnetic
wave sloping incidence on a grating it is possible to observe effect of full transition of
electromagnetic waves through such a frequency-selective structure. The relationship of
reflection factor of an electromagnetic wave with parallel polarization in a sector of
incidence angle close to a "sliding" incidence is shown in Fig.2. This characteristic has
been calculated in a case. when /=15 GHz. It is shown. that the resonance of full

0,6

0,4

02 |

87 i 89 T
0, g, P

transition is observed with 6, =87.4°. Thus it is necessary to notice, that as shown in [3],

the screen with identical square slots has not resonances of full transition in an angular
sector from normal incidence down to a "sliding" incidence of an electromagnctic
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waves.

Thus, the modification of a unit cell shape of the perforated screen has reduced to
emerging scattering modes of electromagnetic waves, which are not typical for
frequency selective structures composed from simple (not fractal) elements.

To achieve full transition of electromagnetic waves through the perforated screen,
not only with sloping, but also with a normal electromagnetic wave incidence, it is
necessary, that slots in a screen would have resonance sizes in a single-wave range of a
grating. For example, the application of crosslike slots allows to create a mode of a full
transition of electromagnetic waves through a screen also with a normal electromagnetic
wave incidence [5]. By replacing square slots in Sierpinski fractal to crosslike slots we
achieve necessary increasing of slots sizes down to resonance in a single-wave range of
a grating. The size of a unit cell remains same, as in the previous example. The
frequency characterlstlc of reflection factor of such perforated screen is shown in Fig. 3.

Sl o T ‘ It is shown, the unique resonance
0 \\ : // ; L of full transition of
T \ ; g electromagnetic wave through
0.6 e | frequency-selective surface is

observed in a single-wave range
i of wavelengths with D/A, . Two-
frequency mode  of an
electromagnetic wave transition
such frequency selective surface

|/
el

00,1 0,3 0,5 0,7 09 » does not ensure, because only
. A central crosslike slots, which
Fig. 3 have large arm length "resonate"”

in a single-wave range of a
grating. At the same time resonance frequencies of peripheral crosslike slots locate in a
multimode range of a grating, therefore these slots do not influence to transition of an
electromagnetic wave through the perforated screen in a single-wave range of an array.
It is necessary to notice, that the similar result was obtained in paper [6]. In this paper
the perforated screen as a periodic grating of slots was investigated. The shape of each
slot of this grating is Jerusalem cross. Jerusalem cross is enclosed by simple crosslike
slots, is similar to that is represented in insertion of Fig.3.
Thus, for reaching multifrequency mode of operations of the perforated screen it is
necessary, that all slots were resonance in a single-wave range of a grating.
Last numerical example connects with the perforated screen, which unit cell has a
topology shown in Fig.4, a. This grating has following parameters: L, = 13,4 mm; L, =

7 mm. The size of a unit cell is same, as well as in two previous examples. The grating
is excited by a plane electromagnetic wave of linear polarization. The normal incidence
of electromagnetic wave is considered. The vector of electromagnetic wave polarization
is directed along a diagonal of square, which limits a unit cell of the perforated screen.
The frequency characteristic of a reflection factor of this frequency selective structure is
shown in Fig. 4, b. It is shown, that such grating has two resonance frequencies in a
single-wave range of array. These frequencies are just those frequencies, on which the
full transition of an electromagnetic wave through the perforated screen is observed. If
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D/, is equal 0,37, then the long wavelength resonance is observed. It is shown, that in
this case L,/\, is equal 0.5. If D/X, is equal 0,67, then the short-wave resonance is
observed. It is shown, that in this case L, /A, is equal 0,475. So, it is possible to make a

conclusion that a long wavelength resonance "ensure" longer slots (central slot of a unit
cell of the perforated screen). and a short-wave resonance "ensure” more short, that is
peripheral, slots.

d

Bpl==

08—
0,6

0’4 . ,,,.,%,,,, SN

Fig. 4

Thus, if the frequency selective structure is the perforated screen. which consists of
fractal slots, then this structure has a property of electromagnetic wave transition on two
frequencies in a single-wave range of a grating.

CONCLUSION

Basing on numerical experiment, in a paper it is shown the possibility to use printed
arrays with the fractal elements for development of two-frequency electrodynamic
frequency sclective structures. These results can be used for a choice of the most
rational variant of a frequency-selective structure geometry for a solution of the some
problems of an antenna engineering.
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ABSTRACT ,

Reflection and transmission characteristics of double-layer two-periodic gratings of
perfectly conducting infinite strips with a complex shape are considered. The structures
with layers that have strips turned on 90 degrees and parallel are considered. The
comparison of reflection properties of double-layer two-periodic gratings of straight-
line strips with curvilinear ones is presented.

INTRODUCTION

Recently, new applications of periodic structures are very popular to design so-called
electromagnetic crystals known also as photonic band gap (PBG) crystals for
microwave devices. As a result, interest to two- and even one-dimensional periodic
structures is renewed. Two-periodic plane strips structures are more attractive for
application because of their possess resonance properties in the frequency band of
single-wave regime due to a complex shape of the array elements and their very small
thickness. The artificial electromagnetic crystals could find many applications for
passive microwave devices such as filters, reflectors or antenna covers. The simple PBG
crystals are made with only a few layers of periodic array. These multi-layered
structures have of reflection or transmission frequency bands with sharp boundaries due
to Febry-Perot effects.

The reflection properties of complex layered arrays of metal strips of C-, S- and Q -
shape placed in free space [1] and on dielectric substrates [2] were studied earlier. The
main goal of this report is to study the reflected properties of two-layer periodic
structures of curvilinear metal strips in free space. The element of grating is plane
periodic metal strip having arbitrary shape on the grating period. The period of the
grating is mach greater than its width. The width of the strip can change along the strip.
OPERATORS OF REFLECTION AND TRANSMISSION OF TWO-LAYER
GRATING

Let's consider a system of two parallel gratings (Fig 1a). The
parameter A is the distance between layers. Matrixes of the
operators of reflection and transmission of the first and second
gratings are written as # , f; and 7, f,. The amplitude of the

partial waves between layers (Fig.1b) satisfy the following set of
equations,

; M

g=1, éA Fig. 1 The two-layer perjodic grating of
curvilinear metal strips.

where éis the plane-wave propagation operator in free space
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between the surface of layers. After the eliminating vectors of 4 and B from equations (1) we
obtain the expressions for matrixes of reflection and transmission of two-layer grating,

) -l
R=+ +q@@é&—ﬁé@é)q,

T—féﬁ—féféff

=b 1¢h 1

where [ is the unit matrix. Numerical analysis below was carried out without taking in to
account evanescent partial waves in the case of one-mode regime.

NUMERICAL RESULTS AND DISCUSSION

The scattering characteristics of two-layer arrays in free space for the cases of different strip
shapes arc presented and discussed bellow. Let us firstly pay attention to the frequency
dependence of the reflection coefficients for a single array (Fig. 2). This is important for
explanation the reflection properties of a two-layer structure. The reflection properties of single
layer of curvilinear metal strips and all mathematical transformations have been considered in
[3] more explicitly.

Now we consider the structure. which has identical layers when it is illuminated by E-
polarized (along the x-axis) wave. The reflection coefficient of the straight strips is represented
on Fig. 3. Coincidence of the data obtained by a rigorous numerical-analytical method described
in [4] and the present method is good. The resonance of transmission due to interaction between
the layers of the structure is observed of the frequency parameter d /A =0.6. A simple

estimation of the interlayers resonant frequency can be made by considering the condition of
equality of phases of the wave reflected by the structure's front boundary and the wave reflected
by second layer taking into account a phase jump of wave propagated through a single array.
The phasc of the reflected by the first layer of the structure is y, =argr,. The phase of the

wave reflected by the sccond layer at the plane of structure's front boundary is
W, =argr, +2(argt, + Ak ). One can expect that the maximum of reflection occurs when,

W, -y, =21/, (2)

and it will be minimum if ,
W, =y, =2+ 1), (3)
where /=0,21.+£2.... For a case of identical strips. if A=d /2 the requircment equation (3)
becomes 2(argt, +nd /h)=n(20+1). At argr, =0, the minimum of a reflectivity would
be observed at d /A =0.5 and for /=0. but as the argt, #0, the minimum is shifted to the

greater frequencies. For the structure of wavy strips onc more minimum generated by properties
of the single layer is observed. except for a minimum of a reflectivity because of interaction
between layers (Fig 4, curve 1). These two minimums practically coincide forming the band of
almost total transmission, for structure of lines having the shape of rounded meander (Fig. 5,
curve 1) . The band of reflection at near « /X =0.8 is generated by the complex shape of

strips. but it is more widely and has more steep edges than in case of single layer.

If the structurc consist from identical layers and the incident wave polarized along the y-
direction (H-polarization) the grating of vary narrow straight strips do not reflect(Fig 3, curve
2). This effect looks like there is the incident wave simply does not see the grating. The change
of the shape of strips leads to appearance of the band of reflection. which is more widely and
has more steep edges ( than in case of one layer) because interaction between layers. For
structure of wavy strips this band is narrow than for the grating of strips with the shape of
rounded meander narrow (Fig.4,5, curves 2), because of different magnitude of the quality
factor of a resonance for single layer of such strips.
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The dependence of the reflection coefficient upon polarization of the incident wave is
observed, if there is identical orientation of strips in layers. This polarization influence is not
desirable sometime. It is possible to decrease this dependence by rotation of the second layer on
90 degrees with respect to first one. Then the module of the reflection coefficient for normally
incident waves polarized along axes of periodicity does not differ practically (curves 3 in a Fig.
3, 4. 5). If the polarization of the wave is arbitrary then the absolute value of the reflection
coefficient remain about the same magnitude.
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Fig. 2 Magnitudes of reflection coefficients of metal strips  Fig3. Magnitudes of reflection coefficients of metal straight
of variety shapes. 1 layer. dy=dy, 2widy=0.05, straight strips. 2 layer. dy=dy. 2w/dy=0.05, curvel - E-polarization
strips-superseript |, wavy line (Lm=0)- superscript s. the  and identical layers, curve 2 - H-polarization and identical

rounded meander with Lm=0.2- superscript m. layers. curve 3 - layers that have crossed strips.
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Figd. Magnitudes of reflection coeflicients of metal strips Figs. Magnitudes of reflection coefficients of strips having
having (he shape of wavy line , 2 fayer. dy=dy. 2w/dy=0.05,  the shape of rounded meander, 2 layer. dy=dy. 2w/dy=0.05,

curvel - E-polarization and identical layers, curve 2 - curvel - E-polarization and identical layers, curve 2 -
H-potarization and identical layers, curve 3 - layers that H-polarization and identical layers, curve 3 - layers that
have erossed strips.. have crossed strips.

The electromagnetic scattering by two-layer periodic grating of curvilinear metal strips was
considered. The numerical study for normal incidence wave shows the possibility of making
resonant layers, polarization sensitive, having frequency bands of total reflection and
transmission with very steep boundaries. In contrast to a single array, a layered structure offers
the possibility to obtain sharp and wide filtering zones.

The author is grateful to S.L. Prosvirnin for the problem formulation and encouragement during
the performance of this work.

REFERENCES

[1] S.L. Prosvirnin, A.S. Tretyakov, T.D. Vasilyeva, A. Fourrier-Lamer and S. Zouhdi, Analysis
of reflection and transmission of electromagnetic wave in complex layered arrays, Journal
of Electromagnetic Waves and Applications, Vol. 14,pp. 807-826, 2000.

[2] S.L. Prosvirnin and S. Zouhdi, Multi-layered arrays of conducting strips: switchable
photonic band gap structures, International Journal of Electronics and Communication, pp.
260-265, 2001.

[3] S.L. Prosvirnin, S.A. Tretyakov, P.L. Mladyonov, Electromagnetic wave diffraction by
planar periodic gratings of wavy metal strips, J. Electromagnetic Waves and Applications,
vol. 16, no. 3, pp. 421-435, 2002.

[4] V.P. Shestopalov. The method of Rimann-Gilbert problem in theory of diffraction and
propagation of electromagnetic waves. Kharkov, 1972.

Kirv, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY



308 MMET*02 PROCEEDINGS

FEM AND ITS GENERALIZATION FOR THE
DIFFRACTION BY POLYGONAL PROFILE
GRATINGS

J. Elschner, A. Rathsfeld, and G. Schmidt

Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstr. 39, D-10117 Berlin, Germany
E-mail: elschner@wias-berlin.de, rathsfeld@wias-berlin.de,
schmidt@wias-berlin.de

ABSTRACT

For the numerical computation of efficiencies for optical gratings, there exists
a huge varicty of algorithms. Dealing with a boundary valuce problem for an
elliptic partial differential equation. the application of finite element methods
(FEM) is natural too. However, the oscillatory nature of the electromagnetic
fields requires some modifications. The resulting FEM program can be used as a
part of an algorithm to design optimal gratings.

THE FINITE ELEMENT METHOD (FEM)

The variational form of the boundary problems is well known and its cocrcive-
ness is well established (cf. e.g. [6.1,3]). For example the variational equation
for u(z,y) = v(a,y) - exp(—iax) with v the unknown third component of the
amplitude of the scattered magnetic field in the case of TM polarization is

! i(ev, 0) ju - {a,0)fp — [ up . Ju)p
'/QE{V—H(U,O)} {V +i(a,0)}p -/Q 'ﬁ"+(k+)2 ./N(T“ )P

+—1—T / (T7u)p = — ! / (21375, o e HI(Q). (1)
7 S ) Jr v
The domain €2 is the rectangular cross section of the grating profile taken over
one period and I'*t stand for the upper resp. lower boundary sides. The symbol
k stands for the piccewise constant refractive index taking the constant values
kT resp. k above resp. below the grating. The number « is the product of k7
times the sine of the incidence angle, V is the gradient, and T a hypersingular
boundary integral operator. The test function  runs through all periodic (w.r.t.
to the first variable 2) functions in the Sobolev space H'(2). A variational
equation similar to (1) holds for the TE polarization. For the case of conical
diffraction (incident plane wave with direction not in the plane perpendicular to
the grooves of the grating), a coupled system of two such variational equations is
to be solved.

To get the FEM solution, the domain is split into triangles/rectangles. An
approximation of the magnetic field is sought in form of a continuous piecewise
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linear /bilinear function, and the test functions in (1) are replaced by the piece-
wise linears/bilinears. Substituting the numerical solutions for u over I't into
well-known integral representations, we get the reflected and transmitted energy
and the efficiencies of the reflected and transmitted modes. In contrast to pop-
ular alternative methods, the FEM needs no Rayleigh expansion, no slicing of
blaze gratings, and no solution of big dense systems of integral equations. The
convergence of the method is well established.

Example : cover material : Air
coating material ©  Photoresist
substrate material : SiOq
polarization : ™
period : 588 grooves/mm
incidence angle : 47.5°

The figures show a coarse FEM grid of a coated lamellar grating profile with
overetching, the isolines of the real part of the solution u, and the efficiencies of
the transmitted modes of order -2, -1, 0, and 1 depending on the incidence angle
in the interval [40°,50°].

GENERALIZED FEM

Unfortunately, due to a mismatch of the frequency of the solution and the discrete
frequency of the approximate solution, the FEM deteriorates with large wave
numbers. Even if the function can be approximated in the space of piecewise
linears with high accuracy, the error of the FEM solution of Eq. (1) may be
large. To overcome this so-called “pollution effect”, we have first implemented
a generalized FEM for the case of lamellar (binary) gratings which is a finite
difference scheme over uniform rectangular gratings (cf. [2,4]). Further, we have
tested the partition of unity method together with mortar techniques (cf. [5]),
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and we have implemented a new generalized FEM based on trial functions the
restrictions of which to the triangles of the triangulations are solutions of the
partial differential equation. These solutions are generated by an FEM over a
fine uniform grid in the subtriangle. For a fixed accuracy, these methods reduce
the storage requirements and, in some cases, the computing times essentially. In
the table we present results for a coated echelle grating (wave length 160 nm, 166
grooves per mm, width of MgF2 coating 25 nm, blaze angle 80°, apex angle 90°,
cover material Air. grating material Al, TE polarization. incidence angle 80°).

fdegrees of freedom ‘ memory for solver [ efficiency of order 74 (refl.) J

105785 0.35 GB 37.931045
263624 0.70 GB 67.384460
559 800 1.98 GB 68.390312

OPTIMZATION OF GRATINGS (SYNTHESIS PROBLEM)

The mentioned methods for the numerical solution of the direct diffraction prob-
Jem can be used as a part of an algorithm to design optimal gratings. We have
implemented a code (cf. [4]) to minimize several objective functions including ef-
ficiencies and phase shifts. On a set of coated lamellar grids containing a certain
number of rectangular picces with prescribed material properties, we determine
an optimal grating by a gradient descent method. The latter is based on the
efficient computation of the gradients by generalized FEM.
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ELECTROMAGNETIC CHARACTERISTICS OF DOUBLY-
PERIODIC MAGNETODIELECTRIC LAYER BOUNDED BY TWO
UNIFORM MEDIA

Natalia V. Sidorchuk, Vladimir V. Yachin and Sergey L. Prosvirnin
Department of Calculus Mathematics, Institute of Radio Astronomy
4 Krasnoznamennaya Street , 61002 Kharkov,Ukraine
email: yachin@rian.kharkov.ua

ABSTRACT

The problem of electromagnetic wave propagation in a doubly-periodic
magnetodielectric layer bounded by two uniform infinite media is solved by new
method based on the rigorous volume integro-differential equations of electromagnetics.

The Galerkin method is applied to reduce these equations to a set of second-order
differential ones with constant coefficients in field functionals which contain
information about geometry of the scattering structure. The special scheme of equation
set solving is introduced in the case of thick layers to overcome usual numerical
difficulties associated with the undesired exponential functions in the expressions. This
method unifies the treatment of both TE- and TM-waves by replacing € by p, p by &, E-
components by H-components, H-components by E-components.

METHOD

Formulation of the problem is as follows: from the region 2 (z<-h) with complex
relative permittivity &; and permeability o, a linearly-polarized plane electromagnetic
wave is incident at an arbitrary angle @ on the double-periodic infinite Jayer (region 1)
bordering the region 3 (z>0 ) with complex relative permittivity €3 and permeability p3

(Fig.1).

REGION 3

RRESG i

. %/////%

.........

REGION 2

n n
: ! > €45 My

Figure 1. Geometry of the problem.
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The periodic cell of the layer is an oblique-angle parallelepiped of arbitrary sizes along
the ) axis and the mp axis, L, and L are periodicities of the layer in the n; and 1,

direction, respectively. The parallelepiped is characterized by the complex relative
permittivity &; (1, n2) and permeability p; (1, 12) and has the thickness 2. We suppose
that the incident wave is TE-polarized and o is the angle between the n; axis and the
electric field vector E lying in the plane of the layer and consider the field components
in the (n, & z) ortogonal coordinate system connected with the incident field
polarization. We have to obtain the transmitted and reflected fields in the immediate
vicinity of the layer. The form of the integro-differential equations for the
electromagnetic field is taken from [1]:

E(ry=E,(r)+ 1 (VV+k12)j(é' -DHE(FPHYG(F —F)dr'+
47 CE,

gy (B —nAEGT -r)dr,
dn ¢, AT ‘

—+

A@ry=H,(r)+ }'(Vv"‘klz)_’-(ﬁ’] ~-DA(FG(r —F")dr' -
4 ;M

kg gy I(%«l)E(r')G(%r—r’)dr".
an K, € ‘

Here the Green’s function is presented in the integral form, ¥ is the scatterer volume,

k, =k./e,p, and k is a wave number. For beginning we suppose that the periods are
i V&M g g pp p

partitioned into segments with constant material parameters. For each period segment

numbered (k,/) we can write the notations b}:’l" <y, < b,fl . b"l':' <My, < bé) L €(r)=¢,

and (i,(rg) = py.

Following the algorithm given in [2] we present the field in each period segment as an

expansion in terms of the spatial harmonics numbered (r.s) and act on the equation for
these fields by the linear operator

ISy 2np ., 27
I’\“ hq‘ —l(/\-m4 iy m —/(k”z.l q)w]

ki o 1 f E n T ot ' '
Ay F(n/ns.z) = [ [Cr=1e ™ e ©F(m(nj.z)dnidn;.
Ln, Lnl I’é] ! lw‘;' €5

Thus we can obtain the set of linear differential equations for the field functionals. By
summing these equations over all segments we can express the fields and field
functionals for individual segment through the ones for another segment, e.g.:

wo_ Ep(€y —1) k / [N N ey %
g = AL ax)ay, Wax, ay, ) E,
EnlEr —1)

where
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1 b,’{l _,XM 1 b.ﬁz VLA
ax, , = je Modn, ay,, = I je " dn, .

k-1 =
™ [)‘\l M2 qul

2n(g-)

Next we solve the equation set for the field functionals and thus for the field
components (the procedure in paper [2]). Using the extinction theorem at the last stage
we express the internal fields of the structure (region 1 and 3) through the incident wave
field. Upon separation the equation set to be solved onto the subsets including the
exponential functions with a positive and negative real part of eigenvalues, we apply the
iterative procedure developed for calculations of characteristics of scattering from a
very thick losser doubly-periodic magnetodielectric layer in a wide frequency range.

RESULTS

Presented in Fig.2 are the results of the transmission coefficient calculation for the
periodic structure composed of the array of square parallelepipeds with & = 3+0.011,

u = 1, lying on the half-space with &3 = 3= 1>h/Lm =10, bm /Lm = bn2 /an =0.5
L =L =L,o= 25°,¢ = 0.001°. The example demonstrates the iterative procedure

stability for very thick doubly-periodic structures.

2

To

0.4 1 Unit cell
0,2 -

DIFFRACTION EFFICIENCY

Lo/\

0

0 02 04 06 08 1 12 14 16 18

Figure 2. Transmission of the normally incident plane wave through the thick doubly-
periodic array lying on the half-space.

Our results are in a good agreement with data concerned thick periodic structures and
presented by other authors (see, for example, paper [3], where the one-periodic grating
of rectangular rods with /L =4 was considered).
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INTRODUCTION

Recently, the refractive index can easily be controlled to make the periodic structures such
as optoelectronic devices, photonic bandgap crystals | frequency selective devices, and other
applications by the development of manufacturing technology of optical devices!'!. Thus, the
scattering and guiding problems of the inhomogeneous gratings have been considerable inter-
est, and many analytical and numerical methods which are applicable to the dielectric gratings
having an arbitrarily periodic structures combination of dielectric and metallic materials'!

In this paper, we proposed a new method for the scattering of electromagnetic waves by in-
homogeneous diclectric gratings with perfectly conducting strip using the combination of im-
proved Fouricr scries expansion method™ and point matching method™!.

METHOD OF ANALYSIS

We consider inhomogeneous diclectric gratings with perfectly conducting strip as shown in
Fig.1(a). The grating is uniform in the y-direction and the permittivity £(x,z) with respect to
the position{ = w) Iis an arbitrary periodic function of = with period p.The permeability is as-
sumed to be z¢,. The time dependence is exp(—iwt) and suppressed throughout. In the formu-
lation, the TM wave is discussed. When the TM wave (the magnetic field has only the -
component jis assumed to be incident from x > 0 at the angle 6, the magnetic fields in the
regions S, (x>0) and S, (x £ —d) are expressed”! as

N A
0 w0, k256, (A N 2mnz/ p) A
SI(XZO) : 11 M _ )/ zsinf, = xcost, ) L s Z I'”(“(,’( : k] 20 "91/1() (1)

n=-\

“(x+d)flxuﬂp=

Sxsd) - H =ty o )

n=-N

k2 ./kﬁc /f;ﬂ —yi v, EksinG +2an/p .k, E2x)A. j=1,3.

(3

where 7" and 7!°" are unknown cocfficients to be determined by boundary conditions.

Fig.1 Structure of inhomogeneous dielectric grating with perfectly conducting strip.
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Main process of our method to treat these problems is as follows (see Fig.1(b)):
(1) First, the grating layer (~d < x < 0) is approximated by an assembly of M stratified layer of

modulated index profile with step size d,(£d/M ) approximated to step index profile

£ (2)[Z&((l+05)d,,z); 1=1~M], and the magnetic fields are expanded appropriately by a fi-

nite Fourler series.
2N+l o

N
b {x+(1-1)d. (" (x+ld ik,zsi z i
Sz("d <x<0) ‘ Hi}I.Z) — } liA(‘l’)eH {A+( ) \}+B(V[)eu (\+(_\):]etk,zsm¢9(, u(l)elbrnz/p (3)
’ n=—N

v
v=l

where 4! is the propagation constant in the x-direction.We get the following eigenvalue
equation in regard to A" 1.

AU :{ hm}? AU 5 A, g[nm} A, é[ “)]’ [=1~M, )

man mmn
T
A I
where, U =[uf’,3,,---,ué”,~-u§v)] , T: transpose ,
(Y A L2g) 0 0 0 A .
nm kO na Vn {7:177:”" +2z (n - nz)nn.ln /p} 4 }/" (kl sm 90 + 2'ﬂ-n/[’) ’ (5)

H él Py in’(n—-m)z/pd (1) él LR 2 i27r(n-m):/pd — N 0.-N.
o p-L {8 (z)}e z, pJ.O {8 (z)} e iz, m,n 00,

nan

For the TM case, the permittivity profile approximated by a Fourier series of N, terms"
and N is related to the modal truncation number N(N =1.5N, )BL.

(2) Second, the strip region (j </< j+1), see Fig.1(b), we obtain the matrix form combination
of metallic regionC and the dielectric regionC using boundary condition at the matching
points z, (= pk/(2N +1),k=0,---2N) on x= -I-d, (I = j).Boundary condition are as follows:

2N +1 N
. : i 7 (1) i i inz
Z, € C :[Eiz.,r) = E;2<_1+1) - 0] z hv(,H [ A‘;,’)e""' dy _. B(V_/) ] Z ul(l{'(zem.k = 0, (6)
v=l n=~N
AN+ , N
(j+l ; i iplatl) i inz
Z h, i+ )I:A(l"M) + B“,-“”e”"' dy :l Z u’(l_./‘;*”ellhk =0
[ n==N
~ . (20) _ ppe2d+l)
z, e C:[H =HV]
2N +1 N 2N +1 N
(J) piki?'d. |, () pinzy — (i+h (j+1) itV i) pinzg
z [A ve t BI‘ uu.ve f = Av + Bv € Y un.!' e (7)
v=] n=-N v=l n=-N
1 2N+1 N
=[ pei = peia . D g0 il d,s () ) pinzy
szC[E: _Ez ] g(f’(z)zhv [Ave \—Bv ’ u,.e b=
v=] n=-N
2N+t N
(j+h i+ by il (j+1) pinz
_—(HT—Z]”V [Av +Bv e Y Uy, et
& (Z) v=] n=-N

In the Eq.(8), the boundary condition at E{*” = E*/* it is satisfied in all matching points.
Therefor, rearranging after multiplying both sides ¢;(z)-&;,,(z) in Eq.(8) by using the or-

thogonality properties of {€™'?} we get following equation.

2N+ ) 2N+1 »

z h,‘,”[A‘,f)ei”‘('l)"" -BE,-”:]- () = Z hf,-’*”[A‘j*" _B(‘;f+1)eih.(.’“)l’\ ]’Wﬁ.’f” ,

v=| Y v=] ; (9)
where gl & Y ulnl p”E Y ull n=N 0N

nm=-N m=—N

By using matrix algebra in Eq.(9), we get following matrix form.

q)(_i)c(.i)[D(,f)A(_f) _ B(,i)] — “I’(‘i+l)C('f+‘)[A('i+]) _ D(_i+1)B(_i+1)] , (10)
Where (D(j) é [ ':}V) } ’\P( o é [l'//'('l:l) :l ’ CU) é [h‘(’j) -5("*'1\/“).":l 4 D(j) é [e[h‘(’“dA : 5(n+N+I).v] ? 5(n+N+I)‘v :

KIEV, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY



406 MMET*02 PROCEEDINGS

Kronecker's delta.We get following matrix form combined with Eq.(6) and Eq.(7).
H'”)[D'”)A(")+D"”)B”)]:H"“”[A””)-%D'(“”B(“”] @ @ @ @ @ @ @ @(11)

~ DA [,70"'-'”"‘ -5'”‘\.‘,)_‘.] ,
H'(/): eaiN:k el():A ei,\’_—;r z, ec U(I') | ]7:]1‘(/” L Zy EC, 77:] L2 ec
D"(”é[77‘54,,w4).v]
o 4 Nok =
A B B U P
peooo 0o 0 0 HECag prea et s
e IN=k ()I(J:A e:,\‘_-k— } ZA Ezj-

(3) Finally, we obtain the relationship between A"’ B and A"’ B*" .

All] A S:Il S(:l) S{lli S(ZZ) S(I/l S(:lJ\ S(l.‘l/‘r S;U) A(.\/'y B Sl SE A(Af) (12)
B" - Sgn S‘J" S;z» S‘f’ S;” S:“J S;M S:‘”' B S3 S4 B
where/ # j S{ é["’s‘“] k=1~4,1=1~M,

"o
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Su.v = EI:V”"' + 911‘\‘111;-0 A'<l/h\' }(f ‘SNJ/ - 5’“, € ]
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Using Eq.(12), we get the following homogencous matrix equation in regard to 4"’

11>

W-AY=F W £ Q8,+Q.,5,-(QS. +Q.8,)Q,'Q. |, (13)
The mode power transmission coefficients | TH‘ o [2 is given by

T P2 6 Rel VO [(ek") (14)
CONCLUSION

In this paper, we have proposed a new method for the scattering of electromagnetic waves
by inhomogeneous dielectric gratings with perfectly conducting strip using the combination of
improved Fouricr series expansion method and point matching method.
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ABSTRACT

The present work is dedicated to the FPC based adaptive antenna structure simulation.
The effectiveness of the photonic crystals in such implementation is discussed. Several
types of antenna devices are presented. The influence of the inaccuracy during the
technical realization of the device is studied.

INTRODUCTION

In the superhigh frequency band devices like mixers, separators, frequency filters, and
splitter and so on are widely used. With the growth of operating frequency development
of such devices also becomes complicated. In the sub-millimeter and optical frequencies
range the devices of special type — so called photonic devices become efficient. The
main part of such device is a crystal dielectric structure with the defects, introduced to it
in special way. According to the nature of photonic crystals there are gaps in their
spectrum, that causes some frequencies to be filtered out — and some — pass through.
The ordinary absorbing media transforms the power of electromagnetic wave to heat.
Instead, the band-gap does not dissipate power — it is accumulated and can therefore be
supplied to necessary direction. The placements of defects in the crystal define its
behavior towards the propagating wave — will it split, mix, or filter it. For example, one
can introduce several “channels” to the crystal, that having different resonant
capabilities will provide a way of exarticulation the carriers of different frequencies
from the incoming signal. All these properties of the photonic crystals can be used also
to develop an efficient antenna device having the specified parameters. Experimental
way of developing and investigating such structures is either too time consuming and
expensive, or quite impossible because some of the system’s properties can not be
easily changed continuously, or the defect’s positions can not be arbitrary chosen.

In the present work several types of antenna are discussed, developed using the
specially created software for the field propagation in FPC structures numerical
simulation for the device’s parameters optimization

MODEL

As a photonic crystal a rectangular body has been taken with the defects represented by
the metallic rods, located inside it. The excitation is applied at the arbitrary point inside
the crystal and is simulated by the cylindrical wire. The numerical solution of the
corresponding electrodynamic problem is fulfilled using MAS [1]. By means of the
created software several numerical results have been obtained, demonstrating the ability
of such structure to serve as a core elements in complicated optical and SHF devices, as
well as the capabilities of the software to analyze and simulate different configurations
— to avoid expensive experimental development.
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Fig 1. FPC antenna layout Fig 2. Near field and radiation pattern

The presented sandwich-like antenna structure consists of a two metallic plates with the
dielectric photonic crystal located between them (Fig.1). A periodical structure is
formed by the homogeneously distributed metallic cylindrical rods inside the antenna
volume. A defect is a vacancy — absence of the rod in the given cell. The antennas’
feeding is supplied by a coaxial cable and is simulated by the lincar current. The
resonant channcls are formed by the defects introducing a phase delays to the
propagating in them wave, thus promoting the directed radiation behavior of the
antenna. The near field distribution at the resonant frequency and the pattern of
radiation is presented on Fig 2.

16.32 Value
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2316 l 4uln
J -48 degreces.
11.58
VO '
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000 on 12.22 18.43 2465 30.87
Fig 3. Near fields. Fig 4. Frequency Response. Fig 5. Patterns

In some application it is necessary for the antenna to be adaptive i.e. able to shift the
beam of radiation electrically. for example. changing the phases of feeding currents.

FFor this purpose. a slightly altered FPC structure has been developed, shown on Fig 3.
The feeding is applied by the two phased sources.

On Fig. 4 the frequency response of an antenna is shown. The presented near field plot
correspond to the first peak’s left slope. The nearer the frequency is to the resonant one,
the more effective will be radiation. but the beam shifting possibility will be decreased.
This rectangular antenna may be implemented when just slight beam steering
capabilities are needed.

Fig 6. The hexagonal FPC structure, its near fields and Patterns at different feeding phases sets

More flexible and omni-steerable antenna can be built up using the symmetrical
hexagonal lattice as the core for the FPC (fig 6).
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Here three independent sources are placed symmetrically relative to the lattice thus
providing a possibility to radiate in fact, in any direction, depending on the feeding
current’s phases and amplitudes selection. The fig 5 show the near field distribution
along with the corresponding patterns of radiation (fig 7). Such antenna can be used in
some kind of radar or autotracking systems.
e e e The important thing, which must be taken into
account when developing such devices, is how the
inaccuracy in the real technical realization of the
. device may affect the position and Q-factor of the
: resonances and other radiation parameters. To
investigate these conditions a possibility of giving
: the pseudo-random displacements to rod-s
. position and sized have been introduced and the
R «  influence on pattern, near field, and position of
Fig. 8. Spectrum resonances has been studied.
As an under test problem the rectangular antenna
has been chosen, as having the quite narrow resonant peak i.e. high Q-factor.

a) 2% b) 5% ¢) 10%
Fig. 9. Influence of inaccuracy during device implementation

The resulting frequency responses for the different assembly precision are shown on Fig
8. One can see that during realization of the device a precision of up to 5% is quite
acceptable, and the lower precision lead to significant displacement of the operating
frequency and completely changes the inner field distribution, leading to misfunctioning
of the device Fig 9.

CONCLUSIONS

FPC structures proved to be efficient for use as a core element in antenna devices,
providing high degree of flexibility, and allowing to create complicated devices using
simple core elements, such as metallic stocks, that is quite easy realizable by the modern
technology. A software package has been developed allowing real time design and
simulation of the FPC based devices, including the finite precision limitation of
technical realization of the device, which makes it directly applicable for engineering
calculations.
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A COMBINATION OF UP- AND DOWN-GOING PLANE WAVES
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INSIDE GROOVES OF A DEEP GRATING

Yoichi Okuno, Da-Qing Zhou, Koji Yoshimoto, Akira Matsushima
Kumamoto University, Kumamoto 860-8555, Japan
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INTRODUCTION

The purpose of the present research is to extend the range of application of Yasuura's method
[1.2] in solving the problem of diffraction by a grating. Although alternative terminology for
the method (c.g., a least-squares boundary residual method or a modified Rayleigh method)
exists, we employ the name throughout this paper.

It is an accepted knowledge [3, 4] that Yasuura's mcthod. in particular, the conventional
Yasuura mecthod with Floquet modes as basis functions does not have a wide range of
application. Although the convergence of the sequence of solutions obtained by the method is
proven, the rate of convergence is often so slow for deep gratings that we cannot find solutions
with accuracy. Let D and 24 be the period and the depth of a sinusoidal grating made of a
perfectly conducting metal. The period is assumed to be comparable to the wavelength, i.e., we
are working in the resonance region. For an E-wave (s polarization) problem where 2H/D = 0.5,
taking 71 Floquet modal functions. we can obtain a solution with 1 percent error in both energy
conservation and boundary condition. Employment of additional Floquet modal functions
easily causes numerical trouble in making least-squares approximation on the boundary. Hence,
a practical limit in 2H/D in the E-wave casc is 0.5 so long as we use conventional double-
precision arithmetic. Similarly, the limit in the H-wave (p polarization) case seems to be a little
less than 0.4.

To accelerate the convergence of solutions. Yasuura's method is equipped with a smoothing
procedure [5, 6]. It has been shown that: in the above problem, we can obtain a solution with 1
percent error using 17-41 modal functions (the number depends on the order of the smoothing
procedure and on the polarization). Hence. Yasuura's method with the smoothing procedure is
effective in making a systematic rescarch that needs to handle problems with complicated
boundarics, c.g., Fourier gratings.

Although Yasuura's method with the smoothing procedure solves most of the problems for
commonly used gratings. the limit in 2F7/D has as yet been scarcely dealt with. There still is a
limit at 2H/D = 0.7 or 0.8 even if we employ

the smoothing procedure.  This limitation E™(or HJ*) Y P (x.y)

can be removed practically by the following ‘
way. Here, practically mecans that we can
solve the problem with a profile decp enough
for our research work in the direction of our
interest.

STATEMENT OF THE PROBLEM
Let the cross scction of the grating be
periodic in A" as shown in Fig. 1. The depth
is in Y and y= f(x) represents the profile.

,:

f(x) is a sinusoidal function with a period Fig. 1. Geometry of the problem.
D and a depth 2H.  The profile is the
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boundary between two regions U(Y > f(X))and L(Y < f(x)). U is a vacuum and L is filled

with a dielectric with a relative refractive index n. We consider the problem to seek diffracted
waves in U and L assuming a plane E-wave incidence that comes from the positive Y direction.

METHOD OF ANALYSIS

The basic idea of the present method includes two strategies. First, in constructing an
approximate solution inside the grooves in U (or in L), we employ down-going (or up-going)
Floquet modes in addition to the up-going (or down-going) solutions. This would expand the
function space spanned by the modal functions and make the boundary matching easy. Second,
in consideration of the ill nature of higher-order evanescent modes (They strongly oscillate in X
and rapidly increase or decrease in ¥), we divide the regions inside the grooves into a couple of
sub-regions and define approximate solutions in each sub-region. This may be understood as a
kind of normalization of the modal functions.

To do this, we first separate a groove region Ug (f(x)<Y < H) from a free space region Uy

(Y > H). Ug and Uy are sub-regions of U having a common border at ¥ = H. Another groove
region Lg (—H <Y < f(X))and a homogeneous half plane Ly (Y <—H) are defined similarly.

Approximate solutions in U, and L, take the form of commonly employed modal expansion
satisfying the radiation condition. That is, an approximate solution in Uy (or in Lg) is a sum of
up-going (or down-going) plane waves.

Next, we slice the groove regions to have Q layers Ug is divided into {U;, U,,..., Uy} and a
horizontal line ¥ = (122¢/Q)H (g = 0, 1,..., Q1) is the boundary between U, and U,..
Similarly, Lg is divided into {L;, Ls,..., Ly} by horizontal lines ¥ = (2r/Q < 1)H (r = 0, 1,...,
0z1). Consequently, we have 2Q sub-regions in one period (0 < X < D). As a matter of fact,
we have 30 sub-regions because either Ug or Lg should be partitioned into two. We, however,
regard the groove region consists of 2Q sub-regions because the latter partition is not essential.
Each sub-region has its own local coordinates and modal functions are defined in each sub-
region. It should be noted that: the set of modal functions in U, includes not only up-going
separated solutions but also down-going solutions. Similarly, the set in L, includes both down-
and up-going waves. An approximation in a sub-region (U, or L,: ¢, » = 1, 2,..., Q) is a finite
sum of up- and down-going modal functions with unknown modal coefficients.

Now we have 2(2N + 1)(20 + 1) unknown coefficients in total: 2(2N + 1) for U, and Lo; 202N
+ 1) for U,; and 202N + 1) for L,. Here, N is the number of truncation and summation should
be taken from — N through N. The coefficients are determined so that the approximate solutions
satisfy the boundary conditions. We employ the least-squares method noting that a sub-region
is enclosed with two horizontal lines and a part of grating profile.

NUMERICAL RESULTS AND DISCUSSIONS

Results of numerical computation and a couple of comments are itemized as follows:

(1) 1f 2H/D < 0.5, the result obtained by the present method agrees well with the results by the
conventional Yasuura method.

(2) Comparison with an existing data [7] shows good agreement at 2H/D = 1.0 for an E-wave
incidence (Figs. 2 and 3 (Q =4, N =11, 0.04 % energy error)) and for an H-wave incidence
(Figs. 4 and 5 (O =13, N=16, 0.9 %)).

(3) A personal computer (Pentium 1.7 GHz, RAM 512 MB) can handle an E-wave problem
with a depth 2H/D =1.7(Q =11, N=7,1 %,; or 16, 5, 0.4 %). Because this limitation in
2H/D comes from memory requirement, we can employ the technique of sequential
accumulation [8] to extend the range of application.

(4) If we construct approximations in U, (or in L,) employing up-going (or down-going) waves
alone, we cannot obtain convergent solutions for 2H/D > 1.0. This means that the
normalization of the modal functions alone is not so effective as the combined strategies.
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(5) We have succeeded in establishing a method of modal-expansion that solves the problem of
deep gratings. We are planning to employ the method in solving the problem of a stratified
grating in which the boundaries between layers have a common period but do not have a
common profile.
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In the innovative optoelectronics, “negative-dielectrics” (ND) are considered as
promising materials. Metals, like silver and gold, are ND in visible light and near-
infrared range. The goal of the present paper is to study the problems of the plane wave
scattering of light by a thin flat grating made of penetrable ND strips or of impenetrable
strips covered with ND from one or both sides. Strip gratings have been used in wide
range of applications. Several techniques have been devised for building the numerical
solutions to perfectly conducting strip gratings and also to penetrable imperfect ones,
like resistive and thin dielectric strip gratings: the spectral Galerkin moment method [1],
the Fourier transformation method [2], the singular integral equation method with
projection to orthogonal polynomials [3], and the method of analytical regularization of
dual series equations [4].
The problem formulation involves a set of
generalized boundary conditions, relating
vl tangential fields to effective electric and magnetic
currents. The strip coatings are characterized by

(0.16) 2 two surface. impedances Z* on corresponding
‘ 4 sides. Notations can be seen in Fig.1. Accurate
v numerical solution is based on the Floquet-

> Rayleigh field expansions, which lead to the

o N w coupled pair of the dual-series equations for the
@/ -d series coefficients. To determine the unknown

coefficients a, and b, we use two dual sets of
boundary conditions that hold on the
complimentary subintervals (the strip and the
slot) of the elementary period. Further, we make
Fig 1. Geometry of the Problem  an extraction and analytical inversion of the static
part of the full-wave dual-series equations that
needs combined application of the Riemann-Hilbert problem (RHP) technique and
inverse Fourier transform depending on the equation features. This procedure leads to
the simultaneous linear equations:

E"(E-wave) |} -24
H™(H-wave) [s

Ozo (8 + 41l x, + 412 d, |= B!
n==co [ "7 E(H),mn "0 " “E(H)mn 1| "E(H),m

® [ ,21 22 _p2 (1
o {AE(H),mn Xp+ (5mn *AE Y, mn jdn} =BrH)m )

With the matrix and right-hand-part elements:
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Ml ! 11 1
Ap =851 (0) A =5, (0
Emn = 9 (R1G)8n mn H.mn = 9 (0L ) 2n mn (©)
2 ___ W |
AE mn = (R/CO)S’”” ©) Al o =~ 0L O)SmH ®) )
I ! ] 1
B =85, 470 S
E,m (R/(;()) )7]()( ) BH,IH (QCO)S”ZO(B)
21 . .
AE,mn =2/ W Tiun ©) Alzil.nm = =27k W Ty, (8)
22 i . ’
AE,mn = (24/‘< (OC4)—m ) Tyn ©) Aglz.mn = (2 JK(RIC ) =1y )rmn 0)
2 5,
Bg i =27 Tno®) B%[.m =271y T)0(0)

where T,,(0) and S,,,(0) can be found in [4], g~ (]- (.s'in(p+l/1<)2)”"?, r=nl - jguK,
k=d/\g. and 0= 2mw/d. The unknown coefficients are x,= ¢,,gy. €= an* b,. d, a,-b, It can
be shown that (1) is a Fredholm second kind equation and therefore yields stable and
accurate numerical solution with accuracy controlled by the truncation number N of
each block. According to [5]. three complex parameters. R, Q. and W, are electric,
magnetic, and cross resistivities. W is responsible for different properties of the two
faces and vanishes for a surface with two identical face impedances and for a penetrable
ND strip grating.

Numerical computations have been carried out for the reflected, transmitted, and
absorbed power fractions as a function of the electrical and material parameters of the
ND grating. In Fig.2. we present several samples of plots of the reflected. transmitted .
and absorbed powers versus the normalized period of the gratings made of gold. silver.
and platinum for the H-wave case. These gratings are penetrable and W=0 in this case.
One can sec that for the gratings made of gold and silver the reflected power prevails
over transmitted and absorbed ones in the frequency range 0.6< d/Ay < 0.7 whereas the .
transmitted power prevails over the reflected and absorbed powers for most of optical
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Fig.2. Normalized powers for H-wave scattering by strip gratings versus the electrical period.
2w/d=0.5, =0°, h/d=0.02, d=5%10"m.

range starting with 0.7 d/Ao. The values of transmission are quite comparable and run up
to 0.9. The absorption by the grating made of platinum exceeds the transmission and
reflection in the frequency range 0.65< d/A¢< 1 and transmission prevails over
absorption and reflection for the rest of optical range. The reflection stays low over all
optical range. Fig.2 demonstrates a deep drop of transmission for all gratings and a rise
of absorption for a grating made of platinum near the + first Wood’s anomaly (k =1, for
the normal incidence). '

We have developed accurate numerical solutions to the scattering problems concerning
the ND strip gratings in free space. The computations have been carried out for the
reflected, transmitted, and absorbed power fractions as a function of the electrical and
material parameters of the grating.
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Boundary shape analysis and reconstruction is important arca of research [1-4]. however there is
a shortage of rigorous approaches. We propose a robust and clear modification of the known C
method [5,6] for solving the wave scattering by arbitrarily shaped surface. This approach makes
a reliable basis for solution of recognition problem: the reconstruction of surface profile and
material parameters of media from known data on the scattered field.

For the direct problem solution. the C-method in combination with o rcgularisation has been
chosen [5,6]. This enables us to reduce the original 2D problem of lincarly polarized plane wave
diffraction by an arbitrary boundary of dielectric media to operator equation

oX + AN =(C, (1)

where o is regularizing parameter . A is a self-adjoint positively defined compact opcrator in
corresponding Hilbert space H =1, x/,. The entries of unknown vector X are coefficients of
scattered field that is expanded over cigenfunctions of C-method {5.6]. Vector (7 is defined by
the excitation ficld. For boundary shape between media and given diclectric parameters the

equation (1) can be solved efficiently by means of truncation method. The choice of regularising
parameter o0 may be done on the base of generalised residual principle {7,8]. The input data for

correspondent inverse problem are complex amplitudes R = (R” (K)):; . of reflected
propagating waves. A is a wavelength. We suppose that this data arc known in certain
wavelength range [k,,?xg]. Besides the period of boundary shape and dielectric parameters of
media are also known. It is nccessary do find out by these input data the function, describing the

boundary of two media. Let @ =(a, );7 be Fourier cocfficients of this boundary function. The

. . . . . ~ k4 N
solution of operator equation (1) gives the mapping that associates set of a = (a” )” with set

of complex amplitudes R=(R (})); .- Thus. on certain sct of vectors D, /. the non lincar

opcrator
Flar)=R(). welr,n,] 2)

is defined. Having found out from (2) the Fourier cocfficients a:(a” )” we can, by

summation of Fourier serics with approximate in /,-space metric coefficients [7]. derive the
profile function. Formally. the scheme can be outlined as follows. Let Y()\,), that is the solution
of (2), is the set of operator F' values. Introduce on Y(X) the norm according following

N 7

> cos0 . .

= E |R(}LX 6”. Here following notations are used: ©, arc angles of
_‘\! C‘OAS'

diffracted field, 8 is angle of incident field. Consider the functional that is given in definitional
domain D, of operator F

formula ﬂR(?x}
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Py)

cp(a)=:z=1”=z

-P(,

1"

*(1+n2) 3)

2 )\’) 0
ReG)-RY (1 ] 22la) oy Sy,
) (o

1H n=-Q

where y > 0, is the parameter of regularization, R >0,p, =+k’g,u—n’, x, =d/\, . d

0
is a period of boundary, A, e[k,,kz], a(v)= Zane’"”. Vector a; =(ayn):’=_p, which
n==0

provides the functional (3) with minimum we consider to be a solution to (2).

Numerical experiments. On the basis of the approach developed the numerical algorithms for
the solving (1) and (2) have been implemented. The search of vector ay” is organized by means

of regularized quasi Newton’s method with step adjustment, using only fist derivatives. The
minimum residual method is applied for the choice of regularizing parameter y . Based on (1),

we simulated input data R"(?»”,\):(R,‘;(km))::_}v,m=1,2_,_ p for several boundaries between

media characterized by profiles:

3
a,(y)= h[0.5 + “6 ; @y - 1)(1 - Z H . a,(y)= h[0.375 + 0.25sin({%y) +0. 125cos(47“ﬂ ,

a,(y)=h 0.5—1, cos(2ny)+ 1605(6—ﬁ1+ icos[io—n—)
) e d 9 d 25 d

periodically continued from interval [O,d] onto interval (— oo,+oo). Parameters d and h

satisfy the restriction 2mh/d <1. The wavelength of incident plane E polarized wave was
varying within the range 0.5 < d/A <3.5. Permittivity of the first medium has been chosen as
g, =1 and of the second one as €, =2.25. Permeability of both media is p =1. Functions
a, (y),a2 (y) are chosen for they belong to two essentially different classes. Namely, function
a, (y) has a finite series of its Fourier coefficients. In the contrary, function ¢, (y) and a3(y)

have an infinite Fourier series, which Fourier coefficients have algebraic type of decaying only.
Results of numerical tests are presented in Fig. 1. Solid lines correspond to the exact functions

a, (y),i = 1,2,3 Lines depicted as crosses are the graphs of functions alR (y) and aRz(y) that
have been defined via input data R"(km)= (R; (7»,” ))N

n=—N
algorithm. As they almost coincide with graphic accuracy, the deviations

10h™ Qa, (y)—akf(y))i =1,2,3 are presented in the same figures as doted lines. It worth to

according to above described

emphasize that maximum absolute value of deviation essentially decreases with value of points
P increases (we remind that P is a number of values of incident plane wave wavelengths, for
which the input data, m=1,2,. .. P, have been calculated) that is in compliance with given level

of noise in input data R(?\./”)Z(R” (X,,, )):V:_ - Rather good approximation used for starting

values of Fourier coefficients guarantees the shape reconstruction with accuracy 1072 —107.
These algorithms are efficient tools for the study of influence of input data errors on the
accuracy of boundary shape reconstruction.
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Figure 1. Reconstruction of profiles given by functions (y) (a).a, (y) (b). and a; (y)
(c) for the values P =6, &, =225 ,0.5<d/h <3.5, 2nh/d =0.4.

It is well known that one of the most complicated problems in solving unstable problems of
reconstruction is the problem of matching regularizing parameter oo with given level of errors in

input data R . We have demonstrated that such tradeoff can be obtained be means of residual

nn

method [7, 8]. We shall demonstrate this statement for the test problem for reconstruction shape
of the surface, described by the function a, (y). Basing on the solution to direct problem we

have calculated the input data R’ = R’ (X, )(1+7 - Rand) for various levels of relative error

mn m

Y . The error Rand has been simulated be the generator of random numbers with normal

distribution. One of the numerical examples is presented in Fig. 2. In fragment a) you can see the
characteristic behavior of relative error of profile reconstruction has been estimated according

formula ola )= 2 R calculated for numbers of

n
oa=10"n-12...N; N<10. Here a are exact values of function a,(y) Fourier
coefficients. As it is clearly seen the function 6((1) has pronounce minimum, that appears for all
considered levels of error y . In pictures b) and c) the results of boundary shape reconstruction re
presented. Relying on our numerical experiment we can conclude that reconstruction can be
performed with best accuracy for that value of o , that provides minimum to function o (0().

The residual method can provide reliable determination of optimal value of a according to

PNz
IR, - RE,
relation o, = Sup((x TA, (y )Sy). Here A, =| “———————| is a relative residual of
o

¢
Z IRIHN
n

that are the results of the solution of direct problem, calculated for

o

input dataR’ ~and R

mn mn

function a* (v) found out from minimization of (3) for given y . From the results of numerical

experiments we can see, that A, (y) depends on o monotonically, and, thus o, is unique

opt
for each level of input data errors. The suggested algorithm, which performs reconstruction of
shape of periodic boundary between two dielectric media relying on information about
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diffraction harmonics that are known within certain interval of wavelength, requires certain
starting approximation for Fourier coefficients of function a(y) describing boundary. Such an
approximation can be constructed by generalizing results of [10].

point a point b

Fig.2
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REFLECTIVE PROPERTIES OF GRID STRUCTURES WITH
DIELECTRIC COATING
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ABSTRACT

The based on the solution of an integral equation method for calculating electrodynamic
characteristics of a half-wave dipole located above the grid screen with dielectric coat-
ing is considered in the article. The acquired analysis results allow to estimate the influ-
ence of geometric parameters of the screen and dielectric parameters on radiation char-
acteristics.

Grid screens are widely used in antenna techniques. They are used in various devices
for electromagnetic protection, as reflectors of mirror and dipole antennas, as screens of
passive retranslation. Depending on the function of antenna system application of a grid
screen allows to solve such problems as mass reduction, wind impact reduction etc.
While exploiting these systems quite possible is the formation of different kinds of thin
coating, icc for instance. that can be approximated to an ideal dielectric. That is the
practical importance of the research work concerned with modeling of electrodynamic
properties of grid structures.

Usually the reflective properties of grid screens are considered using the results of
solving the task of a plane electromagnetic wave incident on the grid of infinite dimen-
sions [1]. But in practice we deal with systems of finite dimensions.

The purpose of this work is to model the radiation characteristics of half-wave dipole
located above the grid screen covered with dielectric and to determine the dependence
of these characteristics on dielectric permittivity and dielectric layer thickness.

The solution of this task was found within the limits of thin-wire aproximation usig an
integral equation which is an analogue of Pocklington’s equation for thin ideal conduc-
tors [2]:

J.](s’) K(s,s")ds' = iwe,E. (1)
1
K (5) =56, 5 - () 4 2 LG) @

-tk , 3

3
G""” = ;.TU’ ’ ':’ - z(x' —x")z +(12 ° ’;) = JZ(xl _x/’)z + b2 5
1=

b 1=

where s,s" - the curvilinear coordinates counted along the conductor, x,,x/ - cartesian
coordinates of observation and source points, €, - relative dielectric permittivity of the

layer, k - wave number, o- cyclic frequency, 2a — conductor diameter, d=b-a - thickness
of the dielectric layer, L - general length of the vibrator and all conductors of the grid,
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I(s) — the sought function of current distribution, E! - tangential component of an elec-

tric fields.

The solution of IE (1) is found by the method of moments transforming it to a matrix
equation, choosing step-function as the basis function and delta-function as the weight
function [3, 4].

mn=n 2" mn
n=1

N
E, =YK, K, = [K(s,.s')ds' mn=1..N 3)
as,

To provide solution convergence it is necessary to choose the optimal length of seg-
ments of conductor fragmentation, the side of the cell should be covered with an integer
number of segments [5]. The choice of wavelength is determined by the IE core behav-
iour. In this connection the analysis of IE core dependence on dielectric parameters for
thin-wire structures of different configuration covered with a layer of dielectric was car-
ried out. It is found out that the optimal fragmentation for electrically long rectilinear
structures is As/A =0.04...0.05.

The calculation of amplitude-phase current distribution for dielectric permittivity

e=2...9and the thickness of conductor dielectric coating d/A =0.05...0.4 was made.
By the known current distribution the radiation field in far zone in 2 mutually perpen-
dicular planes E and H was calculated. Using the results of calculation of orientation
characteristic the width of the main lobe of half-power, the level of back radiation were
determined. That allows to estimate the reflective properties of grid screens. The square
screen was considered, its geometric parameters varied within the following limitations:
side lengthL /A =0.8...2.4, square cell dimensions //A=0.08...0.3, conductor ra-

diusa/A =0.005;0.01. The half-wave dipole was located at the height A/A=0.25 in
parallel with grid plane.
Calculation results for the grid screen with parameters L /A=2.4, I/A=0.15,

a/\ =0.005 are shown on fig. 1- fig. 4.

On fig. 1 as an example the dependence of maximal level of back lobe (MLBL) p in
planes H (curve a)and E (curve b) on dielectric permittivity € is shown. MLBL is nor-
malized on the radiation maximum of the main lobe. On fig. 1 also shown is the the de-
pendence of mean level of back lobe (mean LBL) in planes H (curve ¢) and E(curve d)
on dielectric permittivity . (mean LBL — the ratio of rear lobe area and the main lobe
area). On fig. 2 the dependence of MLBL and mean LBL on dielectric layer thickness
d/A is shown. On fig. 3 — 4 the change of the main lobe width of half power 28¢5 in
planes H (curve a) and E (curve b) from dielectric permittivity (fig. 3) and dielectric
layer thickness (fig. 4) is shown.

The numerical investigation allows to make the conclusion that for a grid screen of fi-
nite dimensions the increase of dielectric permittivity and dielectric layer thickness
leads to decrease of shielding effect. This is found to be in good agreement with similar
structures of infinite dimensions [1].
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The offered methods allow to estimate reflective properties of a grid screen of finite di-
mensions covered with dielectric in dependence on geometric parameters, dielectric
permittivity and dielectric layer thickness.
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ABSTRACT

Several integration schemes are applied to the differential method for a sinusoidal-
profiled surface-relief grating made of an anisotropic and conducting material. The nu-
merical results show the importance of the numerical stability and the advantage of the
implicit integration schemes.

DIFFERENTIAL THEORY OF GRATINGS

We investigate the diffraction problem on a surface-relief grating ruled on an aniso-
tropic and homogeneous substrate schematically shown in Fig.1. The grating grooves
are parallel to the z-axis and the equation of the grating surface is y = p(x) where

p(x) is a known periodic function with the period d and the depth /. The region
y > p(x) is filled with a homogeneous and isotropic material described by the relative
permittivity €, and the relative permeability p,, and the homogeneous and anisotropic
material that fills the region y < p(x) is described by the relative permittivity matrix

g and the relative permeability matrix ;4_2 We consider only time harmonic fields as-
suming a time-dependence in exp(—i® ), and deal with the plane incident wave propa-
gating in the direction of polar angle 6 and azimuth angle ¢ .

The differential theory [1,2] is one of the most commonly used approaches in the analy-
ses of such gratings. Thanks to the periodic structure, the electromagnetic field compo

YA

\ o

Figure 1: Geometry of the surface-relief grating under consideration.

Kirv, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY



424 MMET*02 PROCEEDINGS

nents can be approximately expanded in the truncated generalized Fourier series [2]; for
example the x -component of E field can be written as

N
E,\' ('x‘ }}’ Z) = Z E-\'.I} (.)y) exp[i(aux +Y:)] (] )
n= N
with
) 2n . .
o, =k, sinB cos¢ + n7 . Y =k, sin0 sin¢ (2)

where N is the truncation order. &, is the wavenumber in the region y > p(x), and
E_, (y) are the nth-order generalized Fourier coefficients which are functions of y

only. Replacing all the periodic and the pseudo-periodic functions by their Fourier se-
ries and using the Fourier factorization rules [3], Maxwell’s curl equations are trans-
formed into a coupled differential equation set in the form of

e (y) e (y)
die.(y) e.(y)
—| =M()| - 3
ol n o | o &)
h.(y) h_(y)

where, for example, e (y) denotes a (2N +1)x1 column matrix generated by the Fou-
rier coefficients of £, and M(y) is the coupling coefficient matrix. Then, the scatter-

ing problem of grating is reduced to an integration problem of the coupled differential
equation set with boundary conditions at the top and the bottom of the groove region.

NUMERICAL RESULTS OF VARIOUS INTEGRATION SCHEMES

One method for integrating the coupled differential equation set (3) is the rigorous cou-
pled-wave method. which introduces the staircase approximation to describe arbitrary
profiled gratings. The real profile in each step is replaced by the structure uniform in the
y -direction, and then the boundary-value problem can easily be turned into an eigen-
value problem because of the absence of the y -dependence. Another approach is based
on the shooting method, which can transform the boundary-value problem into the ini-
tial-value one. The initial-value problem can be solved by usual numerical integration
schemes. In the narrow sense, this approach is called the differential method. In the
method, the Runge-Kutta or the predictor-corrector Adams schemes are suggested for
integration [2.4].

Here, several numerical integration schemes are applied to the differential method for a
sinusoidal grating made of conducting material and the convergences of the TM dif-
fraction efficiencies in —1st-order with respect to the number of the integration steps are
compared in Fig.2. The grating parameters are chosen as follows: A, =0.6328 pm,

0 =30°, ¢ =20°, d=0.6um, h=05um, p(x)=(h/2)[1+cos2nx/d)], €, =, =1,
€y =6y, =€, =-819+716.38, ¢, =-¢, =-0495-70.106, ¢, =¢, =

€1, =€, =0, ;l: =1.and TM (H, =0) polarized incident plane wave. To avoid

the numerical difficulty for deep gratings, we used the scattering matrix propagation al
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Figure 2: Convergences of diffraction efficiencies computed using various integration
schemes (DM: differential method, RCWM: rigorous coupled-wave method, ERK:
classical fourth-order Runge-Kutta scheme, EAS: predictor-corrector Adams scheme,
IMS implicit midpoint scheme, IRK: implicit fourth-order Runge-Kutta scheme, IAS:
implicit Adams-Moulton scheme).

gorithm [5]. The rigorous coupled-wave method shows stable convergence but does not
give reliable solutions for such a conductive grating as reported in Ref.[4,6]. The ex-
plicit schemes (ERK, EAS) show serious numerical instabilities and require large num-
ber of integration steps for reliable solutions. On the other hand, the implicit schemes
(IMS, IRK, IAS) are numerically stable even when the number of integration steps is
small. Consequently, the use of implicit schemes reduces greatly the computation time
and is highly suggested.
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Periodic layered structures are considered. Each layer of the structure is an array of
plane metal strips of complex shape placed on a dielectric substrate. The frequency de-
pendencies of eigenwave propagation constants have been obtained. The reflection co-
efficients from the half-space filled by such medium have been studied. The results for
structures made of identical layers and for structures composed of pairs of different lay-
ers are presented.

1. Let each layer be constructed by using the plane C-shaped elements oriented in one
direction (see Fig. 1a). In this case, on the array period small compared with the incident
wavelength, the first or even the second current resonances are possible on the element.
The periods of all layers along the OX and OY axes are identical. The layers are posi-
tioned perpendicularly to the OZ axis (see Fig. 1b). The field near this array may be
presented as the sum of an incident field and the field reflected by the array. The re-
flected field may be presented as the sum of spatial harmonics (see [1]). We shall con-
sider the case when only one spatial harmonic is propagating. Its propagation constant is
equal to k.

The matrix elements of the reflection and transmission operators (» and ) for

CcCciccC A,
CClCC & z
CClCcC i
ccccl |

L
Fig. la. Fig. 2a

v

one layer can be obtaincd by using the method of moments. As we take into account
only a one harmonic and consider two orthogonal polarizations. the reflection and
transmission operators look like square 2x2 matrixes. And as the chosen structure of the
layer is symmetric, there will be no transformation of polarization of the reflected and
transmitted field. Thus the matrixes » and ¢ will be diagonal. The operator equations
describing the eigen waves in such medium is possible to derive in the same manner as
in [2]. They are:

(]—e"”"l”e)?l,’ —red, =0 (1a)

rredr —~(I-e™re)d, =0 (1b)
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where e is the operator describing change of a field propagated from any layer to the
neighboring one; Z‘f are the amplitudes of eigenwave partial constituents in the interval
between j and j+1 layers (hereinafter the "+ and "—" superscripts refer to propagation of

the wave from left to right and from right to left, respectively); L is the period of the
structure; B is the propagation constant of an eigenwave.

s, | Re(BL). Im(BL) sz . Re (BL). Im(BL)
Re (BL)
. 4
o Re (BL) b
2n 2 -
" r T A Im (BL)
ol Im (BL) . A
e, R I T
Fig. 2a. Fig. 2b.

The dispersion dependencies for the eigenwaves propagation constants are solved nu-
merically. They are presented in Fig. 2a (the eigenwave is polarized in the OX plane)
and Fig. 2b (the eigenwave is polarized in the OY plane).

Consider semi-infinite structure of layers described above. The reflection operator for
such a structure may be obtained in the same manner as in [3] as a solution of equation

R:=r"+teRle(I-reRle)'t" )

Equation (2) is solved numerically by an iterative method. As an initial approximation it
is possible to take, for example, the reflection operator of a positive partial constituent

of eigen wave for semi-infinite structure. This operator is possible to find from (1a) and
(1b) in the form

R =(I-tee®™ )y, (3)

roplrz JIRT LR RT

08 - 08 b
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Fig. 3a. Fig. 3b.

Frequency dependencies of the matrix elements Ry« and R} yy are represented in
Fig.3a and 3b. Curve I in both figures refers to the reflection coefficient for a semi-
infinite structure, a curve II - for the reflection coefficient of one layer. Comparing de-
pendencies in Fig. 2 and Fig. 3, we can see, that the zones of total reflection from this
artificial medium refer to the cutoff zones for eigenwaves in this medium. It can be seen
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that in those areas where the reflection factor for one layer is close to unity, a sharp in-
crease 1s observed in the imaginary part value of the propagation constant. This increase
can be explained by the total reflection of the incident field from each layer, and there-
fore the eigen wave cannot be excited as a propagating wave. Thus, the imaginary part
of its wave number tends to infinity.

2. The difference between the reflection coefficients for different polarizations may be
undesirable in creating of microwave devices. To av oid this strong polarization depend-
ence. we shall rotate each second layer through 90 around the OZ axis. Consider a new
layered medium constructed from pairs of layers, one of which is rotated through 90°.
Let the distance between layers in pair be equal to h, h< L. Reflection and transmis-
sion operators for a pair of layers (R and 7') is possible to obtain in the same manner as
in [4].

The 1 subscript 1ef015 to a layer oriented. as in Fig. la. and the subscript 2 to the layer
rotated through 90°. The equations governing the eigenwaves in this medium looks
analogously to (1). And the equations (2) and (3) can be rewritten too.

02
0+ oc
o0 02 04 06 06 10 0‘0 092 D‘d 0‘6 1;3 !‘0
d d
Fig. 4a Fig. 4b

Now the solutions for the dispersion equation coincide for both polarizations. The re-
flection coefficient for this medium also will be identical to both polarizations. Its fre-
quency dependence is presented in Fig. 4b.
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ABSTRACT

Two mathematical models are proposed for analyzing a linearly polarized plane wave
scattering by a strip grating placed on isotropic-gyrotropic media interface in the case of
oblique incidence. the first mathematical model is based on reducing the original
boundary value problem to the Riemann-Hilbert problem. The second model is based on
reducing the same problem to a singular integral equation of the first kind with Cauchy
kernel and its numerical solving by the discrete singularities method.

In this paper, the results obtained in [1-3] are generalized for the case of periodic struc-
ture consisting of two strips of different widths per period (two-element grating). This
results in richer diffraction phenomena in comparison to simple grating because of ad-
ditional control parameters. Moreover, unlike papers [1-3] here the case of oblique inci-
dence of an H-polarized plane wave on a two-element grating is considered. The center
of coordinate system is chosen in the middle of one of the strips.

The following set of dual series equations is mathematical model of a structure

Z:AM’Ynleimp ZYOI’ ern <(p <e;§11); (1)

Y Ane™ =-p, 0 <p<0y), )
where v, =\/k3”112 -hl, n =&y, h, =k sing +—2—;—E~n,
2
Y 2 2 £ —¢&
v, =1+ N n = kS _hn9 £ = a
Ve Ry, —ilhy) VR :

€
- g, 2n
R=¢7, L:_82_83, k=27
YO] 27[ yn
=1- Lo=y,0, =2, (m=12),
T T S I o b

[ is the grating period, d is the slot width, A is the wavelength, { is the incidence angle.
Denote 4, = A r + PO, and 8, for the Kronecker symbol.

nn

Then initial set of dual series equations takes the form:

ZZne""" =0, 0, <p<0,"; (3)

h
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>, e 3, e e =1 - cost

>0 n <0 n ’0

6 <(P<eml 9 (4)
S A" ==4,. 6 ‘”<6 <0, ", (5)

n=0
The set of equations (3)-(5) can be reduced to non-homogeneous conjugation problem
(Riemann-Hilbert’s problem) with a complex-valued coefficient in the case of account
of dissipative losses.
To calculate matrix elements of final matrix equation. it is necessary to introduce poly-

In|G|

nomials O, (u,,.p) [3]. where p :~2—. u, =cosh, . (m=1,2).
s

m?*

In the casec of multi-element gratings. an efficient numerical-analytical method for
solving these dual series equations was suggested in {4]. The method consists in reduc-
ing them to a singular integral equation of the first kind with the Cauchy kernel on the
set of segments, and its following solution by the method of discrete singularities [4,5].
Integral equation is of the followina form
F ,
1FE) de +— J'K(\ EVF(ENE = f(x). xel (6)
nLE —X

where L = U(a

g=1

f(x).xeL;K(x.£).xe L. e L are known smooth functions, and function

—oo<a <b <..<a,<b, <+w;

G° )

F(&),§ e L is sought in the functional class whose restriction on interval (a,.b,):

F@E)=FE).  a<t<b.g=l..m
can be represented in the form

Y ——LY a
T JE—apo,-8)

where v (§), &€ la‘/* /)(/J is a smooth function.

< <b

¢

The sought function F (§).& € L satisfies additional conditions, which in general case

are of the following form:
J‘q,, EFE) e =C,, p=1..m, (7)

where §,(€), &e la b, J is a known smooth function. and C, is a known constant.

In conclusion we shall present the discrete mathematical model that is a set of linecar al-
gebraic equations for numerical solution of the integral equation (6) with additional
condition (7).

Denote

1! =cos

2n
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b, —a, b, +a,
= T+
g, (1) > 5

Xy =8,")s j=leun,-Lp=L..m

To calculate approximate values {an &) }"’l of the desired functions v, (§), g =1,...,m in
q g=

> q;] =gq(tiq)9 1= 1""’nq; q= 1,...,m

principal points {t," ‘ }Zl, we have a set of linear algebraic equations

(where R(x,§)= L+ K(x,8))
& —x

“ n n n, 1 n .
Z ZR(X/;;,>§41{/ )vqnq (E.J(/i])—’jl-":f(ijp)D J =19"'9np _19 p =17"'9m5
l/=] =1 q

& n n, 1 ,
3,65, €)= (=) Pl

4
The values of the physical characteristic of scattered field,
b
m q d&
H=|HE)FE)E =), |H, E)v, (&) -
J ;J’ " JE-a)b, -8)

are expressed in terms of the functions v (€), & €la,.5,], ¢=1...m,

where H, (), & e€la,,b,] are known functions.

Approximate values of
Hﬁ = Z Z Hq (‘)‘:3:7 )vqnq (&:;(I )_

2
t]=] i=1 n(l

n=(n,..,n,)

are calculated in numerical experiments.
Obtained results can be applied in the design and elaboration of various devices con-
taining periodic structures with ferrite substrates or in plasma.
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ABSTRACT

A semi - infinite homogenious nonmagnetic shielded slab with grating of thin metallic
strips that are printed symmetrically on both sides of the slab was considered. The main
wave of the dielectric slab falls under arbitrary angle on the boundary between slab and
grating. The dispersive equation of periodic structure was obtaincd and solved by nu-
merical-analytical method. The diffraction problem was formulated and solved by Vie-
ner-Hopf technique.

THE EIGENWAVE PROBLEM

Let us consider a homogenecous nonmagnetic dielectric shielded slab of thickness 2d.
Gratings of thin metallic strips with 21<<) width. where A is a wavelength in slab me-
dium, are printed symmetrically on both sides of the slab. Coordinates are assumed as
shown in Fig.1.The eigenwaves of the structure considered in our case are assumed to
be solutions of a boundary value problem for an electromagnetic field. These solutions
exibit a harmonic dependence on the x axis of exp(-jxx) and quasiperiodic dependence
on the z axis of type E(z)=E(z+nP)exp(jpnP). where y and B are spectral parameters
determining the wave propagation direction, and n is the strip number. The electric field
amplitude time dependence exp(jmt) is omitted for simplification. An electric or mag-
netic wall can be placed in the structure symmetry plane y=0. In the present article we
shall limit oursclves to analysis of waves corresponding to the magnetic wall case. Be-
cause of thinness of the grating strips. the longitudinal components of currents are much
more then cross components. So we can use only one boundary condition for the for-
mulation of the problem. It is assumed that E\=0 for perfectly conducting metallic
strips.

Let us obtain the approximate dispersion equation. This equation couples the structure
spectral parameters x and Bwith nonspectral ones: P/A. 2d/A, 2I/X, and &, — relative di-
electric permittivity of the slab. Keeping in mind the equal spacing of the grating, let us
set periodic conditions for the strip currents at I\,=loexp(-jpnP). where Iy — current den-
sity on zero strip. It is known that the cross-strip current distribution is given by the
Maxwell function (1-(z/1)* )"? [1]. Taking into account the above approximation and
using the boundary conditions, we shall formulate the integral equation as

v |
[ [GGext 2.2 1()exp(=jBrP)(1= (' 11) P dv'ds' = 0, (M
o -]
where
n=0,+1,£2,...- the strip number. The function G can be obtained by the Fourier integral
G(x,x"z,z") = Jg(@ aexp(—JjE(x —x") = jo(z - z")deda. (2)
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where g(&,a) is a known function. Let us evaluate an integral on o in (2) according to
Cauchy theorem. An integral on x' in (1) is evaluated trivially, assuming the current
variability along the strip to be I(x")=exp(-jxx’). It is equal to 2nd(E-y), where the sym-
bol & denotes the Dirac delta function. To avoid a z' dependence in (1) let us use the
Galerkin method. As a rule in a slab two modes are propagating ones. They are the TE;
and TM; modes with o= oy, and o= oe. The term with n=0 is calculated numerically.
As a result we obtain a rather simple relationship reducing the integrals on z’ and n a in
(1) and (2) to a double series. Evaluating an integral on & we obtain

ZDL'Dh + lekOBhwl Sin(XhP)De +jXBczk0_2n.\'2Xe_l Sin(XeP)Dh = O’ (3)

where Dep, = cos(yenP) —cos(BP), ns, Z are definite functions of y, and xe,h=(Bc,h2-x2)l/ 2,
For the grating considered, as a rule, single — mode conditions are not satisfied because
even in a shielded slab without a grating TE; and TM; waves exist. In the grating they
are converted into HE; and EH,; modes with similar structure. However, by proper se-
lection of structure parameters, we can create the situation where only the main HE;;
mode propagates. Cutoff conditions for HE}; and EHy; modes were obtained from the
dispersion equation

cult - k . cut
Bu, =P ]arccos[ﬁ ZO(O) sin(B, P)+cos(B,P) [;Brn, =B

h

THE DIFFRACTION PROBLEM

The diffraction problem was solved by Viener-Hopf technique. A semi-infinite homo-
genious nonmagnetic shielded slab with grating of thin metallic strips that are printed
symmetrically on both sides of the slab was considered. The main wave of the dielectric
slab falls under arbitrary angle on the boundary between slab and grating. The transfer
strip current approximation was taken as Maxwell function. The longitudinal compo-
nent of strip current was found from the integral equation formulated for boundary con-
ditions. Using the field expression through the Green’s function G and using zero
boundary conditions we obtain an integral equation:

[ I(s' ) Z(s-s' )ds’ + Ei(s) = 0, 4)

where E; and /, are the electrical field and current components that are tangential to the
strip axes. The function Z(s - s’) can be defined from the function G.The evaluation of
an integral in (4) is carried out along the strip axes. Using the Galerkin technique and
the transfer current approximation by the Maxwell function, we succeeded in obtaining
a one-dimensional equation from the two-dimensional one. It is convenient to solve
equations like (4) by using the Viener-Hopf technique [1]. Hence, we can obtain an ex-
pression for /i(s) in the Fourier integral form. Evaluating the residue of the integrand at
the point o=y, coincides with the root corresponding to the HE,; wave, and describes
the current component of our interest (I;4z;)).
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NUMERICAL RESULTS

Dispersive equation (3) was solved numerically. Figure 3 shows variation of the HE|;-
wave longitudinal normalized propagation constant v=yo/ko versus cross-strip normal-
ized transverse propagating constant /By, for relative dielectric permittivity £~9.8. It is
shown that when B=0 (longitudinal wave propagation) the retardation factor is equal to
that of a diclectric slab H; — wave for any structure parameters. because in this case an
electric ficld has no longitudinal components (E\=0) and is not perturbed by thin grat-
ing strips. If the direction of wave propagation varies (f#0). the retardation factor in-
creases. It is characteristic for the dependence of HE> and EH,; — wave factors on /By,
for various structurc periods that from the onsct of some critical P value, the HE; —
wave retardation factor decreases rapidly.

Due to solving the diffraction problem we can obtain the conversion factor 7% of an H,
wave into an HE|; wave as a ratio of wave powers transmitted normally to boundary. In
Figure 2 the dependences of T (¢p) for various 0 angles and the period P/ = 0.45 arc
shown. High values of T° is seen in the range of angles ¢» from -45° to +45°. At some
angular points T°(¢h) is equal to unity. It takes place when the incidence angle ¢ is equal
to the angle between the direction normal to an array boundary and strip axes 0. The
main-mode incident wave does not interact with the grating. We observe complete
transmission for ¢» = - 0. In this case the transmitted wave is perturbed by the grating
strips. This effect is similar to the whole transmission with the Brewster angle in the
case of wave diffraction on the boundary between the two dielectric media. In some an-
gles the '[0(([)) dependence has sharp breaks. They appear when E; and EH,; waves be-
come nonpropagating ones. turning into an attenuating mode from a propatating one.
This is characteristic for so-called Wood's anomalies. when the derivative on 6 for
transmission factor and for reflectivity is striving to infinity at some points.

The proposed structure can be used as a basis for integrated beam-forming networks for
multibeam antennas. '
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ABSTRACT

In the paper technique of electromagnetic field calculation in near-field zone of
parabolic antenna with reflector edges covered by toroidal radar absorbing coating is
presented. The calculation technique is based on the applying of the integral
representations obtained using Lorentz lemma. For calculation of the reflector edge
parts contribution to the total antenna field the solution of model scattering problem for
half-plane with radar absorbing cylinder on the edge, sounded by plane electromagnetic
wave, is used. Calculation results for different values of radius of radar absorbing
coatings are presented.

INTRODUCTION

In a number of situations the radar systems antennas may be positioned nearly one to
another. In this connection the problem of electromagnetic compatibility and
interference immunity of such systems is of importance. One way of improvement of
antennas interference immunity in back half-space is the reflector edge coating by radar
absorbing materials. Therefore the problem of calculation of electromagnetic field in
near-field zone of antennas with radar absorbing coating on the edges is of interest.

THE TECHNIQUE OF SOLUTION

The parabolic-reflector antenna with reflector edges covered by toroidal radar absorbing
coating is located in the free space (Fig. 1). Let's consider a case, when the antenna feed
is the pyramidal horn located in antenna focal point.

Near the reflector surface antenna feed creates the following field:

=il o _&-,expljkoﬁo()?+,5)J
F)- 7 PR N

Here, according to Fig. 1 R’ is unit vector sounding direction from antenna feed to the

point 4 on the reflector surface, the angel @ characterizes a direction of a vector R’
concerning an antenna axis, and angel ¢ characterizes position of the point 4 with

reference to the plane xOz, p is the radius-vector, directed from the focal point to

., R°x{pxR°) . oL . o
vertex of reflector, p'= ’RO D is the polarization of wave incident in direction
X\pX |

R® (pis the vector antenna feed polarization), 4, &, are permeability and permittivity
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of free space, k, = @4/&,4, . The function F (0,(0) defines dependence of antenna feed

field amplitude and phase in a far-

field zone for angular coordinates

6 and ¢.

The field of the antenna in

observation point can be

represented as the sum of the feed
> field £'(%,) and field scattered by

antenna reflector £ (%, ):

%, EF)=E(E)+E(5). @

observation
' point As a main calculation formula for

Fig.1 determination of scattered by
reflector field we shall use an
integral representation of a field obtained using Lorentz lemma

_ ,//"n" _ : . ik — ~
PE(%,) == [ -‘-’ﬂ(z 2k 5 R e s+
dr i r & \ Jkor” Jkor®

)/l"u" 7 . -
1 g (1 j.k()i jﬁ(’? y El')ds

dr o !

, 3)

where S is arbitrary closed surface which encloses the antenna reflector. EY=iixE,
H* =#ix H . i is the internal normal unit vector. 5 is the receiver polarization. 7, is
the unit vector of the direction from a point on the surface S to the observation point.
p =7, p*= 13—(13"70)1—1) . r is the distance between the point on the surface S

and the observation point. Let's select the surface of integration as a surface coinciding
with reflector surface everywhere except the some neighborhood of the edge. Then the
integral in (3) (we shall denote it as 1(:?0)) it is possible to represent as the sum of

integrals on the reflector surface S, not including a neighbourhood edge. and surface

S, - enclosing edge neighborhood
](xo) = ]x, (fo ) + lx(, (fn ) 4

L (%,) we shall calculate using the solution of the model scattering problem for hal

plane with radar absorbing cylinder on the edge. sounded by planc electromagnetic
wave [1]. Since the electrical sizes of the antenna reflector arc great. the contribution of
the surface S, in total field we shall carry out in Kirchhoff approximation.

RESULTS OF NUMERICAL CALCULATION

Using described technique the calculations were carry out for a case when kja =30
(ais aperture reflector radius), k,f =26 ( f is the reflector focus distance). the feed

created distribution of ficld amplitude reducing to antenna edge on 15 dB, the
observation point located on the plane yQ:z, the absorber is made of the material with
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relative electrical parameters 2 =1.35+ j0.8 and &£ =20+ j0.1. In figures 2 and 3 the
dependences of normalized amplitude of antenna field from the angle between a

direction of observation point and axis Oz are presented. Distance from the origin of
coordinate system to the observation point was 174 (A is the wavelength). The figure 2
corresponds to the case, when the vector of feed polarization is parallel to axis Ox, in
the figure 3 the feed polarization vector is parallel to axes Oy . In figures 2 and 3 bold
solid lines correspond to a case, when the absorber on the edge is absent, a thin solid
line corresponds to a case when the absorber radius is equal to 0.24, dashed line
corresponds to the case when the absorber radius is equal to 0.44.

|E|/|Emax|, dB
2
¢

‘~;
P4

|E|/|Emad, dB
&

Fig. 3
The analysis of simulation results has shox%rn, that the using of the absorber with radii
0.24 and 0.4 reduces the antenna radiation at y =177°..180° at the average on 7 dB.
For different polarizations the value of lowering antenna lateral radiation is also
different. So for y =140°.170° at the figure 3 we can see rather strong radiation
reduction for the antenna with radius absorber equal to 0.24 .
It is necessary to denote that choosing of absorber parameters should be carried out for
each specified construction of antenna.
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ABSTRACT.

The reflector directional characteristics determination method grounded on the usage of
the second kind Fredholm integral equations for "jumping"” of the current surface
density is offered.

When using the thin absolutely conductive unenclosed shield as an antenna. the exact
calculation of the distant side and backward radiation is possible if we use the Fredholm
first kind integral equations. The solution of the second kind integral equations for the
diffraction problems on unenclosed shields with boundary conditions the Dirichlet and
Neumann types are considered in [1, 2]. However it is difficult to algorithm the
obtained three-dimensional problems solutions in the special functions class.
This limits the feasibilities of the numerical method usage when calculating real
unenclosed constructions. The purpose of this article is the development of the
Fredholm second kind integral representations operation theory for calculation of
reflector spatial characteristics as a paraboloid of rotation in quasi-optical range
(D/A=10). When calculating exactly it is necessary to bear in mind that the behavior
character of surface currents in the central part of a reflector and in the boundary zone
can considerably differ from each other [4]. The calculation and registration of "edge"
currents allow to calculate exactly the intensity of the distant side and back radiation.

If we enter a concept of the current surface density “jumping” [1] on a surface, defined

as K = (ﬁL)Jr —(fﬁ“ )_ = J¢ —Jg . the solution of the delivered problem outside an

ideally conductive surface S can be expressed through tangent components of electrical
and magnetic vectors on the surface S

AMm) = F{O(M)+Lcj gmd,,fﬂ’(_—ikfo?(P) s . (1)
47t S R/WP

Where Rygp - the distance between the M and P points (P - a point on a surface S. M —a
. . o + = — ~ .
view point), <HL) »(HL) - the normal to a surface of a component of a magnetic

intensity on the internal (lighted) and external (shadow) mirror surface sides, J¢,Jg -

the area current density on the internal and external reflector sides.
If we multiply (1) by ﬁpo and to aim on a normal the M point to the Py point of the

surface S, then, using the properties of a simple stratum potential normal derivative. we
shall receive the Fredholm second kind representation:
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exp(— ikRpp, )

P

78 0)+ T5(80))= 38(r) - = [, <| U3 ()~ T (P g s @
S

The task of determining the volumetric current density distribution is reduced to a
repetitive process, at each stage of which the Fredholm second kind integral equation
concerning the area current density on the lighted j§ or on the shadow .7§ side of the

reflector with an updated right side, is solved. The iterative procedure application allows
to update the area current density value on both sides of a reflector in the boundary area
essentially influencing the distant side and back radiation. It allows to reduce the
integration area and to reduce the run time. For implement a numerical algorithm

determining the area current density Jg(Fy) or J§(F) on the surface S, it is dissected

into N of not intersected cells. The sizes of the cells can be selected 0,1A (A -
wavelength) [3]. The Focks equation for the surface current density, for example, on the
external side of S, will look like

O

exp(— ikRpp, )}dS _
S

Rpp,
€)

7 7 1 = exp\—ikR ’
= 2J§’(PO)‘J§(PO)‘£ J’”e(PO)X{J;(P)x gradp_(]g;f&_):lds
N 0

Because of the boundary conditions the Meixner conditions for the surface current
density will be as follows: components which are orthogonal to the edge will have the

feature of the aspect p_l/ 2 and components which are parallel to the edge will have the

aspect p]/ 2 [4]. Then the solution is searched as

N N N
J;/+ = Pl/z ZA,,\I’,Z, J;/+ = p—1/2 ZBn\Pn’ Jz_/+ = p1/2 ZC”LP’?’ @)

n=1 n=1 n=1

where p is the distance to the edges of a mirror, 4,,,B,,,C, are unknown factors,
¥, is known system of functions, N is amount of surface segments.

When we hold numerical calculations a collocation method is used. The Haar system of
characteristic functions was selected as ¥, [3]. If the integration points coincide the

kernel has a feature, to eliminate which, it is excised by a circle with the radius e=10°%
[3]. The presence of the feature allows to generate a system of linear algebraic equations
with a dominant principal diagonal. In fig. 1 the relation of the K y component of the

surface current density for f=1GHz is shown. Curve 1 corresponds to the physical optics
approximation, curve 2 - current density obtained on the basis of the integral equations
solution considering the boundary conditions. From fig. 1 we make an important
conclusion that when we determine the currents it is necessary to carefully calculate the
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® ' ' ' ' 7 boundary area making approximately 0.5n
iZw 4 from the mirror edge, and we can use a
oL : physical optics approximation for the rest.

10 |- o~

of 214 Knowing the distribution of currents on a
‘r 7 surface, we can determine the directivity
N I -----~, | diagram in a far-field region (fig. 2).
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Fig. 2. The pattern of a reflector (f=1 a GHz)
(1 - total field, 2 - field created by a boundary part, 3 - field created by a central part)

From the data, shown in the figures, it is possible to make some more important
practical conclusions concerning reflector characteristics calculation: 1. The basic
contribution to distant side lobes is given by the edge. which at angles more than 15°
determines the shape of the whole pattern: 2. The registration of "becoming numb"
currents allows to determine the level of the reflector back radiation - it diminishes with
the increase of frequency and makes about -40 dB for this construction.
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ABSTRACT.

A number of problems arising at designing and the analysis of dielectric rod antennas is
reviewed. The complex propagation constants for the HE,, wave in a dielectric rod are

obtained. The field disribution along the rod of finite length with allowance for
reflections from the rod ends is analyzed.

INTRODUCTION

At present time decimeter and centimeter bands are widely used by different
telecommunication systems. Requirements to antennas depend on their field of
application. To protect antennas against climatic factors different covers are put on the
open surfaces or the streamer is mounted, that can result in changes of an input
resistance, distortion of antennas patterns, rereflections of a signal etc. The dielectric
rod antennas, exciter of which is completely submerged in a dielectric rod from
polystyrene or ceramics less depend on aggressive environmental factors and can be
widely used by different telecommunication systems.

THE WAVE PROPAGATION ALONG THE ROD
The hybrid wave HE,, is the main wave of dielectric rod of circular cross section. It has

both magnetic and electrical longitudinal components of an electromagnetic field. From
a condition of continuity the tangent components on a surface of a rod it is possible to
receive the following equation:

4?2t 2 (e n2ye? =ieoyl (YU T YD oy o Vo Kpalvo) _n
T f g n (8 1) le [8 V2 ( ) Vi ( R'KH(WZ) R)]

R-J,(y)) R

*

Vi Jav) n

R-J,(y;) R

4. nz . 2 .g- R2
yi = P TRk ,
Where: c , X transversal wave number in a rod,
4.7 f2. R2 ,
Y SEICPRY Ik .
c , X, transversal wave number outside of a

rod, g=hR=Re(g)-i-Im(g), A is alongitudinal wave number.
Numerical solution of the given transcendental equation rather g at known f,R,&,n

allows to find required propagation coefficients of an interesting type of wave.
The obtained results for two materials are shown in the fig.1

-K
Vs n~1(W2)__’1)]

— 2;
) Vi ( R'Kn(\VZ) R

*[y3 - (
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Fig.1. The HE,, longitudinal wave numbers

REFLECTION FROM THE ROD END
As the first approach the hybrid wave reflection from the rod end can be considered as
the sum of reflections of different polarization inhomogeneous waves.[1]

g = Wycosp—H cost
' W, cosg+ W, cost

E()
I/V[ =- H o5 M?_.]}-t-fjm -
JUHL) () cosO =+ 1-sin’0
H’

COSP = o L
T J(HY +(H])

cr K, -sin@

| A U
*OH? H®

- 0

sinf = /¢ hi

ey

£
HS
E*
0 H""'
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P W, cosp+W,cosf
EO
W cosp= "1
H‘/’
E' E’ct
W, cosg = L = Eib:cigl
HW Hf/)
cos *-'1-sin’ @
[g'g = = -
sin@ sind
,,,,, —- 0
sin@ = ~.;'l51 sing =g, ——65 o
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When the square radix sign is chosen, it is necessary to take in to account that
abs(R,,) <1

The obtained results for the reflection coefficients depend on distance from the rod axis.
The antennas pattern calculation uses the rod surface field distribution, that’s why the
reflection coefficient values when r= R are used mostly.

Thus for £ =2.5-0.001i, f =2.5GHz, R =3.5cm following results were obtained:

e i @3 Xl 1.5 24 Xy 30 3.
0.2 v_“w“—“ _ Re( R, J [ . L 1 1 X N
R 8 oot
0.5 1.0 1.5 2.0 25 3 3.5 0!
0 - S em fnif Ry
A 0.2
.2 ] Im(R,) "3 T .
) ""x\‘ Rer R,)
(.4 N
0.4
0.5
-0.6
R, _, =-0.064-0.637i R, ,=-0587-02317i

Fig. 2. The reflection coefficients for the different polarizations

Usually one end of the rod is leaned against waveguide metal wall. In this case the
reflection coefficient is equal -1 or +1 (depend on polarization of the falling wave).
Thus for the components E,,, H ., H_ the reflection coefficient from first (metallized )

end is equal R, =-1 from the second end (in free space ) is equal R,. For the
components H,,E,,E, the reflection coefficient from the first end is equal R, =1,

from the second one is equal R, .

The field distribution along the rod of the finite length L can be obtained as
superposition of multiply wave reflections from the rod ends. In the general case the
each component distribution along the rod can be presented as

1+R .e—-?.ih(L—:)
1,2
1_R0 . 121’2 . e—ZihL
where 4 is a longitudinal wave number, ¢, is an initial phase, U () is the angle
component distribution ( variety sin(e) or cos(e) ).

Ula,z) = Uy(a) ™ -
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ABSTRACT

The mathematical model of the statistical analysis of a standing-wave ratio of a voltage
on an input of the radiator is offered depending on small random fluctuations of values
of reactive elements, included into the radiator and from coordinates of their inclusion.
From the results of a statistical estimation it follows. that minor random deviations of
parameters of reactive loads of the short vibrators from design values result in essential
changes of a standing-wave ratio, that must be taken into consideration at designing and
using of similar radiating systems

One of the important internal radio parameters of radiating systems (RS) with
impedance elements is the standing-wave ratio of voltage ( K ) on input connectors RS,

which as is known is expressed through active ( R;, ) and reactive (X, ) components of

input impedance at given frequency as follows [1]:

m'

K, =De 1-ar? s rn2 4 xn? ] - 1—dRD (4R 4 X
s +"\. ( + ll7) + i [ . i ( + IN) + m °
(1)

n - . . .
where Rj,, ., X/ are normalized on a wave impedance of a feeding channel W)

n
components of input resistance of a radiating system.

n

/7 and X[ are functions of values (x; ) of geometrical

In their turn components R in
parameters RS (d.r,), included in it of impedances (Z) and coordinates of their
inclusion (/4 ), operational frequency ( /) of an exciting source U, wave impedance

Wy ete (see fig.1). Thesce relations can be presented as:

RIV=R(x).xgexpy )= R(x;). =12, N

Xig = X000y )= Xg) i =120 N: )

n

Taking into account. that R}, X/}, x; are random quantitics and rcgarding systematic

components of errors of values R}, X/ and parameters x;, which can be defined and
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eliminated, we consider expressions (2) with the account of only random errors (A x; )

the estimation of which is fulfilled below.
Let's expansion (2) in a Taylor’s series near to average values of x; or their

mathematical expectations [2]:

n N A2 pn
R}, +Apn =R(x,-)+zaaR’” A, +lZ————a Rz’” Aii +os

ﬁlx’ %1 0xj
ox ;! 1 02X] o
n — i in : m
X+ A —X(x,)+z o Ay +22 2 K, e 3)
i=1 i=1 ?

Provided that the random errors A, are small in comparison with values x; we
neglect addends containing hjwers of A X, above the first. Further, subtracting (2) from
(3) we receive values of random errors as:
N n
6R,',71 n oX i

Powering both parts of expresswns (4) in a square and taking into account absence of a

correlation between parameters x ; , we determine dispersions of components R}, and
X [77 .
| N ( apn \ N n \2
2( n)_ aRin 2 . 2( n)__ a*Xvin 2
o \R;, |= — M ox;); o\ )= —= | o\x;). 5
b E;(a (x:) b Z‘ | ) ©®

At known dispersions (5) we determine a dispersion K, considering similarly to the

previous making of expressions (5) provided that the random errors A R" and A g are
/ in

small in comparison with values of the relevant components R}, and X [, :

2

oK oK

GZ(KS): : +_—% 'Gz(Rm) (XI’ZI) (6)
OR;, 00X,

Derivatives from K| for expression (6) is determined from (1) as:

n? _ n? _
OR}, 5 ARY ; ﬁ" 2
277 R! f
[(1+R,~’,’7)2+X{,’7 ] B Ry
' (1+Rl-',’7)2+X}71 \’ (1+R,-n +X,’Z7
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oK, 8RI X!, "
aXiZ 2 ’ ?
> 27 AR! 4R"
{(1 +RET + X0 } e B B
colernPexr | GernFexn

and dispersions of expressions R;;, and X, for the studied radiator we shall find from

n
the formulas (5).
Thus, with the help of expressions (4) - (8) it is possible to design a statistical estimation
any RS with included reactive elements. Thus, it is necessary to know particular

relations such as (2) for R}, and X, and derivatives from them on the conforming

parameters x;.

Let's put the results of a statistical estimation K on an input shortened twice

(d=0,12 1) concerning resonant length of the symmetrical vibrator with included in
radiating branches the inductive loads depending on random fluctuations of values of
these loads and places of their connection (fig. 1). An estimation is designed by method
with usage of the theory of an equivalent long line.

The results of research are shown in

G2 K
or a fig. 1. As follows from the charts
. of a fig. 1 random changes of
id 6t .= var; parameters of included reactances
S L=const result in essential oscillations K.
% 7l 7= var: For small-sized radiators of such
% type it is possible to §xplam '[hl.S
& AL/ phenomenon by narrowing of their
) + 1 bandwidth  because of linear

o _ 0,05 Any /iy shrinkage of length.
Relative the variations L and /i, Let's mark, that in the not shortened

Fio 1. Di fon K q d radiators of a fluctuation of
y - o " | . .
18.1. LISPEISION Ky VErsus the random €Irors — poqotances. included for correction

L and hy, distribution of a current in them
with the purpose. for example, dilating of frequency range or the correction of the
directional diagrams do not result in such sharp of variations the input characteristics.
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ABSTRACT

The algorithm >f the sidelobe tevr.{ optimization for the dual shaped symmetric reflector
antenna with the aperture diaméter D > 20X is presented. It is based on the method of
the far-field raftern estir——*ion by the aperture distribution. The maximal aperture
efficiency is the criterion hﬂe aperture distribution optimization on the condition that
the far-field pattern estimation answers to recommendations ITU-R. Optimization
parameters are defined by the function of the aperture distribution that is described as
analytical function with shadow area at the center aperture, uniform area and transition
regions. :

INTRODUCTION o

Modern communication reflector antennas with the high aperture efficiency for ground
stations are to comply with international norms and parameters. If antenna for ground
station operating with geostationary satellites put into commission after 1995 then its
radiation diagram must satisfy to ITU-R recommendations.

Traditionally such antennas are designed by using of the geometrical optics technique to
synthesize the reflector surfaces [1]. The resulting surfaces S, and S, (Fig.l) are
determined by the solution of the system of differential equations when functions of the
aperture power density / (r) =f? (r) and the primary feed pattern ./ (8) are chosen. As a
rule the ensuring of maximum aperture efficiency is the main requirement for the choice
of the function described the aperture power density. Execution of ITU-R
recommendations for the sidelobe level supposes a finding of amplitude distribution
function f(r) as a result of decisions of the pattern synthesis problem.

In this paper the choosing of the form of the amplitude distribution function is discussed
and possibility of its parameters optimization for providing the specified sidelobe level
without essential reduction of aperture efficiency is analyzed.

A DESCRIPTION OF THE METHOD

As known, the physical optic technique for the far-field calculations becomes equivalent
to the aperture distribution method when the aperture diameter of the reflector antennas
is D > 20X . Therefor in this paper the sidelobe level evaluation is fulfilled valued by
the aperture method, and the antenna gain is determined on the base of the aperture
efficiency n,(f(r)) calculation.

Kirv, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY



450 MMET*02 PROCEEDINGS

The amplitude distribution in the aperture of the axially symmetric dual reflector
antenna may be expressed as the difference of analytical functions:

/)= £0)-£0) )
where
£ l, r<a,
r)= )
7 exp(—b((af2 —r)/(a2 —1))') a, <r<l
_ la r< Dinin R (2)
fz (’) = COS(E ((l‘ - amm )/(al _amm ))2 ]’ amin sr< al
0, a, <r<i
r=R/R,,. isthe normalized coordinate of the amplitude distribution function,

7o =R /R is the relative radius of the shadowed central area, a,, a, are relative

radii of intermediate areas. the coefficient » = —In(f (1)) define the field level at the edge

of the aperture (Fig. 2). This type of analytical function is suitable for problem decision
of the aperture efficiency optimization:
nflmzn = InaX(T] a (al ° az *b)) . (3)

However the expression (2) can’t be used for the analytical calculation of the radiation
integral K*(0,0)= IE“‘ exp(jkp iy )dS, , which is required for the estimation of the
Sy

reflector antenna far field:

'k N .
E(R,O,(p)z—Lexp(—A]kR)lRX(l:+lR)-KA : (4)
4nR
RL
s. A :\
:' g .
o = o5t g !
¢ [ -
: - !
o 4 = : : ——t
e oL 0z, 0.4 0.6 08 . !
\I 1 2

Fig. 1. Shaped feed

Fig.2. Amplitude distribution at the apertur
system for the reflector 18 P aperture

So the amplitude distribution function (1) is approximated as difference of series:

. 2 Y
=S Al f B BI-Ca) ) 0srca )
. 05 a] <r <1
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where 4,, B, are approximation coefficients of functions f;(r), f,(r), accordingly.
Matching points along radial line of the aperture coincide with zeros of Chebyshev
polynomials 7, (1 -2r? ) This choice of match points allows minimizing the maximum
error.

Substituting (5} into (4) and carrying out the integration using the properties of the
Bessel function [2] we have the resulting expression for K*:

KA(O’(P)zK;\(Qa(p)_KZA(es(p):

L
K!\0.0)=2nR,, exp(ju coscp); 4,2'T(1+ 1)%@ ©6)
2 & J, 1(”1)
K',0.0)=2n(a,R,, ) exp(ju, coso)d B, I([+1)~5-.
1=0 U,

where u = kR, sin® and u, =aqu.

When the geometrical optics syntheses of antenna surfaces is fulfilled for the amplitude
distribution given by function (5), the expression (6) describes the far field without the
loss of accuracy.

Resulting dependencies are presented on Fig. 3

a) o CG6) D=® b) Gs) D=1002

401

G2 =02 =04 f)=02 =01 q=01 4 =098 f(h=03

Fig. 3. Radiation pattern of the dual symmetric reflector antenna
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FITNESS FUNCTION CALCULATION TECHNIQUE IN YAGI -
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ABSTRACT.

Yagi — Uda antennas is the one of most simple type of wire antennas in different
applications. A design of these antennas turned of to be the complex problem. It is
connected with complexity of definition of current distributions on antenna’s vibrators.
This currents distribution can be used for account of external and internal antenna
parameters. These parameters are used for fitness function calculation, which allowing
finding the optimum decision of designing problem. The chosen fitness function should
include both external, and internal antennas parameters. Hallen’s integral equation
application for current distribution definition on Yagi — Uda antennas vibrators is
considered in this paper. It is shown, that the examination of frequency dependences of
input resistance and currents amplitudes distributions can in addition simplify a design
of the antenna.

INTRODUCTION

Modern computer-aided modeling tools permit to calculate external and internal
antennas parameters. Most popular tool is NEC2 [1, 2]. The application of this software
allows to simplify the decision of tasks of antenna design optimization. The main role
in reduction of time of the optimization task decision is defined by a choice of fitness
function. The large reduction of decision time can be achieved in a case. when fitness
function includes parameters. which reflecting basic physical processes proceeding in
the antenna. At a choice of such parameters it is desirable to use integrated antenna’s
parameters. Such parameters are antenna’s complex input resistance, pattern width, side
lobe level and so on. Besides at generation of an initial population it is necessary to take
into account the theoretical and experimental results received earlier for a chosen
antennas type. In another case received solution may be very far from optimal solution,
or can not be realized. It can occur because the considered software uses the
approximated laws of currents distribution in antennas vibrators. Thus the put task can
overstep the bounds of methods applicability used at creation of this tool. Other reason
of similar mistakes can become not enough detailed structure of fitness function. It can
occur when fitness function includes only external or internal parameters.
As example of such fitness function can be considered

function, which was used at the decision of optimization Z
of the Yagi - Uda antennas construction problem,
considered in [3]. In the given paper the design of the
antennas from 14 elements ensuring work in a
frequencies bandwidth near 12 percents is developed.
X

Thus the thickness of antennas vibrators relied identical
and equal 3 mms. But the analysis of experimental
researches of such antennas shows, what even for the  Antennas construction
five-element antenna it is difficult to receive a pass band

Fig. 1
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in 10 per cents [4]. It is necessary to use active vibrators of the special form or to
increase their thickness for expansion of such antennas passband.

Besides it is necessary to note, that at such disorder of the vibrators sizes some
vibrators will have the large complex part of entrance resistance. It will result that the
current amplitude in them will be much less, than in vibrators, which length is close to
half of working wavelength. Hence they will not influence to antennas pattern
formation and can be excluded from the antenna construction.

APPROACH DESCRIPTION

Let's consider a task in the following statement. There is the Yagi — Uda antenna in the
free space, which consisting of N linear elements (fig. 1). Its active vibrator is coincided
by a dot source, which located at its centre. The vibrators thickness is much less, than
working wavelength. It is required to choose a method of currents distribution
calculation on the antennas vibrators, which permit to have an opportunity to define its
external and internal parameters.

The opportunity of two types integral equations application for the decision of the put
task was investigated. It was shown, that the poklington’s system of the integral
equations does not permit to receive the steady solution of a considered problem. The
current distribution on antennas vibrators was received on the basis of the decision of
hallen’s integral equations system:

Ny ¢ *Rpq
> I
n=l —, qu
Where z - arrangement coordinate of an auxiliary source
Z' - coordinate of integration point on the vibrator surface with number m;
Ln - length of the vibrator with number n,
Um — the voltage amplitude stimulating in a backlash of the active vibrator,

\/(2;1 _2171)2+D2nm= lf Zm eLn;
' 2 2 : .
\/(zn ~zp) +a’, if zyel,;

P40 . distance between a point of an auxiliary source and middle of the active vibrator.

The constant Cy, can be found directly from (1) when z is equal to the 0. Using a
designation

), (1

dz' = C;, cos(Bz) - l—goﬂsin(ﬁh

RP‘I

e—ikqu e—ikquO
100
K,,=———-cos(fz)— ]
80 1
pq pq0 N // I
Transform expression (1) to the following wl 7 \\\\
(2K (2,27 dz" = - %0 sm(B]zD £
n=1 I R
decomposition of series: 1 .
0
P ] | s0d Real part of input resistance
1|
n_ zZ p (2) P complex part of input resistance
J”’5 (Z ) - ZI J’”P (l 7) 801,13 1.‘20 1"22 1"24 1,'25 1.'23 130 132 134 136 138
p: meter
The input resistance of antenna is calculat Fig. 2
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Zenrr = Um /J,"(O)
EXPERIMENTAL RESULTS.

For the decision of the put task three harmonics in series (2) were used. The received
currents distribution was used for calculate of antennas entrance resistance and its
pattern in main planes. It was shown, that the pattern's form in E- plane changes
insignificantly in the specified frequency range. But in the H- plane therc arc large
changes of the pattern’s form and side lobe levels. Also the large changes are tested by
input resistance in the working frequency bandwidth. It is equal to the 39,7-163.9 Ohm
at the frequency 219 MHz. 70-j17 Ohm at frequency 235 MHz, and 49.3+j6 Ohm at
frequency 250 MHz. Dependences of an active and complex components of antennas
input resistance from working wavelength are shown in figure 2. Such character of
entrance resistance changing specifies to resonant character of processes, which
proceeding in the antenna. The abrupts of active and complex components of antennas
input resistance in a working strip complicate its connection with feed line. These
abrupts can be eliminated by introduction of the additional agreeing device into
antennas construction. It will complicate a design of the antenna and can decries the
working bandwidth.

Distribution of currents amplitudes at the centers of vibrators in a working frequencies
bandwidth was investigated. It is shown, that the currents amplitudes on short vibrators
of the considercd antenna can be in fifty ore one hundred times less. than currents
amplitudes in resonant vibrators in working frequency range. It allows making the
conclusion that such vibrators can be excluded from antenna’s construction.

Change of behavior of antenna entrance resistance in frequency range also was
examined at increasing of vibrators thickness. To not leave from borders of applicability
of a using method the vibrators by thickness of 6 mm were considered. The analysis of
results shows, that in this case it is possible to reduce jumps of a complex component of
antenna entrance resistance.

CONCLUSION

Thus is shown, that the introduction in fitness function in [3] input resistance of the
antenna would allow essentially changing a construction of the developed antenna.
After examining the antennas construction. developed in [3]. we can say that this
antenna is not Yagi — Uda antenna. because the classic phase relationships between the
vibrators currents are not required in this construction. In additional we note. that
application of classic relationships between antennas elements sizes and distances
between vibrators provided the reduction of calculation efforts.
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ABSTRACT

Accurate field strength measurements for EMC conformance testing can be obtained by using antennas
which have reliable antenna factors (AF). AF is a major component in calculating the uncertainty budget
of an EMC test. So AF must be highly accurate and the equipment used for measurement must be
traceable to a national standard. In a calibration process, it is important to obtain reliable data on two
important characteristics : traceability and uncertainty. In this study, we report the evaluation of
uncertainty budget in antenna calibrations. Parameters acting in this budget are explicitly presented. Apart
from providing precise information about the characteristic uncertainty of device, such a budget permits
the overall evaluation of the system so that one could think about possible innovations for reduction of
measurement uncertainty [1].

INTRODUCTION

A measurement could be distinguished as a calibration under appropriate circumstances, if and
only if, traceability and uncertainty information are included as a part of this measurement. In
this study, we present the evaluation of uncertainty of antenna calibrations in the frame of
conventional uncertainty estimation where partial derivatives of the fundamental formula
constitute the basis of uncertainty budget [2,4]. Both A and B type factors, coming from random
effects and known uncertainty values of devices respectively, are concerned in the evaluation
process.

THEORY

Those equations that can be concerned as the starting point are listed below:
AF, = 10logfy—24.46 +1/2[ EpmactAi+As-As] (1)
AF, = 10logfy—24.46 +1/2[ EpmaxtA+As-As] )
AF; = 10logfy—24.46 +1/2[ EpnaxtAstAsz-Ai] 3)

where; EP™ is the maximum received field at separation distance R from the transmitting

antenna, AF),; are the antenna factors of antennas 1,2 and 3 in dB(1/m), A;,3 are the

measured site attenuation results in dB. f'is the frequency in MHz [3].

In the scope of the uncertainty evaluation, partial derivatives of the starting equation with

respect to the included parameters are constituted in the following manner:
0 0 0 0 0
D, = —(AF)) + ———(AF)) + —(4F)) + —(AF)) + — (4F, 4
= 1) aEDmx( 1) 6A1( 1) aAz( 1) 6A3( VNG

Absolute values of these partial derivatives yield, 10/fy, 1/2, 1/2, 1/2, 1/2 respectively, and the
uncertainty of the system could be established on this basis as follows:

U:J(IO/fM)ZAfMZ +(1/2)2 AE o +(12)2 A% +(112)2AA,% + (1727 A5 (5)

where U is the total uncertainty and A terms represent the individual uncertainty values of the

corresponding quantities. In the numerical step, evaluation all terms inside the square root are
expressed either by certificate values of the devices in use (i.e. B type), or statistical evaluation
of the data of the measurement (i.e. A type). In the case of A type uncertainty, repeatability of
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the measurement plays an important role and reliability of this factor increases as the number of
measurements increase. It is a convenient preference to multiply the obtained uncertainty value
U by 2 so that an extended uncertainty is concerned and this situation is generally denoted as
uncertainty at k=2.

EXPERIMENTAL RESULTS

We have applied ANSI C63.5-1998 Standard Site Method (SSM) in an Open Area Test Site
(OATS) [3]. UEKAE has a large flat outdoor ground plane which has been shown to act as a
near-perfect mirror at VHF frequencies. The SSM, based solely on horizontally polarized
measurements, provides antenna factor measurements from 30 MHz to 1000 MHz. The
measurement distances are 3m and 10 m. transmiting antenna heights are 1m and 2m. and
receiving antenna search heights are from Im to 4m. The methods arc uscd for horizontal
polarization on a standard antenna calibration site. The SSM requires thrce site attenuation
measurements under identical geometries using three identical antennas taken in pairs, as shown
Figure 1.

AF i+ AF,=A+ 20log (fvmir,) -48.92 + Epya (6)
AF+ AFy=Ax+ 2010g (fuir,) -48.92 + Eppa (7
AFy+AF;=As+ 20log (fuir) -48.92 + Epnas ®)

There are two measurcment procedures that may be used to determine site attenuation: discrete
firequency method and swept frequency method. We have used swept frequency method
controlling the test equipment by using a computer interface (Figure 1).
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Preamplifier e SpectrumAnalyzer H CONTROL [T Computer
1FR

] Figure 1. Test Setup for Determining
Schwarzheck Brevmcal sntennia {s/r 443)
» B AY the Antenna Factor

dashed e TUBITAK-UEKAE

B m
=

A

MO Figure 2. Antenna Factors of
7 § KRR Schwarzbeck Biconical Antenna
5 (s/n: 443)

30 €5 & (05 130 185 160 205 23 256 240
Frequercy (BOMHE 30IMHZ

Kit:v, UKRAINE IX=1H  INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS 1IN ELECTROMAGNETIC THEORY



MMET*02 PROCEEDINGS

We have obtained the antenna factors of Schwarzbeck biconical antenna (s/n:443) with a very

good agreement between the NPL measurement results (Figure 2).

Table 1. Estimated Uncertainities (30MHz-1000MHz)

Description of uncertainty Coverage factor Biconic Antenna Log-Per Antenna
3m 10m 3m 10m
Cable Attenuation Normal k=2 +03 +0.3 0.3 +0.3
Receiver Specifications Rectangular k=43 | 0.2 +0.2 +0.2 +0.2
Preamplifier Rectangular k=3 +04 +0.4 +0.4 +0.4
Attenuator Rectangular k=43 +0.3 +0.3 +0.3 +0.3
Height Measurement Rectangular k=43 +0.6 +04 +0.6 +0.4
Distance Measurement Rectangular k=43 | £0.6 +04 +0.6 +0.4
Site imperfections Rectangular k=43 +0.04 +0.04 +0.05 +0.05
Maximum measured Standard deviation | +0.6 +0.6 +0.8 +0.8
Combined standard Normal k=2 0.84 0.765 1 0.93
Expanded uncertainty Normal k=2 1.69 1.53 2 1.86

By using equation (5) combined standard uncertainty can be calculated as follow:

\/0.32 022 +0.42 +032 +0.62 +0.62 + 0.042
U= 2 + 3 +

0.62 =0.84

CONCLUSION AND DISCUSSION

The antennas were identical biconic and log periodic antennas covering the frequency range of
30 MHz to 1GHz. The data were measured at 800 frequency points using spectrum analyzer,
low loss cables, and a positioning with lcm . The test was performed at 3 and 10-meter
separation, 1.5-meter transmit height, and 1-to 4-meter scan height per ANSI C.63.5 on an open
area test site (OATS).The standard deviation of 12 (biconic and log periodic) antenna factors
and their maximum deviations from the average are calculated. Another systematic error
contribution is the max-hold height step. For continuous height scanning, this is a function of
sweep time versus tower speed. The final and most troubling contribution is site imperfections.
For this purpose, scattering objects nearby are cleaned, measurement site is wiped with
sandpaper and painted. Directivity of antennas are positioning of the cables are adjusted so as to
minimize reflections. Recording of the measurement results are perfomed automatically in order
to overcome uncertainity due to personnel failure in reading. The estimated uncertainties in the
measured antenna factors are listed Table 1.
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ANTENNA ARRAYS SYNTHESIS ACCORDING TO
THE SECTOR PATTERN
BY MULTIPARAMETRIC METHOD OF REGULARIZATION

N.N. Gorobets, O.N.Nosenko
Kharkov National University, 4. Svobody Sq., Kharkov. 61077, Ukraine
E-mail: Olga.N.Nosenko@univer.kharkov.ua

ABSTRACT

The synthesis problem of linear antenna arrays has been solved numerically by multi-
parametric regularization method (MRM). The synthesis power directivity pattern was
given by a sector pattern with prescribed width and direction of pattern main lobe, low
level of side lobes. The investigations of the synthesis problem quasi-solutions and their
properties have been carried out.

PROBLEM STATEMENT AND METHOD OF SOLUTION

As known, the nonlinear synthesis problems of radiation systems according to the
prescribed amplitude or power directivity pattern (PDP) are the most complicated.
These problems belong to the set of ill-posed inverse problems [1]. The field directivity
pattern of radiation system with linear polarized radiators has the following view:

~ N —ikr,, (6.9)
(](ea(p): Z(lm_fm(e*(p)e " . (1)
|

n=

where 7, (0,¢) is the partial directivity pattern of radiator with Cartesian co-ordinates

n

(x,,V,-Z,) of its phased center(with unit current on it). To registrate the mutual

coupling we must calculate or measure directivity pattern, when other radiators are
passive. N is the quantity of radiators, k=2rn/A is the wave number,

7, (0,¢)=x, sinOcos@+y, sinBsin+z, cosO, a=(a,,a,,...,a,) is the excitation
vector of radiation system, (6,0)eW = {(9,({)) 0<0<n0<< 21r}. The PDP of

radiation system is determined by the expression F (9.(p):EG(9,(p)§2. The sector

1, —h<LeLQ, th
function S(‘(}’ P P max > h) = { ’ (PmaI = Pmar defines the

0.0e 90,0 — h)U ((p I h,‘)O”]

directivity pattern in the plane®=mn/2, where 2 4(?) is the width of sector and ¢, is

the direction of the pattern main lobe.
According to the MRM we consider a system of control directions vy, =(0,.9,),

i=1,2...,L. In our case all of the points are located in the plane 6=n/2. Some of the
points v, i=1,2....,M (M<L) are in the region of main lobe V| (| ¢, =@, <h).and

v, =(0,,9p,) for i=M+1,...,L are in the region of side lobes V>
(9, €[-90%,0 0 =) U (@0 +#.90°]). The tolerant values of PDP arc given by the

inequalities in the region of main lobe V:

d, <F(a)<c, fori=1.2,... M, 2)
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and in the region of side lobes V;
F,(a)<c,; fori=M+1,...,L, 3)

¢,,d, are positive numbers, F;(a)=F(8,,9,)=(B;a,a), B, is a complex N-dimension
Eremite  matrix ~ with  elements  (B,),, =7,(0,,0,)-7;(8,,0,),  where

£,(0,,0)= fm(ei,(pi)-e‘kr'“(e""’i). Inequalities (2) and (3) define the tolerant set D of
“vectors a € X, . The synthesis problem according to the prescribed PDP of the antenna
array is formulated as minimization problem of smoothing functional:

R(a.w)=0() + ZuF,(a), @

where O(a)=(A(a—2a,),(a—a,)) is quadratic functional, u;, i=1L..,L , are some
real weight parameters, a, is the given vector. We consider the next minimization

problem
min R(a,u) forueU. (5)

RGXN
R(a,u) is the positive definite quadratic functional with respect to excitation vector a
for all ueU.
The quasi-optimal synthesis problem for antenna array is formulated in the next form:
min P(a), where K =K,,K, = U arg min{R(a,u)}, 6)
K ucl aEXN

M L
P(a)=Ymax{0,d, - F,(a),F,(a)—c,}+ Y max{0,F,(a)-c,}. It is proved [2], that

i=1 i=M +1
the problem (6) has solution even in the case, when tolerant set D is empty. Hence, there
is a vector acK, which minimizes the function P(a). We have convergent iterative
process with respect to u [2], which minimizes errors of synthesis PDP in the control
directions. On each step we may choose vector ueU by making use of well-grounded
special way and must solve the minimization problem (5). As the synthesis PDP the
sector directivity pattern S(6,¢,9,,,, %) is chosen. Inequalities (2) and (3) are given

with the next parameters: ¢, =1+0.01, d, =1-0.01 for ¢, €V, ¢; =0.01 for @, €V,.

NUMERICAL RESULTS AND DISCUSSION

The synthesis problems were solved for antenna arrays, which had different parameters.
In particular, we considered various radiators, linear antenna arrays with different
quantity of elements N and radiators distance. We changed the width of the sector and
direction of the main lobe of PDP. As an example, the synthesis problem of antenna

arrays with several isotropic radiators, where f;(6,0)=1, was considered. In this case
the gotten excitation vector a had the constant amplitude distribution and the linear
phased distribution. The condition of existence of single main lobe with low level of
side lobes fulfilled for sector of angles ¢ e [— 400,40°J. The maximum level of side
lobes was equal to —25 dB.

Also, we considered antenna arrays when the distance between radiators was
d/A=0.2<0.5. For some values of the scanning angles of main lobe the iterative process
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didn’t converge to the single point in X . . We got several quasi-solutions for different
parts of this process. This example corresponded to the case. when the period T=2n/d
of array dircctivity pattern is greater than interval of real angles [-k. k]. where PDP
was defined.

Directivity pattern with the narrowest main lobe for antenna arrays with parameters

d/A=0.6. f,(0,0)= (coscp)S/2 . N=21 is described in Figure 1(a). In Figure 1(b) the
result of the PDP synthesis is represented for antenna arrays with parameters d/A=0.6,
£.(0,9) = (cos)’’? . N=20. h=0.14rad.

F(0,9).dB .
0 %
[\
o: -0
10+ [i i\
[ : : L ]
220 /

=30 4

ol mﬂﬂ Jl\lm

—°—~N 21, a'/»—06
<0 =0.02rad (1.15%). @ 20“

(a)
Figure 1. Sector PDP with the width of sector 24 in the plane 6=m/2 with direction
of the main lobe ¢,,,,=20" and synthesis PDP for the equidistant antenna arrays.

CONCLUSIONS

Computer codes for solving antenna array synthesis according to the prescribed PDP
have been developed using multiparametric regularization method. These codes enable
to find quasi-solutions of the synthesis problems for different types of antenna arrays
with the given partial directivity patterns of radiators and the given geometry of the
antenna arrays.

In spite of complication of the MRM for creating program codes we marked
convenicnce in the application of this method and good convergence of the algorithm,
especially, for the given sector patterns. We analyzed the class of quasi-solutions
according to the scctor power directivity patterns with different width and directions of
main lobec. It was shown, that the synthesis problem had nonunique solution in the case,
when radiators distance d/A<0.5. The examples of the synthesis will be presented. The
arrived results prove high effectiveness of multiparametric regularization method.
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ABSTRACT

Conventional method of moments (MoM), when directly applied to integral equations
arising in numerical solution of electromagnetic(EM) scattering problems , leads to a
dense( fully populated) matrix which often becomes computationally ungovernable
even for supercomputers, especially when the electrical size of the scatterer becomes
large. To overcome this difficulty, wavelet bases have been used recently which lead to
a sparse matrix that can be solved easily by an efficient sparse solver. Using wavelet in
solving EM integral equations has been widely studied. The purpose of this paper is to
develop a strategy for efficient wavelet solution of integral equations by connecting and
using efficient studies have been done in this area. Numerical results are provided to
illustrate the validity of the proposed approach.

INTRODUCTION

A large class of EM scattering problems can be formulated by the following integral
equation

[£(s)G(s.5)ds' = g(5) (1)
where f(s) stands for the induced surface current, G(s,s") is the Green’s function, and
g(s) stands for the excitation source. Generally, equation (1) has no closed-form
solutions and the MoM is used to solve it numerically. As well known, the use of
traditional basis and testing functions for solving in the MoM results in a dense matrix
equation. A direct solution of a dense matrix equations needs O(N3 ) operations, and an
iterative solutions requires O(N?) operations per dense matrix-vector multiplication,
where N is the number of unknowns in the discretized integral equations. Therefore,
traditional MoM is not of practical use, as the number of unknowns increases, due to the
large memory requirement and high computation time necessary to solve matrix
equation.
To overcome these difficulties, recently, EM researchers used wavelets, primarily
because of their local supports and vanishing moment properties, to solve EM integral
equations. There are currently two approaches to introducing wavelets in the MoM: In
the first, the integral equation has been directly expanded and tested with wavelet bases
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functions [1]-[2]. However, since few kinds of wavelets can be solved in closed form,
this approach requires considerable numerical effort to efficiently evaluate the integrals,
which dims the use of wavelets in the MoM. The other approach is to use a
conventional basis and testing functions to convert integral equation into matrix
equation and then perform a discrete wavelet transform on the resultant matrix equation
[3]. More recently, the authors have proposed an effective circulant wavelet transform
method. which can be adaptively used to solve efficiently a wide range of EM problems
[4]. In this study, therefore. we use the approach used in [4].

FORMULATION
By using the MoM., we obtain the matrix equation
Zl =V (2)

where Z is a dense impedance matrix. Introducing a wavelet matrix W, the matrix
equation in (2) then transformed as

Zr = (3)

where
7' =WIWw'. 1’=(W’)"1, V=WV . 4)

Here T stands for the transpose of a matrix. For a given threshold value t (0 < 1 < 1),
(3) becomes a sparse matrix equation which can be efficiently solved by a sparse solver.
Once [’ is solved. the desired solution is obtained as

I=w'r (%)

The construction of the wavelet matrix W can be found in[4]. In constructing W, among
the wavelet types. Daubechies’” wavelet is chosen. because of its compactness and
orthogonality properties, to effectively construct sparse wavelet matrix, which reduces
the computational, cost [5]. Finally, an appropriate choice of the number of vanishing
moments of wavelets is made as 8 from [4] to obtain fast and accurate solution in the
numerical experiments.

NUMERICAL RESULTS

In this section, the results of a study of matrix sparsity as a function of the problem size
are presented. Scattering of plane wave from 2-D rectangular cylinder is computed
numerically using a constant number of test functions (20 pulse) per wavelength. The
system sizes studied ranged from N = 64 ( contour length of 3.2 1) to N = 2048 (contour
length of 102.4 X). The sparsity of truncated Z' and the associated relative error of
current distribution on the contour surface for several thresholds is shown in Fig. 1.
Here the percent sparsity is S = ((N, = N,)/N,)x100 where Ny is the total number of

elements and N; is the number of remaining element after the truncation. The relative

./

the MoM and I, is that obtained from the wavelet method.

error caused by the truncation is e= ”1(, -1,

|1,]}, where Iyis the solution obtained by

Kizv, UKRAINE, 1X-111 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY



MMET*02 PROCEEDINGS : 465

sparsity { % )

T L 1 ) B A e M
Do =10t
oo - 12108 [ i
- = 10?

relative error in truncated current

...............................................

.....................................................................

i i i i i
0 500 1000 1500 2000 2500 1500 2000 2500
matnix size N matrix size N

(a) (b)

Fig. 1 Matrix Sparsity(a) and Relative Error in Current(b) as a Function of Size N

CONCLUSION

The EM scattering from a 2-D rectangular cylinder has been successfully analyzed by
using the wavelet matrix transform approach. Numerical results have shown that the
present approach does highly sparsify MoM matrices, especially as the problem size
increases, and hence dramatically reduces the computation time by a efficient sparse
solver without causing much error in the solutions.
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ABSTRACT

Symbolic Computations are very important since to get closed formula solutions in
many applications. One of the computer code is MACSYMA that is written in program
language LISP for the performing symbolic and numeric mathematical manipulations.
The purpose of this paper is to present a number of MACSYMA applications that show
how the new MACSYMA possibilities can be used in electromagnetics. To understand
the procedure easily, rectangular aperture antenna analysis has been studied and the
results have been illustrated.

SYMBOLIC COMPUTATION OF A RECTANGULAR APERTURE

The analysis of apertures begins by considering the radiation from the elemental arca
oriented in the x=0 plane as shown in Figure 1. The elemental arca is part of some
arbitrary aperture bounded by the curve C. The spherical coordinates of the elemental
area is (r,n/2,0") and the fields are to be evaluated at the point P(r,¢,0).

a7 al

~v

Figure 1. Elemental area Figure 2. Rectangular aperture
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Since the elemental area being analyzed can be excited by both electric and magnetic
fields, It is convenient to use both the magnetic and electric vector potentials[2].
| Therefore, the magnetic (A) and electric (F) vector potentials become, respectively

(€1)  (deciarefa i im n e et W0 1], nonscatar), depends(lin V, [rp.phip.thelapihi$
(€2) ‘arvect expressimeexp(-Yl K P WAL Y pi's), spherical);

-k -1k Ik
(d2) uei r'\‘Ir AN e r Le rN
[) 9
] 4nr 4nr 4nr
(c3) _i?:ym;f_ﬁx;:ﬁf&sﬁi;(@;}:;iﬁoﬂ‘ex;}(~%i*S{“f‘)""#f{»’i‘%;35“573),‘
(d3) ke -Ikr -ikr
ce L = L ¢e ce L0
4xr  4nc ' 4w

where N and L are the radiation vectors. The far electric field from the electric and magnetic
vector potentials becomes

(C4)  ewact_express(-%7w e A% wikt B grad{diviaprourlf\epsien
(€8)  (lerovfiediftl wraxpandiiel);

. -0 . -ik

pe IkrNocos(G)w ipe 'krNocos(e)w ipe 'krNrw Le " cos(6)
- + + -

2

an ki sin(0) 2aKF sin(6) 22 K7 4nr sin(6)
(d5) ike'ler PN e~lkrw
o L]
4nr anr

-ik 2 -1k -ik . -ik
ine "N cos’(@)w ine Nw ipe ‘Nw ke '
- + -
23 2 23
47K 1 sin (6) 4nr 4nkr 4nr

Since the far field distance is large, terms which vary inversely with the distance can be ignored
compared to the other terms so that for the far electric field

(€6) (leffief2lportfie 312.40) \esubstfnnek e tw. g}, e distriblie)):

(d6) L -ikr o dkt

. ike (LO-N¢ZO) ike (NQZO+L¢)

4nr ' 4nr

A rectangular aperture of finite dimensions can be analyzed in terms of the elemental area.
Consider an aperture in the x=0 plane with sides of lengths a and b in the y and z directions,
respectively, as shown in Figure 2. Let the electric field be aligned with the y axis and the
magnetic field be aligned with the z axis to give a plane wave traveling in the x direction. If the
aperture is uniformly illuminated, the electric field is constant in amplitude and phase over the
aperture. For this case, the electric and the magnetic surface current densities are

(€7)  {a:1.0,0], \wifhiwh b, MO8 A \ovaet_axprasitnr- 1) Wnevect_exprosstaradh§

The radiation vectors for the rectangular aperture become

(€8)  frpitapipf wriisintihets
(€9) enintegratetintegratel

wstphi) singthen hulphibcostthetagp P8
DI VOO expTeSSIar Py a2 8l0), 20,0/ I 2%

Is ksin(¢)sin(6) zero or nonzero?

ROHLETG

(c10) i imegratefivegratelm oxp{%l K vacl_axpross{ar pll yp -al2,a/8 ip b2 W%

Is ksin(¢) sin(6) zero or nonzero?

7
(€11)  Lisinfshotal cnsiphis siniphijcostthor) “eosiphinsintehots “stphil cos(phil (i) “costthevasvasitln ) o inlthetis i
(€12) fimcvnt, NS
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The far electric field vector is obtained as

(c13)
(c14) .
kel cos(® [ bkeos(0) | { aksin(e)sin(0)
ie’kri—(() 1isin} ©) !sinf (¢) sin(%) | EO
0 L sin(0) J R 2 S 2 ;
(14) ' n k sin(e) reos(0)
. . b
i { bkecos(0) T [ aksin(o)sin(0) | i
ie "™ sin| ) ! sin| (#) sin(0) JEG |
2 N 2 JE
]
|

7 krsin(0)

The electric ficld pattern is

{(c15)
(c16)
(c17)
(c18)
z E pattern (a=b=0.1"lambda)
x: Y
’§/ 2
:
i (1, 6op
CONCLUSION

Symbolic computation results of a uniformly illuminated rectangular aperture have been
obtained and the electric field pattern have been illustrated as a numerical example. So.

how the symbolic computation techniques can be applied to electromagnetics has been
shown.
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ABSTRACT

The expressions are submitted, allowing to make transformation E-plane waveguide the
tasks containing 5 component of an electromagnetic field (for example
H,H, H_E,E.),to the scalar 2D task containing to 3 unequal zero components of

an electromagnetic field (H, E, E ). At such transformation the magnitude

appropriate to magnetic permeability it becomes frequency dependent. It corresponds to
dielectric permeability of plasma, if plasma frequency corresponds to cutoff frequency
of a wave H . This fact has allowed to use for the analysis in time domain E plane

waveguide facility earlier developed effective programs 2D the electromagnetic
analysis. The example of the analysis in time domain of the filter constructed on the
basis of a rectangular waveguide with variations of the geometrical sizes in E plane is
given.

INTRODUCTION

In engineering practice are frequently used E-plane waveguide devices . For the
electrodynamics analysis of such devices in frequency domain were developed effective
procedures [1-3]. Now all greater attention is given investigations directly in time
domain: tasks of a location supershort impulse and signals with a wide spectrum. In
view there was a task of development of the technique used usually in frequency
domain to have an opportunity to investigate characteristics of devices directly in time
domain. The historical moment is interesting also. During absence of computing device
for analog modeling plasma were used waveguide devices, and in the present work it is
offered for the analysis in time domain waveguide devices to use the developed
effective programs for the analysis of non-uniform plasma.

STATEMENT E-PLANE PROBLEM IN THE RECTANGULAR WAVEGUIDE

Let's consider the structure were the E-plane device on the basis of a rectangular
waveguide with metal walls, which is represented on fig. 1. Inputs of the device are

rectangular waveguides, which are raised by a wave H .
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Fig. 1. Geometry E - plane device on the basis of a rectangular waveguide.

Devices of such type refer to E-plane, as all changes of geometry occur only in a plane
of a vector of intensity of electric field E (plane ZOY see Fig. 1.), and the width of the
device remains to a constant and is equal a. From the mentioned above conditions
follows, that should the following ratio will be executed [4]:

E =0 (D
E (x,y.z)=sin m;“ E (y,2) (2)
E (x.y,z)=sin nza/z\‘ E (y.z2) (3)
H (x.y.z)=sin "Zn‘ H (y.z) (4)

For the decision of a problem it is necessary to write down Maxwell's equations a in the
chosen Cartesian system of coordinates (see fig. 1) and to substitute in the received
system of the equations of a condition (1) - (4) in view of that foreign electric and
magnetic currents inside analyzed area are equal to zero

By virtue of that ratio should will be executed at any values x. we receive the equations,
not dependent on it. Analyzing these equations, we shall find final system of the
differential equations which after use of propertics of a permutable duality [4]. can be
written down in the following kind:

oE (y,z) |
¢ \éf’ 2) iop,H (y.2) )
E (y,z
_OE(, )=ia)1 H_(y.z) ©)
(AL

OH .(y,z) ©OH (y.2)

o o =~iWeE, ((U)E\, (y.z) (7)

The fact of concurrence frequency dependences permittivity is intercsting in case of
plasma and at the decision waveguide tasks that allows to investigate directly in time

domain mode non-stationary processes for £ Plane waveguide devices, using effective
algorithms and the programs developed for the decision of bidimentional problems of
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dispersion from non-uniform plasma formations in time domain mode on the basis of a
method of impedance analogue of electromagnetic space [6]. As an example of similar
research we shall result analysis E plane rejector the filter.

RESEARCH E PLANE REJECTOR THE FILTER

As an example we shall investigate characteristics E plane rejector the filter submitted

on (fig. 2.) 5

NN
iAE=1in

: 8,77 18,7 8 ;
126 121.3 S ) |
. —

108 .

Fig. 2. Geometry £ plane device on the basis of a rectangular waveguide.

All sizes of topology designed waveguide the filter, width 28.5mm, represented on (fig.
2.) in a plane of a vector E, specified in millimeters. On (fig. 3 and 4) time
dependences of amplitudes reflected (it is designated square) and past (it is designated
cross) waves suppressed frequency band on frequency £=7.170 GHz and in a passband

on frequency =8.425 GHz are shown.

Ldp X X
N R e S e At A prsmeesymee et on et ! !

.........................................................................................

Tine nsec

Fig. 3. Dependence on time of amplitude of the reflected and past wave at inclusion of a
sinusoid with frequency of filling 7.170 GHz.
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Fig. 4. Dependence on time of amplitude of the reflected and past wave at inclusion of a
sinusoid with frequency of filling 8.425 GHz.

In the present work the expressions which are carrying out transformation E-plane
waveguide of problems to a scalar 2D problem with permeability. having frequency
dispersion that has allowed to use for the analysis in time domain mode E planc
waveguide devices earlier developed effective programs 2D the electromagnetic
analysis are given.
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CALCULATION OF LEAKAGE THROUGH APERTURES ON
COAXIAL CABLE BRAIDED SCREENS

Bektas COLAK'? Osman CEREZCI? Zafer DEMIR? Mehmet YAZICI' Bahattin
TURETKEN'' Isa ARAZ'?

I'TUBITAK UEKAE, EMC Labratory, PO.Box:74 Gebze Tel:+90 262 6481235
?Sakarya University, SAKARYA, bektas@uekae.tubitak.gov.tr

ABSTRACT: In this paper the more accurate calculation of the direct leakage of magnetic
field through the diamond shaped holes is shown by using an early work [1] on the planar mesh
surfaces. The exact geometry of the diamond shaped holes is taken into account. The details of
the calculation are shown step by step.

INTRODUCTION

The braid structure made by strands of helically interwoven wires and there are
diamond shaped holes at the crossing point of the strands. Since the braid structure
includes diamond shaped apertures, some of the magnetic flux lines penetrate from
these apertures through to the interior conductor. Leakage from the apertures on the
braid surface is calculated in literature by making some assumptions on the hole
geometry [2]. The most famous one is assuming the diamond shaped geometry as an
elliptical aperture. With this assumption it is possible to use the elliptical functions on
the calculation. On the other hand, Ikrath [1] done a detailed calculation on the exact
geometry of the diamond shaped apertures. But it is assumed that the cable surface is
unlimited and planar. In real geometry, the geometry of the screen surface is cylindrical
and in limited size. We modified the results of Ikrath by taking into account the exact
geometry of the cable.

H,
' 27RAM/2

Y.

2R

Fig.1. a) H field on aperture from single wire.  b) Braid geometry on planar form
Magnetic Field Leakage on Cylindrical Braid Geometry

Coaxial braid structure includes M carriers and in each carrier there are N wires (Fig.1).
It is assumed that the total disturbing current, / , flows from each wires equally
(i=I/MN). The normal component of surface magnetic field to the hole surface is
calculated by superposition of each single wire to the hole center. As a first step we
consider only the effect of the nearest wires to the hole center. (Fig.2).
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On the z-axis, the total magnetic field distribution is zero. In the diamond-shaped
aperture, the total H-field can be calculated by summing up the four H-fields originating
from the nearest wires (1). Since the H field is normal to the current direction. we have
to define new axis as and normal to the each wire direction.  Aperturce size is
related with braid geometry (2) and perpendicular axis to the wircs could be
transformed from x-z plane by (3). In order to find the whole wire’s H ficld to the
aperture center, it is necessary to formulate the distance from the any wires to the
aperture center (Iig.3) (4). At the center along the z-axis. each H fields cancel each
other. By the way the magnetic field lines enter to the inside of the interior layer from
the upper triangular part of the z axis and go out from the lower part. Since the H ficlds
must close around themselves a rotation occurs around the z-axis. Therefore, there is an
e.m.f. produced per unit length of the z axis [1]. In Fig.4. the more detailed geometry
for the circular form is given. The radial distance on the circular surface of the braid
from any wire to the aperture center should be converted to the shortest distance as in
(7). The radial distance is equal to the r,,, and shortest distance is equal to the R, .

Hole center
o OO0 T == (=1 +

W-(N-d
NP AW W\ 2

)

w3

a

Fig.3. Distance from any wire to the aperture center in planar form.

For the total H field distribution in any point on the diamond shaped aperture, the
effects from the all wires should be summed referred to the circular geometry (8). This
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total term can be simulated via numerical calculation for digitized 7 and £ axis points
(Fig.5).

7 T B B
=-—-U, 8:—--*'—:> = 5
r=3 ST TS Q)
Hole center - -
H,=H,6,ds=H,=H, cosy (6)

R =|AB]=2Rsin% B, =’% (in radian) ()

Fig.4.Distance from any wire to the aperture
center in circular form.

H Fild ]

S SR S
m=1 n=1 Rmn +77 Rmn ~77 an +§ an _5

(8)

Fig.5. Simulated value of H field. The values out of
the border of the diamond shall be omitted.(M=24,
N=8, d=0.15mm, i= lAmp o=7/6)

CONCLUSION

The .direct magnetic leakage term of the diamond shaped apertures of the coaxial
braided screen are modified for the real geometric conditions of the cylindrical shield
structure as if including the curvature and the limited number of the wires. One can
calculate the total H field leakage by using this field distribution on one aperture,
multiplying the hole number in unit length.
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EFFICIENT CFIE-MOM ANALYSIS OF 3-D PEC SCATTERERS
IN LAYERED MEDIA
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ABSTRACT

This paper presents an efficient technique for analysis of arbitrary closed perfectly
conducting (PEC) scatterers in layered media. The technique is based on a method of
moments (MoM) solution of the combined ficld integral equation (CFIT:). The high
efficiency is obtained by employing an accurate expansion of the multilayer dyadic
Green's function along with a higher order hicrarchical discretization scheme and a
rapidly converging iterative solver with preconditioner.

INTRODUCTION

Numerical analysis of electromagnetic scattering by PEC objects has attracted great
attention for many years. Naturally. available computational resources limit the size of
objects that can be analysed by numerical techniques. The situation becomes even
worse when layered medium is considered. Furthermore. for objects penetrating the
interface (interfaces) between the layers. conventional methods can not cfficiently
handle the different wavelength in different media.

In this paper, a new efficient MoM scheme. combining fast calculation of dyadic
Green's functions for multilayered media with higher order hierarchical basis functions.
is presented. This technique allows the number of unknowns to bc decrcased in
comparison with conventional techniques employing low-order discretization schemes.
The relaxation of memory requirements is especially pronounced when the scatierer is
located in two or more layers. Further improvement in computational efficiency is
achieved by employing a rapidly converging iterative solver with preconditioner. The
technique is validated with examples available in the literature.

INTEGRAL EQUATION TO BE SOLVED

The electric field integral equation (EFIE) and the magnetic field integral equation
(MFIE) each fail at a set of discrete frequencics for closed PEC objects. Being a lincar
combination of EFIE and MFIE. CFIE provides stable and reliable solutions at all
frequencies. EFIE is a well-known and quite elaborated technique for analysis of
scattering by PEC objects both in free space and in layered media. At the same time.
MFIE is usually applied for scatterers in homogencous media. There are very few
papers devoted to MFIE in layered media and only conducting bodies of revolution
have been treated thoroughly by MFIE [1] (the MFIE-BOR method). In this paper, we
apply the MFIE (as an essential part of CFIE) to arbitrary closed PEC objects in layered
media.
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DYADIC GREEN'S FUNCTIONS FOR MULTILAYERED MEDIA

The dyadic Green's functions for multilayered media are implemented using the
Formulation C for the mixed potential integral equation [2]. Under this formulation,
only three different Sommerfeld integrals arise in the solution. They are computed in a
very efficient way using the discrete complex image method (DCIM) [3] which allows
spatial Green's functions to be represented in closed form in terms of complex images.
If the scatterer is confined to one layer, the coefficients of the complex image expansion
are invariant with respect to the coordinates of the source and observation points.
Otherwise, the coefficients depend only on the z-coordinate of the source point and the
layer the observation point belongs to. It is worth noting that the coefficients of the
complex image expansion are reused in both EFIE and MFIE.

DISCRETIZATION TECHNIQUES

Higher order hierarchical basis functions [4] based on orthogonal Legendre polynomials
are employed for discretizing the CFIE. The hierarchical property of the functions
provides a very efficient discretization scheme especially when the scatterer is not
confined to one layer. The order of the polynomial expansion can be selected separately
on each patch depending on the wavelength of the layer in which the patch is located.
This allows a very low number of unknowns and a uniform mesh despite the different
wavelengths. In contrast to this, conventional low-order methods are forced to use a
patch size based on the shortest wavelength, which introduces unnecessary unknowns
and leads to a poor condition number of the resulting MoM matrix. Alternatively,
conventional methods may employ a highly non-uniform mesh that is difficult to
construct and also leads to a poor condition number. The higher order hierarchical basis
functions are here employed on second-order curved patches that provide accurate
geometrical modeling of smooth surfaces.

IMPLEMENTATION AND NUMERICAL RESULTS

The described technique has been implemented in an efficient computer code that is
well parallelized on both shared and distributed memory multiprocessor systems. The
most time consuming part of the analysis is the calculation of the dyadic Green's
functions for multilayered media. On a multiprocessor workstation, it can be done in
parallel for different pairs of source and observation points. Furthermore, due to reusing
of the Green’s function expansion in both EFIE and MFIE, the CFIE matrix filling time
increases only by 10% with respect to MFIE alone.

The presented technique was validated by comparison with the results obtained by the
MFIE-BOR method [1] for scattering by a PEC sphere in the presence of the interface
between two contiguous half-spaces. For instance, Fig. 1 shows the currents on a half-
buried metallic sphere illuminated by a plane wave. It is observed that the results of the
new technique are in excellent agreement with those of [1]. Fig. 2 presents a new result
for a geometry that can not be treated by the MFIE-BOR method [1]. Both a first-order
discretization scheme (rooftops on a uniform mesh) and a hierarchical discretization
scheme are used. In the first case, significant overdiscretization in the free space is
observed (709 unknowns per square wavelength, see Table 1). In the second case, the
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hierarchical discretization allows the total number of unknowns to be reduced by more
than a factor of three while the accuracy is maintained (Fig. 2).
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Fig. 1. Current on the half-buried PEC sphere illuminated by a plane wave.
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Fig. 2. Scattered near-field from the half-buried PEC tube illuminated by a plane wave.
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ABSTRACT

The mathematical methods, used for solving acoustic and electromagnetic wave
problems, defined in two dimensions, are analogous in many cases. The analytical and
numerical results of a field in the outside domain of curvilinear rectangle are presented
in this paper. Based on the wave equation, boundary conditions and radiation condition
the structure of the field is determined. The method of the partial regions is used. For
the acceptability criterion of the quantity of the members by which the field is
calculated, the fulfillment of boundary conditions on the radiating surfaces and the
fulfillment of conjunction conditions between the partial regions were observed. The
results are applicable to the optimum design of acoustic and electromagnetic antennas..

INTRODUCTION

It is known that in the 2-D case the Maxwell equations can be transformed in two
independent equations for the vectors of electrical and magnetic fields [1]. By this
reason in 2-D the solutions of acoustic and electromagnetic problems coincide. Using
the technique of partial region [2,3], many interesting problems can be solved and
results can be implemented in the two areas.

BOUNDARY-VALUE ANALYSIS AND ANALYTICAL RESULTS

The geometry of the problem is shown in Fig. 1. This is an outside boundary value
problem, i.e. a problem in the infinite domain. The curvilinear rectangle is limited by
the arcs with radii | and 7, = g, and the segments 4D and BC. It is assumed that the
surfaces 0 = +0,, r;<r<a are acoustically rigid. Sound field is generated by the
surfaces r =r; and r = r,, g < 1 0 | < 1, on which the distribution of particle velocity is
assigned:

0
OF
= 5(8),r=r 2)

where F - velocity potential. In order to analyze a sound field with time dependence
factor exp (-iwf), which is created by the radiating body, shown in Fig., the boundary
value problem for the Helmholtz equation in cylindrical coordinates must be solved:

AF(r9) + KF(r,0) = 0 3)

where:  F(r,0) - velocity potential; A = V? . Laplace’s operator; k£ - wave number.
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Fig. 1. Geometry of the problem
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The whole field is divided in parts. In each partial
region there must exist a solution of the Helmholtz
equation (3), which satisfies the boundary
conditions of some part of the whole surface and
the conjunction conditions of the boundaries of
the neighboring partial regions [2]. Using the
orthogonal properties on the corresponding
segments of the functions, which describe the field
in regions 1, 2 and 3, the functional equations can
be transformed into the following infinite
simultaneous linear algebraic set of equations for

F2 @ the complex coefficients. 4,,. B,,, (. and Dy :

511 ']/’: (kpa) An _Z}/amn J, m z}/a n m :—ﬂ
m=0 n=0) k
—iyam n Jn(km) 41 + 5}11 Ja (kpa> m + 5)71 N (kpa) qn =0
n=0
] 4)
5}1: Ja (ka) m m m Z)/a / H
=0
z}/aml J:z m Z}/a ! m 5[ ]{I(l) (ka)ljl :_gf_
m=0) nr=0 k
mm
wheren=m=1=0.1.2. .. N, ..; 0, =—;
eO

2n, n=0 20,, m =0 2n, 1= 0
61’12 *Bm: ’61:
n, n>0 0,, m>0 n, 1> 0

2 sin(n0,) 2 sin(B,)
p, = - 2200) 25000
n 1
2 ] 2 ]
Yan= —Ozé—a_m—n;sm(ameo)cos(neo) -— f sin(o.,0, ) cos(nd,)
200, . 21 \
Ya,15 —&zzn_—fsm(ameo)cos(ﬁo)—msm(ameo)cos(ﬁo)

The prime (¢) means a derivative of the whole argument. Except this, it is accepted that
g(@) = f_é'(()) = 1. This simplification has not meaning of a principle [4].
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Solving the set, the complex coefficients 4,, B, Cn, and D; can be obtained. The

velocity potential of the field F(r, ) in each point of the outside domain of the
curvilinear rectangle can be found.

NUMERICAL RESULTS

In Fig. 2 the modulus of the potential F; for determined wave parameters near the
geometric focus is shown. As can be seen, the structure of the field is complex and
optimization of the main parameters (8o,p,a) is recommended to obtain the necessary
intensity and focus spot. In Fig. 3 the equipotential curves are drawn. It is clear that real

focus spot is shifted (6 =0, r=0,3). This effect can be explained with edge points
diffraction and radiation of the surface CD.

tita [rad]

e

; ’ ™
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o / \ | \
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r
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Fig.2.Modulus of potential F Fig.3.Equipotential curves
CONCLUSION

The results, obtained above, can be used to the optimum design of acoustic and
electromagnetic antennas in 2-D space.
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DIELECTRIC PARAMETERS RECOGNITION BY USING A
WAVEGUIDE CAVITY AND
A RIGOROUS PROCESSING ALGORITHM
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INTRODUCTION

Measurement of scattered electromagnetic field and further permittivity or permeability
reconstruction based on experimental data and adequate mathematical model is the key
issue in dielectric materials study [1. 2]. Here, accuracy of measurements and adequacy
of mathematical model is of principal importance. Today, special attention is attracted

to the study of thin dielectric films with tg(5) ~107 +107° . n this paper we consider

a resonator that can be used for a thin film study. its electromagnetic model, and
advantages and capacities of corresponding numerical algorithm.

DESCRIPTION OF THE ALGORITHM

Our solution to inverse problem is based on accurate

and efficient solution to direct problem. Suppose that

the diffraction of one of the modes of small circular
waveguide by the chamber (Fig.1) is reduced to a

= [e [l 5 functional relation v = f(x). Here X =(x,.x.,x;....x, )

m

is the set of input data (frequency, &, geometry,

= &Ll A amplitude of incident wave A, etc) and
“““““ N e Y =(y,.y,.....y,) is the set of output data - reflection

coefficients R, R.....R,, normalized by 4. Assume that
a part of input data is known (frequency and geometry)
and given by the values x7,x},...x; (I <m) from the

set X of all input variables. Suppose also that values
Y’ = (yj’,yf,‘.... ") of output variables are known. The

problem of the model identification is reduced to a

necessity of finding x,,,.,...x,, from equation
Y"=f(x;'....,\',".x,ﬂ....x,”) (1)
In our case, we have to find unknown dielectric constant& = &' +ig" . The accuracy of
the parameter evaluation depends on several factors:

1. The error of reproduction of the relation between output data ¥, known input data
X,,X,,X;....x, . and unknown parameters in the form of equation (1), that is called

inadequacy of the model to the phenomena simulated.
2. Errors of measuring the known parameter values, that is ¥", x).x7....x/ .

3. Errors of the numerical algorithm applicd to solving equation (1).
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As a functional relation we choose the solution of the considered problem obtained by
the semi-inversion method [4, 6]. Here, we reduce it to numerical solution of a matrix
equation of the second kind R — HR™ = B with exponential convergence. This approach
allows us to find out with given accuracy the amplitudes of reflected modes
R".RY,.. RY if the frequency, geometry, and dielectric constant ¢ = ¢'+is" are known,

so that R™ = £ (x,¢,4) depends on geometry, frequency parameter x=a/A (a 1
characteristic dimension, see Fig.1), and &. The accuracy of calculation of R is limited

by the capacity of the computer utilized. For the solution of direct and inverse problems
we used the ideas of [7, 3-5]. We pose the inverse problem as a minimization one, see
[6,3,4]. After caring out numerical investigation of various types of functionals
according the scheme of [4], we arrive at the conclusion that the most efficient is

De)= ZZF(R;,,, ~RY(x,.8)+ae) @)

2
where F(u)='1«4 . Due to analyticity of functions R (K, 8,A) in k and &, the

functional in (2) (within the considered level of input errors) does not require
regularization and we can put (2) @ =0.

NUMERICAL EXPERIMENTS

In the parameter reconstruction of thin films, L < A, with small tg(5) there are two
most important criteria:

~ influence of the error of input data on the accuracy of parameter reconstruction, and
— range of parameters, within which accuracy ofed by the algorithm is sufficient.

To simulate experimental input data we used (see also [3, 4]) a generator of random
numbers with normal distribution:

R:(x,e)=|RY (x,e)(1+y ,Random)exp(arg(R,'f (/c,g)X] +y ZRandom)),
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where — I < Random < 1. We studied the relative errors of reconstructed parameters

and algorithm properties according to the formulas:
N
_ \l_g@)ﬁ—tg@)m % A = !E;e - 8;4 9% and ; R:(’\'/)“ R::’ (gl('Kll

* tg(5)M ’ Exs 4= Z R,‘;(K )J

as functions of input data errors. Relevant curves are marked as 1,2,3 in Fig.2,
respectively. In all experiments we accounted 21 frequency points in functional (2).
Fig. 2 presents the variations of relative errors when input data errors for amplitudes y,

and arguments »,change from 0% to 10%. In Fig.2-a we fixed y, = 3% and in Fig,2-b
it was y, =5%. Here we had to present curves 2 corresponding to the values of
4,100 in order to be visible within the common scale. The errors change randomly.

however around certain increasing with rise of errors level mean values. The input
errors in arguments influence the accuracy more crucially, and it is clear that better to
accept errors less than 5%. Due to the high accuracy of the algorithm of direct problem
solution. there is no restriction on reconstructed parameters if one has “hypothetical”
situation with accurate input data, i.e. if y, =y, =0. However, from numerical

experiments we conclude that if the error in input data is y, 2 70% (for normalized
amplitude that is deviation of 0.1) and y, >5% (that is 18") it is necessary to apply
regularization to (2).
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DROP-SHAPED MONOPOLE ANTENNA AND ITS INTERACTION
WITH THE USER'S HEAD

G. Ghvedashvili , R. Zaridze, K. Tavzarashvili, G. Saparishvili, A. Bijamov
Laboratory of Applied Electrodynamics, Tbilisi State University, Georgia
e-mail: lae@access.sanet.ge

ABSTRACT

This paper is dedicated to the EMC/EMI problems from the standpoint of the efficient
and safe mobile equipment antenna structures development and to investigation of the
influence of such antennas on the user’s head. The dielectric monopole drop-shaped
antenna has been proposed and the numerical investigations of its behavior taking into
account its interaction with the feeding cable and user’s head have been carried out. The
corresponding EM problem is solved using Method of Auxiliary Sources (MAS) [1].

INTRODUCTION

For the antennas used in the modern personal communicational systems it is necessary
to be small in size and have wideband radiation. For the real radiating systems
simulation in the framework of EMC problems it is very important to take into account
the interaction of the under study subsystem with the surrounding objects — in case of
antenna these are the user’s head, free space and the feeding cable.

In this paper we consider a drop shaped monopole antenna fed by the coaxial cable
located in the close proximity of the user’s head. The head is simulated by the IEEE
Standard Head Model. The problem of obtaining a good matching of the antenna both
with the feeding cable and free space has been resolved throughout the proper choice of
the antenna shape. Also an attention was paid to the SAR distribution in the user’s
tissues. Based on MAS [1] the engineer-oriented software package has been created to
perform the necessary numerical experiments.

NUMERICAL RESULTS

In the [2,3] the drop shaped antenna covered with thin dielectric layer has been
introduced and its
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Fig. 2. Comparison of the numerical and
experimental measurements

diffraction properties have
been investigated. The next
stage of such type of an
antenna development is a
real antenna-cable
structure simulation
(Fig.1). In this paper the
antenna of a certain type
has been investigated and
its properties versus its
shape and material
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parameters have been investigated. Varying the antenna shape one can control the Q-

factor, while the dielectric layer of high permittivity helps to keep the antenna size small

and shift the resonant frequency down.

The first step was investigation of a simplified flagpole antenna and comparison of the

calculated data with that measured experimentally. Fig.2 shows the return loss versus
frequency  for  this

Return loss

511 [dbl_ antenna.
0 T P Next, the numerical
“ /\ - investigation  of  the
e S given drop  shaped
- < \ / d ; antenna structure
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o n 1 v

dependence on  the
various material and
geometrical parameters

- Va tiom l have been performed.
050 183 275 ses s%0 Fig.3 shows antenna
Fig. 3 Return loss versus frequency for Fig.4 Near field return loss versus
different antenna’s width distribution at the frequency for different
a)0.13cm b)0.4cm ¢)0.6cm d)0.8cm resonance frequency

antenna's width having
its height fixed. In this
figure there are two curve families corresponding to the two presented geometries of
antennas. The leftmost and rightmost families correspond to the geometry 1 and Il
respectively. In the first case the cable is separated from the antenna by the metallic disk
while in the second case antenna is directly connected to the cable. The numerical
experiment shows that in the first case the resonance frequencies are shifted to the left
compared to the second one. With the increase of antenna width the radiation band also
increases and the radiation efficiency diminishes. In Fig.4 the near field at the resonance
frequency for the case II is presented. Analysis of the near field structure have shown
the absence of the reactive component in it that means that the antenna is well matched
with the cable and free space.

Under the certain optimal choice of antenna's shape it is possible to increase the
radiation frequency band. From the obtained results one can see that the resonance
frequencies for the presented antenna (3.0-4.0 GHz) do not fit into to the current
standards for mobile communications (0.9-2.8 GHz). In order to conform to them the
electrical size of the antenna should be enlarged. This is possible by covering the
antenna with the thin dielectric layer of high permittivity. In order to obtain good
matching between the dielectric layer and the free space it is necessary for the
corresponding wave impedance at the antenna surface to be equal to that of the free
space. This can be achieved by the suitable choice of the layer’s material parameters.
Modern technology is able to provide a material with the negative permittivity. The
created software allows for such media to be simulated.

The next aim of the investigations was to study the influence of the antenna on the
user’s head. The one of the main demands antenna must satisfy is the safety to the user -

e)].0cm
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Fig.5 SAR distribution inside head at 1.0GHz Fig.6 Radiation pattern

i.e. the SAR in the user's tissues must conform existing standards and be as low as
possible. As a head model an IEEE Standard Head has been taken. Its averaged material
parameters are £=45, 6=0.9S/m. The Fig.5 and Fig.6 show the SAR distribution in
different sections and radiated pattern when using a conventional monopole-style
antenna at 1.0GHz. The absorbed energy in the head is approximately 70% of the
feeding power. An optimized antenna structure for the SAR minimization has been
developed. The corresponding results will be also presented.

CONCLUSION

The presented antenna configuration allows one development of the desired antenna
structure, conforming to the EMC demands and possibly other restrictions applied. The
radiating capabilities of the presented antenna prototype on its material and geometrical
properties dependence have been studied. The real antenna-cable-head system has been
investigated and EMC and SAR issues considered.
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BUILDING TREFFTZ FINITE ELEMENTS FOR
ELECTROMAGNETIC PROBLEMS

Yuriy Olegovich Shlepnev

Innoveda, Inc., 1369 Del Norte Road, Camarillo, CA, 93010, USA
e-mail: shlepnev(@ieee.org

Generalized algorithm to build descriptor matrices of convex politope Trefftz finite elements is
introduced in the paper. A finite number of plane waves is used to expand electromagnetic field
inside the elements. Projections of the intra-element field on an additional set of basis functions
defined on the element surface are used to build admittance matrix descriptors of the element.

INTRODUCTION

As a generalization of the method of minimum autonomous blocks, introduced by V.V.
Nikol’skii and T.I. Lavrova in the late 70s [1], Trefftz Finite Element method (TFEM)
has been recently introduced into the computational electromagnetics [2], {3]. As the
conventional finite element method (FEM), the TFEM is based on a division or
decomposition of a boundary value problem for Maxwell’s equations into a set of
elements. Though, instead of polynomial functions, plane-wave solutions of the
Maxwell’s equations are used as the intra-element basis functions to expand electric and
magnetic fields inside the elements. Though. the basic concepts of the method are quite
general and are outlined in [2], [3]. there is no formalized procedure to build descriptors
of complex polytope structures such as polygonal prisms. tetrahedrons and so on. This
paper introduces such formalized procedure to build the admittance matrices of convex
polytope elements.

BUILDING DESCRIPTORS OF 3-D ELEMENTS

Let us consider a 3-D boundary value electromagnetic problem in the frequency
domain. The problem is described by the Maxwell’s equations and boundary conditions
in a Cartesian coordinate system. The problem is subdivided into a set of small convex
polytope elements. All external and internal boundaries of the problem are mapped on

the boundaries of the elements. An element can be represented as a convex polytope
Q) in three-dimensional Euclidian space with N, polygonal faces F,,n=1...,N, . .
The element is uniformly filled with an isotropic medium. Let us expand the polytope
element interior field using N, , pairs of plane wave solutions of the Maxwell’s

equations. The field distribution inside the element can be expressed as

E ]_: N :_E_, o E s _ _ _ I Fal
_( ) =y A T 4| T e FeQ Lk, % E,, =0.H,, = K X B (1)
[‘[(I—) n-1 H(m; HOm Zo

where symbol *denotes scalar products. symbol x denotes vector product, /;m is the

unit vector of propagation direction of the plane wave number m, 7 is a radius vector of
a point inside the polytope or on its boundary, E,, is the unit electric field vector of the

4
m

plane wave, H,, is the magnetic field vector of the wave, 4’ and 4 are unknown
magnitudes of the waves or expansion coefficients, k, is a propagation constant of the
plane wave, and Z,, is a characteristic impedance of the plane wave:
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k=wyeu, Z, = pu/e . (2)

N, magnitudes of the plane waves in (1) are considered to be linearly independent.

mt
To provide connectivity of the element interior with the surrounding elements and to
impose the inter-element boundary conditions, an additional set of basis functions is
defined on the faces of the polytope element. Let us choose L, vector basis functions

defined on the polygonal face F, for the electric field expansion and L, basis functions

on the same face to expand the magnetic field. The total number of pairs of the surface

field expansion functions is
N race

\urf z L (3)

Designating the surface basis functions deﬁned on the face F, as e,, and E,(,), the

electric and magnetic fields on the surface of the polytope element can be expressed as
follows:

- N face I, - Nface Ly _
Eoy = Vay €y > Hoay = ZZ’n(/) “hyy “4)
n=l I=1 n=1 I=1

where v, ., i,, are unknown expansion coefficients. The total number of the boundary
field expansion coefficients in (4) is 2N,,,. It is in addition to the N, independent

interior expansion coefficients (1). The number of the interior basis functions N, can

be chosen equal to the number of the electric or magnetic field surface basis functions
N, - It provides a possibility to uniquely define a matrix descriptor of the element. To

do so, we can project the interior field on the surface basis functions [2], [3]:
=P AH. Ty} I=1L,, n=1ou N, 5)

where E and H are values of the electric and magnetic fields defined by (1) taken on the
face F, where basis functions ¢,, and }_z,,( , are defined. Either point matching or

Yy =P, {E?En(/) }, J

n(l)

Galerkin projectors can be used in (5). Constant vector basis functions may be used with
the point matching projectors defined as

P {D bn(l)} (n(/))*bn(/)( (/)) Ln’ nzlﬁ""Nﬁvce (6)
where D is either EorH , b,,(,)ls eltheren(,) or hn(,), 7. is the radius vector of a

matching point on the face F,for the basis function /. The matching points can be

defined as centroids of the polygonal areas where the corresponding face basis functions
are defined. Galerkin or averaging projectors can be defined as

P,{D.5,, |= [Debryds, 1=luwaLys =1 )

where the integral is taken over the surface of F,, and

|Nn(/)‘

N n(l)
expansion functions. Substituting (1) into (5) we can obtain the following relations
between the interior field expansion coefficients and the surface expansion coefficients:

V=M'A*+M; 4", i=M; A"+ M, -4, ®)

are the norms of the
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where 4 and A~ are vectors with N,

int

components defined as

coefficients A* and A4, (1), iand ¥ are

vectors with N

surf

= [117""ZN_/”L.[. ‘t’ ln = [ln(l)"“’ln(ﬁn)}* V= lvl""’vl\'ﬂ“.‘. }’ vn = [vn(l)""’vn(l,n)} ’ (9)
where symbol * denotes transposition.
Matrices M and M, are N by N,

.. complex matrices of projections of the interior
basis functions (1) on the boundary basis functions with the elements defined with

either projectors (6) or (7) as
+ _ TE tikghy *F = + _ T | tikokysF T
(M )n(l),m - Pn {EOm e " 36)7(1)}7 (Mh )n(/),m - Pn {HOHI e " ’hn(/)}7

m=1..N,, [=L.L.n=1L.,N,,
A descriptor matrix of the polygonal element can be deduced by eliminating unknown
interior field expansion coefficients 4* from (8). From here on we assume that

N, =N,,, =N, which leads to square N by N matrices M *and M . An assumption

of the equality of two terms in the magnetic field projection sum or alternatively in the
electric field projection sum (8) leads to two alternative additional expressions to
construct the descriptor matrix:
A =T,- 4", T,=(M,))"-M, (1n
A =T, A", T,=(M))"-M; (12)
Now, an admittance matrix descriptor of the element relating the unknown boundary
expansion coefficients can be defined as

i=Y-v,Y=M,M"' YeC"™, (13)
where M, =M +M_ -T,,. M,=M, +M, T,
The linear independency of the element interior basis functions is the necessary
condition of existence of a non-degenerate descriptor of a polytope element. Plane
waves propagating in the directions perpendicular to the sides of a convex polytope

provide such a system of functions. Assembling of the admittance matrices (13) into a
global admittance matrix is a simple and straightforward procedure and is described in

[2].
CONCLUSION

Trefftz finite element method has been generalized in the paper on the problems
subdivided into a set of convex polytope elements. The boundary value problem has
been reduced to a building and re-composition of admittance matrices of the polytope
elements. Generalized matrix formulas are derived to build the admittance matrix
descriptors of the elements.
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CALCULATION OF NEAR-ZONE ELECTROMAGNETIC FIELDS
SCATTERED BY COMPLEX SHAPE AIRBORNE OBJECTS AND
ESTIMATION OF THEIR ANGULAR COORDINATES BY
ONBOARD ANTENNA SYSTEMS

N.V. Barkhudaryan, A.Z. Sazonov, O.1. Sukharevsky

Kharkov Military University, Kharkov, Ukraine
E-mail: sukharevsky@euro.dinos.net

The technique of calculation of near-zone electromagnetic fields scattered by complex
shape airborne objects is present. It is shown that the direction line defined by a
direction finder differs from true one and depends on geometry of the object, its
electrical sizes and also on mutual location of the transmitting antenna, object and
receiving antenna. The results of numerical calculations for the object such as "airplane”
are represented. Calculation was carried out in a centimeter band, separately in a plane
of course and pitches one, radiation — monochromatic. The angle of object elevation is
constant and it is equal to three degrees.

Most of modern airborne objects have complex geometrical shape of its surface. The
character of reflections depends from orientation of object with reference to the
direction of sounding. The scattered field incident on the antenna aperture is the result
of interference of waves reflected from separate units of object surface. The
contribution to the resulting field of components with different amplitudes and phases
results in the not plane phase front of the scattered electromagnetic wave. The distortion
of phase front causes to deflection of
the measured target angular position
from true one as the direction line is
defined as a normal to a phase front [1].
The calculation technique includes
simulation of the object surface by the
system of triangular facets [2]. In a
Figure 1 the model of a standard
airplane with a wings span of 20 meters
is represented. The calculations of
scattered field consist of a numerical
integration of surface current densities
for each facet in  barycentric
coordinates. The calculations were
carried out by means of special
cubature  formulas permitting to
evaluate integrals of high-oscillatory
Fig. 1 functions [2].

The electrical dimensions of the object

are large. In this case acceptable
Kirchhoff approximation. Let a plane electromagnetic wave incidents on perfectly

conducting scatterer with surface S located in the free space
Kiev, Ukraine, IX-1H INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY
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E0(%) = pexpl- jk(R %)) A°(x)=(px RO)\/iIexp(—— ik(R %)), (1)

0
where R is the unit vector of sounding direction; p is the vector of polarization; k is
the wave number of free space; €,,1, are permittivity and permeability of free space
accordingly; X is the position vector of object surface point (Figure 1).

If E(x).H(X) are vectors of total field then scattered field will be defined by formula

Es(i): I:Z(X)— E”(i) Let in some point x, somewhere outside of S the electric dipole
with the vector-moment p is located. Vector p is arbitrary on the value and direction.
This dipole creates a field. Applying a Lorentz lemma, we have

jpEs( )= i GE s ) ETEH < s s, )
o/ ¢ 0 0 0 0

where

— — —

ft—dxh BT =E-iliE) EgT‘:EO-ﬁ(ﬁE] H =fixH - (@)

0 0

the tangential components of electrical and magnetic fields. n — is the unit normal
vector to the object surface. For the perfectly conducting scatterer E' | =0 and

consequently the integrand function is zero.
The field of an electric dipole can be represented in the form

B (/%)= - [0 + k3pc]) @
0

. jkr
where G=¢ ¢ /41rr; ' :(io —i)/r; r=|>"<0 ~X| - the distance between object and

receiving antenna; p=p'+p* are longitudinal and tangential component of

polarization vector. Taking into account that in Kirchhoff approximation formula (2) for
a scattered field

T {[W(ﬁﬁ)—ﬁ(ﬁ‘)a)ﬂk; . jkoz_ljﬁl -

(5)
o (5
2(Jk01‘ _ l)d}'ko[H[R(”‘ '

-—Dp Jlds ,

r’ )
where Sgis "illuminated" part of object surface. Using the representation (5)
calculations of scattered field were carry out for f§ = 0..90% and ¢ = 750,850,950 . For

example, in Fig. 2 results of calculation for £=75" and r=200mare presented.
Direction finding accuracy depends on the type of angle discriminator and amplitude-
phase distribution (APD) in antenna aperture. In this paper we simulated combined
calculation accuracy is given by the antenna: in B -plane — amplitude method of
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TR N direction finding; in &-plane — phase one.
9,E-03 Such finding direction functioning 1is
8,E-03 described by expression

7,603
6,E-03 -
£5.-03 1
<
4,E-03 -
3,E-03
2,603 - -
1603 J . o

<§E (%o A1 (%, S,

where A 12 (%,) is APD in antenna aperture

for two channels of receiving antenna, S,

is aperture area. Deviation of measured

e 6 6 12 18 24 30 36 42 48 54 60 66 72 78 84 i object bearing from true one is determined
g 2de?fe,es,,,,, | by expressions r(c)= Re[U U; j/U U, -
, ig: for course-plane and
= RelUsU:'1 exp(jn/2)]/UsU: — for pitch-plane, where U, =U,+U,,
U, =U, -U,. For example dependences of r(c) andr(p) from angle B are shown in
Figures 3, 4.
: 05 b 'c"ours‘e-plar{é ' - 10 pitch-plane
10 20 30 40 5Q 60 70 80 %0
L o3
e\ A~/ °
\ l v VvV,
b
25 degr i | degr
F1g 3 Fig. 4

The analysis of Figures 3, 4 have shown that in the course-plane the deviation can be
obtained the values 1,7-2,3 degrees. In the pitch-plane it possible to obtain 15 degrees.

For azimuth 60°in the €-plane the angular deviation is more than object angular size.

By using proposed technique one can efficiently calculate the errors in airborne object
direction finding appearing in short-range radar.
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MATHEMATICAL METHODS IN SOME DIFFRACTION
PROBLEMS FOR DOMAINS WITH DEFECTS

Alla A. Gousenkova
Department of Applied Mathematics, Kazan State University
18, Kremlyovskaya, Kazan, 420008, Russia
e-mail: gaa@ksu.ru

‘Mathematical methods in diffraction problems for elastic time-harmonic waves on
defects are considered. It is assumed that the body forces are absent and the defect may
be disposed on the plane in the homogeneous isotropic space or on the media interface
of two homogeneous isotropic half-spaces. It is obtained systems of singular integral
equations equivalent to the problems. Considered mathematical methods may be useful
for solving some form researched in [1] diffraction problems for electromagnetic time-
harmonic waves on defects. Some approaches to elastodynamic problems in the case of
the anisotropic elastic medium are considered too. It is get analogues of the Lopatinskii
condition and boundary conditions of an elliptic boundary value problem in the half-
space. It is shown that both approaches are equivalent.

To solve these problems the classes of outgoing from a plane solutions are introduced.
The Fourier transformation in the class of generalized functions of the slow growth at
infinity and presentations of solutions of the problems by potential functions are used.

SOME ANISOTROPIC ELASTODYNAMIC PROBLEMS.

One considered harmonic oscillations of the anisotropic elastic half-space {x; >0}.

Assume that the body forces are absent. In this case we have the equations

3 62
3 Cp—it priu, =0, i=123
k./../=l ’ axlax/

where u(u,,u,,u;) is the complex displacement vector, u(x,t) = Refu(x)e™},
(i, i,,il,) is the displacement vector. p is the density of the body, C,
(i, j.k,I =1.2.3) are the elastic constants. C,, =C ,, =C,, .
A solution u(u,,u,,u;) of the equation for x; >0 we will to call ourgoing from the
plane {x, =0} to the half-space {x, >0} [2],if u, (x.x, .x;) (i =1,2,3) are distributions
of the slow growth and
supp u,(x,,%,,%;) < {x; >0}, =123

sing supp U (&,,&E,,E)N{E <0y =&, i=123
where the Fourier transforms of the unknown functions are denoted by capital letters.
For solving this problem with some boundary conditions on the plane {x, = 0jthe

Fourier transformation with respect to all variables in the space of distributions one
used. Therefore one get some auxiliary conditions. One can show that the boundary and
auxiliary conditions at this approach for solving of the problem are analogous to the
Lopatinskii condition and the boundary conditions at the considered in [3] approach for
solving of the elliptic boundary value problem for the half-space. In [3] the Fourier
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transformation does not take with respect to all variables. Therefore one get a system of
ordinary differential equations for the Fourier transforms of unknown functions. But we

get the system of linear algebraic equations for the Fourier transforms of u,(.,,)
(i=12,3).

If the roots with the positive imaginary part of some equation are known, then the
solution of the boundary value problem for the half-space can be written in the obvious
form. In this case one can obtain presentations of solutions of the boundary value
problems by stress and displacement jumps on the plane {x, =0}. And it is convenient

to research, for example, diffraction problems for the elastic time-harmonic wave on a
defect disposed on the plane {x; = 0}.

SOME ISOTROPIC ELASTO- AND ELECTRODYNAMIC PROBLEMS. Let Q
be an infinitely thin defect disposed on the plane {x, =0} in an isotropic elastic

medium. Assume that the dependence from the time is harmonic for the components of

the stress vector and for the components of the displacement vector, the body forces are

absent. One searched the complex amplitudes of the functions, the time factor e ™ one
re

omitted. ’

It is well known that by made assumptions the elastodynamic equations have the form
(A+u) grad div u + phu + pk*u=0 in R*\Q

where A=0°/0x] +0°/0x; +0°/dx? is the Laplace operator, A,u are the Lame

constants, p is the density of the body.

In the case of a soldered hard screen, for example, the boundary conditions have the
form

), =-u'(x,x,), i=123 on Q

where u; () (i =1,2,3) are the known functions.

For solving this problem it is convenient to consider an auxiliary jump problem. One
searched solutions of the Lame equations for {x, >0} and for {x, <0} in the class of
solutions outgoing from the plane {x; =0}. On the plane {x, =0} the stress and
displacement jumps are given

[u,] |A =a, (x,,x,), [0',.3] ,A = a%(xl,x?_ ), i=123 on A

where Ais the plane {x, =0}, [f]|, =f(x,x,,0+0)~ f(x,,x,,0-0). Functions in
the right-hand sides of the conditions are the given functions on the plane {x, =0}; we

will to call its the potential functions.
For solving the jump problem it is convenient to use the longitudinal and lateral

potentials ¢(”) and V= (Wl ("'9')3 v, ('a'e')s Vs (n))

u=grad o+ rot y, divy=0
and the Fourier transformation with respect to all variables in the space of distributions.
For the functions ¢(.), ¥,(-+,) (i =1,2,3) we have the Helmholtz equations

Ap +klp=0, Ay, +kly,=0,i=123 in R*\Q
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where k, =k/c, (i=12)c, = (A +2u)/ p,c, = pu/ p are the velocities of spreading
of longitudinal and lateral waves in the isotropic elastic medium.

In some electrodynamic boundary value problems systems of Helmholtz equations may
be obtained too, when boundary conditions for unknown functions do not separate. In
these cases solutions of Helmholtz equations we will search independently, if the
Fourier transformation in the class of distributions one used.

Boundary conditions for the potentials ¢(-,-) and y do not separate in boundary value

problems for an isotropic space with the defect Q on the plane {x, =0}. But the
problems for the Fourier transforms of the functions ¢(-,-) and y,(-,-,) (i =1,2,3) in the

auxiliary jump problem one can consider independently. if we will take the Fourier
transformation in the space of distributions.

For solving the jump problem we take the Fourier transformation with respect to all
variables in the Helmholtz equations. One can to obtain presentations of solutions of the
diffraction problems for the elastic time-harmonic wave on a defect Q2 by the potential
functions. One obtained systems of singular integral equations (SSIE) equivalent to the
boundary value problems in cases of some defects Q. For example, one can shown that
in the case of a soldered hard screen in presentations of solutions of the boundary value

problems the functions a, (-) (i =1,2.3) are equal to zero identically and the functions
a, (~)(i=123) are non-zero on Q only. One obtained SSIE for defining the

functions a, () (i =1,2,3) on the screen. Equations of the system have the logarithmic

singularity with respect to all variables.

In the considered in Sec.1, 2 dynamic problems longitudinal and lateral potentials are
used in the auxiliary jump problem only. It is convenient, because to take the Fourier
transformation to the independent Helmholtz equations is more easy than to the system
of the connected Lame equations. And the problems for the Fourier transforms of
functions ¢(.,) and ,(--) (i =1.2,3) are separated in the jump problem, if one used

the Fourier transformation in the space of distributions. Usually in analogous
elastodynamic problems the Fourier transformation does not take with respect to all
variables. And problems for longitudinal and lateral potentials do not can to consider
independently.
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ABSTRACT ,
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving
spherical impedance scatterers. The MAS results are compared with the reference

spherical wave expansion (SWE) solution. It is demonstrated that good agreement is
achieved between the MAS and SWE results.

INTRODUCTION

The Method of Auxiliary Sources (MAS) is a numerical technique applicable to
electromagnetic scattering problems. In the general case, a set of spatially impulsive
electric and/or magnetic sources is introduced to radiate an approximation to the
unknown scattered field. These so-called auxiliary sources are located on an auxiliary
surface, typically conformal to, and enclosed within, the physical surface of the
scatterer. Point matching of the boundary condition on the physical surface is enforced
to determine the complex amplitudes of the auxiliary sources. The MAS originates from
an application of a special case of the Method of Moments (MoM), utilising spatially
impulsive expansion and testing functions, to a generalised surface integral equation
formulation [1]. An overview of MAS is given in [2]. Utilisation of MAS for numerical
solution of various 2D scattering problems and 3D PEC and dielectric scattering
problems has been reported earlier [3]