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CHAPTER I 

INTRODUCTION 

1.1    Background 

The firet powered flight by the Wright brothers in 1903, marked the beginning of a 

new chapter in structural and materials engineering. The emphasis on light weight, 

high stiffness and high strength in the design of aircraft structures was markedly- 

different from the general structural design concepts prevalent at that time. Starting 

with the spruce and canvas plane of the Wright brothers to the modern day jet fighters 

manufactured from advanced materials, the unifying theme has been the emphasis 

on light weight with simultaneously high strength and high stiffness. Thus, advanced 

materials being used today in different aerospace and non-aerospace applications are 

a culmination of this quest for light and strong materials. Among these advanced 

materials, fiber reinforced polymer matrix composites (PRPC) have been one of the 

most promising materials in terms of variety of applications and cost effectiveness. 

This is apparent from the ever increasing use of fiber reinforced composites in modem 

day jet fighters and space crafts to sports equipment and biomedical applications. 

Fiber reinforced polymer matrix composites (FRPC) can be classified based on 

the type of matrix system used. The matrix systems are either thermo-setting or 

thermo-plastic. The reinforcement commonly used in FRPC are a low stiffness fiber 



(typically, kevlar fibers) to a very high stiffness fiber (carbon fibers). A detailed 

description of the different types of fibers and matrix systems used can be found in 

the text by Herakovich (1998). The advent of FRPC in aircraft structures has led to 

a new flexibility in design because of the tailorability of FRPC. However, the promise 

of these new materials has not been fully translated into reality due to two reasons; 

high manufacturing costs and a lack of complete understanding of their mechanical 

behavior, particularly the manner by which they fail, under various types of loading 

conditions. The main drawbacks of these materials from a structural application 

point of view is their low threshold for damage initiation under transverse impact 

and a comparatively low compressive failure strength. Both these issues have been 

actively researched for the past two decades. 

The study of the mechanics of failure of materials that show a progression (ini- 

tiation of failure through micro-cracking leading to final failure) in the sequence 

of failure in general, is usually referred to as "Damage Mechanics" . Damage me- 

chanics deals with different aspects of damage from failure initiation through failure 

progression to final failure. There are various approaches to modeling failure ini- 

tiation in general. Most failure modeling approaches can be broadly divided into 

phenomenological and mechanism based failure models. The most commonly used 

phenomenological models in composites (e.g. Tsai-Wu) are essentially adaptations 

and extensions of corresponding criteria for metals, for example, the Von-Mises cri- 

terion. The main advantage of phenomenological models is their simplicity. But 

these models provide very Httle information about the causes of failure or the effect 

of constituent properties on the overall failure behavior of composites. On the other 

hand, mechanism based failure models are based on micro-mechanics of the compos- 

ite constituents. Usually mechanism based failure criteria require more information 



about the composite constituent properties and are applicable to a particular failure 

mechanism for which the model has been developed. The mechanism based models 

provide more information on the causes of failure and also on the role of each indi- 

vidual constituent (geometric and material) of the composite. This information can 

be used to design composites with improved failure characteristics. 

The findings reported in this thesis are concerned with understanding the com- 

pressive failure behavior of glass and carbon composites, both initiation and the 

mechanism of failure, under pure compression and combined compression-torsion 

loading. The study includes both static compressive behavior and dynamic compres- 

sive behavior of fiber reinforced composites. A mechanism based modeling approach 

to failure has been adopted to obtain a better understanding of the various parame- 

ters involved in the failure of fiber composites. 

1.2    Motivation 

It is well established that the compressive strength of fiber composites is small 

compared to their tensile strength (see Waas and Schultheisz (1996)). This differ- 

ence has been a limiting factor in the design of composite structures. Research has 

focussed on understanding the reasons for this low compressive strength and also on 

methods to increase the compressive strength of fiber composites. Traditionally, com- 

posite materials are used in the form of laminates, where the individual laminae have 

fibers aligned at various angles to the direction of loading. It is complicated to model 

the laminate as a whole for understanding the fundamental aspects of compressive 

failure behavior of the laminated composite materials since both inter-laminar and 

intra-laminar failure modes are present. This makes the task of identifying the funda- 

mental parameters affecting the compressive failure strength of composite materials 



very difficult. Thus, researchers have focussed on understanding the compressive 

failure behavior of unidirectional fiber reinforced composites, which is a fundamental 

building block for any composite laminate. However, even the modeling and ex- 

perimental work on unidirectional fiber reinforced composites presents tremendous 

challenges. Compressive loading experiments are the most difficult to perform due to 

the inherent tendency of the composite specimen to buckle in a global mode. It has 

been shown by Waas and Schultheisz (1996) and Haberle and Matthews (1993), that 

the testing method influences the value of the compressive failure stress observed in 

composite specimens. 

Modeling the heterogenous and anisotropic fiber reinforced composites under 

compressive loads has been an active area of research. Camponeschi (1991) and 

Waas and Schultheisz (1996) provide a excellent review of the literature in this area. 

Recently, a review article by Naik and Kumar (1999) provides a comparison between 

the various failure models and experimental results. In the following section, a brief 

survey of the existing literature in the area of compressive behavior of fiber rein- 

forced composites is presented. A more detailed description of the research work 

in composite compressive behavior can be obtained from the review articles cited 

above. 

1.3    Literature Review 

The literature in the area of compressive behavior of fiber composites can be 

broadly divided into two areas based on the type of loading, ie. static or dynamic. 

For each type of loading, we can further divide the work into those dealing with 

pure compressive loading and those dealing with combined compression-shear/torsion 

loading. Historically, the first attempts at modeling the composite compressive be- 



havior was based on microbuckling of fibers in a elastic matrix. However, exper- 

imental evidence and further modeling suggested the inapplicability of the el^tic 

microbuckling concept to predict the critical compressive stresses comparable to the 

experimentally observed strength values. This led to the development of new models 

based on experimentally observed failure mechanisms like kinking and splitting , 

which were physically observed during the compressive testing of specimens. Kink- 

ing is the result of localized shear deformation of the matrix accompanied by fiber 

failure. Kinking strength depends on the matrix shear yield properties, and possibly 

on the fiber strength. Splitting is a failure mechanism observed in fiber composites 

with brittle matrices or weak interfaces. It is controlled by the fracture toughness of 

the matrix and the fracture toughness of the fiber-matrix interface. A schematic of 

the failure mechanisms is shown in figure 1.1. A third type of failure reported in the 

literature is fiber failure . It usually occurs in composites reinforced with fibers like 

kevlar, which are weak in compression. For fibers like glass or carbon this failure 

mode is usually not observed, except after the initiation of failure by other mech- 

anisms. In the subsequent paragraphs, a brief review of the work done by various 

researchers will be presented. 

1.3.1    Static Loading 

Pure Compression 

The problem of low compressive strength in composite materials was first pointed 

out by Dow and Gruntfest (1960), which was later taken up by Rosen (1965). Rosen 

(1965) modeled the fiber composite material as a layered elastic medium with alter- 

nate layers of fiber plates and matrix plates. He found that the lowest buckling load 

was corresponding to the case of shear mode of buckling with long wavelengths and 



gave the expression for the critical compressive stress as follows 

Gm (1.1) 
(1 - Vf) 

where Gm is the elastic shear modulus of the matrix and Vf is the fiber volume frac- 

tion of the composite. Similar, results were also obtained by Hayashi (1965). Lager 

and June (1969) compared the values of compressive stress calculated from Eqn. (1.1) 

and found them to be higher than the experimentally observed compressive strength 

values of boron-epoxy composite specimens. They attributed this to the apparent 

anisotropy of epoxy matrix in the presence of fibers and suggested a modified form of 

Eqn. (1.1). Several improvements and modifications have been suggested (Sadowsky 

et al. (1967), Lanir and Fung (1972), Steif (1988), Waas et al. (1990) and Lagoudas 

et al. (1991)) to the elastic microbuckling model of Rosen (1965) but none of the 

models based on the elastic behavior of matrix could predict compressive stresses 

comparable to the experimental results, as reported, for example in Weaver and 

Williams (1975), Piggott and Harris (1980), Parry and Wronski (1981), Piggott and 

Harris (1981) and Martinez et al. (1981). 

Argon (1972) came up with an important observation about the dependancy 

of the compressive strength of fiber reinforced composites on the misalignment of 

the reinforcing fibers. Fiber misalignments are present due to the manufacturing 

process of composites and he surmised that these local misalignments induce local 

shear stresses in the composite, when subjected to an external compressive load. 

The induced shear stress beyond the shear yield stress of the matrix causes a local 

degradation of the matrix shear stiffness causing the fibers to buckle. He therefore 

suggested that the critical compressive stress is a function of the shear yield stress, 

Ty, and the fiber misalignments, (/>, present in the composite specimens and gave the 



following expression for the critical compressive stress. 

"' = 0 (1-2) 

The analysis of Argon (1972) also indicated that the shear mode of buckling as 

suggested by Rosen (1965) prevailed. But the final kinking mode of failure as ob- 

served in experiment was due to the local buckling of fibers in the region of excessive 

shear stresses beyond the shear yield stress of the matrix. The experimental work 

of Weaver and Williams (1975) revealed that the kink bands consisted of broken 

fibers and that the kinking compressive strength of carbon composites tested in- 

creased with increasing confining pressure. Piggott and Harris (1980), Piggott and 

Harris (1981) and Martinez et al. (1981) in a series of compression experiments on 

composites reinforced with carbon, glass and kevlar fibers provided a new insight to 

the problem of compressive failure behavior of fiber reinforced composites. Piggott 

and Harris (1980), observed that the compressive strength of the fiber reinforced 

composites dropped with the reduction in the shear yield stress of the matrix. They 

also observed that the failure mode in carbon fibers was kinking whereas the glass 

fiber reinforced composites failed by splitting. In another set of experiments reported 

by Martinez et al. (1981), the effect of fiber matrix adhesion and misalignment was 

studied. They observed that the compressive strength is hnearly varying with fiber 

volume firaction, Vf for values of Vf less than 0.4 and beyond this fiber volume frac- 

tion the compressive strength was seen to drop below this linear relation. They 

observed that the presence of kinked and misaligned fibers was to reduce the com- 

pressive strength of fiber reinforced composite. Although, kinking stress predicted 

from Eqn. (1.2) is lower than the prediction of Rosen's model it was still higher than 



the experimentally observed values of compressive kinking stress. A new model for 

kinking taking into account the plasticity of the matrix was introduced by Budian- 

sky (1983). He essentially extended Argon's work by assuming perfect plasticity in 

matrix and derived the expression for critical compressive stress with a zero angle 

kink band to be as follows 

ar   =   -^^ (1.3) 
0 + 7y 

where 7y is the shear yield strain of the composite and Ty is the shear yield stress 

of the composite. It can be seen that for values of misalignment angle, 4) very much 

greater than 7y, Eqn. (1.3) is same as the Eqn. (1.2) obtained by Argon (1972). But 

as was suggested in the paper by Budiansky (1983), most experimental observations 

of the kink band indicate a non-zero kink band angle. Budiansky (1983), explained 

the phenonmenon of non-zero kink band angles by studying the elastic effects of 

localized imperfections. He assumed the imperfections to be of two kinds, one being 

a very short wave imperfection at the boundary and another a long wave imperfection. 

With these types of imperfections he derived bounds for the kink band angles for 

different ratios of ET/G, where Ex is the transverse modulus of the composite and G 

is the elastic shear modulus of the composite. Budiansky and Fleck (1993), extended 

the above model to include the effect of strain hardening. They derived a closed form 

expression for critical kinking compressive stress in case of a strain hardening matrix. 

ae   =    ^-^  (1-4) 
l-hn(3/7)V"(^)("-i)/" 

In Eqn (1.4), G is the shear modulus of the composite and n is the exponent in a 

Ramberg-Osgood fit for the shear stress-strain curve of the composite. Fleck et al. 

(1995) presented a couple stress based theory, in which the composite is assumed to 



be inextensible in fiber direction and to deform as a Ramberg-Osgood solid in shear 

and transverse tension, to predict the kink band width. Fleck and Shu (1995), Moran 

et al. (1995), Sutcliffe and Fleck (1997), and Biidiansky et al. (1998) studied the 

microbuckle intiation and kink band propagation in fiber reinforced composites using 

finite element models. The imperfection was introduced in the form of an elliptical 

region of fiber waviness. They observed that the predicted compressive strength 

decreases with increasing imperfection spatial size from the elastic bifurcation value 

of Rosen (1965). 

Using the theory of work potential developed earlier, Schapery and Sicking (1995), 

and Schapery (1995) studied the kink band formation in polymer matrix composites 

under pure compression. They postulated that a band of wavy fibers becomes a kink 

band when local matrix cracking occurs. The corresponding value of axial stress 

equals or exceeds the predicted critical stress for buckling. The kink band angle is 

fixed through the requirement of matrix cracking, however the compressive strength 

was found to be a weak function of the kink band angle. Sun and Jun (1994), also 

studied the effect of fiber misalignment and non-linear behavior of the matrix on 

fiber microbuckling and the compressive strength of a unidirectional fiber composite. 

Their analysis results showed reasonable correlation with amilable experimental data 

for AS4/3501-6 and AS4/PEEK graphite composites with 2 degrees to 4 degrees 

range of initial fiber misalignment. The problem of kinking and micro-buckling was 

also addressed by Kyriakides et al. (1995). A combined experimental/numerical 

study on compressive behavior of cylindrical samples of AS4/PEEK unidirectional 

fiber reinforced composites was presented. The in-situ polymer matrix properties 

were determined using two different test techniques and these properties were used 

in the 2D plane strain modeling of the unidirectional fiber reinforced composites 
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utilizing the finite element package ABAQUS. Initial fiber waviness coupled with 

the fact that the matrix exhibited strain softening in shear led to a limit load type 

response. Kinking was seen as the final result of the localization process initiated by 

the limit load instability. In a continuation of this work, Hsu et al. (1998) and Vogler 

and Kyriakides (1998), studied the compressive behavior under static and dynamic 

loading conditions. 

Splitting mechanism of failure which had been observed by Piggott and Harris 

(1980); Bazhenov et al. (1992); Kozey (1993), and Lee (1998), was studied by Lee 

and Waas (1999). Lee and Waas (1999), were the first to develop a mechanism 

based splitting model based on linear elastic fracture mechanics, where the compos- 

ite Wcis represented via the composite cylinder model as a concentric cylinder of fiber 

and matrix with a interfacial crack between the fiber and the matrix. Oguni and 

Ravichandran (2000), independently developed a splitting model to predict the com- 

pressive strength of fiber composites. Oguni and Ravichandran (2000), also studied 

the effect of confining pressure on the compressive strength predictions. They also 

observed that under confined compression the composite failure mechanism under- 

goes a transition from splitting to kinking, depending on the amount of confinement. 

Combined Compression-Shear 

Batdorf and Ko (1986), were the first to consider the effect of remotely apphed 

shear stress on the kinking stress. They studied a planar strip of composite under 

axial compression and shear. However, they omitted the remotely applied shear 

strain term, 7°°, in their expression. Budiansky and Fleck (1993), modified the 

kinking stress expression for pure compression to take into account the remotely 

applied shear stress and gave the expression as follows. 
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^c   =      / ,       ^ ,  ^ (1.5) 7(r) - 7°o + ^ ^     ^ 

Jelf and Fleck (1994a), conducted combined compression-torsion tests on hollow 

tubes of carbon/epoxy. They observed that the compresive failure strength dropped 

linearly with increasing shear stress. Similar, experiments were conducted by Lee 

et al. (1999) and Vogler et al. (2000). Vogler et al. (2000), used rectangular coupons of 

AS4/PEEK to study the behavior under combined axial compression-shear loading. 

They developed finite element models to predict the failure envelope under combined 

compression-shear loading. They introduced sinusoidal imperfections into the model, 

and calibrated the magnitude of imperfection, such that the model predictions for 

compressive strength matched the experimentally observed strength values. 

1.3.2    Dynamic Loading 

Structures made of composite materials are exposed to dynamic loads in their 

regular service life. Thus, it is important that the behavior of composites under 

dynamic loads be studied. This is necessary to build better predictive models for 

both strength and stiffness of composite materials under high strain rates. There 

are different testing methods ranging from servo-hydraulic machines (< 10s~^), to 

drop weight impact towers (lOs-^ < lOOOs-^). For strain rates higher than lOOOs^S 

typically split Hopkinson pressure bar(SHPB) setup has been used. 

The split Hopkinson pressure bar test setup (SHPB) or Kolsky bar, after Kol- 

sky (1949, 1953) has been widely used for high strain rate testing of metals and 

there is extensive literature available on the use of SHPB for metals (Davies and 

Hunter (1963); Meyers (1994)). However, in the following paragraphs only literature 

pertaining to the use of SHPB in high strain rate testing of composite materials 
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will be presented. Sierakowski et al. (1971) conducted dynamic compression tests 

on steel/epoxy composites at strain rates of lOOOs"^ They observed the failure 

mechanism to be different in static and dynamic compression tests on cylindrical 

specimens. Kumar and Garg (1988), studied the failure modes in glass fiber re- 

inforced composites at an average strain rate of 2655"^. They studied the failure 

modes for composites with fibers oriented at different angles to the loading direc- 

tion. They observed that in case of unidirectional fiber composites the failure was 

by tensile split planes parallel to the fiber direction. Hallett et al. (1999), stud- 

ied two types of woven glass/epoxy material systems in compression at strain rates 

of 860s"^ They concluded that there is a significant increase in the initial modu- 

lus, compressive strength and ultimate strain with increasing strain rate for woven 

glass/epoxy composites. Yuan and Takeda (2000), used the modified SHPB to track 

the damage progression in GFRP composite laminates under impact loading. Wan 

and Takeda (1993) and Yuan et al. (1998), compared the high strain rate behav- 

ior of carbon/vinylester and glass/vinylester composites for fiber volume fraction 

ranging from 0.1 — 0.6. They observed the compressive strength to increase at high 

strain rates for both carbon and glass fiber reinforced composites. Fan and Slaughter 

(1997), presented a model to predict the dynamic compressive response of polymer 

matrix composites. The model incorporates the effect of material non-linearity and 

inertia, the effect of misalignments and fiber bending stiffness. They concluded that 

within a range of initial fiber imperfection wavelengths, there is a preferred wave 

length which causes the failure to occur in the least possible time. Oguni (2000), 

also studied the high strain rate behavior of glass fiber reinforced composites. A 

modified form of splitting formula that accounts for the rate effects was developed 

and compared with the experimental data. It was observed that the failure mode in 
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case of glass composites was splitting. 

1.3.3    Summary 

The literature review presented above has highlighted the most relevant and 

important contributions to the present state of the art in the compressive strength 

prediction of FRPC. Considering the immense volume of literature available on the 

subject of compressive behavior of fiber composites, attention has been focussed only 

on those works which are directly relevant to the main focus of this thesis. When 

appropriate, additional references have been quoted in the subsequent chapters of 

this thesis. It is to be noted that both kinking and splitting are localized failure 

initiation mechanisms. That is, in compression of long slender member it is possible 

for splitting or kinking to occur independently of global Euler buckling. Of courae, 

global Euler buckling may induce kinking or splitting, but, at the same time, it is 

possible for kinking or spHtting to occur without global Euler buckling. 

A brief review of the literature in the area of pure compression indicates the im- 

portance of both geometric parameters like fiber radius, r/, misalignment angle, ^, 

fiber volume fraction, F/, and material parameters like shear modulus of matrix, G„, 

shear yield stress, Ty and shear yield strain of the composite, % on composite com- 

pressive strength. As can be seen from the literature, most of the focus has been on 

understanding the behavior of small diameter carbon (d w 7^m), fiber composites 

under pure compression and usually at a fixed fiber volume fraction. There is some 

limited work on combined compression-shear loading of carbon fiber composites but 

again at a fixed fiber volume fraction. Most of the past research has dealt with the 

issue of failure mechanism as being inherent to a particular fiber/matrix composite 

system. This is because most researchers, with the exception of Piggott and Harris 
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(1980), have studied only one material system, usually, small diameter carbon fibers 

in a thermosetting or thermoplastic matrix at a fixed fiber volume fraction, where the 

kinking failure mechanism is predominant. Lee and Waas (1999) are the first to study 

the dependancy of splitting compressive strength of fiber reinforced polymer com- 

posites on parameters like fiber volume fraction, V/, and fiber type. In the current 

work, the compressive response of two different composites with same matrix but dif- 

ferent reinforcements (glass and carbon), over a wide range of fiber volume fractions 

have been studied. This was done in order to address some of the outstanding issues 

on compressive failure mechanisms mentioned above. A more holistic approach to 

understanding the reasons for the different failure mechanisms observed during the 

experimental testing of glass and carbon composites has been adopted in this work. 

The following sections summarize the most important contributions of the present 

thesis. 

1.4    Significant Contributions of the Current Thesis 

A major goal of the present work was to understand the behavior of glass fiber 

and carbon fiber reinforced polymer matrix composites under pure compression, pure 

torsion and combined compression-torsion loading, with respect to identifying the 

role of constituent properties on failure mechanisms. An important associated task 

is the development of mechanism based mechanics models for strength prediction. 

The specific contributions of this thesis can be summarized as follows. 

1. A closed form expression to calculate the splitting compressive strength of 

FRPC by using shear lag theory has been derived. The use of shear lag theory 

enables us to derive an expression for compliance change with respect to crack 

length, dc/dl, as a function of crack length. This aspect was not included in 
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the earlier studies on splitting mechanics carried out by Lee and Waas (1999). 

2. The effect of fiber diameter on the composite compressive strength and com- 

posite compressive failure mechanism has been studied experimentally for the 

first time. The work reported explicitly accounts for the effect of fiber di- 

ameter. This aspect has not been investigated in prior studies on composite 

compressive failure. 

3. A non-dimensional number to characterize the composite compressive failure 

mechanism h^ been derived. The main advantage of this number is its use 

to apriori predict the failure mechanism for a given fiber/matrix system. It 

can also provide a designer the information to tailor the failure mechanism 

according to the required fiber/matrix composite material system. 

4. An experimental study of the combined compression-torsion behavior of glass 

fiber reinforced polymer matrix composites has been presented for the first 

time. 

5. Pure compressive behavior of hybrid composites has been studied under both 

static and dynamic loading using the split Hopkinson pressure bar setup for 

first time. A new mechanics model has been developed based on the physics of 

the failure process. 

6. 3D finite element models which are representative of the solid composite cylin- 

ders including the microstructure were developed. These were used to study the 

behavior of carbon composites under pure compression and combined compression- 

torsion loading. The results from the models with glass composites were used 

to understand the effect of fiber diameter on the compressive failure. 
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1.5    Thesis Outline 

The thesis has been organised in a manner where each chapter is self contained 

with an introduction and conclusion. However, the references for all the chapters 

are presented at the end of the thesis so as to avoid repetition. Some of the theories 

and experimental methods which are important to understand the current work but 

not necessarily in line with the main focus of this thesis have been presented in the 

appendices. Each individual chapter deals with an aspect of the overall problem of 

understanding the compressive behavior of fiber reinforced composites and builds 

upon the information obtained from the preceding chapters. 

In chapter I, a summary of the previous work done in the area of compression 

of fiber composites is presented. The salient features of some important analyti- 

cal/numerical models are discussed and the deficiencies identified with a view to 

motivate the current work. Chapter II deals with the torsional behavior of glass 

and carbon fiber composites. A method to determine the interphase properties is 

presented. Understanding the torsional behavior of composites is important since 

the shear response of the composite/matrix plays a crucial role in the compressive 

response of fiber composites. The results of this chapter have been published in 

open hterature (paper-2, fisted in the next section). In chapter III, the experimen- 

tal results of pure compression tests on glass and carbon composites are presented. 

The steady state model of splitting developed by Lee (1998) is first presented. It is 

then extended to the case of nonsteady crack propagation by using shear lag theory. 

Chapters II and III lay the ground work for understanding the combined compression- 

torsion loading behavior of fiber composites. The results of chapter III appeared in 

the open literature as paper-1 and paper-3 listed in the next section.   In chapter 
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IV, experimental as well as analytical model results are presented for the combined 

compression-torsion loading of glass and carbon composites. The differences in the 

response of carbon and glass composites to combined compression-torsion loading 

are discussed. The results of this chapter have been accepted for publication and 

is listed as paper-4 in the next section. Chapter V contains the details of the 3D 

finite element micromechanics studies. The 3D model is used to better understand 

the mechanics of fiber failure under compression and compression-torsion loadings. 

In chapter VI the pure compressive failure behavior of hybrid composites is stud- 

ied. Understanding the effects of hybridization of composites, with respect to failure 

strength and failure mechanism is important to design cost effective fiber compos- 

ites. Their response under high strain rates of loading is studied using the split 

Hopkinson pressure bar setup. Based on the experimental and analytical/numerical 

results obtained in the previous chapters, a non-dimensional number is derived using 

the theory of dimensional analysis. This is presented in chapter VII along with a 

comparison of experimental data obtained from the current work and that from lit- 

erature. The results in chapter VII have been submitted for pubhcation and is listed 

as paper-5 in the next section. 

Finally, the conclusions drawn from the present study on understanding the com- 

pression and combined compression-torsion loading behavior of fiber composites are 

presented in chapter VIII along with suggestions for future work. 

1.6    Publications Related to this Thesis 

1. Lee, S.H., Chandra S. Yerramalli and A. M. Waas, 2000, "Compressive split- 

ting response of glass-fiber reinforced unidirectional composites," Composite 

Science and Technology, 60:2957-2966. 
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2. Yerramalli, Chandra S. and A. M. Waas, 2002, "In-situ matrix shear response 

using torsional test data of fiber reinforced unidirectional polymer composites," 

ASME Trans. Journal of Engineering Materials and Technology, 124:152-159. 

3. Yerramalli, Chandra S. and A. M. Waas, 2002, "Compressive splitting failure of 

composites using modified shear lag theory," International Journal of Fracture, 

115:27:40. 

4. Yerramalli, Chandra S. and A. M. Waas, 2003, "A failure criterion for fiber re- 

inforced polymer matrix composites under combined compression-torsion load- 

ing," to appear in International Journal of Solids and Structures. 

5. Yerramalli, Chandra S. and A. M. Waas, 2002, "A non-dimensional number to 

classify composite compressive failure," in review. 
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Figure 1.1: Schematic of failure mechanisms in FRPC 



CHAPTER II 

SHEAR RESPONSE OF POLYMER 
MATRIX COMPOSITES 

2.1    Introduction 

The response of fiber reinforced polymer composites when subjected to pure tor- 

sional loading is presented in this chapter. The response of glass and carbon FRPC 

under torsional loading is used to understand the behavior of in-situ matrix. In most 

cases, when studying the behavior of composites under various loadings, the matrix 

properties are taken to be equal to those of a pure matrix i.e. containing no inclu- 

sions like fibers. In the manufacturing of polymer matrix composites, it is usual to 

subject the composite to an elevated temperature in order to improve the curing of 

the polymer matrix and to accelerate the curing process. The addition of heat to the 

polymer system containing fibers and the subsequent cooling causes residual stresses 

to develop in the matrix. These residual stresses in a cured composite need to be 

accounted for in the analysis of a composite material. A knowledge of the effective 

properties of the in-situ matrix and it's subsequent use in analysis is one way to 

account for the physical and chemical changes that the matrix has undergone during 

the process of manufacturing of fiber reinforced polymer matrix composites. The 

measurement of the equivalent shear mechanical properties (which are referred to as 

20 
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in-situ matrix shear properties) is the subject of this chapter. Unidirectional glass 

and carbon fibers embedded in a vinylester resin system are used as the material 

system for investigating the in-situ vinylester matrix properties in the present inves- 

tigation. Polymer resins when mixed with a curing agent and polymerized, either at 

room temperature or at elevated temperature, form a solid network of cross linked 

polymers [see Agarwal and Broutman (1983)]. The presence of inclusions like fibers 

in the vinyteter system causes changes in the polymerization at the vicinity of the 

fibers. The vinylester resin in the vicinity of the fiber which adheres to the fiber sur- 

face has different mechanical properties as compared to that of the same vinylester 

resin away from the fiber surface. The presence of fibers also causes a nonuniform 

distribution of temperature across the composite cross section during the process of 

curing. This, along with the differences in the coefficient of thermal expansion of 

the fiber and the matrix leads to the development of residual stresses. The final 

state of a cured vinylester depends to a large extent on the vinylester prepolymer, 

curing agent and also the absence or presence of inclusions. All these factors lead 

to a difference in the effective mechanical properties of the matrix in the presence 

of inclusions as compared to a pure matrix that has undergone the same thermal 

history. The characterization of the in-situ matrix properties is important in order 

to better understand the role of the matrix system in the composite as a whole. 

Very few studies have been done to characterize the behavior of the in-situ matrix. 

Yet, as has been shown by Kyriakid^ et al. (1995), who studied the in-situ shear 

behavior of a PEEK resin system for use in their compression studies, characteri- 

zation of the in-situ matrix behavior is key to obtaining a better understanding of 

the failure mechanisms of composites, especially under compression. In their study, 

Kyriakides et al. (1995) assumed the fibers to be rigid in shear to determine the 
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matrix properties. 

Of concern in the present chapter is the effect of fiber volume fraction and fiber 

mechanical properties on the in-situ shear properties of a vinylester thermosetting 

resin. The in-situ matrix values obtained have been explained by appealing to a 3 

cylinder model of the composite as shown in Figure 2.1. The 3 cylinder model as 

can be seen from the figure consists of three concentric cylinders of fiber, interphase 

and matrix. The interphase properties and its characteristics are computed as shown 

in the present paper. Experimental studies by Piggot et al. (1986) and Pompe and 

Mader (2000) and various other researchers have shown that the interphase has prop- 

erties diflferent from that of the fiber as well as the matrix. It has furthermore been 

postulated by Waas (1992); Williams et al. (1990), that the properties of this layer 

are weaker than that of the matrix and the fiber in which case it has a degrading 

influence on the strength and stiffness of the composite. A comparison of the predic- 

tions of the 3 cylinder model and the 2 cylinder model with the experimental results 

for composite shear modulus are presented in this chapter. 

The formation of the interphase layer is due to the non-uniform temperature 

distribution during the curing phase, caused by the presence of fibers in the un- 

cured polymer. Drzal et al. (1982b, a) have suggested that the interphase formation 

is due to the diffusion of molecules of the hardener from matrix into fiber sizing. 

The temperature distribution in the polymer matrix at low fiber volume fractions 

is nearly uniform and the number of fibers present are comparatively few to cause 

any significant perturbation to the temperature field in the polymerization process 

of the polymer matrix that occupies most of the volume in the composite. Conse- 

quently, the matrix properties are not significantly degraded and hence the 2 cylinder 

model with pure matrix properties can predict the composite shear modulus with 
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reasonable accuracy in the low fiber volume fraction range. At higher fiber volume 

fractions, the fibers are relatively closely spaced and the interphase of two fibers may 

overlap with each other causing near elimination of the pure matrix region. Here 

again a two cylinder model based on a new set of matrix properties can predict the 

composite shear modulus quite effectively. Notice that now, the new set of matrix 

properties correspond to the totally interacting interphase layer. At the intermediate 

fiber volume fractions one needs to explicitly account for the presence of a discrete 

interphase. For these intermediate fiber volume fractions, a 3 phase model incor- 

porating a stiff interphase can be used to predict the shear modulus with improved 

accuracy. 

2.2    Experiments 

2.2.1    Materials and Chemicals 

For the present study two types of fibers, glass ( E-glass 24/im diameter) and 

carbon (5^m diameter) along with vinyl-ester resin were used to manufacture com- 

posite specimens. The E-glass shear modulus, G/=26.7GPa and carbon fiber shear 

modulus, G/= 8.96GPa were obtained from Hyer and Waas (2000). Vinyl-ester 

( Dow-Derakane 411-C50) resin was mixed with initiator Benzoylperoxide (1% of 

weight of resin) and stirred till the initiator completely dissolves. The resin was then 

pressurized through glass tubes containing fibers. The inner diameter of the glass 

tubes is 6.8mm. The manufactured samples are cylindrical in shape and made of 

glass fibers or carbon fibers and vinylester resin in suitable proportion based on the 

fiber volume fraction (V» required. The manufacturing setup consists of a pressur- 

izing unit and a resin reservoir. The resin from the reservoir is pressurized into the 

glass tubes initially filled with the fibers.   Air pressure is used to force resin into 
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the glass tubes . The resin is cycled through the glass tubes till all the fibers are 

properly wetted and air bubbles are absent in the glass tubes. They are then placed 

in a oven and heated for 2 Hrs at 80° Celsius after which the tubes are allowed to 

cool down to room temperature. After the cooled samples have sat for 24 hours, the 

glass tubes containing the composites are cut into required length using a low speed 

Extec diamond saw. A detailed description of the sample preparation can be found 

in appendix A. 

2.2.2    Test Procedure 

Torsion tests were performed using an angular rotation control test setup. The 

specimens were 6.8 mm in diameter and the gage length of the specimens was ap- 

proximately 35 mm. Specimens of glass/vinylester and carbon/vinylester composites 

of V/ ranging from 10% - 60% were tested, with approximately 3 specimens at each 

Vf. In addition to the composite specimens, cylindrical rod specimens made of pure 

vinylester material(pure matrix) were also tested to obtain the shear stress-strain 

curve of the pure matrix. The tests were performed using an Enduratech universal 

testing machine. The specimens were initially unloaded to release the tension in- 

duced in the specimen due to the tightening of the grips. The specimens were next 

subjected to a uniform rate of twist of 0.0635°/min to 100°. Some of the specimens 

were unloaded till the resultant torque reduced to zero as shown in Figure 2.2 and 

the cross-section was examined under a optical microscope. Moreover, the speci- 

mens were cross sectioned at varying radii rl, r2 and r3 as shown in Figure 2.3. 

The angle of inclination of fibers in the unloaded specimens were measured from 

the cross section pictures and then plotted as a function of distance of cross section 

from the center of the specimen. It can be seen that the angle 7 increases approx- 
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imately in a linear manner with 'r' (Figure 2.4). It was observed that apart from 

some glass/vinylester specimens with Vf = 10% , none of the specimens failed during 

the loading upto the final rotation angle of 100°. The strain in the specimens were 

calculated using both the rotational data as well as from strain gages placed on the 

specimens. Three strain gages were placed on the specimen with two back to back 

along the axial direction and one at an angle of 45" to the axis of rotation. The axial 

strain gages were used to record the initial strain developed in the specimen due to 

the tightening of the grips. The reading of the strain gage placed along the 45° angle, 

in conjunction with standard strain transformation rules, is used to obtain the shear 

strain in the specimen. The torque vs twist data was also acquired digitally and was 

used to determine the shear stress in the specimen. Typical shear response curves 

for glass and carbon/vinylester composites as a function of fiber volume fraction are 

shown in Figure 2.5 and Figure 2.6. A Ramberg-Osgood fit to the experimental data 

was obtained and the values of Ramberg-Osgood parameters A and n are presented 

in Table 2.1 for glass and carbon/vinylester composites tested. In the present paper, 

attention is focussed only on the stress-strain behavior upto the point of maximum 

twist. 

2.2.3    Shear Stress Analysis 

The use of a solid cyhnder for torsion tests precludes the possibility of using 

the standard torsional formula for calculation of shear stress. The shear stress in a 

soMd cylinder varies non-linearly across the specimen cross section for large rotations. 

Hence, a formulation based on the work of Nadai (1950), which has been generalized 

by Lyon (1991) was used. If 7 is the shear strain in the specimen (Figure 2.7), then 

re 
1 = - (2.1) 
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T = 27r/  T{rydr (2.2) 
^0 

Here, T is the torque acting on the solid cylinder, T{r) is the shear stress on any 

cross section at a radius 'r', 9 is the angle of rotation of one end of the specimen with 

respect to the other and L is the specimen length. Eqn. (2.1) describes the relation 

for shear strain 7. Making the substitution, V' = f results in r = ^. The relation 

for applied torque in terms of the shear stress can be written as follows 

27r nWn o 

^=ri   "<^'"''" <'-'^ 
In Eqn. (2.3), T{^) is a single valued function of strain. Differentiating this equation 

with respect to V' and then rearranging the terms, results in Eqn. (2.4). Eqn. (2.4) 

was used to calculate the shear stress from experimental data. 

In Eqn. (2.4), R is the radius of the composite specimen and T is the apphed 

torque. From the torsional tests of the glass/vinylester and carbon/vinylester com- 

posite specimens, the shear modulus for different Vf was obtained as shown in Ta- 

ble 2.2 and Table 2.3. 

2.3    Test Results 

A Ramberg-Osgood fit was made to the test data obtained from the torsional 

tests of composite specimens of Vf ranging from 10%-60%. This equation expresses 

shear strain in terms of shear stress in a power law fit as shown below. 

7 = 7e + (^)" (2.5) 

Differentiating Eqn. (2.5) with respect to r provides a relation between the shear 

modulus and the shear stress for the composite as shown below. 
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-r = ^+     Ar. (2-6 dr      dr A^ ^     ' 

1      nr :«-!) 
+ -i^ (2-7) Gl2        Ge A« 

In Eqn. (2.6) and Eqn. (2.7), G12 is the tangent shear modulus of the composite, 

Ge is the shear modulus in the linear range and A and n are the Ramberg-Osgood 

parameters to be determined from curve fitting. From Eqn. (2.6) a plot of the tangent 

longitudinal shear modulus of the composite G12 as a function of shear stress was 

obtained. Then, using the Halpin-Tsai equations, Eqn. (2.9), as given in the text by 

Daniel and Isahi (1994), the matrix shear modulus was determined. 

^m — Lri277-—:—^TT (2.8) 
(1 + C2mVf) 

where C2 = 1 and %= (1^:^ 

for ^2 = 1, the expression for G12 becomes 

G     =G    (*^12/ "*" ^m) + VfiGi2f - Gm) 
'' ""{Gl^f + GraJ-VfiGr^f-Gr.) 

(2.9) 

where G12 is the composite shear modulus, G12/ is the fiber shear modulus, and 

Gm is the matrix shear modulus. The in-situ shear modulus of the matrix was 

calculated from Eqn. (2.9) assuming the fiber to be linearly elastic. In addition, the 

corresponding stress-strain curve of the in-situ matrix was also obtained. Prom the 

stress-strain curve, the value of yield stress based on the 0.7G intercept rule of Jelf 

and Fleck (1994a) was obtained as shown in Table 2.4 and Table 2.5. A comparison 

of the yield stress obtained from different volume fractions has been made.   The 
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variation of the in-situ shear modulus as a function of fiber volume fraction, V} has 

been explained by developing a 3 cylinder model. The development of this 3 cylinder 

model incorporating the concept of interphase is presented in the next section. 

2.4    Interphase Model 

In this section a micromechanics model including the interphase as a distinct 

phase between the fiber and matrix is developed. The modeling approach is similar 

to the one taken by Hashin (1966) and also given in Hyer and Waas (2000) using 

the composite cylinder model. Instead of two cylinders, we assume the composite 

representative volume element to be composed of three cylinders, fiber, interphase, 

and matrix with radii Va, n, and TC respectively. Referring to Figure 2.1, let 70 be the 

shear strain acting on the fiber, matrix and interphase in the Xi —X2 plane. Consider 

u, V and w as the axial, circumferential and radial displacement, respectively, of the 

composite as a whole. As a result of the applied shear strain, 70, the displacements 

can be written in cylindrical coordinates as follows. 

u = 0,   t; =   - joXsin{9),   w = 'YQXCOS{6) (2-10) 

Furthermore, assume that the three phases are transversely isotropic and sub- 

jected to only shear strains, with the specified displacement field (Eqn. (2.10)). The 

displacement components for fiber can be written in a simplified manner as follows. 

FIBER 

Bf 
uUx,9,r)   =   {Afr + —)cos{e) 

r 

vf{x,e,r)   =   -C^xsinie) (2.11) 

wf{x,d,r)   =   Chcos{d) 
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INTERPHASE 

u%xj,r)   =   (A'r + ~)cos{e) 
r 

v%x,0,r)   =   -C'xsinid) (2.12) 

w %x,e,r)   =   C*xcos{e) 

MATRIX 

Dm 

tt'"(a;,e,r)   =   (^"'r + )cos(e) 
r 

v'^{x,9,r)   =   -C^xsinid) (2.13) 

w"'{x,d,r)   =   C'^xcosiO) 

where Af, Bf, Cf, A\B%C\A"*,B"', C"" are the nine unknown constants which 

need to be determined from the boundary value problem. Using the above expressions 

for the displacements, the resulting non-zero stresses can be expressed as follows 

rj;   =   Gi2fiAf + Cf-?;^)cosi0) (2.14) 

4e   =   -Gi2fiAf + Cf + ~)sinie) 

ri   =   GiM{A* + C'-^)cosi0) (2.15) 

rZ   =   G^{A^^C^-~)cos{0) (2.16) 

^3   =   -G^iA"^ \C^ ^~)sin{0) 

In order to find the 9 unknown constants we use the following boundary/matching 

conditions to generate the equations required to solve for the unknown constants. 

The first condition requires the stresses and displacements to be nonsingular at r = 0 
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(in the interior of the fiber). To ensure this condition we take B^—0. The second 

condition ensures the continuity of displacements across the fiber-interphase and 

interphase-matrix interface. Thus, 

At r = Ta, Fiber-Interphase interface 

u f if if i u\   v^  = v\   vjf  = w' (2.17) 

At r = Tfe, Interphase-Matrix interface 

w'"  = u\   v""  = v\   w""  = w' (2.18) 

Similarly, ensuring the continuity of shear stress, r^r, across the interfaces will 

generate two more equations. 

At r = Ta, Fiber-Interphase interface 

rL   =   rU (2-19) 

At r = Tft, Interphase-Matrix interface 

<n   =   ^x"r, (2-20) 

At the outer boundary r   =   r^ the displacements should match the applied 

boundary displacements. Thus, 

c 

v'^{x,e,rc)    =    -Cxsin{e) =-^oXsin{e) (2.21) 

w^{x,9,rc)   =   Cxcos{9) = ^QXCOS{9) 

Using equations (2.17) to (2.21), we obtain the expressions for all the constants in 

terms of the unknown 70. Once the constants are determined, we write the expression 
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for shear stress at r = r, and 0 = 0 as follows. 

r^r = Ti2   =   G^(A'» + C--^) (2.22) 
c 

The above Eqn. (2.22) can be expressed as 

ri2   =   G|27o (2.23) 

where the coeffecient of 70 on the right hand side of the expression in Eqn. (2.23) 

can be identified as the shear modulus of the 3 cylinder composite. The expression 

for G can be written as 

r^ =-r «^i + 0Virn + sjVf + y/) + ejVf - vf) 
''       " «F4 + nv.^ - 0{Vf + vf) - 8{Vj - vp) ^2-2^^ 

The expressions for a,P,6,d,ri are listed below 

a    =     {RfmRim + J^L - Rfm " Rim) 

P    =     iRim + iRfmRimVf + R^^+Rf„,Rim + Rfm + 

I^mVf-SRimVf-Rf^Vf) 

6   =   2Rf^Ri^ 

6    =    2Rim 

r]    =     i-Rim+ iRfmRimVf-R^^-RfmRim - 

Rfm + R^mVf - ^RimVf - RfmVf) 

Where Rim = ^, Rfm = ^, Vim = ^ and F/ = |. The above expression 

for GI2 reduces to the corresponding expression of the two cyMnder model in the 

limit Gi2i -> Gm- In the above expression Gm is the shear modulus of pure matrix 

and GI2 is the experimentally determined shear modulus of composite.   Also the 
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above expression contains interphase radius as a variable. In the present work we 

assume a interphase shear modulus which is slightly stiffer than the pure matrix 

shear modulus which leads to a value of interphase radius which is decreasing with 

fiber volume fraction. A detailed discussion on the in-situ matrix and its behavior 

as a function of fiber volume fraction, V/, is presented in the next section. 

2.5    Discussion 

It was observed that the in-situ matrix shear stress-strain curve obtained was 

bounded by the curves of the corresponding composite and that of the pure matrix 

for glass/vinylester composite as shown in Figure 2.8. However, the in-situ matrix 

shear stress-strain curve for carbon/vinylester composite is 'softer' than the pure ma- 

trix as shown in Figure 2.9. As Vf increases, predicted values of the in-situ matrix 

shear modulus are 'softer' than the pure matrix. This trend is indicated in Fig- 

ure 2.10 and Figure 2.11. The in-situ shear modulus of the matrix obtained from the 

data corresponding to the glass/vinylester matrix was found to be higher than the 

corresponding value obtained from the corresponding data for the carbon/vinylester 

matrix specimens, though the difference between the two narrows down as the fiber 

volume fraction increases (Figure 2.12). The in-situ shear modulus obtained from the 

glass/vinyl ester composite is found to be higher than the pure matrix shear modulus 

but decreases as the fiber volume fraction increases. In the case of carbon/vinyl ester 

specimens, the in-situ shear modulus is always below the pure matrix modulus as 

shown in Figure 2.12. These results show that as Vf increases, the in-situ matrix 

behavior tends to become independent of the mechanical properties of the reinforce- 

ment. Indeed, as Vf becomes large, the average spacing between adjacent fibers is 

reduced. Thus, the zones of inhomogeneity that develop around fibers interact with 
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each other resulting in an efFective but uniform matrix material that is different from 

the pure matrix cured under the same condition but without the presence of fibers. 

The zones of inhomogeneity are uniform and indeed tend towards the properties 

of an efFective matrix that has been cured in the presence of a relatively uniform 

temperature field but in the presence of fibers. 

Figure 2.12 shows that the in-situ matrix properties depend to a large extent 

on the type of composite and also on the fiber volume fraction being considered. 

It can also be seen that the stiffness of the fiber does play a role in determining 

the behavior of in-situ matrix properties. In carbon/vinylester composites, the in- 

situ matrix shear modulus value is lower than that of the pure matrix. For both 

glass/vinylester and carbon/vinylester composites, the in-situ matrix shear modulus 

for Vf = 60% is nearly the same and lower than that of the pure matrix. This 

indicates that at high fiber volume fractions the in-situ matrix property is reflective 

of a material that has undergone changes to its mechanical properties due to the 

thermal history. Thus, the effective matrix material properties are different from the 

pure matrix properties. It can also be seen from Figure 2.12 that the Vf for which 

the in-situ matrix shear modulus is maximum is different for glass/vinylester and 

carbon/vinylester composite. 

A comparison of the experimental data for shear modulus as a function of the fiber 

volume fraction for both glass/vinylester and carbon/vinylester composites with the 

2 cylinder model is shown in Figure 2.13. The theoretical predictions of the 2 cylinder 

model with elastic fiber properties and pure matrix properties as input match the 

experimental data with reasonable accuracy in the low fiber volume fraction range {Vf 

< 0.2) for both types of composite specimens tested. At higher fiber volume fractions 

{Vf > 0.5) the predictions tend to be higher than the experimentally observed value 
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for shear modulus of glass and carbon/ vinylester composites. In the intermediate 

fiber volume fractions, the predictions of the 2 cylinder model are very much lower 

than the experimental results. Thus, it can be seen that the higher experimental 

values observed with the specimens for Vf ranging from (0.2 — 0.4) are due to the 

presence of an effective matrix that is much stiffer than the pure matrix. In summary, 

the following scenario emerges. For Vf < 0.2, a 2 cylinder model with pure fiber and 

pure matrix properties does an adequate job of predicting the elastic shear modulus. 

At Vf > 0.4, a 2 cylinder model can also be used to predict composite properties, 

but the effective matrix shear modulus that is needed for this is less than that of the 

pure matrix. For 0.2 < Vf < 0.4, a 3 cylinder model is required to properly predict 

the elastic shear modulus. In this Vf range, the presence of a stiffer interphase must 

be explicitly accounted for in order to accurately predict the composite modulus. 

From the shear modulus data for glass fiber reinforced composites, a relation for 

the interphase radius r;, as a function of the fiber volume fraction was established. 

These results are shown in Figure 2.14. It was observed that the interphase radius 

shows a decreasing trend with fiber volume fraction in the intermediate fiber volume 

fraction range (0.2-0.4). In this range the interphase modulus is stiffer than that 

of the pure matrix. This relation was used to predict the composite shear modulus 

for carbon/vinylester specimens and glass/vinylester specimens and has been shown 

in Figure 2.13. Thus, the use of a 3 cylinder model is most appropriate for the 

intermediate fiber volume fraction range. At higher fiber volume fractions a degraded 

matrix shear modulus should be taken for predicting the composite shear modulus 

using the expression obtained from the 2 cylinder model. 



35 

2.6    Concluding Remarks 

In this chapter, we have provided experimcBtal results to show that the in-sitii 

matrix properties of a polymer matrix material are influenced by the fiber volume 

fraction and the fiber type. It has also been observed in cement composites by Alwan 

and Naaman (1994), That the specific surface of reinforcement, i.e. the total contact 

area between fiber and matrix also influences the properties. In the current work the 

difference in specific surface area could be partially responsible for the difference in 

interphase properties of carbon and glass composites. This is because the carbon fiber 

diameter {df = bpm) is very small compared to glass fiber diameeter, {df = 24^m). 

The longitudinal shear response of carbon fiber reinforced and glass fiber reinforced 

unidirectional vinylester composites having a range of fiber volume fraction have 

been studied. For fiber volume fraction in excess of 0.4, it has been shown that the 

effective matrix shear response displays an initial elastic modulus that is less than 

that of the pure matrix. In the following chapter, the steady state splitting model 

of Lee and Waas (1999) will be extended to the unsteady state case. The results 

obtained from the splitting model will be compared with experimental data obtained 

by Lee and Waas (1999) and others in literature. 
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glass/vinylester carbon/vinylester 

Vf ^9 rig Ac nc 

0.1 77.3 6.15 67 6.62 
0.2 101.15 5.8 55.88 10.5 
0.3 88.59 5.25 160 3 
0.4 158 3 100.7 5.26 
0.5 68.68 12.44 159 3.48 
0.6 78.71 7.25 98.44 3.25 

Table 2.1: Ramberg-Osgood parameters for glass and carbon/vinylester composites 

glass/vinylester 

Vf SI S2 S3 Avg.Gu 
(GPa) 

0 1.3 1.15 1.23 1.22 
0.1 1.45 1.6 1.8 1.616 
0.2 2.32 2.46 2.36 2.37 
0.3 - - 2.75 2.75 
0.4 3.11 3.0 3.13 3.08 
0.5 3.29 3.4 3.26 3.316 
0.6 3.73 3.6 3.75 3.75 

Table 2.2: Measured values of shear modulus of vinylester matrix composite 



37 

carbon/vinylester 

^/ SI S2 S3 S4 S5 Avg.Gi2 
(GPa) 

0.1 1.22 1.5 1.2 1.481 1.6 1.40 
0.2 1.79 1.73 1.37 1.8 - 1.673 
0.3 2.52 2.72 2.2 2.4 - 2.46 
0.4 2.75 2.82 2.5 3.00 _ 2.768 
0.5 3.15 2.89 2.8 3.15 _ 2.99 
0.6 3.64 3.33 - 3.75 3.575 

Table 2.3: Measured values of shear modulus of vinylester matrix composite 

carb on/vinylester 

Vf Ginsitu (MPa) 

G/e 0.7C?/e Tytde 

0.1 1182 828 33 
0.2 1108 776 35 
0.3 1205 844 13 
0.4 1215 851 34 
0.5 1013 709 30 
0.6 914 640 10 

Table 2.4: The predicted values of In-situ matrix shear modulus and yield stress 
values 

glass/vinylester 
Vf GinMu (MPa) 

Gfe 0.7Gf, Tylde 

0.1 1412 988 36 
0.2 1519 1064 43 
0.3 1439 1007 30 
0.4 1314 920 20 
0.5 1073 752 41 
0.6 900 630 35 

Table 2.5: The predicted In-situ matrix shear modulus and yield stress values 
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Figure 2.1: Schematic of the 3 cylinder model 
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Figure 2.5: Typical shear response curves of glass/vinylester composites 
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Figure 2.7: A schematic of a solid cylinder under torsion 
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CHAPTER III 

AXIAL COMPRESSIVE RESPONSE OF FRPC; 
NON-STEADY STATE AXIAL SPLITTING 

3.1    Introduction 

It has long been recognised that the compressive strength of polymer matrix 

composites is the limiting factor for the use of composites in primary load bearing 

structures. The compression strength of polymer matrix composites is almost half 

of its tensile strength. Thus, understanding the behavior of polymer matrix com- 

posites under compression loading has been an active area of research as has been 

mentioned in the first chapter. Prom the available literature it is clear that the 

composite compressive strength is found to be dependent on various parameters like 

fiber radius, fiber-matrix interfacial properties, misalignment of fibers, fiber packing 

density, fiber volume fraction and strain gradients. Research on developing models 

to predict the compressive strength of composites have focussed on including the 

above parameters in their formulation. Various models have been developed previ- 

ously to predict the compressive strength of aligned composite materials, of which 

the model by Budiansky and Fleck (1993) is the most widely used. Their model 

incorporates the effect of matrix plasticity in predicting kink banding in composites. 

The effect of initial fiber misalignment angle and the axial propagation of kink bands 
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have been studied experimentally by Kyriakides et al. (1995); Vogler et al. (2001) 

and Vogler and Kyriakides (2001) in a series of papers. Time dependent effects of 

kink evolution were studied by Schapery (1995) who also introduced the possibility 

of matrix cracking and its manifestation to "soften" the matrix response. Daniel 

et al. (1996) investigated the effect of manufacturing process induced waviness on 

the compressive failure of carbon fiber composites. Drapier et al. (2001) and Wisnom 

and Atkinson (1997), have studied the effect of strain gradients on compressive fail- 

ure and found that the compressive strength increased under bending compression 

loading compared to pure compression loading. From the experimental investiga- 

tions carried out by previous researchers, Kyriakides et al. (1995); Fleck (1997); Lee 

(1998); Lee and Waas (1999) and Oguni and Ravichandran (2000), it can be inferred 

that the initiating mechanisms for compressive failure of carbon composite materials 

are usually microbuckling and kinking of fibers aligned along the loading direction. 

Lee (1998); Lee and Waas (1999) and Oguni and Ravichandran (2000), observed 

that glass fiber reinforced polymer matrix composites fail predominantly by split- 

ting. This was observed in the optical photomicrographs which show aligned cracks 

between the fiber and matrix, indicating that splitting failure is akin to interfacial 

fiber/matrix fracture. Thus a fracture mechanics based approach was adopted by 

Lee (1998) and Lee and Waas (1999), to model the splitting failure of polymer ma- 

trix composites. Their model was based on linear elastic fracture mechanics and the 

assumption of steady state crack propagation. Independently, Oguni and Ravichan- 

dran (2000) also provided fracture mechanics based expressions for the compression 

splitting failure stress of composites. These authors also examined the influence 

of confinement on compression strength. Other important contributions related to 

studies on composite compressive strength are summarized in the two survey papers 
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by Waas and Schultheisz (1996) and Fleck (1997). 

The work presented in the current chapter is concerned with the splitting mech- 

anism of failure in compression. There are two parts to the present chapter. In the 

first part, a summary of the experimental results obtained by Lee and Waas (1999) 

are presented. In the second part, the steady state splitting model developed by Lee 

and Waas (1999) is extended for non-steady crack propagation in the case of short 

crack lengths, where the compliance change as a function of crack length is derived 

using modified shear lag theory. A closed form expression for the compressive split- 

ting strength is obtained. This model is then used to to predict the compressive 

strength of unidirectional composites. The predicted results are compared with ex- 

perimental data available in the literature and also that of Lee (1998). The model 

incorporates the effect of fiber diameter and the initial misalignment angle on the 

compressive splitting strength of aligned composites. 

3.2    Summary of Experimental Results 

Lee (1998) carried out a series of experiments to study the static compressive 

behavior of glass fiber and carbon fiber reinforced unidirectional composites. The 

specimens were prepared inhouse with vinyl ester resin as the matrix material. Com- 

posite specimens with six different fiber volume fractions were manufactured to study 

the effect of fiber volume fraction on the compressive behavior of glass/epoxy fiber 

composites. A detailed description of the manufacturing process and the test setup 

is given in appendix A. Compression tests were performed on cylindrical specimens 

of diameter 6.8 mm and a gage length of 12.7 mm. The length to radius ratio of the 

specimen was kept very small to prevent macroscopic buckling in the specimen. All 

the tests were conducted at room temperature in a hydraulically actuated loading 
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frame. The tests were performed under load control with a cross head speed of 0.0381 

mm/sec. The grips were restrained from moving laterally during the compression 

tests. Back to back strain gages were attached at the center of the specimens to 

monitor the compressive strain and any bending strain. 

3.2.1    Glass Fiber Composites 

From the compression tests, the axial stress-strain response (referred to as the 

a ~ e curve) of the uni-directional glass fiber {r^ = 12p,m) reinforced vinyl ester 

resin composites w^ obtained as a function of the fiber volume fraction. lypicaJ 

a-e curves of glass fiber composites obtained by Lee (1998) throughout the volume 

fraction range 10% ~ 60% are shown in Figure 3.1. The failure stress obtained by 

Lee (1998) for glass composites over the range of fiber volume fractions tested are 

presented in Table 3.1. Typical micrographs of failed glass composite specimens are 

shown in Figure 3.2 and Figure 3.3. It is seen that fibers are randomly located in the 

composite specimens. Glass fiber specimens show a splitting mode of failure (some- 

times also referred to as "brooming" in the literature) as shown in Figure 3.2. The 

fiber/matrix interfaces spHt during failure and the fibers are broken in the process. 

Notice that fibers that are shown isolated near the region of excessive splitting do not 

show a smooth surface, instead substantial amounts of the resin remains attached 

to the fiber. This signifies that the splitting failure does not always occur 'cleanly' 

along the fiber/matrix interface instead the splitting crack meanders between the 

fiber/matrix interface and cohesively through the matrix. This also shows that split- 

ting is not necessarily caused by poor adhesion between the fiber and matrix. Clearly, 

poor adhesion can lead to splitting, but as will be shown later, spKtting is influenced 

by a number of different factors, an adhesive or cohesive fracture toughness being 
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one of many significant parameters. 

For high fiber volume fractions(40% ~ 60%), kink bands are also observed (Figure 3.3). 

It is postulated that these kink bands are formed on account of the synergy due to 

the misalignment induced during the axial splitting and the large amount of strain 

energy that is released at splitting. Indeed, in the glass fiber composites, isolated 

kink bands were never observed. When kink bands were found they were always 

accompanied by longitudinal fiber/matrix splitting cracks. 

3.2.2    Carbon Fiber Composites 

Lee (1998) also conducted compression tests on carbon fiber(ro = 2.5//m) rein- 

forced composites.Prom the compression tests, the axial stress-strain response of the 

uni-directional carbon fiber reinforced vinylester resin composites was obtained as a 

function of the fiber volume fraction. Typical a — e curves of carbon fiber compos- 

ites obtained by Lee (1998) throughout the volume fraction range 10% ~ 60% are 

shown in Figure 3.4. The failure stress obtained by Lee (1998) for carbon composites 

over the range of fiber volume fractions tested are presented in Table 3.2. In case 

of carbon fibers the failure mechanism was always observed to be kinking for all the 

fiber volume fractions tested. Figure 3.5 and Figure 3.6 shows a typical kink band in 

carbon fiber composites under optical microscope and a high resolution SEM. The 

width of the kink band was found to be approximately 223/xm, however as can be 

seen the fibers in the kink band themselves are broken into smaller lengths. The 

lengths of these small fiber breaks was found to be around 32^m. The kink band 

was inclined at an angle of 29° from the horizontal, which is in the range of angles 

reported in the literature. 

In summary, the experimental results show that glass fiber(ro = 12yLim) compos- 
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ites fail by splitting which is the predominant mode of failure of these composites in 

the 10 ~ 30% fiber volume fraction range. For glass fiber composites with 40 ^ 60% 

fiber volume fraction, both splitting and kink banding is observed. However, the 

formation of kink bands is not progressive(signified by a clear drop in load) as in 

carbon fiber composites, but, leads to catastrophic failure because of the association 

of splitting with the kinking mode of failure. In the present case, glass fibers were 

untreated prior to manufacturing of the specimens and thus the nature of the inter- 

facial fiber/matrix bond is dictated by the adhesion chemistry between glass/vinyl 

ester. The implications of the experimental findings that have been presented are 

examined next via a new analytical model for the splitting failure mode. 

3.3    Axial Splitting Model - Steady State 

In the following parapaphs a steady state fracture mechanics based model de- 

veloped by Lee and Waas (1999) to predict the splitting compressive stress of uni- 

directional fiber composites is presented. Compressive splitting occurs when a pre- 

existing flaw inside the composite specimen starts to grow when the specimen is 

under compression load. Splitting failure has been observed before by a number of 

researchers who examined the compressive strength of aligned glass fiber composites( 

Fleck (1997); Piggott (1981); Oguni and Ravichandran (2000)). Yet, it is noticeably 

absent in carbon fiber composites. Because the splitting failure is hypothesized to 

initiate from tiny unavoidable flaws within the composite, the compressive strength 

of the composite specimens are closely related to the appropriate crack toughnesses 

Kjc and/or Kjjc- During the process of manufacturing composite specimens, it is 

reasonable to expect that they might contain tiny internal interface cracks, due to 

fiber surface irregularities or due to non wetting. If this is the case, then it is de- 
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sirable to know when such interfacial flaws can become active due to the externally- 

applied compression. 

In the present study, a representative volume element (RVE) that consists of a 

single fiber in a matrix cylinder and containing a central interface crack is considered 

as a representative model of the composite with an initial interfacial flaw. An exam- 

ination of the total potential energy in conjunction with principles of linear elastic 

fracture mechanics is used to predict the compressive load at which crack propaga- 

tion occurs. Since the fibers within the composite can have an initial misalignment 

with respect to axial load, the influence of such fiber crookedness is also incorporated 

in the development of the splitting model. 

3.3.1    Strain Energy Release Rate, G 

Consider a representative volume element (RVE) of the composite, consisting of 

a concentric cylinder of fiber and matrix, with a fiber radius, TQ and an outer region 

of matrix with radius, ri, and subjected to a external axial load, P and torque, 

T, as shown in Figure 3.8. Following the methodology of the composite cylinder 

model(CCM) as given in the text by Christensen (1991), we assume the composite 

to be consisting of a collection of such representative volume elements(RVE's). The 

outer radius of matrix in the RVE is chosen to satisfy the fiber volume fraction re- 

quirement such that Tj = Vf/rQ. The outer matrix surface {r = ri) is assumed to be 

traction free. The height of the cylinder is taken to be '2L' with a interfacial crack 

of '21' embedded at the interface of fiber and matrix. The composite is assumed to 

have perfect bonding outside the crack region (1 < z < L) and (-L < z < -1). The 

total potential energy is written asU = U -W where U is the strain energy stored 

in the composite cylinder and W is the work done by the external forces. 
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Axial Loading 

The expression for strain energy release rate(SERR), QAxial is derived below. The 

material is assumed to behave as a linear elastic material under the action of exter- 

nally applied axial load, 'P'. The strain energy release rate, g (same as 9Axial for 

the remainder of the chapter) is defined as follows 8 = -^- The crack surface area, 

A is taken to be 4wrol. Hence, the expression for strain energy release rate can be 

written as ^ = -1 dn 
4?rro dl 

The total potential energy in the case of displacement control loading (The applied 

displacement, A, is held fixed during crack propagation) is. 

H = U-W,     U   =   ipA,  and   W = 0 

A  dP 
Sirro dl 

Using the definition of compliance,    c   =   ^/P,  we obtain 

dP   _   _^dc 
If  ~  ~~Kli 

r^ ^ P^ dc 
Hence,    g   - — (3.1) 

bTrro dl 

For load control(The applied load, P, is held fixed in magnitude during crack prop- 

agation), we get 
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U = U-W,     U   =   ^PA,  and   W = PA 

P  dA 
Q   =  

87rro dl 

Using the definition of compliance,    c   =   A/P,  we obtain 

dA   _      dc 
H   ~      Jl 

P^ dc 
Hence,   G   =^   f-^ (3.2) 

Snro dl 

Note that the expression for strain energy release rate, Q, is same under load control 

as well as displacement control loading due to the assumption of linear elastic material 

behavior. 

For the cracked region in Figure 3.8 (-/ < z < I), the stress state which corre- 

sponds to axial compression is given as follows from Hyer and Waas (2000). 

Fiber; 

PEf 
^^    —    —27 TrrnO 

Matrix; 

where 

PEm 
nrld 

6    =    Ef + Em{^-1) 

All other stresses are zero. 



61 

The axial contraction of the fiber and matrix can be obtained from the axial 

strain corresponding to the above stresses, and is given by 

2PI 
'■ = /: 

Crdz 
wrQS 

For the uncracked region in Figure S.8 {I < z < L,-L < z < -I), the stress state 

which is three dimensional, is given as follows from Hyer and Waas (2000), 

Fiber; 

2P 
<^r   =   0-0 = —^a0{vf - v^){Vf^ - 1) 

Matrix: 

irr; 

0"z     = 
£P 
7rr| 

[Ef+Aavf{vf-v^){Vf^-l)] 

where 

(Tr     = 2afip'^l^^ I   "0 
Trrn rWt 

-1 

(Tg   =   ~2a0P 
Vf-V, n*  I     '0 

Trrn rWt 
+ 1 

0P 
vn 

E^ - Aav^{vf - Vm)] 

a   = (F,   -1)+ — 
i\i-i 

P   =   [Ej^{Vf'~l){E^-^Aa{vj-v^f}] 
-1 

The axial strains corresponding to these stresses are as follows. 

Fiber; 

e^   = ""t „       ^/ <7# + T^o-, 

■^a^(./-..)(F--l) 

Trro^/ 
{Ef + Aavf{vf-v^){Vf^-l)] 
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Matrix; 

The axial contraction of the fiber and matrix are the same and is given by 

A, = 2 /   cM =        ' I ^^^^ = ^(^-0 

Hence, the approximate total axial contraction, approximate compliance and 

change of compliance with respect to crack length, dc/dl of the composite are as 

follows. 

2P 
irri 

dc 
~dl =    AG-/') (3.3) 

In computing the above quantities, only the stress states of the cracked and 

uncracked regions are considered, whereas a region near the crack tip of finite size e 

is not considered. In the present analysis, the above expression for dcjdl is used, even 

though we have neglected the crack tip stress field in computing dcjdl. However, as 

explained later, for steady state conditions, equation (3.3) is exact. In the region 

e (Figure 3.8),the stress state is influenced by the crack tip field. However, under 

steady state conditions for self similar crack growth, this region translates with the 

crack tip resulting in an increase of / and a corresponding decrease of {L — l). Thus, 

while the axial contraction and compliance given by A and c above are approximate 

due to the negligence of the crack tip field, the rate of compliance change due to crack 

advancement, given by dc/dl is exact, since the 'e' region is invariant with respect 

to crack length.   This fact enables us to calculate G accurately for steady state 
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crack propagation. When the crack is small, initially the compliance change with 

respect to crack length, dc/dl, is dependent on the size of e, but, as the crack length 

increases, dc/dl, becomes independent of crack length and attains the steady state 

value provided in equation (3.3). The derivation of dc/dl including the dependence 

on e is given in the following section and also in Yerramalli and Waas (2002a), for 

non-steady state crack growth. 

R-om (3.3), the energy release rate per unit area is obtained as 

p2      I 

When 0, becomes equal to twice the critical interfacial fracture energy (7/) the 

initial crack propagates; 

27/ 

(3.4) 

Thus, 

8^/7/ 
(3.5) 

Misaligned Fibers 

The expression for axial compliance for the case when the fiber is misaligned in 

the cracked region of the RVE can be obtained by considering a slightly imperfect 

fiber with an initial imperfection of wo{z). With respect to the coordinate system 

shown in Figure 3.8, Wo(^) is chosen as 

TTZ. 
Wo{z) = Ao{l - cos—) 
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where AQ is the imperfection magnitude. 

Next, using kinematics that are appropriate for geometrically nonlinear beam the- 

ory as given by Brush and Almroth (1975), the relation between the axial contraction 

Ai, and the fiber load, P/, can be obtained as, 

I       AfEf^^   21 f ^' 

where, Af is the fiber cross-sectional area, // is the area moment of inertia and 

^0 is the imperfection magnitude. From this relation an effective axial stiffness for 

the fiber is obtained as explained in appendix B and is given below 

(FA)      -     ^f^f 

•^ ^    21 f 

Clearly, when the imperfection vanishes, one recovers the perfect fiber axial stiff- 

ness {EA)f. In the present work, the imperfection amplitude is chosen to correspond 

to an initial misalignment angle of 2°. 

3.3.2    Discussion 

Failure stresses were predicted for both perfectly aligned fibers and misaligned 

fibers, but it was observed that a small amount of misalignment is always present in 

the fibers of a composite specimen. Hence, further discussion will be restricted only 

to the misaligned model of splitting failure. The angle of misalignment was taken 

to be 2° for the purpose of splitting model calculations. Failure stresses for glass 

fiber composites predicted by the splitting model are seen to increase almost linearly 

with the increase of fiber volume fraction. As a result, they are lower than the test 

results in the low fiber volume fraction range and higher than the test results in 
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the high fiber volume fraction range. The slopes of these curves are dictated mainly 

by the value of interfacial toughness, 7/, the fiber radius, r/ and the fiber volume 

fraction, Vf. Predictions from the splitting model that includes fiber misahgnment 

are shown in Figure 3.8 for glass fiber composites. As seen in Figure 3.9 the predicted 

stresses using the new splitting model are in good agreement with the test data at 

the lower volume fractions of the glass fiber composites. The splitting model was 

also used to provide a comparison against the test results given by Piggott and 

Harris (1980). As can be seen in Figure 3.9 the predicted stress results match with 

the test data at the lower fiber volume fractions. At the higher volume fractions, 

the splitting model predicts higher stresses when using the fracture toughness of 

epoxy, which is more suitable for lower fiber volume fraction. This finding was also 

observed experimentally where the failure mode was a mix of splitting and kinking. 

Figure 3.10 and Figure 3.11 show the effect of change in misalignment angle on the 

predicted failure stresses. It can be seen that as the misalignment angle increases 

the predicted compressive splitting failure stress value decreases for all fiber volume 

fractions. 

3.4    Axial Splitting Model - Shear Lag 

The stress analysis in Lee and Waas (1999) and presented in the previous section 

included areas in the cracked and uncracked regions of the composite and excluded 

a small region of size e around the crack tip. In this region the stress state is a 

function of the crack tip field. When the crack is propagating under steady state 

conditions, this region translates with the crack tip. Thus, the rate of change of 

compliance with crack length is unaffected. The expression for the rate of change of 

compHance § is also independent of the crack length or the initial fiber length. For 
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short cracks, where the crack propagation is unsteady, Lee and Waas (1999) used 

the finite element method to extract the dependency of ^ on crack length. A major 

goal of the present section is obtaining a closed form expression for the change in 

comphance ^ as a function of crack length. This expression can then be used in 

determining the compressive stress of a polymer matrix composite in terms of its 

fracture toughness 7/ and ^ in closed form. For this purpose a modified shear lag 

model has been used to study the stress state at the crack tip. The local shear lag 

based stress field has been superposed on the far field stress state of the composite 

obtained from the 3D elasticity equations, to obtain expressions for compliance and 

compliance change as a function of the crack length. In the development of this shear 

lag based model, only perfectly aligned fibers have been considered. The inclusion of 

misalignment will result in a change in the stiffness of the fiber and has already been 

treated in the steady state splitting model by Lee and Waas (1999) and presented in 

the previous section. 

Consider a representative volume element (RVE) of the composite containing 

a single fiber of length 2L with a crack of length 21 embedded in it as shown in 

Figure 3.12. The single fiber is divided into four regions for the purpose of deriving 

an expression for compliance and the rate of change of compliance. By symmetry, 

only one side of the fiber {0 < z < L), containing the crack region {0 < z < I) is 

modeled. Assume that a region e extends from the crack tip in the positive Z axis 

direction as well as in the negative Z axis direction. The region extending beyond 

e is modeled as in the case of the steady state splitting model as shown in Lee and 

Waas (1999). 
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3.4.1    Shear Lag Analysis 

The main assumptions in the traditional shear lag model of Cox (1952), are 

that the matrix carries only shear and any axial straining in the matrix is only for 

the purpose of load introduction. The fiber can only undergo axial contraction or 

extension and the fiber axial stress is zero at the fiber ends. It was observed by the 

authors that the classical shear lag method based on the above ^sumptions leads to 

a reasonably accurate calculation of the compliance of a cracked fiber/matrix system. 

But the rate of change of compliance with crack length,^ turns out to be inaccurate. 

This in turn leads to the inaccurate calculation of strain energy release rate. In the 

present work the traditional shear lag parameter ril^ = ^^ Ef(i+u^)in(iiv ) ^ Proposed 

by Cox (1952) has been used along with a modified set of boundary conditions since 

it gives an accurate value of the change in comphance with respect to crack length,*, 

in addition to preserving the accuracy of the compliance calculation. 

For the present work, we assume that the fiber ends do carry some load and 

that the shear lag method is valid over the small region extending from (I - e) to 

(I + e). These modifications are introduced into the shear lag model by ensuring 

that the fiber axial stress at z = (I + e), matches with the fiber axial stress of the 

uncracked region calculated using the 3D equations of elasticity. Also, at z = (I - e), 

the fiber axial stress is equated with the steady state splitting model stress in the 

crack region, which is similar to what is obtained via a simple rule of mixtures based 

stress prediction. 

Taking a small segment dz of the composite containing the single fiber as shown 

in Figure 3.13, we can get the radial variation of shear stress in the matrix, f by 

equating the shear forces on neighboring annuli with radii n and r2 of length dz. 

Then, 
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27rrifidz = 2'nr2f2dz 

Prom the above equation, we get the relation between fi and 72 as |^=^- Thus 

at any radius r, we can relate the shear stress f{r) to the interface shear stress fj. 

To obtain the relation between shear strain and shear stress, consider the dis- 

placement UT{Z) of the matrix with respect to the unstressed position. Then, 

du _     _   T'r    _   T'i   ,^0 

dr Gm      Gm   r 

,. fi  ,7-0, 
du   =   -p7-{-)d^ 

Gm   r 

Integrating the above equation between r—ro and r=R, we obtain 

fUr=W TiTQ R, 
/ du   =    y^ln{—) -UR- Uro 

where UR is the matrix displacement at a distance R from the fiber and Uro is the 

matrix displacement at interface r = TQ- The value of R is based on the assumption 

that the matrix strain is uniform, remote from the fiber-matrix interface. Thus the 

appropriate value of R is dictated by the proximity of fibers which in turn depends 

on the fiber packing and fiber volume fraction V}. Assuming a hexagonal packing of 

fibers Hashin and Rosen (1964) and also taking note of the fact that the ratio R/ro 

appears as a logarthmic term and is relatively insensitive to the details of geometry, 

we can write the following expression relating fiber volume fraction Vf and the ratio 

R/ro. 

V,   -      "^°' 
2V3R^ 
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From Figure 3.13, by equating the forces acting along the axial direction of the 

fiber we get the relation between the axial stress in the fiber and the interfacial shear 

stress. 

2wrofidz   =   —wrldaf 

d&f   _   -2fi{z) 
dz TQ 

Combining the above expression with the expression for interfacial shear stress n in 

terms of the displacements we get 

dz {1 + Vm)rllnil/Vf) 
(3.6) 

differentiating Equation(3.6), we get 

^&f     ^ -"JEjn MR _ dUr^ 
dz'' {l + v^)rlln{llVfy dz        dz' 

"o 

In the above expression the following substitutions have been made. 

du ^/ 
dz •^='"° ~ ^' = E, 
du . 
dz '^^^ 

^= Cm 

«2 2S„ 

(3.7) 

Ef{l + v^)ln{llVf) 

Where e^ is the matrix strain, e/ is the fiber axial strain, af is the fiber stress 

and Ef is axial fiber modulus. 

Equation(3.7) is a second order ordinary differential equation, whose solution is 

,r}z^ r]z^ 
&f{z)   ==   %e„ + Bsinh(—) + Dcosh( 

ro To 
(3.8) 
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3.4.2    Splitting Model - Shear Lag Method 

In this section we present the details of the application of the shear lag model to 

the spHtting model analysis of Lee and Waas (1999). For this purpose, the RVE can 

be divided into two regions - the crack region and the uncracked region. 

Crack Region 

In this region it is reasonable to assume that the fiber axial stress is equal to that 

of the axial stress obtained from the splitting model with increasing distance from 

the crack tip. Also in the crack region according to the shear lag model there is no 

shear stress hence the fiber axial stress is constant. Thus, 

dz 

A 

Integrating the expression for fiber axial strain we get u/(i) = -^z where the constant 

of integration has been taken to be zero since it represents a rigid body translation. 

The expressions for the stress and displacement field from the splitting model for the 

crack region are as given in Lee and Waas (1999). 

PEf 
0'f2D 

Uf2D 

from which we can obtain 

P 
7rro5 

where 5 = Ef + Em{y- - 1) 
yf 
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Uncracked Region 

In the uncracked region, we can take the expression of normal fiber stress as 

given by Equation(3.8). However in the present analysis this expression is valid in 

the region I < z <l + € . For ^ > I + e, the normal stress expression corresponding to 

the 3D equations of elasticity, is taken from the splitting model. Thus, at ^ = I + e, 

we equate the fiber normal stress d-/(2) obtained from the shear lag analysis with that 

of the fiber normal stress obtained from the splitting model. Also, at the interface 

between the crack and uncracked region continuity of fiber normal stress and axial 

displacements is enforced. The expression for normal fiber strain can be obtained 

from Equation(3.8) and is as follows. 

B Tiz       ]D Tiz 
€/(2) = 4, + —sinh(—) + —cosh(—) 

Hf TQ bjf To 

On integrating the above, we get 

tt/(2)   =   ^mz-^- cosh(^) +-^—smh(—) + C2 

Similarly an expression for the displacement field in the region beyond ^ = 1 + e can 

be obtained from the 3D splitting model analysis and is as follows 

«3d   =   —jz + C2 
Trr 0 

The expression for the stress 0-3^ is as follows Lee and Waas (1999), 

TtTQ 

where a   =   {— *-^    iVf    — 1) 
Ej 

+   2(l + '^m)(l-2i.^ + y^-^)   1 

Em 

0   =   [Ef + iVf'-l) 
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211-1 {Em + 4a(i// - umf}] 

(3.9) 

The following boundary conditions can be written for the present boundary value 

problem. 

Crack Region 

at z = I — € 

^/(l) =    <^f2D 

=^ A 
_   PEf 

and hence 

Uf{l) 
P 

Further, at z = I 

w/(i) = ^m 

(/-e) 

Prom the condition for continuity of displacement across the crack interface the 

constant C2 is evaluated which is then used to get the displacement field U/(2) to be, 

^m   =   -^ + -=--cosh -^  -cosh^   + 

Dro 
^      [sinh(^)-sinh(^)] 
EfV >o >o ^ 

(3.10) 

At z = I, the continuity of normal stresses provides 

0-/(l) = CTf(2) 

^ = EfSm + 5sinh(^) + Dcoshi"^] 
nrl6 To To 

(3.11) 
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Uncracked Region 

at ^r = I + e 

o'/(2)   =   o'/3B, which translates to 

Ef€m + Bsmh(-ii--—i-) 
ro 

+Dcosh(5i±il)   =   ^[Er, - 4auUi^f - u^)] 
TQ VTn 

(3.12) 

To ensure compatibiHty, we equate the displacements Uf(2} and Ufzo- This provides, 

^mil + e) + .= cosh(-ii ^)+ 

Dro .      r)il + €) 
— smh(-^ -) mi + e) 

Trrs 
+ C3 (3.13) 

Equation(3.13) enables to obtain the constant C3 in terms of the remaining constants 

B and D. The constants B and D can be evaluated from the two Equations(3.11) 

and (3.12). Knowing B and D, C3 and C2 can be determined. Expressions for the 

constants B and D are given below. 

D 

B   = 

e 

[ 
cosh(^)sinh(2ii±fl) 

SI inhfat) 
ro cos h(Mtel)] 

-'(g)["^'"l:g;;°^'-ccsh(M^) SI 
ra 

where © 
7rr| U      '^ 

Vf 1)]] 

The total axial displacement can be written in terms of the integrals of the fiber 
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axial strains as follows. 

UncrackedRegion (2) 

pi Ml+e) i-L 
A   -    2     ifmdz+2 efi2)dz + 2 ef^odz 

Jo Ji •'('+«) 
> V ' 

CrackRegion(l) 

On substituting the expressions for the axial strains in the above integrals results in, 

A   =   2     —^.dz + 2 e„ + —smh(-^  + —cosh -^  dz + 
Jo TTr^S Ji Ef ro       Ej VQ 

2 /'' ^dz (3.14) 

We can observe from the above equations for total displacement A that as e -)• 0 

(meaning the region e around the crack tip vanishes), the second integral vanishes and 

also the third reduces to the same expression as given in Equation 3.5 giving us the 

displacement expression obtained with steady state crack propagation assumption. 

3.4.3    Strain Energy Release Rate, G 

The total potential energy H of the RVE under consideration, when subjected to 

a compressive load, P isU — W, where U is the strain energy stored in the RVE and 

W is the work done. The expression for strain energy release rate is 

dU 
^   ~   dA 

where A = 47rro/ is the crack surface area and TQ is the fiber radius. The overall 

compliance of the RVE, c is defined as; 

c   =   ^ (3.15) 

where A is the axial compressive displacement of the composite and P is the external 

compressive load. The expression for A is substituted from Equation(3.14). For 

either case of load control or displacement control, the strain energy release rate can 
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be written as 

P2 dc 
STTTQ dl 

The fracture toughness 7/ is half of the value of G at the time of initiation of crack 

propagation. 

g   =   27/ 

The compressive stress ac can be related to the fracture toughness of the material 

7/ by the following the expression 

<7c 1 ^rim (3.16) 

3.4.4    Solution 

The expression for A in the form of the integral given in Equation(3.14) is eval- 

uated to get the displacement. 

+    t^[cosh(^—-^) - COSh(;;^)] 
■Ef O > o 

+    -;r-[smh(^ —) - smh(—)] \ 

To 

+ 
Ef- r, 
P^{L - I - e) 

•n 

%rt ] (3.17) 

We get the relation for compHance c by dividing Equation(3.17) by the load term P. 

Thus, 

I 
7rr?(5     7rr?5 

+   {^[cosh(  ) - cosh(—) 
To To 

+   ^[smh(i ^)_smh(-i)]} 
Et 

+ ^{L-l-e) 
V 

Trri } (3.18) 
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Equation(3.18), is an expression for compliance of the system in terms of the crack 

length, /, and crack tip influence zone e. The rate of change of compliance, ^ is 

obtained by differentiating Equation(3.18) with respect to the crack length, /. This 

expression for dc/dl can be substituted into Equation (3.16) to obtain the compres- 

sive splitting strength, which for a steady state crack propagation case reduces to 

Equation (3.5). 

dc 2  rl 
-7rr2 VR i dl 7rr^^5 o 

+ r   To    (fdB t,/'(^ + ^)^\ u/'^^ ^{(^ + D){cosh(iiii^)-cosh(^)) 
\-r)Ef >•' dl 

+   (§ + B)(u.H^^)-sinA}] (3.19) 

It can be seen in the above equation that the first term corresponds to the steady 

state behavior(independent of crack length, I) and the second term, which contains 

the crack length / and the crack tip influence zone size e, is due to non steady effects. 

The constants B and D in the above expression are functions of crack length I. 

For determining the rate of change of compliance with crack length, the previously 

described expressions were coded in MAPLE (symbolic math package) and evaluated 

for a glass/epoxy composite system of fiber volume fraction (V/ = 10%). For the 

ease of calculation the half length of fiber L, half crack length / and the crack tip 

influence zone e were all expressed as a factor of the fiber radius rg. The fiber half 

length L was taken to be 20 times the fiber radius for the present calculations. The 

normalized crack length nl = ^, and the normalized crack tip zone, n = ^, are used 

as parameters. Plots of normal stress variation along the length of fiber, compliance 

and rate of change of compliance as a function of nl and n are shown in Figures 3.14- 

3.17. The following material properties of the glass fiber and vinyl-ester matrix were 

used in the analysis. 
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Glass Fiber 

To   =   0.012mTO 

Ef   =   72000MPa 

Vf   =   0.22 

Vinyl-ester Resin 

Ern   =   3585MPO 

v„,   =   0.36 

3.4.5    Discussion 

As the equation for the rate of change of compliance with crack length, J, indi- 

cates, compliance change is no longer independent of the crack length I or the crack 

tip influence zone parameter e. However, the value of e is initially unknown since 

the crack tip zone advances with the crack and also the region of influence does not 

remain constant. Thus the first step in evaluating J would be to determine the 

value of e. However, before determining the value of e, a study of the normal stress 

variation along the fiber length is necessary. A plot (Figure 3.14) of the normalised 

stress(cr^/o-3Xj with a normalised length factor(^/ro) indicates that there is a discon- 

tinuity between the 2D stress state in the cracked region and the 3D stress state in 

the uncracked region, which is bridged by the modified shear lag model. The value 

of e controls the gradient of the stress in this bridging region, with increasing values 

of e decreasing the stress gradients. Hence, for a given crack length it is necessary 

to take e as large as possible. But, it has to be kept in mind that the value of 

e cannot exceed the half crack length I and at the same time e should be smaller 

than L-l.  As shown in Figure 3.15, the compliance of the fiber/matrix system is 
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plotted as a function of the crack length paramater for different values of e. For a 

particular e we can see that the compliance vs crack length plots are straight hnes, 

implying that the slope (^) is a constant. If we mark the lower tip of the straight 

lines with black dots as shown in Figure 3.15, we can observe that the slope of the 

locus of these points is initially varying and then approaches a constant after some 

crack length paramater nl, indicating the steady state. The variation of compliance 

obtained from the present shear lag model, the FEM results of Lee and Waas (1999), 

and the steady state expression are plotted as a function of crack length factor,nl 

and is shown in Figure 3.16. The slopes of all the three curves in the linear region 

are nearly equal. Similarly, for the compliance change ^, the curve of ^ vs e as a 

function of n becomes nearly flat beyond e > LSr^ as seen in Figure 3.17. It can 

be seen from Figure 3.17 that when the crack length is small, as expected ^ is a 

function of crack length and the crack tip zone, even if we take the crack tip zone, e 

equal to the crack length, /. 

The value of rate of change of compliance obtained with the present integrated ap- 

proach using the modified shear lag model is found to be 3.59715 X 10'"5 {N/mm)~l 

which is approximately equal to the value obtained from the steady state analysis, 

3.597186 X 10-5 {N/mm)-\ and the FEM value of 3.1881 X lO'S {N/mm)-l given 

in Lee and Waas (1999). This value of ^ was obtained for a e of 0.024mm and crack 

length, / of 0.096mm. The total length of fiber considered was about 40ro. As seen 

in Figure 3.17, for this crack length and e, the ^ value has reached its asymptotic 

value. Thus the present analysis incorporating the shear lag model to account for the 

crack tip stress state provides an analytical approach to study both unsteady crack 

growth of short cracks and steady state crack behavior as crack length increases. 

It replaces the need to resort to finite element based computation for short crack 
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length (unsteady crack growth). In Table 3.3 and Table 3.4, we have compared the 

compressive strength predictions of the splitting model using Equation (3.16) with 

the FEM data provided in Lee and Waas (1999) for fiber volume fractions of 10% 

and 60%. The value of fracture energy for a perfectly aligned composites was taken 

from Lee and Waas (1999). It is seen that the predicted values of compressive split- 

ting strength are very high for Vf = 60%. As shown in the previous section the 

compressive strength predictions better approximate the experimental results when 

a small degree of imperfection is introduced into the fibers in the cracked zone. 

3.5    Conclusions 

Compressive response and failure characteristics of glass fiber reinforced uni- 

directional composites have been examined experimentally and an analytical model 

has been introduced to predict compressive splitting. The model predictions have 

been compared against experimental data obtained by the authors and also others. 

Glass fiber composites demonstrated a splitting failure mode for low fiber volume 

fraction {Vf = 10% '■^ 30%) and a combined splitting/kink banding failure mode 

for high fiber volume fraction {Vf = 40% - 60%). The present analytical model 

has examined how the various parameters in a composite influences its compressive 

strength for low Vf. For the high Vf range, the kinking mode of failure has been 

thoroughly examined in Lee (1998). Also, at high Vf the values of fracture energy, 7^ 

could be different due to the difference in properties of the interphase as mentioned 

in chapter II. 

The analysis results for the splitting failure mode showed that the splitting failure 

mode is favorable for glass fiber composites at low fiber volume fraction. The model 

also shows that the ratio of axial moduli between fiber and matrix, the fiber diameter 
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and the fiber volume fraction are just as important as the fiber/matrix interfacial 

fracture toughness towards dictating the mechanism of compressive failure. Thus, 

the present model can be utilized for design purposes, where compressive strength is 

a critical design parameter. Its validity for the low Vf range has been justified.The 

splitting model also provides a means to assess the fiber volume fraction (for given 

constituents of a composite) at which the failure mechanism transitions between kink 

banding and splitting. 



Vf Stress[MPa 
[%] No.l No.2 No.3 No.4 Average 
0.0 92.8 82.5 83.4 86.2 
10.0 275.2 339.8 329.9 315.0 
20.0 366.5 355.7 464.8 395.7 
30.0 499.0 567.7 486.0 517.6 
40.0 374.0 654.0 451.9 458.2 484.5 
50.0 376.2 627.2 684.7 516.6 551.2 
60.0 658.8 863.1 545.3 599.2 666.6 

Table 3.1: Maximum stress values of glass-fiber composites, Lee (1998) 

Vf Stress [MPa] 
[%] 10.0 20.0 30.0 40.0 50.0 60.0 

No.l 163.8 373.0 425.8 478.7 358.4 493.0 
No.2 235.2 321.3 407.5 400.4 389.3 527.5 
No.3 180.9 342.6 388.5 418.5 349.8 454.1 
No.4 384.9 393.1 
No.5 512.8 
No.6 440.5 

Average 193.3 345.6 407.3 432.5 406.0 466.9 

Table 3.2: Maximum stress values of carbon-fiber composites, Lee (1998) 
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Glass/vinylester 

Vf Splitting model 
dc 
di 

FE model 
dc 
dl 

10 
60 

3.59715X10-^ 
2.801X10-^ 

3.1881X10-^ 
2.4042X10-5 

le 3.3: f values obtained from splitting and FE i 

Glass/vinylester 

Vf Splitting model 
adMPa) 

FE model 
adMPa) 

10 
60 

298 
1998.45 

312.25 
2157.36 

Table 3.4: Compressive stress values obtained from splitting and FE models with 
7/ = 1.0546X10-4/i:j/m2 
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Figure 3.1: Typical compressive stress-strain curve of glass-fiber specimen 
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a) A high magnification view of a broken glass fiber 

b) A high magnification view of splitting surface in a glass/epoxy 
composite 

Figure 3.2: Typical splitting failure mode of glass fiber composite specimen (V/ 
30%) 
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Glass / Epoxy composite Vf = 50% showing kinking and splitting 
failure 

*  Fiber Direction 

Kink Band 

Splitting Regid| 

A schematic of Kink band-Splitting failure seen in Glass/Epoxy 
Composites 

Figure 3.3: Kinking/splitting failure mode of glass fiber composite specimen {Vf 
50%) 
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Figure 3.4: Typical compressive stress-strain curve of carbon-fiber specimen 
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Figure 3.5: An optical microscope picture of a kink band in carbon composite 

Figure 3.6: A high resolution picture of the kink band under SEM 
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Figure 3.7: Composite model with initial crack 
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Figure 3.8: Variation of compressive strength a with fiber volume fraction Vf for a 
glass epoxy composite material with different values of fracture energy 
7/ and misalignment angle ^ = 2° 
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Figure 3.9: Variation of compressive strength a with fiber volume fraction V/ for a 
glass epoxy composite material with different values of fracture energy 
7/ and misalignment angle ^ — 2^ 
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Figure 3.11: Variation of compressive strength a with fiber volume fraction V/ for 
a glass epoxy composite material with different values of misalignment 
angle 0 = 2° and 7/ = 0.119 KJjrr? 



93 

2e 

1 

r 

,26, 

t: '^ , 
r ~-—.— "^ z 

2 

2L 

a)  A single fiber witli a crack embedded in matrix 

A r 

2D Splitting Mode 

Sliear Lag Model 

rT--,'. 

Cracl< Region - (1 

Matrix 

3D Splitting Model 

Fiber       r = r, 

Z=L 
Uncracked Region - (2) 

Z= I- £     Z= I 2= ' + ^ 

b) Crack and Uncracked regions 

Figure 3.12: RVE showing the various regions of analysis 
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Figure 3.13: Free body diagram of a small segment of fiber and attached matrix 
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CHAPTER IV 

COMBINED COMPRESSION TORSION 
RESPONSE OP PRPC 

4.1    Introduction 

The role of shear stresses in dictating the compressive strength of unidirectional 

fiber composites has been highHghted by the kinking models of Budiansky and Fleck 

(1993). Information obtained from the combined compression-shear loading experi- 

ments on fiber composites can be used to understand the effect of shear stresses on 

the compressive strength. In previous studies, researchers have focussed on combined 

compression-shear of small diameter carbon fiber composites. However, a study of 

the combined compression-torsional response of fiber reinforced composites with a 

view to examining the eflfect of fiber diameter and fiber mechanical properties is 

absent in the literature. In this chapter, results will be presented from a combined 

compression-torsion experimental study of both glass and carbon fiber reinforced 

composites. Ideally, combined compression-torsion experiments are done on thin 

walled cylindrical tubular specimens, Mendelson (1983). However, with FRPC, the 

process of manufacturing thin-walled tubular specimens introduces unwanted ma- 

chining and thermall effects that render the material to be different than that of the 

bulk composite.Consequently, solid cylindrical test specimens are used for the experi- 

99 
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ments. An appropriate analysis of the solid cylindrical test specimens, to extract the 

important shear stress-strain data, when subjected to combined compression and 

torsion, is carried out based on the work of Lyon (1991) who extended an earUer 

analysis by Nadai (1950). The effect of remotely applied shear stress on the overall 

compressive strength of composites is modeled by using a fracture mechanics based 

failure criteria. Furthermore, the Budiansky-Fleck kinking analysis is modified to 

account for the non-linear shear stress distribution across the solid cross-section of 

the specimen. 

The existing literature in the area of compressive behavior of FRPC can be 

broadly divided into two areas based on the failure mechanism being investigated. 

The first is the microbuckling of fibers in an inelastic matrix leading to kinking of 

fibers under the action of pure compression loading and another is the splitting fail- 

ure of composites. The splitting failure mode in glass composites has been reported 

by Piggott (1981); Piggott and Harris (1980), Lee and Waas (1999) and Oguni and 

Ravichandran (2000). Splitting is a distinctly different failure mechanism from kink- 

ing. This mechanism, like kinking, is found to be a compressive strength hmiting 

feature in glass composites. Lee and Waas (1999), and independently, Oguni and 

Ravichandran (2000) developed fracture mechanics based failure models for predict- 

ing the compressive splitting strength of FRP composites. Compressive splitting 

has also been observed in other brittle materials like rock and certain classes of 

ceramics(Nemat-Nasser and Horii (1982); Nemat-Nasser and Deng (1994)). Split- 

ting failure in these materials have been modeled by appealing to ideas of fracture 

mechanics, for example, the wing-crack model(Horii and Nemat-Nasser (1985,1986)). 

In FRPC, compared to spHtting, the kinking failure mode has been studied ex- 

haustively through experiment and analytical/numerical modeling [Argon (1972),Bu- 
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diansky (1983); Fleck et al. (1995); Fleck (1997); Kyriakides et al. (1995); Vogler and 

Kyriakides (1999); Hsu et al. (1999),Vogler and Kyriakides (2001)]. Argon (1972) 

and later Budiansky (1983) were the first to develop models for kinking failure in 

composites. They observed that the fibers in a unidirectional fiber reinforced compos- 

ite are not perfectly straight. Owing to this, they reasoned that fiber mislignments 

cause the development of local shear stresses in the composite under the action of 

remote pure compressive loads. When these shear stresses exceed the value of the 

shear yield stress of the matrix the fibers undergo shear buckling leading to failure in 

compression. Later Budiansky and Fleck (1993) extended the above ideas to include 

the effect of matrix strain hardening on the compressive strength of fiber compos- 

ites. Similarly, the effect of strain gradients on compressive strength of carbon fiber 

composites has been investigated and reported in Wknom and Atkinson (1997) and 

Drapier et al. (2001). Recently, the possibility of kinking initiating due to internal 

fiber breaks has been given consideration by Narayanan and Schadler (1999). A 

survey of the literature on compressive failure can be referred to in the review paper 

by Waas and Schultheisz (1996) and a more recent one on the various compressive 

strength models by Naik and Kumar (1999). Based on previous research it can be 

inferred that the compression strength of polymer composites depends on the fiber 

mechanical properties, matrix shear properties, fiber/matrix interface fracture en- 

ergy, fiber volume fraction, F/, and initial misalignment of fibers. Understanding the 

effect of each of these parameters on the observed compressive strength and the mode 

of failure is very important if a proper understanding of the compressive behavior 

of composites is to be attained. Of the above parameters, induced local shearing 

stresses governed by the response of the matrix in shear and the interfacial fracture 

energy of the composite play an important role in determining the failure mechanism 
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and the failure strength of the composite. 

The presence of shearing stresses, during the appUcation of compressive loads 

on the specimen, induces misalignments in the fibers which would degrade the per- 

formance of the composite under compressive loads. Thus, combined axial/torsional 

loading of solid cylindrical specimens will help in understanding the effect of shear on 

the composite compressive strength in a systematic manner. Relatively few experi- 

mental results are available for the combined compression-shear loading of polymer 

matrix composites. Jelf and Fleck (1994a) conducted tests on hollow composite tubes 

made of carbon/epoxy with a fiber volume fraction, Vf of 65%. A constant value of 

shearing stress was applied to the tubes, after which the compression load was in- 

creased until failure. They found that the composite compressive strength decreased 

linearly with increasing values of remotely applied shear stress. Even though a cylin- 

drical tube is an ideal geometry to study the response of composite materials under 

combined compression/shear loading, the manufacturing of the walled tubular speci- 

mens of FRPC results in specimen behavior that may not be representative of FRPC 

bulk behavior. Studies on the effect of shear on composite compressive strength were 

also reported in Vogler et al. (2000); Vogler and Kyriakides (2001). Tests were con- 

ducted on flat coupons of AS4/PEEK composites with a specially prepared test bed 

to apply shearing stresses and compression stresses simultaneously. These studies 

reported that the compression strength of AS4/PEEK specimens dropped in a linear 

manner with increasing values of remotely applied shear stresses. Vogler et al. (2000) 

performed finite element analysis of AS4/PEEK under combined compression and 

shear loading to compare with the experimental work. These previous investigations 

on the effect of combined loading on compressive strength have been restricted to 

carbon composites at fixed fiber volume fraction, Vf, and under non-proportional 
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remote loading. The focus of these studies was the effect of shear on altering the 

details of kinking. The present study, on the other hand is focussed on understand- 

ing how various parameters influence the mode of failure under combined loading. 

To do this, we have chosen to examine the behavior of soUd cylindrical specimens of 

gl^s fiber/vinylester and carbon fiber/vinylester unidirectional composites at a fixed 

fiber volume fraction of Vj = 50% when subjected to proportional compressive/shear 

loading. 

The chapter is organised as follows: Experimental details and results pertaining 

to the combined compression-torsion experiments are presented first followed by an 

extension of the Budiansky-Fleck model to a solid circular cylindrical configuration. 

This analysis is followed by the introduction of a new splitting model appropriate 

for combined loading. This new model is an extension of the earher work by Lee and 

Waas (1999). This is followed by a discussion and comparison of the experimental 

results with model predictions. Finally, concluding remarks are offered. 

4.2    Experimental Details 

Solid cylindrical specimens of Vf = 50% were manufactured using an in-house 

composite manufacturing facility. Composites were made using both E-glass (Vetrotex- 

certainteed) fibers of 24.1 fim diameter and IM-7-12K carbon fibers(Hexcel corpora- 

tion) of 5 ^m diameter with vinylester resin (Dow Derakane 411-C50). The specimens 

were cut with a fine diamond tip saw using a low speed cutting machine into lengths 

of 63.5 mm. The gage length of the specimen was about 12.7mm and the average 

diameter of the specimen was 6.8 mm. The specimens were subjected to pure com- 

pression, pure torsion and combined compression-torsion under displacement control 

loading, rotation control loading and combined displacement-rotational control load- 
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ing respectively. The tests were performed on a Axial-Torsional MTS machine which 

had the capacity to simultaneously apply axial and torsional loads. The strains in 

the specimens were measured by attaching three strain gages on the specimen sur- 

face, two along the axial direction on opposite surfaces and the third one at an angle 

of 45° to the vertical. The third strain gage was used to calculate the shearing strain 

and the two strain gages along the generators of the cyUndrical specimen were used 

to measure the axial strain in the specimen. Apart from the strain gage data, data 

was collected on the cross head displacement, cross head rotation, axial force and 

the torque acting on the specimen. As has been reported in the literature (Martinez 

et al. (1981); Vogler and Kyriakides (1999)), the type of gripping influences the fail- 

ure strength of the fiber reinforced polymer composite under compression. As can 

be seen in Figure 4.1 the rectangular block grips provide uniform continuous con- 

tact with the sides of the specimen. In contrast, the collet grips have some grooves 

to improve gripping in torsion, which leads to non-uniform discontinuous contact. 

Pure compression tests were done using the block grips along with the setup shown 

in Figure 4.2 which resulted in a slightly lower compressive strength. We observed 

that the initiation of kink bands in the carbon fiber composites occurred inside the 

grips. The use of collet grips resulted in a higher compressive strength. For the 

combined compression-torsion tests it is required that the specimen be gripped in 

such a manner that there is no slip between the specimen surface and the interior 

of the grip, while rotating the specimen and simultaneously applying an axial load. 

The grooves in the collet grips provide the above functionality. Hence, collet grips 

were used along with an adapter to mount onto the MTS cross head. 
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4.2.1 Testing Plan 

Initially pure compression and pure torsion tests were performed on the compos- 

ite specimens, which correspond to the vertical and horizontal axis of the loading 

diagram as shown in Figure 4.3. The pure compression tests were performed un- 

der displacement control at a uniform cross head displacement of 0.0381 mm/s and 

the pure torsion tests were performed at a uniform cross head rotation of 0.0635 

deg/min. As can be seen in Figure 4.3 different loading paths were adopted and the 

failure mechanism and failure strength in each case was noted. The loading ratio w^ 

defined in terms of the axial displacement and the arc displacement as ^, where A 

is the axial cross head displacement, 9 is the applied cross head rotation and 'R' is 

the radius of specimen. This was repeated for both glass and carbon composites. 

4.2.2 Experimental Results 

In this section, important features of the experimental results will be presented. 

The combined compression-torsion loading of soUd cyhndrical specimens of glass 

and carbon fiber composites was done under displacement and rotational control. 

Figure 4.4 shows the proportional loading for a glass/vinylester composite specimen 

with i^/rO = 5.23 as sensed by the strain gages in the gage section of the specimen. 

For this type of loading ratio, Figure 4.5 shows the plot of axial stress as a function of 

shear stress. It can be seen that the curve is non-linear except at the initial stages of 

loading. The linear variation of axial stress with shear strain for the same specimen is 

shown in Figure 4.6. Hence, it can be inferred that the non-linear nature of the axial 

stress-shear stress curve is because of the non-Hnearity induced by the shear response 

of the composite. This can be seen in Figure 4.7 where the shear stress is plotted as 

a function of the axial strain. A plot showing the failure envelope of glass/vinylester 
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and carbon/vinylester composites are shown in Figure 4.8 and Figure 4.9. 

An important obervation that can be made from the experimental data of the 

combined loading tests of glass/vinylester and carbon/vinylester composite speci- 

mens is the distinct difference in both the response to remote shear stress, and in the 

failure mechanisms. It was found that the glass composites failed by a combination 

of splitting and kinking at high values of iS./rd. The spUtting failure of glass com- 

posites is usually characterized by extensive brooming of fibers in the split region 

as indicated in Figure 4.11. Figure 4.12 is a high resolution SEM micrograph of a 

longitudinal section in the sphtting region of the glass composite. It can be seen from 

the SEM pictures that there is extensive fiber/matrix debonding and fiber breakage. 

Whereas, at lower values of iS./r9 = (0.4 - 0.6) the failure was by kinking and is 

shown in Figure 4.13. These observations are similar to those made by Piggott and 

Harris (1980) in which they found the failure mode changing from kinking/spHtting 

to kinking as the matrix became softer. In their work they used a matrix material 

with different curing times to obtain a range of matrix stiffness and yield stress val- 

ues for the matrix. The present work indicates that the effect of remote shear stress 

beyond the shear yield stress is similar to that of a partially cured matrix. Thus, 

matrix stiffness and matrix yield stress are important parameters in determining the 

failure mechanism. The failed glass composite specimens were cross sectioned and 

observed under SEM to study the failure mode. Figure 4.11 and Figure 4.13 show 

that there is a change in failure mode as the shear stress at failure exceeds the shear 

yield stress of the composite i.e. as the A/r^ value becomes low. 

Carbon composites, however, failed by kinking as seen in Figure 4.14, throughout 

the range of loading ratios for which the tests were conducted. These experimental 

findings indicate the importance of constructing a failure model that can capture 
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diiFerent and distinct failure mechanisms. Clearly, kinking is not the only strength 

limiting mechanism of failure. Our intent in the next section is to establish analytical 

models for kinking and splitting with a view to understanding which parameters 

influence the different mechanisms of failure. 

Some other observations that were made from the experiments are as follows. 

For high values of A/r0, the compressive strength of some specimens were found to 

increase. This could be due to the fact that for small rotations of cross sections, the 

applied shear strain acts in a manner to reduce the misalignements thus leading to 

an increase in compressive failure strength. Further, for high values of A/r# (which 

implies high compression and low rotation) torque reversal was observed. This can 

be seen in Figure 4.10, where the torque undergoes a change in sign. This can be 

attributed to the result of the interaction between the induced shear strain caused 

by the applied axial compression and the sense of the shear strain due to the applied 

end rotation. In cases of high A/r5, the induced shear strain must be higher than 

the applied shear(due to rotation) causing the relaxation in torque sensed by the 

torsional load cell. In a load control experiment this could lead to an instabihty in 

torsion, which was the primary reason for conducting the present experiments under 

displacement and rotation control. 

4.3    Analysis 

The modified Budiansky-Fleck model (MBF) for kinking failure in solid composite 

cylinders under combined compression-torsion loading is presented, followed by a 

novel energy based splitting failure model in pure compression, pure torsion and 

combined compression-torsional loading. 
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4.3.1    Kinking Analysis 

The Budiansky-Fleck model is based on the assumption that the shear stress 

variation is a known function of the radius of the specimen. However, in case of 

solid cyhndrical specimens the shear stress distribution is not a known function of 

the radius. Hence, the current formulation of Budiansky-Fleck model was modified 

to apply it to the case of solid cylindrical specimens. For solid cylindrical specimens, 

under pure torsion, Lyon (1991) who extended the work of Nadai (1950), has shown 

that the expression for the shear stress TR at radius, r = i? in terms of the appUed 

torque, T and the rotation ^ is as given below in equation(4.1). 

The expression for critical compressive stress in the presence of remotely applied 

shear stress, T°° is derived for a zero angle kink band as follows. As shown in Figure 

4.15, the free body diagram of a small segment at a distance 'r' from the center of 

the cylindrical specimen is considered in the deformed configuration with a uniform 

axial stress oz acting along the Z direction. Then, taking a balance of moments 

on this segment, one obtains the following expression for axial stress in terms of 

the remote shear stress, T°°, the shearing response of the composite material, T{r), 

within an element of kinked fibers, the initial misalignment angle of the fibers, 4>, 

and the applied shear strain, 7(r). 

(/) + 7(r) 

In the case of solid specimens, the shear stress T{r) is not a linear function of V, 

hence its variation with V is unknown and cannot be evaluated. However, the 

variation of shear stress, T{r) is known as a function of shear strain, 7, which is a 
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linear function of V given by r9/l, where B is the rotation and I is the specimen 

gage length. Therefore the first step in developing the MBF is to express the shear 

str^s as a function of shear strain, 7. This is achieved by expressing the specimen 

radius V as ^. Using the above substitution for 'r' and multiplying both sides of 

equation(4.2) by r^drdO and integrating, we can write equation(4.2) as 

where v is twist per unit length, 0/1. Simplifying the above equation we obtain the 

following expression for average critical compressive stress, a^, where, we substitute 

T the applied torque for /o^" f^T°°r^drd0 and 7^ for shear strain at r = fi. Then, 

4/o^-r(7)7^rf7-^ 
i 4.IR (4.4) 

The integral term in (4.4) represents the shear response of the composite material 

and can be obtained from a pure torsion test of the composite with similar fiber 

volume fraction. In equation(4.4), if we substitute aa^ for j^, where a is the 

loading ratio, then we obtain an expression for a^ in terms of the shear response of 

the composite, loading ratio, a, the misalignment angle, ^, and the induced shear 

strain, 7^ at r = 12, as given below in equation(4.5). On solving equation(4.5) we get 

a limit load for 0^ at some TOlue of 7. This represents the critical kinking compressive 

stress for the composite. 

l_ gn ^(^)^2^^ 

"   '   3    '     4 

4.3.2    Splitting Analysis 

Splitting failure mode has been observed in glass composites by Piggott (1981), 

Lee and Waas (1999) and Oguni and Ravichandran (2000). The micrographs of the 
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failed specimens as seen in Figure 4.11 and Figure 4.12 reveal that the fiber/matrix 

interfaces split during failure and the fibers are broken. Some of the fibers in the re- 

gion of splitting actually show the matrix attached to the fiber surface. This indicates 

that the splitting failure does not always happen along the interface but sometimes 

meanders into the matrix region away from the fiber/matrix interface. In high fiber 

volume fractions (0.4-0.6), kink bands are also observed along with the fiber/matrix 

splitting failure cracks in glass composites. However, for the glass composites tested 

isolated kink bands were never formed as observed in carbon composites. Based on 

these observations Lee and Waas (1999) developed a energy based splitting failure 

model. In following sections, we have extended the splitting model of Lee and Waas 

(1999) and presented in chapter III, for pure compression to the case of pure tor- 

sion and combined compression-torsion. To avoid repetition, only the derivation for 

torsional and combined compression-torsional loading is presented in the following 

sections. 

Strain Energy Release Rate, G 

Consider a representative volume element(RVE) of the composite, consisting of 

a concentric cylinder of fiber and matrix, with a fiber radius, ro and an outer region 

of matrix with radius, ri, and subjected to a external axial load, P and torque, 

T, as shown in Figure 4.16. Following the methodology of the composite cylinder 

model(CCM) as given in the text by Christensen (1991), we assume the composite 

to be consisting of a collection of such representative volume elements(RVE's). The 

outer radius of matrix in the RVE is chosen to satisfy the fiber volume fraction re- 

quirement such that rf = Vf/r^. The outer matrix surface (r = ri) is assumed to be 

traction free. The height of the cylinder is taken to be '2L' with a interfacial crack 
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of '21' embedded at the interface of fiber and matrix. The composite is assumed to 

have perfect bonding outside the crack region (1 < z < L) and (-L < z < -1). The 

total potential energy is written asU — U-W where U is the strain energy stored 

in the composite cyhnder and W is the work done by the external forces. 

Torsional Loading 

Strain energy release rate expressions for a cylindrical specimen of linear elastic 

and non-linear elastic material under the action of pure torsion, T' are developed 

below. Closed form expressions of the strain energy release rate for a linear elastic 

material are obtained in terms of the compliance of the material. 

The strain energy release rate expression for a cylinder of radius TQ, under rota- 

tional (displacement control) and torsional (load control) loading is derived as follows. 

For rotational control(The applied rotation, 0, is held fixed during crack propaga- 

tion), we have. 

n = U-W,     U   =   ire,  and  W = 0 

6   dT 
Sirro dl 

Using the definition of compliance,  c   =   r^d/T, we get 

T^dc 
87rri dl ^  =   ^zr2-if (4-6) 

For torque control(The applied torque, T, is held fixed during crack propagation). 
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the expressions are, 

U = U-W,     U   =   ^Te, and  W = Td 

Sirro dl 

Using the definition of compliance,    c   =   r^O/T,  we get 

The expression for dc/dl for a solid circular cylinder of length '2/' and made of linear 

elastic material is 2/{GJ) where G is the shear modulus of the material and J, is 

the polar moment of inertia given by 7rro/2. Hence, we can write the expression for 

strain energy release rate as follows 

inr^GJ 

When the strain energy release rate becomes equal to 27y the crack will propagate 

leading to failure. The critical failure stress in torsion can then be written in terms 

of 7/ as follows. 

Tcr   =   4^1fG/ro (4.8) 
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For a non-linear elastic material, the expression for strain energy release rate, Q 

(we continue with the notation Q even though J is standard notation for non-linear 

materials), can be obtained as follows. For displacement control( The applied rota- 

tion, 6, is held fixed during crack propagation), 

n   =   U-W 

U   -   1^ 1^ TiQdCdV = 4wl p p T{C)dCrdr (4.9) 

W   =   0 

^        dn        1 du ,    ^ 
^   =   -11 = —4 -IT (4-10) dA        47rro dl ' 

In equation (4.9), the inner integral is a known function of C, where C is a dummy 

variable for the purpose of integration. But, the outer integral in 'r' has to be first 

converted in terms of shearing strain 7 since for a solid cylinder we do not know the 

distribution of r with respect to the radius of cyMnder, r. Using the relations 7 = rv, 

and dr = d'y/v, in the integral of equation (4.9) we get the following integral. Here, 

V is the twist per unit length given by the ratio Ofl 

Uij)   =   47rlp[rr(C)dC]  7/^% (4.11) 
Jo     Jo 

Differentiating equation (4.11) with respect to T we get 

dU 
dl =   47r|'"''[|%(C)dC]  j/T^^dj (4.12) 
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where C is a dummy variable and 7^ is shear strain at radius, ri. 

Combined Compression-Torsion loading 

Consider a concentric cylinder of fiber and matrix with a debond of length '2/' 

as shown in Figure 4.16. We can divide this representative volume element(RVE) 

into a cracked region of Hnear elastic fiber and a non-linear elastic matrix and an 

uncracked region of non-linear elastic composite. Now let this RVE be subjected to 

a combined set of axial and torsional loads as shown in Figure 4.16. 'P' is the axial 

compressive load and 'T' is the torsional load. The total strain energy release rate 

under combined compression-torsion loading can be written as the sum of axial and 

torsional strain energy release rate contributions. It should be noted that we are im- 

plicitly assuming that the non-linear torsional response is unaffected by the presence 

of axial stress. In appendix C , we have described an analysis where the matrix and 

thus, the composite is treated as a deformation theory of plasticity solid. It turns out 

that the interaction effects (between axial stress and shear stress ) are negligible and 

the problem can be addressed by appealing to superposition where the total energy 

release rate contribution is computed as the sum of GAxiai and Qrorsicm, with each of 

their contributions computed with an assumption of non-interaction between axial 

stress and shear stress. Thus, 

Grotal     =     G Axial + GTorsim (4-13) 

In the present case, it was observed during the experiments that the axial stress - 

strain curve remains linear up to the point of failure even under combined compression- 
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torsion loading. Hence, strain energy release rate, QAxiai is obtained based on linear 

elastic material behavior. In torsion, the strain energy release rate, QTorsiom is ob- 

tained by adding the strain energy release rate contributions from a linear elastic 

fiber and non-linearly elastic matrix in the cracked region and a non-linearly elastic 

composite in the uncracked region under torsional load. 

1   dU 
fTorsion 

47rro dl 
1   AU dU dU , ,      , 

1—lir      +^F        + "3r ] (4-14) 
47rro    dl fiber ul matrix (U composite 
 ^ ^ '       -^ ^ ' 

crackedregion uncrackedregion 

Now, explicit relations for the terms entering in equation (4.14) are given below for 

both the cracked region and the uncracked region. In the cracked region the fiber is 

assumed to be linear elastic hence the term dU/dlfiber can be written as 

dU TVTI ,      ^ 
(4.15) 

dl fiber Zxafi, fiber 

Also, in the cracked region, the matrix is debonded from the fiber and is modeled as 

a non-linear elastic material for the calculation of dU/dlmatrix- 

Matrix 

^ =    ^T^ r\r TmiQdQlllPd^ (4.16) 
Ot matrix •'Irn     •'0 
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Uncracked region 

In the uncracked region away from the crack tip we model the composite as a ho- 

mogenous non-linear elastic material. Thus, the expression for dUIdlcomposite can be 

written as follows 

Composite 

dU 

dl composite 
=   Air riTrciOdChydj (4.17) 

Jo     Jo 

Prom equations (3.5,4.15-4.17) we can write an expression for the total strain energy 

release rate(SERR) of the composite as 

iVf    6 ^(jfiber        ^0 Jjro     Jo 

- riTrdOdC )  ^ydj (4.18) 
ro Jo      Jo 

When the total strain energy release rate, Qrotai becomes equal to 2jf, then splitting 

failure occurs. Therefore, we can write the above equation for compression strength, 

CTc, under combined loading as, 

^2^      1 ^2^2^2 

1^ r\Fr,(C)di  )  il^di (4.19) 
ITn Jo        Jo 
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4.4 Solution Procedure 

Equation (4.19) relating 7/ to the axial stress and shear stress acting on the com- 

posite is solved numerically to obtain the critical value of compressive stress and the 

corresponding value of shear stress. The input parameters required to solve equa- 

tion (4.19) are the elastic and geometric properties of fiber, the complete nonlinear 

shear response of the pure matrix and the complete nonlinear shear response of the 

composite and the fiber volume fraction of the composite. Table 4.1 shows the prop- 

erties used in the present failure model. The shear responses were incorporated in 

the analytical solution by using the Ramberg-Osgood fit parameters obtained from 

Yerramalli and Waas (2002c) and are given in Table 4.2. With the above input pa- 

rameters, the equation is solved for the critical value of shear stress or compressive 

stress for difi'erent values of loading ratios, '«' , where K is defined as air. The 

critical value of shear stress or compressive stress is attained when for a particular 

value of «, the right hand side of equation (4.18) exceeds the left hand side value of 

critical fracture energy, 7/. A range of 7/ values of 0.1224K J/m^ to OMOSKJ/m^ 

has been used to study the effect of fracture energy on the predicted failure envelope. 

4.5 Discussion 

As has been discussed in the experimental results section, the combined axial 

compression-torsion loading of solid circular cylindrical specimens of glass/vinylester 

and carbon/vinylester composites indicated that the remotely applied shear stress 

caused a degradation in the composite compressive behavior leading to a decre^e 

in the failure strength. However, there was a difference in the response of carbon 

composites to remote shear stress as compared to that of glass composites. The car- 

bon composites show a nearly hnear reduction in compressive strength as the remote 
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shear stress is increased, which matches with the prediction of the MBF model, 

equation(4.5). This can be observed in Figure 4.18, where the axial compressive 

strength is plotted against a normalized torque defined as 2^- Using misalign- 

ment angles in the range of 2° — 4° the predictions from the modified Budiansky- 

Fleck MODEL appear to bound the experimental data. On the other hand, the 

glass/vinylester composites were found to be initially unaffected by the remotely 

applied shear stress. When the remote shear stress has exceeded a critical value, a 

drop in compressive strength was observed as can be seen in Figure 4.19. 

The results in Figure 4.19 indicate that the MBF kinking model predictions((?!> = 

4°) are inaccurate for the glass composites which were tested under combined compression- 

torsion loading. It is to be noted that for 4> = 2^, the MBF prediction for compressive 

strength becomes higher but the trend is still inconsistent with the experimental data. 

This is because the glass composites tested fail by splitting as observed in experi- 

ments, instead of failing in a kinking mode. This observation indicates the need for a 

model that explicitly accounts for the effect of fiber properties and the fiber/matrix 

interfacial fracture energy on the composite compressive strength. The current frac- 

ture mechanics based model is used to compare the predicted and the observed 

experimental values for the failure envelope under a combined state of compression- 

torsion loading. The value of fracture energy as a function of fiber volume fraction 

of the composite is not available but a initial value of 7/ = 0.1224K J/m^ has been 

chosen to predict the failure envelope. The failure envelope predictions based on this 

value of 7/ are very high since this value of 7/ corresponds to the fracture energy of 

pure epoxy and is more suitable for lower volume fractions. Also, the failure of glass 

composites at high volume fractions was seen to be a combination of splitting and 

kinking. Hence, the failure model was used to predict the failure envelope for a range 
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of fracture energy (7/ = 0.1224KJ/m^,'Yf = 0M12KJ/m^,jf == OMOBKJ/m^). 

The correlation between the predicted stresses and the experimentally obtained data 

is good as indicated in Figure 4.20. The better correlation between the predicted 

value of compressive strength and experimentally observed strength for a lower value 

of 7/ could indicate that the interfacial fracture energy reduces at higher fiber volume 

fraction. The new model captures the trend of the failure data and the correlation is 

much better in the range where the loading ratio, K is high. At lower values of K the 

model predicts higher values of compressive strength than the observed experimental 

values. However, it should be noted that the failure mode in case of higher values of 

shear stress(i.e. lower K) was not pure splitting but a combination of matrix crush- 

ing and splitting, which is not taken into account by the current splitting fracture 

model. When the loading is pure torsion the value of shear yield stress based on a 

0.7G intercept criteria has been used. This is because polymer composites do not 

show a definite yield point and thus this data point is arbitrarily chosen based on the 

0.7G criteria. To better understand the initial insensitivity of the glass composites 

to remote shear stress, a plot of axial strain energy release rate(SERR) and torsional 

SERR as a precentage of the total SERR with respect to the applied shear stress, 

T, is shown in Figure 4.21. It can be seen from Figure 4.21 that upto a significant 

value of remote shear stress, r, the axial SERR contribution to the total SERR is 

nearly 100% indicating that remotely applied shear stress does not play a role in 

inducing failure as seen in experiments. When the shear stress r reaches a critical 

value, which is about 40 - 50MPa for the glass composites there is a sudden rise in 

the contribution from the torsional SERR and it reaches a peak value of 100% for 

pure torsion loading. 
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4.6    Conclusions 

Motivated by the experimental results obtained, we have presented a new frac- 

ture mechanics based model to predict splitting failure in unidirectional composites 

subjected to remote combined axial compression and torsional loading. Experimen- 

tally it was found that the response mechanism of glass fiber composites to remote 

shear stress is different from that of the carbon fiber composites. The results indicate 

that the conventional Budiansky-Fleck model is applicable to carbon fiber compos- 

ites, where the failure is due to buckling of fibers in an inelastic matrix. In glass 

composites there seems to be a critical value of remote shear stress beyond which 

the compressive strength of the composite degrades very rapidly. This difference in 

sensitivity to the remote shear stress led us to develop a new fracture mechanics 

based failure model which captures the initial insensitivity of compressive strength 

to shear stress and the subsequent steep drop in compressive strength when the re- 

motely applied shear stress is very high. Apart from the difference in sensitivity to 

remote shear stress exhibited by carbon and glass composites, the failure mechanism 

is also found to be different. In glass composites the failure mechanism changed from 

splitting to kinking. A combination of matrix crushing and splitting was observed 

as the remote shear stress was increased. A single model which can effectively tackle 

the mode transition from splitting to kinking failure and vice-versa would be ideal. 

Conceivably, such a model would have to be implemented numerically, perhaps using 

the finite element method. 
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■g/(MPa) ^/(MPa) ro(mm) 

Gtes fiber 72000 29508 0.012 
Vinylester 3585 1318 

Table 4.1: Properties of glass fiber and vinylester resin 

Vf ^(MPa) A n 

Glass composite 0.5 3260 68.68 12.44 
Vinylester 0 1318 65.44 7.9603 

Table 4.2: Ramberg-Osgood fit for shear stress-strain curve of glass/vinylester and 
pure vinylester specimens 
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Load direction 

High resolution images of the marked circular region 
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Figure 4.11: Typical image of a split region in glass composites with extensive broom- 
ing of fibers 
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Figure 4.12: Image at the cross section A-A of the spHtting zone in  a glass 
composite, V/ = 50% 

Figure 4.13: Kinking failure in glass composites at A/r^ = 0.59 
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Figure 4.14: Kinking failure in carbon composites 

Figure 4.15: Free body diagram of a kinked segment of a cylinder under combined 
compression and torsion 
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Figure 4.16: Composite cylinder under compression-torsion loading 
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CHAPTER V 

RESPONSE OF FRPC TO COMPRESSION, 
TORSION AND COMBINED COMPRESSION- 
TORSION LOADING - A FINITE ELEMENT 

BASED STUDY 

5.1    Introduction 

Results obtained from experiments and analytical models presented in the previ- 

ous chapters indicate the complexity and the difficulty in modeling the undirectional 

fiber composite failure behavior accurately. In this chapter, a 3D finite element 

micro-mechanics model of the fiber composite is presented. One of the important 

reasons for implementing a 3D model is to understand the 3D effects in the kinking 

process observed in the composites during experimentation. Since the specimens are 

cylindrical in shape, numerical simulation of combined compression-torsion loading 

requires that the solid cylindrical shape be modeled accurately in order to let shear 

stresses develop as a function of the cylinder radius. 

All previous analytical and numerical attempts to analyze the kinking failure 

mechanism, are two dimensional, based on a model of the composite that assumes it 

to be a two constituent alternatingly layered medium under plane strain conditions. 

A comprehensive summary of the literature on modeling upto 1999 is contained in 
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the papers by Waas and Schultheisz (1996), Fleck (1997), and Naik and Kumar 

(1999). Beyond this time work has been done by Lee and Waas (1999), Vogler et al. 

(2000, 2001) and Vogler and Kyriakides (1999, 2001). 

In one of these papers, Vogler et al. (2000), the composite is modeled as a 3D 

plate but the fibers are assumed to be periodic in the third dimension and hence only 

a 2D slice of the composite is considered. In a real composite cylindrical specimen 

the fibers are arranged in a random fashion and the three dimensionality of the 

random arrangement of fibers in a cylinder cannot be modeled in a 2D manner. 

It can be argued that a 2D model of FRPC captures the appropriate mechanics 

at large fiber volume fractions, howeyer, a 3D model is most appropriate to study 

compressive behavior, particularly to capture the influence of the complex shear 

state that develops in the sandwiched matrix between the fibers in the region where 

kink bands (deformation localization) develop and to properly account for the effect 

of finite fiber bending stiffh^s in the kink band. Some of the issues that are of 

particular interest in the current finite element study are as follows; (a) Comparison 

of the predicted compressive strength between a true 3D finite element model and a 

corresponding 2D model under pure compression, (b) the effect of orthotropic fiber 

properties on the predicted peak stress at a given angle of misalignment, and (c) the 

dependancy of the peak load on the fiber diameter. The resolution of the above issues 

would establish, among other things the dependancy of critical kinking stress on the 

fiber radius. It is to be noted that previous analytical models of post-kinking assume 

that the kink band is already developed, Budiansky and Fleck (1993). Consequently, 

the effect of fiber bending stiffness on the predicted kink strength is not accounted 

for. The effect of fiber radius, which essentially accounts for finite fiber bending 

stiffness is directly captured via a 3D micro-mechanics based finite element model. 
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5.2    Modeling 

The unidirectional fiber reinforced composite cylinder was modeled using a 8 

noded reduced order brick element, C3D8R in the commercial finite element software, 

ABAQUS. Hourglass stiffness control was adopted to prevent the hourglassing of the 

brick elements. The composite cylinder geometry consisting of cylindrical fibers and 

matrix was meshed using the commercial meshing software HYPERMESH. Total of 

37 fibers were included within a cylinder for both glass and carbon composite finite 

element models. An isometric view of the 3D finite element model is shown in fig- 

ure 5.1. The carbon composite and glass composites were modeled for a fiber volume 

fraction of 0.5. In case of glass composite finite element model, the fiber diameter 

was changed to study the effect of fiber diameter on the peak stress. For this purpose 

the number of fibers were kept the same for both fiber diameters. This results in two 

glass composite models with different composite outer radius, r^- The length of both 

models were kept the same. A 2D FE model of carbon composite was also generated. 

Details of each of these models are given in Table 5.1. In case of carbon fiber, the 

effect of orthotropy of the carbon fiber on the predicted stress response was studied. 

The orthotropic properties of carbon fiber are obtained from Lee and Waas (1999) 

and are as follows, ^^u = 276000(MPa), £^22 = £^33 = 8760(MPa), G12 = G13 = 

12000(MPa), G23 = 3244(MPa), v^-i = 0.35. The assumed isotropic properties of 

carbon fibers are given in Table 5.2. 2D finite element models of carbon were also 

used to predict the compressive strength of carbon composite with, Vj — 0.5, so that 

the 2D and 3D model predictions could be compared against each other and also 

against the analytical prediction of Budiansky and Fleck (1993). 
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5.2.1    Initial Geometric Imperfection 

An important feature in studies related to compressive response of structures is 

the effect of initial geometric imperfection on the load-end shortening, (P-A) curve. 

In cases where the P - A curve shows a load maximum (limit load), it is of interest 

to determine the effect of imperfection 

magnitude on the load maximum. By doing so, one can generate a plot of max- 

imum load against imperfection magnitude. From this plot, one can obtain the 

maximum load in the limit of vanishing imperfection magnitude (see figure 5.27 for 

carbon fiber composite 3D FE model). 

For the purpose of generating an appropriate initial geometric imperfection shape, 

a linear buckling analysis of the models was performed and the buckling mode shapes 

(eigenmodes) were used to introduce the imperfection into the finite element models. 

As can be seen from figure 5.3 and figure 5.4, eigenmode-1 is a deformed cantilever 

mode and is a long wavelength imperfection mode. Whereas, eigenmode-3 is a mode 

that generates a localised imperfection. Thus, a combination of these two modes was 

used with varying amounts of magnitude to introduce a series of initial geometric 

imperfections in the composite. These imperfections lead to initial fiber misalign- 

ment that can be categorized through an initial fiber misalignment angle, {<j>) . The 

imperfection angle can be calculated based on the mode shapes chosen to perturb the 

original geometry. Prom the eigenmodes, the normalized displacement (C/1, U2, UZ) 

for each mode can be obtained. Then, using the displacements in the 2 - 3 plane, 

(C/2, US), we can calculate the radius vector, r^, by which the nodes are displaced in 

the 2 - 3 plane. Also, knowing the location of these nodes along the 1 direction (the 

fiber direction), the imperfection angle can be calculated. The maximum values of 

the radius vector, r^, for different mode shapes and the location of these maximum 
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values are given in Table 5.3. In case of using more than one mode shape to generate 

the initial imperfection (as has been done here with mode-1 and mode-3), mesh, the 

imperfection angle is calculated as follows. If 5i is the mode-1 radius vector and si 

is the scaling factor, then the actual perturbation of the mesh, Ai, would be slx5i. 

Similarly, for mode-3, with s3 as the scaling factor and 83 as the radius vector, then 

the actual perturbation of the mesh, A3, would be s3 x 53. Thus, the total perturba- 

tion of the mesh, Atot, would be a hnear combination of these two perturbations given 

by Ai + A3. The imperfection angle, (f) can be obtained from tan~^{Atot/Hl). The 

maximum value is taken as the imperfection angle of the mesh. However, it should 

be noted that the imperfection angle calculated is predicated on the basis that the 

mesh is being deformed in a homogeneous manner. As can be seen in figure 5.3 and 

figure 5.4, the displaced shape is non-homogeneous and thus the misalignment angle 

is a function of the axial position at which it is measured. The average initial fiber 

misalignment will be smaller than that based on the estimate tan''^{Atot/Hl). Once 

the eigenmode results are obtained from the finite element model, the compressive 

response studies on the perturbed mesh is carried out in a truly non-linear setting. 

For this, the fibers are assumed to be linearly elastic, the matrix is modeled as a J2 

incremental theory of plasticity solid (Mendelson (1983) and an arc-length tracing 

nonlinear solution process (RIKS method) is used to obtain the P — A curve. An 

arc-length procedure is needed to accomodate any 'snap-back' that can develop in 

the P — A response. The complete non-linear uni-axial stress-strain curve of the 

matrix that is used in these studies are shown in figure 5.5. The non-linear curve is 

also the curve between equivalent stress and equivalent strain for a J2 plastic solid 

(Mendelson (1983)). 
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5.2.2    Model Implementation 

The straight iber finite element models were perturbed using the procedure de- 

scribed in the preceding section to generate 3D finite element models of the compos- 

ite with known initial geometric imperfections and then subjected to pure torsional 

loading, (rotational control), Axial loading, (displacement control), and combined 

compression-torsional loading in a geometrically non-linear setting. A multi-point 

constraint (MPC) option available in the ABAQUS software w^ used to constrain 

the motion of all the nodes on the top surface to move along the axial direction at the 

prescribed rate of displacement. The use of a MPC card is usefiil in the torsion and 

combined compression-torsion loading cases since the rotation on the MPC node is 

translated into displacements along the tangential and radial directions for the face 

nodes. A schematic of the FE model along with the MPC node and the axis locations 

are shown in figure 5.6. The boundary conditions used for pure compression, pure 

torsion and combined compression-torsion loading cases are shown in Table 5.4-5.6. 

For all the loading conditions the model was allowed to 'breathe', i.e. the displace- 

ments along the 2 and 3 directions were allowed on both the faces. It should be 

noted that the solid elements lack a rotational degree of freedom but the MPC node 

has 6 degrees of freedom (DOF). Thus, the MPC BEAM connection constrains only 

the common degrees of freedom between the MPC node and the face nodes. 

The procedure used for studying the compressive response of carbon fiber compos- 

ites is as follows; first the 3D finite element model was used to generate the torsional 

response. The matrix non-linear properties were 'calibrated' to obtain the composite 

shear stress-shear strain (r - 7) response of the 3D FE model to be similar to the 

experimentally measured shear stress-shear strain curve. The model response was 

compared against the experimental shear stress-strain curve as shown in figure 5.7. 



146 

The following is to be noted. The linear part of the r — 7 curve was found to 

match the linear part of the experimentally obtained r — 7 curve exactly. In order for 

the FE models r — 7 curve to match the experimental r - 7 curve in the non-linear 

regime, the non-linear (plastic) part of the a — e curve shown in figure 5.5 had to be 

changed. This is because, the present 3D FE model is a representative microsection 

(containing 37 fibers) of the much larger laboratory specimen that contains approx- 

imately '125,000' fibers within a radius of '3.35mm'. For the purpose of studying 

compressive response and combined compression-torsion response, a numerical FE 

model of a representative micro-section is deemed equivalent to the actual laboratory 

specimen when both the FE model and the laboratory specimen contain the same 

fiber volume fraction and the same overall composite r — 7 response curve. After 

this 'equivalence' was established, the 3D models were used to generate compressive 

response curves and the response curves for combined compression-torsional loading. 

We will first discuss the pure compressive response. The pure compressive response 

curves for a range of initial imperfection magnitudes are shown in figure 5.8. In the 

plot, Gc is the macroscopic axial stress (axial load divided by the initial microsection 

cylinder crossectional area) and Cc is the macroscopic strain based on end-shortening 

(i.e. the axial end shortening divided by the initial microsection cylinder length). A 

note about the initial imperfection is in order. Recall, that two curves were given in 

figure 5.27. In the first curve, the initial imperfection (misalignment angle) is based 

on the magnitude of the mode-1 imperfection (even though, both mode-1 and mode- 

3 imperfections are included in the 3D FE model). This is because, as explained 

earlier, the misalignment angle is a function of axial position. Thus, for comparison 

purposes, it is clearer to define the imperfection based the mode-1 shape. The sec- 

ond curve is based on defining the misalignment angle to include both mode-1 and 
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mode-3 imperfection. The misalignment angle indicated is based on the definition 

that includes only mode-1 imperfection. 

The carbon fiber composite response curves were first generated with isotropic 

properties of carbon fiber. For the case corresponding to the maximum value of mis- 

alignment, the properties of carbon fiber were changed to refiect material orthotropy 

and the compressive response was obtained. As can be seen the maximum load is 

unaffected by fiber orthotropy but the post peak response is much softer in case of 

orthotropic fiber properties. The initial stiffness predicted by the 3D finite element 

model K nearly same for all the models with different imperfections, thus, establish- 

ing the "smallness" of the range of imperfection magnitudes selected for study. 

An explanation of a typical a — e curve as shown in figure 5.8 is in order. At first, 

the model behaves linearly. With continued loading (consider the ^i = 0.25° case, for 

example), the matrix material in the region of initially misaligned fibers is subjected 

to increasing amounts of shear strain. This results in a propessively decreasing 

shear stiffness of the matrix (inferred from the shear stress-shear strain curve of the 

composite, figure 5.7), which in turn, provides decreasing support to the fibers. A 

point is reached (peak load or Mmit load), when the competition between the elastic 

restoring force of the fiber is overcome by the action of the external compressive load 

that deflects the fiber into a progr^sively deteriorating (in shear) matrix. Beyond 

this limit load, there can be 'snap-back' (both the macroscopic stress, a, and the 

macroscopic axial strain, e can decrease), resulting in an unstable equilibrium path. 

In the context of a laboratory experiment, the snap-back can be interpreted as a 

drop in stress instantaneously (at fixed e) to the curving back path of the a - e curve 

(see dashed line in figure 5.8). In figure 5.9, the compressive response for the FE 

model with a misalignment angle of #i = 1° is shown. The response can be divided 



148 

into three regions; the first is the pre-peak region where the response is Hnear, next, 

a post-peak region where the decrease in stress is very rapid, and, finally, a stage 

referred to as the plateau region where the stress is approaching a near constant value. 

Corresponding to these three regions, the displaced shape of the FE mesh has been 

plotted in figure 5.10 and figure 5.11. In figure 5.10, the displaced shapes shown for 

step-1 are in the pre-peak region. It can be seen that the shape distortion is minimal. 

The meshes corresponding to step-4 lie near the peak and in the post-peak region of 

the curve. It can be seen that the deformation in the mesh gradually increases as the 

stress starts to decrease beyond the peak stress value. As explained previously, the 

matrix starts to yield in shear in the locations of maximum fiber misalignment thus 

causing a narrow band of fibers to rotate and propagate seemingly with no resistance, 

causing the macroscopic stress to drop. In the post-peak region, the mesh starts to 

show the formation of a distinct kink band and this distinctiion becomes clear as 

can be seen in the deformed mesh corresponding to step-6. The deformed mesh for 

step-6, increment 10 is shown in the stress response curve and it can be seen that the 

point lies in the plateau region. Another, important observation that can be made 

from this 3D finite element simulation of kinking is the formation of circumferential 

ripples indicative of matrix regions which undergo shearing strains of diflferent sense 

(positive and negative shear). Unlike 2D simulation of kink bands where the matrix 

material within the kink band shows shearing of one sense (positive or negative), the 

outer surface of the composite in the 3D case shows 'ripples' which is reflected in the 

zig-zag nature of the deformed mesh in the kinked region. In fact as will be seen in 

figure 5.12, figure 5.13, and figure 5.14, the circular shape of the composite no longer 

remains circular.  In these figures, a slice of the composite without the embedded 

fibers is shown.  Figure 5.13 and figure 5.14 correspond to the post-peak region of 
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the compressive stress reponse curve.  The side view of the deformed cross-section 

shows the ripples. On the deformed mesh contours of inplane shear strain, 7^^ are 

superposed.   The value of 7j,2 increases as the post-peak region is reached.   This 

also corresponds to the fact that the shape of the circular section no longer remains 

circular causing inplane shear strains to develop. Contours of the uni-axial strain, 

€J:^ in the composite are presented in figure 5.15, figure 5.16, and figure 5.17. The 

strain contours are superposed on a deformed mesh. It can be seen that, in the pre- 

peak region (step-1) the total strains are still low, even though, one can notice the 

formation of a band of high strain region starting from one end of the composite and 

spreading diagonally across the surface. In the post-peak region (step-4) the strains 

start to increase and the strain localization initiates along the previously mentioned 

band. As we go into the post-peak region, the band of high strain region starts to 

grow and spread. The value of the peak strain in the band also increases. The region 

with elevated strain corresponds to the region of locaHzed deformation of the mesh as 

seen in figure 5.11. A longitudinal section of the PE model for the carbon composite 

(with only the fibers) is presented in figure 5.18 and figure 5.19.  The axial shear 

strain contours, j^g, are superposed over the deformed mesh. This is of interest in 

case of orthotropic fibers (like carbon), where the fiber itself has a microstructure. 

High values of inplane shear strain can cause the fiber to fail by shearing between 

outer layers and the fiber core (eg. in a onion skin core type of structure, Herakovich 

(1998)). A similar procedure was used to generate the perturbed mesh and obtain 

the compressive response of carbon fiber composite for 2D finite element model. The 

comparison between the predicted stress values for a 2D model and a 3D model are 

given in Table 5.7. As it can be seen the 3D model predictions are significantly lower 

at the same angle of misalignment as compared to the 2D model predictions and the 
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Budiansky-Fleck model predictions from equation (1.3). 

The finite element model was next used to simulate the combined compression- 

torsion loading on a composite cylinder. 3D FE simulations were performed only for 

carbon fiber composites. The boundary conditions were applied as explained in the 

previous paragraph. Proportional displacement and rotational controlled boundary 

loading was applied to the finite element model. Typical response curves are shown 

in figure 5.20 and figure 5.23. It can be seen that as load, P, increases the torque 

first increases and then starts to decrease. This was also observed in the combined 

loading reported in chapter IV (see figure 4.10) experiments where reversal in torque 

was observed for some specimens. This reduction in torque leads to catastrophic 

instabilities, when experiments are done in torque and force control instead of rota- 

tional and displacement control. The failure point is taken as the point on the P - A 

curve where the load starts to decrease. Simulations were done with different ratios 

of A/r^ and the failure envelope obtained in the FE simulation is plotted along with 

the experimental data in figure 5.24. 

5.2.3    Size Effects - EflFect of iBber diameter 

The 3D finite element micromechanical model of the glass fiber composite was 

used to study the effect of fiber diameter on the peak stress under axial compression 

loading. For this purpose, two types of models were developed; one is called as a 

micro-mechanically scaled model and the other is a structurally scaled model. In 

micro-mechanically scaled model, the FE models for both fiber diameters contained 

the same number of fibers and had similar fiber volume fraction. Thus, the outer 

radius of the FE model was different. In case of structurally scaled model, the outer 

radius of both FE models and the fiber volume fraction was kept the same.  This 
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requires that the number of fibers in both models be different. In case of FE model 

with small fiber diameter, the number of fibers were taken to be 37 and in case of 

the FE model with large fiber diameter, the number of fibers were taken to be 19. 

Both the micromechanically scaled FE model and the structurally scaled FE model 

was developed using the pre-processing software HYPERMESH, as explained in the 

modeling section. 

Micro-mechanically Scaled Model 

The shear stress-shear strain response from both the models were found to be 

nearly same (Figure 5.25). Thus, an equivalence was estabMshed between the two 

FE models. Recall, that the two glass composite models contain 37 fibers packed 

in a cylinder such that the overall fiber volume fraction, Vf = 0.5. The dimensions 

of the models are given in Table 5.1. The 3D models were next used to generate 

the compressive stress-compressive strain response for both the cases. For the larger 

diameter fibers, the initial misalignment values were varied. However, for compar- 

ing with the small fiber diameter model, two PE models with same value of initial 

misalignment were studied. Rrom the response curves in figure 5.26, it can be seen 

that the peak stress in case of large fiber diameter model is high compared to the FE 

model with small fiber diameter (at the same initial angle of misalignment). The an- 

alytical kinking stress prediction of Budiansky and Fleck (1993) (see equation (1.3) 

would predict the peak stress to be same for both cases since the composite shear 

stress-shear strain response is same for both models. However, as can be seen from 

the present FE model results, the peak stress is difierent with different reinforcing 

fiber diameters. This indicates that fiber bending stiffness plays an important role 

in the determination of the peak stress associated with kink banding. This novel 

result has not been identified in previous 2D FE studies of kink banding (see Vogler 
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et al. (2001), Lee and Waas (1999)). It should be noted that the analytical model 

for kinking by Budiansky and Fleck (1993) does not take into account the bending 

stiffness of the fibers and extensibility of the fibers. 

Structurally Scaled Model 

In case of structurally scaled models, the FE models were first subjected to pure 

torsion and the properties of the matrix material was calibrated to obtain a similar 

global shear stress-shear strain response for both models with different diameter 

fibers as shown in figure 5.27. The compressive response of the FE models were 

next studied to understand the effect of fiber diameter on the peak compressive load. 

For, comparison purposes the fiber misalignment was kept the same for both FE 

models with different fiber diameters. It can be seen from figure 5.28, that the peak 

compressive stress is different for both models and the model with a larger fiber 

diameter has a higher peak compressive stress for the same angle of misalignment. 

Thus, it is clear from both the structurally and micro-mechanically scaled models 

that the fiber diameter does influence the peak compressive stress. The tendency 

is for the peak stress to increase with fiber diameter. The increase in composite 

compressive strength with increase in fiber diameter, as has been shown here, has 

been observed experimentally by Schutz (1994). 

In case of micro-mechanically scaled FE model results as shown in figure 5.29 

and figure 5.30, the maximum strains in the fiber are also noted on the plot. It 

can be seen that for the same macroscopic axial strain, the local fiber strain was 

higher in the small fiber diameter finite element model. This indicates the possibility 

of fiber breaking as the mechanism for initiation of kinking in case of small fiber 

diameter glass composite (this has been pointed out in the paper by Narayanan and 

Schadler (1999) and Garland et al. (2001)).  In case of large diameter glass fibers. 
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there are two possibilities. The fiber breaking strain is reached before or after the 

localized kink banding instability corresponding to a peak load. In the current study, 

assuming a fiber breaking strain of 0.02 for glass, it can be seen that, in the large 

fiber diameter model, the maximum fiber strain exceeds the peak fiber strain almost 

at the maximum load point in the stress response curve. However, for the small 

fiber diameter model the fiber strain exceeds the peak fiber strain much below the 

attainment of the maximum stress. Thus, initiation of kink banding, much like what 

has been observed by Narayanan and Schadler (1999) and Garland et al. (2001), can 

occur due to damage zones formed on account of fiber breate prior to the attainment 

of a maximum load associated with a kink banding instability predicated on models 

that do not account for finite fiber bending stiifness. This shows that the onset of 

kink banding and the associated kink band angle is highly dependent on the fiber 

radius and the fiber breaking strain. The fiber breaking is not a quantity that can 

be obtained from a simple tension tests in general. For example, in case of carbon 

fibers that have a microstructure, the breaking strain under bending (with through 

thickness gradient loading) is different than the breaking strain in tension (where ther 

is no through the thickness gradient in loading). These aspects have been pointed 

out by Wisnom et al. (1997) and Quek (2002). 

5.3    Conclusions 

The results from a 3D finite element based micromechanics study into the kinking 

failure of unidirectional fiber composites was presented. It can be seen that the fiber 

diameter plays an important role in the determination of the compressive strength 

of FRPC. The results clearly indicate that the possibility of kinking initiating due 

to a fiber break cannot be ignored in the case of small fiber diameter fiber com- 
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posite. This finding is consistent with microscopic experimental observation (based 

on Raman spectroscopy to track fiber breaks, as has been done by Narayanan and 

Schadler (1999); Garland et al. (2001)) on the initiation of kink bands. The com- 

bined compression-torsion FE simulations show that the failure strength drops in a 

non-linear fashion as compared to the predictions of the Budiansky-Fleck kinking 

model. The 3D finite element simulations show the importance of finite fiber bend- 

ing stiffness on the maximum stress and the presence of a complex three dimensional 

stress state in the matrix region. 
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Model Total Total Length Radius Fiber Vf 
Name Elements Nodes radius 

68673 64 

rdfim) rfifim) 

Carbon-1 64704 21.5 2.5 0.5 
Carbon-2D 10000 30349 710 250 2.5 0.5 

Glass-1 64704 68673 306.43 58 6.75 0.5 
Glass-2 64704 68673 306.43 103 12 0.5 

Table 5.1: 3D finite element model details 

%(MPa) V 

Glass fiber 72000 0.22 
Carbon fiber 276000 0.35 
Vinylester 3585 0.36 

Table 5.2: Material properties of fiber and matrix 

Hi Mode-1 Mode-3 

64 
32 

1.0334 
0.5050 

0 
1.0179 

Table 5.3: Normalised displacements from buckling analysis of FE model(carbon-l) 
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Node/face Ul U2 U3 e, 

MPC node 
Bottom 

A 
Fixed 

Free 
Free 

Free 
Free 

Free Fixed Fixed 

Table 5.4: Boundary conditions for pure compression 

Node/face Ul U2 U3 Oi 

MPC node 
Bottom 

Fixed 
Free 

Fixed 
Fixed 

Fixed 
Fixed 

Fixed Fixed 

Table 5.5: Boundary conditions for pure torsion 

Node/face Ul U2 U3 ei 02 ^3 

MPC node 
MPC nodel 

A 
Fixed 

free 
Fixed 

free 
Fixed 

e 
Fixed 

Fixed 
Fixed 

Fixed 
Fixed 

Table 5.6: Boundary conditions for combined compression-torsion 

ae(MPa) 4> 

Carbon-3D 495 2.3° 
Carbon-2D 581 2.0° 
BF-model 720 2.0° 

Table 5.7: Comparison of compressive strength predictions 
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Figure 5.1: A 3D finite element micro-mechanical model of a composite cylinder 
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CHAPTER VI 

STATIC AND DYNAMIC COMPRESSIVE 
RESPONSE OF HYBRID (GLASS/CARBON) 

COMPOSITES 

6.1    Introduction 

Fiber composites being man-made materials provide us the means to tailor the 

properties according to the requirements by choosing the constituents (fiber and ma- 

trix) in a optimum manner. Hybridization of fiber composites enhances this property 

of fiber reinforced composite materials. Hybridization can be done in both geomtry 

(e.g. plain weave woven fabrics with stitching in the transverse direction) or materials 

(by using two or more types of reinforcing fibers). Hybridization in composites can 

lead to benefits in cost and enhancement of mechanical properties. Previous studies 

on the mechanical behavior of hybrid composites have focussed mainly on tensile 

and impact behavior of hybrid fiber composites, Aveston and Sillwood (1976); Dorey 

et al. (1978). An exception to this is the work of Piggott and Harris (1981), who 

studied the static compressive response of hybrid glass/carbon composites. Investi- 

gations on the Dynamic compressive stress response and the strain rate effects on 

compressive strength of hybrid (glc^s/carbon) composites has not been investigated 

in the open literature. Lee (1998), Yuan and Takeda (2000) studied the compre^ive 
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behavior of unidirectional glass and carbon composites under high strain rates. Yuan 

and Takeda (2000) conducted high strain rate tests on glass fiber composites at strain 

rates of e = lOOOs"^^ They observed the failure stress to increase with increasing 

strain rate. Tests were also conducted by varying the specimen temperature. It 

was observed that the failure strength of the specimen was a decreasing function of 

increasing temperature. This was due to the degradation in the matrix mechanical 

properties. The failure mechanism was observed to be splitting in case of glass fiber 

composites and kinking in the case of carbon fiber composites. 

Results presented in the previous chapters have shown that the failure strength 

and failure mechanism of glass fiber reinforced composites are different from carbon 

fiber reinforced composites. Thus, it was felt that hybridization of composites by 

mixing carbon and glass fibers may lead to results that reinforce and delineate the 

earlier conclusions regarding the failure mechanism, failure strength prediction and 

the dependancy of failure mechanism on parameters such as fiber type and interface. 

Based on the results presented in the previous chapters and on the work by, Fleck 

(1997); Lee and Waas (1999); Vogler and Kyriakides (1999), and Vogler et al. (2000), 

it is known that the compression strength of polymer composites depends on the fiber 

type, matrix shear properties, fiber/matrix interface toughness and misalignments 

of the fibers. In case of pure carbon composites, kinking is the dominant failure 

mechanism whereas for glass composites, splitting was found to be the predominant 

failure mechanism. By hybridizing the composite, one would ideally like to acheive a 

higher strength or change in failure mode. In their paper, Piggott and Harris (1981) 

studied the effect of hybridization of glass/carbon composites experimentally. They 

also conducted experiments on hybrid (carbon/kevlar) composites under pure com- 

pression. They observed that the effect of hybridization(glass/carbon) was to reduce 
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the compressive strength of the composite. However, in the case of carbon/kevlar hy- 

bridization, they observed an increase in strength with hybridization. In this chapter, 

results obtained from studying glass/carbon fiber hybrid polymer matrix composites 

under static and dynamic compressive loading are presented. For this purpose, an 

overall fiber volume fraction, Vf = 0.3 was chosen. The fiber content of individual 

constituents were varied from pure glass to pure carbon, while keeping the overall 

fiber volume fraction fixed at 0.3. Results presented in the previous chapters showed 

that the failure mode underwent a transition from pure splitting to splitting/kinking 

around Vf w 0.3. Thus, it was felt that an overall Vf = 0.3 was ideal for studying 

the influence of difierent constituents on the failue mechanisms. 

6.2    Experiments 

Pure compression tests were performed on cylindrical composite specimens. The 

specimen diameter was approximately B.Bmm and the gage length of the specimen 

was 12.7mm. Two back to back strain gages were attached to record the strain 

in the gage section and also to check the loading alignment. The specimens were 

manufactured with a range of hybrid ratios of glass/carbon. The specimens were 

compressed in a MTS hydraulically actuated machine for static loading and in a split 

Hopkinson pressure bar (SHPB) setup for dynamic loading. Details of the specimen 

manufacturing process and the SHPB setup are included in the appendix D. The 

total volume fraction of fibers, Vf was kept constant at 0.3. The ratio of gtes to 

carbon fibers was varied from the case of pure glass, Vgc-lto pure carbon, Fee = 1, 

with the following constraint; Vgc + Vcc = 1. The individual fiber volume fraction 

at any ratio is obtained by the following relations for glass, Vfg = rlg/r^ and for 

carbon, Vfc = r^Jr^.  In the experiments for both static and dynamic the values 
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of Vgc chosen were as follows, {1,0.9,0.7,0.5,0.3,0.1,0} and the value for Vcc can 

be obtained from the constraint relation. These new terms for the individual fiber 

volume fractions are defined below in terms of the fiber radius. 

Vg    = ^2 
' mg 
Ji 

Vc      = r2 
mc 

»,2 r 
V,c    -- 

mg 

2 r 
Vcc      = 

' mc (6.1) 

y^g   =   V,c^Vg 

Vfc   =   Vcc^Vc 

6.2.1    Static Compression 

The hybrid composites were tested to failure in a quasi-static manner. Typical 

stress vs strain responses obtained from the experiments during the testing of hybrid 

composites is plotted in figure 6.1. It can be observed that as the carbon fiber volume 

fraction, Vfc, increases the failure strain decreases. The minimum strain to failure 

does not correspond to that of pure carbon but to a hybrid ratio with a very low 

percentage of glass fibers. The static tests on hybrid composites show that the eff'ect 

of mixing carbon to glass fibers is to reduce the compressive strength as shown in 

figure 6.2. The failure mechanism changed from splitting in pure glass composites 

(Vg^ = 1) to kinking failure in carbon composites {Vcc — 1) as the percentage of 

carbon fibers increased in the hybrid composite. The change in the failure mechanism 

was found to occur around a hybrid ratio of 0.5. The measured elastic modulus of the 

hybrid composites was plotted as a function of the hybrid ratio and, analytically,the 

composite rule of mixtures was found to adequately approximate the experimental 
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data as can be seen in figure 6.3. Similarly, it was observed that as the percentage 

of carbon fibers increase in the composite, the strain to failure decreases decreases. 

Thus, the use of hybrid glass/carbon composites did not lead to an increase in static 

compressive strength. 

6.2.2    Dynamic Compression 

The hybrid composite specimens were also tested under high strain rate loading 

using a split Hopkinson pressure bar (SHPB) test setup. Details of the UM Aerospace 

department SHPB and the technique of establishing stress-strain data and strength 

data under dynamic loading are given in Appendix D. 

The SHPB setup consists of a impactor bar, incident bar and the transmission 

bar. Usually a fourth bar called the throw-off bar acts like a momentum trap. In the 

present SHPB setup the four bars were made of 440C case hardened stainless steel. 

The specimen is sandwiched between the incident bar and the transmission bar. The 

specimen/bar interfaces are greased so as to reduce friction. The specimen length 

and diameter are kept very small compared to the length of the SHPB bars. This 

ensures that the one dimensional wave propagation assumptions are met and also 

that the specimen attains a uniform state of strain in a short time as compared to the 

duration of the loading pulse. The SHPB setup was first used to test aluminum6060 

alloy specimens to validate the experimental setup and the computer programs that 

are subsequently used to extract the specimen stress and strain data from the strain 

gage signals. This particular alloy of aluminum is strain rate independent and can 

be useful in validating the SHPB test setup. As shown in figure 6.4 and figure 6.5 

the compressive stress response of both specimens under varying strain rates is ap- 

proximately same. Once the setup and the computer programs were validated, the 
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hybrid composite specimens were tested under high strain rate loading conditions. 

Figure 6.6 shows the variation of stress with strain rate. It can be seen that initially 

the strain rate is varying and only in a short period before failure that the strain rate 

achieves a nearly constant value. In case of high strain rate tests on hybrid compos- 

ites, the failure strength was observed to increase at each hybrid ratio (glass/carbon) 

as shown in figure 6.7. There is wide scatter in the data due to which definite conclu- 

sions on the dependancy of failure strength on strain rate cannot be drawn. However, 

in general it can be seen that the failure strength increases with increasing strain 

rate for all hybrid ratios. Typical stress response curves obtained for a composite 

with hybrid ratio of Vgc = 0.5 is shown in figure 6.8. A typical oscilloscope trace of 

the strain gage signals obtained from the strain gages on the incident bar and the 

transmission bar are shown in figure 6.9. The specimens used in the high strain rate 

tests were completely destroyed. The hybrid composites with greater percentage of 

glass fibers exhibited brooming type of failure surfaces. In case of hybrid composites 

with higher percentage of carbon fibers, the failure surfaces did not show brooming. 

For all hybrid ratios, glass fiber composites show characteristics of splitting failure 

like brooming and disintegration of matrix. The exact failure mechanism could not 

be established in these tests since the specimen undergoes repeated loading under 

a series of compressive stress pulses. This leads to complete disintegration of the 

specimens. 

6.3    Analysis 

For analysing the static compressive response of hybrid composites, a model sim- 

ilar in concept to the concentric cylinder model of chapter III is utilized. The hybrid 

composite is assumed to consist of an assemblage of space filling concentric cylinders 
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of carbon/matrix and glass/matrix distributed uniformly and mixed according to 

their respective constituent volume fractions and with an overall fiber volume frac- 

tion, Vf = 0.3, as shown in figure 6.7. Thus, for example, for a hybrid ratio of 0.3, 

ie. Vgc = 0.3, the glass cylinder radius will be r^j = (Vgc/Vfg) x rig and similarly, 

the carbon cylinder radius will be r„c = (Vcc/Vfc) x r^. In the experiments, a failure 

mode transition was observed as the percentage of glass fibers reduced from 100% 

to 0% by the replacement of glass fibers by carbon fibers. Hence, both kinking and 

splitting failure mechanisms are modeled at the individual concentric cylinder level 

and next assembled to obtain the composite behavior under suitable assumption. 

Splitting 

In case of spHtting analysis, all the expressions for stresses, strains and the ex- 

pression for compliance remain the same as those of the splitting model presented in 

chapter III. The only difference being that these expressions are now calculated for 

the individual components of the hybrid composites. Thus, in case of a glass/carbon 

hybrid composite, we will have the expressions for critical compressive stress (from 

chapter III, equation (3.5)) written as follows. 

r«P     — 

»p   — 

mV: f   1f0 

s roAm - m 
mif. f rfc 

(6.2) 

6.3) 
^roc(l/4-A) 

Similarly, for kinking, we can write the critical kinking stresses for both glass and 

carbon composite cylinder. From chapter IV equation (4.5), we obtain the expression 

for kinking stress as follows by substituting a = 0. 

:^/o"™'r(7)7'd7 
—K irma •rmg          

1 fjT 
/o^-'T(7)7^rf7 
$£.  -L.   T^^^c 
3   "•"     4 

(6.4) 

(6.5) 



194 

Here, the subscripts g and c stand for glass and carbon respectively and the super- 

scripts sp and k are for splitting and kinking failure mechanisms. We first adopt an 

iso-strain assumption to assemble the individual concentric cylinder level results and 

extract composite level properties. To ensure compatibility between glass concentric 

cylinder and the carbon concentric cylinder, we equate the axial strains in both com- 

posite cylinders. Prom, the 3D stress analysis results in chapter III, we can obtain 

the expressions for strains. 

,3D     _ 
^f9      - 

-     p3C 

2pSPg 2/3^Pc 

'^''Ig " ' oc 

(6.6) 

Using the expressions for fiber volume fractions given in equation (6.1), we can write 

equation (6.6) as 

P = p^t^lSl (6.7) 
' '13'^Vgc ^ ' 

Equation (6.7), gives a relation between the load carried by a carbon composite 

cylinder, Pc, in terms of the load carried by a glass composite cylinder, Pg, at a 

given hybrid ratio as determined by Vcc and Vgc- To obtain an expression for the 

total load carried by the complete composite, we need to rely on stress equilibrium 

along the axial direction to obtain a relation between the loads carried by individual 

constituents and the total load, Ptotai- Thus, 

Ptotal     =     Pc + Pff 

=     P,[l + (^Vr)(Kc/V,e)] (6.8) 

Equation (6.8), provides an expression to calculate the total load carried by the 

hybrid composite when a critical condition is reached for any of the individual con- 
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stituent composite cylinders (either splitting or kinking). Defining, {^^/P''){VcclVgc) = 

^, we can write 

The stress in a glass concentric cylinder can be obtained by referring to figure 6.10 and 

noting that r^g is the radius of the glass composite cylinder and using equations (6.9), 

we obtain 

^s 

but Tr|^ = Vgcirrl 

Ptotal 

(H-^)7rrfF,c 
O'totel 

Therefore, we can write the total stress expression as 

(6.11) 

o-totoi   =   ag{l + i})Vgc (6.12) 

Similarly, we can obtain the total stress, utotah in terms of the stress in carbon 

concentric cylinder, <jc, by following the above procedure. This results in, 

(Ptotal     =     <Te(H-l/^)Fcc (6.13) 

In equation (6.12) and equation (6.13), Ug and a^ are the values calculated by equa- 

tions (6.2-6.4). This completes the iso-strain failure model in the hybrid composite. 

Next, we adopt an iso-stress assumption to model failure in hybrid composites. 

Previous work on compressive failure by Yao and Chou (1989) and Martinez et al. 

(1981), showed that unidirectional hybrid composite displays a wide disparity in 
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strain between the glass and carbon fibers. That is, when a hybrid composite con- 

taining a mixture of a flexible fiber and relatively stiff fiber are loaded in compression, 

the stiffer fiber reaches a critical stress state earlier than the compliant fiber. Thus, 

a iso-strain assumption will lead to a prediction of increase in strength for the case 

of addition of stiffer fibers (carbon) to a less stiff fiber(glass) reinforced composite. 

However, in an iso-stress approach, it is assumed that the composite carries a stress, 

a which is transmitted to both glass concentric cylinder and a carbon concentric 

cylinder as schematically shown in figure 6.10. Thus, the critical composite stress is 

calculated when either of the constituent cylinders first reaches a critical stress state. 

For instance, if the glass concentric cylinder reaches the condition of splitting, then 

the critical failure stress is calculated in glass composite using equation (6.2). As 

the volume fraction of glass decreases the compressive strength will now decrease. 

Results as predicted by the iso-strain model and the iso-stress model are shown in 

figure 6.11, where, experimental results are also presented. It can be seen that, for 

small values of Vgc, the iso-strain kinking model captures the experimental data very 

well. Beyond Ygc — 0.15, the iso-strain kinking model underestimates the compressive 

strength. This is because, as Vgc increases, the expressions for kinking (equation (6.4) 

based on the assumptions of pure kinking ceases to be valid. In a hybrid composite, 

the surrounding glass fibers offer more constraint to kinking (confinement) and thus, 

the kinking expression of equation (6.4) will underestimate the compressive strength. 

On the other hand, in this region, 0.5 < Vgc < 1, the iso-stress model adequately 

capture the experimental data for compressive strength. Thus, when the compU- 

ant fiber dominates the hybrid composite, the iso-stress model predictions capture 

the experimental data, while for hybrid composites dominated by the stiffer fiber, 

the iso-strain model appears to capture the experimental strength data.   It is to 
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be noted that both models must be used with the appropriate failure mechanism 

as observed in the experiment. A mechanism based failure modeling approach as 

presented here appear to adequately explain the static compressive strength data for 

hybrid composites. 

6.4    Conclusions 

As the results from the hybrid test data indicate, mixing of glass and carbon fibers 

in a single composite actually leads to a deterioration in the measured strength of 

the composite. The splitting and kinking models for pure composites were modified 

to account for the presence of another type of fiber in the composite. Using equa- 

tion (6.12) and equation (6.13), we can obtain the total stress on the composite when 

either of the individual composite cylinder reaches the critical stress in splitting or 

kinking. The total stress values obtained by using glass and carbon composite cyhn- 

der stresses is plotted in figure 6.11. Here, the total stress predicted by the splitting 

of glass is consistently increasing with the addition of carbon fibers. This is due 

to the fact that the addition of carbon fibers increases the value of ip, which leads 

to a increase in the total stress, atotai from equation (6.12). Also, the total stress 

predicted by the splitting of carbon composite cylinders consistently decreases with 

increasing glass fiber volume fraction or decreasing carbon fiber volume fraction. The 

total stress predicted by carbon kinking stress for ^ = 3° is seen to match with the 

experimental data upto Vfg = 0.15. Beyond this glass volume fraction this prediction 

provides a lower bound for the predicted values. However, it should be noted that 

the failure mechanism was not pure kinking beyond glass volume fraction of 0.15. 

Thus, explaining the decrease in failure stress on the addition of carbon fibers to a 

glass composite is not possible based on the models where the strain in both carbon 
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and glass composite cylinders is assumed to be same. However, the decrease can be 

explained by using a iso-stress model as shown in figure 6.11. 

In case of high strain rate test data of the hybrid composites it can be seen that 

the failure strength does show a definite increase at each hybrid ratio but the scatter 

in data makes it difficult to find a specific relation between the strain rate and the 

strength. However, as can be seen from figure 6.12, the failure strength shows a 

increase across all hybrid ratios as compared to the static test data. 

Vi, Strength [MPa] Ave.Strength{MPa) 
0 425 - - 425 
3 320 250 340 303.3 
9 385 345 320 350 
15 300 265 235 296.7 
21 345 340 320 335 
27 430 405 385 406.7 
30 484 520 480 494.7 

Table 6.1: Compressive strength of hybrid composites 
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CHAPTER VII 

A NON-DIMENSIONAL NUMBER TO 
CLASSIFY 

COMPOSITE COMPRESSIVE FAILURE 

7.1    Introduction 

Mechanism based compressive failure strength prediction models presented in 

the previous chapters, provide a better understanding into the failure behavior of 

composites. However, these models require that we know before hand the failure 

mechanism of the composite under the given loading and constituent material prop- 

erties. Thus, a method to predict the failure mechanism is very useful not only from 

the view point of predicting the failure mechanism apriori but also in understanding 

the various factors eifecting the failure mechanism of composites under compression. 

Initial work into understanding compressive strength behavior of fiber reinforced 

polymer matrix composites(FRPC) was based on an elastic micro-buckling analysis 

by Rosen (1965). Later, Argon (1972), and Budiansky (1983), and Budiansky and 

Fleck (1993), realized that misaUgnments in fiber reinforcement cause the develop- 

ment of local shear stresses which coupled with matrix inelasticity lead to buckling 

of fibers locally. The failure mode resulting from this mechanism is called kinking. 

Compared to kinking failure, composites with brittle matrices or fibers of large di- 
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ameters tend to fail by fracture along the fiber matrix interface. This mechanism, 

which is governed by transverse stresses and the fiber-matrix interface fracture en- 

ergy is referred to as splitting. Lee (1998), and Lee and Waas (1999); Lee et al. 

(2000), developed splitting failure models for fiber reinforced polymer matrix com- 

posites under pure compression loading using the strain energy release rate concept. 

Independently, Oguni and Ravichandran (2000), obtained expressions for splitting 

compressive strength of fiber reinforced polymer matrix composites in the presence 

of lateral confining pressure. 

Details of the kink band failure mode under pure compression and combined 

compression and shear have been extensively studied by Kyriakides et al. (1995); 

Vogler and Kyriakides (1999) and Hsu et al. (1999), who have used the AS4/PEEK 

material system at a fixed volume fraction in their experiments. The effect of fiber 

mechanical properties and fiber volume fraction has been studied by YerramaUi and 

Waas (2002b). Other practical considerations of kinking, such as the effect of ad- 

jacent plies(Drapier et al. (1999)) and the effect of stress gradients (Jelf and Fleck 

(1994b); Berbinau et al. (1999); Khamseh and Waas (1992); Ahn and Waas (1999)), 

have also received attention. Compared to the focus on kinking failure, relatively 

little has been done in studying splitting failure. Experiments conducted by Piggott 

(1981); Piggott and Harris (1980), Lee and Waas (1999), and Oguni and Ravichan- 

dran (2000), on glass and carbon fiber reinforced polymer matrix composites under 

pure compression provided insight into parameters affecting the splitting compres- 

sive strength of polymer matrix composites. Recent work by YerramaUi and Waas 

(2002b), have highlighted the effect of combined loading on failure mechanisms while 

work by Oguni et al. (2000), showed the effect of multiaxial compression on failure 

mode transition in E-glass/vinylester composites. 
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The present chapter examines the previous experimental data on compressive 

failure reported in the literature, with a focus on understanding the effect of three 

different parameters viz. fiber geometry (ie. diameter), matrix elastic properties 

and type of loading (uniaxial or axial-shear loading) on compressive failure. These 

experimental data are then examined in the light of a new non-dimensional number 

that is used to classify the failure mechanism. The results from an experimental 

study that examined glass fiber/vinylester composites reinforced with different fiber 

diameters are also reported. These experiments were conducted to generate results 

that reinforced the conlusions reached in the chapter. 

7.2    Experimental Work 

Circular cylindrical specimens of 6.8 mm diameter and 12.5 mm gage length 

were used to study the behavior of glass and carbon unidirectional FRPC under 

pure compression and combined compression-torsion loading. For understanding 

the effect of fiber diameter, glass composites were manufactured using glass fibers 

of two different diameters (13.5^TO and 24/iTO). The material properties and the 

fiber volume fractions F/, examined are given in Table 7.1 and Table 7.2. The 

E-glass fibers were obtained from Vetrotex Certainteed and the carbon fibers from 

Hexcel corporation. Vinylester (Dow Derakane 411-C50) resin was used as the matrix 

material for both type of reinforcing fibers. For the pure compression tests, a special 

test fixture made of hardened steel with four guide rods and a thick base was used. 

The four guide rods and the thick base was needed to prevent any macroscopic 

buckling of the specimens. A schematic of the test fixture is shown in Figure 7.1. In 

the case of compression-torsion loading, collet grips were used since they can provide 

resistance to slipping of the specimen in torsion and also in compression loading. 
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Further details of this experimental setup and the experimental investigation are 

provided in Yerramalli and Waas (2001). 

  £;/(MPa) G/(MPa) ro(mm) 

Glass fiber            72000               29508              0.012 
 Vinylester 3585 1318  

Table 7.1: Properties of glass fiber and vinylester resin 

£;/(MPa) ro(mm) 

 carbon fiber 276000 0.0025 

Table 7.2: Properties of carbon fiber 

7.3    Failure Mechanisms 

Failure mechanisms that dominate the compressive behavior of polymer matrix 

composites are kinking and splitting. However, the forces triggering these failure 

mechanisms are entirely different. Kinking is a geometric instability induced failure 

mechanism whereas splitting is governed by the propensity to fracture, where crack 

growth is initiated from pre-existing flaws. Splitting in FRPC is dictated by the 

magnitude of the fiber/matrix interfacial fracture energy. Thus, a mechanism based 

approach to studying failure should ideally include the effect of each of the important 

parameters like fiber diameter, fiber misalignment, fiber and matrix properties and 

type of loading on the resulting analysis. The expression for splitting compressive 

stress as derived in Lee (1998), Lee and Waas (1999) and given in Yerramalli and 

Waas (2002b) is as follows 
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o. sp       SVhf 
(7.1) 

where 6 and 0 are constants dependent on the elastic properties of the matrix and 

the fiber. For a unidirectional composite with initial misalignment <f>, the kinking 

compressive stress as given by the Argon-Budianksy-Fleck prediction is 

(7.2) 

where TJ, is the composite shear yield strength and 7,^ is the corresponding shear 

strain. In the following sections, a discussion on the three important parameters 

affecting the compressive strength is presented. 

Effect of fiber diameter 

As can be seen from equation 7.1; the compressive sphtting stress is inversely 

proportional to radius of fiber and directly proportional to the fracture energy jf. 

Thus, one would expect that, if the fracture energy 7/, fiber volume fraction, Vf, 

and the etetic properties of fiber and matrix are kept the same, reducing the fiber 

diameter should result in an increase in compressive splitting strength. Based on 

the above model, it was decided to conduct pure compression tests on glass fiber 

composites reinforced with glass fibers of 13.5/iTO and 24^m diameter. For this pur- 

pose glass composite cylindrical rods having dimensions mentioned earlier, that have 

a range of fiber volume fractions (10 % -60 %) were manufactured. Under pure 

compression loading it was observed that instead of an increase in failure strength 

the failure mechanism was seen to change from splitting to kinking. Even at a low 

fiber volume fraction of 10%, where splitting was observed in case of glass composites 

reinforced with 24fj,m diameter specimens, the composite specimens reinforced with 
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fibers of 13.5^m diameter failed by kinking for all the fiber volume fractions tested. 

The various failure mechanims observed in glass composites of 24/^m and 13.5/im 

specimens are shown in Figure 7.2 through Figure 7.4. A plot of the failure com- 

pressive strength as a function of fiber volume fraction, V}, for both glass composites 

(reinforced with two different fiber diameters) is presented in Figure 7.5. 

Effect of fiber properties 

The eflTect of fiber properties was studied by changing the type of reinforcing fiber. 

With different types of fibers viz. glass and carbon it was found that the compressive 

stress as well as the failure mechanism changed. A comparison of the compressive 

failure stress as observed in the experiments by Lee and Waas (1999) for carbon and 

glass fiber reinforced composites is shown in Figure 7.6. The variation of compressive 

strength as a function of fiber volume fraction, V/, shows that both glass and carbon 

fiber reinforced composites have a similar trend. 

Effect of Loading 

Research into the compressive strength behavior of fiber reinforced composites 

has shown that fiber misalignments cause a reduction in failure stress of the com- 

posites under pure compressive loading. In case of multiaxial loading (compression- 

compression or compression-torsion) the compressive failure strength and the failure 

mechanism are both aflTected. Oguni et al. (2000) looked into the failure mode tran- 

sition due to confining pressure in E-glass/vinylester composites (with reinforcing 

fiber diameter of 24^m). In the present work multiaxial loading in the context of 

compression-torsion loading of cylindrical specimens of glass/vinylester composites 
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(fiber diameters of 24^m) will be presented. The failure mechanism observed in the 

glass composite specimens under compression-torsion loading is shown in Figures 7.4 

through Figure 7.7. It was observed that at high compression to low rotation load- 

ing ratios, the specimens were failing in a combined splitting-kinking failure mode. 

Whereas at high rotation loading the failure was dominated by matrix cracking and 

splitting. At intermediate loading ratios, kinking w^ observed to be the failure 

mechanism. In case of carbon/vinylester composites, the failure mechanism was ob- 

served to be kinking throughout the range of loading ratios tested. An interesting 

observation is that the same type of glass composite changes it's failure mode when 

tested under different loading ratios. This observation was also made by Piggott 

(1981) who found that the failure mode changed when the composites were tested 

under pure compression with partially cured matrix. The reason for the change in 

failure mechanism can be attributed to the magnitude of the shear modulus of the 

matrix and hence the composite. As evident from equation (7.2), the kinking stress 

is dependent on the shear properties of the composite. Hence, when the torsional 

load is sufficiently high, beyond the magnitude required to cause shear yielding of the 

composite and the matrix, glass composites tend to fail by kinking instead of split- 

ting. Similarly, when a resin is partially cured (as was the case with the experiments 

conducted by Piggott (1981)), it results in a matrix with a lower shear yield stress, 

inducing the glass fiber reinforced composites to fail by kinking instead of splitting, 

since, splitting would have required higher compressive stresses to cause failure. 

7.4    Dimensional Analysis 

The experimental and analytical work in understanding the compressive behav- 

ior of fiber reinforced composites, as outlined in the previous sections, have revealed 
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that the geometric (fiber diameter, Vf, misalignment angle, (/>) parameters and the 

fiber and matrix mechanical and fracture properties {Ef, Ejn, Gm and 7/) are some of 

the most important parameters controlling the failure mechanisms in fiber reinforced 

composites. Based on this observation, it was decided to derive a suitable dimen- 

sionless number which can be used to classify fiber reinforced composites based on 

their failure mechanism and is given below. 

The first step in determining the non-dimensional number is to write a general 

functional relationship including all the terms relevant to the physical phenonmenon, 

which in this case is the failure mechanism in the composite. 

f{jf,2ro,Gc) 

Here, we consider only the basic material and geometric parameters effecting the 

failure mechanism. Here, 7/ represents the fracture energy, Gc is the shear modulus 

of the composite which can be calculated from the matrix (Gm) and fiber {Gf) shear 

modulus values and the fiber volume fraction, Vf or determined experimentally. 2ro is 

the fiber diameter which represents the geometric parameter. These parameters are 

then written down in terms of their fundamental dimensions (M, L, T). The units of 

7/ are J/w?' which is M'^V^T"'^. Similarly, the variables TQ and Gc can be expressed 

as M^V-T^ and M^L'~^T''^ respectively. We can write the above dimensions and the 

variables in a dimensional matrix form (Table 7.3) as explained by Langhaar (1980). 

The total number of variables n is 3 and the total number of fundamental units, 

j = 3. Thus, applying Buckingham's-H theorem we get zero H terms. But, we 

observe that row-1 and row-3 are linearly dependent and thus only one of the rows 

needs to be considered. Similarly, using the concept of rank of the dimensional matrix 

instead of using the number of fundamental units {j = 3), we get j = 2. Thus, the 
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If Gc To 

M: 1 1 0 
L: 0 -1 1 
T: -2 -2 0 

Table 7.3: Dimensional matrix 

total number of 11 terms will be n - j = 1. We choose the variables G^ and TQ as the 

repeating variables and the variable 7/ as the non-recurring variable. The expression 

for Hi is written as 

ni=7/G«r| 

(7.3) 

By equating the exponents of like terms in equation (7.3) and considering only 

the first two equations as explained previously, we get 

l+a+0=0 

0-a+6=0 (7.4) 

From equation (7.4) we get o = -1 and 6 = -1. Thus, the functional relation 

can be written as 

Hi If 
GcTo 

(7.5) 

The right hand side of equation (7.5) represents a non-dimensional number which can 

be used to predict the failure mechanism in fiber composites and henceforth called 
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ric- This number can be looked upon as a ratio of surface modulus [jf/vo —^ units 

of N/m?) to composite shear modulus. It can be seen that this non-dimensional 

number incorporates V/ implicitly since the value of composite shear modulus Gc is 

dependent on the fiber volume fraction, Vj. 

A progressive reduction in ■qc indicates that the shear modulus is increasing rela- 

tive to the fracture energy, 7/. A higher shear modulus will make it less conducive to 

fail by kinking and causes the composite to split. Similarly, a larger T]^ implies that it 

is less Hkely for the composite to split and hence fail by kinking. Thus, using r]c, an 

apriori prediction of the failure mechanism can be made for a given fiber and matrix 

combination. Figure 7.8 shows the variation of log{\/r}^ against fiber volume frac- 

tion, V/, plotted for a glass/vinylester composite with TQ = 6.75^171 and ro = 12/im 

and 7/ = 0.1224K J/m^. Gc, the shear modulus of the composite depends on matrix 

properties and fiber volume fraction. This universal band splits the plot in figure 7.8 

into two regions. Points located in the shaded area correspond to composites that 

fail by splitting. Points located in the unshaded area correspond to kinking failure. 

Points located in the band correspond to transition between kinking and splitting. 

Thus, for any given composite, once rj is calculated, figure 7.8 can be used to a priori 

establish what compressive failure mechanism is operative and thus an appropriate 

mechanism based compressive strength model can be used to predict the compressive 

failure strength. Prom the experimental observations, it is known that composites re- 

inforced with glass fibers of 13.5iJ.m diameter failed by kinking throughout the range 

of Vf tested. In contrast, composites reinforced with gleiss fibers of 24/^m diameter 

failed by splitting at lower Vf and splitting/kinking at higher Vf. Thus, the curve 

for 13.5/um glass specimens can be used as a limiting curve for kinking and the curve 

for 24fxm glass composites can be used as a limiting curve for splitting. The zone in 
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between these two bounds is a transition zone. If for any material the value of rjc is 

lying between these two bounds, then based on the Vf value, the failure mechanism 

could be kinking, splitting or a combination of both. 

Calculating the value of % for carbon fiber composites, we see that the curve of 

log{l/ric) lies in the bottom half below the 13.5/im glass curve. This is the kinking 

region and is consistent with the experimental observation that carbon composites 

fail by kinking for all the fiber volume fractions tested. Further, for comparison, the 

value of Tjc has been calculated for a ceramic matrix composite and it is found that 

the curve of log{l/%) lies in the top part of the plot. This indicates that the ceramic 

matrix composite fails by splitting as observed in the experiments by Budiansky 

et al. (1986). 

7.5    Results and Discussion 

As seen in Figure 7.9, % has been calculated as a fonction of Vf. The values 

of 7/ chosen for glass fiber is 0.1224K J/m^ and for carbon fibers it was taken as 

OMKJ/m^. In case of SiHcon carbide fibers the value of 7/ = 0.022if J/TO^ was 

taken from the paper by Budiansky et al. (1986). Using these values, it has been 

shown in the previous section that the curves of carbon/vinylester and Sic/LiAlSi lie 

in two extreme corners of the plot, while, the curves for glass/vinylester composites lie 

in the center of the plot. It can therefore be inferred that the glass composites tested 

lie in a transition zone where the failure mechanism changes from kinking to splitting 

or vice-versa. This shows the importance of TJC. Based on the magnitude of %, a 

suitable fiber-matrix combination could be chosen so as to have a particular failure 

mechanism. Based on this number, one can explain the reason why a glass composite 

of smaller diameter fails by kinking while a glass composite reinforced with larger 
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diameter fibers {24nm) fails by splitting. With the reduction in the fiber diameter 

the value of surface modulus (7//2ro) increases for the same material system. This 

makes the splitting failure stress larger causing it to fail by kinking. Similarly, when 

the glass composites of 24//m diameter fibers are subjected to compression-torsion 

loading they tend to have a failure mode transition from splitting to kinking. This 

can be explained by looking at the value of T]C as a function of applied shear stress. 

Once the value of remotely applied shear stress exceeds the value of shear yield stress, 

Ty then the instantaneous shear modulus of the composite starts to reduce and leads 

to a higher value of r}c. A higher value of 7]c indicates that the shear modulus is very 

low which makes it easier for the composite to fail by local buckling of fibers leading 

to kinking. The value of rjc for experimental data obtained from Piggott (1981) and 

Yerramalli and Waas (2002b) are presented in Figure 7.10. The data obtained from 

Piggott (1981) was for a V/ = 30% glass composite with a partially cured matrix. 

The test data from Yerramalli and Waas (2002b) was obtained from testing glass 

composites (V/ = 50%) under combined compression-torsion loading. As can be 

seen, at a given fiber volume fraction, as the shear modulus decreased, log{l/r)c) 

decreases. Once this number approaches the threshold for kinking, which is defined 

by the curve corresponding to the 13.5^m glass fiber composites, the specimens start 

to fail by kinking. This corroborates with the experimental observations made by 

Piggott (1981) and Yerramalli and Waas (2002b). In figure 7.11, a band of values 

that account for parameter uncertainties is presented. A sensitivity analysis of T) is 

in order to explain, how the band of values were computed. Since, rj = Jf/Gcvl it 

follows that 

d^f      --yjdGc     -Jfdrp ,     , 
dr] = —^ —: ;^7—2- (7.6) 

Gc^o        G^ro GcT^ 
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Thus, for fixed Gc and ro, drj = d-jf/Gcro. Consequently, a 10% uncertainity in 

7/, translates to a 10% uncertainity in r]. Similarly, the uncertainities in Gc and TQ 

can be used to calculate the uncertainities in rj. Therefore, instead of providing a 

single line in the rj vs Vf space, we have shown a band of values that relate rj to Vf. 

The implications of rjc for the design of elevated compressive strength composites 

is also now evident. As shown through the experimental results, carbon composites 

failed by kinking throughout the Vf examined. Yet, as indicated by equation (7.1), 

the splitting compressive strength of carbon composites is several times larger than 

the kinking strength (equation (7.2)). Thus it is desirable to design carbon compos- 

ites such that they will fail by splitting. This implies a need to reduce % for carbon 

composites. A reduction is possible by either increasing the value of Gc or reducing 

the value of surface modulus jf/rQ. 

7.6    Conclusions 

A new non-dimensional number % has been derived to classify the compression 

failure mechanism of continuous fiber reinforced composites. This number was used 

to explain some of the causes behind the various failure mechanisms observed during 

the compression testing of polymer matrix composites. Results from an experimental 

program into studying the effect of fiber diameter, fiber properties and the type of 

loading were used to verify the prediction made by using %. It can be concluded 

from this study that the fiber diameter, the matrix (and hence the composite) shear 

response and the fiber-matrix interface fracture energy all play an important role in 

influencing the failure mechanism and hence the compressive strength. For the same 

material system (fiber-matrix) a change in failure mode can be obtained for example 

by changing the fiber diameter or the interface fracture energy. In a similar vein, the 
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matrix shear properties are also significant in controlling the failure mechanism. 
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Figure 7.1: A cross sectional view of pure compression grips 
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Figure 7.2: Kink band in glass composites of fiber diameter 13.5/im and Vf = 10% 

Figure 7.3: Kink bands in glass composites of fiber diameter IZ.bfxm and Vf = 60% 
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Figure 7.4: Combined splitting and kinking in glass composites of fiber diameter 
24//m and Vf - 50% 
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Figure 7.7: Kink band in glass composite reinforced with 24jum fiber diameter at 
i^/Rd = 0.52 
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Figure 7.9: Variation of the non-dimensional number with V^ 



232 

D) 
O 
_l 

0       0.1      0.2     0.3     0.4     0.5     0.6     0.7     0.8     0.9 

Fiber volume fraction, V, 

Figure 7.10: Variation of non-dimensional number for glass composites as a function 
of shear modulus at fixed Vf 



233 

, ^  a T| 

^  o- - dy, 
T- —•— dG^ 
o 7 ^ 

--- <      . 
s_r yy 
© " -^t/^ n -''^^ 
E -%^ za - ^.-^>o^ c 6 

.-*>-c' ~ .-^ ^^ ^ 
15 ^•c^^ 
o 

.^ 
-^^ 

'm ___, ♦^ .,^ 
^...a^ 
-^ 

.^ 
c - ^ .-S""'^ ,.-' 
© _^ .-^"^ -^ cr- 

E '^'^^ ^ "^ 
5 -^ ^-^ 

13 -" 
C - 
O z 

/. 
V 

^*l 

± J I L 
0.2 0.4 0.6 

Fiber volume fraction, V, 

J L J L 
0.8 

Figure 7.11: Variation of the non-dimensional number, ^ due to uncertainities (10%) 
associated with the values of 7/, Gc and TQ with Vf 



CHAPTER VIII 

CONCLUSIONS AND SUGGESTIONS 
FOR FUTURE WORK 

8.1    Conclusions 

This thesis was focussed on examining the failure behavior of unidirectional fiber 

reinforced composites under pure compression and combined compression/torsion 

loading. A combined experimental and analytical (both analysis and numerics) ap- 

proach was adopted in order to fill the lacunae in the existing knowledge base on 

composite compressive behavior. Two different systems of unidirectional FRPC were 

examined to obtain a clearer understanding and to develop ideas applicable over a 

broad range of parameters that influence compressive response, instead of being lim- 

ited to a particular set of material systems. 

The important conclusions that can be drawn from the current work are as fol- 

lows; composite compressive failure strength and failure mechanism are strongly 

influenced by the fiber/matrix system being used. As such, it is not possible to dis- 

cuss the compressive strength in isolation without recourse to the particular failure 

mechanism. This conclusion has been verified by the use of a non-dimensional num- 

ber that classifies the FRPC according to the failure mechanism prevalent in that 

particular fiber/matrix system. The role of various material and geometric param- 

234 
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eters influencing the composite splitting compressive strength has been highlighted 

by the development of a fracture mechanics b^ed failure strength model. The eifect 

of fiber radius on the predicted compressive strength has been studied experimen- 

tally and modeled numerically via the finite element method. It was observed that 

the reduction in fiber radius led to a change in failure mechanism without a sig- 

nificant increase in the observed compressive strength as mentioned in chapter VII. 

The analytical splitting model of Lee and Waas (1999), was extended to the case of 

non-steady crack propagation by using a modified shear lag theory. A closed form 

expression for compHance change as a function of crack length was obtained. The 

results obtained from this expression were compared to those obtained from finite 

element analysis from Lee and Waas (1999). 

The combined compression-torsion loading of glass fiber(dia=24^TO) composites 

mdicated that the failure envelope for these composites was difi'erent from that of 

carbon fiber composites. The glass composites tested showed an initial insensitivity 

to the applied remote torsional loading and only after the remotely apphed shear 

stresses exceeded a critical value did the compressive strength drop rapidly. The 

glass composites also exhibited a change in failure mechanism as the remotely appMed 

torque was increased in magnitude. This change in failure mechanism was captured 

through the non-dimensional number presented in chapter VII. 

In case of combined compression-torsion loading, the conventional Budiansky- 

Pleck expression for kinking stress was extended to the case of a solid cylindrical 

specimen. This expression, however, does not have a explicit dependance on geomet- 

ric parameters like fiber radius or Vf. Thus, to understand the role of fiber radius 

on the predicted kinking stress, a 3D FE analysis was conducted. The results from 

the FE analysis indicate that the fiber radius is invereely proportional to the kinking 
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compressive strength for a given fiber/matrix system. It was also observed from the 

FE analysis that for small fiber diameter composites the fiber strain could exceed the 

maximum fiber strain before the limit load due to the kinking instability is reached. 

This, indicates that the kinking process could initiate from a fiber break, as has been 

reported in the literature by other researchers. 

Hybrid composites were studied under both static and dynamic loading to under- 

stand the effect of fiber type on the composite compressive failure strength and failure 

mechanism. It was observed that the compressive strength has a non-monotonic re- 

lation with the hybrid ratio, with the strength first decreasing from either end (ie. 

pure glass or pure carbon) and then increasing. However, the elastic modulus was 

found to increase monotonically with hybrid ratio (as we start adding carbon fibers 

to pure glass). It was observed that the experimental results obtained from the glass 

dominated hybrid composites could be better explained by a iso-stress model, while 

the experimental results obtained from the carbon dominated composites was better 

explained by a iso-strain model. The high strain rate tests showed a definite increase 

in the compressive strength. However, a definite relation between the strength and 

strain rate could not be drawn at this stage due to the scatter in the data. 

8.2    Suggestions for Future Work 

Some of the work that can be done to extend the findings in this thesis on failure 

mechanics in fiber composites, not just for compressive failure but failure in general, 

are to study the role of the fiber diameter on failure mechanism. The effect of fiber 

diameter on compressive failure has been studied in this work, and preliminary work 

has been done to understand the role of fiber diameter on the shear response of 

composites (not presented in this thesis). However, a comprehensive study into the 
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role of fiber diameter on all the mechanical properties and throughout the entire 

loading range ie. linear and non-Hnear, should be undertaken. This would clearly 

indicate if a so-called size effect exists in fiber reinforced polymer matrix composites 

as has been indicated by researchers in metal-matrix composites (see Xue et al. 

(2002)). Also, thermal effects imparted on account of residual stresses can play 

an important role in the c^e of FRPC due to the large mismatch in the thermal 

coefficient. This is not the case in metal matrix composites. Another, important 

factor is the interphase, as has been pointed out in chapter II. The interphase could 

play a key role in the failure behavior of PEPC. Work has been done in each of these 

areas independently, however a comprehensive work covering all the above aspects 

with the intention of understanding the failure behavior of composites has not been 

done. 

The finite element modehng work in this thesis has shown the necessity to model 

the composite in 3D. However, the use of 3D elements to model an elastic fiber 

is computationally expensive. An approach to combine structural elements with 

etoticity elements could lead to a cost effective solution. Work into developing such 

elements, which could then be implemented in a commercial package like ABAQUS, 

would be useful for modeling intricate composite micro-structure. 

High strain rate behavior of fiber composites is another area in which there is 

very little data available. The pure compressive properties of gla^ and carbon uni- 

directional FRP are available and that of hybrid composites has been presented in 

this thesis. However, high strain rate properties under tensile and torsional loading 

are not available. Similarly, there is no experimental data on the high strain rate 

behavior of FRPC under combined compression-torsion loading. In fact, the use of 

SHPB under a combined compression-torsion loading is itself not well established. 
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Thus, high strain rate multi-axial behavior of FRPC could be a potentially inter- 

esting area to pursue. The increasing use of FRPC in military applications would 

increase the demand for such an investigation. 
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APPENDIX A 

Manufacturing of Composite Specimens for 
Compression Testing 

The method of preparation of unidirectional composites for compression testing is 

described below.The composite specimens are cylindrical in shape and are made of 

vinyl ester resin and E- glass or carbon fibers.The setup consists of a pressurizing unit 

and a reservoir of resin. The composite specimens are manufactured by pressurizing 

resin into glass tubes filled with fibers. Air pressure is used to force the resin in the 

reservoir into the glass tube. Air pressure is varied by a control unit which regulates 

the input air pressure. The resin is cylced through the glass tubes filled with fibers 

once or twice until the fibers are properly wetted. This is to avoid the possibility of 

formation of air bubbles in the specimen. Once the glass tubes are filled with resin 

they are placed in a oven and heated upto 80°C for two hours. Afterwards they are 

allowed to cool and then taken out. The specimens are cut into appropriate lengths 

and then subjected to compression testing. 

A.l      Materials and Chemicals 

1. Matrix - Vinly-ester resin ( Dow-Derakane 411- C50 ) 

2. Fibers - E-glass 24/zm dia.( Certainteed R099-625) 
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3. Fibers - Carbon 5/im dia.( Hercules IM 7-12K) 

4. Initiator - Benzoyl peroxide and cleaner - Acetone 

5. Glass tubes internal diameter - 6.8 mm and length of 300 mm. 

A. 2    Procedure 

A step-by-step description of the various steps to manufacture the specimens is 

given below. 

1. Matrix preparation; Take about SOO^TO of vinylester resin into a container. 

Add initiator to the extent of 1% by weight of the resin. Mix the resin and 

initiator till all the particles of the initiator are dissolved in the resin. Pour the 

resin into the reservoirs of the setup. 

2. Fiber preparation; Clean the glass tubes to be used for specimen making with 

high pressure air. Based upon the volume fiber fraction required count the 

number of fibers and pull them into the glass tube. 

3. Filling the glass tube with resin; Once the fibers are inserted into the glass 

tube attach them to the tubes connected to the resin reservoir by metal clips. 

Open the valves of the reservoir and then apply air pressure to force the resin 

into the tube. Recycle the resin through the glass tube once or twice and then 

close the valve of the reservoir to cut off the supply of resin and then seal 

the bottom end of the tube with a cork. When manufacturing composites of 

low volume fiber fraction make the resin flow from bottom to top so that air 

bubbles trapped inside can be more easily removed. 

4. Curing; Remove the glass tube from the setup Place the glass tube into the 
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oven and set the temperature of oven to 800 C. Allow the specimen to cure 

for two hours and then switch off the oven. Take the specimen out of the oven 

once it is cooled and then cut it to appropriate length for compression testing. 

Calculation of the number of fibers required for a given volume fiber fraction 

1. E-glass fibers 

• Fiber diameter = 24.1 fim = 0.024 mm 

• Radius r/ = 0.01205 mm 

• Area of fibers, Af = irr) = 0.00015625 TT mrri^ 

• One strand of fiber contains = 3580 fibers = 0.575 TT mirn^ 

• Inner dia. of glass tube  =  6.8 mm 

• Inner radiusrg =  3.175 mm 

• Area of glass tube, Ag = 10.080625 TT mrri 2 

If we take the glass fibers to be of the same length as that of the glass tube 

then 10% of fiber volume fraction = 0.1, Ag = 1.00806257r mn?\ number of strands 

= 1.0080625/0.575 

For Vf — 10% number of glass fiber strands required = 2 
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APPENDIX B 

Axial Compliance of a Misaligned Fiber 

Consider the response of an axially loaded misaligned fiber of uniform cross sectional 

area, Af, length 21 and elastic modulus Ef within the context of geometrically non- 

linear Euler-Bernoulii beam theory in the X-Z plane. Let a set of cartesian coordinate 

axes be chosen such that the X axis is pointing along the center line of the fiber and 

Z axis is pointing in a direction transverse to the X axis. Let the origin of the axes 

be such that :c = 0 is at the center and x = ±1 signify the abcissae of the crack tips. 

Let the initial misalignment, total deflection in the z-direction measured from the 

fiber centerline and the additional deflection be denoted by Wo(a;),w(a;) and Wi{x), 

respectively. Then, the deflection, w{x) = wo(a;) + Wi(a;), is governed by, 

where, A^ = ^-^. Assuming an initial misalignment distribution of WQ{X) = 

AQ{1+COS'^), solving the above equation for clamped boundary conditions BXX = ±1, 

and, adopting the definition of axial strain ^x^% + \i%f - \i^f^ in conjunction 

with the one dimensional stress-strain relation a^ = Efe^, we obtain the relation, 
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{EA)eff = 
EfA f^f 

1 + 21, 
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APPENDIX C 

Interaction between the Axial stress and Torsional 
stress 

In this section the effect of axial stress on the non-linear behavior of the matrix and 

composite under shear stress is studied. For this purpose we use a J2 deformation 

theory of plasticity to model the matrix and the composite material. The general 

method is described as follows. We first model the material as a non-linear material 

and use a Eamberg-Osgood fit of the form 7 = (T/G) + (r/A)" to describe the be- 

havior of the material in shear. Then using the definition of equivalent stress and 

equivalent strain, we can get the stress-strain curve of the material under uniaxial 

load. The uniaxial stress-strain relation is obtained in the form e = {a/e) + (a/B)" 

where B = A 3^1/2 -|- l/2n). Once the uniaxial stre®- strain curve is determined we 

can determine the plastic secant modulus, Sf and the poisson's ratio m follows 

Ei ^"^ 
B« -I- Ea^-^ 

^ = 11 gr(^-i/2) 
2 E 

Once the secant modulus and poisson's ratio are determined, then the corresponding 

shear stress and the shear strain can be determined. Figure C.l shows a comparison 
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between the failure envelope predicted by considering the material as a deformation 

theory of plasticity solid and the one obtained by not assuming it to be a deformation 

theory of plasticity solid. It can be seen that there is not much of a difference between 

the two curves except in the range where the compressive stress is low and shear stress 

is high. 

1000 

CO a. 

(D 

800 - 

600 

400 

200 

'Virr-:'^t:r, 

Deformation theory 
Excluding deformation theory! 

Y, = 0.1224 KJ/m' 

I I I I I I I I 1 I I I I I I I r    I    I    I    I    I    I    I 

10 20 30 40 

x(MPa) 

I I I I (1)1 jj 

<> II 

50 60 70 

Figured: Comparison of failure envelopes considering the composite as a defor- 
mation theory solid and as a nonlinear elastic solid 
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APPENDIX D 

Split Hopkinson Pressure Bar Setup (SHPB) 

At the beginning of the twentieth century, with the increasing use of these metals in 

structures exposed to shock and explosive loadings, high strain rate properties of com- 

monly used metals were increasingly becoming a necessity for the designer. English 

physicist, Hopkinson (1914), is credited with developing a experimental methodol- 

ogy to determine the high strain rate properties of metals.  However, the method 

was later modified and improved by Kolsky (1949, 1953). The current split Hopkin- 

son pressure bar setup which is widely used can be attributed to Kolsky and is also 

referred to as Kosky bar in the literature. Bancroft (1941), solved the Pocchammer- 

Love equation for the velocity of logitudinal waves in cylindrical bars.  His results 

led to a better understanding of the dispersion effects in cylindrical bars and also 

methods to correct the dispersion effects. Other important contributions that have 

enhanced the understanding of the split Hopkinson pressure bar test setup are given 

in Davies (1948), who presents a detailed discussion of the split Hopkinson pressure 

bar setup. It should be noted that the split Hopkinson pressure bar test apparatus is 

a "load cell". Just as the sensitivity of the load cell is determined by the dimensions 

of the load cell and the material used to construct the load cell, the SHPB setup 

can also be made more sensitive for the particular type of material being tested by 
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choosing the bars to be of appropriate length and diameter. In the following sec- 

tions, a description of the SHPB setup at the Aerospace engineering department is 

presented. 

D.l    Experimental Setup 

As can be seen in figure D.l, the SHPB setup consists of a gun (in this case 

a gas gun) to propel the impactor at the required velocity, a incident bar and a 

transmission bar. The specimen is sandwiched between the incident bar and the 

transmission bar as shown in figure D.l. The various dimensions and the material 

used for the SHPB setup are mentioned below. 

D.1.1    Material and Equipment 

The shafts were manufactured by Thomson Industries and are made of 440C 

Stainless steel. The lengths of the incident bar and the transmission bar were kept the 

same and are equal to 914.4mm. The diameter of the incident bar, the transmission 

bar and the striker is 12.7mm. The physical properties of these shafts are mentioned 

in Table D.l. The pressure tank is a DOT 3A 5000 class high pressure cylinder and 

is rated upto 4000 psi. The barrel of the gas gun was 0.61m long and has a wall 

thickness of 31.75mm. The tip of the barrel was machined with holes to relieve the 

gas pressure behind the projectile at exit. A solenoid valve is used to control the 

outflow of the gas from the reservoir. The solenoid valve is rated upto 4000 psi and 

is attached to a electrical trigger switch, which opens the valve instantaneously to 

release the gas into the barrel and thus propel the striker bar. 
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Sp.gravity 
Density- 
Mod, of Elasticity 
0.2%   <Jy 
Ult. tensile strength 
Brinell Hardness 

7.62 
7620 Kg/m^ 
220 GPa 
1896 MPa 
1965 MPa 
580 

Table D.l: Physical properties of the SHPB shafts 

D.1.2    Details of SHPB design 

The first step in deciding the dimensions for the various bars in the SHPB setup 

would be to determine the range of velocities at which the gas gun can be operated 

and the type of material to be tested. For determining the velocity of the projectile 

at a given gas pressure in the tank, some simplif3dng assumptions are made; It is 

assumed that the pressure acting on the face of the striker bar is uniform and constant 

throughout the length of the barrel and that friction between the bar surface and the 

inner surface of the barrel is negligible. Then, using Newton's law we can obtain a 

relation for the acceleration in the bar to be a = F/m, where a is the acceleration of 

the striker bar, F is the force acting on the end of the striker bar and m is the mass 

of the striker bar. Assuming the cross-sectional area of the striker bar to be A^t, 

length to be Lgt, density to be p^t, and pressure in the tank to be Pg, we can obtain 

the relation for acceleration of the striker bar to be a = Pg/L^tPsf Then, using the 

equations of motion for a rigid body initially at rest we get the velocity of the striker 

bar to be Vgt = ^2PgLi,/LgtPat- Thus, the striker velocity is inversely proportional 

to the length of the striker bar and directly proportional to the distance over which 

the pressure is acting ie. Lj the length of the barrel. Hence, for a given gas tank 

pressure with the barrel length and density fixed, we can only change the striker 
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bar length to obtain different exit velocities of the striker. In the current setup, the 

length of striker bar was kept constant and the pressure changed to obtain different 

velocities of impact since the striker bar length is directly responsible for the duration 

of the incident pulse as described in the following section. The striker bar velocity 

is obtained using two infrared photosensors, the output of which is connected to a 

high speed data acquisition system. The gun barrel is drilled with lateral holes at 

the end where the striker bar exits so as to make the pressure equal to atmosphere at 

the tip of the barrel. The predicted velocity from the equation above and the actual 

velocities obtained from the sensor are shown in figure D.2. It can be seen that 

there is a wide disparity between the measure velocities and the predicted velocities. 

Hence, the sensors were always placed to record the velocities during the impact and 

they also acted as a source of triggering for the high speed data acquisition system. 

In choosing the dimensions of the incident bar and the transmission bar the 

effects of wave dispersion and the material being tested should be taken into account. 

Dispersion in cylindrical bars is a result of the dependancy of the bar's phase velocity 

on frequency, which in effect distorts the wave shape as it travels along the length 

of the bar. The dispersive properties of the incident and transmission bar should be 

known to provide a correction to shape of the pulse. This is necessary because the 

shape of the pulse observed and recorded at the strain gage position will be different 

than the one at the specimen/bar interface and we are interested in the shape of the 

pulse at the specimen/bar interface. The dispersion correction can be found from the 

solutions presented by Bancroft (1941). For the present setup, the ratio of the wave 

length of the pulse. A, which is equal to twice the length of the striker bar, to the 

diameter of the bar, d is 0.02. It can be seen from the results presented by Bancroft 

(1941) and also in Meyers (1994) that the effects of dispersion are negligible for this 
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ratio of d/X and for the poisson's ratio of 0.25. Thus, the obtained wave form need 

not be corrected for dispersion effects. 

The duration of the incident pulse is determined by the length of the striker bar. 

It can be seen from figure D.3 that as the compressive wave referred to m "incident 

wave" starts to travel in the incident bar away from the striker bar/incident bar 

interface, another compressive wave referred to m "impactor wave" travels in the 

opposite direction in the striker bar. Once the impactor wave reaches the free end of 

the striker bar it reflects back and returns as a tensile wave. On reaching the striker 

bar/incident bar interface the tensile wave causes the separation of the striker bar 

from the incident bar.   For a striker bar of 304.8mm and made of 440C stainless 

steel with a longitudinal wave velocity of UWm/s the duration of the impact pulse 

comes to be 112/isec. The incident wave reaches the specimen/incident bar interface 

and gets partially reflected depending upon the impedance mismatch between the 

specimen and the incident bar. The higher the mismatch, the stronger is the reflected 

pulse and weaker is the transmission pulse. This has implications in the choice of 

materials being used for the incident and the transmission bar. Thus, for very soft 

specimens, a very stiif incident bar would mean a low amount of transmission of 

the stress pulse through the specimen into the transmission bar.  This would lead 

to difficulties in the measurement of strains in the transmission gage. This has led 

to the development of polymer b^ed SHPB setups for testing soft materials (Chen 

et al. (2002)). The reflected pulse which is tensile in nature reaches the interface of 

striker/incident bar. However, by keeping the striker bar to be sufficiently shorter 

than the incident bar {2L,t < Li,^) one can ensure the separation to happen when 

the tensile wave in the striker bar reaches the striker bar/incident bar interface. 

Once, the incident wave reaches the specimen/incident bar interface, some part of 
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it is reflected and a part of it is transmitted into the specimen. This transmitted wave 

reaches the other end of the specimen ie. specimen/transmission bar interface and 

again undergoes partial reflection and partial transmission. By keeping the specimen 

length to be very short and ensuring the duration of incident pulse to be sufficiently 

long, one can ensure that the specimen attains a uniform state of stress. For brittle 

materials, where the specimen might break even before a uniform state of stress is 

reached, pulse shapers are used. Pulse shapers are soft ductile materials like copper 

or brass which increase the rise time of the incident pulse and thus ensure that the 

specimen attains a stress equilibrium before the failure stress in the specimen is 

reached (Follansbee and Franz (1983); FVew et al. (2002)). In the present setup, a 

small piece of brass was used at the striker/incident bar interface to act as a pulse 

shaper while testing the composites.  The use of a pulse shaper results in a lower 

strain rate at a given velocity of impact since the duration of the impact pulse is 

increased and the shape of the pulse acquires a trapezoidal form. The pulse shaper 

also acts as a dispersion correction device since it increase the wave length of the 

incident pulse thus causing the ratio, d/A to decrease further. 

At the specimen/transmission bar interface, there is a partial transmission of the 

stress wave. This transmission wave propagates through the transmission bar and 

reaches the free end of the transmission bar and reflects back as a tensile wave. Once 

this wave reaches the specimen/transmission bar interface the contact between the 

specimen and the transmission bar is lost. Depending on the length of this bar, one 

can adjust the number of pulses that are transmitted through the specimen. In the 

current setup all the experiments were performed by keeping the transmission bar 

and the incident bar to be of equal length. A third bar known as a throw-off bar was 

added to the assembly. This bar is shorter in length as compared to a transmission 
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bar and acts as a momentum trap reducing the motion of the transmission and 

incident bars. 

In the experimental setup, strain gages are attached to the incident bar and 

transmission bar surfaces for recording the voltages. The strain gages are located 

such that they can record the complete compressive stress wave without the reflated 

tensile wave being superposed on the incident wave. Also, the strain gage is attached 

at a sufficient distance from the specimen/bar interfaces to avoid end effects. In the 

current setup, a full Wheatstone bridge circuit was used to measure the strains in 

both incident and the transmission bars. 3500 resistance strain gages of 1mm gage 

length were used to obtain the strain data. High resistance and the use of a full 

bridge makes it easier to record the voltages. The amplification was kept at 100 

and the input voltage to the bridge was lOF. In the following section, the analysis 

for obtaining the stress-strain curve from the information acquired from the incident 

and transmission bar strain gages is presented. 

D.2    Wave Analysis 

The analysis for SHPB setup is well established and is given in many sources but 

Graff (1975) and Meyers (1994) provide a detailed description of the wave analysis 

in solids. In the following paragraphs, a brief description of the steps required to 

obtain the stress-strain response of the specimen is presented. The three strains that 

are measured from the incident and the transmi^ion bar strain gages are referred to 

as the direct incident strain, Cj, the reflected strain, c^, and the transmitted strain, 

et. From these three strain recordings, one can obtain the complete stress-strain 

response of the specimen using the one dimensional wave theory. Following the 

terminology given in Meyers (1994), we first assume the impedance of the incident 
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and transmission bars to be same and given by the expression pAC^ where p is the 

density, A is cross-sectional area and C is the wave speed in the bars. Also, we 

assume that the specimen impedance is smaller than the incident and transmission 

bars and is given by pgAsCg. Let the interface velocity at the incident bar/specimen 

interface be Vi and that at the specimen/transmission bar interface be ¥2- If Z/ is the 

length of the specimen and since Vi{t) > V2{t), the length L decreasses with time 

and the specimen undergoes plastic deformation. The strain rate e can be calculated 

as 

L/ 

Now to express the velocities in terms of the strains, we make use of the relation 

between the stress in a bar and the interface velocity (obtained using impulse- 

momentum equations and one dimensional Hooke's law) and obtain Vi = C^ej {at t = 

0) and V2 = CjCf. Pd t > 0, Vi decreases because of the reflected wave. Thus, 

Vi = Cs{ei — €r). By substituting the above expressions for the velocities into 

equations (D.l) we obtain 

de^   _   Csjtj — Cr) — CsU ,_   , 

dt   " L ^   ' ' 

Prom equations (D.2), we can obtain the strain by integrating the strain rate from 0 

tot: 

e{t) = ^f^iei{t)-er{t)-et{t)) (D.3) 

In order to obtain the stress in the specimen, we assume equilibrium with Pi{t) being 

the force acting on interface-1 (incident/specimen) and P2{t) being the force acting 

on interface-2(specimen/transmission): 

Pl{t) + P2{t) 
"" 2^, 
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P2{t) 
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=   AE{<ei + €f) 

AEet 

AE 

1A, 
(ei(t) + e,(t) + e<(t)) (D.4) 

Where E is the elastic modulus of the bars and A is cross-sectional area of the bars. 

For equilibrium, Pi(t)  = P^if) and e^ + e^ = Ct: 

<^ = ^i;^*W 

2C7 /•«     , 
—— I  erdt 

L JQ 

(D.5) 

(D.6) 

Using equations (D.5-D.6) we can caculate the specimen stress-strain response from 

the strain gage data obtained from the strain gages attached to the incident and 

transmission bar surfaces. Results obtained from the testing of hybrid composites 

using the SHPB setup are presented in chapter VI. 
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