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Synopsis 

This project falls within the realm of the USAF mission of developing air defense systems, 

a component of which is the ongoing Airborne Laser (ABL) Program. The recent congres- 

sional mandate to develop an airborne missile defense system for the US will bolster the ABL 

program, since laser technology is a viable tool for such an effort. One of the major challenges 

of the ABL program is the development of laser-beam propagation codes. Such codes must 

account for the beam propagation through an extended turbulent medium of the bulk of 

the troposphere and stratosphere. From the operational perspective (Tactical Decision Aid 
Support), rigorous modeling of the refractive index structure function for long horizontal or 

nearly horizontal path under high scintillation conditions characteristic of the atmosphere 

is imperative. In spite of demonstrated importance of stratification on atmospheric optical 

turbulence, currently available ABL phase screen theories hinge upon isotropic Kolmogorov 

spectrum (Rytov's theory), and hence cannot represent large amplitude fluctuations of at- 
mosphric stratified turbulence. In the context of such turbulence the collusion between the 

stratification and shear leads to many intriguing phenomena such as the fiormation of thin, 

elongated turbulent layers (pancakes) and instabilities (such as Kelvin-Helmholtz (K-H) bil- 

lowing) that ultimately break down into turbulence. The turbulence so generated is often 

patchy and temporally intermittent, characterized by strong anisotropy. It produces strong 

optical scintillation due to refractive index fluctuations, which needs to to be quantified 

accurately in developing beam control concepts for atmospheric laser-beam propagation. 

In this project, direct numerical simulations have been performed to study the dynamics 
of an inhomogeneous stratified shear flow that models an atmospheric jet in the tropopause 

in the ABL context. The basic state is characterized by a jet centered at the tropopause 
in which the density stratification is vertically non-uniform. Small to moderate background 

stratifications are selected, and simulations are conducted for a range of Reynolds and Froude 

numbers. A spectral domain decomposition method that is particularly suitable for simu- 

lations of nonuniformly stratified stratified shear flows is developed to generate the desired 

turbulent jet, and quasi-equilibrium flow-flelds are obtained by long-time integration of gov- 

erning equations. The structure of the mean flow and turbulence fields are calculated, which 
are interpreted using relevant length scales (Ozmidov, buoyancy, shear, Ellison) and Richard- 

son number profiles. The ratios of the Ellison to buoyancy scales are much smaller than unity 

at the jet core and approach unity at the edges, confirming that mechanical turbulence pre- 

vails in the jet core, whereas nonlinear waves and stratification effects are significant at the 

edges. The jet core is found to support sustained mechanical (active) turbulence, outside of 

which lay a region of patchy turbulence and non-linear gravity wave activity characterized 

by spatially decaying velocity fluctuations and strong temperature fluctuations. Detailed 

energy budgets show how energy is partitioned within the flow, including the transport of 
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energy from the jet to its immediate vicinity by non-linear gravity waves. Applications in- 

clude studies of the vertical variability of the optical refractive index function C7|, which is 
of primary relevance to ABL propagation codes. 
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Detailed Technical Report 

1    Introduction 

Some of the challenges in Air Borne Laser (ABL) performance predictions are tied to the ef- 

fectiveness of propagation codes. The latter typically use discrete grids called phase screens 

to atmospherically induce phases to be simulated. Key questions in this process concern 

the number and size of screens, the grid spacing and the details of using atmospheric data 

and/or models to generate the field strengths at the grid points. Atmospheric variability gen- 

erates spatial intermittency, non-stationarity in turbulence, which impacts on the variability 

of statistical characteristics of C|, the refractive index structure function. A fundamental 

characteristic of the middle atmosphere (tropopause and stratosphere) is stratification and 

layering: optical turbulence occurs in thin layers (pancakes or "blini"). The tropopause, 

by definition, is a region of sharp vertical temperature gradients at and above which strat- 

ification and layering are important; its altitudes vary from around 12 km at midlatitudes 

to 8 km in polar areas. The vertical extent of pancakes varies from 100-150 m to 30 m 

higher in the stratosphere. Balloon data show persistent, near constant altitude, layers of 

nearly 100 km horizontal extent. The extensive variability of the structure of the tropopause 



considerably impacts on the structure of turbulence. There is a demonsrated need to better 
model atmospheric turbulence along long quasi-horizontal paths. 

In the atmosphere, turbulence is generated by either convective or shear instabilities. In 

the middle atmosphere which is characterized by stable background stratification and shear, 
these instabilities and turbulence arise primarily from two sources: 

• direct instabilities (such as shear at jet streams, convective plumes); 
• gravity waves induced instabilities. 

In the middle atmosphere stable background stratification and shear tend to influence 

motion scales that are larger than certain 'outer' scales (e.g. Ozmidov, buoyancy, EUison), 

The scales of active Kolmogorov turbulence are those scales which are greater than the Kol- 

mogorov scale but smaller than any outer scale. The Ozmidov scale is regarded as the outer 

scale above which the fluid turbulence is significantly affected by buoyancy. Also, the dy- 

namics of a stably stratified turbulent flow depend on the rate at which fluid elements mix 

each other and change their density in the interior of the flow. The vertical displacements of 

the fluid elements are constrained by the amount of energy in the turbulence to lie within a 

buoyancy scale distance of the order of the buoyancy scale L,,. If the vertical velocity fluc- 

tuations due to internal waves are large compared to those due to turbulence, the buoyancy 

scale Lb is larger than Lo and vice versa. The scale L^ known as the overturning or Ellison 

scale uses the density fluctuations as an indicator of turbulent motions. The shear length 

scale Ls represents the lower bound of eddy sizes that are deformed by background shear, L^ 

is the buoyancy scale defined above and the scale La can be interpreted as the integral scale 

of embedded turbulence. When L^ > Ls turbulence interacts with and extracts energy from 

the background shear, thus allowing the turbulent intensity to grow. The stratification can 

also interact with turbulence and shear, depending on the relative magnitudes of the scales 

Ls, Lb and L^. For example, when La < L^ < Lt the shear is expected to interact with 

stratification, thus producing instabilities (K-H billowing), gravity waves and intermittent 

(patchy) turbulence. When Li, < L^ < L^ neither the instabilities nor shear-turbulence 
interactions may produce turbulence, and the existing turbulence in the flow is expected to 
decay. 

Atmospheric variability generates spatial intermittency, non-stationarity in turbulence, 

which impacts on the variability of statistical characteristics of C|, the refractive index 

structure function. For classical homogeneous isotropic Kolmogorov turbulence, it is defined 

by D„(r) = C^r^/^, where Dn{r) is the refractive index structure function in the inertial 
convective range: 

Dn{r) =< (n(x) - Ti(x + r))^ >, 

where the bracket <, > denotes ensemble averaging. The three-dimensional, nonstationary, 

intermittent, anisotropic structure of turbulence in the atmospheric field is coupled with 



optical turbulence in thin layers (pancakes). Balloon measurements have been used to probe 

into the vertical structures of the atmosphere. Observations so obtained demonstrate the 

considerable impact of sharp vertical temperature gradients in the tropopause and the lower 

stratosphere and the extensive variability of the structure of the tropopause. 

The following are some major issues regarding atmospheric turbulence impacting on ABL: 

• Horizontal pancake turbulence has a very important impact on (7|; very little is exper- 

imentally known about the horizontal structure of turbulence and (7|; 

• Very simple models such as CLEAR-! and "onion skin" perform better than Rytov's 

theory models but are still not adequate for turbulence realizations on phase screens in 
propagation codes; 

• One needs 3D slew model that includes variability due to intermittency, nonstationarity 
and stratification (vary C| appropriately); 

• Modeling anisotropic C| along paths spanning whole pancakes as well as the strong 

shearing domains between pancakes is an intricate issue that need to be investigated by 
probing into the structure of pancakes; 

• Weather front dynamics also impact via intense velocity shearing on strong variability 

In this project we have focused on investigating turbulence in a non-homogeneous strat- 

ified shear flow where the velocity profile takes the form of a jet (cf. figure 1). In the upper 

troposphere and stratosphere localized regions of three-dimensional turbulence arise through 

shear instability or through breaking of inertia-gravity waves. Upper-level atmospheric jet 
regions are also strongly influenced by stable background stratification (cf. figure 2). The 

flow belongs to the class of nonuniformly stratified (with a doubling of buoyancy frequency 

across the jet) shear fiows, whose turbulence characteristics are not well-understood. We set 

up our model based on jet streams encountered in the Earth atmosphere at the tropopause. 

This region corresponds to the transition between the tropopause and the stratosphere which 

one observes at an altitude about 10 to 15 km depending on the latitude. We consider a 

nonuniformly stratified jet centered at the vertical coordinate z = 0. The fiow consists of a 

Jet core surrounded by two shear layers; the layer above has a negative shear and a stronger 

temperature gradient, while the layer below has a positive shear and presents a weaker tem- 

perature gradient, with the buoyancy (Brunt-Vaisala) frequency being reduced by a factor 

of two. This latter configuration is typical of the jet streams in the tropopause (cf. figures 
1 and 2). 

The gradient Richardson number, which quantifies stratification and shear effects, is low 

within the jet core (except at the very center) and velocity fiuctuations are maximal there, 

thus providing sustained turbulence (cf. figures 3a and 3b). It increases towards the jet edges 



where the effect of stratification tends to reduce turbulence with the shear length scale ex- 

ceeding the buoyancy outer scale. Tropopausal turbulence, driven by shear instabilities on ei- 

ther side of the jet axis, results in mean stratification with a notch in Brunt-Vaisala frequency 

profile, a configuration favoring gravity wave emission. The flow in the vicinity of the edges 

of the jet is locally out of equilibrium and, in particular, produces nonlinear gravity waves 

which travel further away and break ([Sutherland & Peltier (1995)]). Regions far from the jet 

edges have weaker velocity fluctuations than in the core, and hence meager turbulent mixing, 

although potential energy and temperature fluctuations remain appreciable. The above sce- 

narios are in agreement with aircraft observations of [Bedard, Canavero & Einaudi (1986)]. 

Critical levels where waves extract energy from the mean flow correspond to those regions of 

enhanced turbulence, where the Richardson number is below 0.25, hence generating Kelvin- 
Helmholtz instabilities ([Kaltenbach, Gerz k Schumann (1994)]). 

Our focus is on the dynamics and vertical variability of scales that are poorly resolved in 

mesoscale meteorological codes such as MM5 and WRF ([Grell, Dudhia & Stauffer (1995)]). 

Such knowledge is important not only for parameterization and modeling of tropopausal tur- 

bulence and associated mixing in mesoscale models under stably stratified conditions (above 

the atmospheric boundary layer), but also for determining refractive index structure func- 

tions pertinent to electromagnetic wave propagation across the tropopause ([Beland (1993)]; 
[Eaton & Nastrom (1998)]; [N^trom, Gage & Ecklund (1986)]; 

[Dalaudier, Sidi, Crochet k Vernin (1994)]). Vertical scales controlling the size of'sheets' in 

the atmospheric temperature field have been directly evidenced by the analysis of field mea- 

surements; the main dynamical properties of such layers, whether strongly mixed or 'calm', 

can be characterized not only by the gradient Richardson number but also by various outer 

scales of turbulence ([Alisse k Sidi (2000)]). We investigate how the dynamics and dominant 

physical processes in the stratified jet are reflected in various length scales. In particular, we 

study vertical variability of outer scales and their dependence on the background synoptic 

scale jet stream and the background Brunt-Vaisala profile across the tropopause. Beyond 

a sufiicient threshold of resolution (especially in the vertical direction) our DNS simula- 

tions demonstrate saturation with increased numerical resolution of the vertical variability 

curves for ratios of various outer scales; cf. figure 3b for Rig = L^Ll a.nd figure 23b for 

the temperature fiuctuation parameter Le/Lt, where L, is the shear scale, Lt is the buoy- 

ancy scale and Le is the Ellison scale. These resolution independent ratios are an efiective 

gauge of the variability of inhomogeneous mixing in a nonuniformly stratified tropopause jet. 

Only a very few studies have been reported with regard to three-dimensional, high- 

resolution numerical simulations that employ realistic models of the nonuniformly stratified 



tropopause jet. [Sutherland & Peltier (1995)] and [Smyth & Mourn (2002)] implemented a 

jet-like velocity profile as the initial condition; the Brunt-Vaisala profiles used in their model 

was also doubled from the lower to the upper domains. However, their simulations are only 

two dimensional and the jet profiles tend to be smeared as there is no sustained momen- 

tum source in their model, which caused the shear to steadily decrease. In the atmosphere, 

on the other hand, the jet is maintained quasi-steady by the synoptic scale forcing, which 

needs to be considered in modeling. It should be noted that there are many numerical 

studies of stratified turbulent shear flows, which impose a constant mean shear and stratifi- 

cation in the vertical direction. The horizontal directions are then regarded as periodic and 

the vertical direction shear periodic. The work by [Gerz, Schumann k Elghobashi (1989)]; 

[Holt, KoseflF & Ferziger (1992)]; [Kaltenbach, Gerz & Schumann (1994)], 

[Carnevale, Briscoline k Orlandi (2001)] and [Jacobitz, Sarkar k Van Atta (1997)] belong to 

this category. Turbulent flows with mean shear and stratification are typically temporally 

evolving and hence do not reach stationary states, except at a certain 'stationary' Richard- 

son number for which the production is balanced by the dissipation. Asymptotic stationary 

states can be attained, however, where normalized variables (e.g. ratios of individual compo- 

nents of energy to total energy) reach constant values after several turnover periods. Another 

approach in the study of shear-stratified turbulence uses decaying simulations. An example 

is the DNS studies of [Galmiche, Thual k Bonneton (2002)] dealing with non-uniform ver- 

tical mean shear and non-uniform stratification, where mean velocity and density profiles 

are allowed to evolve with time. In such simulations, however, the flow does not reach equi- 

librium and it remains unclear whether the results are sensitive to the generally transient 
nature of the flow. 

While previous numerical studies have made important contribution to the study of shear- 

stratified turbulence, they do not reproduce exact middle atmospheric situation: wherein the 

turbulence can reach some quasi-equilibrium state and where the turbulent kinetic energy 

(TKE) budgets are nearly balanced. Furthermore, if homogeneous boundary conditions are 

used in the vertical direction, there is no net heat and momentum transfer out of the box. As 

we demonstrate in Section 3, the fluxes play an important role in redistributing energy in the 

vertical direction. Without such a mechanism, the variability of the atmospheric turbulence 

around the jet cannot be reproduced. It has been shown in [Sutherland & Peltier (1995)] 

that the momentum flux created from the jet produces internal (i.e. non-topographical) 

gravity waves which in turn produce a drag on the mean velocity. These phenomena can- 

not be reproduced by conventional shear periodic numerical experiments, the application of 

which to atmospheric tropopause simulations in the presence of a jet stream is thus limited. 
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Our model of the atmospheric tropopause is characterized by a stratified thin layer across 

which the buoyancy frequency jumps approximately by a factor of two (figure 2). In our 

three-dimensional direct numerical simulations (DNS), the streamwise velocity profile that 

characterizes the basic state of the model jet was set to a gaussian profile, thus produc- 

ng shear at different vertical levels characteristic of a jet stream. The governing equations 

are solved for the above flow configuration using DNS based on a spectral domain technique 

developed specifically for flows characterized by non-uniform background shear and stratifica- 

tion ([Tse, Mahalov, Nicolaenko & Fernando (2001)]), Due to inhomogeneity in the vertical 

direction, periodic boundary conditions are not used therein; previous numerical studies have 

assumed such periodicity. In our simulations, non-Unear shear and stratification profiles ad- 

just to roughly stationary values, around which the potential and kinetic energies fluctuate. 

Quasi-equilibrium solutions are obtained following long-time integration of governing equa- 

tions. The robustness of our results has been verified by DNS at doubled resolution (1024 

vertical levels). Thus, physical results reported here and, in particular, those involving ra- 

tios of outer scales are resolution independent. We investigate the effects of inhomogeneity 

of shear and stratification, especially those properties that are distinct from homogeneous 
stratified shear flows. 

The next section describes the computational framework for non-homogeneous stratified 

shear flows. Section 3 presents the results of numerical simulations and discussions of various 
mean quantities and variances at quasi-equilibrium. Vertical variability of natural length 

scales (Ozmidov, buoyancy, shear and Ellison) and Richardson number profiles are analyzed 

in Section 4. Turbulent budget equations are investigated in Section 5. Conclusions and 
issues for future work are discussed in Section 6. 

2    Computational framework for non-homogeneous strat- 

ified shear flows 

2A    Description of numerical experiments 

The governing equations are the three-dimensional incompressible Navier-Stokes equations 
for the velocity U and temperature 6 under the Boussinesq approximation: 

dU    ,,  „,, dP 
_+U.VC/   =   -_ + „V^C/H.n„, (2.1) 

dV dP 
—-HU-W   =   -'^ + PV^V, (2.2) 
at ay ^    ' 

dW dP 
—- + U-VW   =   -— + uV^W + g^{Q-eR), (2.3) 
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-^ + V-Ve   =   /cV^e + Ee, (2.4) 

V-U   =   0, (2.5) 

where U = {U, V, W) are the three components of the velocity in the streamwise, spanwise 

and vertical directions (denoted as x,y,z) respectively, BR is the constant reference temper- 

ature; P is the pressure; p, K, 0 and g are the molecular viscosity, molecular diffusivity, 

thermal expansion coefficient and gravitational acceleration, respectively. The horizontally 

homogeneous terms Jlu and He are the vertically dependent momentum and thermal sources. 

The two source terms enable to obtain a basic (unstable) jet stream profile and a desired 

vertically variable Brunt-Vaisala frequency profile. They represent large scale momentum 
and thermal forcing responsible for maintaining the jet. 

From now on, the total instantaneous variables are represented by upper case letters 

{U, F, W, 6). They are decomposed into two parts : basic state and perturbations. The 

variables in the basic state are represented by upper case letters with subscripts (C/j and 

&R + ©ft), and perturbations by lower case letters («, v, w, 9). The perturbation is further 

decomposed into two components: a mean (horizontally averaged) part denoted by {•) and a 

fluctuating component denoted by primes. Thus, the variables U, V, W, & are decomposed 
as : 

U = Ub{z) + u{x,y,z,t) = Ubiz) + {u){z,t) + u'{x,y,z,t), (2.6) 

V = v{x,y,z,t) = (v}{z,t)+v'ix,y,z,t), (2.7) 

W = w{x,y,z,t) = w'{x,y,z,t), (2.8) 

e = eR + @biz)+0ix,y,z,t) = eR + etiz) + {d)iz,t) + 0'{x,y,z,t). (2.9) 

We have {u')={v')={w') = 0. The mean (horizontally averaged) values of U and 6 contain 

a part from the basic state and a part from the perturbation (e.g. U = Ub + (u)), while the 

mean of V satisfies (F = {v}). The pressure can also be decomposed as : 

P = Pbiz) +p{x,y,z,t) = Pbiz) + {p)(2,t) +p'{x,y,z,t). (2.10) 

For the basic state, where the perturbations u, v, w and 9 are zero and the fields depend 
only on z, the governing equations are reduced to : ; 

n^ + ^^ = o, (2.11) 

^ = gm. ne = -«||t. (2.12) 

Here Uu is obtained by assigning to C4 the following gaussian form: 

Ub{z) = C/5(0)e-(«i^)'e-(rf^)'e-(itfe)'e2, (3.13) 
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where ai is the stiffness parameter and L^ is the half depth of the computational box. The 

velocity profile Ui{z) is equal to t4(0) at the center. The momentum source Uy and the 

thermal source lie are obtained firom eq. (2.11) and from eq. (2.12), respectively. The mo- 

mentum source te intended to maintain a sustained synoptic/planetary jet stream in the 

model (figure 1). The thermal source maintains the mesoscale doubling of the buoyancy 

frequency across the tropopause. Thus, we are resolving a microscale box centered on a 

synoptic-scale jet stream at the tropopause, for times much shorter than time scales of jet 

dynamics. The jet profile for Ui, is shown in figure lb, with a = ai = 16. This profile models 

the measured wind profile of an atmospheric Jet shown in figure la. 

In eq. (2.12), the buoyancy force due to background temperature gradient is balanced by 

the basic state pressure, the thermal source is balanced by the diffusion of the background 

temperature. Substituting eq. (2.9), (2.10) and (2,12) into eq, (2.3) - (2,4), the equations 
for vertical velocity and temperature can then be expressed as : 

—-HU-VW   =   -±^gp0 + jjS7''W, (2,14) 

^ + U.W   =   -W^^KVH, (2,15) 
ot az ^      ' 

where ^ is the thermal expansion coefficient. Next, let N^K^{z) = gpdQi{z)/dz and 

1? = gp6/N where iV is a constant (JV"^ has the unit of time) and K{z) is a verti- 

cal profile factor, we obtain the rescaled vertical velocity and temperature equations (e.g. 
[Herring & Metais (1989)]): 

dW dv 
-^-+V-VW   =   -Ji + m + uV^w, (2.16) 
ot dz ^      ^ 

_ + U-W   =   -WNK^ + KV^d. (2.17) 

The variable i? has the unit of length/time (not to be confused with 9 which has the unit 

of temperature). In the above equation N and K{z) are related to the usual Brunt-Vaisala 
frequency profile M^{z) = e^ as: 

N^K%z) = #^ = ^QM^iz). (2,18) 

In our simulations, the non-dimensional K{z) profile has the following form: 

^W = 1 + ^=^Tl ■ (2.19) 

The profile K{z) corresponds to a temperature profile which increases monotonically from 

the bottom to the tropopause level, experiences a stiff transition at the tropopause which 
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depends on the stiffness parameter aa, then further increases reaching at the top twice the 

value at the bottom. This dimensionless profile models the doubling of Brunt-Vaisala fre- 

quency at the tropopause, as observed in balloon field measurement by [Belaud (1993)], 

figure 2 (doubling roughly from O-Ols"^ to OMs'^). Equations (2.13) and (2.19) introduce 

two parameters Oi and 0^2, which specify the inverse of the external length scales of the sys- 

tem. The first number ai controls the amount of shear along the jet edges while the second 

parameter aa controls the stiflfness in Brunt-Vaisala profile. In our simulations, the same 

values are used for ai and 02 (a = oj = ©2 = 16). The edges of the jet are then located in 
the vicinity of the normalized vertical levels zaf^±l. 

The variables can be non-dimensionalized by choosing a suitable velocity scale Ua = C4(0) 

and length scale L^. We define L^ = l/a &ndz = az = z/L^. Hence, in terms of the rescaled 

z and with a = 16, the computational box corresponds to -5.0 x 16 <z< 5.0 x 16. Similarly, 

we rescale x = ax, y = ay, with 0 < f, f < STT. The nondimensionalized equations then 
become : 

^ + U.W    =    _|£+     1   V2j;^jj ^2.20) 
at dx     Reo ^      ' 
dV      ~       ~ dP       1   ~   ~ 

+ U-W   =   -^ + _Lv2y^ (2.21) 
at dy     Reo ^      ^ 

dw    ~      ~ ap     1  ~  ~     1 
+ V-VW   =   -^ + ^v'w + ^d, (2.22) 

ot dz     Reo Fr ^      ^ 

^-^U-W   =   -±WK^ + -^V^, (2.23) 
ot Fr RcoPr ^       ^ 

leaving only three dimensionless parameter groups in the equations: the Froude number 

Fr = Ua/NLa, initial Reynolds number RBQ = UaLa/i^ B.nd Prandtl number Pr = v/n. 
Similarly, the source now has the form : 

Ht; = -—-—::--, 2.24) 
itco oz^ ^       ' 

where 

Ubiz) =e ^ e^h^a-z) e^i-.a+i) e^. (2.25) 

The governing equations (2.1), (2.2), (2.16) and (2.17) are solved using numerical meth- 

ods described in Section 2.2. The parameters for this problem are K, 1/, C4(0), iV, and a; 

their values used in our simulations are listed in table 1. Case 1 is regarded as the reference 

case. The viscous and thermal diffusivities are set to 1 x 10~* and 1.4 x 10""*, respectively, 

for cases 1-5 and 6 x 10"^ and 8.6 x 10~^ for case 6, resulting in a Prandtl number U/K of 

0.7 in all cases as for air. Case 2 has higher and case 3 has lower stratification compare to 
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Table 1: Physical parameters used in simulations with i/ = 1 x 10""^, K = 1AX 10~* (cases 

1-5) and i^ = 6 X 10-^ K = 8.6 x IQ-^ (case 6). Pr = 0.7 in all cases. 

Case urn resolution i2-o = S N 

1 4 1282 X 512 2500 0.2 

2 4 128^ X 512 2500 1.0 

3 4 1282 X 512 2500 0.05 

4 10 2562 X 512 6250 0.2 

5 20 2562 X 512 12500 0.2 

6 20 5122 ^ ^Q24 20833 0.2 

case 1. The dependence on stratification can be studied through the first three cases. Cases 

4, 5 and 6 have higher forcing respectively, as evident of their respective Reynolds numbers. 

Cases 4 and 5 are simulated with a resolution of 256^ x 512 while cases 1-3 have a resolution 

of 1282 X 512. The largest Reynolds number simulation in case 6 has the highest resolution 
of 5122 X jQ24_ 

The vertical gradient of Ub{z) is large in the middle region (except at 2r = 0) and corre- 

spondingly Rig = {NK{z)f/{dUbldzf is small there. The base jet profile is linearly unstable 

{Rig < 0.25). The shear is sufiiciently large to overcome the stability due to stable stratifi- 

cation and the flow develops instabilities and turbulence. Based on the centerline velocity 

of the jet at the basic state C4(0) and a~S the initial Reynolds number is given in table 

1, Case 1, 2 & 3 have the same Reynolds number but different background stratification. 

Increasing the forcing parameter has the effect of increasing the Reynolds number (cases 4, 

5 and 6). For the quasi-equilibrium turbulent state we define turbulent length and velocity 

scales as follows. The lengthscale, L^ = g^/e is based on the turbulent kinetic energy (TKE) 
dissipation e and q ([Batchelor (1953)]): 

€ = v{SijSij) , g2 = {u^ + t;'2 + w'^) ^ (2.26) 

where Sij = l/2{dui/dxj -I- duj/dxi) is the rate-of-strain tensor ([Pope (2000)]) and Ui and 

Xi {i = 1,2,3) correspond to our u,v,w and x,y,z notation respectively. The values of 

turbulent Reynolds number Re^ and Froude number Fr^ with this set of scales are given 

in table 2 for the vertical level az = 1.0.  The scales and the Reynolds number Re^ vary 
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Table 2: Values of parameter groups at quasi-equilibrium at the vertical level az = 1.0; 

Froude Fr^ = -^^ and Reynolds iJe^ = ^ numbers are based on the length scale Li. 

Case 1 2 3 4 5 6 

Frg 1.26 0.41 5.21 1.98 2.54 1.11 

Red 826 534 798 1392 2392 4016 

with vertical levels, being highest near the edges of the jet and decay rapidly away from the 
edges; see figure 4 for case 6 with 512 x 512 x 1024 resolution. 

2B    Numerical methods 

Most of the previous numerical simulations of shear-stratified turbulence have been in the 

context of uniform background stratification or uniform shear. In the present study we 

use a spectral domain decomposition method, which is particularly suitable for simulation 

of flows with non-uniform background stratification and shear. The flow is assumed to 

be homogeneous only in the horizontal directions where periodic boundary conditions are 

used. For each horizontal wavenumber, the vertical domain is then broken down into several 

subdomains (figure 5), Each subdomain is separately mapped to a domain {-1<^'<1}. 

For non-overlapping subdomains, there are basically two solution methods: collocation and 

variational methods. In the collocation method, the variable (e.g. A) within each subdomain 
j is interpolated as : 

1=0 
(2.27) 

where n is the order of interpolation, and the functions (j)i{z') are the Lagrange interpolants. 

The local coordinate z' is chosen to be the Gauss Lobatto Legendre points. 

The differentiation of variables are carried out by differentiating the interpolants. Effi- 

cient routine for the differentiation exists, e.g. [Fornberg (1996)]. Domain decomposition 

method, however, requires patching of subdomain boundaries when forming the global dif- 

ferentiation matrix. In inverting the 2nd order differentiation matrix (e.g, in calculating the 

pressure Poisson equation), continuity of the 1st order derivative is required as subdomain 

boundary condition. This is usually done by replacing n-1 rows (corresponding to n - 1 

subdomain boundaries) of the global matrix by the 1st order derivative equations.   This 
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method, however, may lead to numerical disturbances at the subdomain boundaries, partic- 

ularly if the resolution of the problem is marginal. To overcome this problem, an auxiliary 

set of subdomains is defined, with each subdomain in the auxiliary set strides across the sub- 

domains in the primary set. The arrangement is shown schematically in figure 5, Another 

global differentiation matrix is formed. Differentiation or integration are then carried out 

by multiplication or inversion of a combination of these two matrices. When this method 

is used in advection-diffusion equation, exponential convergence of accuracy is observed for 

increasing order of interpolation. The method has been tested for the turbulent channel 

flow problems, and excellent performance has been noted. Further details on the numerical 

method are given in [Tse, Mahalov, Nicolaenko & Fernando (2001)]. 

The time discretization follows the usual pressure projection method, which separates 

the time derivatives into three substeps. The nonlinear terms and buoyancy terms are 

advanced in the first substep; pressure Poisson equations are then solved directly and the 

pressure terms are advanced in the second substep while the dissipation term is considered 

in the third. Second order Adams-Bashforth scheme is used for the nonlinear terms. The 

calculation of derivatives involved in the nonlinear terms is carried out in physical space using 

collocation methods. The third substep requires calculating the viscous terms implicitly. A 

total of eight forward FFT transforms and four backward FFT transforms is required. In 

the vertical direction, absorption layers are added to the top and bottom boundaries to 

remove, or at least reduce, reflection of waves. The length of the computational box shown 

in figure 5b is 7r/2 in horizontal directions and from -5.0 to -1-5.0 in the vertical direction. 
Grid resolution in our work includes 128 x 128 x 512, 256 x 256 x 512 and 512 x 512 x 1024 

(table 1). There are 127 (for cases 1-5) and 255 (for case 6) subdomains vertically. The 

interpolation for the central three subdomains is 5th order while for the rest is 4th order. 

The total number of grid points in the vertical is then power of two, avoiding one processor 

carrying an extra plane for computation. The width of the subdomains between -0.062 to 

0.062 is 0.004, and it gradually increases to 0.2 at the outer region. The jet stream is placed 

in the center of the computational domain. This region requires more resolution due to 

high shear (figure 5). The program is parallelized by the transposition method using MPI. 

Typically, for resolution of 128 x 128 x 512, it takes 15 seconds to advance one time step 

on a cluster of 32 SGI RIOOOO processors and for 512 x 512 x 1024 resolution, it takes fa 5 

minutes on 128 processors. The computations are done on the Nirvana massively parallel 

supercomputer at Los Alamos National Laboratory and the DoD ARL MSEC. 
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2C    Quasi-equilibrium state 

Long time integration of the governing eqs. (2.1) - (2.5) is affected by the presence of adia- 
batic invariants for the long time dynamics. In particular, it has been shown in 

[Babin, Mahalov k Nicolaenko (1998)] that in the asymptotic state (after several periods of 

oscillations associated with wave motions; [Mahalov, Nicolaenko & Zhou (1998)]) the hor- 

izontally averaged temperature {&) is a near adiabatic invariant with onl y a small drift 

in time; this drift is confirmed by figure 6 in our DNS. We recall the mean (horizontally 
averaged) temperature equations: 

A state of absolute equilibrium is one where the mean temperature (i?) as well as other 

(horizontally) averaged quantities are no longer changing with time. We define quasi- 

equilibrium to be a state where {'&) satisfies eq. (2.28) with a small but finite time derivative 

(slow steady drift as in figure 6); and where all other means are quasi-stationary and the 

integrated statistics of variances show little fluctuation (< 5%). This is illustrated in figure 

7 for a typical case where the vertically integrated values of velocity variances, f{u"^)dz (I), 

!{v'^)dz (II) and J{w'^)dz (III), temperature variance J{-d'^)dz (IV) and the rate of change of 

horizontal velocity variance, / ld{u'^)/dt\dz (V), are plotted against the large eddy overturn- 

ing time (Sft"^ = (max \dUb/dz\)~^ ?« 0.018). Our range for S^t is longer than those reported 

in homogeneous simulations since we are using the maximum value of shear at basic state. 

The actual shear increases from zero to the quasi-equilibrium values and also depends on 

the vertical level. All the curves initially overshoot and then settle down to a relatively 

constant value. The first stage of evolution corresponds to the onset of Kelvin-Helmhotz 

instabilities. Secondary instabilities then kick-in, with transition to 3D turbulence and the 

values of the variances drop and begin to saturate. The same trend has been observed, for 

example, in [Smyth & Moum (2000)]. After the velocity variances become quasi-stationary, 

the horizontally averaged mean temperature is still evolving, albeit slowly, as shown in figure 

6 for case 1. Physically, quasi-equilibrium states can be obtained if the synoptic scale driv- 

ing force has a much longer time scale (e.g. see figure 3 of [CuUen (2002)]). The turbulence 

so obtained is in local equilibrium with TKE production in large scales which dissipates 

at smaller scales. This is evident from the spectra in quasi-equilibrium state presented in 

[Tse, Mahalov, Nicolaenko & Fernando (2001)], which span several decades. 

3    The mean profiles, variances and covariances 

In this section, based on our long-time DNS, we present vertical profiles at quasi-equilibrium 

for the mean temperature, three velocity components and the corresponding variances and co- 
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variances. The mean (horizontal averaged) velocity in the streamwise direction U = C4 + {«) 

at quasi-equilibrium is shown in figure 8 for the cases from table 1. Those figures are 

time-averaged for one large eddy turnover time defined by 27r/{aq). The vertical axis is 

nondimensionalized by 1/a and the velocity is non-dimensionalized by U{0). Hence the nor- 

malized values are all equal to unity at the center. Cases 1, 2 and 3 are shown in figure 8a 

while cases 4, 5 and 6 are shown in figure 8b. The profiles for cases 5 and 6 are essentially 

identical. The amount of stratification does not have much elect on the width of the mean 

flow, which is dictated by the profile of the momentum source Uu. There is a counter flow 

away from the central region. Note that the asymmetry generated by the doubling of the 

Brunt-Vaisala profile, is more prominent in case 2 than in the other cases. The peak value 

oiU = Ub + {u) in this case is also larger than in other cases. In the decaying simulation 

by {Galmiche, Thual & Bonneton (2002)], an increase of stratification has been observed to 

cause transfer of energy from turbulence to the mean. Apparently, we encounter a similar 
situation in our quasi-equilibrium simulations. 

The mean temperature profiles {#), which is the mean of the perturbation of the basic 

profile, is a slowly evolving quantity that can serve as an indicator of a particular quasi- 

equilibrium state at that vertical level. Their graphs are plotted in figure 9, with values 

normalized by U{0) (i9 has the unit of velocity). The values are negative in the upper do- 

main and positive in the lower domain. As will be seen later in figure 20, the vertical heat 

flux is negative in the central region and it is very small elsewhere. As a result, the tem- 

perature decreases at the top and increases at the bottom due to buoyancy flux crossing the 

center. In figure 9 the peaks for case 2 are the largest, followed by case 1 while case 3 has 

the smallest peaks. One prominent feature is that, as the stratification decreases, the peaks 

move away from the core of the flow. Consider case 3 for example, {#) peaks at za w 5.36 

and -4.96, at distances significantly away from the sides of the jet at za ^ ±1. There are 
no significant differences in the location of peaks for cases 4, 5 and 6. 

Figure 10a shows profiles of the turbulent mean state squared Brunt-Vaisala (buoyancy) 

frequency (JV^). A dramatic decrease of JV^ in the jet core, through turbulent dynamics and 

mixing, is clearly noticed (it takes negative values in case 3 for some vertical levels implying 

the existence of unstably stratified layers). A N^ profile of this kind, with a localized mini- 

mum in the mixing region, is sometimes referred to as possessing a 'JV^ notch'. It is known 

to be a mean state configuration favoring emission of gravity waves from tropospheric jet 

streams ([Lott, Kelder & Teitelbaum (1992)]; [Sutherland & Peltier (1995)]). We note that 

although the basic state Brunt-Vaisala profile has only a smooth doubling at the jet lev- 

els, the time-varying mean state, in our DNS, evolves to a profile having such a N^ notch. 
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[Nastrom & Eaton (1997)] found a localized decrease of N^ at the tropopause level in several 

winter seasonal profiles, which adds credence to our simulation results (cf. their Fig. 5b). 

The vertical profiles of the gradient Richardson number Rig = N^J (dU/dz) at the quasi- 

equilibrium are shown in figure 10b for cases 1, 2 and 3. Here iVf^ = Nd{'d)/dz + N^K'^{z) 

are the normalized Brunt-Vaisala frequency profiles at quasi-equilibrium. The gradient 

Richardson number Rig profile at quasi-equilibrium is very similar to those obtained by 

[Bedard, Canavero & Einaudi (1986)] as shown in figure 3a and to the profiles for cases 4, 5 

and 6 in figure 3b. Comparing cases 1, 2 and 3, we can see that an increase of stratification 

causes the curves of Rig to move closer to the core. On the other hand, increase or decrease 

in the forcing term also changes the vertical position of the Rig curves, which is clear when 

we compare cases 1 and 5. 

Visualizations of the flow fields are shown in figures 11-14 for a better understanding 

of the fiow structure. The velocity vectors, fluctuation temperature, spanwise vorticity and 

local gradient Richardson number on a typical vertical plane cross-section (where the hori- 

zontal scale is taken to be ax) are plotted here for cases 1 and 2. As can be seen in figure 11a, 

Kelvin-Helmholtz type instability at the edges of the jet produces counterclockwise flow on 

top and clockwise fiow on the bottom. This agrees with the contour levels of the spanwise 

vorticity in figure 12a. Entraining fluid from above and below the jet generates fingers of 

hot and cold fiuid, as evident from temperature contours shown in figure lib. The temper- 

ature fiuctuation at the center is comparatively small. Figure 12b shows the local gradient 

Richardson number at the same vertical plane cross-section. High values are obtained away 

from the core while values close to the center are small. The action of gravity waves prop- 

agating away from the jet stream leads to enhanced thermal fiuctuations at other vertical 

levels. Peaks of temperature variance (see also figure 18) are shifted relative to peaks of 

velocity variances shown in figures 15-16. These phenomena have been observed in the at- 

mospheric measurements by [Nastrom, Gage & Ecklund (1986)]. 

The fields for case 2 are plotted in figures 13 and 14 (stronger background stratification 

compare to case 1). The vortices and the waviness are observed in the vector projections 

(figure 13a). The corresponding spanwise vorticity field shown in figure 14a has high inten- 

sity zones concentrated around the center. The most significant diiferences between cases 1 

and 2 are the amplitude of temperature fiuctuations, which are intensified in case 2. The 

maxima and minima of temperature fluctuations in case 2 are closer to the core; that is 

za^2 instead oi za fa 5 in case 1 (cf. flgure 18a). The local gradient Richardson number 

shown in figure 14b is not significantly different from case 1. 
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The variances of the streamwise velocity, {u'^)/U{Of are shown in figure 15. Cases 1, 3 

and 5 have similar magnitudes while case 2 has the smallest normalized variance. In general 

the variances show two peaks located roughly at the edges of the jet, at za si ±0.70 where 

dUt/dz is largest. This agrees with observations of [Beland (1993)] that the turbulence in- 

tensity is highest at the edges of the jet stream. The value of {u'^)/U{Of is the lowest in 

case 2, and decays more rapidly away from the core due to the higher stratification. In 

contrast, the values for cases 1 and 3 are similar, suggesting that stratification in these cases 

is too low to have any significant effect on velocity variances. This is also true for cases 

4 & 5. The variances of the spanwise velocity {v"^)/U{0)^ are shown in figure 16. Their 

vertical profiles exhibit two peaks, but their magnitudes are generally much smaller than for 

the corresponding streamwise components. For cases 4 & 5, the values of spanwise velocity 

variance at the core increase as the Reynolds number increases. Typically, the spanwise 

component has smaller relative value in the TKE budget than the streamwise component, 

but, as the Reynolds number increases intercomponent energy transfer also increases, thus 

reducing anisotropy of the field. Vertical velocity variances {w"^)/U{Qf are presented in 

figure 17. They show a single peak at the center of the Jet core. Again, case 2 is significantly 

smaller in value than cases 1 and 3, in view of increased stratification. The magnitudes for 
cases 4 and 5 are roughly the same as in cases 1 and 3. 

The normaUzed temperature variances {d"^)/U{Qf shown in figure 18 indicate that tem- 
perature and vertical velocity tend to be out of phase, the former peaks where the latter 

drops to small values. The asymmetry in all cases are very prominent, a result of the jump 

in Brunt-Vaisala frequency profile at the center. As stratification decreases, the turbulence 

penetrates deeper into the surrounding fluid, spreading the peak of temperature variance 

further. In case 2, the upper peak of {'d'^)/U{Of is located at za « 2.4; in case 1, at ^a w 5 

and in case 3at zaRiB which are even further away from the core than the peak of < i? >. 

The vertical levels of peaks for {'d'^)/U{Of tend to vary inversely with the strength of strat- 

ification. For cases 4 & 5, the temperature variance peaks roughly at the same vertical 

levels as in case 1. However, the magnitude of the peaks decreases as the Reynolds number 
increases. 

The normalized horizontal heat fluxes, {u'-d')/U{Qf, are plotted in figure 19. They are 

negative immediately above the center and positive below the center. This is most prominent 

in case 2. This is in agreement with the previously discussed figures 11 and 13 where fingers 

of hot fluid are entrained into the core from above and fingers of cold fiuid from below. Fur- 

ther away from the jet, (i?'«') changes sign again. This is caused by the counterflow which 

carries cooler fluid to the top and hotter fluid to the bottom, resulting in a positive and a 
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negative secondary peak above and below, respectively. 

The vertical heat fluxes {w''d')/U{Of are plotted in figure 20. For cases 1, 2 and 3, they 

are all negative, confirming that the heat is moving from hotter (lighter) upper domain to 

cooler (heavier) lower domain (down-gradient). Counter-gradient heat flux ({w'#) positive) 

has been observed in others studies only when the gradient Richardson number is relatively 

large {Rig i^ 0.5 - 1.0, [Gerz, Schumann & Elghobaehi (1989)]). For case 3, the heat flux 

is almost zero at the center corresponding to the near neutral stratification. The equation 

(2.28) for mean temperature suggests that the mean temperature is related to the gradient 
of the vertical heat flux. This agrees with the fact that the peak of (i?) in each case shown in 

figure 9 corresponds to the maximum rate of change of {w'-d'). As a result, the peak of (i?) 

is situated further away than the peak of {w'#>. In flgure 20, the profiles of {w''d')/U{Of 

for cases 1, 2 and 3 are significantly different. If the profiles are not normalized (not shown 

here), case 2 has the largest peak at the core of the flow. When stratiflcation decreases, the 

amount of heat flux at the core of the flow decreases, until it drops nearly to zero for case 3. 

At the same time, heat flux at the edges increases and generates two peaks a.t za fv 7 and 

-6.5 in case 3. The doubling of the Brunt-Vaisala profile results in the asymmetry of the 
heat flux profiles. 

Anisotropy in stably stratified mixing layers has been studied by [Smyth k Moum (2000)]. 

They found that the vorticity becomes isotropic as the Reynolds number increases. Veloc- 

ity has a similar trend but it is possible that in real atmospheric situations some degree 

of anisotropy will be retained. Indeed, anisotropy of turbulent fields observed in strato- 

spheric measurements is discussed in [Vinnichenko (1980)]. Recent observations of turbu- 

lence around a winter jet stream using the 'Egrett' meteorological research aircraft actually 
show that anisotropy persists at the smallest scale observed (~ Im) 

([Cote, Roadcap, Wroblewski, Dobosy & Crawford (2003)]). 

4    Variability of length scales and gradient Richardson 

number 

The behaviour of stably stratified turbulent flows can be characterized in terms of length 

scales where buoyancy, shear, inertial and viscous influences become dominant or length- 

scale ratios that indicate the relative magnitudes of these influences. Some commonly used 

length-scales are the shear length scale L^, Ellison scale Lg, buoyancy scale Lj and Ozmidov 

scale Lg defined in table 3. Here e is the dissipation rate of turbulent kinetic energy intro- 
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duced in eq, (2.26), Relationships between these length scales have been investigated exten- 

sively, for example, in the atmospheric boundary layer by [Hunt, Kaimal & Gaynor (1985)], 

through atmospheric radar observations by [Eaton & Nastrom (1998)], in numerical sim- 

ulations by [Itsweire, Kosefif, Briggs & Ferziger (1993)]) and using laboratory experiments 

([Rohr, Itsweire, Helland & Van Atta (1988)]; [De Silva & Fernando (1992)] (see [Fernando (2002) 

for recent discussions). From these scales, several important scale ratios can be constructed. 

For example, the ratio Rig = L^L^ already shown in figure 3b and figure 10b is the gradient 
Richardson number Rin. 

Table 3: Definition of length scales. 

streamwise spanwise vertical other 

Kolmogorov scale, L| - - (^V^)* 
Shear scale, L^ {u^)/{dU/dzf {w^)/{dU/dzf q^/{dUldzf 

Ellison scale, L^ - - - i^'')im 
Buoyancy scale, Lf - - {w'')K e/Ni 
Ozmidov scale, L^ - - - ^IN% 

Body forces, such as background buoyancy, typically tend to infiuence motion scales 
that are larger than certain 'outer' scales (Ozmidov, buoyancy, Ellison and shear). The 

scales of active Kolmogorov turbulence are those scales which are greater than the Kol- 

mogorov scale but smaller than any outer scale. [Ozmidov (1965)] suggested that buoy- 

ancy effects are important on a scale proportional to Lo defined in table 3. The Ozmi- 

dov scale is regarded as the outer scale above which the fluid turbulence is significantly 

affected by buoyancy (cf. [Phillips (1972)], (1991)). Also, the dynamics of a stably strat- 

ified turbulent flow depend on the rate at which fluid elements mix with each other and 

change their density in the interior of the flow. [EUison (1957)] introduced the scale L^ 

now known as the overturning or Ellison scale which uses the density (temperature) fluctua- 

tions as an indicator of the vertical scale turbulent motions; L^ is a typical vertical distance 

traveled by fluid particles before either returning towards their equilibrium level or mixing 
([Rohr, Itsweire, Helland & Van Atta (1988)]). 

The ratio Lg/Lf, = RfJ^ accounts for the relative scales of infiuence of shear and buoy- 

ancy. If Rig > 1, then the buoyancy influence occurs at a smaller scale than the shear, and if 

active turbulence exists, then e ^ {w'^)^^^/Lt and hence L^ ^ (w'^)^/2/iV ~ {eLi,Y^^/N ~ Lo 

indicating that the Ozmidov scale Lo represents the scale beyond which the turbulent eddies 
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are influenced by stratification ([Fernando k Hunt (1996)]). Note that, in general, L^ should 

be contrasted from the buoyancy scale Lt at which the fluid parcel displacements (either due 

to turbulence or waves) are constrained by the buoyancy forces. The Kolmogorov scale L, 

characterizes the smallest scale of active turbulence and Lo ~ Lrj then characterizes the com- 

plete suppression of active turbulence by stratification, leading to states with significant wave 

activity. The Ellison scale Lg is representative of the vertical motions of a stratified turbulent 

fluid, in that it specifies how fluctuations associated with such motions (due to eddies or waves 

or combination thereof) are related to the vertical scale of motions. Given that both L5 and 

Le respond to the presence of waves and turbulence alike, [Hunt, Kaimal k Gaynor (1985)] 

have suggested that the ratio Le/Li,, which is called the temperature fluctuation parameter, 

is insensitive to the presence of waves, with an estimated value of Lg/Lj, = 1.0 ± 0.5, For 

the weakly stable case of Rig < 1 with intense turbulence, the Ozmidov scale has a limited 
significance and large Lg/Li, values are possible. 

In flgures 21a,b three length scales Lo, Le and L, are compared for cases 1 and 2, re- 

spectively. The scales are normalized by 1/a, and for the sake of clarity their logarithmic 

values are shown; note the difference in vertical variability of different length scales. While 

Le and Lg are bell shaped and peak roughly at the jet core, L^ becomes minimum therein. 

Ozmidov and Kolmogorov scales differ significantly in the core indicating active turbulence 

with strong mixing, concurrent with the low Rig values in the core (figure 10b). The ratio of 

Lo/Ljj decreases markedly along the jet edges, indicating increased inhibition of mixing and 

impact of buoyancy on much smaller scales. Beyond za « ±6, the turbulent fluctuations 

die down (figures 15-18), so as the vertical heat flux (figure 20). The scales L^ and Lo in the 

upper domain drop faster than in the lower domain because of higher stratification. Figure 

21b is a plot of length scales for case 2, which is generally similar to case 1, The Kolmogorov 

scale remains unchanged, but two peaks of Lo can be seen in the jet shear layers. However, 

the levels where £, ^ Lo and L, « Le now occurs at a much lower vertical levels za « ±3, 

a signature of decreased spatial influence of jet due to increased stratification. These ob- 

servations are consistent with the flelds shown in flgures 11-14. The decades of separation 

between L^ and the outer scales in the zone of active turbulence do guarantee the effective 

resolution of all scales. For case 2, figure 21b, Le becomes greater than Lo for za > 2 (the 

ratio Le/Lo crosses unity at ^a « 2); from figure 10b these are also the vertical levels where 

Rig > 0,25, with pronounced temperature fluctuations and very patchy turbulence in that 

region. This is in general agreement with figure 10 of [Schumann k Gerz (1995)] who have 

plotted ratios of L^/Lo vs Richardson number and observed Le/Lo < 1 for Rig small, and 

Le/Lo « 1 at Rig « 0,25 (in the context of uniform linear vertical shear and stratification). 
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Figures 22 a,b show the variations of Lo, U and L^ for cases 1 and 2, respectively. In 

figure 22a, within the jet core \ZQ.\ < 2 (except at the center) L^ « U, indicating a low 

Rig{« 1) conditions prone for instabilities and turbulence. In the core Lo » L,, and 

somewhat larger than L^ indicating that turbulence in this region is active and intense. 

Note that Ls < Lt implies that the vertical fluid particle displacements are sufficiently large 

to be deformed by the mean shear, promoting the interaction between Reynolds stresses and 

mean shear to yield sustained turbulence in the core {\za\ <2), which is clear from figures 

15-19. In figure 22b which has higher stratification than case 1 we have Lo < Lt throughout 
the vertical profile, indicating prominent wave activity. 

Since Rig is small (< 0.25) in the jet core (except the center za = 0), the turbulence 

therein is intense and the temperature is well mixed, leading to low temperature fluctu- 

ation levels in the core (figures 3b, lib, 18). In the higher Rig region where buoyancy- 

dominated turbulence prevails, temperature fluctuations become maximum, thus providing 

conditions for higher optical turbulence. This is a region of interest where the length scale 

ratio Lo/Lf, < I points to signiflcant wave activity (figure 24a), Detailed energy budgets 

(see Section 5; figures 25-26) show that in this region the shear production is vanishing and 

the energy is received via energy transfer from the jet core region. However, the energy 

deposited in this region by the pressure-velocity term is much smaller (and sometime neg- 

ative) than that gained by the nonlinear terms, the wave activity appears to be dominated 

by non-linear waves. Given that the wave energy does not propagate beyond \za\ w 6, it 

appears that these non-linear waves break and cause intermittent turbulent patches in the 

region (2 < \za\ < 6), which is consistent with the high local Rig regions of figures 12b and 

14b. Such breaking events can sustain some heat flux (as shown in figures 19-20) in this 
layer while maintaining high temperature fiuctuations. 

At the edges of the jet (case 1, figure 22a), in a thin layer around \za\ « 1.8, we have 

Lg > Lo, Lb indicating that the turbulence production by shear and Reynolds stress inter- 

action is impeded. Rig in this region is large (figure 3b) and hence the active turbulence is 

possible when Rig locally drops below a critical value (0.25) to produce Kelvin-Helmholtz 

type instabilities. Figures 11-14 show that indeed the turbulence is intermittent at the jet 

edges and Kelvin-Helmholtz type instabilities are present. At larger distances from the 

jet center 2.2 < \za\ < 4, Lf, ~ Lj, indicating marginal conditions for the maintenance of 

stratified turbulence; figure 12 shows that turbulence in this region is very patchy. Also, pro- 

nounced temperature fluctuations in this region (with Lg > Lo for case 2) points to possible 

wave activity. For \za\ > 4, the scales Lo and Lb are markedly smaller than Ls, confirming 

the lack of sustained turbulence when shear is neglegible. This is generally consistent with 
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figures 11-14 and velocity variances shown in igures 15-17. 

Other length scale ratios are also of interest. As stated above [Hunt, Kaimal & Gaynor (1985)] 

predicted L^/Li, ratio of unity in stable atmospheric boundary layers, and found a ratio of 

about 0.8 in their field measurements. The ratios of Le/L^, in our DNS for cases 1, 2, 4 and 

5 are plotted in figure 23a. The ratio is smallest around the center of the jet and increase 

at the edges. It drops to 0.1 at the center for case 1. In the core, Le/Li, for case 2 (with 

strong stratification) is higher (si 0.25) than that of case 1 indicating that turbulence is 

more buoyancy influenced. At the center, the ratios for cases 4 and 5 are even smaller than 

case 1. For all cases, the ratios increase close to unity away from the core, indicating the in- 

creasing importance of wave-turbulence activities at such vertical levels. In case 2, the ratio 

approaches a peak value of unity at around za « ±4, while for cases 1, 4 and 5, the peaks of 

L^/Lt, are observed at za ^ ±6. Prom figure 18, these peaks approximately correspond to 

the observed peaks of {B'"^) for both cases 1 and 2. Higher stratification pushes the vertical 
peak levels of the ratio closer to the core. 

There are other methods to determine the generation of waves from jet turbulence. For 

example, using linear equations, [Stewart (1969)] suggested that the phase spectra of w is 90° 

ahead of i3 if the motion is wave-like. The method was used by [Lienhard & Van Atta (1990)] 

but they did not obtain conclusive results. Another method is the 'penetration condition' 

derived and used by [Sutherland k Peltier (1993)], (1995) also from linearized equations. In 

the two-dimensional context, they used the method to demonstrate the generation of internal 

gravity waves from a jet profile very similar to ours. The Brunt-Vaisala profile was twice 

larger in the upper domain than in the lower domain with a notch at the center. In their 

simulations, the absolute magnitude of penetration ratio is greater than unity, the peak of 

the Reynolds stress moves up the domain as time evolves, suggesting the presence of linear 

gravity waves. If the penetration ratio were smaller than unity, the peak should also travel 

upward, but they find a significantly smaller magnitude. They attribute this discrepancy to 

nonlinear effects. The simulations were done in a 2D decaying context. In our simulations, 

we cannot reproduce the upward motion of the Reynolds stress peaks (in quasi-equilibrium 

state) and it is not certain whether similar results can be obtained in a 3D context. Never- 

theless, our results, which use vertical variability of L^/Li, as an indicator of wave activity, 

corroborate their findings. Remarkably, the curves for Le/Lt show little variation for cases 

4,5 and 6 (figure 23b), and saturate with increased resolution; vertical resolution doubles 

from cases 4 and 5 (512 vertical levels) to case 6 (1024 vertical levels). This guarantees that 

our resolution of the outer scales is grid independent and physically significant. 
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Figure 24a shows the ratio of Lo/U, which is an indicator of the levels of turbulence and 

waves. When LofL^ < 1, the waves activity is considered prominent over turbulence and 

vice versa. Note how this ratio changes over the vertical spread of the jet. The value of 

Lo/Lb ^ 1 observed outside the jet core in the shear layer is of the same order of magnitude 

as that measured by [Hebert, Moum, Paulson & Caldwell (1992)] in a turbulent patch in 
Pacific equatorial (jet-like) undercurrent. 

The ratio {Lo/Ley is sometimes called the turbulent Froude number, Fn and is an 

alternative to the bulk Richardson number ([Shih, Koseff, Ferziger k Rehmann (2000)]). 

Frt for cases 1, 2, 4 and 5 are plotted in figure 24b. The curves are bell shaped, with 

cases 4 and 5 having the largest values, followed by case 1 and then case 2. The val- 

ues at the core are all larger than unity, but Frt drops to less than unity in regions 

where the stratification is dominant. In laboratory grid-generated, salt-stratified turbulence, 

[Rohr, Itsweire, Helland & Van Atta (1988)] have measured the ratio L^/Lo bom which the 

corresponding turbulent Froude numbers Fn can be deduced. For N = 0,96, they obtain 

values from 0,1 to 1,8 as the downstream position increases, which correspond to {LolL^f-f^ 

values of 4.6 to 0.68, Their values are in the same range as those depicted in figure 24b. 

5    Budgets 

Budget terms were computed in the quasi-equilibrium state in order to characterize turbu- 

lent transport processes occurring at various vertical levels. Our budget equations presented 

in this section are based on the decomposition of velocity, temperature and pressure fields 

into the mean (horizontally averaged) and fluctuating components u', u', w', 9' and p'. This 

decomposition is given by eqs. (2.6)-(2.10). The budget equations (5.29)-(5.32) are obtained 

after substitution of the decomposition (2,6)-(2.10) into the governing equations and per- 

forming operations of horizontal averaging { >. More discussions of the budget equations 

based on the decomposition (2,6)-(2.10) can be found in [StuU (1988)], We report the bud- 

get terms of (u'^), {v"^), {w'^) and {-Q"^) for case 2 (high stratification), where the heat flux 
is larger compared to other terms. 

The budget equation for {«'^) is : 

^<«''> = V^> + ^hu'^) + ^^hu'^) + ^%2) {5-29) 

where 

I^„'2)   =   -2v{Vu'-Vu'), 
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^V^)   =   2(p'->, 

The budget terms are normalized by the quantity U{dfa. The normalized terms for (u'^) 

are plotted in figure 25a for the strongly stratified case 2. The only source term is the shear 

production (IF^„'2)). It has two peaks, located on either side of the model jet stream, in 

agreement with the graph of {u^) in figure 15. The energy produced is either dissipated or 

transferred to other components through the dissipation (/^„'2)) and pressure redistribution 

i^^iu'^)) terms. The pressure term also consists of two peaks directly opposite to the peaks 

of the production terms. This term, is effective in transferring energy from the streamwise 

direction and depositing it to the spanwise and vertical directions. The dissipation term has 

the largest values at the center, and it decreases away from the center. The transport term 

(///^„'2)) moves energy from the peaks to the center and a lesser amount to the outer edges 
of the jet. 

The budget equation for the spanwise velocity is : 

-(v^) = i^j,^ + Hf^^,,^ + III^^^.,^ + IV^^.,^, (5.30) 

where 

/.„'2)   =   -2i^{Vv'-Vv'}, 

The budget terms for {v"^) are shown in figure 25b. The source is the pressure (//^„'2)) 

which transfers energy from the streamwise to the spanwise direction. The magnitude of the 

pressure term is small compared to the similar term in the budget equation for the vertical 

velocity (figure 26a). The dissipation term (/(„'2)), in contrast to the streamwise component, 

has two side peaks. The transport term (/I/^^'2)) moves energy from either side to the center 

and away from the jet. The shear production term IV^^>2^ in the spanwise direction is small 
compared to other terms. 
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The budget equation for the vertical velocity is: 

where 

|J<«''')=V^) + J'V^)+J'J'V*)+i"^(„'2>, (5.31) 

The budget terms for {w'^) are shown in figure 26a. The pressure redistribution term 

i^^iw'^)) t3.kes a larger portion of energy from the streamwise direction than the spanwise 

term Il^^'iy The energy is then either dissipated (/^„'2)) or converted to potential energy 

through the buoyancy term (IF^^'a^. The dissipation term here has magnitude similar to 

that in the spanwise direction; but this term is now dominant at the center. The transport 

term {III^^>20 plays a more significant role than in the spanwise direction, in that it trans- 

ports energy from the jet shear layer area to the outer region (which may be responsible 

for the intermittent wave breaking activity seen in figures 13-14). The buoyancy term is 

negative and heat flux is thus down gradient (from hot to cold). No counter gradient heat 
flux was observed from the equilibrium statistics (figure 20). 

The budget equation for the temperature is : 

Q^¥'^) = I(4'^) + IIi^'^) + in(^'2), (5.32) 

where 

/^^'2)    =   -2K{W-W>, 

The budget terms for {i?'^) are shown in figure 26b, The gradient production term 

{11 (^'2y) is the only source in the balance of potential energy. It has a peak above za fn 2 

where the buoyancy flux for case 3 is larger. The dissipation term (I(^'2)) has roughly 

the same shape as the production term but, of course, with the opposite sign. This may 

explain why countergradient fluxes are not observed in figure 26a; temperature anomaHes 

25 



dissipate in the generation region, without producing restratification effects that would lead 

to countergradient fluxes. The transport term (JJJ,^f2\) is relatively small. 

The normalized shear production (IF^^'sp in the streamwise direction for cases 1, 2 and 

3 is shown in igure 27a. Cases 1 and 3 have nearly identical shear production. Case 2, 

which is more stably stratified, has smaller shear production at each vertical level compare 

to cases 1 and 3. Thus, the normalized shear production decreases with increasing stratifica- 

tion in our flows. This is consistent with the conclusion in [Holt, Koseff & Ferziger (1992)] 

that stratification does not directly reduce the growth of g^ (i.e. not a kinetic energy 

sink). Rather, the effect of stratification is indirect in suppressing the production (see 

also [Rohr, Itsweire, Helland k Van Atta (1988)]). The normalized total dissipation (I/„'2) + 

/^„'2) +/(„'2)) for the three cases is shown in figure 27b. The dissipation for case 2 decreases 

following the decrease in production. The ratio of production over dissipation is shown in fig- 

ure 27c, The three curves nearly collapse into one, suggesting that production and dissipation 

maintain the same ratio regardless of stratification. However, the ratio changes with za and 

peaks at the edges of the jet, where shearing is maximum, zaf^l. Around the jet production 

and dissipation are not at equilibrium and the transport must be taken into account. Another 

relevant parameter is the growth parameter F as defined in [Holt, Koseff & Ferziger (1992)] 

F = production - buoyancy ^      l^%2)l - \IV(w'^)\ 

dissipation IV^>I + l%2)l +1^2)1' ' 

The dependence of F on za is shown in figure 27d. It varies roughly between 0 and 2.5 

depending on the vertical level. We note that F is roughly equal to unity in homogeneous 

simulations for critical Richardson number, e.g. [Holt, Koseff & Ferziger (1992)], and in 

experiments, e.g. [Strang & Fernando (2001)], suggesting that TKE transport plays a more 
significant role in the situations considered herein. 

6    Conclusions 

A spectral domain decomposition method was developed to study inhomogeneous shear- 

stratified turbulent flows in the ABL context with focus on the detailed structure of a turbu- 

lent jet in the tropopause region. In contrast to most previous work, the method employed 

here permits more realistic boundary conditions in the vertical direction and allows shear 

and stratification profiles to adjust during flow evolution. Quasi-equilibrium solutions were 

obtained via long-time integration of governing equations. In this state, the micro-scale 

Reynolds number and other averaged quantities fluctuate within 5 % of their mean value. 

In previous numerical studies, the micro-scale Reynolds number was temporally evolving 
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except at a certain "stationary" Richardson number. 

The quasi-equilibrium jet produced during the simulations consists of a jet core sur- 

rounded by shear layers, beyond which lay a (return) counterflow. The Richardson number 

within the jet core is low, the Ozmidov scale is high and turbulent energy production peaks 

within the core, thus producing sustained turbulence. The Richardson number increases 

beyond the jet shear layers in such a way that the shear length-scale exceeds the buoyancy 

scale, thus impeding sustained energy transfer to turbulence by the mean flow. The turbu- 

lence in this region is patchy. Beyond the jet edges are regions with moderate Richardson 

number characterized by small Ozmidov to Buoyancy scale ratio, indicating the presence of 

stably stratified turbulence; the shear production rate therein is vanishingly small and the 

energy supply to this region occurs via propagating non-linear gravity waves (the non-linear 

transport term in the energy budget exceeds the pressure transport term). This is supported 

by a clear difference between the core and the edges of the jet with respect to the ratios of 

length scales. For example, the ratio L^/Lb is significantly smaller than unity at the cen- 

ter while approaching unity for all cases away from the jet core, implying the increasing 

importance of wave activity there. This indicates that edge regions above and below the 

jet stream maximum shear are the regions where much of the strong interactions between 

the mean flow, locally generated Kelvin-Helmholtz instabilities, turbulence and propagating 

gravity wave instabilities take place. This is important for ABL optical propagation codes. It 

is also in agreement with the observational studies in [Bedard, Canavero & Einaudi (1986)] 
and [Dalaudier, Sidi, Crochet & Vernin (1994)]. 

Theoretical analysis of stratified shear flows has further established that propagating 

wave modes are forced at the shear layers by a Kelvin-Helmholtz type shear instability; this 

shear instability then supports wave radiation when the density stratification outside of the 

shear layer is sufficiently large ([Lott, Kelder & Teitelbaum (1992)]); this is borne out by the 

present simulations. Our DNS further show that with decreasing background stratification, 

the vertical levels of enhanced nonlinear wave interactions significantly separate away from 

the levels of peak shear production. Such vertical variability of turbulence statistics must 

be factored into ABL propagation codes and parameterizations of C|. 

Our simulations were performed with lower Reynolds numbers than in the atmosphere 

and some of our results are effected by the low Reynolds number simulations. However, cer- 

tain important properties of computed turbulent fields are not only in qualitative but also 

in quantitative agreement with observed geophysical flows. For example, computed ratios 

and variability of turbulence natural length scales (Ozmidov, buoyancy, shear and Ellison) are 
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broadly consistent with the observational data presented in [Bedard, Canavero & Einaudi (1986)], 

[Eaton k Nastrom (1998)], [Nastrom, Gage & Ecklund (1986)], [Hunt, Kaimal & Gaynor (1985)] 

and [Hebert, Moum, Paulson & Caldwell (1992)]. The ratios of turbulence outer scales are 

found to be in agreement with observations and they do not change with increasing Reynolds 

number and saturate with numerical resolution. This is demonstrated in figure 3b for the 

ratio of shear and buoyancy length scales where vertical profile of Rig = L'^jLl is shown for 

cases 4, 5 and 6 in figure 3b; and the ratios L^fLi, for cases 4, 5 and 6 in figure 23b. 

Description of turbulence and especially turbulence closure models in stratospheric layers 

in the ABL context require parameterizations and scaling laws for the length scales. As 

there are a number of different natural length scales for stably stratified turbulent flows with 

shear, it is not clear without additional theoretical arguments, numerical or experimental 

data which scales are appropriate for the present case. One of the main objectives of this 

research is to establish for non-homogeneous stratified shear flows in the ABL context in 

the vicinity of the tropopause the length scales over which different phenomena occur, their 

relative orders of magnitude and variability. In future work we will investigate in more depth 

the parameterizations for various turbulence statistics in the context of nonhomogeneous 

tropopausal turbulence in the ABL context to support the ABL-ADA (atmospheric decision 
aid). 
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Figure 1: (a) An example of a jet stream profile from Bedard, Canavero & 
Einaudi (1986) (reproduced with permission from the American Meteorological 
Society). The dotted line is obtained from observation while the solid Une is a 
numerical fit. (b) The normalized velocity profiles Oj at the basic state of the 
present computations. The vertical axis is za where a = 16, and -8.0 <za< 
8.0. Only the middle portion of the computational box is shown here. 
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Figure 2: Brunt-Vaisala frequency profile recorded in the atmosphere by Beland 
(1996) with balloon measurements; vertical axis - height (km) and horizontal 
axis - Brunt-Vaisala frequency (1/s). 
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Figure 3: (a) An example of a gradient Richardson number profile correspond- 
ing to figure 1(a); measured by Bedaxd, Canavero k Einaudi (1986)(repro- 
duced with permission from the American Meteorological Society); (b) Gradient 
Richardson number profiles at quasi-equilibrium from the numerical simulations 
for cases 4, 5 (256^ x 512 resolution) and case 6 (512^ x 1024 resolution). 
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Figure 4: The Reynolds number based on the length scale L^ and q for 512^ x 
1024 resolution, case 6, B&i = qLj/v. 
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Figure 5: (a) Distribution of collocation points in primary and auxiliary subdo- 
mains. The vertical lines separate the subdomains. (b) Distribution of primary 
subdomain boundaries in the vertical direction. 
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Figure 6: Evolution of the mean temperature, {■&), at quasi-equilibrium, case 1. 
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Figure 7: The time evolution of vertically integrated values of {w'^) (I), (v^) 
(II), {w'^) (III), (#'3) (IV) and \d(u'^)/dt\ (V); {■) denotes horizontal averaging. 
Horizontal axis is given in non-dimensional time Sjt. 

Figure 8: Normalized mean (horizontally averaged) velocity in the streamwise 
direction for cases listed in Table 1, horizontal axis - lJ{z)/U{0) where U = 
Ui + (u), vertical axis - za : (a) cases 1 (solid), 2 (dash) and 3 (daah-dot) ; (b) 
cases 4 (soUd) , 5 (dash) and 6 (dash-dot). 
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Figure 9: Normalized mean (horizontally averaged) temperature, {■&)(Z)/TJ{0), 

in the quasi-equilibrium state for cases listed in Table 1, horizontal axis - (i9), 
vertical axis - za; (a) cases 1 (solid), 2 (dash) and 3 (dash-dot) ; (b) cases 4 
(solid), 5 (dash) and 6 (dash-dot). 
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Figure 10: (a) The square of the Brunt-Vaisaa frequency profile, N^K^, and (b) 
Gradient Richardson number profiles at quasi-equilibrium from the numerical 
simulations for cases 1 (solid), 2 (dash) and 3 (dash-dot). 
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Figure 11: (a) Instantaneous velocity vectors and (b) temperature fluctuation 
on a vertical plane for case 1. The horizontal axis is xa. Magnitude of velocity- 
is given by arrow length. 
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Figure 12: (a) Instantaneous spanwise vorticity and (b) local gradient Richard- 
son number on a vertical plane for case 1. The horizontal axis is xa. 
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Figure 13: (a) Instantaneous velocity vectors and (b) fluctuating temperature 
component on a vertical plane for case 2. The horizontal axis is xa. 
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Figure 14: (a) Instantaneous spanwise vorticity and (b) local gradient Richard- 
son nimiber on a vertical plane for case 2. The horizontal axis is xa. 
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Figure 15: The normalized variances of the streamwise velocity, (u'^)/U{0)^ as a 
function of the normahzed height: (a) cases 1 (soUd), 2 (dash) and 3 (dash-dot); 
(b) cases 4 (solid) and 5 (dash). 
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Figure 16: The normahzed variances of the spanwise velocity, {v'^)/[/(0)^ : (a) 
cases 1 (solid), 2 (dash) and 3 (dash-dot) ; (b) cases 4 (solid) and 5 (dash). 
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Figure 17: The normalized variances of the vertical velocity, {w'^)fU{0)^ : (a) 
cases 1 (sohd), 2 (dash) and 3 (dash-dot) ; (b) cases 4 (soHd) and 5 (dash). 
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Figure 18: The normaUzed variances of the temperature, {'§'^)/U{0)^ : (a) cases 
1 (solid), 2 (dash) and 3 (dash-dot) ; (b) cases 4 (solid) and 5 (dash). 
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Figure 19: The normalized profile of the horizontal heat flux, {'d'u')/U{Of : (a) 
cases 1 (solid), 2 (dash) and 3 (dash-dot) ; (b) cases 4 (solid) and 5 (dash). 
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Figure 20: The normalized profile of the vertical heat flux, {d'w')IU{Of : (a) 
cases 1 (solid), 2 (dash) and 3 (dash-dot) ; (b) cases 4 (solid) and 5 (dash). 



Figure 21: The normalized length scales L^a, Lga and Lo« for (a) case 1 and 
(b) case 2 (logarithmic scale). 

Figure 22: The normalized length scales L^a, Li,a and Loa for (a) case 1 and 
(b) case 2 (logarithmic scale). 
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Figure 23: (a) Ratio of Le/Lt for cases 1, 2, 4 and 5; (b) Ratio of Lg/Lb for 
cases 4, 5 and 6. 
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Figure 24: (a) Ratio of Lo/Li for cases 1, 2, 4 and 5; (b) The turbulent Froude 
number, Fn = {Lo/Lef^^ for cases 1, 2, 4 and 5. 
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Figure 25: (a) The normalized horizontally averaged budgets in the equation 
for the streamwise velocity variance for case 2. Labels in the figure correspond 
to J - dissipation, II - pressure, III - transport, and TV - shear production, 
(b) The normalized budgets in the equation for the spanwise velocity variance. 
Labels in the figure correspond to / - dissipation, II - pressure. III - transport 
and IV - shear production (term IV is nearly zero). 
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Figure 26: (a) The normahzed horizontally averaged budgets in the equation 
for the vertical velocity variance for case 2. Labels in the figure correspond to 
I - dissipation, II - pressure, III - transport, and IV - buoyancy, (b) The 
normalized budgets in the equation for temperature variance. Labels in the 
figure correspond to J - dissipation, II - production and III - transport. 
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Figure 27: (a) normalized shear production; (b) normalized dissipation; (c) 
shear production over dissipation and (d) growth parameter for cases 1 (solid), 
2 (dash) and 3 (dash-dot). Curves for cases 1 and 3 are nearly identical. 


