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Chapter 1 

Introduction 

1.1. Motivation 

The tmderatanding of the behavior of materials xmder very high strain rate loading condi- 

tions is vital to many areas of civilian applications ranpng from explosiw forming, welding, 

cutting, compaction, and hardening, to oil well exploration and micrometeorite impact on 

spa(« stations; military applications are ako numeroiw and range from armor and anti-armor 

structures/vehicles to ballistic d^gns. There are many other additional applications of high 

strain-rate deformation, sudi as machining, accidental impact of vehicles and crashworthi- 

n^s studio, earthquakes and the ^sociated damage to stmctin-^, and explosive device. 

Al th^ appHcations require a thorough knowledge of the mechanics of high strain rate 

deformation, and the dynamic r^ponse of materials under thrae conditions, A number of 

material systems ranging from metals, ceramics, polymers in both monoMthic and compcraite 

forms are being used to achieve a combination of characteristics specific to meet the goals 

in eadi of th<Me appHcations. Composite materials with organic matrices reinforced by syn- 

thetic or ceramic fibers either individually or in combination with monolithic ceramic layera 

are being used to achieve light weight and enhan<«d ballistic impact resistance [2] [3] [4] [5]. 

Th^e material systems promise Hght weight armors which are structurally robi^t and axe 

being contemplated for the futin-e <»mbat vehicle for defense apphcations, e.g., as in US 

Army. However, the ballistic r^poMe of these heterogeneous materials are very poorly un- 

derstood because a number of micrcM(x>pic based mechanisms are actiwted simultanojusly 



or in succession to yield the macros<»pically ol»erved shock response. 

Contiwlled shock wave ejqjeriments are usually carried out IQ a plate impact test where a 

plate of known material is impacted on the tai^et material under investigation at a specified 

impact velocity. Shock wave data are acqxiired in the form of either str^s vs. time or velocity 

■ra. time at intermediate locations or at the free mxrSajoe of the target plate. Th^e data are 

then used to compute the engineering dynamic strength and equation-of state properties as 

well as shock-induced motion histories for wJidation of theoretical and computational models. 

They are rich in featui^ that can help in understanding the underlying physics [6] r^poiwible 

for the proems. While the shock wave profile in homogeneous metallic materials have l^en 

well documented and undCTstood, the same cannot be said for the case of heterogeneous 

materials. This is partly due to the very nature of composite, which is a con^omerate of 

matrix, fibers, and interface between fiber and matrix and betwren different laminae, various 

lay-up sequence with different ply orientations and different iarma of fiber arrangements 

within the matrix (|>articulate, planar; 2D/3D woven). The very heterogeneity that allows 

an engineer to alter the stiffiiess and strength response to meet the design need, makes it 

chaUen^ng to pr^iict the overall structural and a«)ustic properties from the details of the 

construction. But this task of HnHng micK)mechanics to dynamic r^poi^e n^nis to be 

ac«>mpli8h«l to meet our goal of optimizing the aimposite constituents and lay-up sequence 

for decrease! weight and increased performance. This bottom-up approach is very challen^ng 

but the only way out for an optimal d^gn. 

When studying cximposit^, homogenization remains one of the most widely used method- 

olo^^, in which the microstructxuB is asstimed to smear out. The whole material is t»nsid- 

ered homogen«)U8 with certain "effective" elastic <»nstants or other overall properties. Some 

studio indicate that this theoretical predictions agre^ well with the experimental data only 

at low frequencies (when the wavelength is large compared to fiber diameter) and at low 

fiber volume (»nc«ntration [7] [8] [9]. At higher fr^uencies and fiter volmne concentrations, 

the internal factora such as phase impjedance mismatch, the g«>met^ of the fiber fabric, 

lay-up sequence and interface properti^ as well as manufacturing defects such as voids are 

all expected to have pronounced effect on the characteristics of wave profiles of comptwit^. 

Very httle work has b«n done to hnk modeling microstructural details or interface effect of 



compMites with the high velocity impact response of materials. We know that for a plate 

impact problem that the higher the impact velocity, the higher the frequency content and the 

shorter the wavelength. Therefore, it is the "interaction scale" that detennines the problem 

Kjlving methodology, that is the scale of the apphed loading rate versus the length scales 

of composite. Different loading rat« will necessitate the oansideration of different length 

scal^ in oomptMit^. 

It is recognized based on available experimental data, that the impact behavior of c»m- 

posites is strongly influenced by constituent material, gwmetric details of the composite, 

the method of manufacture and the rate of loading. There is a dear need to develop a 

better imderstanding of the high velocity impact behavior of <»mposit^, and a need for a 

computations based model that Hnks the microstructural detaik of GRP with the overall 

ol^erved behavior. In view of the current r^eardi state of the shodc i^^wnse of layered 

hetero^neous materials, three fimdamental aspects have been investigated in an attempt to 

build a micromechanics ba^d a>mputational model. 

• Layered configuration with alternating fiber bundle layer/pure matrix layer have al- 

ready been identified as the model ^stem to study the inherent material heterogeneity 

effects to the level of subl-amina. Micromechanics based computational model for 

enpneering 2-D woven composite was explored, 

• Wave disperaion and attenuation in bilaminated material systems was studied based 

on linear and nonlinear wave interactions in one dimeimonal analysis. Nimierical and 

Analytical analysis were conducted. 

• The Effects of material orthotropy and material heterogeneity on the impact J^ponse 

of laminated composite have been examined, both analytically and numerically. 

1,2. Outline of the Report 

This report is organized into 6 chaptera. Chapter 2 mainly provide a review of wa^ro propaga- 

tion in soHds. General governing equatiora will first be presented to d^cribe the ronstitutive 

relationship of the impact response in three regime: elastic, elastic-plastic and shock. Specif- 

ically plate impact ojnfiguration will be introduced and then the uniaxial strain state will be 



analyzed in details. Chapter 3 focused on the sti^s wave propagation in periodically layered 

systems based on one-dimensional analysis. Two analytical solutions will be pre^nted. The 

firat one is based on the initial effort of building up the rise characteristics of the stress 

profile by takmg into account the multiple transmission and reflections at interface. The 

idea of this solution is general and helps the development of the second analytical solution. 

For the second solution, Floquet's theory of ODEs with periodic coefficients and mixture 

theory are invoked. Chapter 4 ainw to analyze the material heterogeneity factora and the 

structure of the stress wive profiles. This chapter is largely a parametric study bas«i on 

the analytical solution developed in chapter 3. Numerical r^ults are also included for the 

purpose of a>mparison and mUdation. Chapter 5 ain^ to evaluate the proposed periodic 

layered model for engineering woven comproites. Preliminary micromechanics based study 

on the 2D proven composites are included. Also, as a important mechanisms, failure analysis 

of the composites based on homo^nized model is also provided. Summary is included in 

Chapter 6, 



Chapter 2 

Wave propagation in solids 

When a material is stvesmd with a suddenly applied load (impact), the deformations and 

stress^ are transmitted to the remote portion throng wave propagation. A thorough knowl- 

edge of wave propagation in materials is essential to the underetanding of the -rarious aspects 

of deformation and mechanisms of failure of materiab under impact loading conditions. In 

this report, the basic <»ncepts involved in the state of imiaxial stress and strain and their 

influence on elastic and plastic behavior are examined. Further, thrae thwri^ are applied 

to both homogenous and inhomogeneoiK material s^tems. Numerical simulations are car- 

ried out to model plate impact problenas involving single and multiple plates of different 

materials, including composite. 

This chapter comprises two sections. The first section focusra on the basic th«}iy on 

longitudinal wave propagation, mainly the governing equations for elastic, elastic-plastic 

and shock r^me respectively. The s«;ond section briefly introduce the plate impact test 

and uniaxial strain state. The objective of this chapter is to go through the basic concepts 

such as elastic stress wave propagation, Hugoniot Elastic limit, and the state of uniaxial 

strain etc. In this way, material behavior under high strain rate can }x better understood. 

10 



2.1. Wave equation and wave velocity 

As we know, one dimensional elastic wave equation is as follows [10]: 

(2.1) 

Ftom the equation of equilibrium when body force is absent, we have 

8x ~ P'M 

The left side of the above equation can be rewritten as 

Ss. — SsiSs. — §^&^u /de _ #«       ™„„ ^ — »y.\ 

That is, (if )g = If 
R-om wave equation (2.1),we have <? = -^ 

For longitudinal wave, assume elastic impression, so Hooke's law holds. 

That h,a = Ee     so, ^ = J7 

R-om above, we obtain the elastic wave velocity in one dimensional stress state: 

CL=J— (2.2) 

The ^neral one dimensional solution of 2.1 is in the form: 

u = f{x-ct)+ g{x + ct) (2.3) 

For ^neral "plane irmtational wave, its voltune changes harmonically as a particle cecillat^. 

So the wave is also known as dilatational wave. The motion is in the form 

.   27r, 
til = tsm — (xi - Cit), «2 = 0, tt3 = 0 

27r, 
£^11 = e cos — {xi - C£,t) 

11 



En = E23 = E12 = Eu = Eu = 0 

e = ^11 + 0 + 0 = Jii 

The str^s components are 

axi 

T-n = Tss = A^ii = X^— 
OXi 

Tn — Tiz = Taa = 0 

Sutetituting lij-and % into the equations of motion in the al^enoe of body forc^, i.e., 

The first equation demands that 

/2irV 2  .   27r . . ,,     „ ,   (%'K\^ .   1%, 
-Pocl —1  c^sm —(a;i-ci,t) = -(A + 2^)6l — J  sin — (%-cx,t) 

So the soimd velocity of the longitudinal wave is given by 

C,= ,^ = .M (2,5) 
V   Po       V    ft 

2.1.1. Intensity of Elastic Stress Wave 

If a bar (initially at rest) was impacted by another bar at time t = 0 as shown in Figure 

12 



2-l,At time t = 0, a compr^sive puke starts to strike the bar . 

Figure 2-1: Schematic iflustration of wave propagation in the bar 

At timet = t: 

Compr^sive vmve has moved forward by distance cit; 

Distance of left end of the bar moving lightward is VQI. 

Equate the change of momentum to impidse: 

iPoAoCi,t)vo = {(rAo)t 

So, the stress intensity of the elastic wave is 

a ^ PQCLVO (2.6) 

Reflection of plane elastic waves at an interface 

Typically, when an incident wave(no matter it is dilatational wave or distortional wave) 

hits an interfa(» at an arbitrary angle, two waves (dilatational wave and distortional wave) 

will be reflected and two waves (dilatational wave and distortional wave) will be trajmnitted. 

Incident pulse o"j = PjCiVj 

Reflected pulse: aji — —PiCiVji 

TransaM^d pulse: O^T = PZC^VT 

13 



If A = l^ 

Fi = Fa        =J^        (o-j 4- aR)Ai = a-rAi 

o-j     piCi + ApaCa Ai 

^T _        2p2C2 

o"/      PiCi + /t^ca 
(2.7) 

A=l^ 

O"/        PlCl + P2C2 
(2.8) 

Three special cas^ based on the above equations: 

Case 1:   li p^ci = 0 {bee surface) 

or = 0       aii = -CTi 

Ca^ 2:   If P2C2 is infinite (rigid wall) 

Case3:  two objects of the same material and the same cross section, we have pjCj = pj*^ 

o'R __ P2C2 - PiCi 

O"!        PlCi + P2C2 
0 (2.9) 

(TT 2p,C2 
— = ^T^- = 1 (2.10) 
o"/      P1C1+P2C2 ^       ' 

So, no reflection wave for this case. 

It shoTild be noted that this reflection law at an interface is -valid for elastic wave. For 

nonlinear wave propagation, energy dissipation need to be considered if necessary [11]. 

14 



»-x 

Figure 2-2: Schematic X-T diagram of elastic-plastic plate impact (same materials) 

2.1.2. Plastic wave propagation 

When HEL is reached, plastic wave will be ^nerated. However, on contrary to elastic wave, 

it is not pcfflsible to solve plastic wave propagation through solving a simple <»nstitutive 

equation. In plate impact, when the plastic vmve impinges on a boundary of the soHd, both 

el^tic wave and plastic wave will be ^nerated as shown in Pig. 2-2. It should be noted that 

the xmloading elastic wave which is of much larger amplitude than that of the initial elastic 

wave can significant change the state of the material, which can be a&e Fig. ?? (a). 

For strain rate independent material, the strras-strain relationship can be exprrased as 

o" = ffo + ke"' (2.11) 

The velocity of the plastic wave is equal to 

V,= 
da/ds 1/2 

(2.12) 

where dv/ds is the slope of the plastic region of the strras-strain curve.   So for bilim .ear 

15 



elastic-plastic material; the one-dimensional plastic wave velocity is 

(2.13) 

Becaiise in general the sound speed decrease with decreasing work-hardening rate, the ten- 

dency is for the front of the wave to "spread out" or disperse, 

2.1.3. Shods wave equations 

(Consider a plate of compre^ible materials that [12] [13] has an initial state of internal energy 

Eo, pre^ure PQ, and the material is at i^t ahead of shock. A uniform pre^uie Pi, is 

suddenly applied to one face of the plate, would result in a wave traveling at velocity Ug 

if no failiire occurs. The application of Pj <»mpresses the plate material to a new state 

of internal energy Ei, density p^ and particle velocity Up, Across the shock front, mass, 

momentum and energy must be a>nserved. 

Conservation of mass: After a short time period dt, the mass of material encompassed 

by the shock wave, p^UgAdt, with A teing cross-sectional area, now occupira the volume 

Pi Wa — Up] AM at density p^, so we have 

p^U, = p^{U,-Up] (2.14) 

Conservation of momentum m expr^sed by noting that the rate of change of momentum of 

a mass of material p^UsAdt is accelerated to a velocity of Up in time dt from Up = 0 by a 

net force Pj — PQ is ^ven by 

Pi - Po = PoUsUp (2.15) 

Conservation of energy across the shock front is expr^ses by equating the work done by the 

shock ^ra,ve with the sum of the increase of both kinetic and internal energy of the system. 

Thus 

PiUp = ^oU^U} + PoUs (El - Eo) (2.16) 

16 



Equation (2.14)-(2,16) contain a total of 8 parameters (po, pi^PojPi, Ug, Up, Ei, Eo). If 

the initial state (po, PQ, ^O) is assumed to be known, then five unknowns (pj, Pi, U„ Up, Ei) 

remain. 

Equations 2.14-2.16 are the 'jump <»nditions" that must be satisfied by materials pa- 

rameters on the two sid^ of a shock fix>nt. EUmination of the particle vslocity from the mass 

and momentum «juations r^ults in an expression for the shock velocity of the form 

2 = PiiP^-Po) (2.17) 
Po (Pi - Po) 

As we can see from above, changes in pr^sure, dei^ity and thus internal energy across a 

shock front can be calculated by measurement of just two parameters, the shock velocity Ug 

and particle velocily Up. 

2.2. Plate Impact Tests and the State of Uniaxial Strain 

In order to characterize the dynamic behavior of materials under impact loading, diagnostic 

experiments are usually carried out using a plate impact t^t configuration under a one- 

dimensional strain state, and the experimental measurements from this a>nfiguration form 

the basis for the shock ^sponae characterization. The plate impact t^t serves the exact 

purpose of characterizing materials under high-pressure dynamic loading analogous to that 

of uniaxial tensile t^s under quasi-static loading c»nditions and spHt Hopkinson bar t^ts 

under hi^ strain rate loading conditions. Conventionally, a str^s versus strain plot under 

one-dimensional strain (»ndition is generated from measTired particle velocity or strras his- 

tory data from a number of plate impact tests pierform^ at various impact velociti^. This 

plot is referred to as the Hugoniot. The sti^s r^ponse is usually measured at intermediate 

locations within a given specimen using embedded manganin or PVDF gaug^. The velocity 

measurements are typically carried out using a velocity interferometiy (VISAR) system at 

the str^s free back surface of the target plate or at the interface of a transparent window 

glued to the back of the target plate, Thrae measured ^rail-structured wa^ profiles in metals 

and ceramics provide a wealth of information about the shod? r^ponse of the material. Plate 

impact tests are the test configuration used to inv^tigate the impact r^ponse of materials 

17 



throughout this rraearch (The schematic set-up is shown in Figure 2-4) since plate impact 

can generate high pressure state and provide a range of controled impact velocities. Also, 

this configuration offers a unique opportunity for design of appropriate experiments to study 

wave propagation in <»mplicated micrtratructur^. 

When a material is subjected under shock loading, the deformation is restricted to one 

dimension, with the lateral strain being mto. The str^ strain curve w shown below. 

In general, the three principal strains can be divided into an elastic part and a plastic 

part: 

£1 = ef + ef 

£2 = e| + ef 

63^4+4 

In one dimension deformation 

£2 = £3 = 0 

e| — —e| and ef = —e| 

Since the plastic part of the total strain 'm assumed to be incompressible, so that 

ef + e| + e| = 0 (2.18) 

From equation (2.18) which we can have 

ef = —ef — ef = —2£2 

Due to symmetry, we have ef = £3 

so, ef = 2e| 

Therefore, the total strain £2 can be written as 

£l-£f+£f = £f + 2£| 



The elastic strain can be expressed using Hooke's law: 

4 = t-|(o^2 + fr3)-f-f(T2(Sincea2 = fr3) 

R-om above; we have 

The yield criterion for either the Von Mk^ or It^ca for this case is 

o-i - 0-2 = Fo (2.20) 

using above as the definition of ff2, insert this to E^n. (2.19), 

iI^)^^ = Sa^-2Yo 

For the special case of elastic one-dimensional strain: 

ei = ef 

£2 = 4 = £3 =:= e| = 0 

ef = £2 ~ ^ ~ 0 

From Hooke's law, we have 

4 = f-i(<^l + <^3) = 0 

and o"2 = ff$ 

"^ = (1^) "^ (2.21) 

'So,e, = 4 = t-|(^2+a3) = t-f^2 = t-|fej 

That is, 

'^^ = (1-2.7(1 + .)^^^ (2.22) 
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Under uniaxial strain, the rfective str^s can be obtained by using Von-mises Criterion, 

o-e// = -^ [(ffi - 0-2)  + (o-i - 0-3)  + (0-2 - 0-3) ] = (2.23) 

+ 

l-2u 
1-v 

ffi 

From 2.23, we can obtain Hugoniot elastic limit (The critical normal str^s beyond which 

inelastic wave will be generated under the state of uniaxial strain): 

l-2i/ " 
(2.24) 

Experiments on shock-loaded metals have shown that relation 2.24 works very well and ratio 

betw^n HEL and IQ is around 2v « 1/3 for most metals. However, for brittle materials, 

Rosenberg , ba^d on the studio of shock wav^ on c«ranii<», su^ested that Griffith's yield 

criterion should be used. Griffith's biaxial-str^s criterion pves the following equation for 

the yield surface: 

(ffi - a^f + So-o (ffi + 0-2) = 0 (2.25) 

Realizing that the compr^sive strength, according to this relation is lo = Stros so the 

Hugoniot elastic limit in thk case is 

HEL = 
1-v 

(1-21.) 
2Y0 (2.26) 

which differs from 2.24 by an additional factor of 1/ (1 — 21/). Becent studies suggrat that 

HEL may not be an elastic limit, but rather, may be a transition in failure mechanisn^. 

More generally, the Von Mis^ yield condition stat^ that the materials is behaving elas- 

tically if 

J2 < IY (2.27) 
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and behaving plastically if 

1 
h > §F' (2.28) 

where Jj is the second inwmant of the str^s deviation tensor. 
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niaxial strain 

Figure 2-6: Stress - strain relation of ideal elastic-plastic material. 
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Chapter 3 

The impact response of layered 

heterogeneous systems subjected to 

plate impact loadings 

Before investigation of the impact response of hetero^neous materials, it is convenient to 

demoiMtrate an example of simple elastic stress r^ponse in homogeneoiK matmals mider 

plate impact for the purpose of <»mparison. Fig. 3-1 shows one example of aluminum 

impactor impacts another aluminum plate with initial velocity of 3tt)m/s. It is assumai 

that this impact velocity is low such that the HEL of the material is not reached, and thus 

the matmal exhibits elastic response. 

The maximum strras for elastic wave piwpagation, as mentioned before, for two plates 

made of the same materials, the particle velocity for target plate (initially at r^) O" = 

PChVpartimi = 2.7 X 10^ X 6.623 X 10' X (I X 300) m/s = 26.8 khar. Time to reach the bads 

of the target plate (the thidkness is 20mm): t = -^ = ggff^^. = 3.02^s. Time to reach 

the back of the flyer plate (the thickness is 5mm): t = — = ««,t?^ / = 0.755us. Hie 

corresponding X-T plot of wave propagation is shown in Fig. 3-1. From this figure^ we can 

see again that, for plat^ of the same materials, no reflected wave is created in the interface, 

incident wave is transmitted completely. And the str^s in point G (where the distance to the 

bade surface is equal to the thickn^s of the flyer plate) is teiaion and 2(T in the amphtude, 

in many cases for brittle materials, this is where spall will happen. 
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Figure 3-1: X-T diagram of altiininTim plate impacts another aluminum plate 

From Fig. 3-2, it is obviotis that the str^ amphtude remain exactly at the same level 

before the incident compi^sive wave reaches the back surface of the target plate. After 

that, however, the release wave created from the free surface or the <»mer tend to cause 

dispersion. 

In order to study the eff«;t of planar interfaces, as is the case in laminated compcsite 

systems, it is appropriate to simulate a layered c»nfiguration, and this approach is taken 

in this work. In this paper, we examine only the rise characteristics of the signal, i.e., the 

slope ^Ij.. For the time being, we will focus our attention on elastic materials, hence one 

should be cautious in extending the results to a generic nonlinear material system. We have 

developed an analytical solution to the problem of multiple reflaitions/transmissions in the 

layered system. The solution relates the cumulative amplitude of the strras wave arriving at 

a given section in the body as a fimction of time when the body is subjected to a shock wave 

at the front surfa<«. Such a study wil not only provide a fimdamental understanding on the 

shock response of heterogeneous materials but also provide a better guidehne for postulating 

a physically acceptable equation of state. It is noteworthy to realize if the target plate were 

to be a homogeneous material (for example a metal), then the head of the shock front wiU 

be planar (vertical stress rise with zero rise time), followed by a dwell time t»rr^ponding to 
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Figure 3-2: Normal stress profile of Al-Al elastic 

the arrival of release wave from impa«tor back surfa^, and a sloping pull bade signal. Tlie 

dwdl time and pull back signal shape are affected by a nmnber of factora including arrival 

of release wavra from different sources (e.g. target back surface, aimers, internal damage 

surface and the acceleration of wave sp^d with pr^siuB), The rise portion of the response 

is primarily affected by the shock front behavior, with the exception of damage and viscous 

effects. Thus we are concerned here only with the rise characteristi<» of the layered structure 

under plate impact and examine why it m different from that of a monolithic metal. 

Our approach in this work is to examine the r^ponse of elastic wave as it enojunters 

an interface, be it be flber/matrbc or different laminae and compute the multiple reflec- 

tion/transmissions. For this purpose, we develop am analytical model for a two-material 

layered system in action 3.1.1. This section is rather long but self-contained in providing a 

relationship betw^n the number of laya^, properti^ of the material, the arrival tim^ of 

transmitted/reflected wave trains at a pven location. Rirther we provide numerical solution 

to selected material/layera combination. This section is used to illustrate the possibility that 

rise time may c»mprise of many wave traiiw arriving at a given section over time leading to 

the oteerved slope, we present the comparison of finite element solution with the analytical 

solution. In action 3.1.3., we present certain c»nsequen(«s of the analytical solutions. In 

section 3.2, a late time analytical solution is presented and this solution is based on the 

solution for imit step loading «>ndition. Equation of state is incorporated for shock loading 
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conditions. In the final section we summarize the results. 

3.1. An analytical model to study the rise characteristics 

bas^ on multiple reflections in layered composites 

3.1.1. Solution method 

Consider a layered <»mposite system with alternate layera of materials A and B arranged in 

succession as shown in Figure 3-3. Let us assume that materials A and B are both iajtropic 

with known stiffiiess, strength and acoustic properti^, denoted with sulwcripts A and B; for 

example, BA reprraents the Young's modultis of material A and pg the density of material 

B. ff there are 2L+1 la^re in the system, then there are L+1 layers of material A and L 

la^rs of material B with 2L interfaces. Let aj he the incident ampHtude of stress in the first 

layer of A. This can be construed as the magnitude of high amplitude compr^sive shock 

wave impeded as a r^nolt of a plate impact tx>ndition. As the ^^ve trails through material 

A, it encounter the first interface A —> B. At the interface b«miMe of acoustic impedance 

mismatch, there will be partial transmission and rest reflection, as shown in Figure 31. Let 

o-yibe the transmitted wave into material B, aad am be the reflected wave. Here the second 

sulecript 1 represents the wa¥e interaction event 1 at the first interface between A and B, 

The ratio of ^ and 2^can be written as, 

 = —-^r-, TT = mi (3.1) 

fRi _ PB^B - PACA _ ,    . 
 ~       ri—; 75~ = "^2 (o.i) 
<rj       PACA + PBCB ^     ' 

Hence after the fiist interaction with the interface A —»^ B we have, 

(T-rx — miff/ and aju — m^aj (3.3) 
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We note that with every la^r, as a wave interacts two wa^ emerge, one transmitted and 

one reflected. Let us now pro<»ed with the transmitted wave designated with the amplitude 

(TTI interacting with B -* A. Let <JT2 Le the transmitted wave and am the reflected wave as 

a result of the recond interaction. We now introduce two more constants m% and m^ as 

ffra _       'J'PACA       _ (^m     PA^A - PB^B _ ^ .„ ^N 
  —  — 77- = Wl3  =  — —— = 1714 ("•'4) 
ffTi     PACA + PBCB ffTi     PACA + PBCB 

ffn = wiaari = mim^ffi (3.5) 

am = m^aTi = mim4ai (3.6) 

Proceeding with the same argument, the next interaction wil be with that of A —*■ B 

leading to 

(FTB = miffT2 = mfmso-j (3.7) 

o^m = m2<rr2 = mimamsai (3,8) 

and with the next interaction 8.t B —>■ A str^s levels 

aT4 = msa-Ti — mfm|o-j (3.9) 

<^BA — W140-T3 = mfm3m40-j (3.10) 

are reached, 

A. First Transmitted ^^^ve after 2L layers 

We are now ready to generalize the magnitude of transmitted wave after %L interactions 

for a system comprising alternating L layers of A and L layere of B. This trairanitted 

wave repr^ents the head of the shock wave and the first to reach any given point in the 

dowi^ream of the wave propagation, as shown in Figure 3-5. 

OT%h = fn^OT{%h-\) = m\m\ai (3.11) 

which is intuitively obvious since there are L interaction from A —* B and another L 
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Figure S-3: Schematic of la^iwi system. 

interactions with B —* A interfaces. 

We focus our attention on the head wave (see Figure 3-5) which is the very firet wave to 

arrive at a given action. This head wave represents the wave that is always traiwmitted at 

all the interface as shown by equation (3.11). For the purpose of illustrations "we analyze a 

combination of material systems that are used for a variety of appUcations. The table below 

shows the value of mi,m2,m3 and the product TOima. For the sake of convenience; let us 

define an impedance mismatch factor 1 = 1 — mims,(I = 1 repr^ents infinite impedance 

mkmatch and I — 0 leads to no mkmatch) which is a fimction of a given pair of materials. 

/ repr^ents the fi-action of transmitted energy to that of incident one, after a pair of trarw- 

ml^ions at A/B and B/A interface. For example in the case of Aluminum-S2 Glass this 

product is 0.996, while in "Brngsten-Plexiglas it is only 0,108. While the former system allows 

most of the energy to be transmitted, the latter system wiU reflect most of it for dissipation 

in many more scattering events. Hen(» the sti^s amplitude in the Alimiiniun-S-2 Glass the 

head ^rave will be quite high and that in "Binpten-Plexiglas system it will be low. It is also 

to easy to s^ that with a low initial head wa^, further arrivals will build additional sti^s 
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Figure 3-5: Head wave and succ^ive wave trains in a layered system 

over time resulting in str^s build up over time^ leading to a slower starting rising dope. 

Table: Material impedance mismatch. 

Figure 3-6 shows the intensity of the first transmitted wave train (head wave) for different 

material systems as a function of the number of layers. The behavior can be clarified into 

three distinctly diferent categories. Type 1, is one in which almost all the intensity of 

incident wave is transmitted with very Mttle under reflections, (e.g. steel-copper and A1-S2 

glass). This behavior is similar to that of monoMthic material where there is nearly no loss 

of energy dtiring transmi^ion. Such is the case for this group where the a«>ustic imj»dance 

of material A is close to that of B, leading to / w 1, and m2,m4 « 0. Sharp rise time is 
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exp«;ted in this case as — « 1. 

Figure 3-6: Str^s intensity of head wave in a layered system 

Type 2 represents the other extreme to the l^pe 1 where we have the head wave with 

very low ■ralues of ffr (e.g. Tungsten-Plexiglas). In this case / « 0 with | m2 |« 1 with most 

of the scattering at the interface iresulting in reflection rather than trat^miffiion. Peak -walue 

of str^s 0"r will be much lower than o"/   when some release wave arrive; in any case the 

bepnning slope —— will he very low. 
at 

Type 3, is an intermediate case where impedance mismatch I is neither close to 0 nor 

1 (e.g., copper-Alimiimim, glass-resin). In this case the slope of the rise curve -— will be 
at 

moderate. Of courae, since the head wave intensity decrease with number of layers, the 

slope win decrease with increase in number of layers. 

B. Arri-^ral of second wave train &t x = 2L 

Let us (»nsider a location x = 2L downstream of the incident shock wave which c»rre- 

sponds L + 1 layers of A and L layers of B. For the sake of convenience let IM also assume 

that the thickn^s of the individual layers of -i4 or B is such that the time of flight is identical. 
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Thus 

hi  _ h2  _ h  _ h4 _ _ h2L-l _h2L _.    _.    _.^ ,„ ,„. 

where Cj^ and CB ai« the wave speed in materials A and B respectively. We should also 

note that in this analysis we neglect the increase in wave speed as a rrault of prevaiMng 

compi^sive str^s in the material. Based on this assumption, the head of the shock wave 

arrives at 2Lt* from the time of impact when t = 0, 

As seen in Figure 3-5, the second wave train arrives after one pair of internal reflections 

within either the material A or B. Thas the niunber of wave arriTOl at the station after a 

time 2Lt*+ 2t*will be 2L based on the number of interface. We should note that this means 

the i^cond wave train arrive at the station after an incremental time of 2t* after the arrival 

of head wave. Since the pair of internal reflections will be of the type A —> B and A —>■ B 

within the material A and B —> A and B —> A in material B the factor to multiplied for 

the intensity wiU be m| and m| respectively. While there are L reflections within material 

B, there will be L reflections within material A. Since the reflection in the firat layer A 

n^jds to reach the impact surface and then <x)me back, the intensity of this wave depends 

on equation of state and flyer plate properti^. For the sake of simplicity in formulation, we 

assume the impactor is material B, so that we do not have to distinguish the wavira that 

are reflected inside from the on^ that are reflect«i from impact surface. Thus the stress 

ampHtude of the ^ojnd wave train are operated into 

<^Si = (mlL + mlL)I^ai (3.13) 

The above equation can be simpHfied using the identity m2 = —m4 mt that 

o-^^^ = 2L • m|/^ ai (3.14) 

C. Third and iV*^wave trains 

Proreeding in the similar fashion, the number of wav^ in the third wave trains that 

can arrive at » = L{CA + Csji* at time 2Lt*+ 2(3 - l)t* wiU be any branch of waves 
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that has exactly two ptire reflations in 2L layers. We can easily calculate the number C^' 

of waves that has exactly two reflectioi^ in 2L layers using the rulra of permutations and 

combinations. If we assume that the numter of layera is n, then for n=4, 5, 6, 7, 8 to m, C^' 

wiU be 10, 15, 21, 28, 36, ,..[10 + 4 * (m - 4) + (1 + 2 + ... + (m - 4))]. However, there is 

yet another possibiMty. Here we have one reverse transmission (travehng backwards through 

two neighboring layers) and then one reflection, and the number for this type is d^ignated 

as Cj,£ ( Cy,^ = 2L — 1 in this system). Every traiwmission always aca>mpany reflection 

and rrault in tensile strras wav^. So the simplified str^s amphtude of the third wave train 

is given by 

cri. = (Of mf-^'ji, _ 41^/^1)^, (3.15) 

and this wave train arrive at a time lag of 2i* after the 8ec»nd vmve or a total elapsed time 

of 2Lt*+2(3-1)4*. 

Generalizing to the iV* wave train, the number of wavra will be calculated by t»nsidering 

possible nimiber of reverse transmissioiK/reflection combinations. For JV*"* wave train, The 

maximum possible UTmaber of reflections in this wave train wifl be iV — 1, that is, pure 

reflections without reverae transmissions. In 2L layeis, the number of such possibility for a 

given nxmiber of reflections K is fixed and aligned to be CK here. Then the left ^raiable 

reflojtioia wifl be iV — 1—if, the number of transmissions in 2L layers with K reflections can 

be designated as CTR. AS a result, the total number of waves that go throiigh I reflections 

and N — 1 — K reverse transmissions in iV* wave train is CKCTR. Obviously, this niimber 

is a function of mraiber of layera and wave train number N. Then the total stress amphtude 

is given by 

JV-l 

^T2L — 2^1~1) ^Kf-'TRnh   I ^  (Tl (3.16) 
K=l 

with an arri-ral time lag of an additional 2t* from the previous (JV — l)*** wave train with a 

total claimed time of 2Lt*+ 2{N - 1)**. 
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The simplified cumulative stress up to iV* wave train can be generalized as 

N   W~l 

a,!^ = I^ai + £ £ i-ir-^-^'CKCTRmfl'^-'-^+^ai (3.17) 
Tr=2 K=l 

D. Anal3d;ical Solution to the rise time in shodc waves 

We have in the last few actions succ^ded in determining the str^s ampHtude of succra- 

sive ^ra,ve trains arriving at a ^ven plane in regular increments of M = 2t*. We have thus 

built a relationship of o" = fr(t) with the basic assumption that the str^s intensity builds 

up over time as a result of different waves arriving at a section after suffering a seri^ of 

reflections/transmissions at various interfaces over time. Thus we have a^** = a^^~^^** +Aa 

m determined by equation (3.17) r^ulting in the pr^iction of rise characteristics in the 

shock wave signal. The slope J will of asurse depend on the material combination (with 

different mi, ma, ma and nti) and the number of layers (2L) where the shock sipial is being 

analyzed. 

3.1.2. Numerical/Analytical Solution to the Cu/Al multi-layered 

system 

For the purpose of illustration, we ^lect Cu/Al multilayered system with the total number 

of layers ranging fi»m 2L = 4,8 to 16 and apply the above analytical solution for the case of 

plate impact with Al as the flyer plate. Figure 3-7 (a) shows the schematic of the layere with 

5 mm Al flyer plate impacting the layere. The str^s profile at the point D (mid point of the 

10mm plate) is compute! using both the analytical ablution and numaical solution using 

an exphcit finite element <»de (EPIC95 r^earch veraion). Tiaee different layered ^sten^ 

with different number of layera were studied and the r^ults are shown in Figure 3-7 (b), (c) 

and (d). 

The wave profile oansist of ste^ and eadi step represents the arrival of a new wave 

train at the point D. The horizontal portion of the profile indicates the time delay between 

the arrival of succ^sive wave train. We can see from the figure that the intensity of the 

first arrived wave redures firom 2L = 4 to 8 to 16 (from 2.76 Gpa to 1,0 Gpa). Also it 

takes approximately 2 wave trains (0,89 * 2^s), 2 wave trains (2 * 0.45 us) and 3 wave trains 
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Figure 3-7: Rise characteristics of alternating layered Al - Cu (a) Schematic configuration, 
(b) 2L=4, (c) 2L=8, (d) 2L=16 

(3*0.226/«s) to reach the peak value before the release wave arrive from a host of source. As 

we extend this obserTOtion to a large number of layers, then even the analytical solution will 

show significant stepped increase making it more or tos <»ntinuous curre. The analytical 

solution shows that a given wave arrf-ws at one instant of time thereby producing a vertical 

segment. It can be seen that the analytical solutions match the nmnerical simulation very 

well for 4 and 8 layer cases (Figure 3-7(b) and 3-7(c)), re^ectively. Numerical simulation 

shows that a given wave arrives in an incremental time step indicated by the slope of the 

step. This can be ascribed to the ^juation of state that predicts that each wave train (except 

the head wave) comprise many sub-wav^ with slightly different wave velociti^. This effect 

of ^mve spreading increase with pressure/wave train number as is seen in the third wave 
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train of Figure 3-7(d). Agreement between the analytical solution and numerical simtilation 

clearly shows that the stq>ped str^s profiles are due to the scattering pro<»s^, 

3.1.3. Some consequences of the analytical solution 

Ba^d on the above analysis, it is evident that the rise tune will be significantly afifected by 

the scattering characteristics and the number of layers in the interface. 

A. Scattering Charactertatic^ 

As the shock wave arrives at an interface, its ability to trammit/reflect is determined 

by rui^ m2, and ms. As diseased already the impedance mismatch factor / determines the 

strength of the head wave. l£Ic:il then most of the wave will be trarwrnitted and we expect 

a sharp rise curve. On the other hand, if / ci 0 then most of the energy in the wave is spent 

in internal refl«;tions r^ulting in a slow build up of stress. Of comm the rise of compr^sive 

stress will be interrupted at any point when a tensile release wave mmm to that point. In 

such cas^, we may be misled by the rise time profile <»nftising the amphtude reduction with 

attenuation. 

B. Number of layere 

As the number of layers increase the rise time slope will be reduced provided the head 

wave strength is low. If the head wave strength is high (/ c:i 1) then a vertical rise occurs 

irrrapective of the number of layers. Figure 3-8 shows the change in the slope (defined in 

Fig. 3-8(b)) for thr« different combinations of materials. As indicated in the figure, the 

systems repre^nt high, m«iimn and low level of impedance mismatch. For a giwn nimiber 

of layers, the higher the mismatdi (lower the I-value), the slope d«;reasra indicating that it 

tak^ a lon^r time to reach the peak stress value. For a given material ^stem (and hence 

I), the slope increases (sharper rise time) with increase of the number of layers. It should 

be noted that in these analyse since the total thickn^s is fixed, increasing the number of 

layers d«;reas^ the thickness of each layer. 

3.1.4. Summaiy 

Shodc wave profile in composite systems show marked difference fi-om that of metafile sys- 

tems. It is postulated that numerous fiber-matrix and lamina-lamina interfaces present in 
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Figure 3-8: (a) Schematic configuration (b) Definition of the rising angle (c) Bruits 

composite systems offer potential sit^ for scattering; such sit^ being characterized by ma- 

terials with aroustic impedance mismatches. Though composites provided motiwtion, we 

have analyzed multi-layered heterogeneous systems in this work. 

The rise time characteristics is explained as the manif^ation of multiple transmis- 

sion/reflections occurring at the various interface resulting in the Ims of strength of the 

head wave. As the wavra arrive at a given location with time it resets in the slope of str^s 

vs. time signal. An analytical model capturing these proc^s^ haw been developed. The 

aaalytical model predicts the rise time behavior, FEM is then used to corroborate the results 

for a simple bilaminate system. A good agr^ment between analytical and numerical r^ults 

clearly supports the hypothrais that layered systems will suffer rise time slope change with 

inherent acoustic unpedance mismatch between layers. Other factors that may affect the 

thermodynamics of the shock fi-ont may haw to be considered careMly before this a^ertion 

can be made conclusively. 
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3.2. Late time solution to the plate impact problem 

3,2.1. Background 

Wave propa^tion in a periodic layered medium has been studied extemively for decades. 

Historically theoretical work on wave propagation studio in layer«l systems has followed the 

mathematical solution to ordinary differraitial equatioi^ with periodic coefficients attributed 

to Floquet [14] that datra back to 180(fe. As early as 1956, Rytov [15] obtained a disperaion 

relation for one-dimensional longitudinal wavra propagating in a periodic laminate. Later 

Stm, Achenbach and Herrmann [16] obtained the dispersion relations for harmonic wave 

propagating parallel and normal to the direction of the layering using the effective stiffii^s 

thwry for a unit step loading at the boxmdary. Peck and Gurtman [17] studied the wave 

propagation parallel to the layers and obtained the asymptotic ablution through approximar 

tion under similar loading conditions. Sve [18], Chen and CHfton [19] predicted the late-time 

asymptotic solutions and the wave front solution for wave propagation normal to the layers 

for imit step loading at the boxmdary. 

A schematic of free surface particle velocity of the target measured iwing a VISAR or 

the ojmpressive stress measure! using an embedded stress gauge is shown in Fig, 3-9. The 

portion of the plot indicated by the letter A represents the arrival of an elastic shodc wave 

from the impact plane. The material particles are ojmpr^sed elastically (A-C) until the 

relatively slow moving plastic shock wave arrivra at the given location. Typically, the shape 

and time duration of the portion A-C depends on the strain rate sensitivity of the material 

and the distance from the impact plane. If the shodk ampHtude is below the elastic limit, 

the profile typically follows the portions AC - CE. The rise time is usually of the order of 

tes than a micr(««»nd for metals and <»ramics. ff the shock amplitude is above the elastic 

limit, then the plastic shock takes the particle velocity to the peak betwwn points D and 

E. The peak level remains the same until the elastic unloading wave arrive from the back 

of the flyer plate. Therefore, the portion between D and E remains relatively flat. The 

elastic release (textile) wave drops the velocity (or str^s) to F and the plastic release wave 

droiw the level further to H, Often, the release portion of the wave profile exhibits a typical 

structure that consists of the elastic release, the transition (F-G), and the plastic release. Fig, 

3-9(b) shows the schematic of a typical shock r^ponse of a layered <»mposite system. The 
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Table 3-1: Review of major past woifc (tone in studying wave profiles in alternating 
layeral s^tems under plate impact 

Author/ 
Year 

Material system (target) 
Experiment 
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Observations or Results Method/ 
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interpretation of tMs proffle is extremely difficult without a wave anal^is due to the al^n<» 

of a clear wave structure. SiiM» the stress or velocity profile is a r^ult of superpositioiM of 

numerous wave reflections at the interfaces, the stress level at i?i is an intermediate sti^s 

state. This level is determined by the sequential arrival of many wave trains at the point of 

measm-ement. AiRi shows a dispersed ^ra.ve structure with a longer rise time <»mp>ared to 

the rise time in a target plate of a homogeneous material. The osciflatory portion Ri — Bi 

at the peak level indicate the arrivals of several release and compressive wavra. The pulse 

duration beromra a fimction of not only the thidm^s and wave speed in the flyer plates, but 

also on the number of interface and wave speeds in the heterogen«>us system. In layered 

systems, planar interface interact with the incident shock wave generating trai^mitted and 

reflected wavra, their amphtud^ being determined by the impedance mismatch. This factor 

should be expHcitly considered in evaluating the shock r^ponse of layered systems. In 

woven fabric based enpneered compcwite sjratems, such as the GRP, the interface between 

fiber and matrix and between different laminate, various lay-up sequence with different 

ply orientations and different forms of fiber arrangements within the matrix (particulate, 

planar, 2D/3D woven) al <»ntribute to dispersion. It is often very difficult to interpret the 

measured wave profiles in GRP which lack clear wa^re structuires and exhibit significant wave 

attenuation and dispersion. 

<^ 

C D 

B 

Tin» 
(a) HomogeneoiB metals 

sfi 

'      Time 

(b) Layerai composite 

Figure 3-9:  Schematic wave profile of homogen«>us metals and layered a>mposit^ for a 
finite thickn^s flyer plate. 
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Table 3-1 summarize the major past work in studying wave profile in alternating lay- 

ered s^en^ using the plate impact t^ configuration. Lundergan [20] (1971) numerically 

simulated the iBsponse of a layered material system with varying thickn^s. The simulated 

particle velocity i^ponse exhibited a slow rise time and an cecillatory peak as olteerved in the 

experiments. However, there was a mean stress level about which the stress level oscillated. 

The idea of replacing the disperaive, hetero^neous comproitra with an eqxiimlent homo^n 

neovs dissipative «)ntinuum was first proposed by Barker [21]. A general nonHnear Maxwell 

(viscous) model was proptreed to simulate stress relaxation from an ii^tantanTOiw state of the 

mixttire to the equilibrium level. In addition, Barker obtained oscillatory str^s solutions 

by explicitly modeling each layer using a str^s wave propagation ba^d one-dimenaonal 

code. Barker successfiilly validated the viscous model for the composite equation of state 

through matching the average! str^ r^ponse in the oscillatioi^ from the code. In 1974, 

Barker[22] fiui;her validated his thoiry i^ing r^ults from experiments in which a low volume 

fraction of aluminum was i^sd in a PMMA/aluminum based layered s^tem. However, in 

general this model fails to predict the structure of the str^s waves (rise time, peak str^s 

and (Mcillations). 

While carrying out impact experiments on layered Cu/PMMA systems, Oved [23] (see 

Table 3-1) noticed significant oscillations in the str^s wave profile. As can be seen in the 

corr^ponding figure, the oscillations occur about a mean value (callai mean stre^). When 

the ampMtude of c»cillations is sutetantial, Oved jwinted out that oscillations do not vanish 

with distance of propagation m the shock region. Conrequently, oscillations should not be 

ignored but it should be expHcitly modeled. More recently Kanel [24] confirmed the harmonic 

oscillations in experiments on Cu/PE system. He proposed a relaxation model similar to 

that of Barker, though the physics behind the models were quite different. The main thrust 

of Kanel's approach was to obtain the nonequilibrium pr^sure (the difference between the 

Bayldgh line to the final state and the equihbrium pr^sure <»rresponding to the Hugoniot 

curve) by assuming an empirical kinetic relationship. 

DandelfflT [25] reported r^ults from plate impact trats on a wjven fabric (x>mp<»ite. 

The measured VISAR signal revealed an c^cillatory peak stress behavior and a long rise 

time. Boteler, Rajendran, and Grove [1] fiirther conducted a rombined experimental and 

computational study on str^s attenuation and dispersion m S2 glass fiber reinforced plastic 
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(GBP) laminate. The stress profile at three different distan<«s from the impact plane were 

measured using embedded PVDP gauges. They observed that the rke time increased and the 

average peak str^s reduced with propagation distance. Some oscillations were olwerved at 

the peak str^s in the first gauge, which was clever to the impact plane. The stress historic at 

locations significantly away from the impact plane showed no oscillatory behavior at the peak 

level. Their computational modeling using a three dimensional viscoelastic model matched 

the attenuation of the stress, but failed to reproduce wave dispersions, 

Clements [26] [27] proposed a modified tmit cell method to modd wave propagation in 

alternating Epoxy and Epoxy-graphite system. Only r«»ntly, Zhuang [28] conducted a thor- 

ough experimental investigation by performing a large number of plate impact experiments 

in selected material systems involving alternate units of either polycarbonate and stainl^s 

steel or polycarbonate and ^ass. In his experiments, both the quasi-harmonic osciEations 

and the finite rise time were observed in different systems. The effects of impedance mis- 

match, interface density, propa^tion distance as well as loading strength were examined as 

the basic parameters in his experiments. 

In the study of wave propagation in soMds, scattering, disperaion and attenuation play 

a critical role in determining the thermomechanical response of the media. Th^e phenom- 

ena can be attributed to a nimiber of nonhneariti^ arising from the wave characteristics, 

loading c»nditioiM and material heterogeneity (meastu-«i at various spatial scal^ ranging 

from nanometers to a few millimeters). The nonhnear effects in general can be ascrib«i 

to impedance (and geometric) mismatdh at various length scales as often encountered in 

composite material systems. In addition, material nonlinearities (inelastic effects) can arise 

due to void nucleation and growth, microcracHng, and delamination. The strong shock 

waves generated under high velocity impact loadirrg often induce nonlinear efects in the 

deformation and failure behaviors (N^erenko [29]). 

Present authors (2002) showed that the ol«erved structures in the measured stress wave 

profile in layered systems under low velocity impact loading condition oovM be explained 

throu^ modefing the scattering effects at planar interfaces. However, under high velocity 

impact loading where strong shocks are generated, it is fiilly realized that material nonlinear 

effects may play a key role in altering the IMSIC structiure. Therefore, it is important that 

models that d^cribe the wave structures include equation of state for each material in the 
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periodic layer^ system. 

3.2.2. Problem formulation and solution methods 

Consider two semi-infinite bodies Oi(—oo <y,z < OQ,0 ^x < oo) and O2 (—00 <y,z < 

00, —00 < ^ < 0) sudi that they are initially separate! and then impact each other with 

velocity If — VQ i in the x direction. As shown in Fig. 3-10(a), without loss of generality 

we can a^ume Qi to be fixed in spa<« and O2 impacting on the entire x = 0 plane. Upon 

impact, str^s wav^ are generated on a plane parallel to the imjmct plane and travel in the 

negative x direction in O2 and ptwitive x direction in Oj with wave velocities determined by 

the material properti^ of these two bodies. The ampHtude or strength of the stress wave is 

detemainwi by the velocity of impact VQ and the acoustic impedances of Oi and Qg. As the 

wav^ propagate a^my fix>m the impact plane, the bodies fli and O2 are in compr^sion with 

a uniaxial state of strain £2 ^ 0 and all other a)mponents ey = 0 (for i,j = 1,2,3 except 

i = j = 1), The problem is to find the state of strain and str^s in the compressed region 

given the velocity of impact and the material pK>perti^ of the two bodies. 

This plate impact problem has long been well understood and sucressfiiHy modeled when 

Oi and Q2 are homogeneous. What we s^k here is a solution to the problem wh«i Oj is 

laminated as shown in Fig. 3-10(c) as a precursor to the practical plate impact t^t shown 

in Fig. 3-10(b). In the plate impact t^t (Fig. 3-10(b)), Q2 is called the flyer plate or the 

impactor impacting on Oj termed the target plate. The target plate is made of alternating 

layers of materials A and B with the impactor made of a homogeneous material C. All the 

materials (layers) are assimiM to be homogeneous and damage free with known mechanical 

{E, v), phyacal (p, and Equation of State) and a^oi^tic properties. Though the bulk of the 

paper assume a coiMtitutive relationship of hnear elastic, isotropic form, extensions to v&cy 

high stress r^ons are formulated by invoking the equation of state. 

In this work, we s^k solution to the str^s history in Oj as posed in Fig. 2(b). Tliis 

problem is identical to the problem in Fig. 2(c) if the thickn^s of the flyer plate (d/) and the 

target plate (dt) are much smaller compared to the lateral dimensioiM (radius of the plat^). 

In other ^rords, due to the geometry the strain state remains strictly one dimensional for the 

solution time duration. AIMJ both the thickness dj and dt are large enough not to permit 
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Figure 3-10: Schematic of the configuration for impact problem(a) two half spaces of ho- 
mogeneotis material; (b) general plate impact problem of layered systems (c) plate impact 
problem of two half spac^ with target being layered (d) The layered media under unit step 
loading. 

wa'TO reflectioiK from the free surfaces to interfere with the solution. 

The governing equatioia can be written as follows: 

Equation of Motion: 

da (x, t)        0^u (x, t) 
= Pi- dx at2 (3.18) 

Velocity ajntinuity: 

de     dv {x, t) 

at dx 
(3.19) 
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Constitutive mlation (Elastic laminates): 

a {x, t) = Efs (a;, t) (3.20) 

whCTe a{x,t) ,u{w,t) ,v{x,t) and £{x,t) denote the longitudinal etr^s, displacement; ve- 

locity and strain respectively. As shown in Fig. 3-10(b); the constants p^ and Ei {i = 1,2,3) 

r^resent the material deimtim and the elastic moduli for the xiniaxial strain of materials A, 

B and C respectively. 

Initial boundary condition: 

Stress, displacement and strain are zero at t = 0~: 

Initial loading condition: 

0- {x, 0) = 0 

*   u{x,0) — 0   for — DO < » < DO 

£(:E,0) = 0 

(3.21) 

V {x, t) = t?o for a; < 0 (3.22) 

Stress and velodty continuity (at ail interfaces): 

For wave propagation in a layeired meditun, the sti^s and displacement (»ntinuity should 

be maintained at aE interface: 

(a) str^s ojntinuity at x = hi+ Ld: 

o^a (hi + Ld, t) = cTj {hi + Ld, t) (3.23) 

where L is pcsiti'W integer repr^enting number of unit cells and hi {i — 1,2) are the thickn^s 

of layer 1 and layer 2, and the d m the thidoiess of the unit cell with d = hi + h2. 

(b) Str^s ojntinuity &t x = Ld : 

ffa {Ld, t) = (Xb {Ld, t) (3.24) 
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In the same manner; velocity <x)ntinmty &t x = hi+ Ld and x = Ld 

Va (hi + Ld, t)   =   vt (hi + Ld, t) 

Va {Ld, t)   =   Vb {Ld, t) 

Take Laplace transform of Eqs (3.18), (3.20) and (3.19): 

da {x, s) 
dx 

PiSv{x,s) 

(3.25) 

(3.26) 

(3.27) 

(r{x,8) = Efe{x,8) (3.28) 

dv {x, s) 
dx 

— se (x, s) = 0 

The solution of equations of Eqs (3.27)-(3,29) are in the form 

(3.29) 

where 

a{x,s)   =   aJ^\e^*'' + h \ e-fti^ 

Ki     —     KiS^Sj — 
Pt« 

lEiis) 

(3.30) 

(A,5) 

(3.31) 

(3.32) 

where Ci is pha^ velocity and can be obtained by 

Ci 
.Pi 

m 



For ordinary differential equations with periodic coefficients, Jloquet theory can be applied 

W{x,s)   =   e*W%(a:-d,s) (3.33) 

v{x,s)   =   e*W%(a^-d,s) (3.34) 

By ooiaidering the stress and velocity contintiity across » = fci,kt ^ = 0 in Ikjs (3.23) 

and (3.25): 

oie*!''^ + 6ie-*i^i   -   at^^^ ^hie-^^^ (A.10) 

* (&) ^"' - *' (-£) »"*" = - (S) ^'"' - '= (-&) ^-"- (*•"' 
Str^s and velocity continuity across m = d'. 

e*^(oi + bi)   =   026*="+ 626-*='' (A.12) 

gW fai^-6#^   =   a2^e*=^^ - 62^e-W (A.13) 

Eqs (3.35)-(3.35) have non-trivial solutions for only when the determinant of the coefficients 

is equal to zero. This condition yields the transcendental disperaion relation: 

cosh W = coshfeift-i coshfc2'i2 + - I -^ + —— I sinhfeift-i sinhfc2^2 (A. 14) 
2 \p2C2     PiCi/ 

where fc is wave number for the laminate, fcj and ^2 are frequenci^ for layer A and layer 

B, where ^1, h% and Cj, Cj are the thickness and the longitudinal wave velocities of the layera 

rrapectively. And A is the thickness of the unit eel, with A — hx-\-h>i,s& shown in Fig. 2(c). 

For steady -srave with frequency s, the dispersion relation can be written as 

coshM = cosh —h\ cosh —h^ + - ( -^^ 1- —— j sinh —h\ sinh —h>i (A. 15) 
ci <^ 2 \P2C2     P\Cx)        ci c% 

Therefore, the phase velocity for zero-frequency limit Co is obtained 

Co = r (3.35) 
1 5 

1   X**/ \^) \P%^        Pl«/   ci(2   j 
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In order to get the solution for plate impact loading, as will be discussed later, it is 

convenient and necessary to show the solution for the problem of unit step loading. For unit 

step loading, the fl^r plate vanishes and the boundary c»ndition for the target plate can be 

written as 

a iO,t) = aoH (t) (3,36) 

Its <»rr^ponding Laplace transform is 

ff(0,s) = — (3.37) 

The transformed str^s at distance x = 2ld can be obtained by Floquet theory 

£r(2Ms) = e*W— (3.38) 

The late-time solution can be obtained by the asymptotic evaluation of the integral 

1        pj+ioc 

a {2Ld, t) = —-, I        W {2Ld, s) e^ds (3.39) 

Now introduce a small time scale 

6 = t-x/co (3.40) 

By introducing 5, we remove the variable x in the str^s fimction in Eq. (3.39). Sulstitute 

Iqs (3.40) and (3.38) to Eq. (3.39) and assume p(t, S) is the str^s function with t and 6 

being the ^triabte. 

where 

g{s)   =   k{s)co 

h{s)   =   g{s) + s = k{s)co + i 

48 



For late time solution, we s^k an asymptotic representation of p{t, 6) for t -+ oo with 

fixed 6. Such repr^entation can be obtained by making the integration path follows a path 

of steep^t decent thou^ the saddle point SQ at which h' (s) = 0. This happens when s -+ 0. 

The expaiMion of about the saddle point will yield (for elastic case) 

../ .     h"'{0) 3 (3.42) 

where 

4 \P2C2     PiCiJ 
(3.43) 

So the integral of Eq. (3.41) becomes 

^     ^'  ^ da (3.44) 

Evaluation of the integral in Eq. (3.44) wil finally give an integral of the Airy function. 

a {x, t) = CTo 
1       f^ 
-+ I   Ai{-s)ds 
'J     Jo 

(3.45) 

where 

B= It cj \h"'iO)t) (3.46) 

The above solution for unit step loading follows Chen and CUfton's (1975) work. Also, it 

should be noted that Sve (1972) ewluated an integral analogous to Eq. (3.41) and obtained 

the same final restilt. 

Eq. (?7) provide the solution to the sti^s profile of a laminated system subjected to a 

unit step loading. Though it is tempting to specify the amphtude of this step as the strras at 

the impact plane at the time of impact, it will be shown later that this is not correct. Despite 

this, the stress rraponse of a unit step loading on bflaminates qualitatively displays all the 

essential features foimd in plate impact tests. Consider the case of bilaminat^ with material 

A as PMMA with hi = 0.26mm and B as c»pper with ^2 = 0.36mm. When subjected to 
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imit step loading given by Eq. (3.36), the stress history &t x — 10mm can be calcxilated 

using Eqs (3.45) and (3.^). Pig. 3-11 shows the stress hktory. It should be noted that 

in the figure that the effective s|>^d of CQ corresponds to the propjagating sp«d of ^ao. It 

can be seem, that the str^s rises with a specific slope (as opposed to a vertical ri^ for a 

homogenized material). Then the str^s cBcillat^ about an avera^ str^s equivalent to the 

applied stress CQ- In addition, the <»cillations are almost harmonic with the ampUtude of 

oscillations decaying with time. 
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Figure 3-11: Solution to the Unit step loading (»ndition in PMMA-Cu, 

3.2.3. Solution to the plate impact problem 

Problem as diown in Fig. 3-10(c) d^cribes the plate impact problem while late-time 

ablution in the previoiM section pertains to problem in Fig. 3-10(d), For a plate impact 

t^t, the body O2 is «>ntinuously in contact with Oj impMing initially a velocity boundary 

condition at a; = 0 and at t = 0 identical to the constant str^s boundary <»ndition in Fig. 

3-10(d). However, for problems in Fig. 3-10(c) the magnitude of loading on the boundary of 

the target plate keeps chanpng due to wave reflectioiM in the target plate. Let us supptwe o"o 

be the stress induced at the time of impact between C and A. AB shown Wow, additional 

stre^ increments are induced at the impact plane due to wave reflections from interface. 
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In this section, we formulate the stress increments as a function of impedance mismatch 

between the material A and B and between C and A. 

Incident wave: 

Upon initial impact of O2 on Oj, the incident wave with magnitude 0*0 is ^nerated at 

the impact instant, and the magnitude <Jo is gi-wen by 

P3C3 + PlCl ^       ' 

Second wave tmin: 

Fig. 3-12(a) shows the schematics of the wave traveling within the target body fli. 

The incident wave first trawk in material A. As it reaches the interface A-B, part of it is 

reflected back and the r^t of it is transmitted (shown in dotted line only for wave train o). 

This reflected wave arrive back at the impact plane after a time tt^ = 2ta = 2hi/ci. Str^s 

at the impact plane is altered by this new wave arrival given by 

A<Ti = rA-B (1 + TA-C) O-Q (3.^) 

where TA-B = fjf^ ^d TA-C = gf^. denoting reflection ratios at interface A-B and 

C-A r^pectively. Here C is the flyer plate. The cumulative stress level up to the se(»nd 

wave train at « = 0 at i^^ = 2ta = 2hi/ciia 

cTi = fTo + Ao-j = [TA-B (1 + TA-C) +1] 0^0 (3.49) 

Thini wave tmin: 

The propagation jmth of the third wave train depends on the ratio of the traiait time in 

layer A (*„) and that in layer B (4). 

a) If to — ^fj-j >tb— l^j, then the third wave train comes from the branch that has 

one reflection in layer B and reachra the boimdary at t = 2*^ + 2%, which is repr^ented as 

path 6 in Fig. 3-12(a). The str^s variation due to the wave train that follows this path can 

be calculated as 

Affi - [rA-B (1 - rl_B) (1 + TA-C)] ffo (3.50) 
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So, the overall str^s magnitude up to the tMrd wave train (still at the impact plane) is 

0-2=0-1 + Ao-2 (3.51) 

b)Ifta= (1^) <tb— 1^)5 then the third wave train follows path c, which go^ through 

two reflections in layer A and reach^ the impact plane at time t^^ = 4/ii/ci: 

^4 = rl_BrA-c (1 + rA-c) ffo (3.52) 

The overall str^s is 

0-2 = 0-1 + A4 (3.53) 

c) When ta= {^) =%— {^j ,the projmgatiag path of the wave trains is independent 

of the materials. So the third wave train comprises w&ves that follow path 6 and wavra that 

follow path c. As a result, the increment of this wave trains Aof are the sum of Eq. (3.50) 

and Eq. (3.52), so we have: 

CTj = o-i + Ao-f = 0-1 + ^<ri + At/j (3.54) 

Fourth wave tmin: 

The projmgation path of the fourth wave train that reaches the boundary of the target 

plate still depends on the transit times ta and tj. For example, If ta > 2tt, then the fourth 

wave train foEows path d and arrives at the boundary at time tff^ = 2to + 4*6, as shown in 

Pig. 3-12. 

A<^3 = [ri_B (1 - rl_s) (1 + TA-c)] ffo (3.55) 

And the overall stress up to the third wave train 0"3 is 

cra — 0'2 + Ao-3 (3.56) 

Also, if ta = tf,, then the fourth wave train contains the wavra that follow either path d or 
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path e. 
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Figure 3-12: Multi-step loading method (a) The wave trains that reach the impact plane 
from inside of the target due to reflections. 

The fifth, the sixth and additional wave trains that are generated later lead to stress 

increments Acr4, AcTg,.. Obviously the above analysis shows that the boundary conditions 

to be imposed on the target body Oi is not a constant but varies with time as a result of 

reflected wav^ coming from the interfaces. Thus boundary condition at a; = 0 comprises 

impact str^ CTQ ( called the head wave), folowed by the second wave train Ao"i after time 

to-j = 2ta! then the third wave train Aca at t^^ = 2ta + 2% (if ta > h) or at to-^ = 4to (if 

ta ^ tft)? the fourth wave train A<T^ at t^,^ and so on. The exact solution should consider all 

th^e str^s increments with specific time delays as the loading condition at a; = 0. Since 

the formulation is linear, the late-time solution to plate impact problem can be obtained by 

the method of superpcMition of xmit step loadings with steps corrraponding to incremental 

stress and specific time delays. 

Mean stress ermmn In the present problem, the target and the impactor materials are 

a^tmied to be of infinite thickn^s and hence the back surfaces do not exist. Wav^ continue 

to travel in the pt»itive a;—direction in the target and negative ar—direction in the impactor. 

Wav^ that arrive at the plane of the impact are those that have suffered multiple interactions 

in the target plate. The energy content of the newly arriving waves will in general decrease 

with time as more energy is being diffii^d away from the plane of the impact. Thus the 

incremental str^s contribution by late arriving waves will continue to d«3rease and eventually 
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vanish signalling the steady state conditions.   One can always identify the sequent n of 

arriving waves that corr^pond to any given arbitrarily low stress level e Thus 

EA., 
t>i» 

<e, (3.57) 

It can be clearly seen that for a given value of e, the value of n will depend on a number of 

geometric and material parameters. The above analysis indicates that a steady state stress 

value is reached at the plane of the impact (in reality throughout the domains fliand O2) 

and this value will be designated as (Tmean in the pr^ent study. 

0.5 1 

Time (microsecond) 

(a) 

as 1 
Time (microsecond) 

(b) 

1.5 

Figure 3-13: Comparison of the str^s history at the boundary of the layered syntenw betw^n 
analytical solution and 

In order to confirm the existence of ammn or Eq, (3.57), we can examine the plate impact 

t^ts of two different material systems comprising PMMA/Cu and PMMA/Al both being 

impacted by PMMA. Fig. 3-13(a) is the example of FMMA impactmg PMMA/Cu with the 

thickness ^i = 0.26mm, and ^2 = 0.36mm; while Figm-e 3-13(b) shows the stress history of 

alumimun impacting PMMA/Al. In both cases, the incremental str^ levels in the first few 

stejM are significantly larger than the suteequent stefs and the total stress finally (Mcillates 

about a steady str^s state (marked in dotted line). The analytical r^ults were ala> compared 

with nimierical r^ults using an explicit FEM code. The FEM r^ults (shown in thick dark 

hnes) indicate very similar trend in the incremental stresses all the way to the steady state. 
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This -walidat^ the existence of (Tmean and possible hypoth^is given inEq, (3.57). Thus it is 

possible to use the superposition of the first few stej^ to obtain the value of steady state 

stress O^jjieon- 

It should be not«i that OQ is the str^s at the instant of impact in a homogenous (as 

well as hetero^noi^) system, and is also the steady state value for the homogenous ^stem. 

For a heteiogeneous s^tem the steady state value is amemn-T^^ ratio ^asia. repr^ents the 

amplification factor induced due to the heterogeneity of the body Oj. Obviously this ratio 

is imity if Oj were to be homogeneous. BmcB the above procedure of computing c^mn is 

tedious and not elegant, herein we explore other means of obtaining the same r^nilt. 

The existence of the steady state su^ests rule of mixture as a pcMsible effective medium 

thaary. Thus invoking mlxtm-e theory, the density of the target body can be written as 

Po = Wi+ (!-»?) Pa (3.58) 

where fj is the volume fraction of the first <x)mponent (Material A). For low velocity loading, 

we can assume that rf is a>nstant with the relation 

^ = 1 (3.59) 

Since CQ reprints the effective «>und velocity in the laminate, the equi'ralent impedance 

of the mixtiire is "PQCQ. R-om the str^s a>ntinuity at the impact surface, we have 

(Tmean = P3C3 (% " %) = ^5^0% (3.60) 

where % is particle velocity. By eMminating %, the mean stress can be written as 

"mean — , ~ (o.OiJ 
P3C3 + PQCQ 

From Eq. (3.47) and (3.61) we can obtain the normalized mean stress as 

(Tmean _ P/C/ + PjCi PQCQ 

O"0 pfCj + PQCO PiCi 
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The above relation has also been plotted in Figures 3-13(a) and 3-13(b) and show that equa- 

tion (3.62) is capable of determining o'meon without actually computing many incremental 

stress levels. 

Multiple-steps loading The determination of arnean though very twefiil in computing 

the steady state respoiae of hetero^neous material, still caimot capture the wave structure 

that precede the steady state value. For this we still need to use multiple stejw as outlined 

below. We can now propose a solution that comprises n steps due to firat n wave trains. In 

order to make the final steady state reach o"„tea»j we set 

AfTre-i — ffmean ~ <^n-2 (3.63) 

For example, for a four-step method (when « = 4), the fourth step is specified by 

AcTa = Cfmmn — 0"2 (3.64) 

The whole loading history at the impact plane is shown in Fig. 3-12(b) and the solution can 

be written as: 

a {x, t) = 1 

^ <f <: t    4- — 
CO  - '' ^ ^^i + <% 

tcri + f < t < tcr, + CO 

a{x,t) 1^0 

0{x,t) lo-o +hai{x,t) \„^ 

a {x, t) (o^o + Ao-i {x, t) lo-, +Ao-2 (K, t) |„2 *^2 + f < * < *^3 + i 

a {x, t) 1^0 +Affi (a;, t) |^, +A<r2 (x, t) \^^ +t.a^ (x, t)^^   U^ + ^<t 

(3.65) 

where 

<T {x^ t) Wo' t^o 
1       f^ -+ I   Ai{-s)d,s 
*»     Jo 

A(rj{x,t)y.^Aaj 
1    r* 1 
-+ /    Aii-s)ds  ,i = 1,2,3,4 

The above equations can be M>lved similar to Eqs (??-??) 

(3.66) 
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Application of the analytical solution The late time solution predicts the stress histoiy 

from the ajntribution of the main distxirbance which is when s —>■ 0. So theoretically 

the late time solution is only wlid when t -^ oo and also is only valid in the infinity 

{x —* oo). However; if we decompose the incident square wave into Fotmer series, it is 

obvious that the <»efficients of the tenm with higher frequencies become monotonically 

smaller. Also, equation of dispereion relation means that the pha^ velocities for wav^ with 

higher fiBquencies are slower. Th^e two facts make sure that when x is sufficiently large 

the head of the pulse can be approximated by Eq. (3.65) with good accuracy since high 

frequency terms die out and cannot reach a rertain location a; at a given time. Based on 

this phenomenon, we can pcettilate that x* where head wave dies out can be considered 

as a reference location for applying the analytical solution. Thou^ rigoreiw proof is not 

provided, our numerical rraults <»mpar^ well with the analytical solution based on this 

assumption. With this referent location x* for appMcation, we piopcwe that for s < a;*, it is 

su^ested that superposition not be used and routine stepwi^ incremental str^s calculation 

should be performed, as shown in previous paper (Chandra et al.,2002). Since the head wave 

in s^tems with low unpedance mismatch dies down much slowly compared with systems 

with high impedance mismatch, the values of x* of such systems are relatively large. 

It is also imix>rtant to explore the least nimiber of ste|w n for obtaining the stress r^jonse 

with acceptable accuracy. At a fixed location, om- independent study shows that the accuracy 

depends on |5]J^„Ao-i| which is in turn governed by material hetere^neity. One major 

heterogeneity factor is impedance mismatch and it is shown that s^tems with very high 

impedance mismatch between A and B (equivalent to high r^.^ ) and small impedance 

mismatch betw^n A and C (small TA-O) in general yields small | J]J^„ Aai\. So we propose 

a simple one step loading method {n = 1) for such systen^, by assuming the equivalent 

loading condition 

o-(0,t) = a^eanfl'(*) (3.67) 

Though ffo is the impact stress at « = 0 and the loading magnitude reach^ a-mmn at time 

t > 0, Eq. (3.67) ignores the tune effect. Sutetituting CTQ by a^ean in the late-time solution 
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Eq. (??) we obtain the solution for plate impact as 

o" (a;, t) = (T„ 
ri    r^ 1 
-+ /   Ai{-s)ds (3.68) 

In order to validate the above ideas, we select PMMA/Al system with a high impedance ratio 

of TA-B = 0.71 and examine the effect of number of loading steps n on the accuracy of the 

solution. Pig. 3-14 shows the stress r^ponse &t x = 10mm (impact conditions identical to 

that in Fig. 3-13(b)), usingl, 3 and 5 steps. Numerical r^ults ming an expHcit finite element 

code is also pr^ented for comparison purpose. Fig. 3-14 clearly shows that 1 step solution 

giv^ sufficiently accm-ate r^ults for this case. Thougt the r^ults are not shown here, when 

impedance ratio TA-B is small (for example, below 0.4), the use of one-step method may not 

be sufficient and higher number of steps are needed. 

All the analyse presented so far, assume that the impact proems generates a smgle elastic 

wave that trawls away from the impact plane. When velocity of impact increase, the wave 

enters an elastic-plastic regune and with fiuiiher increase the wave teoom^ a shock wave. 

For both th^e cas^, the approach^ presented above need to be modified. For the case of 

shock wave, we prraent the neressary modifications in the next section. 

3.2.4. Approximate Solution for shodc loading 

In plate impact tests, the loading strength is usualy much higher than the Hugoniot Elastic 

Limit (HEL). In this case, the shock wave is generated. For laminated systems under shock 

loading, the shock wav^ propagate with supersonic velocity depending on the pressure. 

Therefore, it is nec^sary to relate shock velocity, density and volume to the particle velocity 

by means of Equation of State (EOS). A general EOS tak^ the form 

U^^Co + SiUp + S2ul + Ssul + ... (3.69) 

where 81,82 and 8$ are empirical parameters. Co is the sound velocity in a giwn material 

under zero pr^sure. For most metab (without porosity and phase transformation), Mnear 
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Figure 3-14: Comparison of roltitioM for Al impacting PMMA26/A136 at x=10mm. Com- 
parison between FEM remits and Analytical solutions using n=l,3,5 r^pectively. 

relationship between U, and % is sufficiently accurate and EOS is in the form 

Us = Co + SiUp (3.70) 

For materials other than metals, such as polymera, EOS with higher ordera is neo^sary. The 

density under high pressure (pj) can no longer be approximated as the original density. It i 

directly related to the loading strength Up-. 

is 

Pi ~ 1     iipiPui^ = lj2,3 

In the same way, the volume under high pr^sure (V^) is related to % by: 

(3.71) 

tt. 
U, 

Vf={l-^)Vo,i = 1,2,3 (3.72) 
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Therefore, in plate impact problem, according to this equation, the thickn^ under shock 

loading condition (^J) will be 

h^=(l-^^hoi,i = l,2 (3.73) 

New impedance ratio is approximately (A^ume that material 2 is harder than material 1): 

je = m s2 

m •si 
(3.74) 

It can be ^en from Eqs (4.6), (3.70), (3.71) and (3.73) that wave velocity, thickn^s 

and density for the laminates subject«i to shock loading all depend on the particle velocity 

While for elastic r^ponse, they remain constant. There is yet another difference between 

the shock response and the acoustic response. Across the front of the strong disturbance 

which is generated by extremely strong impact loading, velocity is not continuous. In other 

words, Eq. (3.19) is no longer valid. However, under low pressure to moderate, the shock 

wave is weak and the wave fix>nt is not very st«»p. So in this analysis we assume that this 

governing equation is still vahd for systen^ under low to moderate pr^sure. Therefore, by 

substituting the U^, pj and h'^ (i = 1,2) into Eq. (?7), we obtain the late time velocity for 

shock loaxiing condition (Us); 

U,= 
h{ + h'z 

{0^{^:fHR'^h)m 
(3,75) 

Similarly, we obtain the mean stress level for layered systems (ffj^„) con^ponds to the 

steady state solution by assimiing that the layers! ^stems is equivalent to the mixture with 

impedance po£4. Sunilar to Eqs (3.60) and (3.61), we have 

PoU,Up (3.76) 

where 

pWi s3 „ 

p'A+PoU, 
(3.77) 
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We have obtained the Urnmn so far, now we need to get the solution for the whole str^s 

history, ha is mentioned earlier the significant difference between shock ^mve and a«>ustic 

wave li^ in the fact that the velocity increase and impedance mismatch mries depending on 

the pr^sure. For an oteerver at a given location, the head wave propagates with longitudinal 

velocity in unimpressed media. So for a given location x, the arrival tune of the head waw 

IS 

•qx      {l—n)x 
H = 7^+     r (3.78) 

where CQI, C^ are the sound velocities in material A and B under zero pr^sure and rf is 

given by Eq. (3.59). Immediately behind the head wave, the high pr^sure ^ is achieved 

/ _ PsUsaPiUsiVp .^ _ 
OQ - —jf—;—iT" (3.79) 

So the high pr^sure due to the unpact instant with magnitude given by Eq. (3,79) is 

generated behind the head wave, the successive wave trails travel faster than the head wave. 

As shown in Fig. 3-12(a), the second wave train is generated by one reflectior^ inside first 

layer (m Material A). This wave train reach^ the impact surface after t£ fi-om initial impact: 

A,»      hi       h'-. 

As shown in Eq. (3.80), the time interval between the second wave train and the head wave 

is determined by the thidmess and wave velocity of the first layer before and after the arriTOl 

of the head wave, which are all affwted by the loading strength VQ. The time U^ when the 

seoand wave train arrives at location x is approximately given by 

A ,1        f}x {l — n)x 
U^=.At' + j-L^ + ^-—f- (3.81) 

Comparing with Eq. (3.81) and Eq. (3.78), we can see that the second wave train overtakes 

the wave fiwnt at a sufficiently large propagation distance x when the initial time delay At' 

is relatively n^Kgible due to (U^)^,^ > Cu {i = 1,2). In the same manner, it is also possible 

that the subsequent wave trains can catdi up with the firat and seoind wme train depending 
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additionally the properties of layer B. 

Tbxm the steps in the analytical procedure for determining the str^s respoMe under 

shock loading conditions are as follows: 

1. The shock velocitira Ugi, and the thickn^s fc{ should be calciilated by considering EOS, 

as shown in Eqs (4.6)-(3.73). 

2. The mean str^s aj,^^^ should be computed using Eqs (3.75) and (3.76). 

3. By considering the EOS effect, incident str^s O-Q is given by Eq. (3.79), incremental 

str^s values at the unpact plane A<4, Aa[... should be cdculated similar to Eqs (3.49) 

and (3.51). Unlras modification of reflection ratio is n^ded based on velocity variation 

with pr^sure. 

4. In order to take into account the 'overtaMng' effect and thm to predict the peak str^s 

accurately, the number of stei» n should be more than the steps it tak^ to reach the 

peak stress. Firat we need to determine if the second ^mve has overtaken the first for 

the given location x under comideration, K the second (and subsequent) wave has 

not overtaken then o^ and Aa[ should be superimpt^ed successively with proper time 

interval \t^i^ —1^>^\ At a given location where the head wave is overtaken by the second 

wave train, then the new wave firont travels with the second wme fitjnt. The firat str^s 

increment of is the sum of the strength of the initial head waw and that of the initial 

seojnd wave fix>nt 

4' = 4 + A(ri (3.82) 

Similar oirrections due to 'overtaking' effect can be made to subsequent steps if nec- 

^sary. 

5. Superposition of results based on time dependent str^s increments, sunilar to Eq. 

(3.65). 
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3.2.5. Results and disciBsions 

In tMs section we apply the developed method to solve a few additional plate impact problems 

and examine the impact of our solution prot^dure. We first demonstrate the need to use 

<^-mean for oslving plate impact problen^ rather than <JQ whidi is truly vald only for unit step 

loading. Next we show that if the impact velocity is low such that the material response is 

within the elastic regime, then we can use the elasticity approach. However, if the impact 

velocity is very high, the material entera the shock regime when we need to invoke equation 

of state to repr^ent the material behavior. 

Mean stress arman It should be noted that UQ is the stress produced at the time of impact 

and remains constant in homogeneous materials a>mpared to a.„^n the steady state sti^s 

obtained in a heterogena>us target material (see sections 3.2). In some sense ^oisaa. reorients 

the heterogeneity of the target system. Ilie Eq. (3.62) can be visuaMzed from Fig. 3-15, 

which shows the magnitude of ^^ of PMMA (matrix) bas«i compc^ites s^tems. Various 

polymer and metallic materials are used to reinforce the oamposit^. The figure shows the 

variation of ^^ with varying volume fraction of PMMA in the comproit^. Two ^ts of 

data are shown in the figure: the data in the solid line are for cases when the flyer plate is 

PMMA, while the data in the dashed fines are for the cases when the fl^r plate is aluminum. 

It can be ^en from the figure that ^^ can vary as much as 0.9 to 4.8. While ffo is the str^s 

induced at the time of impact (both in the flyer and the target plat^), o-„ieo« repr^ents the 

steady state str^s reached in flyer and the target at sufficiently long tune and is the r^ult of 

mtdtiple reflections at the various heter<»eneous interface. Thus this ^^^^ ratio represents 

the ampfification in the strras levels reached within the material ojmpared to that at the 

time of impact, and the figure shows that the ratio can be very high. Thus in order to 

correctly predict the strras levels we should use (Tmean and not O-Q. It should be noted that 

while CTQ is dictated by the heterogeneity at the impact surface (materials A and C) and of 

course the impact velocity, the magnitude of a^eon depends additionally on the impMance 

mismatch of the wmponents of the target materials (B and C) and their volimie fraction. 

Since the magnitude of Orman uniquely deternunes the steady state str^s in the materials 

subjected to plate impact loading, it m interrating to explore whether other th«)ri^ can lead 

to the same r^ult.  For this piupose ^m examine Dremin's mixture theory.   As shown in 
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Figure 3-15: The normalized mean str^s as a ftmction of volume fraction in different systems. 

Appendix B, the same efective sound sp^d for the equiwlent mixture can be obtained 

based on this theory. So by obtaining the same effective density and sound velocity in the 

mixture, the same expression of mean stress can be obtained by applying ^js (3.60) and 

(3.61). However, as is mentioned in section 2, except the mean str^s the structure of the 

wave cannot be obtained simply through mixture th«>ry. 

The effect of Equation of State The method d^cribed in section 3, and shown in 

Eq. (3.68) is valid when the material behavior is within elastic regime. Ho^rever, when the 

impact velocities are high leading to stress levels higher than the HEL, it is then requiroi 

to use EOS as the appropriate <»nstitutive equation. Though it is easy to apply EOS for 

a single material system, when the target plate is made up of multiple materials with their 

individual EOS, the appUcation of EOS of the system is not straightforward. EOS can be 

expressed in many forms including as a wriation of shock velocity with particle velocity. 

Fig. 3-16(a) shows shock velocity, U^ as a function of particle velocity, % for a few materials 

of interest. Hie slope of the curve ^ is different for diferent materials; typically the slope 

vari^ lin^rly for metals and nonhnearly for polymers. Thus the parameter Si in Eq. (3.70) 

determines the slope for metals. While Si plays a major role, Sa and S^ or even higher orders 

cannot be n^lect«i for polymers. It is clear from that figure that the slope ^ increases 

the fastest for polycarbonate (PC) while there is neghgible slope for glass. The slopra of Cu, 
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Al and PMMA show only moderate -ralues. 
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Figure 3-16: The effect of EOS in velocity and impedance mismatch. 

It should be noted that the impedantK mismatch of a pair of given material not only de- 

pends on the relative magnitudes of shock velocities but on the densitira at a given state. For 

the materials imder shock loading conditions, apart from the velociti^ there is a concurrent 

increase in densities with particle velocity. Since impedance is the product of demity and 

shodc velocity and since both increa^ with particle velocity, absolute value of the impedance 

of a given material increases. However, since g- and the rate of density change is different for 
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different materials, impedance mismatch of a given pair materials may increase or decrease. 

Fig. 3-16(b) shows the impedance mismatch of combinations of materials (d^cribed in Fig 

3-16(a)) with particle velociti^. It can be clearly ^en from the figure that the unpedance 

mismatch is not a <»nstant for a given material combination and is a function of particle 

velocity and hence the velocity of impact. For example, the impedance of PC-GS reduces 

significantly with the increase in particle velocity. However, for other s^ems considered 

here the variation is IGBB significant. 

The method of xmng EOS (section 3.2.3) has been used to simulate a plate impact test 

that corr^pontte to an experimental data available in the Hterature. Fig. 3-17(a) shows the 

comparison of the experimental result (Zhuang, 2002) with the analytical solution. In this 

experiment, a flyer made of PC impacts on a target made of alternating PC and glass (GS) 

with velocity of 1079 m/s, as shown m Table 2. It can be s^n that the mean stress obtained 

from analytical solution agrees well with the experimental result. It should be noted that 

by in<»rporating EOS, the diock velocity and the density ^nerally increase depending on 

the loading strength. As a result, the mean stress level obtained based on section 3.2.3 

can be significantly hi^er than the mean stress obtained using just elastic analysis (showed 

in dott«i line). The elsatic solution do^ not even corae close to the experimental r^ults 

validatmg the need to use EOS as the right a>nstitutive model. 

Experiments   A      B C      Impact velocity   hi      A2      x 
1 PC   Glass   PC    1079 0.37   0.20   6.44 

PC   Glass   Al     1160 0.37   0.20   3.55 

Table 3.1: Configurations of Experiment 1 and 2 

There is yet another critical difference between elastic and shock loading conditioiK in 

terms of the peak str^s. While in the elastically loaded condition, the first peak has a 

magnitude of l.TIAarrwm. when the impact stress is a^eam the same is not true for shock 

loading. It is important to note that peak stress may be more critical than mean str^s in 

determining the fracture or damage of materials. Fig. 3-17(a) shows that the peak str^s 

is much higher than the factor of 1.274 compared to the mean str^s. This anomaly can be 

explained by the fact that wave trains in comprised media travel faster and the second wave 
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may be able to overtake the first wave depending on the distant^ of propagation. Thus using 

a single step method may not be adequate for shock loaded cases while it may be acceptable 

for el^tic loadings. The matching of experimental and analytical i^ults is quite good, in 

terms of arrival time, p^Jc str^s, frequency of the (Mcillations and mean str^s. Yet another 

experimental a>mparison is shown in Fig. 3-17(b), this time the impactor being a metal on 

a polymer/ceramic composite system. Here Al impacts on PC/GS with 1160 m/s. Again 

the overall agreement is good and similar oleervations can be made. 

3.2.6. Summary 

In this section, an analytical solution to the problem of plate impact in layered heterogeneous 

material systems has b^ developed. The solution to the plate impact problem (Pig. 2(c)) 

is quite different from that of a unit step loading. The strras boimdary condition at the 

plane of the impact, continuously varies for a heterogeneous layered tar^t plate, due to the 

reflections inside the target plate. 

• A steady state stress value has been identified for the case of heterogen«)us target 

system. This (Tmmn is different from the value at the time of impact <Jo, and the 

difference dejienck on the degree of material heterogeneity, ffmean was obtained XMing 

wa-re disperaion relation and it was further shown that Dremin's mixture theory can 

also be used to get the same value. 

• A late time solution to the problem of plate impact on a hetero^neous layered material 

system has b^n formulated. The apphcabiHty of the spatial range of the late time 

solution has been identified. 

• The ablution procedure for elastic loading has b^n formulate! using multiple steps. 

ConditioiM for using a single step have also been identified. 

• The solution method for shock loaded cases have aJso been d^cribed. 

• The dewloped method has been validated by comparing the analytical results with 

numerical and experimental data. The aimparison is good. 
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Appendix: Dremin's theory in finding effective wave 

sp^Ki 

In this theory, it is assumed that the specific volume of the shock-comprised mixture is 

equal to the sum of the specific volxime of its components, obtained at the same pr^sure by- 

separate shock compr^sion 

V - aVt (P) + {l-a) Fa (P) (A,l) 

where P is the pr^sure or stress, V, Fjand V2 are the specific volume of the mixture, 

materials 1 and 2, i^pectively. a is the mass fi-action of wmponent 1. Differentiating the 

above equation with reapect to pr^sure P, we obtain 

- = a—^il-a)^ (A.2) 

In the above equation ^ represents the slope of Hugoniot ciu-ve of the mixture which can 

then be equated as follows. 

dV        V^ 

The above equation (A.3) can be written for each of the constituent materiak 1 and 2, and 

that of the mixttu-e. Now using th<Me definitions in Eq, (A.2) we obtain the shock velocity 

Ug of the mfacture 

u. ̂
 ~ - 1 

2 
(A. 4) 

In elastic i^on, the effective volume in the above equation is given by 

~      1 hi+h2 
^ = T=     .   .     . (A. 5) 

Also, conservation of mass hol<k for each constituent as well as for the mixtm-e, so the ma^ 

fi-action of the material 1 is given by a = j^0^. By sulstituting a and the specific volume 
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F in Eq. (A. 5) into Eq. (A. 4), we have 

£/,= 
hi + h2 

;(PA+P3ft2)(ii+g) 
2 

(A. 6) 

By expansion of the terms in the denominator and rearrangement of these terms, it is found 

that 

U.= 
hi + hi 

\C1/ X'^J \P2<^ Pl=l/   =1« 

T = <^ (A. 7) 

In the samie manner, it can be shown that under shock loading condition the same velocity 

is ala) obtained through th^e two different theari^. 
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Figure 3-17: Cbmparisoi^ of the experimental data and the analytical solutioiw in layered 
PC/GS. (a) Experiment 1, and (b) Experiment 2. 
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Chapter 4 

Controlling parameters for layered 

materials 

4.1. Material Heterogeneity factors 

For a typical laminated composite^ the impact response depends on the loading condition and 

also the stracture of the composite. The loading c»ndition generally involves the geometry 

of the impactor (bullet, plate, or ball.,.), hnpact dirwtion (normal or oblique) and impact 

velocity. The interaction of wav^ with am interface are relatively less complicated when 

the impact angle is normal and also when the impact siuface is simple. This su^ests that 

normal plate impact remains to be a practically simple t^t configuration. For plate impact 

trats, the impact velocity is a critical factor and it determine whether the material r^ponse 

falls iato elastic, elastic-plastic or hydrodynamic repon. On the other hand, there are various 

characteristic parameter that determine the structure of a laminated wmposite. Take the 

glass reinforced poly^ter (one type of GRP) for illustration: the material properti^ of the 

constituents include: Young's modulus, demity, Poisson's ratio, strength (both tensile and 

compressive), and toughness... In addition, the geometric properti^ comist: the form of 

the fiber (roving, woven, chopped strand...), the volume fraction, thickn^s of laminates, 

stacking ^quence and interface density, and pr^xisting flaws such as voids... Fig. 4-1 shows 

a plain weave GRP c»mposite vtmd in practice. The GRP plate a>mprise 0=/90° crossphed 

laminate, and in each laminate, plain weave of fiber is amted by polyester resin by the 
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'wei^t of 32%, For such woven composite, there are a large number of spatial -mriations 

in geometry and material properties. As a r^ult, when subjected to high velocity plate 

impact t^ts, the wave scattering in GRP is very (»mplex. To simplify the structure of the 

composite so that it is feasible to study wave propagation in the ^stem^ we can ignore the 

ciirrod shape of the fiber fabric and the difference between the laminates and consequently 

when the Trave traveb ii^ide GRP, it tra^s throu^ strictly periodic layers of pure matrix 

and fiber fabric. In this way, we obtain the same model as shown in Fig. 3-10(c). As shown 

in Fig. 3-10(c), the ojntrolling parameters for flyer plate are thickness df, impact velocity 

Vo and impedance of the flyer plate P3C3 (homogeneous monoHthic material is assumed). 

The controlling parameters for target plate are densities p^ and p^, and velociti^ ci and C2, 

number of layers 2L, and thidm^s for aanstituent A and B ^1 and A2, respectively. 

(a) (b) 

Figure 4-1:   Structure of 2D woven GRP, (a) Fiber fabric, (b) micrograph of the lay-up 
structure 

From both the past work (Chandra et al, M)2) and the analytical solution in our latest 

paper, it is easily seen that the origin of the oteerved structure of the str^s wav^ can be 

attributed to material heterogeneity at the interface. The level of heterogeneity of a laired 

^stem depencb mainly on impedance mismatch betw^n A and B, impedance mismatch 

between A and C, characteristics of geometry arrangement (such as total target thickn^s, 

thickn^s ratio between two component materials, number of layers, staddng sequence). 

Here we pr^ent three major factora that define material heterogeneity in layered systen^: 

impedance mismatch, number of layers, and the thicknras ratio. 
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4.1.1. Impedance mismatch 

In the previous work (X. Chen, Scotland 2002), we defin«i impedance mismatch factor I as 

^=l-(^T^ (4.1) 

where Zi and Z2 are impedance of A and B, resj^ctively. Since the s«5ond term on the right 

represents the transmitted strength of waves after one unit m% I repr^ents the fraction of 

the incident stress that is not trai^mitted (reflects! back) as the wave passes through a pair 

of A/B and B/A interface. Abo, / = 1 represents mfinite imp«iance mismatch and J = 0 

leads to no mismatch. By rearranging the above equation, we can alw) get the following 

relation 

e£l^Pfl\=r- (4.2) 

where r is the reflection ratio at A/B or B/A interface. 

ha we know, the impedanre ratio {R = ^^, i.e. the ratio of the impedanre of the hard 

layer over that of the soft layer) is conventionally used to repr^ent the level of impedance 

mismatch. From the definition (shown in the bracket), it is easily found that R is within the 

range of one and infinity theoretically When R=l, there is no impedan<« mismatch across 

the interface, and infinite R represents infinite impedance mismatch. The relation betw^n 

/ and R is ^ven by 

The relation by Eq. (43) is plotted in Fig. 4-2. From this figure, it is clearly shown 

that the imj^ance ratio R has a one-to-one corr^pondence relationship with impedance 

mismatch I. The hi^er the impedan<« ratio iJ, the higher I it corresponds to. However, 

quantitatively the relation is highly nonlinear. When the imp«iance ratio changes from 1 

to 20, the (»rre^>onding impedan<» mismatch vari^ from 0 to 0.82,   But when the ratio 
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continues to change from 20 to ^, the impedance mismatch -rari^ little by fi»m 0.82 to 

0.90. 

0        10       20       30      40       50      60       70 

R 

Figure 4-2: The relation betw^n impedance mismatch I and impedance ratio R. 

After defining impedance mismatch /, it is a>nvement to formiilate the strength of the 

wave trains. The magnitude of transmitted wave after 2L interactions for a s^em compris- 

ing alternating L layers of A and L layers of B is given by 

<rT2L = (1 -1)^ o-Q (4.4) 

where <rT2L repr^ents the strength of the head wave after propagating through L unit <«lls. 

The second wave train that arrive at » = 2Ld is givrai by 

a. (2) 
T2L 2L-J(l-/f ero (4.5) 

where ay^ repr^ents the strength of the second wave train. Also, if we stay at the impact 

plane, we also find that I is directly related to the strength of the incremental wa^s sudi 

as in Eq. (3.48), From these equations, / seems to be better than imp«iance ratio R for 

giving a clear quantitative indication of the level of impedan<« mismatdi though they are 

equivalent qualitatively. 

When designing layered structure to r^ist impact, it is important to choose the right 

material a>mbinatioiM from the usual engin^ring materials. Table 2 lists the impedance 

mismatch valu^ of 153 material combinations from 18 materiab, including organic materi- 
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als and metals. The materiak are listed in such an order that the impedance R increase 

from left to right and from top to bottom. As a consequence, the impedance mismatch 

factors are distributed in the following order: / increases from top to bottom in the same 

column and decrease from left to right in the same row. Since the combination that has 

maximum impedance mismatch is l\m^ten-Polyethylene with I = 0.933 and the corre- 

sponding impedance ratio is about 57.6, we can expect that the impedance ratio for c»mbi- 

nations of engin^ring materials will ^nerally fall within the ran^ of 1 and 60. On the other 

hand, Epoxy-Nylon, 2024Al-S2Glass, Pb-Titaniimi, 304Steel-Cu, Nickel-Steel and Platinum- 

Molybdenum have almost the same impedance with J « 0. The scattering effect in thrae 

systems is expected to be very limited. In addition, it is clearly seen that the impedance 

mismatch valu^ are randomly distributed between 0 and the maximum mlue 0.933, 

4.1.2. Number of layers/Interface density 

Let us define the interface density as the number of la^rs per unit width. If the thickness of 

the target is fixed, then the interface density is directly proportional to the nimiber of layers 

and henre the two terms will be used interchangeably in our discussions. 

It is known that the strength of the head wave wil fe^p decreasing when tra^Ung through 

more unit cells (or when L increases) with the relation shown in Eq. (4.4). This equation 

ehawa that for a system with fixed impedan<« mismatch, i.e., for a given material combination 

more interface can dampen the strength of the head wave. The different laminar acoustic 

dampers and anti-meteorite shield are made ba^d on the ampHtude decay of the head 

wave (Riney 1970). When based on dampening of the head strength, it is preferred that the 

impedance mismatch of the selected material combination be as high as possible. However, 

as will be shown later, more interfaces will not necessarily r^ult in more attenuation of the 

peak str^s due to the arrival of more wave trains afi;er the head wave. Th^e secondary wave 

trains (wave trains that follow the head wave) can play an important role by strengthening 

the wave trains when a location of mter^ is far from the impact surface {L is large). This 

is due to the fact that more interface results in more number of waves in succrasive wave 

trains, as shown in Eq. (4.5). Jn this equation, it can be seen that the impedance mismatch 

/ arises as a base, while the number of layers L appears both as an exponent and as the 
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coefficient. ThiK the quantitative effects of the two factora are quite different. 

Fig. 4-4 Akows the normaliTOd strength of the first two wave trains and the corr^ponding 

cumulative sti^s up to the 2nd wave train as a function of impedance mismatch at a point 

downstream of L unit cells. It can be seen that the head ^mve decreases drastically as 

impedance mismatch increase. When the impedan<« mismatch is as high as about 0.5, the 

strength of the head wave is n^pbly low. However, as Eq. (4.5) shows, the number of 

wavra in the second wave train is proportional to the number of la^ra. The overall strength 

of the s«;ond wave train increases with impedance mismatch when I is very low, then it 

reaches a peak when I is about 0.11. It can be s^n that the strength of the cumulative 

stress up to the second wave train k larger than 1 for small /. It should be noted that the 

stress overehootmg can occur for systems with higher imp^ianre mismatdi when cimiulative 

stress for more wave trains are considered since more stejw are needed to reach the peak 

str^s value. The overshootmg indicate that the laminate may not nec^sarily result in 

str^s decay. This surely cxmtradicts with the common aejom that more interfa<»s wil result 

in more amplitude decay of the stress. In addition, as shown in our previous paper, for a 

given s^tems (a given combination with fixed thickness ratio), the rise time be<»me less 

due to the straiger sec»ndary wave traii^ that arriv«i at a shorter time interval for systems 

with higher interface density. 

It has been mentioned before that EOS should be considered for shock r^ponse. A 

general EOS in in the form 

U,^Co + SiUp + S2ul + Siul + ... (4.6) 

where 81,82 and S3 are empirical parameters. Co is the soxmd velodty in a given material 

under zero pr^sure. Ug is the sound velocity in the material with particle wlocity Up. In 

general, U^ increase with increase of %. As a r^ult, the sec»ndary warn trains can overtake 

the head wave since they travel faster in a loaded material. Also, it was shown in the 

companion paper that this 'overtaking' effect was the key for the ratio of peak str^s over 

mean str^s to increase and the oscillation frequency to increase. So below is more detailed 

analysis about the <»ndition when this phenomenon occura. From EOS, the magnitude of 

the different* between CQI and Usi,and between C^ and 11^2 depend on the pr^sure. For an 
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observer at a given location, the head wave propagates with original longitudinal velocity. 

So at a given location x, the arriTOl time of the head wave is given by Eq. (3.78). This time 

interval between the head wave and the second wave train is pven by Eq, (3,80) and the 

seoand wave train arrive at location x at time t„^ and t^^ is pven by Eq. (3,81). So it can 

be seen that the overtaking occurs when 

*.x < t.o (4.7) 

It can be seen from Eq. (3.78) to (4,7) that when the interface demity is high (so that M 

is negUgible) and the distance of ol^ervation x is far enough 

4.1.3. Thickness ratio 

For a periodic bilaminat«i system, thickn^ ratio can be defined by ||, and this quantity 

represents the voliune fraction of the constituents in plate impact configuration. The effect 

of thickn^s ratio on the scattering proems is to change the pattern of wave trains by altering 

the transit time and total internal reflection sequence of the wave trains in each of the layera. 

Thus for a given elajMed time the number of wav^ travehng within the layers A or B is also 

a ftmction of the thickness ratio. For the general case, we need to assimie that one of the 

layere, say A has a longer traMit time (4) than that of layer B (tt). There is no change in 

the ajrrival of the first wave train and it is independent of the thickness ratio. The second 

wave train includes waves that go through one reflection in ffrst layer A only. The <»ntent 

of sulwequent wave trains depends on the specific value of the ratio of ^. Take for instance, 

the third wave train; if the ratio ^ > 2, then the third wave train aimprises waves that go 

through two reflections in layer B. If howe^r, ^ < 2, the third wave train comprises of wav^ 

that go through one reflection in layer A. Since the sequen<» of wave train is different, the 

observed slope and the (Mcillations are also different. It can be seen that the absolute value 

of ^ indicates the wave train pattern more directly than ^, Fig, 4-5 shows the nimaerical 

simulation of the effect of thickness ratio on the str^s history downstream of 4 unit cells of 

Al-Cu system (conflguration is shown in Fig, 4r5(a)). In this figure, when ^ is moderate, 

(i.e. the case of f^- = 1.5 and ^ = 4), the str^s increa^ in three stei^ in the rise slope. The 

time intervals between the stej® are obvious. On the contrary, when ^ is very small or very 
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large (i.e. the case of ^ = 0.11 or ^ = 9), the str^ wave profiles show smooth rise part. 

In this ca^, the shape of the str^s profile in the rke part and duration part is very similar 

to the case of Barker's experiment (shown in row 2, Table 3-1), where the volume firaction 

of one TOnstituent is veiy small with ^ = 0.05, 

E |i- is very smaU, the second wave train, the third, the fourth... arrive at a given 

location through reflections only in layer A. However, if |j is very large, then them wave 

trains go through reflectioDS in layer B only. For both casra, these wave trains are positive. 

On the other hand, since the time intervals between th^e wave trains are very small. As a 

r^ult, the rising slope is sharp and the slope gradually decrease till a flat portion is reached. 

Evidently, we can see that the sharp rising slope is not due to small viscosity of the laminates 

as indicated in Barker's model. 

Barker proposed that when the thickness of the layeiB lirere randomized, the str^s oscE- 

lations will largely be removed. This phenomenon can be explained by the disturbance of the 

wave trains. When the structure is completely randomized, the wave trains includes both 

tensile and <»mpressive wavra. Besides, the magnitude and the arrival tim^ of these waves 

are totally randomized. In other words, the wave pattern is randomized. As a (xmsequence, 

stress oscillations are no lon^r jseriodic or significant. 

4.2. Numerical analysis of elastic-plastic response of lay- 

ered systems 

Figure ?? shows one example of wave attenuation generated by interface. In this rmn/glass 

system (A is r^in and B stands for ^ass, the thidme^ ratio is 0.64/0.36), resin was modeled 

as elastic plastic and glass was modeled as elastic. Figure ?? (a), (b) and (c) are str^s 

proffles at x=2.5, x=5, x=10 and x=15 respectively. It is not«i that x=15 is equivalent to 

point D in Figure ??. Both spatial dispemon and wave attenuation can be observed in this 

case, very similar to experimental wave profiles shown in Figure ??. One important r^son 

for phenomena generated in the simulation is the impedance mismatch at last interface 

glass/resin, sin<« glass has larger impedance than rmn, the compr^sive waves will k^p 

being reflected as tensile wav^ back to the layera on the left and hence release the <»mpr^ive 
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stre^ in those layers and r^ult in shorter duration and lower peak str^s -ralue; at the same 

time, the peak str^s in the last layer is also reduced. It is obviotM that this idea is very 

usefiil to d^ign integral armor. 

This simulation r^ult contains important information: wave attentiation can be ato 

caused by scattering knowing that viscoelasticity k one possible reason, Also,when we relate 

thk simulation r^ult with wave profiles ob^rved in real composites, interface effect may 

contribute uniquely to the wave profile of a>mposite by causing wa^ dispersion and slowing 

the rising slope. However, even when layered configuration will be used to model the layered 

composites, the last big monoUthic layer does not exist, this indicates that there are some 

other sour<Ks for the coiMecutive releasing waves. Progrraave damage evolution ^ms to 

be extremely possible. First, it is known that, delamination and degradation of material 

properti^ will initiate and starts to grow under high vdocity impact. Once damage happei^, 

the releasing wav^ will be sent out in both directions from the damaged zone. In this 

ca^, releasing w&vm from left to right will be the overall dominant releasing eff«;t. At 

high pr^sure, cor^iderable damage occurs and this will sending strong releasing wav^ to 

significantly reduce the total releasing time whidi is not the case in Figm-e ??, 

Effect of yield stress 

In order to know the effect of yield str^s in layered ^ometry, the effect is simulated 

in monoHthic material first. Figure ?? shows the result of Al (6.5mni) impacting r^in 

(32min) with impact velocity 273m/s. Each graph shows stress profile at two positions for 

comparison; x=2.0mm and x=14.0mm in the target plate. For a fixed impact velocity, the 

yield str^s of r^in k varied from the normal value to a value when the material starts to 

behavior as elastic. 

For the rising part, the sharp elastic wave front increases str^s magnitude with the 

increase of yield str^s, it is followed by a cur^d elastic-plastic trai^ition part and then 

a sharp plastic part till the peak str^s; it can be ^n from Figure ?? (c) that there is 

an intermediate stage when the transition part becomes significant and the plastic part 

disappears. In addition, when then yield str^ is high enough, the rising part tends to be 

only elastic wave front as can be seen in Figm-e ?? (d). For the purpcse of comparison, Fig. 

4rB shows the rraponse of a target plate made up of pxae resin.  We can clearly s^ that 
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both the elastic fit>nt and the px^se dtiration part are vertical, which are different from the 

ramped rising part and the (Mcfllation part in Fig. ??. 

4.3. Structure of the stress wave profiles of periodic 

layered structures 

It has b^n shown in Fig. 3-9 that a typical str^s profile hi a periodic layered heterogeneous 

system includes a finite rise portion, an (wdHatory portion in the steady state and then the 

pull-bade signal. This sa;tion will examine the rise characteristics and the pulse duration 

part based on the analytical solution developed in last chapter, 

4.3.1. Rise characteristics 

Rise time 

Fig. 4-9 sho'^ the whole normalized st^s wave profiles at a fixed location x=10min 

(i.e. £ii2^) for FMMA-FC with impedance mismatch I=fl.03, PMMA-Al with 1=0.507 and 

PMMA-Cu with 1=0.743. PMMA is the flyer plate in Fig. 4-9(a) and Al is the flyer plate in 

Fig. 4r9{h). The thidkn^s ratio is atoo fixed with ^ = HS- ^^ "^ define the rise time as the 

time difference between the time of arrival of the head wave and the time when the firat peak 

stress value is reached, it can be seen from Fig. 4-9 that the rise time is largely detCTmin«i 

by impedan(» mismatch. The system with higher impedance mismatch has longer rise time. 

In addition, the rise time s^sms to be independent of the choice of the flyer plate and the 

impact velocity for elastic r^ponse. However, the rise time wiU significantly reduce in the 

shock response of the laired structtire, which has been verified in experiments. It should be 

noted that this statement is only valid for elastic case. It can abo be seen from Fig. 4-9 that 

rise time is close to the period of cfficiUations (without proof), discussion about the effects of 

heterc^eneous factor on the osciUation frequency can be seen in the next subsection. 

First pec^ 

In general, the first peak of the str^s wave profile (such as point Ri in Fig. 3-9) can be 

considered as the end of the rise portion. At the same time, it is found that this first peak 

is usually the high^ peak in the pulse duration segment.  When the peak str^s is clc^e 
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to the averaged steady state value, Barker pointed out that the peak stre^ is not critical. 

However, for general cases, the p^tk str^s can be much higher than the steady state stre^. 

Since the peak stress is often more suitable than the mean str^s for evaluating the material 

response, such as damage initiation, it is necessary to obtain the peak stress rather than jiMt 

the averaged stress based on homogenization. It has b^n recognized by otir work that the 

peak stress k a consequence of wave scattering and Ri is a point where the strength of the 

coming wave train is c»mpre^ive. For elastic analysis, as is shown in chapter 3, the mean 

stress (Tmemi ejdsts and the first peak str^s will be close to 1.274af„am ba^d on the features 

of the solution shown in Eq. (3.68), because the Airy ftmction for any systems has fix«i 

maximum and minimum ^ues of oscillations. As discussed in the previous paper, the ratio 

of 1.274 is vahd at a moderate distance in a system with large imp«iance mismatch between 

A and B. For this type of system, the first peak str^s can be approximated as 

P3C3 + PQCQ 

Consequently, the linear relationship between (Tpeak aad ffmean ensure that the effects of 

factors on the peak is the same as that on the mean stress. So it is convenient as well as 

necessary to review the effects of heterogeneity factora on mean Btrem CTmmm, which have 

b^n pr^ent«i in the last paper. The effect of stacking ^quenre: from Fig.4-9 and from Eq. 

(3.62), it can be seen that stacking sequence can in general determine whether the value '^'g.y 

is larger or smaller than one: when ^ < 1, 'PQCQ > pjCj. Otherwise, 2^^ > 1. The effect 

of fl3rer plate: the comparison betw^n Fig. 4-9(a) and 4-9(b) shows that harder flyer plate 

r^ults in higher Sms^L (when A is softer than B, otherwise, ^^^^a jg smaller). In other words, 

the mean str^ deviate more from 1. The effect of impedance mismatch is obvious: When 

the flyer plate and the thidm^ ratio is fixed, the system with higher impedance mismatch 

will result in higher mean stress. The effect of volume fraction/thicknras ratio: the more 

the harder material, the higher the normalized mean str^s. This can be underatood by 

looking at the e3q)ressions of effective density Po (Eq. (3.58)) and effective velocity CQ (Eq. 

(??)). With the increase of the thickness ratio of the hard layers, Po monotonically increase. 

Though Co can decrease a httle bit, sin<« the minimum value and its neighbor appear in 

the region when the volmne fraction of the hard layer is very large. Therefore, the overall 



effective impedance pgf^ still increase when increesing the voltune fraction of the hard layers. 

The effect of interface deimty on the stress wave profile can also be understood fiom Eq. 

(3.58) and (3.35). Both % and CQ are independent of interface density, so the mean str^s 

level in a pven bilaminatra is independent of interface density. As will be shown later ,this is 

only true for low velocity impact. If the mean strras is considered as the quasi equiUbrium 

state of the s^em since this m^m str^s is ala) independent of propagation distan<«, this 

equilibrium state is achieved by the reflections of wa-ro both in the target and at the impact 

surface. Combining the effect of impedance mismatch of the target and the flyer plate, it can 

be p<wtulated that the ratio depends on the reflected energy in the lay^d system because 

head wave, which go through pure transmissions, does not <»ntribute to the increase of mean 

stress. 

The above quantitative analysis about mean stress is vdid for elastic r^poi^e of the 

materials. It should be noted that practicaly there is strictly no mean stress ^ue in shock 

respoiwe which can be clearly evidenced in experiments. The str^s tends to c»ciIlation about 

decreasing valu^, or the mean str^s "decrea^'^ with time (see experiments by Oved and 

Zhuang).   This behavior can be due to some time dependent dissipation mechanisn^ and 

this needs fiirther investigation. However, it ja noticed from the experimental data that the 

mean str^s only decrease slightly. Brides, the ^<x>nd, the third peak and more are lower 

than the ftret peak.   Hence we ignore this phenomenon for the time being and define the 

initial mean stress of the first peak as the mean str^s for the whole wave profile. On the 

other hand, equation of state was shown to be ne^sary and even critical for shock response. 

When material is under shock, the density and wave velocity of each coiwtituent are much 

higher than ori^nal values.   Also, the thickn^s of each layer is smaller than the original 

value. As a r^ult, the effective shock velocity (Eq. (3.75) and the mean str^s (Eq. (3.76) 

are hi^er than elastic prediction. In addition, the recond wave train catchra up with the 

head wave as long as the thicknras of the first layer is small and the location of inter^ is 

far enough. When the overtaking happens, the ratio of the first peak stress over mean str^s 

can be muA higher than 1.274, which has b^n validated in previous paper by matching a 

couple of experiments (Zhuang, 2(X)2). 

However, for systems with very Httle impedance mismatdi, only neghgible oscillations 

are generated and most energy is contained in the head wave at moderate distance, so Eq. 
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(4.8) is not good for such systenM either and we can assume that tTpeo* ~ o^mean- 

For the purpose of iliMtration, let us examine the rise characteristics seen in the ex- 

perimental data by Clements (1997) (solid cmve in Fig. 4-10(a)) with the configuration 

shown in Table 1, row 5. The data represents the particle velocity history of an epoxy and 

epoxy-graphite mixture layered system subjected to a plate impact t^t. As it happens the 

mismatch in the aroustic of th^e two material systems is very small with / very cl<Me to 0; 

similar to that of a homogenojus material. As a result, rise part is steep and the oscillations 

in the pute duration period are minor. The solid curve in Fig. 4r 10(b) was the experimental 

data by Oved (Configuration shown in Table 3-1, row 3). The impedance mismatch for 

Copper and PMMA is 0,743 and this high mismatch rraulted in low rising slope. It should 

be noted that the dashed Hnes in two figure are the numerical results for both experiments 

modeled by us tising elastic analysis with EOS consider^. In both cas^, the riang slopes 

are very well matched. This verified the idea that solution in section 2 is good enough for 

predicting the fimdamental characteristics of wave profiles. 

4.3.2. OscillatioiM 

Amplilmde of oscUlations 

From the Eq. (3.68), it is also clear that the peaks alwa^ decay in the same manner 

in the puke duration: the first peak is about 1.274 and the first valley is 0.81, the sea>nd 

peak is about 1.152.... In the shock respoi^e; it is shown in section 4.1 that the mean stress 

decays. So far there is no analytical wlution is awilable for ewluating this behavior, m 

amphtude of each individual cwcillation ia beyond quantitative understanding. Qualitatively, 

the observation from past experiments as shown in table 3-1 appears to sugg^t that the 

amplitudes of ^dilations generally decay slower than the 1.274, 1.152 pattern. Again, this 

is not true for ^steins with n^Hpble imp«iance mismatch such as Epoxy/Epoxy-graphite 

in Fig. 4r 10(a). In addition, when the impact response is in elastic-plastic region, the two- 

wave-structure s^ms to reducing the amplitude, which is also mentioned in Kanel's study. 

Without doubt, vis(»us behavior is another source to reduce the amphtude of ^dilations, 

as shown in Barker's -srork. However, for ^neral material systems Barker's prediction about 

the disappearance of cMcillations under strong shock was mvalidated both by experiments 
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(Oved; Zhuang) and by our analytical analysis. 

Period of osdUations 

It is found that the rise time is roughly p]X)portional to the tMcillation period, so the 

trend of period of o^illations that is discussed below will be applicable for the trend of rke 

time.   Fig.  4-10 show that the period of the oscillations vary jfrom system to syst«n and 

system with higher imp«iance mismatch will rrault in longer rbe time and low oscillation 

frequency.  It can be reen from Eq.   (3.46) that B is the only factor that determine the 

nondimeirional oscillation frequency. In Eq. (3.46), the first term can be thought of as time 

difference between t and the characteristic time Teg (T,^ = f-). Therefore, this term cannot 

be used to distinguish the rise time of oscillation frequency of oscillation. In the second term 

of Eq.  (3.46), h'" (0) is a fixed quantity for a pven material system. So p^, which is in 

frequency dimension, is the factor that can characterize the oscillation behavior. The higher 

p^ wiU repr^ent highar frequency, so it is termed in this paper as the frequency factor and 

the eff«;ts of impedance mismatdi; interface density and thickness ratio due to Eq. (3.43) in 

a few systems (Volume fraction of PMMA is used as the -rariable) are plotted in Fig. 4-11. It 

can be seen in the figure that the eflfect of thickne^ ratio is not significant on the frequency 

of <MciIlations whenever the volume fraction of either material is not negligibly low. In other 

worck, two extreme s^ems with almost all PMMA or nearly no PMMA wifl both result in 

high osciEation frequency and a quasi-homogeneous material behavior is expected. The much 

more important factor that aff^jts the oscillation frequency is impedance mismatch (between 

A and B): Low impedance mismatch, such as PMMA-PC, will rrault in high frequency factor 

and short rise time, as diown in Fig. 4-9. With the increase of the impedance mismatch, the 

frequency become lower. Also, the effect of interface density can be as critical as impedance 

mismatch for oscillation frequency: With the increase of interface density, the (Mcillation 

frequency gets higher.  With this, we can postulate that a laminate with extremely high 

interface density wil also acts hke a homogeneous mixture. 

4.4. Velocity CQ and Arrival time 

Zhuang's experiments and numerical solutions showed the 'abnormal' phenomenon that the 

shock velocitiira of the PC(polycarbonate)-Glass and PC-SS systems were even lower than 

84 



that of PC. This indicate that 

Co<Ci and CQ < c^ (4.9) 

the axnval time of the wave at a location in the laminate can be later than either components. 

When arri-ral time of str^s w&ve is <»iisidered, the averaged longitudinal velocity is iisually 

immediately examined 

'^=i4^ (4.10) 

t^ reprraents the wave front velocity which is given by the weighted averaged -wlocity. Eq. 

(4.10), can explain the phenomenon of the increase of the velocity c^ with the increase of the 

hard layar. It also predicts that the velocity of the layered media will without exception falls 

in betw^n two components. On the other hand, for systems with big impedan<« mismatch, 

the wave front qmckly dies out. Since velocity CQ will determine the arrival time of the main 

part of the str^ wave at late time, CQ is the critical factor for the arrival time of a given 

systems. The actual arrival time is slightly earlier than this value. H-om equation 3.35, CQ is 

always slo^rer than for a layered medium when p^Ci ^ Pg'^a- Obviously, when p^ci « P2C2, we 

will get Co M CL. Fig. 4rl2 is the velocity plot of three systems with PMMA-PC, PMMA-Al 

and PMMA-Cu. The longitudinal velocity of PC, PMMA, Al and Cu are 1.85, 2.66, 6.473 

and 4.74, respectively according to Eq. (3.35). Very interesting trend is observed. For 

systems with very cl<Me impedance such as PMMA-PC, the ^ocity of the corrraponding 

laminates stay in between of this two materials, with an almost linear relationship. However, 

the concave shaped curv^ are generated for PMMA-Cu and PMMA-Al. When the volimie 

fraction of PMMA is zero, the velocities of PMMA-Cu and PMMA-Al equal that of Cu and 

Al respectivdy. With the increase of the volmne fraction of PMMA, CQ starts to decrease 

and become smaller than either of the materials at a certain value(At A for PMMA-Al and 

point B for PMMA-Cu). It is obvious from the plot that the volume fraction of PMMA at 

B is much smaller than that at A. Thk effect can be directly seen from the equation 3.35, 

the third term of the denominator is proportional to the impedance mismatch. The higher 

thk term, the slower the CQ wiU be. After CQ reaches the minimum value, then it starts to 
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increa^ again and finally reach^ the velocity of PMMA. The minimum CQ also corresponds 

to smaller volume fraction of the rofter materiab (In this case, PMMA) for systenK with 

higher impedaii(« mismatch. 

It should also be noted that cO corresponds to the propagation speed of the main distur- 

bance, so it does not corresponds to the stress at the arrival of the wave profiles. 
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Figure 4^3: Impedance mismatch of selected material osm^binations 
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Figure ^9:  The analytical solutions to the normalized stress history (with r^pect to in 
PMMA-PC, PMMA-Al and PMMA-Cu. (a) Flyer plate is PMMA and (b) Flyer plate is Al. 
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Figure 4rlO: The shock response of two material ^sterns,   (a) Epoxy/Epoxy-graphite by 
Clements et al, (b) Cu-PMMA by Oved et al. 
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Chapter 5 

Composites 

Wave propagation in homogenous, iojtropic media has been widely instigated. Now, more 

inter^t [5,6] is focused on the wave propagation in anisotropic, heterogenous media such 

as c»mposit^. The mechanical behavior of compMitra have been extensively investigated 

using homogenization approaches. Micromechanics based anal^is of compceit^ has been 

conducted for coi^titutive modeling and failure analysis. So in this chapter a brief introduc- 

tion of the constitutive relation of the orthotropic compc«ites is given. The effective ajund 

velocity for th^e type of materials has been developed for the state of uniaxial strain. One 

nimierical example is given for the purpose of validation. Then a review of failure mod^ of 

composite is provided and this is followed by a nmnerical analysis of the damage evolution 

in homogeneous composite. 

Sin(« the built-in defect of the approaches by neglecting explicitly the interfaces, this 

approach showed mudi limitations in examing the impact behavior, where wave interactions 

can play critical roles in the r^ponse. As mentioned before, researdiers have iMed peri- 

odically layered (planar planes) «)nfiguration to study the wave propagation for decade. 

However, the appHcability of this planar model in place of wmplex en^neering composites, 

such as woven c»mposit^, has not been careMly evaluated. It is nece^ary to determine 

the effective matrix/fiber fabric material properti^ for out-of-plane loading <»nditions. The 

current author proposed a preliminary ID effective layered model for GRP, though more 

work is needed in this i^ue. 
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5.1. Constitutive Relation 

For an orthotropic elastic solid (we assume the material is homogenous), the symmetric 

compliaii<» matrix with nine independent is: 

Ell 1 
El 

_JfiL 
E3 

0 0 0 ' Til 

E22 "12 
Bl 

1 
E3 

0 0 0 T-n 

Em El 
V23 
El 

1 0 0 0 Tu 

E2Z 0 0 0 1 
G23 

0 0 ^23 

E31 0 0 0 0 1 
G31 

0 Tai 

Ext 0 0 0 0 0 1 
G12 Tn 

(5.1) 

This can also be inverted to stiffiiess matrix: 

Tn 

Til 

Tm 

T-m 

Tu 

Tn 

C*!! C12 Ciz       0         0 

C'21 C22 C?23       0         0 

C?31 C32 C?33       0         0 

0 0      0 G44     0 

0 0      0      0 C55 

0 0      0       0       0    Cfii 

0 En 

0 E22 

0 E33 

0 Eii 

0 EBI 

^66 En 

(5.2) 

In the case of plate impact, when the state of uniaxial strain is still valid, if wave propagate 

along En, the wave velocity by iMing equation of equilibrium is 

Cr   = ^il-V2BVm)Ei 
pV (5.3) 

where V = [1 - v^^v^i - «23U32 - «3iVi3 - 2U21U32V13] 

When the composite is transversely isotropic, there are 5 independent elastic constants, 

copper impacts an orthotropic elastic plate 

When the target plate is orthotropic elastic rather than irotropic, the elastic wave velocity 
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is in more a>mplicated form: 

Cr  = iil-vl^E^/E^)E2 
pV 

(5.4) 

where V=[l- vn {vnE^/Ei + 2vnViA/Ei) - vl^Ez/Ei - vl^E^/E^] 

A copper plate impacting an fiber-reinforced composite plate (in trai^verse direction) is 

simulated using orthotropic elastic material model. The material is unidirectional CFRP 

t300/914 El = 139e9(Po), E^ = E^ = 9.4e9(Po), Poison's ratio 012 = V13 = 0.0209 and 

V23 = 0.33. Since for this kind of materia V12 and U13 are veiy small, the higher order of them 

can be neglected. And also, the ratio of E2/Ex and E^/Ei is ako very small, so in this case, 

Material properties of CFRP T300/914 [30] is shown in the following table: 

Material properties of CFRP T300/914 

Yamg'snwduliB 
BillueediratimB 

Infflwrdiroaiai £,: 139    (OIM) 

Ini»nial<Utwaion £,: 9.4    (Opa) 
In mm,ystx direttton E,: 9.4   (Opa) 

Poison's ratios 
v„: 0.0209 

Vn- 0.33 

VH: 0.0209 

SlKa^mocUiB 
Gn- 4.5    (Opa) 

Gj,: 2.98 (Opa) 

Cn- 4.5    (Opa) 

Tensile sirei^tfi 

In fiber directkm X,: 2.07  (Opa) 
IniK(mal<Uiwalon IJ: 74    (Mpa) 
In ttansvow direction 4.: 74    (Mpa) 

Cffli^wesMve arcngtli in transferee diwttitsi Vc- 237   (Mpa) 
BuDc oMcfcAK of feita I material K,: 2.0    (Opa) 

Shear arai^ 
Sn'. 64    (Mpa) 

5„: 64    (Mpa) 

Sn- 86    (MjM) 
Mass densilj' P- 1.58 (%,!»') 

Figure 5-1: Material properties of CFRP T300/914 

Elastic wave speai under the state of tmiaxial strain: 
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Figure 5-2: Copper imimcting an elastic orthotropic plate 

Ci = 4/i ii—i—i— ~ J^- ^ = 2585m/s 

Using the same method as befoiB; we can get the str^s within oamposite right after 

impact: 

« = (300) (a.9x4.iyffl><2.585) = 272m/a 

a=:.pm = (1.58e3) (2585) (272) = llMbar 

It ne«Js to be noted that in the above wave sj^ed is jast for the elastiC; tiniaxial strain 

state and tincompr^sed material. Since after the material has been comprised, the density 

of the material after the wave front increase, the relea^ wave tencfe to move faster than the 

original compi«^ive wave speed. 

The atove is just for maxiroscopically homogeneous^ elastic orthotropic composite. For 

any real composite, the wave scattering, dispersion due to fibera, voids or some particles 

in the matrix can significantly influence the whole deformation behavior and r^ult in very 

complicated situation. 
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5.2. Modes of failure of composites 

In the se<»nd section, literature on damage of compcfflit^ (mainly under impact loading) 

was reviewed. Also, some preliminary simulation results on the damage of composites -mre 

shown and discussed. The goal of this section was to inv^tigate the failure mod^ and 

damage evolution of material tmder impact loading rather than quasistatic loading. LS- 

DYNA3D is used to simulate different ca^ in plate impact, 

A great variety of deformation mod^ can lead to failinre of the composite. The operative 

failure mode depends, among other things, on loading conditions and the microstructure 

of a particular composite system. By microstructiuK we mean fiber diameter, fiber volume 

fraction, fiber distribution, and damage resulting from thermal strra^s that nmy develop 

during fabrication, 

A. Strain rate eifect on failure of materials [31] 

Generally, impacts are categorized into either low or high velocity (sometimes hyperveloc- 

ity), there is no dear transition between categories. Very low-velocity imfmct can be treat«i 

as quasi-static, the upper Hmit of which can mry from one to tem of ms~Mepending on 

the target stiffii^s, material properties and the impactor's mass and stiffiiess. The dynamic 

structural r^ponse of the target is of utmost importance as the contact dm-ation is long 

enough for the enthe structure to rrapand to the hnpact and in wnsequence more energy is 

abrorbed dastically. 

Higher-velocity imjmct (much l^s than ballistic hmit) rraponse is dominated by str^s 

wa^ propagation throxigh the materials, m which the structure dora not have time to re- 

spond. , leading to very locahzed damage. Boundary condition effects can be ignored because 

the impact event is over before the str^s wav^ have reached the edge of the stmcturaLow- 

velocity impact is characteri^red by delamination and matrix cracking. 

Hyper-velocity impact and perforation of composite laminate are of interest for a wide 

rand of engin^ring appMcatiom. In this type of loading, the hnpact velocity exceeds the 

baUistic hmit. (BaEistic limit is defined as the minimum impact velocity required by the pro- 

jectile to (»mpletely perforate the target).Compared with low velocity impact, high velocity 

impact tends to indu<» a more localized form of target r^pome, r^ulting in the di^ipation 

of energy over a <x>mparatively small r^on [32]. 
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B. Different failure modes 

1. Matrix damage 

Matrix damage is the iret type of failiire induced by transverae low-velocity im- 

pact,usually takes the form of matrfac aracking but ako debonding between fibre and 

matrix. Matrix cracks occur due to property mismatching betwi^n the fibre and ma- 

trix, and are usually oriented in plan^ jjarallel to the fibre direction in unidirectional 

layers. In an FRP, the polymeric matrix provides several key functions: it transfera the 

load to the fibr^, protects the fibres fit>m damaging themselves and aligi^/stabilizes 

the fibr^. The majority of structural appHcations employ epoxy resins as they meet 

the hot/wet oompr^sive strength requirements. However, epoxy is brittle and has poor 

r^istance to crack growth (i.e. delamination). 

2. DelaminaUon 

A delamination m a crack which runs in the r^n-rich area between pli^ of different 

fibre orientation and not betw^n lamina in the same ply group. Liu [33] explained 

that delamination was a result of the bending stiffiiras mismatch between adjacent 

layers, i.e., the different fibre orientations between adjacent layers. Delamination is an 

initiation and growth process. After initiation, the delamination can imdergo stable 

growth. Eventudly, unstable growth, interaction with in-plane failure modes, result 

in final fracture [34].OBrien [35] prop<M«i a prediction criterion by the strain energy 

release rate approach, 

3. Fiber failure 

This damage mode ^nerally occurs mudi later in the fracture process than matrix 

cracking and delamination. Fibre failtire is a precursor to catastrophic penetration 

mode. Fibre failure occuis under the impactor due to locally high str^s^ and inden- 

tation effects (mainly governed by shear forces ) and on the non-impacted face due 

to hi^ bending stress^. Fibres are the main load-bearing constituent, providing the 

<»mposite with the majority of its strength and stiffii^s. The most coromon fibr^ are 

glass, carlxm and Kevlar. For r^stance to low-velocity impact, the abiHty to store 

ener^ elastically in the fibres is the fundamental parameter [36]. 
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Figure 5-3: Failure mod« of composites 

4. Penetration 

Penetration is a macixsajpic mode of failure and occurs when the fibre failure reaches a 

critical extent, enabling the impactor to a>mpletely penetrate the materials. El-Habak 

t^ted a variety of glass fibre-reinfor(«d plastic (GFRP) composites at penetration 

loads and (»nclude that the gjass fiber treatment played a key role in determining the 

perforation load. Dorey [36] provided a veiy simplified analytical model of penetration 

to give the energy absorbed. 

5.3. Simulating composite damage under impact using 

LS-DYNA3D 

The composite failure material model of DYNA3D is based on Chang-Chang failure crite- 

ria. With the delamination criterion proposed by Brewer and Lagack. These criteria are 

formulated as below. 
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1. Fiber failure: 

2 /        \ 2 
2 _ / ""ii \   , r <^i2 

f - KXT   ^ \A 

2. Matrix cracking 

In the case of 0"22 ^ 0, 

4 = IU22 

3. Matrix ensiling 

In case of o"22 < 0, 

el- 
1 
4 

^-0-22^ 

KSI2   , 4S| 

4 Delamination 

Where: 

o"ii - str^s in the fibre direction; 

0"22 - str^s in the transverse direction; 

0"33 - str^s in the through-thickness direction; 

0^12 - shear str^s in the plane of fibre and transverse directions; 

(T23 - shear str^s in the plane transverse and through-thickn^s 

plane; 

(J31 - shear str^s in the plane of through-thickn^s and fibre 

directions; 

XT - tensile strength in the fibre direction; 

Y-r - tensile strength in the traiaverae direction; 

Yc - teiwile strength in the fibre direction; 

S12 - shear strength in the fibre and transverae plane; 

S23 - shear strength in the transverae and through-thidcn^s plane; 
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Figure 5-4: The failure evolution including fiber failure and matrix crack 

Damage of composites by plate impact (modeling) 

In this section; LS-DYNA3D was used to model four failure modes of compc^ite tmder 

plate impact using Materials model 22 and the throxigh thicknras direction dianged to Z 

acoDrding to the convention t^ed in the failtire criteria. The objective of simulating a>mposite 

damage is to understand the redistribution of stress after dama^ happens and thus study 

the interaction bet^reen different failure mod^. 

Example: when XT and YT are set to real values of the strengths of the given materials 

while setting all other values high enough to elastic region, then aca>rding to the failure 

criteria i:^3d, only two failure modes happen: fibre failure and matrix crack, (impacting 

velocity=600m/s) 

The c»nfiguration is shown in Figure For the target plate, it is made up of two layers: 

the top layer is ojmposite (with damage) and the bottom is copper (elastic),Adding another 
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Figure B-B: Damage mod^ and the corr^ponding str^s^ update 

copper ]s b©muse of the need to get more mformation from the damaged composite. 

The material model 22 is for a macrosc»picaUy homogenous orthotropic material. In this 

model, fiber properti^,fiber volume fraction, and interface cohraion are not directly related 

to the input. 

The current material failure criteria implemented in LS-DYNA3D suffers the following 

shoriicominp: Firat of all, only plane stress^, such as o"ii, Cij, 0"22, Bxe considered in the 

criteria for fibre failure, matrix cracking and matrix crushing. Thus, in the cas^ when the 

out-of plane are significant, the damage prediction may not be satisfactory. Secondly, inter- 

laminar shear str^ra caused by matrix cracking and fibre failure are very important cai^es 

of delamination in impact events [30], Actually, thrae failure should act as str^s raisera at 

the adjacent interfa<« [37]. In LS-DYNA3D code, related stresses are redu<«d after failure 

(see table 5-1), so the local stress^ cltMe to the damage cannot be modelled realistically, 

Thiis, their interaction bet^^^en different failure modra are not properly modelled. Finally, 

the through-thickness compr^sion stress is taken to have exactly the same effect as the 

through-thicknras tension str^s on delamination, whidi is obviotMly not satisfactory [30]. 

Therefore, it is necrasary to modify the failure criteria and ato some input of material 

properties (sudi as equation of state [38], fiber properties, some parameters for heterogene- 

ity). 
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5.4. Modeling the engineering GRP as layered struc- 

tures 

A ^ries of shock experiments were conducted on S2-glas8 reinforced polymeric matrix com- 

posite (PMC) and the shock wave profile history showed marked departure in the sti^s 

history reponse from that typically ol^erved in metaUic systenw in a number of ways [1]. A 

schematic geometry of the exj^riment in Reference [1] is shown in Figure 5-6(a). The PMC 

laminate competed of S-2 gla^ woven roving in a polyester resin matrix with a resin con- 

tent of 32 % by weight were subjected to plate impact tests with an initial velocity of 0.273 

mmf/imc. The target comprised four layers with thickne^ of about 3mm, 3mm, Tmm and 

20 mm; three PVDF gages were placed in between the layers to measure the stres history 

r^ponse. The str^s reponse at ^ich of those gage is shown in Figure 5-6(b). Gauge 1 in 

the figure corr^xincb to the interface betw^n layers B and C (see Figure 5-6) whEe gauge 2 

is the one between layera C and D, and gauge 3 that between D and E. In order to obtain a 

clear <»mparison of the three stres profile, the starting points of the curves are overlapped 

as shown in Figure 3. 

Apparent difference can te seen between these three stre^ profile in the figure; the peak 

stress levels at gauge 1, 2 and 3 decrease with wave propagation, the rise time increase and 

ptill back time decreases significantly as wave pwjpagate. Also, the duration of the pulse 

as denoted by the r^ident time at the peak piB^ure reduce from 1 to 2 to 3. In addition, 

time of arriml of the release wave at gaug^ (when the peak pressure starts to decHne) does 

not coincide wth the rarefaction wave from the flyer plate. It is very important to relate 

the various underlying ph^cs of the phenomenon to the dynamic behavior of the materials 

before such materials can be effectively used in fiiture applications. An attempt in this 

dii»ction was made in reference [1] to explain K>me of th^e feattir^ in terms of visoaelastic 

relaxation behavior of the materials. However in that work only attenuation le^s <»uld be 

matched but other important characteristie Hke the rise and pull back behavior as well as 

the release wave arri'ral tim^ could not be explained. 

In ^neral, many computational simulations use homogenized propertie of the comp<wites 

while <»iMidering varioiM material c»mponents. We beUeve that this approach may lead to 

erroneous results for modehng high velocity impact problen^, sinc» thw approach neglects the 
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Figure 5-6: Experimental r^ults of GRP subjected to plate impact [1] 
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presence of interface which are the root cau^s for scattering. When the loading rate is hi^ 

enotigh such that the wavelength is comparable to the size of material heterogeneity, then the 

scattering pro<«^ should be exphcitly considered for obtaining vahd results [16] [7] [8] [39] [40]. 

In order to study the effect of planar interfaces, as is the case in laminated composite 

systems, it is appropriate to simulate a layered configuration, and this approach is taken 

in this work. Then the problem become how to obtain the ^juivalent layered structure. 

For a general periodic system, it is necrasary to determine the thickne^, density, material 

properties for «w;h constituent so that the macroscopic material properties are identical to 

the measured data that are available. Prom the microstructure, we propose an alternating 

r^in/fiber fabric system. If we assume that the thickn^s of the r^in layer is ^i, then h^ 

can be obtained by 

^1+^2 = 0.68 (5.9) 

from the weight ratio of r^in, we have 

(AiPi + p^hi) * 0.32 = hipi (5.10) 

From the effective wave ^eed 

Co = r = Ci (5.11) 

I   \*^l/ X*^/ \P2=2 PlCl/   <=lfl2   f 

where c^, is given by Eq. (5.4). It should be noted that the measured velocity can vary due 

to the method usai, so the experimental data is not used. 

For r^in, Cj is strai^tforward with Ei^p^ and Vi known. It should be noted that fiber 

fabric is a^nimed to be homogen^jus, so we need to determine E^, and V2. 

V2 = Vitti + V2 (1 - tti) (5.12) 

where a is the volume firaction of i^n in the fiber fabric and can be obtained by relating to 
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Pa 

P2 (1 - tti) + aipi ^ Pa (5.13) 

Yoimg's modulta of fiber fabric 

1  _h/ihi+h) . h/ihi+h2) 
TT 5 -I 5  l^'-'-^i 

From the above equations, the effective layered structure can be constructed. It should be 

noted that the above planar model is based on simplified micromechanics based analysis. 

One of the objective of building such model is to analyze the effect of wave interactions on 

the impact response of laminated composite. 

It is ftiUy realized that, however, GRP is a 2D woven structure, so the weaving effect 

should be invratigated for a simphfied one-dimensional analysis. For a simple imit cell 

model of the plain weave composite as shown in Fig. 5-7{a), the angle between the warp 

tow and the r^in is not a constant. So the incident longitudinal wave reach the fiber/matrix 

interface with an angle and both longitudinal and transverse wav^ will be generated in 

fiber and matrix, as shown in Fig. 5-7(b). So the sec»nd qu^tion is how to get effective 

propertiffi of 2D woven structure for ID analysis? In order to clearly nmderstand this dfect, 

micromechanics based analysis is nec^saiy. When we take a close look at a single lamina as 

shown in Fig. 5-7(a), it is clear that a>me geometric T&tkm are critical for the applicability 

of the layered model. For example, it is easy to underataad that thicknras ratio of warp/fill 

tows b vs the width of the unit <K1 I determines the angle of incident waves. When b/l is 

very small, the impact is almost normal. As a r^ult, the amphtude of the shear wavra are 

ne^gible and the majority strength is contained in longitudinal wave. It is also dear that 

both reflected longitudinal and traMverae wavra are almost perpendicular to the fiber tows. 

In fact, general b/l < 0.15, the corr^ponding angle a is about 8.5° [41], Though this ji^ifies 

the ID approximation over one unit cell, the proven effect cannot be neglected for long wave 

propagation distant*. 
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Figure 5-7: Lamina of 2D woven GRP and wave refelctions in a curved interface. 
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Chapter 6 

Conclusions 

The high velocity impact respor^e of en^n^ring composite is very ojmphcated. The mea- 

sured stre^ wave profiles often don't exhibit clear or regular structure when compared with 

homogeneous metals or ceramira. However, due to the length scales of laminated <»mpos- 

it^5 wave interactions can play critical role in forming the ob^rved profiles. Periodic layered 

configuration has been ret»giiized as an ideal model for inv^igation of wave propagation 

inside the laminated composites. As a r^ult, m<^ effort of this work has focused on the 

impact r^ponse of layered heteiogeneous materials subjected to plate impact loading. 

In this work, the plate impact problem has been formulated. As shown in Fig. 3-10 

the plate impact problem is different from the problem of unit step loading, for which the 

analytical solution has long been available. The loading a>nditions of the target plate, 

which is a heterogeneous layered medium, varies continuously due to the reflections inside 

the target plate. The steady state (Xmmn has also been identified to be directly related to 

multiple wave interactions at interface. Coi^equently, beside following the case of unit 

step loading by applying iloquet theory and the late time approach, the propo^d ailution 

methodolo^ meanwhile takes into acojunt of the details of the wave reflections by i^ing 

mtiltistep loading. The mixture theory as well as dispersion relation m invoked to derive 

(^rman iiwide the target system. Then the solution is obtained by means of superpcfflition 

of stress increments over time, as shown in Eq. (3.65). The spatial appMcabihty of the 

late time solution is also identified. For systen^ with large impedanc« mismatch and high 

interface density, the solutions are found to te good at relatively small distance. In addition, 
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the solution based on elastic analysis is extended for shock loading condition by taking into 

account of EOS and also the 'overtaking effect' betw^n the wave trains. This approach is 

validated by matdiiiig two ejqjerimental data and the comparison is good. 

Having developed the analytical solution for the stre^ r^ponse in layered systems, analy- 

sis of the material heterogneity factors and their effects on the stress structure are examined 

in chapter 4 It <x)nfirms our previous idea that the origin of the observed structure of the 

shock wav^ can be attributed to material heterogeneity at the interfaces. The level of het- 

erogeneity of a layered system depen<k on material property mkmatch (for elastic cases, 

mainly the impedance mismatch) and the diaracteristi<» of geometry arrangement (such as 

total target thickn^s, thickn^s ratio between two component materials, interface density 

or ntunber of layers with the target of a certain thickness, stacking sequence). As a r^ult, 

the pioposrf analytical solution in this paper and together with the heterogeneity factors 

are all critical for designing the optimum layered armor systems. The solution in section 

3.2.2 and that in section 3.2.3 are for linear dastic response and shock r^ponse, r^jectively. 

When the loading strength is such that the material r^ponse falls into elastic-plastic region, 

both elastic wave and plastic waves are induced. Therefore, the effect of yielding strength 

on strras response was studied numerically. 

Failure mod^ are ^^ntial to the dynamic response of <»mp<Mitra besides wave interac- 

tion. The current homogenized material model may not be adequate or capable of modehng 

the failure mod^ of fiber, matrix and interpha^ reasonably. So a layered model has the ad- 

vantage of capturing the different damage mechanisn^ inside the heterogeneous materials. It 

has been demonstrated that the proposed solution predicts reasonably well about the stress 

history inside a layered system at a moderate distance for both elastic respoi^e and shock 

response. The applicabiHty of the layered model and the corr^ponding silution to the real 

en^neering composite (such as GRP) has been evaluate! and s^n^ to be practical for thin 

target plat^. Ho^rever, it is fiilly r«»gnized that more work needs to be done for modehng 

2D woven compraites, especially for wave interactions through curved microstructure. 
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