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Chapter 1

Introduction

1.1. Motivation

The understanding of the behavior of materials under very high strain rate loading condi-
tions is vital to many areas of civilian applications ranging from explosive forming, welding,
cutting, compaction, and hardening, to oil well exploration and micrometeorite impact on
space stations; military applications are also numerous and range from armor and anti-armor
structures/vehicles to ballistic designs. There are many other additional applications of high
strain-rate deformation, such as machining, accidental impact of vehicles and crashworthi-
ness studies, earthquakes and the associated damage to structures, and explosive devices.
All these applications require a thorough knowledge of the mechanics of high strain rate
deformation, and the dynamic response of materials under those conditions. A number of
madterial systems ranging from metals, ceramics, polymers in both monolithic and composite
forms are being used to achieve a combination of characteristics specific to meet the goals
in each of those applications. Composite materials with organic matrices reinforced by syn-
thetic or ceramic fibers either individually or in combination with monolithic ceramic layers
are being used to achieve light weight and enhanced ballistic impact resistance [2][3][4] [5].
These material systems promise light weight armors which are structurally robust and are
being contemplated for the future combat vehicles for defense applications, e.g., as in US
Army. However, the ballistic response of these heterogeneous materials are very poorly un-

derstood because a number of microscopic based mechanisms are activated simultaneously




or in succession to yield the macroscopically observed shock response.

Controlled shock wave experiments are usually carried out in a plate impact test where a
plate of known material is impacted on the target material under investigation at a specified
impact velocity. Shock wave data are acquired in the form of either stress vs. time or velocity
vs. time at intermediate locations or at the free surface of the target plate. These data are
then used to compute the engineering dynamic strength and equation-of state properties as
well as shock-induced motion histories for validation of theoretical and computational models.
They arerich in features that can help in understanding the underlying physics [6] responsible
for the process. While the shock wave profile in homogeneous metallic materials have been
well documented and understood, the same cannot be said for the case of heterogeneous
materials. This is partly due to the very nature of composites, which is a conglomerate of
matrix, ﬁbers, and interfaces between fiber and matrix and between different laminae, various
lay-up sequences with different ply orientations and different forms of fiber arrangements
within the matrix (particulate, planar, 2D/3D woven). The very heterogeneity that allows
an engineer to alter the stiffness and strength response to meet the design need, makes it
challenging to predict the overall structural and acoustic properties from the details of the
construction. But this task of linking micromechanics to dynamic response needs to be
accomplished to meet our goal of optimizing the composite constituents and lay-up sequence
for decreased weight and increased performance. This bottom-up approach is very challenging
but the only way out for an optimal design.

When studying composites, homogenization remains one of the most widely used method-
ologies, in which the microstructure is assumed to smear out. The whole material is consid-
ered homogeneous with certain “effective” elastic constants or other overall properties. Some
studies indicate that this theoretical predictions agrees well with the experimental data only
at low frequencies (when the wavelength is large compared to fiber diameter) and at low
fiber volume concentration [7][8][9]. At higher frequencies and fiber volume concentrations,
the internal factors such as phase impedance mismatch, the geometry of the fiber fabric,
lay-up sequence and interface properties as well as manufacturing defects such as voids are
all expected to have pronounced effect on the characteristics of wave profiles of composites.

Very little work has been done to link modeling microstructural details or interface effect of




composites with the high velocity impact response of materials. We know that for a plate
impact problem that the higher the impact velocity, the higher the frequency content and the
shorter the wavelength. Therefore, it is the “interaction scale” that determines the problem
solving methodology, that is the scale of the applied loading rate versus the length scales
of composites. Different loading rates will necessitate the consideration of different length
scales in composites.

It is recognized based on available experimental data, that the impact behavior of com-
posites is strongly influenced by constituent materials, geometric details of the composite,
the method of manufacture and the rate of loading. There is a clear need to develop a
better understanding of the high velocity impact behavior of composites, and a need for a
computations based model that links the microstructural details of GRP with the overall
observed behavior. In view of the current research state of the shock response of layered
heterogeneous materials, three fundamental aspects have been investigated in an attempt to

build a micromechanics based computational model.

¢ Layered configuration with alternating fiber bundle layer/pure matrix layer have al-
ready been identified as the model system to study the inherent material heterogeneity
effects to the level of subl-amina. Micromechanics based computational model for-

engineering 2-D woven composites was explored.

e Wave dispersion and attenuation in bilaminated material systems was studied based

on linear and nonlinear wave interactions in one dimensional analysis. Numerical and

Analytical analysis were conducted.

¢ The Effects of material orthotropy and material heterogeneity on the impact response

of laminated composites have been examined, both analytically and numerically.

1.2. Qutline of the Report

This report is organized into 6 chapters. Chapter 2 mainly provides a review of wave propaga-
tion in solids. General governing equations will first be presented to describe the constitutive
relationship of the impact response in three regimes: elastic, elastic-plastic and shock. Specif-

ically plate impact configuration will be introduced and then the uniaxial strain state will be
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analyzed in details. Chapter 3 focused on the stress wave propagation in periodically layered
systems based on one-dimensional analysis. Two analytical solutions will be presented. The
first one is based on the initial effort of building up the rise characteristics of the stress
profiles by taking into account the multiple transmission and reflections at interfaces. The
idea of this solution is general and helps the development of the second analytical solution.
For the second solution, Floquet’s theory of ODEs with periodic coefficients and mixture
theory are invoked. Chapter 4 aims to analyze the material heterogeneity factors and the
structure of the stress wave profiles. This chapter is largely a parametric study based on
the analytical solutions developed in chapter 3. Numerical results are also included for the
purpose of comparison and validation. Chapter 5 aims to evaluate the proposed periodic
layered model for engineering woven composites. Preliminary micromechanics based study

on the 2D woven composites are included. Also, as a important mechanisms, failure analysis

of the composites based on homogenized model is also provided. Summary is included in
Chapter 6.




Chapter 2

Wave propagation in solids

When a material is stressed with a suddenly applied load (impact), the deformations and
stresses are transmitted to the remote portion through wave propagation. A thorough knowl-

edge of wave propagation in materials is essential to the understanding of the various aspects

of deformation and mechanisms of failure of materials under impact loading conditions. In

this report, the basic concepts involved in the state of uniaxial stress and strain and their

influence on elastic and plastic behavior are examined. Further, these theories are applied

to both homogeneous and inhomogeneous material systems. Numerical simulations are car-

ried out to model plate impact problems involving single and multiple plates of different

materials, including composites.

This chapter comprises two sections. The first section focuses on the basic theory on
longitudinal wave propagation, mainly the governing equations for elastic, elastic-plastic
and shock regime respectively. The second section briefly introduces the plate impact test
and uniaxial strain state. The objective of this chapter is to go through the basic concepts
such as elastic stress wave propagation, Hugoniot Elastic limit, and the state of uniaxial

strain etc. In this way, material behavior under high strain rate can be better understood.

10




2.1. Wave equation and wave velocity

As we know, one dimensional elastic wave equation is as follows [10]:

,%u B

o o 1)

From the equation of equilibrium when body force is absent, we have

80 __ 80 8 __ 8o 8u 8 __ B . _ Bu
% = 6chs = seoat (o — g Smce €=
8o &u __ 8%
deoz — Paz

180\8%u __ 82
That is, (Eg)—zg =%z
From wave equation (2.1),we have ¢ = i—%

For longitudinal wave, assume elastic compression, so Hooke’s law holds.
That is, 0 = Ee  so, %% =F

From above, we obtain the elastic wave velocity in one dimensional stress state:
|E
CL= 4]/ — (2.2)
Po
The general one dimensional solution of 2.1 is in the form:

u= f(z —ct) + g(z + ct) (2.3)

For general plane irrotational wave, its volume changes harmonically as a particle oscillates.

So the wave is also known as dilatational wave. The motion is in the form

2
i&;:ESiB—;-{(S‘}i—CLt), ﬂg‘—_{}, ugzﬁ

2
EII = €CO8 —;r- (3;1 - Cf}f)




Ey=Eypy=FEy=FE3=F;=0

e=E;+0+0=Fy

The stress components are

8‘&1

Tll = ()\ %—2@) Ei} - (:‘\+ 2}’1»} a—$‘;

Ty = Tos = Ay = Ag‘i
L1

Ty=Ti3=T=0

Substituting T;jand u; into the equations of motion in the absence of body forces, i.e.,

32’£I,i 8‘3-;;_7-
—— = = 24
Po 3??2 3335 ( )
The first equation demands that
82 U BTIH 827-51

MoE =B, T G

or\? 2 or\* . 2
—Po€ (T?I) c2 sin -—;i (1 —ct) =—(A+2p)e (Tﬂ) sin 'gE (z1 —crt)
So the sound velocity of the longitudinal wave is given by

4
e
CL:\/AH#:J__&ﬂ 2.5)

Po Po

2.1.1. Intensity of Elastic Stress Wave
If a bar (initially at rest) was impacted by another bar at time ¢ = 0 as shown in Figure

12




2-1.At time t = 0, a compressive pulse starts to strike the bar .

' 1 —_— c.[,
;{‘5; —————— ! f‘f\ 0
(1 : 11y =
-_{'-T-i———— T -'_{—l-)--‘-’_-_--- - -
Vi 1 Vg
NV N/
] ; i
R %
< >
GLI

Figure 2-1: Schematic illustration of wave propagation in the bar

At timet = t:
Compressive wave has moved forward by distance cgt;
Distance of left end of the bar moving rightward is v,t.
Equate the change of momentum to impulse:
(pAocrt) vo = (0 Ao)t

So, the stress intensity of the elastic wave is

0 = pyerl (2.6)

Reflection of plane elastic waves at an interface

Typically, when an incident wave(no matter it is dilatational wave or distortional wave)
hits an interface at an arbitrary angle, two waves (dilatational wave and distortional wave)
will be reflected and two waves (dilatational wave and distortional wave) will be transmitted.

Incident pulse o7 = p,cyvr

Reflected pulse: 05 = —p,c10p

Transmitted pulse: o7 = pycovr

Vi=Vr+Vp

13




F,=F = (0}' +§R)A1 = orAs

o _ e, A
ar p1a + APQCQ A}_
fHA=1=
Ir_ e @.7)
0 pic1+ Pt
A=1=
9R _ P02 — p1&a (2.8)

Or  P1€1 1+ Pa0

Three special cases based on the above equations:
Case I: If pyey =0 (free surface)

or=>0 Op = —07
Case 2: If pyc; is infinite (rigid wall)
Op =07
Case3: two objects of the same material and the same cross section, we have p;¢; = pyc,

IR _Pa—pa_

(2.9)
01 P1C+ Pacy
Ir_ 20 (2.10)

01 pie1tpaca

So, no reflection wave for this case.
It should be noted that this reflection law at an interface is valid for elastic wave. For
nonlinear wave propagation, energy dissipation need to be considered if necessary [11].
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Figure 2-2: Schematic X-T diagram of elastic-plastic plate impact (same materials)

2.1.2. Plastic wave propagation

When HEL is reached, plastic wave will be generated. However, on contrary to elastic wave,
it is not possible to solve plastic wave propagation through solving a simple constitutive
equation. In plate impact, when the plastic wave impinges on a boundary of the solid, both
elastic wave and plastic wave will be generated as shown in Fig. 2-2. It should be noted that
the unloading elastic wave which is of much larger amplitude than that of the initial elastic
wave can significant change the state of the material, which can be see Fig. 77 (a).

For strain rate independent material, the stress-strain relationship can be expressed as
o = 0g + ke (2.11)

The velocity of the plastic wave is equal to

v, = (d{‘z ds)m (2.12)

where do/de is the slope of the plastic region of the stress-strain curve. So for bilinear




elastic-plastic material, the one-dimensional plastic wave velocity is

vV, = % (2.13)

Because in general the sound speed decreases with decreasing work-hardening rate, the ten-

dency is for the front of the wave to “spread out” or disperse.

2.1.3. Shock wave equations

Consider a plate of compressible materials that [12][13] has an initial state of internal energy
Ey, pressure Py, and the material is at rest ahead of shock. A uniform pressure P, is
suddenly applied to one face of the plate, would result in & wave traveling at velocity U,
if no failure occurs. The application of P; compresses the plate material to a new state
of internal energy E;, density p; and particle velocity Up. Across the shock front, mass,
momentum and energy must be conserved.

Conservation of mass: After a short time period dt, the mass of material encompassed
by the shock wave, p,U,Adt, with A being cross-sectional area, now occupies the volume
p1 U, — Up] Adt at density p,, so we have

PoUs = p1 [Us — Uy (2.14)

Conservation of momentum is expressed by noting that the rate of change of momentum of
a mass of material p,U,Adt is accelerated to a velocity of U, in time dt from U,=0by a
net force P, — P, is given by

Py — Py = p,U.U, (2.15)

Conservation of energy across the shock front is expresses by equating the work done by the

shock wave with the sum of the increase of both kinetic and internal energy of the system.
Thus

1
PU, = iﬁegsgpg + poUs (E1 — Ey) (2.16)
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Equations (2.14)-(2.16) contain a total of 8 parameters (py, py, Po, P1, Us, U, Ey, Ey). If
the initial state (py, Fo, Eo) is assumed to be known, then five unknowns (p, P, Uy, Uy, E;)
remain.

Equations 2.14-2.16 are the “jump conditions” that must be satisfied by materials pa-
rameters on the two sides of a shock front. Elimination of the particle velocity from the mass

and momentum equations results in an expression for the shock velocity of the form

Uz_ﬁl(ﬂ—}}ﬁ)

° 2o (p1 — po) (2.17)

As we can see from above, changes in pressure, density and thus internal energy across a
shock front can be calculated by measurement of just two parameters, the shock velocity U,

and particle velocity U,,.

2.2. Plate Impact Tests and the State of Uniaxial Strain

In order to characterize the dynamic behavior of materials under impact loading, diagnostic
experiments are usually carried out using a plate impact test configuration under a one-
dimensional strain state, and the experimental measurements from this configuration form
the basis for the shock response characterization. The plate impact test serves the exact
purpose of characterizing materials under high-pressure dynamic loading analogous to that
of uniaxial tensile tests under quasi-static loading conditions and split Hopkinson bar tests
under high strain rate loading conditions. Conventionally, a stress versus strain plot under
one-dimensional strain condition is generated from measured particle velocity or stress his-

tory data from a number of plate impact tests performed at various impact velocities. This

_ plot is referred to as the Hugoniot. The stress response is usually measured at intermediate

locations within a given specimen using embedded manganin or PVDF gauges. The velocity
measurements are typically carried out using a velocity interferometry (VISAR) system at
the stress free back surface of the target plate or at the interface of a transparent window
glued to the back of the target plate. These measured well-structured wave profiles in metals
and ceramics provide a wealth of information about the shock response of the material. Plate

impact tests are the test configuration used to investigate the impact response of materials

17




throughout this research (The schematic set-up is shown in Figure 2-4) since plate impact
can generate high pressure state and provide a range of controlled impact velocities. Also,
this configuration offers & unique opportunity for design of appropriate experiments to study
wave propagation in complicated microstructures.

When a material is subjected under shock loading, the deformation is restricted to one
dimension, with the lateral strains being zero. The stress strain curve is shown below.

In general, the three principal strains can be divided into an elastic part and a plastic
part:

g1 =¢] +&f
&g = E§ + 5;2;
€3 = €5 +&§
In one dimension deformation
&g = &3 = 0

€5 = —¢f and £f = —¢§
Since the plastic part of the total strain is assumed to be incompressible, so that
el+eb+ef=0 (2.18)
From equation (2.18) which we can have
= —ef -5 = 2]

Due to symmetry, we have &} = &}

80, €] = 2¢%

Therefore, the total strain £9can be written as
€1 = €] + &} = €7 + 2¢5

18




The elastic strain can be expressed using Hooke’s law:

I

™
B2 ok
Il

Bowl =

€ — 5 (02 +03) = % — Fo (Since 0y = 03)

—f(o14+03)= %;332 — 501

3 =30t =50 30y

Q)
o
I

From above, we have

= ef b — gt 4 oee = SLU—20) 205 (1 —2v)

E E

The yield criterion for either the Von Mises or Tresca for this case is
o1—03=Y,

using above as the definition of ¢y, insert this to Eqn. (2.19),
(—1—_%5) €1 =307 —2Y;
or 01 = grlser + 1Yo = Key + 22
For the special case of elastic one-dimensional strain:
€1 = &§
gg =g =g =¢e5=0
ff=ef=e=0
From Hooke’s law, we have

=2 —%(01+03)=0

and oy = 03

" _ - ) _ 2 G 200
Sﬁ,S}_—8?—4_—(52+33)—'§—§52—‘§———L

E E
That is,

oy E83

T -20)(1+o)
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Under uniaxial strain, the effective stress can be obtained by using Von-mises Criterion,

Ocff = “\;—5 [(01 - 02)2 +(o; - Cfa)2 + (o9 —0'3)2]

{2+ b (2T
-} e

From 2.23, we can obtain Hugoniot elastic limit (The critical normal stress beyond which

(M

(2.23)

inelastic wave will be generated under the state of uniaxial strain):

1—v
1—-2v

HEL = Yo (2.24)

Experiments on shock-loaded metals have shown that relation 2.24 works very well and ratio
between HEL and Y, is around 2v =2 1/3 for most metals. However, for brittle materials,
Rosenberg , based on the studies of shock waves on ceramics, suggested that Griffith’s yield
criterion should be used. Griffith’s biaxial-stress criterion gives the following equation for
the yield surface:

(0’1 '—0'2)2-{-80'0 (§1+62) =10 (2.25)

Realizing that the compressive strength, according to this relation is Yy = 80y, so the
Hugoniot elastic limit in this case is

1—v

HEL=—""_Y,
1—2)"°

(2.26)

which differs from 2.24 by an additional factor of 1/ (1 —2~). Recent studies suggest that
HEL may not be an elastic limit, but rather, may be a transition in failure mechanisms.

More generally, the Von Mises yield condition states that the materials is behaving elas-
tically if

5 < %yﬁ (2.27)
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and behaving plastically if
1
5 > gyz

where J; is the second invariant of the stress deviation tensor.
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Chapter 3

The impact response of layered
heterogeneous systems subjected to

plate impact loadings

Before investigation of the impact response of heterogeneous materials, it is convenient to
demonstrate an example of simple elastic stress response in homogeneous materials under
plate impact for the purpose of comparison. Fig. 3-1 shows one example of aluminum
impactor impacts another aluminum plate with initial velocity of 300m/s. It is assumed
that this impact velocity is low such that the HEL of the material is not reached, and thus
the material exhibits elastic response.

The maximum stress for elastic wave propagation, as mentioned before, for two plates
made of the same materials, the particle velocity for target plate (initially at rest) o =
 PCLYparticat = 2.7 X 10° X 6.623 x 10° x (5 x 300) m/s = 26.8 kbar. Time to reach the back
of the target plate (the thickness is 20mm): ¢t = - = st = 3:02us. Time to reach
the back of the flyer plate (the thickness is 5mm): ¢ = ;’; = 3.62??—%;—;% = 0.755us. The
corresponding X-T plot of wave propagation is shown in Fig. 3-1. From this figure, we can
see again that, for plates of the same materials, no reflected wave is created in the interface,
incident wave is transmitted completely. And the stress in point G (where the distance to the
back surface is equal to the thickness of the flyer plate) is tension and 20 in the amplitude,

in many cases for brittle materials, this is where spall will happen.
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Figure 3-1: X-T diagram of aluminum plate impacts another aluminum plate

From Fig. 3-2, it is obvious that the stress amplitude remain exactly at the same level
before the incident compressive wave reaches the back surface of the target plate. After
that, however, the release wave created from the free surfaces or the corner tend to cause
dispersion.

In order to study the effect of planar interfaces, as is the case in laminated composite
systems, it is appropriate to simulate a layered configuration, and this approach is taken
in this work. In this paper, we examine only the rise characteristics of the signal, i.e., the
slope %L For the time being, we will focus our attention on elastic materials, hence one
should be cautious in extending the results to a generic nonlinear material system. We have
developed an analytical solution to the problem of multiple reflections/transmissions in the
layered system. The solution relates the cumulative amplitude of the stress wave arriving at
a given section in the body as a function of time when the body is subjected to a shock wave
at the front surface. Such a study will not only provide a fundamental understanding on the
shock response of heterogeneous materials but also provide a better guideline for postulating
a physically acceptable equation of state. It is natewort}iy' to realize if the target plate were
to be a homogeneous material (for example a metal), then the head of the shock front will

be planar (vertical stress rise with zero rise time), followed by a dwell time corresponding to
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Figure 3-2: Normal stress profile of Al-Al elastic

the arrival of release wave from impactor back surface, and a sloping pull back signal. The
dwell time and pull back signal shape are affected by a number of factors including arrival
of release waves from different sources (e.g. target back surface, corners, internal damage
surfaces and the acceleration of wave speed with pressure). The rise portion of the response
is primarily affected by the shock front behavior, with the exception of damage and viscous
effects. Thus we are concerned here only with the rise characteristics of the layered structure
under plate impact and examine why it is different from that of a monolithic metal.

Our approach in this work is to examine the response of elastic wave as it encounters
an interface, be it be fiber/matrix or different laminae and compute the multiple reflec-
tion /transmissions. For this purpose, we develop an analytical model for a two-material
layered system in section 3.1.1. This section is rather long but self-contained in providing a
relationship between the number of layers, properties of the materials, the arrival times of
transmitted /reflected wave trains at a given location. Further we provide numerical solution
to selected material/layers combination. This section is used to illustrate the possibility that
rise time may comprise of many wave trains arriving at a given section over time leading to
the observed slope. we present the comparison of finite element solution with the analytical
solution. In section 3.1.3., we present certain consequences of the analytical solutions. In
section 3.2, a late time analytical solution is presented and this solution is based on the
solution for unit step loading condition. Equation of state is incorporated for shock loading
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conditions. In the final section we summarize the results.

3.1. An analytical model to study the rise characteristics

based on multiple reflections in layered composites

3.1.1. Solution method

Consider a layered composite system with alternate layers of materials A and B arranged in
succession as shown in Figure 3-3. Let us assume that materials A and B are both isotropic
with known stiffness, strength and acoustic properties, denoted with subscripts A and B; for
example, 4 represents the Young’s modulus of material A and pg the density of material
B. If there are 2L.+1 layers in the system, then there are L+1 layers of material A and L
layers of material B with 2L interfaces. Let o7 be the incident amplitude of stress in the first
layer of A. This can be construed as the magnitude of high amplitude compressive shock
wave imposed as a result of a plate impact condition. As the wave travels through material
A, it encounters the first interface A — B. At the interface because of acoustic impedance
mismatch, there will be partial transmission and rest reflection, as shown in Figure 31. Let
oribe the transmitted wave into material B, and o5 be the reflected wave. Here the second
subscript 1 represents the wave interaction event 1 at the first interface between A and B.

The ratio of i‘f} and “;,—R;-can be written as,

ary 2p5Cp

—_—=—— __=9m 3.1
or  psCa+pgCs ! (3.1)
IRt _ PeCB — PaCa =my (3.2)

o1 paCa+pgCs

Hence after the first interaction with the interface A — B we have,

o1 = Ma0g and OR1 = Mooy (3.3)




We note that with every layer, as a wave interacts two waves emerge, one transmitted and
one reflected. Let us now proceed with the transmitted wave designated with the amplitude
o7y interacting with B — A. Let o be the transmitted wave and oy the reflected wave as

a result of the second interaction. We now introduce two more constants ms and my4 as

_giz. = ——QPACA = M3 TR = pACA — pBCB =1 (3.4)
o1 paCa+ppCh o1 paCa+ ppCs
O79 = M30p; = MyM307 (3.5)
ORo = My0py = My MyOr (36)

Proceeding with the same argument, the next interaction will be with that of A — B
leading to

O3 = My0Ty = MiMyoy (3.7

ORs = Ma0ry = MMMz (3.8)

and with the next interaction at B — A stress levels

o4 = M30r3y = m%m%a; (39}

- 2
OR4 = M4g073 = MyM3M40 (3.10)

are reached.

A. First Transmitted wave after 2L layers

We are now ready to generalize the magnitude of transmitted wave after 2L interactions
for a system comprising alternating L layers of A and L layers of B. This transmitted
wave represents the head of the shock wave and the first to reach any given point in the

downstream of the wave propagation, as shown in Figure 3-5.
Opor = ?R3G'T(2;,_.1) = m§m§01 (311)

which is intuitively obvious since there are L interaction from A — B and another L
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Figure 3-3: Schematic of layered system.

interactions with B — A interfaces.

We focus our attention on the head wave (see Figure 3-5) which is the very first wave to
arrive at a given section. This head wave represents the wave that is always transmitted at
all the interfaces as shown by equation (3.11). For the purpose of illustration, we analyze a
combination of material systems that are used for a variety of applications. The table below
shows the value of my, my, ms and the product mym;. For the sake of convenience, let us
define an impedance mismatch factor I = 1 — mym;,(I = 1 represents infinite impedance
mismatch and I = 0 leads to no mismatch) which is a function of a given pair of materials.
I represents the fraction of transmitted energy to that of incident one, after a pair of trans-
missions at A/B and B/A interfaces. For example in the case of Aluminum-S2 Glass this
product is 0.996, while in Tungsten-Plexiglas it is only 0.108. While the former system allows
most of the energy to be transmitted, the latter system will reflect most of it for dissipation
in many more scattering events. Hence the stress amplitude in the Aluminum-S-2 Glass the
head wave will be quite high and that in Tungsten-Plexiglas system it will be low. It is also
to easy to see that with a low initial head wave, further arrivals will build additional stress
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Figure 3-5: Head wave and successive wave trains in a layered system

over time resulting in stress build up over time, leading to a slower starting rising slope.

Table: Material impedance mismatch.

Figure 3-6 shows the intensity of the first transmitted wave train (head wave) for different
material systems as a function of the number of layers. The behavior can be classified into
three distinctly different categories. Type 1, is one in which almost all the iﬁteasiﬁy of
incident wave is transmitted with very little under reflections, (e.g. steel-copper and Al-S2
glass). This behavior is similar to that of monolithic material where there is nearly no loss

of energy during transmission. Such is the case for this group where the acoustic impedance

of material A is close to that of B, leading to I = 1, and my, m, = 0. Sharp rise time is
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Figure 3-6: Stress intensity of head wave in a layered system

Type 2 represents the other extreme to the Type 1 where we have the head wave with
very low values of o7 (e.g. Tungsten-Plexiglas). In this case I = 0 with | m, |~ 1 with most
of the scattering at the interface resulting in reflection rather than transmission. Peak value
of stress o7 will be much lower than o; when some release wave arrives; in any case the
beginning slope % will be very low.

Type 3, is an intermediate case where impedance mismatch I is neither close to 0 nor
1 (e.g., copper-Aluminum, glass-resin). In this case the slope of the rise curve %ﬁg— will be
moderate. Of course, since the head wave intensity decreases with number of layers, the
slope will decrease with increase in number of layers.

B. Arrival of second wave train at £ = 2L

Let us consider a location # = 21, downstream of the incident shock wave which corre-

sponds L + 1 layers of A and L layers of B. For the sake of convenience let us also assume

that the thickness of the individual layers of A or B is such that the time of flight is identical.




Thus

hl h? f?'a hui h?L—l §2L
—_— T e T e TS e T e s o oa ey = :—:}j :t :t* 3.12
Ci Cs C4 Cz C, Cz “~77°B .( )

where C4 and Cp are the wave speed in materials A and B respectively. We should also
note that in this analysis we neglect the increase in wave speed as a result of prevailing
compressive stress in the material. Based on this assumption, the head of the shock wave

arrives at 2Lt* from the time of impact when ¢ = 0.

As seen in Figure 3-5, the second wave train arrives after one pair of internal reflections
within either the material A or B. Thus the number of wave arrival at the station after a
time 2Lt*+ 2¢*will be 2L based on the number of interfaces. We should note that this means
the second wave train arrives at the station after an incremental time of 2¢* after the arrival
of head wave. Since the pair of internal reflections will be of the type A — Band A — B
within the material A and B — A and B — A in material B the factor to multiplied for
the intensity will be m3 and m3 respectively. While there are L reflections within material
B, there will be L reflections within material A. Since the reflection in the first layer A
needs to reach the impact surface and then come back, the intensity of this wave depends
on equation of state and flyer plate properties. For the sake of simplicity in formulation, we
assume the impactor is material B, so that we do not have to distinguish the waves that
are reflected inside from the ones that are reflected from impact surface. Thus the stress

amplitude of the second wave train are separated into
0@, = (miL +m2L)I o, (3.13)

The above equation can be simplified using the identity my = —my so that

0@, =L -miI* o) (3.14)

C. Third and N**wave trains
Proceeding in the similar fashion, the number of waves in the third wave trains that

can arrive at x = L(Cy4 + Cp)t* at time 2Lt*+ 2(3 — 1)t* will be any branch of waves

33




that has exactly two pure reflections in 2L layers. We can easily calculate the number Cg)
of waves that has exactly two reflections in 2L layers using the rules of permutations and
combinations. If we assume that the number of layers is n, then for n=4, 5, 6, 7, 8 to m, C’g’}
will be 10, 15, 21, 28, 36, ...[10+4x (m —4) + (1 + 2+ ... + (m — 4))]. However, there is
yet another possibility. Here we have one reverse transmission (traveling backwards through
two neighboring layers) and then one reflection, and the number for this type is designated
as C’%}z ( Cg}é = 2L — 1 in this system). Every transmission always accompany reflection
and result in tensile stress waves. So the simplified stress amplitude of the third wave train

is given by
o8, = (COmZCIIE — COm2E)g, (3.15)

and this wave train arrives at a time lag of 2¢* after the second wave or a total elapsed time
of 2Lt*+ 2(3 — 1)t*.

Generalizing to the N*® wave train, the number of waves will be calculated by considering
possible number of reverse transmissions /reflection combinations. For N** wave train, The
maximum possible number of reflections in this wave train will be N — 1, that is, pure
reflections without reverse transmissions. In 2L layers, the number of such possibility for a
given number of reﬁectic:ns K is fixed and assigned to be Cx here. Then the left variable
reflections will be N —1 — K, the number of transmissions in 2L layers with K reflections can
be designated as Cpg. As a result, the total number of waves that go through I reflections
and N — 1 — K reverse transmissions in N** wave train is CxCrg. Obviously, this number

is a function of number of layers and wave train number N. Then the total stress amplitude

is given by
N-1
U'_{gi — Z(—i)N_i_KCKCTRmEK [N-1-K+Lg (3.16)
K=1

with an arrival time lag of an additional 2¢* from the previous (N — 1)™ wave train with a

total elapsed time of 2Lt*+ 2(N — 1)t*.
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The simplified cumulative stress up to N™ wave train can be generalized as

N wW-1
Og1, = ILUE + Z Z (—*1)W_I_KG}{CTngxIW—I—K+LG'} (317)

w=2 K=1

D. Analytical Solution to the rise time in shock waves

We have in the last few sections succeeded in determining the stress amplitude of succes-
sive wave trains arriving at a given plane in regular increments of At = 2t*. We have thus
built a relationship of o = o(t) with the basic assumption that the stress intensity builds
up over time as a result of different waves arriving at a section after suffering a series of
reflections /transmissions at various interfaces over time. Thus we have oV = ¢(V-Dt" | Ay
as determined by equation (3.17) resulting in the prediction of rise characteristics in the
shock wave signal. The slope % will of course depend on the material combination (with

different m;, mg, m3 and m,) and the number of layers (2L) where the shock signal is being
analyzed.

3.1.2. Numerical/Analytical Solution to the Cu/Al multi-layered

system

For the purposes of illustration, we select Cu/Al multilayered system with the total number

of layers ranging from 2L = 4,8 to 16 and apply the above analytical solution for the case of
plate impact with Al as the flyer plate. Figure 3-7 (a) shows the schematic of the layers with
5 mm Al flyer plate impacting the layers. The stress profile at the point D (mid point of the
10mm plate) is computed using both the analytical solution and numerical solution using
an explicit finite element code (EPIC95 research version). Three different layered systems
with different number of layers were studied and the results are shown in Figure 3-7 (b), (c)
and (d).

The wave profiles consist of steps and each step represents the arrival of a new wave
train at the point D. The horizontal portion of the profile indicates the time delay between
the arrival of successive wave train. We can see from the figure that the intensity of the
first arrived wave reduces from 2L = 4 to 8 to 16 (from 2.76 Gpa to 1.0 Gpa). Also it

takes approximately 2 wave trains (0.89 * 2us), 2 wave trains (2x 0.45 us) and 3 wave trains
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Figure 3-7: Rise characteristics of alternating layered Al - Cu (a) Schematic configuration,
(b) 2L=4, (c) 21.=8, (d) 2L=16

(3%0.226115) to reach the peak value before the release wave arrives from a host of sources. As
we extend this observation to a large number of layers, then even the analytical solution will
show significant stepped increase making it more or less continuous curve. The analytical
solution shows that a given wave arrives at one instant of time thereby producing a vertical
segment. It can be seen that the analytical solutions match the numerical simulation very
well for 4 and 8 layer cases (Figure 3-7(b) and 3-7(c)), respectively. Numerical simulation
shows that a given wave arrives in an incremental time step indicated by the slope of the
step. This can be ascribed to the equation of state that predicts that each wave train (except
the head wave) comprises many sub-waves with slightly different wave velocities. This effect

of wave spreading increases with pressure/wave train number as is seen in the third wave
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train of Figure 3-7(d). Agreement between the analytical solution and numerical simulation

clearly shows that the stepped stress profiles are due to the scattering processes.

3.1.3. Some consequences of the analytical solution

Based on the above analysis, it is evident that the rise time will be significantly affected by
the scattering characteristics and the number of layers in the interfaces.

A. Scattering Characteristics

As the shock wave arrives at an interface, its ability to transmit /reflect is determined
by my, my and mg, As discussed already the impedance mismatch factor I determines the
strength of the head wave. If I ~ 1 then most of the wave will be transmitted and we expect
a sharp rise curve. On the other hand, if I =~ 0 then most of the energy in the wave is spent
in internal reflections resulting in a slow build up of stress. Of course the rise of compressive
stress will be interrupted at any point when a tensile release wave comes to that point. In

such cases, we may be misled by the rise time profile confusing the amplitude reduction with

attenuation.

B. Number of layers

As the number of layers increases the rise time slope will be reduced provided the head
wave strength is low. If the head wave strength is high (I = 1) then a vertical rise occurs
irrespective of the number of layers. Figure 3-8 shows the change in the slope (defined in
Fig. 3-8(b)) for three different combinations of materials. As indicated in the figure, the
systems represent high, medium and low level of impedance mismatch. For a given number
of layers, the higher the mismatch (lower the I-value), the slope decreases indicating that it
takes a longer time to reach the peak stress value. For a given material system (and hence
I), the slope increases (sharper rise time) with increase of the number of layers. It should
be noted that in these analyses since the total thickness is fixed, increasing the number of
layers decreases the thickness of each layer.

3.1.4. Summary

Shock wave profile in composite systems show marked difference from that of metallic sys-

tems. It is postulated that numerous fiber-matrix and lamina-lamina interfaces present in
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composite systems offer potential sites for scattering; such sites being characterized by ma-
terials with acoustic impedance mismatches. Though composites provided motivation, we

have analyzed multi-layered heterogeneous systems in this work.

The rise time characteristics is explained as the manifestation of multiple transmis-
sion /reflections occurring at the various interfaces resulting in the loss of strength of the
head wave. As the waves arrive at a given location with time it results in the slope of stress
vs. time signal. An analytical model capturing these processes have been developed. The
analytical model predicts the rise time behavior. FEM is then used to corroborate the results
for a simple bilaminate system. A good agreement between analytical and numerical results
clearly supports the hypothesis that layered systems will suffer rise time slope changes with
inherent acoustic impedance mismatch between layers. Other factors that may affect the

thermodynamics of the shock front may have to be considered carefully before this assertion

can be made conclusively.
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3.2. Late time solution to the plate impact problem

3.2.1. Background

Wave propagation in a periodic layered medium has been studied extensively for decades.
Historically theoretical work on wave propagation studies in layered systems has followed the
mathematical solution to ordinary differential equations with periodic coefficients attributed
to Floquet [14] that dates back to 1800s. As early as 1956, Rytov [15] obtained a dispersion
relation for one-dimensional longitudinal waves propagating in a periodic laminate. Later
Sun, Achenbach and Herrmann [16] obtained the dispersion relations for harmonic wave
propagating parallel and normal to the direction of the layering using the effective stiffness
theory for a unit step loading at the boundary. Peck and Gurtman [17] studied the wave
propagation parallel to the layers and obtained the asymptotic solution through approxima-
tion under similar loading conditions. Sve [18], Chen and Clifton [19] predicted the late-time

asymptotic solutions and the wave front solution for wave propagation normal to the layers

- for unit step loading at the boundary.

A schematic of free surface particle velocity of the target measured using a VISAR or

- the compressive stress measured using an embedded stress gauge is shown in Fig. 3-9. The

portion of the plot indicated by the letter A represents the arrival of an elastic shock wave
from the impact plane. The material particles are compressed elastically (A-C) until the
relatively slow moving plastic shock wave arrives at the given location. Typically, the shape
and time duration of the portion A-C depends on the strain rate sensitivity of the material
and the distance from the impact plane. If the shock amplitude is below the elastic limit,
the profile typically follows the portions AC - CE. The rise time is usually of the order of
less than a microsecond for metals and ceramics. If the shock amplitude is above the elastic
limit, then the plastic shock takes the particle velocity to the peak between points D and
E. The peak level remains the same until the elastic unloading wave arrives from the back
of the flyer plate. Therefore, the portion between D and E remains relatively flat. The
elastic release (tensile) wave drops the velocity (or stress) to F and the plastic release wave
drops the level further to H. Often, the release portion of the wave profile exhibits a typical
structure that consists of the elastic release, the transition (F-G), and the plastic release. Fig.

3-9(b) shows the schematic of a typical shock response of a layered composite system. The
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Table 3-1: Review of major past work done in studying wave profiles in alternating
layered systems under plate impact
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interpretation of this profile is extremely difficult without a wave analysis due to the absence
of a clear wave structure. Since the stress or velocity profile is a result of superpositions of
numerous wave reflections at the interfaces, the stress level at R; is an intermediate stress
state. This level is determined by the sequential arrival of many wave trains at the point of
measurement. A;R; shows a dispersed wave structure with a longer rise time compared to
the rise time in a target plate of a homogeneous material. The oscillatory portion R; — E
at the peak level indicates the arrivals of several release and compressive waves. The pulse
duration becomes a function of not only the thickness and wave speed in the flyer plates, but
also on the number of interfaces and wave speeds in the heterogeneous system. In layered
systems, planar interfaces interact with the incident shock wave generating transmitted and
reflected waves, their amplitudes being determined by the impedance mismatch. This factor
should be explicitly considered in evaluating the shock response of layered systems. In
woven fabric based engineered composite systems, such as the GRP, the interfaces between
fiber and matrix and between different laminates, various lay-up sequences with different
ply orientations and different forms of fiber arrangements within the matrix (particulate,
planar, 2D /3D woven) all contribute to dispersion. It is often very difficult to interpret the
measured wave profiles in GRP which lack clear wave structures and exhibit significant wave

attenuation and dispersion.

Ry, R E;
é & T Tp
F
.
Time A} Time
(@) Homogeneous metals (b) Layered composites

Figure 3-9: Schematic wave profiles of homogeneous metals and layered composites for a
finite thickness flyer plate.




Table 3-1 summarizes the major past work in studying wave profiles in alternating lay-
ered systems using the plate impact test configuration. Lundergan [20] (1971) numerically
simulated the response of a layered material system with varying thickness. The simulated
particle velocity response exhibited a slow rise time and an oscillatory peak as observed in the
experiments. However, there was a mean stress level about which the stress level oscillated.
The idea of replacing the dispersive, heterogeneous composites with an equivalent homoge-
neous dissipative continuum was first proposed by Barker [21]. A general nonlinear Maxwell
(viscous) model was proposed to simulate stress relaxation from an instantaneous state of the
mixture to the equilibrium level. In addition, Barker obtained oscillatory stress solutions
by explicitly modeling each layer using a stress wave propagation based one-dimensional
code. Barker successfully validated the viscous model for the composite equation of state
through matching the averaged stress response in the oscillations from the code. In 1974,
Barker([22] further validated his theory using results from experiments in which a low volume
fraction of aluminum was used in a PMMA /aluminum based layered system. However, in
general this model fails to predict the structure of the stress waves (rise time, peak stress
and oscillations).

While carrying out impact experiments on layered Cu/PMMA systems, Oved [23] (see
Table 3-1) noticed significant oscillations in the stress wave profiles. As can be seen in the
corresponding figure, the oscillations occur about a mean value (called mean stress). When
the amplitude of oscillations is substantial, Oved pointed out that oscillations do not vanish
with distance of propagation in the shock region. Consequently, oscillations should not be
ignored but it should be explicitly modeled. More recently Kanel [24] confirmed the harmonic
oscillations in experiments on Cu/PE system. He proposed a relaxation model similar to
that of Barker, though the physics behind the models were quite different. The main thrust
of Kanel’s approach was to obtain the nonequilibrium pressure (the difference between the
Rayleigh line to the final state and the equilibrium pressure corresponding to the Hugoniot
curve) by assuming an empirical kinetic relationship.

Dandekar [25] reported results from plate impact tests on a woven fabric composite.
The measured VISAR signal revealed an oscillatory peak stress behavior and a long rise
time. Boteler, Rajendran, and Grove [1] further conducted a combined experimental and

computational study on stress attenuation and dispersion in S2 glass fiber reinforced plastic
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(GRP) laminates. The stress profiles at three different distances from the impact plane were
measured using embedded PVDF gauges. They observed that the rise time increased and the
average peak stress reduced with propagation distance. Some oscillations were observed at
the peak stress in the first gauge, which was closer to the impact plane. The stress his‘éories at
locations significantly away from the impact plane showed no oscillatory behavior at the peak
level. Their computational modeling using a three dimensional viscoelastic model matched
the attenuation of the stress, but failed to reproduce wave dispersions.

Clements [26][27] proposed a modified unit cell method to model wave propagation in
alternating Epoxy and Epoxy-graphite system. Only recently, Zhuang [28] conducted a thor-
ough experimental investigation by performing a large number of plate impact experiments
in selected material systems involving alternate units of either polycarbonate and stainless
steel or polycarbonate and glass. In his experiments, both the quasi-harmonic oscillations
and the finite rise time were observed in different systems. The effects of impedance mis-
match, interface density, propagation distance as well as loading strength were examined as
the basic parameters in his experiments.

- In the study of wave propagation in solids, scattering, dispersion and attenuation play
a critical role in determining the thermomechanical response of the media. These phenom-
ena can be attributed to a number of nonlinearities arising from the wave characteristics,
loading conditions and material heterogeneity (measured at various spatial scales ranging
from nanometers to a few millimeters). The nonlinear effects in general can be ascribed
to impedance (and geometric) mismatch at various length scales as often encountered in
composite material systems. In addition, material nonlinearities (inelastic effects) can arise
due to void nucleation and growth, microcracking, and delamination. The strong shock

waves generated under high velocity impact loading often induce nonlinear effects in the
deformation and failure behaviors (Nesterenko [29]).

Present authors (2002) showed that the observed structures in the measured stress wave
profiles in layered systems under low velocity impact loading condition could be explained
through modeling the scattering effects at planar interfaces. However, under high velocity
impact loading where strong shocks are generated, it is fully realized that material nonlinear
effects may play a key role in altering the basic structure. Therefore, it is important that

models that describe the wave structures include equation of state for each material in the
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periodic layered system.

3.2.2. Problem formulation and solution methods

Consider two semi-infinite bodies 0;(—00 < y,2 < 00,0 € £ < 00) and Q, (—o0 < y,2z <
00, —00 < z < 0) such that they are initially separated and then impact each other with
velocity " = vy % in the z direction. As shown in Fig. 3-10(a), without loss of generality
we can assume {); to be fixed in space and ) impacting on the entire z = 0 plane. Upon
impact, stress waves are generated on a plane parallel to the impact plane and travel in the
negative x direction in {2y and positive x direction in {2; with wave velocities determined by
the material properties of these two bodies. The amplitude or strength of the stress wave is
determined by the velocity of impact vy and the acoustic impedances of §2; and 3. As the
waves propagate away from the impact plane, the bodies {; and )y are in compression with
a uniaxial state of strain ¢, # 0 and all other components &;; = 0 (for 7,5 = 1,2, 3 except
i = j = 1). The problem is to find the state of strain and stress in the compressed region
given the velocity of impact and the material properties of the two bodies.

This plate impact problem has long been well understood and successfully modeled when
; and Q, are homogeneous. What we seek here is a solution to the problem when ; is
laminated as shown in Fig. 3-10(c) as a precursor to the practical plate impact test shown
in Fig. 3-10(b). In the plate impact test (Fig. 3-10(b)), £, is called the flyer plate or the
impactor impacting on ); termed the target plate. The target plate is made of alternating
layers of materials A and B with the impactor made of a homogeneous material C. All the
materials (layers) are assumed to be homogeneous and damage free with known mechanical
(E,v), physical (p, and Equation of State) and acoustic properties. Though the bulk of the
paper assumes a constitutive relationship of linear elastic, isotropic form, extensions to very

high stress regions are formulated by invoking the equation of state.

In this work, we seek solution to the stress history in §); as posed in Fig. 2(b). This
problem is identical to the problem in Fig. 2(c) if the thickness of the flyer plate (ds) and the
target plate (d;) are much smaller compared to the lateral dimensions (radius of the plates).
In other words, due to the geometry the strain state remains strictly one dimensional for the

solution time duration. Also both the thickness dy and d; are large enough not to permit
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Figure 3-10: Schematic of the configuration for impact problem(a) two half spaces of ho-
mogeneous materials, (b) general plate impact problem of layered systems (c) plate impact
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loading.

wave reflections from the free surfaces to interfere with the solution.
The governing equations can be written as follows:

Equation of Motion:

do (z,t)  u(x,t)

633 =P atg (3*18)
Velocity continuity:

0 Ov(z,t)

T 0 (3.19)




Constitutive relation (Elastic laminates):
o(z,t) = Efe (z,t) (3.20)

where o (z,1) ,u (z,t),v(z,t) and e(z,t) denote the longitudinal stress, displacement, ve-
locity and strain respectively. As shown in Fig. 3-10(b), the constants p; and E; (i = 1,2, 3)
represent the material densities and the elastic moduli for the uniaxial strain of materials A,

B and C respectively.

Initial boundary condition:

Stress, displacement and strain are zero at ¢t = 07:

o(z,0)=0
u(z,0)=0 for —co<z <00 (3.21)
e(z,0)=0
Initial loading condition:
v(z,t)=voforz <0 (3.22)

Stress and velocity continuity (ot all interfaces):
For wave propagation in a layered medium, the stress and displacement continuity should
be maintained at all interfaces:

(a) stress continuity at £ = h; + Ld :
(17 (h1 -+ Ld, t) = (}Ll + Ld, t) (323)

where L is positive integer representing number of unit cells and k; (¢ = 1,2) are the thickness
of layer 1 and layer 2, and the d is the thickness of the unit cell with d = h; + hy.
(b) Stress continuity at z = Ld :

04 (Ld,t) = oy (Ld, t) (3.24)
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In the same manner, velocity continuity at £ = h; + Ld and z = Ld :

Vo (hg + Ld,t} = (hl + L’d, i)
Ve (Ld: t) = U (Ld: t)

Take Laplace transform of Eqs (3.18), (3.20) and (3.19):

0o (z,8)
oz P53”($7 3)

G(z,8) = EZE (z,38)
—s2(z,5)=0

9% (z, s)
dz

The solution of equations of Egs (3.27)-(3.29) are in the form

v(z,s) = a;e™" +be 5

7(z,8) = a (Sk_;::,) ek 1 b, (~§§;‘—) e ke

where

ki = k(s*:[
ki = ki(s) = -2

where ¢; is phase velocity and can be obtained by

1
(2]
P

(3.25)
(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
(A.5)

(3.31)

(3.32)




For ordinary differential equations with periodic coefficients, Floquet theory can be applied

7(z,s) = %G (z—d,s) (3.33)
T(z,s) = gz ~d,s) (3.34)

By considering the stress and velocity continuity across £ = hy,let [ = 0 in Eqgs (3.23)
and (3.25):

&iekﬂu + ble—i‘ﬂh = 3287”711 +bze*‘k2?‘1 (A.10)

a (ii) e _p, (_i_i ) e~Fib as (-22-2—) ekl _ b (—-i—z) e 2 {A.Il)

Stress and velocity continuity across z =d :

e (a; 4+ b)) = age™ 4 by (A12)
P1 Pi) _ P2 _ked P e—had
€ ( % —b k}) ay kze — b= %,C (A.13)

Egs (3.35)-(3.35) have non-trivial solutions for only when the determinant of the coefficients
is equal to zero. This condition yields the transcendental dispersion relation:

cosh kd = cosh kyhy cosh ahs + — (*"161 +2 232) sinh k; by sinh kyho (A.14)
2\p2 p1a

where k is wave number for the laminates, k; and k, are frequencies for layer A and }a,yer‘
B, where h1, hy and ¢y, ¢y are the thickness and the longitudinal wave velocities of the layers
respectively. And d is the thickness of the unit cell, with d = h; + hy, as shown in Fig. 2(c).

For steady wave with frequency s, the dispersion relation can be written as

cosh kd = cosh -hy cosh “-hy + = (f’ﬁ + "262) sinh -—h; sinh —h2 (A.15)
Ci C2 2\ P2 P11

Therefore, the phase velocity for zero-frequency limit ¢g is obtained

o= d (3.35)

() () (o 5) e}
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In order to get the solution for plate impact loading, as will be discussed later, it is
convenient and necessary to show the solution for the problem of unit step loading. For unit
step loading, the flyer plate vanishes and the boundary condition for the target plate can be

written as
0 (0,t) = 0oH (1) (3.36)
Its corresponding Laplace transform is
o (0,) = 353 (3.37)
The transformed stress at distance £ = 2ld can be obtained by Floquet theory
o (2Ld,s) = ekis)ffg—“ (3.38)

The late-time solution can be obtained by the asymptotic evaluation of the integral

+i00
o (2Ld, 1) = —— 7 (2Ld,s) e*ds (3.39)
2T Jy—ico
Now introduce a small time scale
b=t—z/c (3.40)

By introducing §, we remove the variable z in the stress function in Eq. (3.39). Substitute
Eqgs (3.40) and (3.38) to Eq. (3.39) and assume p(t, 6) is the stress function with ¢ and §
being the variables.

_ 0o y+Hioo e—ég(s)eth(s}ds
p(1,6) = 5% L T (3.41)
where
9(s) = k(s)co

h(s) = g(s)+s=k(s)co+s
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For late time solution, we seek an asymptotic representation of p(t,§) for ¢ — oo with
fixed 6. Such representation can be obtained by making the integration path follows a path
of steepest descent though the saddle point s at which #/ (s) = 0. This happens when s — 0.
The expansion of about the saddle point will yield (for elastic case)

hfl‘l (0) 3

h(s) = (3.42)

where

ro-FH{E) @) G ) e

So the integral of Eq. (3.41) becomes

hﬂt 3
oo [ Qg

p(f‘i 5) —{}'g -+ —2-;{; —-;——ds (344)

Evaluation of the integral in Eq. (3.44) will finally give an integral of the Airy function.

o(z,t) =0 [ f Az(—-s)ds} (3.45)

where

The above solution for unit step loading follows Chen and Clifton’s (1975) work. Also, it
should be noted that Sve (1972) evaluated an integral analogous to Eq. (3.41) and obtained
the same final result.

Eq. (??) provides the solution to the stress profile of a laminated system subjected to a
unit step loading. Though it is tempting to specify the amplitude of this step as the stress at
the impact plane at the time of impact, it will be shown later that this is not correct. Despite
this, the stress response of a unit step loading on bilaminates qualitatively displays all the
essential features found in plate impact tests. Consider the case of bilaminates with material

A as PMMA with h; = 0.26mm and B as copper with hy = 0.36mm. When subjected to
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unit step loading given by Eq. (3.36), the stress history at z = 10mm can be calculated
using Eqs (3.45) and (3.46). Fig. 3-11 shows the stress history. It should be noted that
in the figure that the effective speed of ¢y corresponds to the propagating speed of %53. It
can be seen that the stress rises with a specific slope (as opposed to a vertical rise for a
homogenized material). Then the stress oscillates about an average stress equivalent to the
applied stress 0y. In addition, the oscillations are almost harmonic with the amplitude of

oscillations decaying with time.

16
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Figure 3-11: Solution to the Unit step loading condition in PMMA-Cu.

3.2.3. Solution to the plate impact problem

Problem as shown in Fig. 3-10(c) describes the plate impact problem while late-time
solution in the previous section pertains to problem in Fig. 3-10(d). For a plate impact
test, the body )5 is continuously in contact with €; imposing initially a velocity boundary
condition at z = 0 and at £ = 0 identical to the constant stress boundary condition in Fig.
3-10(d). However, for problems in Fig. 3-10(c) the magnitude of loading on the boundary of
the target plate keeps changing due to wave reflections in the target plate. Let us suppose oq
be the stress induced at the time of impact between C and A. As shown below, additional

stress increments are induced at the impact plane due to wave reflections from interfaces.
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In this section, we formulate the stress increments as a function of impedance mismatch

between the material A and B and between C and A.

Incident wave:

Upon initial impact of ; on €, the incident wave with magnitude oy is generated at

the impact instant, and the magnitude oy is given by

_ P3C3piC1p

Og
Pats + o101

(3.47)

Second wave train:

Fig. 3-12(a) shows the schematics of the wave traveling within the target body ;.
The incident wave first travels in material A. As it reaches the interface A-B, part of it is
reflected back and the rest of it is transmitted (shown in dotted line only for wave train a).
This reflected wave arrives back at the impact plane after a time o, = 2t, = 2hy/c;. Stress
at the impact plane is altered by this new wave arrival given by

Aoy =rap(l+rs0)00 (3.48)

— Pa%—pa — Pats—pic 3 ; : : -
where r4_p e Toncs and r4_¢ PR denoting reflection ratios at interface A-B and

C-A respectively. Here C is the flyer plate. The cumulative stress level up to the second

wave train at £ = 0 at {,, = 2t, = 2h;/¢yis

01 260+Aﬂ"1 = {‘?“g-g(l—f—?"_g_c)-?l] Tg (349)

Third wave train:

The propagation path of the third wave train depends on the ratio of the transit time in
layer A (t,) and that in layer B (2;).

a)Ift, = (%f) >t = (%92) , then the third wave train comes from the branch that has
one reflection in layer B and reaches the boundary at ¢t = 2t, + 2t,, which is represented as

path b in Fig. 3-12(a). The stress variation due to the wave train that follows this path can
be calculated as

Aoy = [ra-p(1—r%_p) (1 +14-c)] 00 (3.50)
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So, the overall stress magnitude up to the third wave train (still at the impact plane) is
09 =03 +AG’3 (351)

b)Ift, = (%—:—) <t = (i‘—j) , then the third wave train follows path ¢, which goes through

two reflections in layer A and reaches the impact plane at time t,, = 4h;/c;:
Adh,=1%_gra_c(l+7a-c)0oo (3.52)
The overall stress is
oy =07 + Ad) (3.53)

c) When t, = (2—;) =1 = (%) ,the propagating path of the wave trains is independent
of the materials. So the third wave train comprises waves that follow path b and waves that
follow path c. As a result, the increment of this wave trains Ao} are the sum of Eq. (3.50)
and Eq. (3.52), so we have:

0‘g=01+A0§=01+A02+A012 (354}

Feuf’th wave train:
The propagation path of the fourth wave train that reaches the boundary of the target
plate still depends on the transit times t, and t,. For example, If ¢, > 2¢;, then the fourth

wave train follows path d and arrives at the boundary at time i,, = 2t, + 4%;, as shown in
Fig. 3-12.

Aoy = [ri_p(1—r4p) 1 +ra-0)] 00 (3.55)
And the overall stress up to the third wave train o3 is
03 =03+ Aoy (3.56)

Also, if t, = t, then the fourth wave train contains the waves that follow either path d or
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Figure 3-12: Multi-step loading method (a) The wave trains that reach the impact plane
from inside of the target due to reflections.

The fifth, the sixth and additional wave trains that are generated later lead to stress
increments Aoy, Aos... Obviously the above analysis shows that the boundary conditions
to be imposed on the target body {2y is not a constant but varies with time as a result of
reflected waves coming from the interfaces. Thus boundary condition at z = 0 comprises
impact stress o ( called the head wave), followed by the second wave train Ao after time
ty, = 214, then the third wave train Aoy at t,, = 2t, + 28, (if £, > 1) or at t,, = 4t, (if
te < 1p), the fourth wave train Ao; at t,, and so on. The exact solution should consider all
these stress increments with specific time delays as the loading condition at z = 0. Since
the formulation is linear, the late-time solution to plate impact problem can be obtained by
the method of superposition of unit step loadings with steps corresponding to incremental

stress and specific time delays.

Mean stress 0,00, In the present problem, the target and the impactor materials are
assumed to be of infinite thickness and hence the back surfaces do not exist. Waves continue
to travel in the positive z—direction in the target and negative z—direction in the impactor.
Waves that arrive at the plane of the impact are those that have suffered multiple interactions
in the target plate. The energy content of the newly arriving waves will in general decrease
with time as more energy is being diffused away from the plane of the impact. Thus the

incremental stress contribution by late arriving waves will continue to decrease and eventually
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vanish signalling the steady state conditions. One can always identify the sequence n of

arriving waves that correspond to any given arbitrarily low stress level € Thus

iﬁf}'i

i>n

<€, (3.57)

It can be clearly seen that for a given value of €, the value of n will depend on a number of
geometric and material parameters. The above analysis indicates that a steady state stress
value is reached at the plane of the impact (in reality throughout the domains Q;and )
and this value will be designated as Oyeqn in the present study.
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Figure 3-13: Comparison of the stress history at the boundary of the layered systems between
analytical solution and

In order to confirm the existence of O ypeqn or Eq. (3.57), we can examine the plate impact
tests of two different material systems comprising PMMA/Cu and PMMA /A1 both being
impacted by PMMA. Fig. 3-13(a) is the example of PMMA impacting PMMA /Cu with the
thickness h; = 0.26mm and hy = 0.36mm, while Figure 3-13(b) shows the stress history of
aluminum impacting PMMA /AL In both cases, the incremental stress levels in the first few
steps are significantly larger than the subsequent steps and the total stress finally oscillates
about a steady stress state (marked in dotted line). The analytical results were also compared
with numerical results using an explicit FEM code. The FEM results (shown in thick dark
lines) indicate very similar trend in the incremental stresses all the way to the steady state.
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This validates the existence of 0 meqen and possible hypothesis given inEq. (3.57). Thus it is
possible to use the superposition of the first few steps to obtain the value of steady state
Stress Ooean.

It should be noted that oy is the stress at the instant of impact in a homogenous (as
well as heterogenous) system, and is also the steady state value for the homogenous system.
For a heterogeneous system the steady state value is Opeqn-The ratio Smean represents the
amplification factor induced due to the heterogeneity of the body };. Obviously this ratio
is unity if ; were to be homogeneous. Since the above procedure of computing o e, is
tedious and not elegant, herein we explore other means of obtaining the same result.

The existence of the steady state suggests rule of mixture as a possible effective medium
theory. Thus invoking mixture theory, the density of the target body can be written as

o=mp1+(1~n)p, (3.58)

where 7 is the volume fraction of the first component (Material A). For low velocity loading,

we can assume that 7 is constant with the relation
n=— (3.59)

Since ¢y represents the effective sound velocity in the laminates, the equivalent impedance

of the mixture is pyco. From the stress continuity at the impact surface, we have
Omean = P3C3 ('UO - up) = ﬁgﬂou;a (360)

where u, is particle velocity. By eliminating u,, the mean stress can be written as

_ £3C3PoCoV0

o. — (3.61)
P3C3 + Polo
From Eq. (3.47) and (3.61) we can obtain the normalized mean stress as
Omean _ PsCf 1 P1C1 PoCo (3.62)

o) pgcr + PoCo P1C1
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The above relation has also been plotted in Figures 3-13(a) and 3-13(b) and show that equa-
tion (3.62) is capable of determining 0pmeqr Without actually computing many incremental

stress levels.

Multiple-steps loading The determination of opeqn though very useful in computing
the steady state response of heterogeneous material, still cannot capture the wave structure
that precedes the steady state value. For this we still need to use multiple steps as outlined
below. We can now propose a solution that comprises n steps due to first n wave trains. In

order to make the final steady state reach 0eq,, We set
A, 1 = Omean — On—2 (3.63)
For example, for a four-step method (when n = 4), the fourth step is specified by
A03 = Opmean — 02 (3.64)

The whole loading history at the impact plane is shown in Fig. 3-12(b) and the solution can
be written as:

4

o (z,1t) |0 L<t<tn+%
H‘(x,ﬁ) — a(mat) !Ua +Ao, (x?t) {9'1 to, + i St <ty + é
o (z,1) |oo +A01(2,1) |0y +A02(z,1) |0y oy + % <L <tpy+Z

| o (1) loo +A01(2,t) |6y +A02 (,1) |6, +A03(2,2) |,, toy + 5 <1
(3.65)
where
o(z,1) |» —-O'g[ /A@ —3) ]
B
Ao (3,8) |o.= A [ + / Ai(—s) ds} L i=1,2,3,4 (3.66)
0

The above equations can be solved similar to Eqs (?7-77).
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Application of the analytical solution The late time solution predicts the stress history
from the contribution of the main disturbance which is when s — 0. So theoretically
the late time solution is only valid when ¢ — oo and also is only valid in the infinity
(z — o0). However, if we decompose the incident square wave into Fourier series, it is
obvious that the coefficients of the terms with higher frequencies become monotonically
smaller. Also, equation of dispersion relation means that the phase velocities for waves with
higher frequencies are slower. These two facts make sure that when z is sufficiently large
the head of the pulse can be approximated by Eq. (3.65) with good accuracy since high
frequency terms die out and cannot reach a certain location z at a given time. Based on
this phenomenon, we can postulate that z* where head wave dies out can be considered
as a reference location for applying the analytical solution. Though rigorous proof is not
provided, our numerical results compares well with the analytical solution based on this
assumption. With this reference location z* for application, we propose that for z < z*, it is
suggested that superposition not be used and routine stepwise incremental stress calculation
should be performed, as shown in previous paper (Chandra et al. ,2002). Since the head wave
in systems with low impedance mismatch dies down much slowly compared with systems
with high impedance mismatch, the values of z* of such systems are relatively large.

It is also important to explore the least number of steps n for obtaining the stress response
with acceptable accuracy. At a fixed location, our independent study shows that the accuracy
depends on fzgn AU;?! which is in turn governed by material heterogeneity. One major
heterogeneity factor is impedance mismatch and it is shown that systems with very high
impedance mismatch between A and B (equivalent to high r4_p ) and small impedance
mismatch between A and C (small 4_c) in general yields small |y 5, Ad;|. So we propose
a simple one step loading method (n = 1) for such systems, by assuming the equivalent
loading condition

0(0,2) = Omean H (1) (3.67)

Though 0y is the impact stress at ¢ = 0 and the loading magnitude reaches ¢, at time

t >0, Eq. (3.67) ignores the time effect. Substituting 0y by Gpmean in the late-time solution




Eq. (??7) we obtain the solution for plate impact as

7 (2,) = Tmean E + /B ° Ai(—s)ds} (3.68)

In order to validate the above ideas, we select PMMA /Al system with a high impedance ratio
of 74_p = 0.71 and examine the effect of number of loading steps 7 on the accuracy of the
solution. Fig. 3-14 shows the stress response at £ = 10mm (impact conditions identical to
that in Fig. 3-13(b)), usingl, 3 and 5 steps. Numerical results using an explicit finite element
code is also presented for comparison purposes. Fig. 3-14 clearly shows that 1 step solution
gives sufficiently accurate results for this case. Though the results are not shown here, when
impedance ratio 74 p is small (for example, below 0.4), the use of one-step method may not
be sufficient and higher number of steps are needed.

All the analyses presented so far, assume that the impact process generates a single elastic
wave that travels away from the impact plane. When velocity of impact increases, the wave
enters an elastic-plastic regime and with further increase the wave becomes a shock wave.
For both these cases, the approaches presented above need to be modified. For the case of

shock wave, we present the necessary modifications in the next section.

3.2.4. Approximate Solution for shock loading

In plate impact tests, the loading strength is usually much higher than the Hugoniot Elastic
Limit (HEL). In this case, the shock wave is generated. For laminated systems under shock
loading, the shock waves propagates with supersonic velocity depending on the pressure.
Therefore, it is necessary to relate shock velocity, density and volume to the particle velocity

by means of Equation of State (EOS). A general EOS takes the form
U,=Cy + Slﬁp + Sg'&; + 33?,%33; + ... {3.69)

where S, 53 and S3 are empirical parameters. Cj is the sound velocity in a given material

under zero pressure. For most metals (without porosity and phase transformation), linear
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Figure 3-14: Comparison of solutions for Al impacting PMMA26 /Al136 at x=10mm. Com-
parison between FEM results and Analytical solutions using n=1,3,5 respectively.

relationship between U, and u, is sufficiently accurate and EOS is in the form
gg = C@ + 51’6{';, (3?0}

For materials other than metals, such as polymers, EOS with higher orders is necessary. The
density under high pressure (p}) can no longer be approximated as the original density. It is
directly related to the loading strength w,:

1
Uai

In the same way, the volume under high pressure (V}) is related to u, by:

V= (; - ?.gﬁ) Voii=1,2,3 (3.72)
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Therefore, in plate impact problem, according to this equation, the thickness under shock
loading condition (A}) will be

b= (1 - gjf‘g ) hoi, -?: =1,2 (3.73)

New impedance ratio is approximately (Assume that material 2 is harder than material 1)

.

P{‘z U.SQ
_R)' =
9,1 Usl

(3.74)

It can be seen from Eqgs (4.6), (3.70), (3.71) and (3.73) that wave velocity, thickness
and density for the laminates subjected to shock loading all depend on the particle velocity.
While for elastic response, they remain constant. There is yet another difference between
the shock response and the acoustic response. Across the front of the strong disturbance
which is generated by extremely strong impact loading, velocity is not continuous. In other
words, Eq. (3.19) is no longer valid. However, under low pressure to moderate, the shock
wave is weak and the wave front is not very steep. So in this analysis we assume that this
governing equation is still valid for systems under low to moderate pressure. Therefore, by
substituting the Uy, g} and ] (i = 1,2) into Eq. (??), we obtain the late time velocity for
shock loading condition (ﬁs):

7= hy + hy

(3.75)

hl 2 g;l 2 h! ! 2
)"+ (28" (v ) i

Similarly, we obtain the mean stress level for layered systems (0} ean) corresponds to the
steady state solution by assuming that the layered systems is equivalent to the mixture with
impedance 50178. Similar to Egs (3.60) and (3.61), we have

Opnean = PoUstly (3.76)
where
' 8ii
! P3Uss (3.77)

==Y
’ pf‘an’ﬁ + pﬁUs
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We have obtained the 0ymeqr 80 far, now we need to get the solution for the whole stress
history. As is mentioned earlier the significant difference between shock wave and acoustic
wave lies in the fact that the velocity increase and impedance mismatch varies depending on
the pressure. For an observer at a given location, the head wave propagates with longitudinal

velocity in uncompressed media. So for a given location z, the arrival time of the head wave

(3.78)

where Co;, Cp, are the sound velocities in material A and B under zero pressure and 7 is

given by Eq. (3.59). Immediately behind the head wave, the high pressure o} is achieved

o 23U p Usvg

3.79
p3Uss + p U ( )

So the high pressure due to the impact instant with magnitude given by Eq. (3.79) is
generated behind the head wave, the successive wave trains travel faster than the head wave.
As shown in Fig. 3-12(a), the second wave train is generated by one reflections inside first
layer (in Material A). This wave train reaches the impact surface after At' from initial impact:

_h M

At = =
CGE Ijsl

(3.80)

As shown in Eq. (3.80), the time interval between the second wave train and the head wave
is determined by the thickness and wave velocity of the first layer before and after the arrival
of the head wave, which are all affected by the loading strength vy, The time t,, when the
second wave train arrives at location z is approximately given by

iz (1-n)z

+
({;Sl )a‘é (Usz)ya

o, = A + (3.81)
Comparing with Eq. (3.81) and Eq. (3.78), we can see that the second wave train overtakes
the wave front at a sufficiently large propagation distance z when the initial time delay At
is relatively negligible due to (Uy;) ot > Coi (i =1,2). In the same manner, it is also possible
that the subsequent wave trains can catch up with the first and second wave train depending
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additionally the properties of layer B.

Thus the steps in the analytical procedure for determining the stress response under

shock loading conditions are as follows:

1. The shock velocities U,;, and the thickness &/ should be calculated by considering EOS,
as shown in Egs (4.6)-(3.73).

2. The mean stress 07,,,, should be computed using Eqs (3.75) and (3.76).

3. By considering the EOS effect, incident stress oy is given by Eq. (3.79), incremental
stress values at the impact plane Ao{, Ad!... should be calculated similar to Eqs (3.49)

and (3.51). Unless modification of reflection ratio is needed based on velocity variation

with pressure.

4. In order to take into account the ‘overtaking’ effect and thus to predict the peak stress
accurately, the number of steps n should be more than the steps it takes to reach the
peak stress. First we need to determine if the second wave has overtaken the first for
the given location z under consideration. If the second (and subsequent) wave has
not overtaken then o¢ and Ao} should be superimposed successively with proper time
interval [tgrl — tgal At a given location where the head wave is overtaken by the second
wave train, then the new wave front travels with the second wave front. The first stress

increment oy is the sum of the strength of the initial head wave and that of the initial -

second wave front
oy =0y + Ad} (3.82)

Similar corrections due to ‘overtaking’ effect can be made to subsequent steps if nec-
essary.

5. Superposition of results based on time dependent stress increments, similar to Eq.
(3.65).
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3.2.5. Results and discussions

In this section we apply the developed method to solve a few additional plate impact problems
and examine the impact of our solution procedure. We first demonstrate the need to use
Omean for solving plate impact problems rather than o which is truly valid only for unit step
loading. Next we show that if the impact velocity is low such that the material response is
within the elastic regime, then we can use the elasticity approach. However, if the impact

velocity is very high, the material enters the shock regime when we need to invoke equation

of state to represent the material behavior.

Mean stress ome,, It should be noted that 0 is the stress produced at the time of impact
and remains constant in homogeneous materials compared t0 0 e, the steady state stress
obtained in a heterogeneous target material (see sections 3.2). In some sense gﬁ& represents
the heterogeneity of the target system. The Eq. (3.62) can be visualized from Fig, 3-15,
which shows the magnitude of Zmean of PMMA (matrix) based composites systems. Various
polymer and metallic materials are used to reinforce the composites. The figure shows the
variation of #=e= with varying volume fraction of PMMA in the composites. Two sets of
data are shown in the figure: the data in the solid line are for cases when the flyer plate is
PMMA, while the data in the dashed lines are for the cases when the flyer plate is aluminum,
It can be seen from the figure that #meen can vary as much as 0.9 to 4.8. While oy is the stress
induced at the time of impact (both in the flyer and the target plates), 0peqn represents the
steady state stress reached in flyer and the target at sufficiently long time and is the result of
multiple reflections at the various heterogeneous interfaces. Thus this E{gm:.u ratio represents
the amplification in the stress levels reached within the material compared to that at the
time of impact, and the figure shows that the ratio can be very high. Thus in order to
correctly predict the stress levels we should use 0mean and not . It should be noted that
while oy is dictated by the heterogeneity at the impact surface (materials A and C) and of
course the impact velocity, the magnitude of opeqr, depends additionally on the impedance
mismatch of the components of the target materials (B and C) and their volume fraction,
Since the magnitude of 7 eqr uniquely determines the steady state stress in the materials
subjected to plate impact loading, it is interesting to explore whether other theories can lead

to the same result. For this purpose we examine Dremin’s mixture theory. As shown in
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Figure 3-15: The normalized mean stress as a function of volume fraction in different systems.

Appendix B, the same effective sound speed for the equivalent mixture can be obtained
based on this theory. So by obtaining the same effective density and sound velocity in the
mixture, the same expression of mean stress can be obtained by applying Egs (3.60) and
(3.61). However, as is mentioned in section 2, except the mean stress the structure of the

wave cannot be obtained simply through mixture theory.

The effect of Equation of State The method described in section 3, and shown in
Eq. (3.68) is valid when the material behavior is within elastic regime. However, when the
impact velocities are high leading to stress levels higher than the HEL, it is then required
to use EOS as the appropriate constitutive equation. Though it is easy to apply EOS for
a single material system, when the target plate is made up of multiple materials with their
individual EOS, the application of EOS of the system is not straightforward. EOS can be
expressed in many forms including as a variation of shock velocity with particle velocity.
Fig. 3-16(a) shows shock velocity, U, as a function of particle velocity, Uy for a few ﬁ}a,teriais
of interest. The slope of the curve %Sf is different for different materials; typically the slope
varies linearly for metals and nonlinearly for polymers. Thus the parameter S; in Eq. (3.70)
determines the slope for metals. While S; plays a major role, Sy and Ss or even higher orders
cannot be neglected for polymers. It is clear from that figure that the slope —(‘3—3—; increases
the fastest for polycarbonate (PC) while there is negligible slope for glass. The slopes of Cu,
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Al and PMMA show only moderate values.
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Figure 3-16: The effect of EOS in velocity and impedance mismatch.

It should be noted that the impedance mismatch of a pair of given materials not only de-
pends on the relative magnitudes of shock velocities but on the densities at a given state. For
the materials under shock loading conditions, apart from the velocities there is a concurrent
increase in densities with particle velocity. Since impedance is the product of density and
shock velocity and since both increase with particle velocity, absolute value of the impedance

of a given material increases. However, since %%— and the rate of density change is different for
P
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different materials, impedance mismatch of a given pair materials may increase or decrease.
Fig. 3-16(b) shows the impedance mismatch of combinations of materials (described in Fig
3-16(a)) with particle velocities. It can be clearly seen from the figure that the impedance
mismatch is not a constant for a given material combination and is a function of particle
velocity and hence the velocity of impact. For example, the impedance of PC-GS reduces
significantly with the increase in particle velocity. However, for other systems considered
here the variation is less significant.

The method of using EOS (section 3.2.3) has been used to simulate a plate impact test
that corresponds to an experimental data available in the literature. Fig. 3-17(a) shows the
comparison of the experimental result (Zhuang, 2002) with the analytical solution. In this
experiment, a flyer made of PC impacts on a target made of alternating PC and glass (GS)
with velocity of 1079 m/s, as shown in Table 2. It can be seen that the mean stress obtained
from analytical solution agrees well with the experimental result. It should be noted that
by incorporating EOS, the shock velocity and the density generally increase depending on
the loading strength. As a result, the mean stress level obtained based on section 3.2.3
can be significantly higher than the mean stress obtained using just elastic analysis (showed
in dotted line). The elastic solution does not even come close to the experimental results

validating the need to use EOS as the right constitutive model.

Experiments A B C  Impact velocity h; he =z
1 PC Glass PC 1079 037 0.20 6.44
2 PC Glass Al 1160 0.37 0.20 3.55

Table 3.1: Configurations of Experiment 1 and 2

There is yet another critical difference between elastic and shock loading conditions in
terms of the peak stress. While in the elastically loaded condition, the first peak has a
magnitude of 1.2740 e, When the impact stress is 0pean, the same is not true for shock
loading. It is important to note that peak stress may be more critical than mean stress in
determining the fracture or damage of materials. Fig. 3-17(a) shows that the peak stress
is much higher than the factor of 1.274 compared to the mean stress. This anomaly can be

explained by the fact that wave trains in compressed media travel faster and the second wave
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may be able to overtake the first wave depending on the distance of propagation. Thus using
a single step method may not be adequate for shock loaded cases while it may be acceptable
for elastic loadings. The matching of experimental and analytical results is quite good, in
terms of arrival time, peak stress, frequency of the oscillations and mean stress. Yet another
experimental comparison is shown in Fig. 3-17(b), this time the impactor being a metal on
a polymer/ceramic composite system. Here Al impacts on PC/GS with 1160 m/s. Again

the overall agreement is good and similar observations can be made.

3.2.6. Summary

In this section, an analytical solution to the problem of plate impact in layered heterogeneous
material systems has been developed. The solution to the plate impact problem (Fig. 2(c))
is quite different from that of a unit step loading. The stress boundary condition at the
plane of the impact, continuously varies for a heterogeneous layered target plate, due to the

reflections inside the target plate.

» A steady state stress value has been identified for the case of heterogeneous target -
system. This Opeqn is different from the value at the time of impact 0g, and the
difference depends on the degree of material heterogeneity. 0eqn Was obtained using
wave dispersion relation and it was further shown that Dremin’s mixture theory can

also be used to get the same value.

¢ Alate time solution to the problem of plate impact on a heterogeneous layered material

system has been formulated. The applicability of the spatial range of the late time
solution has been identified.

¢ The solution procedure for elastic loading has been formulated using multiple steps.
Conditions for using a single step have also been identified.

e The solution method for shock loaded cases have also been described.

e The developed method has been validated by comparing the analytical results with

numerical and experimental data. The comparison is good.
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Appendix: Dremin’s theory in finding effective wave

speed

In this theory, it is assumed that the specific volume of the shock-compressed mixture is
equal to the sum of the specific volume of its components, obtained at the same pressure by

separate shock compression
V=aWi(P)+(1-0)Vs(P) (A1)

where P is the pressure or stress, ¥7’, Viand V; are the specific volumes of the mixture,
materials 1 and 2, respectively. o is the mass fraction of component 1. Differentiating the

above equation with respect to pressure P, we obtain

&V dv; dv,

In the above equation % represents the slope of Hugoniot curve of the mixture which can

then be equated as follows.

av

The above equation (A.3) can be written for each of the constituent materials 1 and 2, and
that of the mixture. Now using those definitions in Eq. (A.2) we obtain the shock velocity

U. s of the mixture

5;:{ Q 17’(1_&}}% (A. 4)

(PUa1)* ' (poUs2)?

In elastic region, the effective volume in the above equation is given by

hy + hy

~ 1
Vo177
Po  prhu+ pohy

(A. 5)
Also, conservation of mass holds for each constituent as well as for the mixture, so the mass

fraction of the material 1 is given by o = Ffilj;g—_hz' By substituting o and the specific volume
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V in Eq. (A. 5) into Eq. (A. 4), we have

hi + hs

]:(Plhi + poh2) (%%%’;1‘ + %"z%zg)]%

U, = (A. 6)

By expansion of the terms in the denominator and rearrangement of these terms, it is found

that

7, = by + By . (A.7)

2 2 z
h h pLc poc2 \ hiho
{(T«j) + (222') + (3929; + pic c;@]

In the same manner, it can be shown that under shock loading condition the same velocity

is also obtained through these two different theories.
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Chapter 4

Controlling parameters for layered

materials

4.1. Material Heterogeneity factors

For a typical laminated composite, the impact response depends on the loading condition and
also the structure of the composites. The loading condition generally involves the geometry
of the impactor (bullet, plate, or ball...), impact direction (normal or oblique) and impact
velocity. The interaction of waves with an interface are relatively less complicated when
the impact angle is normal and also when the impact surface is simple. This suggests that
normal plate impact remains to be a practically simple test configuration. For plate impact
tests, the impact velocity is a critical factor and it determines whether the material response
falls into elastic, elastic-plastic or hydrodynamic region. On the other hand, there are various
characteristic parameters that determine the structure of a laminated composite. Take the
glass reinforced polyester (one type of GRP) for illustration: the material properties of the
constituents include: Young’s modulus, density, Poisson’s ratio, strength (both tensile and
compressive), and toughness... In addition, the geometric properties consist: the form of
the fiber (roving, woven, chopped strand...), the volume fraction, thickness of laminates,
stacking sequence and interface density, and preexisting flaws such as voids... Fig. 4-1 shows
a plain weave GRP composite used in practice. The GRP plate comprise 0°/90° crossplied

laminates, and in each laminate, plain weave of fiber is coated by polyester resin by the
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weight of 32%. For such woven composites, there are a large number of spatial variations
in geometry and material properties. As a result, when subjected to high velocity plate
impact tests, the wave scattering in GRP is very complex. To simplify the structure of the
composite so that it is feasible to study wave propagation in the system, we can ignore the
curved shape of the fiber fabric and the difference between the laminates, and consequently
when the wave travels inside GRP, it travels through strictly periodic layers of pure matrix
and fiber fabric. In this way, we obtain the same model as shown in Fig. 3-10(c). As shown
in Fig. 3-10(c), the controlling parameters for flyer plate are thickness dy, impact velocity
v and impedance of the flyer plate pyc; (homogeneous monolithic material is assumed).
The controlling parameters for target plate are densities p; and p,, and velocities ¢; and ¢,

number of layers 2L, and thickness for constituent A and B h; and hj, respectively.

@ ®

Figure 4-1: Structure of 2D woven GRP. (a) Fiber fabric, (b) micrograph of the lay-up
structure

From both the past work (Chandra et al, 2002) and the analytical solution in our latest
paper, it is easily seen that the origin of the observed structure of the stress waves can be
attributed to material heterogeneity at the interfaces. The level of heterogeneity of a layered
system depends mainly on impedance mismatch between A and B, impedance mismatch
between A and C, characteristics of geometry arrangement (such as total target thickness,
thickness ratio between two component materials, number of layers, stacking sequence).
Here we present three major factors that define material heterogeneity in layered systems:

impedance mismatch, number of layers, and the thickness ratio.
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4.1.1. Impedance mismatch

In the previous work (X. Chen, Scotland 2002), we defined impedance mismatch factor I as

42,2,

- ___(Z; 7y (4.1)

where Z, and Z; are impedance of A and B, respectively. Since the second term on the right
represents the transmitted strength of waves after one unit cell, I represents the fraction of
the incident stress that is not transmitted (reflected back) as the wave passes through a pair
of A/B and B/A interfaces. Also, I = 1 represents infinite impedance mismatch and I =0
leads to no mismatch. By rearranging the above equation, we can also get the following

relation

2
I= (*‘?‘—.—1‘?1 _ ‘”2C2) =1 (42)
P11+ pPacy

where r is the reflection ratio at A/B or B/A interface.

As we know, the impedance ratio (R = %’:—:ﬁ-, i.e. the ratio of the impedance of the hard
layer over that of the soft layer) is conventionally used to represent the level of impedance
mismatch. From the definition (shown in the bracket), it is easily found that R is within the
range of one and infinity theoretically. When R = 1, there is no impedance mismatch across

the interface, and infinite R represents infinite impedance mismatch. The relation between
I and R is given by

R-1\? |
=|—-— .3
1= (771) (9
The relation by Eq. (4.3) is plotted in Fig. 4-2. From this figure, it is clearly shown
that the impedance ratio R has a one-to-one correspondence relationship with impedance
mismatch I. The higher the impedance ratio R, the higher I it corresponds to. However,

quantitatively the relation is highly nonlinear. When the impedance ratio changes from 1
to 20, the corresponding impedance mismatch varies from 0 to 0.82. But when the ratio

73




continues to change from 20 to 40, the impedance mismatch varies little by from 0.82 to
0.90.

Figure 4-2: The relation between impedance mismatch I and impedance ratio R.

- After defining impedance mismatch I, it is convenient to formulate the strength of the
wave trains. The magnitude of transmitted wave after 2L interactions for a system compris-

ing alternating L layers of A and L layers of B is given by
Oor, = (1 et })L Tp (44)

where o'ryy, represents the strength of the head wave after propagating through L unit cells.

The second wave train that arrives at z = 2Ld is given by

o8, =2L-I(1—-1)* 0, (4.5)

where 9%} 1, Tepresents the strength of the second wave train. Also, if we stay at the impact

plane, we also find that I is directly related to the strength of the incremental waves such
as in Eq. (3.48). From these equations, I seems to be better than impedance ratio R for
giving a clear quantitative indication of the level of impedance mismatch though they are
equivalent qualitatively.

When designing layered structures to resist impact, it is important to choose the right
material combinations from the usual engineering materials. Table 2 lists the impedance

mismatch values of 153 material combinations from 18 materials, including organic materi-
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als and metals. The materials are listed in such an order that the impedance R increases
from left to right and from top to bottom. As a consequence, the impedance mismatch
factors are distributed in the following order: I increases from top to bottom in the same
column and decreases from left to right in the same row. Since the combination that has
maximum impedance mismatch is Tungsten-Polyethylene with I = 0.933 and the corre-
sponding impedance ratio is about 57.6, we can expect that the impedance ratio for combi-
nations of engineering materials will generally fall within the range of 1 and 60. On the other
hand, Epoxy-Nylon, 2024A1-S2Glass, Pb-Titanium, 304Steel-Cu, Nickel-Steel and Platinum-
Molybdenum have almost the same impedances with I = 0. The scattering effect in these
systems is expected to be very limited. In addition, it is clearly seen that the impedance
mismatch values are randomly distributed between 0 and the maximum value 0.933.

4.1.2. Number of layers/Interface density

Let us define the interface density as the number of layers per unit width. If the thickness of
the target is fixed, then the interface density is directly proportional to the number of layers
and hence the two terms will be used interchangeably in our discussions.

It is known that the strength of the head wave will keep decreasing when traveling through
more unit cells (or when L increases) with the relation shown in Eq. (4.4). This equation
shows that for a system with fixed impedance mismatch, i.e., for a given material combination
more interfaces can dampen the strength of the head wave. The different laminar acoustic
dampers and anti-meteorite shields are made based on the amplitude decay of the head
wave (Riney 1970). When based on dampening of the head strength, it is preferred that the
impedance mismatch of the selected material combination be as high as possible. However,
as will be shown later, more interfaces will not necessarily result in more attenuation of the
peak stress due to the arrival of more wave trains after the head wave. These secondary wave
trains (wave trains that follow the head wave) can play an important role by strengthening
the wave trains when a location of interest is far from the impact surface (L is large). This
is due to the fact that more interfaces results in more number of waves in successive wave
trains, as shown in Eq. (4.5). In this equation, it can be seen that the impedance mismatch
I arises as a base, while the number of layers L appears both as an exponent and as the

75




coefficient. Thus the quantitative effects of the two factors are quite different.

Fig. 4-4 shows the normalized strength of the first two wave trains and the corresponding
cumulative stress up to the 2nd wave train as a function of impedance mismatch at a point
downstream of L unit cells. It can be seen that the head wave decreases drastically as
impedance mismatch increases. When the impedance mismatch is as high as about 0.5, the
strength of the head wave is negligibly low. However, as Eq. (4.5) shows, the number of
waves in the second wave train is proportional to the number of layers. The overall strength
of the second wave train increases with impedance mismatch when I is very low, then it
reaches a peak when I is about 0.11. It can be seen that the strength of the cumulative
stress up to the second wave train is larger than 1 for small I. It should be noted that the
stress overshooting can occur for systems with higher impedance mismatch when cumulative
stress for more wave trains are considered since more steps are needed to reach the peak
stress value. The overshooting indicates that the laminates may not necessarily result in
stress decay. This surely contradicts with the common sense that more interfaces will result
in more amplitude decay of the stress. In addition, as shown in our previous paper, for a
given systems (a given oombinatien with fixed thickness ratio), the rise time become less
due to the stronger secondary wave trains that arrived at a shorter time interval for systems
with higher interface density.

It has been mentioned before that EOS should be considered for shock response. A
general EOS in in the form

gg = C(; + Sl‘lﬁp + Sgﬂf, + 8315:2 + ... (46)

where 51,8, and S are empirical parameters. Cj is the sound velocity in a given material
under zero pressure. U, is the sound velocity in the material with particle velocity u,. In
general, U, increase with increase of u,. As a result, the secondary wave trains can overtake
the head wave since they travel faster in a loaded material. Also, it was shown in the
companion paper that this ‘overtaking’ effect was the key for the ratio of peak stress over
mean stress to increase and the oscillation frequency to increase. So below is more detailed
analysis about the condition when this phenomenon occurs. From EOS, the magnitude of

the difference between Cj; and Uy, ,and between Cy, and U2 depend on the pressure. For an
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observer at a given location, the head wave propagates with original longitudinal velocity.
So at a given location x, the arrival time of the head wave is given by Eq. (3.78). This time
interval between the head wave and the second wave train is given by Eq. (3.80) and the
second wave train arrives at location z at time t,, and t,, is given by Eq. (3.81). So it can

be seen that the overtaking occurs when

t, <o A7)

It can be seen from Eq. (3.78) to (4.7) that when the interface density is high (so that At
is negligible) and the distance of observation z is far enough

4.1.3. Thickness ratio

For a periodic bilaminated system, thickness ratio can be defined by %:, and this quantity
represents the volume fraction of the constituents in plate impact configuration. The effect
of thickness ratio on the scattering process is to change the pattern of wave trains by altering
the transit time and total internal reflection sequences of the wave trains in each of the layers.
Thus for a given elapsed time the number of waves traveling within the layers A or B is also
a function of the thickness ratio. For the general case, we need to assume that one of the
layers, say A has a longer transit time (f;) than that of layer B (;). There is no change in
the arrival of the first wave train and it is independent of the thickness ratio. The second
wave train includes waves that go through one reflection in first layer A only. The content
of subsequent wave trains depends on the specific value of the ratio of %i— Take for instance,
the third wave train; if the ratio %t > 2, then the third wave train comprises waves that go
through two reflections in layer B. If however, -fi‘ < 2, the third wave train comprises of waves
that go through one reflection in layer A. Since the sequence of wave train is different, the
observed slope and the oscillations are also different. It can be seen that the absolute value
of f:—‘;- indicates the wave train pattern more directly than %é Fig. 4-5 shows the numerical
simulation of the effect of thickness ratio on the stress history downstream of 4 unit cells of
Al-Cu system (configuration is shown in Fig. 4-5(a)). In this figure, when —f% is moderate,
(i.e. the case of g—; = 1.5 and %é = 4), the stress increase in three steps in the rise slope. The

time intervals between the steps are obvious. On the contrary, when %;L is very small or very
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large (i.e. the case of 22 = 0.11 or . = 9), the stress wave profiles show smooth rise part.
In this case, the shape of the stress profile in the rise part and duration part is very similar
to the case of Barker’s experiment (shown in row 2, Table 3-1), where the volume fraction
of one constituent is very small with %i— = 0.05.

If %g is very small, the second wave train, the third, the fourth... arrive at a given
location through reflections only in layer A. However, if %i- is very large, then these wave
trains go through reflections in layer B only. For both cases, these wave trains are positive.
On the other hand, since the time intervals between these wave trains are very small. As a
result, the rising slope is sharp and the slope gradually decrease till a flat portion is reached.
Evidently, we can see that the sharp rising slope is not due to small viscosity of the laminates
as indicated in Barker’s model.

Barker proposed that when the thickness of the layers were randomized, the stress oscil-
lations will largely be removed. This phenomenon can be explained by the disturbance of the
wave trains. When the structure is completely randomized, the wave trains includes both
tensile and compressive waves. Besides, the magnitude and the arrival times of these waves
are totally randomized. In other words, the wave pattern is randomized. As a consequence,

stress oscillations are no longer periodic or significant.

4.2. Numerical analysis of elastic-plastic response of lay-

ered systems

Figure 77 shows one example of wave attenuation generated by interfaces. In this resin/glass
system (A is resin and B stands for glass, the thickness ratio is 0.64/0.36), resin was modeled
as elastic plastic and glass was modeled as elastic. Figure 77 (a), (b) and (c) are stress
profiles at x=2.5, x=5, x=10 and x=15 respectively. It is noted that x=15 is equivalent to
point D in Figure 77. Both spatial dispersion and wave attenuation can be observed in this
case, very similar to experimental wave profiles shown in Figure 77. One important reason
for phenomena generated in the simulation is the impedance mismatch at last interface
glass/resin, since glass has larger impedance than resin, the compressive waves will keep

being reflected as tensile waves back to the layers on the left and hence release the compressive
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stress in those layers and result in shorter duration and lower peak stress value; at the same
time, the peak stress in the last layer is also reduced. It is obvious that this idea is very
useful to design integral armor.

This simulation result contains important information: wave attenuation can be also
caused by scattering knowing that viscoelasticity is one poésible reason. Also,when we relate
this simulation result with wave profiles observed in real composites, interface effect may
contribute uniquely to the wave profiles of composite by causing wave dispersion and slowing
the rising slope. However, even when layered configuration will be used to model the layered
composites, the last big monolithic layer does not exist, this indicates that there are some
other sources for the consecutive releasing waves. Progressive damage evolution seems to
be extremely possible. First, it is known that, delamination and degradation of material
properties will initiate and starts to grow under high velocity impact. Once damage happens,
the releasing waves will be sent out in both directions from the damaged zone. In this
case, releasing waves from left to right will be the overall dominant releasing effect. At
high pressure, considerable damage occurs and this will sending strong releasing waves to
significantly reduce the total releasing time which is not the case in Figure 77.

Effect of yield stress

- In order to know the effect of yield stress in layered geometry, the effect is simulated
in monolithic material first. Figure 7?7 shows the result of Al (6.5mm) impacting resin
(32mm) with impact velocity 273m/s. Each graph shows stress profiles at two positions for
comparison: x=2.0mm and x=14.0mm in the target plate. For a fixed impact velocity, the
yield stress of resin is varied from the normal value to a value when the material starts to
behavior as elastic.

For the rising part, the sharp elastic wave front increases stress magnitude with the
increase of yield stress, it is followed by a curved elastic-plastic transition part and then
a sharp plastic part till the peak stress; it can be seen from Figure 77 (c) that there is
an intermediate stage when the transition part becomes significant and the plastic part
disappears. In addition, when then yield stress is high enough, the rising part tends to be
only elastic wave front as can be seen in Figure 77 (d). For the purpose of comparison, Fig.

4-8 shows the response of a target plate made up of pure resin. We can clearly see that




both the elastic front and the pulse duration part are vertical, which are different from the
ramped rising part and the oscillation part in Fig. ?77.

4.3. Structure of the stress wave profiles of periodic

layered structures

It has been shown in Fig. 3-9 that a typical stress profile in a periodic layered heterogeneous
system includes a finite rise portion, an oscillatory portion in the steady state and then the
pull-back signal. This section will examine the rise characteristics and the pulse duration
part based on the analytical solution developed in last chapter.

4.3.1. Rise characteristics
Rise time

Fig. 4-9 shows the whole normalized stress wave profiles at a fixed location x=10mm
(i.e. %E%) for PMMA-PC with impedance mismatch 1=0.03, PMMA-AI with 1=0.507 and
PMMA-Cu with I=0.743. PMMA is the flyer plate in Fig. 4-9(a) and Al is the flyer plate in
Fig. 4-9(b). The thickness ratio is also fixed with 22 = 3282 f we define the rise time as the
time difference between the time of arrival of the head wave and the time when the first peak
stress value is reached, it can be seen from Fig. 4-9 that the rise time is largely determined
by impedance mismatch. The system with higher impedance mismatch has longer rise time.
In addition, the rise time seems to be independent of the choice of the flyer plate and the
impact velocity for elastic response. However, the rise time will significantly reduce in the
shock response of the layered structure, which has been verified in experiments. It should be
noted that this statement is only valid for elastic case. It can also be seen from Fig. 4-9 that
rise time is close to the period of oscillations (without proof), discussion about the effects of
heterogeneous factor on the oscillation frequency can be seen in the next subsection.

First peak ’

In general, the first peak of the stress wave profiles (such as point R; in Fig. 3-9) can be
considered as the end of the rise portion. At the same time, it is found that this first peak
is usually the highest peak in the pulse duration segment. When the peak stress is close
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to the averaged steady state value, Barker pointed out that the peak stress is not critical.
However, for general cases, the peak stress can be much higher than the steady state stress.
Since the peak stress is often more suitable than the mean stress for evaluating the material
response, such as damage initiation, it is necessary to obtain the peak stress rather than just
the averaged stress based on homogenization. It has been recognized by our work that the
pesk stress is a consequence of wave scattering and R; is a point where the strength of the
coming wave train is compressive. For elastic analysis, as is shown in chapter 3, the mean
Stress Opmeqn €xists and the first peak stress will be close to 1.2740 04y, based on the features
of the solution shown in Eq. (3.68), because the Airy function for any systems has fixed
maximum and minimum values of oscillations. As discussed in the previous paper, the ratio
of 1.274 is valid at a moderate distance in a system with large impedance mismatch between

A and B. For this type of system, the first peak stress can be approximated as

P3€3P0CoV0

Tpeak == 1.2740 nean = 1.274 —
peak mean P3C3 + PyCo

(4.8)

Consequently, the linear relationship between 0pex and Gpmeqan ensures that the effects of
factors on the peak is the same as that on the mean stress. So it is convenient as well as
necessary to review the effects of heterogeneity factors on mean stress Opmeqn, Which have
been presented in the last paper. The effect of stacking sequence: from Fig.4-9 and from Eq.
(3.62), it can be seen that stacking sequence can in general determine whether the value f—i;;ﬂﬁ
is larger or smaller than one: when g;%‘z- < 1, poco > pycy. Otherwise, mean > 1. The effect
of flyer plate: the comparison between Fig. 4-9(a) and 4-9(b) shows that harder flyer plate
results in higher #mee= (when A is softer than B, otherwise, Zme= js smaller). In other words,
the mean stress deviate more from 1. The effect of impedance mismatch is obvious: When
the flyer plate and the thickness ratio is fixed, the system with higher impedance mismatch
will result in higher mean stress. The effect of volume fraction/thickness ratio: the more
the harder material, the higher the normalized mean stress. This can be ’understooé by
looking at the expressions of effective density 7, (Eq. (3.58)) and effective velocity co (Eq.
(??)). With the increase of the thickness ratio of the hard layers, p, monotonically increase.
Though ¢y can decrease a little bit, since the minimum value and its neighbor appear in

the region when the volume fraction of the hard layer is very large. Therefore, the overall
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effective impedance pyc; still increase when increasing the volume fraction of the hard layers.
The effect of interface density on the stress wave profiles can also be understood from Eqg.
(3.58) and (3.35). Both P, and ¢, are independent of interface density, so the mean stress
level in a given bilaminates is independent of interface density. As will be shown later,this is
only true for low velocity impact. If the mean stress is considered as the quasi equilibrium
state of the system since this mean stress is also independent of propagation distance, this
equilibrium state is achieved by the reflections of wave both in the target and at the impact
surface. Combining the effect of impedance mismatch of the target and the flyer plate, it can
be postulated that the ratio depends on the reflected energy in the layered system because
head wave, which go through pure transmissions, does not contribute to the increase of mean
stress.

The above quantitative analysis about mean stress is valid for elastic response of the
materials. It should be noted that practically there is strictly no mean stress value in shock
response which can be clearly evidenced in experiments. The stress tends to oscillation about
decreasing values, or the mean stress “decreases” with time (see experiments by Oved and
Zhuang). This behavior can be due to some time dependent dissipation mechanisms and
this needs further investigation. However, it is noticed from the experimental data that the
mean stress only decrease slightly. Besides, the second, the third peak and more are lower
than the first peak. Hence we ignore this phenomenon for the time being and define the
initial mean stress of the first peak as the mean stress for the whole wave profile. On the
other hand, equation of state was shown to be necessary and even critical for shock response.
When material is under shock, the density and wave velocity of each constituent are much
higher than original values. Also, the thickness of each layer is smaﬁer than the original
value. As a result, the effective shock velocity (Eq. (3.75) and the mean stress (Eq. (3.76)
are higher than elastic prediction. In addition, the second wave train catches up with the
head wave as long as the thickness of the first layer is small and the location of interest is
far enough. When the overtaking happens, the ratio of the first peak stress over mean stress
can be much higher than 1.274, which has been validated in previous paper by matching a
couple of experiments (Zhuang, 2002).

However, for systems with very little impedance mismatch, only negligible oscillations

are generated and most energy is contained in the head wave at moderate distance, so Eq.
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(4.8) is not good for such systems either and we can assume that Opesr = Omean-

For the purpose of illustration, let us examine the rise characteristics seen in the ex-
perimental data by Clements (1997) (solid curve in Fig. 4-10(a)) with the configuration
shown in Table 1, row 5. The data represents the particle velocity history of an epoxy and
epoxy-graphite mixture layered system subjected to a plate impact test. As it happens the
mismatch in the acoustic of these two material systems is very small with I very close to 0,
similar to that of a homogeneous material. As a result, rise part is steep and the oscillations
in the pulse duration period are minor. The solid curve in Fig. 4-10(b) was the experimental
data by Oved (Configuration shown in Table 3-1, row 3). The impedance mismatch for
Copper and PMMA is 0.743 and this high mismatch resulted in low rising slope. It should
be noted that the dashed lines in two figures are the numerical results for both experiments
modeled by us using elastic analysis with EOS considered. In both cases, the rising slopes
are very well matched. This verified the idea that solution in section 2 is good enough for
predicting the fundamental characteristics of wave profiles.

4.3.2. Oscillations

Amplitude of oscillations

‘Ffomkthe Eq. (3.68), it is also clear that the peaks always decay in the same manner
in the pulse duration: the first peak is about 1.274 and the first valley is 0.81, the second
peak is about 1.152.... In the shock response, it is shown in section 4.1 that the mean stress
decays. So far there is no analytical solution is available for evaluating this behavior, so
amplitude of each individual oscillation is beyond quantitative understanding. Qualitatively,
the observation from past experiments as shown in table 3-1 appears to suggest that the
amplitudes of oscillations generally decay slower than the 1.274, 1.152 pattern. Again, this
is not true for systems with negligible impedance mismatch such as Epoxy/Epoxy-graphite
in Fig. 4-10(a). In addition, when the impact response is in elastic-plastic region, the two-
wave-structure seems to reducing the amplitudes, which is also mentioned in Kanel’s study.
Without doubt, viscous behavior is another source to reduce the amplitude of oscillations,
as shown in Barker’s work. However, for general material systems Barker’s prediction about

the disappearance of oscillations under strong shock was invalidated both by experiments
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(Oved, Zhuang) and by our analytical analysis.

Period of oscillations

It is found that the rise time is roughly proportional to the oscillation period, so the
trend of period of oscillations that is discussed below will be applicable for the trend of rise
time. Fig. 4-10 show that the period of the oscillations vary from system to system and
system with higher impedance mismatch will result in longer rise time and low oscillation
frequency. It can be seen from Eq. (3.46) that B is the only factor that determines the
nondimensional oscillation frequency. In Eq. (3.46), the first term can be thought of as time
difference between t and the characteristic time 7¢, (T, = ). Therefore, this term cannot
be used to distinguish the rise time of oscillation frequency of oscillation. In the second term
of Eq. (3.46), A" (0) is a fixed quantity for a given material system. So h;%{a), which is in
frequency dimension, is the factor that can characterize the oscillation behavior. The higher
—,;,TQ@ will represent higher frequency, so it is termed in this paper as the frequency factor and
the effects of impedance mismatch, interface density and thickness ratio due to Eq. (3.43) in
a few systems (Volume fraction of PMMA is used as the variable) are plotted in Fig. 4-11. It
can be seen in the figure that the effect of thickness ratio is not significant on the frequency
of oscillations whenever the volume fraction of either material is not negligibly low. In other
words, two extreme systems with almost all PMMA or nearly no PMMA will both result in
high oscillation frequency and a quasi-homogeneous material behavior is expected. The much
more important factor that affects the oscillation frequency is impedance mismatch (between
A and B): Low impedance mismatch, such as PMMA-PC, will result in high frequency factor
and short rise time, as shown in Fig. 4-9. With the increase of the impedance mismatch, the
frequency becomes lower. Also, the effect of interface density can be as critical as impedance
mismatch for oscillation frequency: With the increase of interface density, the oscillation
frequency gets higher. With this, we can postulate that a laminates with extremely high

interface density will also acts like a homogeneous mixture.

4.4. Velocity cy and Arrival time

Zhuang’s experiments and numerical solutions showed the ‘abnormal’ phenomenon that the
shock velocities of the PC(polycarbonate)-Glass and PC-SS systems were even lower than
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that of PC. This indicates that

€ < ¢; and ¢y < ¢ (4.9)

the arrival time of the wave at a location in the laminates can be later than either components.
When arrival time of stress wave is considered, the averaged longitudinal velocity is usually

immediately examined

_d
_&+%

c1

cr (4.10)
¢, represents the wave front velocity which is given by the weighted averaged velocity. Eq.
(4.10), can explain the phenomenon of the increase of the velocity ¢z, with the increase of the
hard layer. It also predicts that the velocity of the layered media will without exception falls
in between two components. On the other hand, for systems with big impedance mismatch,
the wave front quickly dies out. Since velocity ¢, will determines the arrival time of the main
part of the stress wave at late time, ¢y is the critical factor for the arrival time of a given
systems. The actual arrival time is slightly earlier than this value. From equation 3.35, ¢; is
always slower than for a layered medium when p,¢; # pyc2. Obviously, when p;e; = pyeo, we
will get ¢o = ¢z. Fig. 4-12 is the velocity plot of three systems with PMMA-PC, PMMA-Al
and PMMA-Cu. The longitudinal velocity of PC, PMMA, Al and Cu are 1.85, 2.66, 6.473
and 4.74, respectively according to Eq. (3.35). Very interesting trend is observed. For
systems with very close impedance such as PMMA-PC, the velocity of the corresponding
laminates stay in between of this two materials, with an almost linear relationship. However,
the concave shaped curves are generated for PMMA-Cu and PMMA-AL. When the volume
fraction of PMMA is zero, the velocities of PMMA-Cu and PMMA-Al equal that of Cu and
Al respectively. With the increase of the volume fraction of PMMA, ¢, starts to decrease
and become smaller than either of the materials at a certain value(At A for PMMA-AI and
point B for PMMA-Cu). It is obvious from the plot that the volume fraction of PMMA at
B is much smaller than that at A. This effect can be directly seen from the equation 3.35,
the third term of the denominator is proportional to the impedance mismatch. The higher

this term, the slower the ¢y will be. After ¢; reaches the minimum value, then it starts to
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increase again and finally reaches the velocity of PMMA. The minimum ¢, also corresponds
to smaller volume fraction of the softer materials (In this case, PMMA) for systems with
higher impedance mismatch.

It should also be noted that c0 corresponds to the propagation speed of the main distur-

bance, so it does not corresponds to the stress at the arrival of the wave profiles.
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Chapter 5

Composites

Wayve propagation in homogenous, isotropic media has been widely investigated. Now, more
interest [5,6] is focused on the wave propagation in anisotropic, heterogenous media such
as composites. The mechanical behavior of composites have been extensively investigated
using homogenization approaches. Micromechanics based analysis of composites has been
conducted for constitutive modeling and failure analysis. So in this chapter a brief introduc-
tion of the constitutive relation of the orthotropic composites is given. The effective sound
velocity for these type of materials has been developed for the state of uniaxial strain. One
ﬁumericai example is given for the purpose of validation. Then a review of failure modes of
composites is provided and this is followed by a numerical analysis of the damage evolution
in homogeneous composites.

Since the built-in defect of the approaches by neglecting explicitly the interfaces, this
approach showed much limitations in examing the impact behavior, where wave interactions

can play critical roles in the response. As mentioned before, researchers have used peri-

odically layered (planar planes) configuration to study the wave propagation for decades.

However, the applicability of this planar model in place of complex engineering composites,
such as woven composites, has not been carefully evaluated. It is necessary to determine
the effective matrix/fiber fabric material properties for out-of-plane loading conditions. The

current author proposed a preliminary 1D effective layered model for GRP, though more

work is needed in this issue.




5.1. Constitutive Relation

For an orthotropic elastic solid (we assume the material is homogenous), the symmetric

compliance matrix with nine independent is:

EII Eli' "% ’_% 0 0 0 T11
Ej» —E 4 ¥ 0 0 0 Ty
v 1% 1
Bo | |78 "8 = R i (5.1)
Eas 0 0 0 & o0 o ||y
E31 0 0 g 0 Gi:gi. 0 3131
i Fis ] i 0 0 0 0 0 é;; 11 Tis |
This can also be inverted to stiffness matrix:
T Cn Cip Cis 0 0 0 Ey
Ty Cu Cyp Cy 0 0 O E»,
T Csyy Cpn C 0 0 0
B | _ 31 Cap Ca Esg (5.2)
Ty 0 0 0 Cu 0 0 || By
T5 0 0 0 0 Gy 0 Es
Tho 0 0 0 0 0 Cg|| BEo

In the case of plate impact, when the state of uniaxial strain is still valid, if wave propagates

along Ey;, the wave velocity by using equation of equilibrium is

_ (= vaavg) By
CL= oV (5.3)

where V' = [1 — v1av91 — v93035 — 031013 — 2021032013]
When the composite is transversely isotropic, there are 5 independent elastic constants.
copper impacts an orthotropic elastic plate

When the target plate is orthotropic elastic rather than isotropic, the elastic wave velocity
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is in more complicated form:

_ [Q —vhEs/E)E,
Cp = J o (5.4)

where V' = [1 — v13 (V19 Es/ B + 2093013 E3/ E1) — v3, E3 /By — v2, E3/ By
A copper plate impacting an fiber-reinforced composite plate (in transverse direction) is
simulated using orthotropic elastic material model. The material is unidirectional CFRP
t300/914. E; = 139e9(Pa), E; = F3 = 9.4e9(Pa), Poison’s ratio v, = v;3 = 0.0209 and
V93 = 0.33. Since for this kind of materia v and v;3 are very small, the higher order of them
can be neglected. And also, the ratio of Ey/E and F3/F; is also very small, so in this case,
Vo2 [1— o]

Material properties of CFRP T300/914 [30] is shown in the following table:

Material properties of CFRP T300/014

’ In fiber direction E,: 139 (Gpa)
Young's modulss - e retion— E, ¢ 94 Gra)
in three directions — = :
in transverse direction E,: 94 {Gpa)
v, 0.0209
Poison’s ratlos ¥, 033
Vi 0.0200
Gyt 45 (Gpa)
Shear modulus [ £ 298 (Gpa)
G, 4.3 (Gpa)
In fiber direction X 207 (Gpa)
Tensile strength innomuldirection % 74 (Mpa)
in transverse direction S, : 74 (Mpa)
Compressive smength in ransverse direction ¥ : 237 (Mpa)
Bulk modulus of failed material K,: 20 (Gpa)
St 64 (Mpa)
Shear swength S, 64 (Mpa)
3,0 86 {(Mpa)
Mass density p: 1.58 (kg.m’)

Figure 5-1: Material properties of CFRP T300/914

Elastic wave speed under the state of uniaxial strain:




- Figure 5-2: Copper impacting an elastic orthotropic plate -

(1 — v, E3/Ey)E; E,
Cr; = ~ = 2585m/s
g \/ oV p(1—d) /

Using the same method as before, we can get the stress within composite right after

impact:

v = (300) (3.9 x¢§?f§x2.585 = 272m/s

o = pev = (1.58¢3) (2585) (272) = 11.1kbar

It needs to be noted that in the above wave speed is just for the elastic, uniaxial strain
state and uncompressed material. Since after the material has been compressed, the density
of the material after the wave front increases, the release wave tends to move faster than the
original compressive wave speed.

The above is just for macroscopically homogeneous, elastic orthotropic composites. For
any real composites, the wave scattering, dispersion due to fibers, voids or some particles
in the matrix can significantly influence the whole deformation behavior and result in very

. complicated situation.




9.2. Modes of failure of composites

In the second section, literature on damage of composites (mainly under impact loading)
was reviewed. Also, some preliminary simulation results on the damage of composites were
shown and discussed. The goal of this section was to investigate the failure modes and
damage evolution of material under impact loading rather than quasistatic loading. LS-
DYNASD is used to simulate different cases in plate impact.

A great variety of deformation modes can lead to failure of the composite. The operative
failure mode depends, among other things, on loading conditions and the microstructure
of a particular composite system. By microstructure we mean fiber diameter, fiber volume
fraction, fiber distribution, and damage resulting from thermal stresses that may develop
during fabrication. |

A. Strain rate effect on failure of materials [31]

Generally, impacts are categorized into either low or high velocity (sometimes hyperveloc-
ity), there is no clear transition between categories. Very low-velocity impact can be treated
as quasi-static, the upper limit of which can vary from one to tens of ms~'depending on
the target stiffness, material properties and the impactor’s mass and stiffness. The dynamic
structural response of the target is of utmost importance as the contact duration is long
enough for the entire structure to respond to the impact and in consequence more energy is
absorbed elastically.

Higher-velocity impact (much less than ballistic limit) response is dominated by stress
wave propagation through the materials, in which the structure does not have time to re-
spond., leading to very localized damage. Boundary condition effects can be ignored because
the impact event is over before the stress waves have reached the edge of the structure.Low-
velocity impact is characterized by delamination and matrix cracking.

Hyper-velocity impact and perforation of composite laminates are of interest for a wide
rand of engineering applications. In this type of loading, the impact velocity exceeds the
ballistic limit. (Ballistic limit is defined as the minimum impact velocity required by the pro-
Jectile to completely perforate the target).Compared with low velocity impact, high velocity
impact tends to induce a more localized form of target response, resulting in the dissipation
of energy over a comparatively small region [32].

100




B. Different failure modes

1. Maitriz damage

Matrix damage is the first type of failure induced by transverse low-velocity im-
pact,usually takes the form of matrix cracking but also debonding between fibre and
matrix. Matrix cracks occur due to property mismatching between the fibre and ma-
trix, and are usually oriented in planes parallel to the fibre direction in unidirectional
layers. In an FRP, the polymeric matrix provides several key functions: it transfers the
load to the fibres, protects the fibres from damaging themselves and aligns/stabilizes
the fibres. The majority of structural applications employ epoxy resins as they meet
the hot /wet compressive strength requirements. However, epoxy is brittle and has poor

resistance to crack growth (i.e. delamination).

2. Delamination

A delamination is a crack which runs in the resin-rich area between plies of different
fibre orientation and not between lamina in the same ply group. Liu [33] explained
that delamination was a result of the bending stiffness mismatch between adjacent
layers, i.e., the different fibre orientations between adjacent layers. Delamination is an
initiation and growth process. After initiation, the delamination can undergo stable
growth. Eventually, unstable growth, interaction with in-plane failure modes, result
in final fracture [34].0’Brien [35] proposed a prediction criterion by the strain energy

release rate approach.

3. Fiber failure

This damage mode generally occurs much later in the fracture process than matrix
cracking and delamination. Fibre failure is a precursor to catastrophic penetration
mode. Fibre failure occurs under the impactor due to locally high stresses and inden-
tation effects (mainly governed by shear forces ) and on the non-impacted face due
to high bending stresses. Fibres are the main load-bearing constituent, providing the
composite with the majority of its strength and stiffness. The most common fibres are
glass, carbon and Kevlar. For resistance to low-velocity impact, the ability to store
energy elastically in the fibres is the fundamental parameter [36].
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Figure 5-3: Failure modes of composites

4. Penetration

Penetration is a macroscopic mode of failure and occurs when the fibre failure reaches a
critical extent, enabling the impactor to completely penetrate the materials. El-Habak
tested a variety of glass fibre-reinforced plastic (GFRP) composites at penetration
loads and conclude that the glass fiber treatment played a key role in determining the

perforation load. Dorey [36] provided a very simplified analytical model of penetration
to give the energy absorbed.

5.3. Simulating composite damage under impact using
LS-DYNA3D

" The composite failure material model of DYNAS3D is based on Chang-Chang failure crite-

ria. With the delamination criterion proposed by Brewer and Lagack. These criteria are
formulated as below.




1. Fiber failure:

2. Matrix cracking
In the case of 099 2 0,

3. Matrix crushing

In case of 095 < 0,

1/ —0oy 2 nggé T93 T12 ?
2 __ 1 c 2 =22 —1 =1
€=7 ( S ) tasE Ty T (512) Z

4 Delamination
2 2 2
ezz(?_s_a.) +(%) +(i§£) >1
! Sn Sa3 Ss1) 7

0713 - stress in the fibre direction;

‘Where:

09y - stress in the transverse direction;

033 - stress in the through-thickness direction;

013 - shear stress in the plane of fibre and transverse directions;

093 - shear stress in the plane transverse and through-thickness
plane;

03; - shear stress in the plane of through-thickness and fibre
directions;

X - tensile strength in the fibre direction;

Y7 - tensile strength in the transverse direction;

Y¢ - tensile strength in the fibre direction;

Sig - shear strength in the fibre and transverse plane;

So3 - shear strength in the transverse and through-thickness plane;
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Figure 5-4: The failure evolution including fiber failure and matrix crack

Damage of composites by plate impact (modeling)

In this section, LS-DYNA3D was used to model four failure modes of composite under
plate impact using Materials model 22 and the through thickness direction changed to Z
according to the convention used in the failure criteria. The objective of simulating composite
damage is to understand the redistribution of stress after damage happens and thus study
the interaction between different failure modes.

Example: when X7 and Yy are set to real values of the strengths of the given materials
while setting all other values high enough to elastic region, then according to the failure
criteria used, only two failure modes happen: fibre failure and matrix crack.(impacting
velocity=600m/s)

The configuration is shown in Figure For the target plate, it is made up of two layers:
the top layer is composite (with damage) and the bottom is copper (elastic).Adding another

104




Figure 5-5: Damage modes and the corresponding stresses update

copper is because of the need to get more information from the damaged composites.

The material model 22 is for a macroscopically homogenous orthotropic material. In this
model, fiber properties,fiber volume fraction, and interface cohesion are not directly related
to the input.

The current material failure criteria implemented in LS-DYNAS3D suffers the following
shortcomings: First of all, only plane stresses, such as 031, 012, 0y, are considered in the
criteria for fibre failure, matrix cracking and matrix crushing. Thus, in the cases when the
out-of plane are significant, the damage prediction may not be satisfactory. Secondly, inter-
laminar shear stresses caused by matrix cracking and fibre failure are very important causes
of delamination in impact events [30]. Actually, these failure should act as stress raisers at
the adjacent interface [37]. In LS-DYNAS3D code, related stresses are reduced after failure
(see table 5-1}, so the local stresses close to the damage cannot be modelled realistically.
Thus, their interaction between different failure modes are not properly modelled. Finally,
the through-thickness compression stress is taken to have exactly the same effect as the
through-thickness tension stress on delamination, which is obviously not satisfactory [30].

Therefore, it is necessary to modify the failure criteria and also some input of material

properties (such as equation of state [38], fiber properties, some parameters for heterogene-
ity).




5.4. Modeling the engineering GRP as layered struc-

tures

A series of shock experiments were conducted on $2-glass reinforced polymeric matrix com-
posites (PMC) and the shock wave profile history showed marked departure in the stress
history response from that typically observed in metallic systems in a number of ways [1]. A
schematic geometry of the experiment in Reference [1] is shown in Figure 5-6(a). The PMC
laminates composed of S-2 glass woven roving in a polyester resin matrix with a resin con-

tent of 32 % by weight were subjected to plate impact tests with an initial velocity of 0.273

"mm/psec. The target comprised four layers with thickness of about 3mm, 3mm, 7mm and

20 mm; three PVDF gages were placed in between the layers to measure the stress history
response. The stress response at each of those gages is shown in Figure 5-6(b). Gauge 1 in
the figure corresponds to the interface between layers B and C (see Figure 5-6) while gauge 2
is the one between layers C and D, and gauge 3 that between D and E. In order to obtain a
clear comparison of the three stress profiles, the starting points of the curves are overlapped
as shown in Figure 3. |

Apparent difference can be seen between these three stress profiles in the figure; the peak
stress levels at gauges 1, 2 and 3 decrease with wave propagation, the rise time increases and
pull back time decreases significantly as wave propagates. Also, the duration of the pulse
as denoted by the resident time at the peak pressure reduces from 1 to 2 to 3. In addition,
time of arrival of the release wave at gauges (when the peak pressure starts to decline) does
not coincide with the rarefaction wave from the flyer plate. It is very important to relate
the various underlying physics of the phenomenon to the dynamic behavior of the materials
before such materials can be effectively used in future applications. An attempt in this
direction was made in reference [1] to explain some of these features in terms of viscoelastic
relaxation behavior of the materials. However in that work only attenuation levels could be
matched but other important characteristics like the rise and pull back behavior as well as
the release wave arrival times could not be explained.

In general, many computational simulations use homogenized properties of the composites
while considering various material components. We believe that this approach may lead to

erroneous results for modeling high velocity impact problems, since this approach neglects the
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Figure 5-6: Experimental results of GRP subjected to plate impact [1].




presence of interfaces which are the root causes for scattering. When the loading rate is high
enough such that the wavelength is comparable to the size of material heterogeneity, then the
scattering process should be explicitly considered for obtaining valid results [16][7][8][39][40].

In order to study the effect of planar interfaces, as is the case in laminated composite
systems, it is appropriate to simulate a layered configuration, and this approach is taken
in this work. Then the problem becomes how to obtain the equivalent layered structure.
For a general periodic system, it is necessary to determine the thickness, density, material
properties for each constituent so that the macroscopic material properties are identical to
the measured data that are available. From the microstructure, we propose an alternating
resin /fiber fabric system. If we assume that the thickness of the resin layer is h;, then h;
can be obtained by

hy + hy = 0.68 (6.9)
from the weight ratio of resin, we have

(h1py + poha) * 0.32 = hyp, (5.10)

From the effective wave speed
d
CS — - ; 1 = CL {5.11)
2z
h h c hiho
{(2)'+ (%) + (22 + o) e

where ¢y, is given by Eq. (5.4). It should be noted that the measured velocity can vary due

to the method used, so the experimental data is not used.
For resin, ¢; is straightforward with E;,p, and v; known. It should be noted that fiber

fabric is assumed to be homogeneous, so we need to determine E,, and v,.

Vg = Vi1 + Vs (1 - &1) (5.12)'

where « is the volume fraction of resin in the fiber fabric and can be obtained by relating to
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P2

P2 (1 — 1) +aup; = py (5.13)
Young’s modulus of fiber fabric

__1_ . hi/(h1 + he) n hyf(hy + hs)
Eg N El E2

(5.14)

From the above equations, the effective layered structure can be constructed. It should be
noted that the above planar model is based on simplified micromechanics based analysis.
One of the objective of building such model is to analyze the effect of wave interactions on
the impact response of laminated composites.

It is fully realized that, however, GRP is a 2D woven structure, so the weaving effect
should be investigated for a simplified one-dimensional analysis. For a simple unit cell
model of the plain weave composites as shown in Fig. 5-7(a), the angle between the warp
tow and the resin is not a constant. So the incident longitudinal wave reach the fiber /matrix
interface with an angle and both longitudinal and transverse waves will be generated in
fiber and matrix, as shown in Fig. 5-7(b). So the second question is how to get effective
properties of 2D woven structure for 1D analysis? In order to clearly understand this effect,
micromechanics based analysis is necessary. When we take a close look at a single lamina as
shown in Fig. 5-7(a), it is clear that some geometric ratios are critical for the applicability
of the layered model. For example, it is easy to understand that thickness ratio of warp/fill
tows b vs the width of the unit cell ! determines the angle of incident waves. When b/! is
very small, the impact is almost normal. As a result, the amplitude of the shear waves are
negligible and the majority strength is contained in longitudinal wave. It is also clear that
both reflected longitudinal and transverse waves are almost perpendicular to the fiber tows.
In fact, general b/l < 0.15, the corresponding angle o is about 8.5° [41]. Though this justifies

the 1D approximation over one unit cell, the woven effect cannot be neglected for long wave

propagation distance.
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Figure 5-7: Lamina of 2D woven GRP and wave refelctions in a curved interface.




Chapter 6

Conclusions

The high velocity impact response of engineering composites is very complicated. The mea-
sured stress wave profiles often don’t exhibit clear or regular structure when compared with
homogeneous metals or ceramics. However, due to the length scales of laminated compos-
ites, wave interactions can play critical role in forming the observed profiles. Periodic layered
configuration has been recognized as an ideal model for investigation of wave propagation
inside the laminated composites. As a result, most effort of this work has focused on the

- impact response of layered heterogeneous materials subjected to plate impact loading.

In this work, the plate impact problem has been formulated. As shown in Fig. 3-10
the plate impact problem is different from the problem of unit step loading, for which the
analytical solution has long been available. The loading conditions of the target plate,
which is a heterogeneous layered medium, varies continuously due to the reflections inside
the target plate. The steady state 0yueq, has also been identified to be directly related to
multiple wave interactions at interfaces. Consequently, besides following the case of unit
step loading by applying Floquet theory and the late time approach. the proposed solution
methodology meanwhile takes into account of the details of the wave reflections by using
multistep loading. The mixture theory as well as dispersion relation is invoked to derive
Omean inside the target system. Then the solution is obtained by means of superposition
of stress increments over time, as shown in Eq. (3.65). The spatial applicability of the
late time solution is also identified. For systems with large impedance mismatch and high
interface density, the solutions are found to be good at relatively small distance. In addition,
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the solution based on elastic analysis is extended for shock loading condition by taking into
account of EOS and also the ‘overtaking effect’ between the wave trains. This approach is
validated by matching two experimental data and the comparison is good.

Having developed the analytical solution for the stress response in layered systems, analy-
sis of the material heterogneity factors and their effects on the stress structures are examined
in chapter 4. It confirms our previous idea that the origin of the observed structure of the
shock waves can be attributed to material heterogeneity at the interfaces. The level of het-
erogeneity of a layered system depends on material property mismatch (for elastic cases,
mainly the impedance mismatch) and the characteristics of geometry arrangement (such as
total target thickness, thickness ratio between two component materials, interface density
or number of layers with the target of a certain thickness, stacking sequence). As a result,
the proposed analytical solution in this paper and together with the heterogeneity factors
are all critical for designing the optimum layered armor systems. The solution in section
3.2.2 and that in section 3.2.3 are for linear elastic response and shock response, respectively.
When the loading strength is such that the material response falls into elastic-plastic region,
both elastic wave and plastic waves are induced. Therefore, the effect of yielding strength
on stress response was studied numerically.

Failure modes are essential to thek dynamic response of composites besides wave interac-
tion. The current homogenized material model may not be adequate or capable of modeling
the failure modes of fiber, matrix and interphase reasonably. So a layered model has the ad-
vantage of capturing the different damage mechanisms inside the heterogeneous materials. It
has been demonstrated that the proposed solution predicts reasonably well about the stress
history inside a layered system at a moderate distance for both elastic response and shock
response. The applicability of the layered model and the corresponding solution to the real
engineering composites (such as GRP) has been evaluated and seems to be practical for thin
target plates. However, it is fully recognized that more work needs to be done for modeling

2D woven composites, especially for wave interactions through curved microstructure.
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