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Final Report of the Progress on Grant DAMD17-99-1-9174 

For the Period of July 1999 to June 2002 

Computer Aid for the Decision to Biopsy Breast Lesions 

Hypothesis: 

This work will test the hypothesis: "The results of breast biopsy can be accurately predicted from the 

results of biopsies for previous cases that had similar mammographic abnormalities." 

Statement of Work 

All of the tasks in the Statement of Work have been achieved. Tasks 9, 10, and 11 were replaced by 

similar tasks that were found to be more appropriate as a natural consequence of the discoveries made. 

1 Obtain and setup computer equipment 

Performed in year I 

2 Program CBR software 

Performed in year 1 

3 Examine ranking of features 



Performed in year I 

4        Refine structure of database 

Performed in year 1 

5       Complete programming and test 

Performed in year 1 

6 Evaluate matching windows for continuous features 

Performed in year I 

7 Determine appropriate evaluation (fitted or sampled ROC) 

Examined in year 2 

8 Evaluate matching rule (selection firom 15 features) 

Performed in year 2, refined through exhaustive search in year 3 

9 Evaluate matching rule (weighted difference of features) 

Replaced by Euclidean distance in year 3 

10 Evaluate genetic algorithm for optimization 

Replaced by exact search performed in year 3. 

11 Evaluate matching rule based on likelihood of malignancy 

Replaced by comparison of Hamming and Euclidean distance in year 3 
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Nomenclature 

To clarify a potential source of confusion in this proposal, two terms are defined here: "feature" and 

"finding". The term "feature" refers to a variable while the term 'finding' refers to the value of a 

variable. For the categorical descriptions of mammographic abnormalities described below in Table 5, 

an example would be "the feature 'mass margin' has a finding of 'spiculated'. 

Significance for reducing the number of benign biopsies 

The lifetime risk of developing breast cancer has increased steadily from 1940, when the first statistics 

were collected, to the present risk of one woman in eight ^. Several large studies have demonstrated 

that screening mammography can decrease the mortality due to breast cancer by 30%2> 3 

Unfortunately, evaluating mammograms is a complicated task. Multiple radiographic features of each 

mammographic abnormality must be examined to determine whether further action such as follow-up 

or biopsy for histologic diagnosis is warranted. Although mammography is a sensitive tool for 

detecting breast cancer, the positive predictive value (PPV) has historically been low '*-^. Due to the 

overlap of the radiographic appearance of benign and malignant breast lesions ^ as well as an overall 

conservative approach of physicians'^, only about 20% of women who undergo biopsy for 

mammographically suspicious non-palpable lesions have a malignancy by histologic diagnosis^. This 

relatively low Positive Predictive Value of mammography-induced biopsy is recognized as a 

significant problem. If the mammography screening recommendations of the American College of 

Radiology (ACR) and the American Cancer Society (ACS) are fully implemented, nearly all women 

over the age of 40 will undergo a yearly mammogram. Currently, the biopsy rate is 0.5 - 2.0% of all 

mammographic exams. Potentially, several million biopsies will be performed each year.^ With the 

current accuracy, hundreds of thousands of women who do not have breast cancer would be 



unnecessarily subjected to the discomfort, expense, potential complications, change in cosmetic 

appearance, and anxiety that can accompany breast biopsy.^'^-i^ In addition, the financial burden of 

these procedures (between $3500 and $5000 for excisional and between $1000 and $1500 for core 

biopsy) is substantial (around $100,000,000 per year)5=8,9. This project will develop an accurate 

computer-based system to provide a second opinion to assist the mammographer with the decision to 

biopsy. 

The interpretation and decision process for a diagnostic mammogram is quite different from the 

screening mammogram. As a second reader in diagnostic mammography, the system could provide a 

mammographer with l)a diagnosis, 2) an estimate of uncertainty for the diagnosis, and 3)sample 

images from the set that were accepted as similar. The mammographer can use this additional 

information for the decision to recommend biopsy or follow-up. A significant value to the clinician is 

that the decision aid potentially contains information derived from more cases than any 

mammographer could have ever seen and thus provides access to an experience base that would not 

otherwise be available. 

The anticipated clinical impact of this CBR second opinion will be to increase the diagnostic accuracy 

of mammography for predicting malignancy of breast lesions. This will be achieved by decreasing the 

number of patients sent to biopsy with benign lesions and by decreasing the variability of diagnosis for 

mammography. 

Yearl 
Key Research Accomplishments 

1 Implemented CBR algorithm on a Unix Workstation (SOW 1,2) 

2 Feature selection was examined for Hamming distance ( SOW 3,4,6) 

3 Initial performance evaluated (SOW 5) 



To evaluate the contribution of individual findings, the performance of the algorithm was evaluated on 

a subset of all possible combinations of the six input features. The combinations that were tested are 

shown in table 1. These combinations represent the logical choices of grouping for these features. All 

eight feature combinations were examined and their performance was evaluated for a reasonable range 

of distance cut off values. 

Table 2 Findings included in the matching rules 

Findings Setl Set 2 Sets Set 4 Sets Set 6 Set? Sets 

Age X X X X X X X X 

Mass Margin X X X X X X X X 

Calcification 
Description 

X X X X X X X X 

Mass Density X X X X 

Calcification 
Distribution 

X X X X 

Associated 
Findings 

X X X X 

Table 1 The table sh ows whic] hi findings were incl uded in ea ich of the eight mat( ;hing rule s that were 
tested. 

A receiver operating characteristic curve for the CBR performance is shown in fig. 1 below. Note the 

encouraging behavior at high sensitivity. The sensitivity remains very high as the false positive fraction 

(FPF) decreases and does not significantly decrease until the FPF has dropped to 0.6 (specificity of 

0.4). With a threshold of 0.2,126 benign biopsies could be avoided at a cost of 2 missed malignancies. 
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Fig. 1.  ROC plot of CBR output values for all benign and malignant cases. 

Year 2 

Key Research Accomplishments 

1 Analyzed distribution of findings in the case database (SOW 4) 

2 Non-parametric ROC evaluation of the classifier performance was performed (SOW 7) 

3 Feature selection was examined for Hamming distance (SOW 8) 

4 Hamming distance metric was evaluated (SOW 8) 
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A CBR system was developed to classify cases referred for biopsy. The CBR was evaluated on a set of 

500 cases from Duke (described in more detail below) using rotmd-robin sampling. All cases were 

referred to excisional biopsy and the truth for evaluating the classification of each case was abstracted 

from the pathology report. Of these 500 diagnostic mammography cases that were that were referred to 

biopsy, 326 (64%) were benign. While this fraction is higher than the value of 20% typically quoted as 

a national average, it is consistent with that seen at other teaching hospitals. In the framework of the 

specific aims of this proposal, the properties of this CBR include: 

Table 1 Characteristics of CBR used in feasibility studies 

Reference data 500 Retrospective biopsy cases from Duke 

Case Encoding Uniformly scaled rank order 

Similarity Metric Hamming Distance 

Similarity Selection Threshold applied to Hamming distance metric 

Classification metric Probability of malignancy 

Table 1: Characteristics that define the CBR. 

Analyzed distribution of findings in the case database 

Here we present some characteristics of the reference database that has been acquired. The database 

consisted of cases that were evaluated at diagnostic mammography after being called back due to an 

abnormality observed in a screening examination. All of the cases were non-palpable and were 

referred to biopsy. Cases were excluded if a previous biopsy or surgery had been performed at the site 

of the abnormality. Outcomes were established from the pathology report. Each case included 1) the 
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mammographers' description of the abnormality using the BI-RADS™ lexicon, 2) known 

epidemiological risk factors for breast cancer; and 3) outcomes in the form of benign or malignant 

status as determined by biopsy. The risk factors are routinely acquired by a short patient interview 

conducted by mammography technologists at the time of the diagnostic examination. Of the 500 

lesions evaluated in the feasibility studies, there were 232 masses alone, 192 microcalcifications alone, 

and 29 combinations of masses and associated microcalcifications. The remaining 47 lesions included 

various combinations of architectural distortion, regions of asymmetric breast density, areas of focal 

asymmetric density, and areas of asymmetric breast tissue. Patient age ranged from 24 to 86 years with 

a mean value of 55 years. At biopsy, 326 (65%) of the lesions were found to be benign while 174 

(35%) were found to be malignant. Currently (as of May 2001), our database contains around 1500 

cases that were examined at diagnostic mammography and were referred to biopsy at Duke University 

Medical Center between 1992 and 2000. While this does not represent all of the consecutive cases, the 

omissions are believed to be random and these data are considered to represent an vm^biased sample of 

the population of cases to which the decision system would be applied. 

12 



Distribution of Cases by IVIass IMargin 

Well Circumscribed     Micro Lobulated      Obscured Ill-defined Spiculated 

Mass Margin 

Fig. 2 The distribution of cases by mass margin is shown with malignant cases represented by the dark 

bars and the benign cases represented by the striped bars. 

However, as combinations of features are considered, there is clear evidence that several of the 

features are not independent and that several of the joint probability distributions are not well 

determined. From our experience with the parametric fitting described above, we feel that it is 

important to avoid parametric assumptions where possible in this problem and propose to acquire 

more cases. When these joint distributions are examined from the data, numerous discontinuities are 

evident that are believed to be the result of too few cases. This is a concern for a CBR since these 

distributions are estimated directly from the reference data. As an example, consider the distribution of 

categorical findings for the mass margin and mass shape features shown in Fig. 2 and Fig. 3. Two 

observations are evident from Fig. 2. First, masses with Micro Lobulated margins are rarely referred to 

biopsy. Second, ignoring the Micro Lobulated category, the distributions for benign and malignant 
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cases are monotonicly decreasing/increasing respectively with the findings ordered as shown (which is 

consistent with the BI-RADS^^ specification). From Fig. 2 there seem to be a sufficient number of 

cases to describe these distributions. In Fig.3 is the distribution of the Mass Shape feature. Here the 

distributions are not monotonic but the shape is still rather well defined although the relationship 

between the first three categories for benign masses is uncertain. When the dependence on mass shape 

is also considered, as shown in Table 2, it is clear that l)these two features are not independent and 

2)the form of the dependence is not well determined with the current number of cases, particularly for 

the benign masses. 

Distribution of Mass Shape 
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Fig. 3 The distribution of cases by mass shape is shown with malignant cases represented by the dark 

bars and the benign cases represented by the striped bars. 
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round 38 2 22 12 1 

Benign oval 106 5 59 29 1 

lobulated 65 5 34 16 0 

irregular 1 2 7 31 6 

round 2 0 3 17 3 

Malignant oval 7 0 9 19 3 

lobulated 2 1 5 7 0 

irregular 0 0 6 61 110 

Table 2 The joint distribution of cases by mass margin and mass shape is shown in this table with 

malignant cases in the lower pane and benign cases in the upper pane. 

Define mathematical representation of a case 

We have examined choices for the representation of the cases beginning with the representation used 

to develop our ANN classifiers. Cases are represented by a vector of features each of which has a 

number of possible categorical values or findings. BI-RADS™ was developed as a reporting lexicon 

and not as a direct indicator of probability for disease and while the assignment of numerical values to 

the categories is not provided, the lexicon does describe a rank order among many of the findings. 

From this in combination with discussions with several mammographers, a weighting (or value) scale 

has been developed and used successfully in the previous CBR and ANN analysis. These weights are 
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presented with the findings in Table 5 below. Values were assigned as normalized rank orderings of 

the categorical values in each finding independently and were intended to rank the possible 

descriptions in order of their likelihood of malignancy. 

Feature selection was examined for Hamming distance 

We examined the sensitivity of the CBR to the method used for selecting cases. The selection rule is a 

combination of a distance metric and a threshold technique. Here several sets of features were 

examined for computing the Hamming distance and the cutoff threshold was varied. Of interest is the 

observation that performance increased when the distance increased from 0 (which required an exact 

match) to 1 (which allowed one of the 6 features to differ). The best performance was found when 

only three features were required and up to one was allowed to differ. We believe that better 

performance will be obtained with more than three features but that this will require more cases. This 

seems likely when considering that with these three features: Mass Margin, Calcification Description 

and Age, only cases with calcified masses (10% of the cases) could possibly non-null findings for all 

three features. As a side note, while the best CBR performance is slightly less than the best ANN 

performance on these cases, the ANN performance is close to chance if only three features are 

provided. 

Hamming distance metric was evaluated 

Table 3 Case Based Reasoning: Performance for Hamming Distance 

Number of 
Features 

Feature set Distance 
Threshold 

ROC Area Partial 
ROC Area 

Specificity 
at 100% 
Sensitivity 

Specificity 
at 98% 
Sensitivity 

16 



6 A 0 0.70 <0.05 <0.01 <0.01 

6 A 1 0.79 0.2 <0.01 <0.01 

3 B 1 0.83 0.45 0.25 0.41 

Table 3. Performance of CBR with Hamming distance as a function of distance threshold and features 

sets Feature set A: Age, Mass Margin, Mass Shape, Calcification Description, Calcification 

Distribution, Associated Findings; set B: Age, Mass Margin, Calcification Description. 

Table 4 Performance for different thresholds on the probability of malignancy 

Probability 
Threshold 

Sensitivity 
(%) 

Specificity 
(%) 

Positive 
Predictive 
Value (%) 

Benign 
Biopsies 
Avoided 

Malignancie 
s Missed 

Accept All 
Cases 

100 0 35 0 0 

0.10 100 25 42 81 0 

0.21 98 41 46 134 10 

Table 4. Perforr nance of Case I Jased Reasonin B System for di fferent threshol ds applied to th( 

predicted probability of malignancy. 

Table 5 - Input Features for breast biopsy cases 
BI-RADS™ Lesion Descriptors 
Input     Feature      Finding 
Node 
1 Calcification Distribution 

no 
calcifications 
diffuse 

BI-RADS™ Lesion Descriptors 
Value   Input     Feature Finding 

Node 
8 Location 

o'clock 

Value 

0 

0.2 axillary tail 
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' ?. 

i. 

regional 
segmental 
linear 
clustered 

0.4 
0.6 
0.8 
1.0 

posterior 
middle 
anterior 
subareolar 
central 

0.2 
0.4 
0.6 
0.8 
1.0 

2 Calcification Number 
no 0 9 Associated 
calcifications Findings 
<5 0.33 none 0.00 
5 to 10 0.66 skin lesion 0.13 
>10 1.0 hematoma 

trabecular 
thickening 

0.25 
0.38 

3 Calcification Description nipple retraction 0.50 
no 0 skin retraction 0.63 
calcifications 

Benign- milk of 0.2 skin thickening 0.75 
like calcium-like 
findings 

rim 

skin 
vascular 
spherical 
suture 
coarse 

large rod-like 

round 

0.2 

0.2 
0.2 
0.2 
0.2 
0.2 

0.2 

0.2 

10 Special Cases 

architectural 
distortion 
axillary adenopathy 

none 
intramammary 
lymph node 
asymmetric breast 
tissue 
focal asymmetric 
density 
tubular density or 

0.88 

1.00 

0 
0.25 

0.5 

0.75 

1.0 
other dystrophic 

pimctate 
indistinct 

0.4 

0.6 
0.8 

solitary dilated 
duct 

pleomorphic 0.9 Features Involving Personal and Family History                     1 
fine branching 1.0 Input 

Node 
Feature Finding Value 

4 Mass 
Margin 

no mass 0 

11 Age in years 

well 0.2 12 Personal none 0 
circumscribed History 
microlobulated 0.4 of breast 

cancer 
positive 1 

obscured 0.6 
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ill-defined 0.8 

spiculated 1.0 

Mass 
Shape 

no mass 0 
round 0.25 

oval 0.5 
lobulated 0.75 
irregular 1.0 

Mass 
Density 

no mass 0 
fat-containing 0.25 
low density 0.5 
isodense 0.75 
high density 1.0 

Mass Size mm 

13 

14 

15 

16 

History of        none 
Prior 
Ipsilateral 
Benign Biopsy positive 

Family History none 
of breast positive 
cancer 

Menstrual 
History 

pre-menopausal 

post-menopausal 

Estrogen/Proge none 
sterone 
Therapy positive 

0 
1 

0 

1 

0 

1 

Table 5 shows the case representation that was evaluated. The "value" shown indicates the 

quantitative values assigned to individual findings in the preliminary data. These were initially 

assigned by uniformly distributing the rank-ordered findings between 0 and 1 for each feature. 

Non-parametric ROC evaluation of the classifier performance was performed 

Typically, published ROC curves are smooth since they are obtained though a parametric 

representation of the data. For a five-category human observer response experiment, this 

parameterization is necessary and is usually obtained using the software developed by Dr. Charles 

Metz of the University of Chicago. In the initial experiments, we found that the fitted curves did not 

accurately follow our data in the regions of high sensitivity which is exactly where we have the most 

interest in comparing techniques. Outputs of this CBR, the histogram of the negative cases followed a 
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distribution that did not appear to be normal. .After consulting with Dr. Metz, we decided that a non- 

parametric evaluation of the ROC performance would be more appropriate for these data. The source 

of our difficulty lay in the deviations from the normal distribution that are found in the tails of the 

probability density functions from the CBR. Interestingly, the ROC area estimates agreed very well, 

but the shapes were different. For this reason, all ROC curves are presented in a non-parametric form. 

That is, they are plotted from the data rather than from a fit to the data. With 500 or more continuous 

valued outputs, the Trapezoid Rule for computing the area gives sufficient accuracy. A convenience of 

the parametric fitting software is that they provide an estimate of the significance of any differences in 

performance for paired data. To estimate the significance of a difference computed with non- 

parametric methods, the mean values and variances (including covariances) for all performance 

measures were obtained by bootstrap sampling*^ por the results presented here, 3000 samples were 

foimd to provide asymptotically stable estimates for all performance measurements. 

Performance was evaluated by the receiver operating characteristic curve (ROC), the Partial Area 

Index (o.9oAz ) computed as the ROC area (scaled by 10) for sensitivities greater than 90%, and the 

specificity at 98% sensitivity.  The ROC curve is shown in Fig. 4 below. Particularly encouraging is 

the behavior of the curve at high sensitivity, seen more clearly in the plot of o.9oAz in Fig. 5. The 

sensitivity remains very high as the false positive fraction (FPF) decreases. The sensitivity does not 

decrease below 98% until the FPF has dropped to 0.6 (specificity of 0.4). At this operating point, 130 

of the 326 benign biopsies could be avoided with delayed diagnosis for only two malignant cases. 
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Fig. 4. Full ROC curve for the CBR described in Table 1 
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Fig. 5.  Partial ROC curve for the CBR described in Table 1. This performance measure is of more 

clinical relevance than the full ROC for this cancer diagnosis task. 
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CBR Histogram 
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Fig. 6 The histogram of benign and malignant cases for the full range of the CBR output. The benign 

cases are represented by the striped open bars while the malignant test cases are represented by the 

gray bars. 
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Fig. 7 The histogram of benign and malignant cases for an expanded region of low probabihty for 

malignancy. 

As seen in Fig. 6, moderate separation of the benign and malignant cases was achieved resulting in an 

ROC area of 0.83. Since there are some benign cases to the left of all malignant cases, biopsy could be 

avoided for these without missing any of the malignancies. To further examine this region, the 

histogram is expanded in Fig. 7 for the region assigned low probability of malignancy. 

In this low probability region, there are 133 benign cases and only three malignant cases. The benign 

cases are represented by the striped open bars while the malignant test cases are represented by the 

gray bars. 
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The portion of the ROC curve that is of greatest interest is the region of greatest true-positive fraction 

(i.e. highest sensitivity) since few radiologists or patients would be willing to miss a larger fraction of 

breast cancers for the sake of high specificity. The cases populating this region are tiiose that were 

assigned the lowest probability of malignancy. 

It is interesting to note that the cancer shown farthest to the left in Fig. 7 is a 45 year old woman with a 

small well-circumscribed mass. These characteristics all would indicate a benign mass and the CBR 

agreed. The critical information that was not included in the model is that this mass was not seen in a 

previous mammogram. This information will be included in the proposed studies. In addition, it is 

interesting to note the features of the benign lesions that were assigned a probability lower than any of 

the malignancies. These are all masses and include 60 with well circimiscribed margins, and one mass 

with a well circumscribed margin and with associated calcifications described as indistinct, one mass 

with a microlobulated margin, 18 masses with obscured margins, and one mass with an ill-defined 

margin and with associated calcifications described as coarse. 

At sensitivity of 0.98 (relative to all biopsied lesions) the specificity is 0.4. Thus, 40% of the benign 

biopsies could have been avoided at the cost of delaying diagnosis for 2% of the malignancies. The 

positive predictive value for these data would be increased from 35% to 46%. These results 

demonstrate feasibility for developing CBR as a decision aid for breast biopsy using the BI-RADS™ 

lexicon to index the cases. 

Years 
Key Research Accomplishments 

5 Expanded database 
6 Performed exhaustive feature selection (SOW 10) 
7 Evaluated Hamming and Euclidean distance measures (SOW 9) 
8 Compared performance (SOW 11) 
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Expanded Database 

Our current database consists of biopsy cases from three medical centers. We have approximately 

1530 previously collected biopsy cases from Duke University Medical Center (Duke), and 1000 cases 

from the University of Pennsylvania Health System (Perm).^^ We have also extracted approximately 

1979 cases from the publicly-available Digital Database for Screening Mammography^^ (DDSM) from 

the University of South Florida (USF). The DDSM database contains cases from multiple institutions, 

although the majority of the cases come from Massachusetts General Hospital and Wake Forest 

University School of Medicine. The cases were collected between 1988 and 1999. The Duke database, 

collected between 1991 and 2000, consists of consecutive core- and excisional-biopsy cases from 

Duke University. The Penn database is a collection of consecutive excisional biopsy cases from Perm, 

collected between 1990 and 1997. The cases were collected as part of standard clinical practice. The 

data for each case was compiled either at the time of the decision to biopsy, or retrospectively while 

blinded to biopsy outcome. Each suspicious mammographic lesion was described by a dedicated 

breast-imaging radiologist. Biopsy outcome for each case was obtained from the histopathological 

analysis. 

Evaluated Hamming and Euclidean distance measures 

Similarity between cases can be computed over the vector of findings for each case, resulting in a 

distance between two cases. Thresholding this distance establishes whether any two cases are similar 

or not. When this is performed between a test case and the reference database, the process can be 

visualized as a nearest-neighbor method of PDF estimation. Nearest-neighbor estimation smoothes the 

feature distributions, since each reference case can be reused several times as a nearest neighbor to any 

given test case. There are several distance measures that can be used; some are computationally simple 
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and some are more robust statistically. The distance measures we will examine include Mahalanobis 

distance,^^ Euclidean distance,^^Hausdorff distance,^ and Hamming distance.^' The Hamming distance 

is calculated as the number of features that differ in value between two cases. For every feature, if the 

value differs between the two cases, the Hamming distance is increased by one. If the difference 

between the patient age of two cases differs by more than 3 years, the distance is also increased by 

one. The age difference of 3 was found to be locally optimal over the range 1 to 10 with all other 

parameters fixed. For n features (and thus a vector of length n representing a case), the Hamming 

distance between two cases can range from 0 (no features differ) to n (all features differ). For example, 

for ten features the Hamming distance between two cases can range from 0 to 10. Formally, the 

Hamming distance between the test case and the reference case, is 

where • i test is the feature value for the specific case (test or reference) and feature, and m is the 

number of features used. The • function returns 1 if the test case and the reference case feature values 

are the same and 0 if they are different. As mentioned before, if the ages differ by less than 3 years, 

they are considered the same. As stated in the beginning, the Hamming distance is the number of 

features that differ in value between the two cases. The Euclidean distance can be also implemented 

for measuring the distance between feature values (findings) of two cases. The Euclidean distance is 

computed as the square root of the sum of the squared differences between corresponding findings of 

two cases. For Euclidean distance measure, each finding is also normalized using linear scaling to unit 
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range. For a lowerboimd value of • L and an upperbound value of • u for the specific feature, the new 

feature value would be 

^origiml ~ *^L 
<t>  

Therefore, after normalization, each feature value is in the range [0,1]. The Euclidean distance 

between the test case and a reference case is. 

^Ei^lidean^ ^^^> ^«/) = 

where n is the number of features (2 in this setup), and • is the normalized feature value for the 

specific case (test or reference), and feature i. The Euclidean distance is unaffected by translations and 

rotations of the feature space, but is sensitive to linear transformations. One way to avoid this problem 

is to apply standardization. Standardization transforms the features to have zero mean and unit 

variance. Standardization can prevent certain features from dominating distance calculation because 

they have large numerical values. However, if the spread of the features is due to difference in classes 

(benign vs. malignant), standardization can be undesirable. 

Feature selection 

The performance of a classifier can be significantly diminished by using too many input features; the 

need for the reduction of the number of features for any CAD system is well recognized.^^ The number 

of training data points (cases) for a classifier needs to be an exponential fimction of the feature 
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dimension.'^ This behavior is referred to as a "curse of dimensionality," and can lead to the "peaking 

phenomena." In the "peaking phenomena," additional features can degrade the performance of a 

classifier, if the number of training cases is small compared to the number of features7^ Therefore, one 

of the main goals of this project is to find and present the most influential feature subset for improved, 

robust and consistent performance of the CBLR system. Furthermore, feature PDF estimation (one of 

the major steps in our classifier) becomes increasingly complicated with increasing dimensionality of 

the feature space. Therefore, we will investigate how feature selection methods can reduce the 

dimensionality of our feature space for the CBLR. Feature selection can be defined as selecting a 

subset of size m fi-om a set of d features, that leads to the largest value of some criterion fimction J(- 

)J^ In order to select features which are the strongest and most consistent performers, we can perform 

the optimal exhaustive sequential search^^ of the feature space. This represents the most direct 

approach to feature selection - examining all ( d m ) subsets of size m. Since we also examine all 

possible m features, this means that 2 a -1 feature combinations need to be examined. The number of 

combinations grows exponentially with d. For d=10, excluding the empty set (no features) means that 

1022 (2 10 -2) feature combinations are examined in all. This brute force ^proach allows for a 

thorough examination in the search for best performance, yet in our case is still feasible 

computationally. Since feature selection is performed during the development of the classifier (rather 

than during use - testing), the computational speed of the feature-choosing algorithm is less important 

than optimality. The criterion fimction J(- ) is chosen to be 0.9OAUC, since we are most interested in 

reducing the number of benign biopsies while missing a minimal number of malignancies (and thus in 

the high sensitivity region of the ROC curve). Although the straightforward approach to exhaustive 

feature selection requires selecting the feature subset with the largest value of some criterion fimction 

J(- ), we have found that there were several feature combinations with very high and similar values of 

J(- ) = 0.9OAUC, yet containing different features. The best single feature combination (strategy) could 
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thus be a minor stroke of luck, include a feature that does not really supply relevant information, and 

actually decrease performance if and when new cases are added to the database. Therefore, we have 

sou^t an approach to choose features that occur most often in the strategies with hi^est values of 

0.9OAUC as the best feature subset. To our knowledge, this is a novel approach to exhaustive feature 

selection. By choosing features that occur most often, we are increasing the chance that the 

performance will remain the same when our data set increases or changes in the fiiture. Previous 

feature selection techniques in CAD mammography included methods such as genetic algorithms for 

mass features,73 and stepwise linear discriminant analysis for calcification classification.'*"'^ However, 

most feature selection methods do not usually exhaust all the available feature combinations in the 

search for the best subset, and are not optimal.'^ In contrast, we can apply the optimal exhaustive 

search of our feature space due to our relatively small (10) feature subset, and fast computational 

speed of contemporary computers. 

Description of input data. The database used in this study consisted of 1433 biopsy-proven cases from 

Duke University Medical Center, described using ten features as listed in Table 1. Histopathological 

analysis of these cases found 502 malignancies, while 931 of the suspicious lesions were found to be 

benign. This suggests that 931 patients (65%) could have perhaps avoided the biopsy procedure. Please 

note that all of the cases in our database were deemed suspicious enough by dedicated breast imagers 

such that a biopsy was performed on each one. 

Two distance measures for nearest-neighbor PDF estimation were examined, Euclidean and Hamming. 

(This corresponds to classic CBR, since distance measures are used for similarity computations, 

resulting in nearest-neighbor PDF estimation.) Exhaustive feature selection was performed. For ten 

features, this means that 1022 feature combinations (strategies) were examined. Top strategies were 
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defined as strategies with highest 0.9OAUC, and the top 10 strategies were the 10 strategies rank- 

ordered by 0.9OAUC. The features that occurred most frequently (60% or more) in the top 10 strategies 

for each distance measure were selected as the most consistent performers for that distance measure. 

In order to examine the dependence of the selected features on the distance measure, the best 

performing feature subset found using the Hamming distance measure was evaluated with the 

Euclidean distance measure, and vice versa. We shall refer to the best feature subset found and tested 

using the Hamming Distance measure as Highest Consistent Hamming strategy. We shall refer to the 

tested Euclidean strategy with feature subset from Hanaming as Euclidean Corresponding Strategy. 

Results - CBR with Hamming Distance. 

Figure 8 shows Ihe maximum value ofo.gOAUC achieved for each possible m (m==1..10) features using 

Hamming distance measure. This was done by first selecting the best value of 0.9OAUC for each of the 

1022 feature combinations, and then grouping feature combinations with the same number of features 

m and choosing the best value for each group (10 groups). This means that for m=l to m=9 several 

feature combinations were used for findings the maximum value, while for m=10 only one strategy 

was included. Please note that for each feature combination all similarity thresholds were used to find 

the maximum value of 0.9OAUC. The maximum value of 0.9OAUC occurred at m=6 features for the 

Hamming distance measure. The Hamming distance measure had lower values of 0.9OAUC than the 

Euclidean distance measure over all possible m. 
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Figure 8: The maximum value of 0.90AUC achieved for each possible m features. Please note that the 

0.90AUC using all features (for both distance measures) is lower than using only some of the features. 

The single highest AUC from a single strategy using the Hamming distance measure had a value of 

0.80. The highest individual 0.9OAUC from the top 0.9OAUC strategy was 0.33. Choosing the individual 

best 0.9OAUC strategy would spare 288 benign cases at 95% sensitivity, and 251 benign cases at 98% 
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sensitivity. (At 98% sensitivity, we are misclassifying 2% or 11/501 of the malignancies). The features 

used by the highest individual strategy are shown in Table 6 (rank 1). 

Table 6: Example of the five highest strategies by 0.90AUC using the Hamming distance measure. 

Note thatthe values of 0.90AUC are practically the same, yet the features used are different in each 

case. 

Rank Features Used 0.90AUC AUC 
1 Age, Associated 

Findings, Mass Margin, 
Calcification 
Morphology, Mass 
Shape, Calcification 
Number 

0.328 0.779 

2 Age, Associated 
Findings, Mass Margin, 
Calcification 
Morphology, Mass 
Size, Calcification 
Distribution 

0.327 0.791 

3 Age, Associated 
Findings, Mass Margin, 
Calcification 
Morphology, Mass 
Size, Mass Shape, 
Calcification Number, 
Calcification 
Distribution 

0.326 0.779 

4 Age, Associated 
Findings, Mass Margin, 
Calcification 
Morphology, Mass 
Shape, Calcification 
Number, Calcification 
Distribution 

0.324 0.787 

5 Age, Mass Margin, 
Calcification 
Morphology, Mass 
Shape, Calcification 
Number 

0.324 0.784 

32 



The best features for CBR with Hamming distance were found to be as follows. Three features - age, 

mass margin, and calcification morphology - occurred in all of the top 10 strategies for CBR using 

Hamming distance. Mass shape, calcification distribution, and calcification number occurred in a 

majority (7 or more) of the top 10 strategies. The other features occurred in less than 5 of the top 10 

strategies. Mass density did not occur at all. Therefore, the features that were the most consistent 

performers for Hamming were chosen to be age, mass margin, calcification morphology, mass shape, 

calcification distribution and calcification number The CBR performance was then evaluated using 

these features and the Hamming distance measure, and the results (bootstrap averages) are presented in 

Table 7 as Highest Consistent Hamming Strategy. Since the feature selection, in effect, was done over 

all cases and the performance was evaluated on the original data set, this test set it not truly 

independent. The best performance of Hamming Highest Consistent strategy occurred at DTH_SIM_HAM 

of 2, meaning that cases were judged similar if 2 or fewer of the 6 features differed. Figure 9 shows the 

full and partial ROC curve for the Highest Consistent Hamming strategy firom the Round Robin 

evaluation. Using the Hamming Highest Consistent strategy at 98% sensitivity 
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Figure 9: A) ROC curves for Highest Consistent strategies of the CBR classifier using Hamming and 

Euclidean distance measures. The thin dotted line extending from (0,0) to (1,1) represents chance 

behavior. B) Partial ROC curves for Highest Consistent strategies of the CBR classifier using 

Hamming and Euclidean distance measures. There is an almost statistically significant difference 

betw^een the two curves (p=0.06). Note that while the area (0.90AUC) under the Euclidean curve is 

greater, the Hamming distance measure performs comparably at a sensitivity (true positive fraction) of 

98%. (while misclassifying 2% or 11 of the malignancies) could potentially spare 251 (27%) of the 

benign cases. This represents an improvement from the clinical positive predictive value (PPV) of 35% 

to 42%. At 95% sensitivity (while misclassifying 5% or 26 malignant cases) the CBR could potentially 

spare from biopsy 316 (34%) benign cases. This raises the PPV to 44%. 

Results - CBR with Euclidean Distance. 

The highest AUC from a single strategy using the Euclidean distance measure had a value of 0.81. The 

highest individual 0.9OAUC was 0.37. Choosing the individual best 0.9OAUC strategy would spare 376 
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benign cases at 95% sensitivity, and 263 benign cases at 98% sensitivity. From Figure 8, the best single 

0.9OAUC using the Euclidean distance measure occurred at m=5 features. The best features for 

Euclidean distance CBR were found as follows. Age, mass margin, and calcification morphology 

occurred in all top 10 strategies - same as for Hamming. Unlike in Hamming, associated findings also 

occurred in all of the top 10 strategies, while mass density occurred 60% of the time. Special findings, 

mass shape, calcification distribution, and calcification number did not occur at all. Mass size occurred 

in 40% of the top 10 strategies. Therefore, the features that were most consistent performers for 

Euclidean were chosen to be age, mass margin, calcification morphology, associated findings, and 

mass density. The CBR system was next evaluated using these features and Euclidean distance 

measure, and the exhaustive search result of DTH_SIM_EUC = 0.23. The results (bootstrap averages) are 

presented in Table 7 as Highest Consistent Euclidean Strategy. 

Table 7. Results from the CBR classifier for four strategies. 

Distance    Type of Strategy 
Measure 

AUCiSTD       Q9QAUC±STD    False Positive      Number of       False       Number of 
Fraction at 95%  Cases Spared    Positive        Cases 

Sensitivity ± STD     at 95%       Fraction at    Spared at 
Sensitivity 98% 98% 

Sensitivity* Sensitivity 
STD 

Hamming Highest 
Consistent 

0.79 ±0.01 0.33 ± 0.03 0.66 ±0.02 316(34%) 0.73 ±0.02 251 (27%) 

Euclidean Highest 
Consistent 

0.80 ± 0.01 0.37 ±0.03 0.59 ±0,03 386(41%) 0.73 ±0.05 255 (27%) 

Euclidean Corresponding 0.79 ±0.01 0.32 ±0.03 0.64 ± 0.03 332(36%) 0.75 ± 0.05 228(25%) 
Hamming Corresponding 0.80 ± 0.01 0.30 ±0.03 0.66 ±0.02 313 (34%) 0.77 ±0.05 214(23%) 

Table 7 Results from the CBR for four strategies. 

Figure 9 shows the full and partial ROC curves for the Highest Consistent Euclidean strategy from the 

Round Robin evaluation. Using the Euclidean Highest Consistent strategy at 98% sensitivity could 

potentially spare 255 (27%) of the benign cases. This represents an improvement from the original 

PPV of 35% to 42%. At 95% sensitivity, approximately 386 (41%) benign cases could potentially be 

spared. This raises the PPV to 47%. For comparison, since every case in this database was referred to 
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biopsy, we can say that the original sensitivity was 100% (all malignancies were detected), while 

specificity was 0% (no benign lesions were spared) over the cases in our database. (Note that this is 

not representative of the radiologists' performance over a general screening or diagnostic population.). 

The same features were used with the Hamming distance measure, and the results are presented as 

Hamming Corresponding Strategy in Table 7. Results- Comparison. The best feature subset for the 

Hamming distance measure differed from the best features subset for the Euclidean distance measure. 

Only three features, mass margin, calcification morphology, and age were present in both feature 

subsets. The feature set chosen by Euclidean (which in addition included mass density and associated 

findings) performed slightly better in terms of higher 0.9OAUC than the feature set chosen by Hamming 

(which also included calcification distribution, calcification number, and mass shape). This difference 

between the 0.9OAUC was almost statistically significant (p==0.06), while the overall AUCs were 

comparable (0.79 and 0.80). CBR system with the Euclidean distance measure did perform better at 

the 95% sensitivity level, but the performance for the two distance measures was similar at the 98% 

sensitivity level. 

As can be seen in Figure 9, the main difference in performance occurs below the 98% sensitivity level, 

with Euclidean outperforming Hamming. We are unable to say that either distance measure is better 

for all performance criteria; overall, they seem comparable in performance. It is interesting to examine 

the profile of malignant cases misclassified by the CBR at high sensitivities. At 98% sensitivity, we are 

allowing 11 (2%) of the malignancies to be misclassified. Examination of the malignant cases 

misclassified by Hamming Highest Consistent CBR at 98% sensitivity revealed that the majority of 

these misclassified cases were mass cases (10 out of 11). One mass case also had calcifications, and 

another mass case also had a post surgical scar. The eleventh case had calcification findings only. 

Similar analysis of the malignant cases misclassified by Highest Consistent Euclidean CBR at 98% 
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sensitivity revealed that 7 out of the 11 cases had masses only, 2 had calcifications only, and 2 had 

focal asymmetric densities only. Therefore, malignant mass cases were misclassified more often than 

the malignant calcifications. This result is somewhat surprising, since the number of mass and 

calcification cases in both databases is roughly the same, as well as the number of malignancies in 

each subset. This could suggest that it might be very advantageous to split the database based on lesion 

type, and thus improve the performance of the CBR system. 

It is important to note that there were only 4 malignant cases that were misclassified by both CBR with 

Hamming and by CBR with Euclidean at 98% sensitivity. All of the four cases were mass cases with 

no otiier findings. All four had a well-circumscribed, isodense mass with either round or oval shape. 

Further examination of the information that was not given to the CBR about the cases revealed that 

two of the cases exhibited change from a previous examination. No additional information was 

available about the third case. The small number of malignant cases misclassified by both distance 

measures suggests that combining the two classifiers could improve performance. 

We have also examined the profile of benign cases potentially spared from biopsy by the CBR. 

Examination of the benign cases potentially spared from biopsy by Hamming at 98% sensitivity 

revealed that the vast majority of them (99%) were mass cases. A very small nimiber of cases also had 

calcifications (0.04%), and other findings (0.03%). Among the mass cases, the predominantly 

occurring mass margin finding was "well circumscribed," the most often occurring density was 

"isodense", and the most often occurring shape was "oval." A similar examination of the cases spared 

by Euclidean at 98% sensitivity showed that 86% were mass cases, and had a similar case profile to 

cases spared by Hamming. These results indicate fiirther the need to split the database based on lesion 

type, since most of the calcifications were classified as malignant, while the cases classified as benign 

37 



consisted mostly of mass cases. About 72% of the cases spared by Euclidean were also spared by 

Hamming. The cases spared from biopsy by the CBR matched rather well to the "likely benign" 

assessment assigned by mammographers. This "gut assessment" ranged from 1 ("benign") to 5 

("malignant"). Please note that this "gut assessment" does not correspond exactly to the BI-RADS TM 

assessment. About 18.5% of the cases spared from biopsy by both distance measures had a "benign" 

mammographers' assessment (category 1), 60% had a "likely benign" assessment (category 2), 18% 

had a "indeterminate" assessment (category 3), and only 1.5% had a "likely malignant" assessment 

(category 4). There were no category 5 lesions ("malignant") in the cases spared by both distance 

measures, and 2% of the cases had no assessment. Our results indicate that the CBR had chosen cases 

that would fit well with the approach of short-term follow-up, since 96% of the cases had a 

mammographers' "gut assessment" ranging from l(benign) to 3 (indeterminate). 

Therefore, the CBR presents a potentially useful tool for the classification of mammographic lesions, 

by recommending short-term follow up for probably benign lesions that is in agreement with the final 

biopsy result as well as the mammographers' intuition. Although, to our knowledge, the comparison of 

CBR for breast biopsy decisions to other classifiers has not been published in the literature, the 

performance of two other classifiers (neural networks and support vector machines, SVMs) has been 

studied on similar data. In a paper by Markey et al,'^^ feed-forward back propagation neural networks 

were trained and tested on 1453 biopsy cases, and the data set used in that study was almost identical 

to ours. They report an AUC=0.82±0.01, and o.90AUC=0.30±0.03. They also performed linear 

discriminant analysis, resulting in AUC=0.80±0.01, and o.90AUC=0.28±0.03. Compared to the CBR 

(Euclidean AUC=0.8{)±0.01, o.90AUC=0,37±0.03), the CBR seems to perform similarly in terms of 

AUC, and better in terms of 0.9OAUC. In a recent paper by Land et al,*° SVMs were used on 500 breast 

biopsy cases, which had also been analyzed using neural networks.^^The SVMs performed similarly to 
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neural networks in terms of AUC (0.85±0.047 for SVMs and 0.86±0.02 for neural networks). While no 

0.9OAUC was reported, the SVMs seemed to perform better in terms of specificity at high sensitivities. 

However, the two classifiers used different validation techniques and evaluated specificities at 

disparate sensitivities, therefore no direct performance comparison at high sensitivities can be made. 

The main advantage of CBR compared to the aforementioned classifiers is the natural ability of the 

CBR to explain the reasoning behind the final decision in medical context, while the other classifiers 

often behave as a "black box." Furthermore, the CBR can supply this additional medical information 

without sacrifices in performance. 

Reportable Outcomes 

All years: 

Peer-reviewed manuscripts 

1. Floyd C.E., Jr.,Lo J.Y., Tourassi G.D., Breast Biopsy: Case-Based Reasoning Computer-Aid 
Using Mammography Findings for the Decision to Biopsy, American Journal of Roentgenology 
(AJR) 175:1-6,2000. 

2. A.O. Bilska-Wolak, C.E. Floyd Jr., "Development and evaluation of a case-based reasoning 
classifier for prediction of breast biopsy outcome with BI-RADS TM lexicon." Med. Phys (in 
press). 

3. A.O. Bilska-Wolak, C.E. Floyd Jr., Joseph Y. Lo, "Application of likelihood ratio to 
classification of mammographic masses; performance comparison to case 'based reasoning." 
Med. Phys. (submitted). 

Conference Proceedings 

1. Floyd CE, Jr, Lo JY, Tourassi, GD, "Case-Based Reasoning as a Computer Aid to Diagnosis," 
Medical Imaging 1999: Image Processing, Hanson KM, Ed., Proc. SPIE, 3661:486-489,1999. 

2. A.O. Bilska, C.E. Floyd, Jr, "Investigating different similarity measures for a case-based 
reasoning classifier to predict breast cancer," SPIE Vol. 4322, p. 1862-1866,2001. 

3. A.O. Bilska-Wolak, C.E. Floyd, Jr, "Breast biopsy prediction using a case-based reasoning 
classifier for masses versus calcifications." SPIE Vol. 4684, p. 661-665,2002. 
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4.     A.O. Bilska-Wolak, C.E. Floyd, Jr., Joseph Y. Lo," Prediction of breast biopsy outcome using a 
likelihood ratio classifier and biopsy cases from two medical centers." SPIE 2003, (accepted). 

Presentations and abstracts 

1. Floyd CE Jr., Lo JY, Baker JA, Komguth PJ Multi-Institution Evaluation of Case-Based 
Reasoning for Breast Cancer Prediction. Radiolog2l3(JP), 334 1999 

2. A.O. Bilska-Wolak, C.E. Floyd, Jr., Joseph Y. Lo, "Computer-assisted prediction of breast biopsy 
results using radiological data and a likelihood ratio detector." RSNA 2002 (accepted). 

Database developed for BERADS findings of cases referred to biopsy. 

Funding applied for from NIH through the ROl mechanism June 2001. 

Total: 
Two peer-reviewed manuscripts accepted 
One peer-reviewed manuscript submitted 
Four conference presentations and proceedings 
Two conference presentations and abstracts 

For a total of 9 publications 

Conclusion 

In conclusion, the database was analyzed and the distribution of several features was reported, non- 

parametric evaluation techniques were explored and found to be more appropriate than parametric 

techniques, the performance of the CBR classifier was examined under variations of several of the key 

components of the system. The performance was evaluated for different sets of test data and database 

data from different institutions. Differences in performance were observed. Performance was 

evaluated under different sets of input findings and an optimal set was selected. Performance was 

evaluated under different implementations of the Hamming distance criteria under different cutoff 

distances. Differences were observed and an optimal cutoff was discovered. These interim results 

suggest that the current study plan is appropriate and that the CBR approach can be developed into a 

clinically usable decision tool. 
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