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A. STATUS OF EFFORT 

We have performed an investigation of electronic 1/f noise at in the materials, devices 
and systems relevant to the US Air Force including the resulting phase noise, focusing on the 
effects of irradiation with y-rays, neutrons, P and a particles. This also includes effects on arrays 
of satellites in space. The investigation used the author's quantum 1/f formulas. Our 
calculations indicate that low dose levels can under certain conditions lower the quantum 1/f 
noise of FET-type devices in which the mobility of the carriers is limited by electron-phonon 
scattering. Analytical expressions and graphical representation have been obtained. The latter 
show qualitatively the decreasing dependence of 1/f noise on the absorbed radiation dose. For 
junction devices, a linear increase of 1/f noise with the absorbed dose is obtained. 

Phase noise is important for the Air Force. A 10 dB reduction in the noise floor will 
reduce the bit-error-rate by a factor of 10'^ in DSP systems that process real-time inputs in an 
aerospace battle environment. In a Doppler radar, from the R"'* law, a 24 dB reduction in the 
noise floor corresponds to a 4 fold increase in range R. Special emphasis was thus placed on 
quantum 1/f phase noise in RF and microwave devices, oscillators and systems in general. 
Leeson's formula was modified for this purpose radically by the inclusion of a new term 
proportional to the inverse fourth power of the loaded quality factor. This is essential for all 
high-stability systems. The present Technical Report discusses also the phase noise 
requirements for an array of satellites, and the physical basis of electronic noise control in 
radiation hardening. It is demonstrated that the quantum 1/f phase noise in the transmitters on 
individual satellites leads to an increased width of the coherent beam emitted by the array. 

The new effect of quantum 1/f noise in the radiation resistance of antennas is introduced. 
This is important for low-power cosmic distance transmissions with highly directional, very well 
tuned antennas. It results in a 1/f spectral density of radiation resistance fluctuations inversely 
proportional to the quality factor of the antenna. The effect resonance frequency fluctuations in 
the antenna were found to be inversely proportional to the fifth power of the antenna quality 
factor. Solid state microwave generators of increased power can be obtained by using wide- 
bandgap materials, such as GaN. We have obtained from first principles an analytical formula for 
quantum 1/f noise in GaN/AlGaN HFETs that agrees with the experimental data, and allows 
optimization of the device and system. It yields a strong 1/f noise increase with gate voltage. 

1/f noise in resonant tunneling diodes (RDTs), biological-chemical sensors, spintronics 
and bent ultra-thin semiconductor samples or integrated circuits was also described for the first 
time with exact engineering formulas, allowing for their optimization. For RTDs, the 1/f noise is 
found to be proportional to the squared voltage V^ for which the valley in the graph of the 
current occurs. It has a spectrum of 10"' for fractional current fluctuations at Vy=0.4V. The 
sensors are optimized by making them either very small compared with the coherence length of 
phonons in the quartz, or very large. Bending also increases noise in ICs based on junction 
devices and may decrease the noise in certain conditions for ICs based on FETs and HFETs. 



B. ACCOMPLISHMENTS/NEW FINDINGS 

BI. Permanent Conventional Quantum 1/f Noise Reduction in Semiconductor 
Samples and FET/HFET-Type Devices Through Irradiation 

Introduction. This 1/f noise reduction is limited to very small samples, for which the 
conventional quantum effect is not masked by the coherent quantum 1/f noise; see [l]-[72] for 
both, including theory and experiment. It will be particularly noticeable in good samples and 
FET/HFET devices, that had a relatively high mobility, limited by lattice scattering, and become 
more defect-scattering-limited after the irradiation. The effect is observed only in stable samples 
or devices, i.e., at sufficient time after the irradiation. To verify the effect, the 1/f noise is 
measured at low temperature before irradiation. The sample is brought to room temperature, is 
irradiated, and kept at room temperature for a week. It is then returned to the same low 
temperature, and measured under the same conditions as before, to determine the 1/f noise in 
stable condition after the irradiation. The renewed cooling is necessary, because normally, even 
after a week the irradiated samples/devices are not stable enough to avoid the superposition of a 
dominant 1/f^ component caused by linear drift. 

Derivation. In general, Matthiessen's rule allows us to write for the resulting carrier 
mobility fi 

l/H=Zi(l/|ii), (1.1) 

where ^.j is the mobility that would be observed if only scattering process "i" would act.  The 
quantum fluctuations 

5^/^'=Zi(5|ii/^li^), (1.2) 

are multiplied by |i, squared, averaged (quantum expectation value) and referred to the unit 
frequency interval to obtain the spectral density of fractional fluctuations 

Ss^,(f) = 2:i(^/nO'Ss^,,,.(f). (1.3) 

This is based on the statistical independence of fluctuations in the cross section or rate of the 
scattering process i from all others. All 85^^,,^, decrease ~1/N, with N the total number of carriers. 

In particular, let n^ be the total concentration of all types of impurity and defect scattering 
centers, and n' the additional concentration of defect scattering centers introduced by the 
irradiation. Then Eq. (1.1) yields 

l/|i„ = l/^„, + 1/^, (1.4) 

for the initial mobility, and 

l/^i = l/^id + l/|i, = (l+r)/|i<,d + l/^t,, (1.5) 



where r=n7nod is the ratio between the additional defect concentration n' created by the 
irradiation and the pre-existing defect concentration n^^- We have assumed that if lattice 
scattering would be absent, the mobility jij expected after the irradiation would be reduced by a 
factor 1+r when compared with its initial value [i^^, present before irradiation. This is to be 
expected, since the frequency of scattering is proportional to n' and therefore with the absorbed 
dose of radiation J in Sv (sieverts) 

n'=KJ; K=pad/E(a,orcys), (1-6) 
where K is a coefficient defined for the given semiconductor material of density p as the product 
of the atomic cross section for defect creation G^ in bn (barns) with p in Kg/m^ divided by the 
energy of the particles in joules and by the total atomic effective absorption cross section a,o, -a^. 
Here a^ is the scattering cross section, while a,ot is the total attenuation cross section, both in bn. 
Note that ISv is 100 rad, and 1 rad =100 erg/g. n' is obtained in ml Note that a^ is dependent 
on the temperature of the lattice through a Debye-Waller factor for the part involving 
displacement of lattice points with creation of interstitials. For neutrons, a^ includes the nuclear 
capture cross section, etc. 

Initially, for the noise measurement before irradiation, we can thus write 

S5^.,(f) = (^io/|^od)'S<, +(|i„/^,)'S, = (l-^io/^ii)'S, +(Ho/m)'S, (1.7) 

where 8^= Sg^d/^d(f) and S,= Sgjii/^i(f) are the quantum 1/f spectral densities of fractional mobility 
fluctuations calculated for the elementary act of defect scattering of a current carrier, and for the 
elementary act of lattice scattering, respectively. On the other hand, after the irradiation, at the 
same temperature, in stable (in fact, metastable) conditions, we obtain 

S'5^.,(f) = (l+r)^(|i/^i„d)'Sd +{\i/[i{)% = (l-^i/nO'Sd +(H/^,)'S, (1.8) 

Neglect now that both Sj and S, decrease like 1/N. From Eqs. (1.7) and (1.8) we derive the ratio 

R = S7S = [(^,-|i)^Sd+^'S,]/ [(^r^o)'Sa+^lo'S,]     I (1.9) 

between the 1/f noise power after and before irradiation. Since |i.<|a.o and Sd«S|, this ratio is less 
tan unity. Neglecting S^, (because conventional quantum 1/f effect is proportional to the square 
of the scattering angle, and defect scattering is mainly small angle scattering) we obtain 

R-|iV|i,^ R« l/[l+r(l+^i„/^,)]^;    R= l/[l+(KJ/nJ(l-^iy|i,)]^ =l/(I+AJ)^       (1.10) 

where A=(K/no)(l-|io/^.,) is a constant (see Fig. 1). Rms Ql/f noise is thus reduced like \i.. On 
the other hand, if defect scattering was negligible before irradiation, nod=0 and |Xo=|i,. This yields 

R=|iV|i/ + (l-|i/|ijWS,). (1.11) 

This prediction of the quantum 1/f theory is remarkable, because it is counterintuitive. It 
is usually masked in the short run by the transient effects discussed in Sec. B3 below, and by 
relaxation of the defect concentration towards the equilibrium concentration. This relaxation 
contributes a large temporary \/f noise spectral component, as does any linear drift present 



R 

Absorbed radiation Dose J 

Fig. 1. Dependence of the Noise Modification Ratio R on the absorbed radiation dose J 

during the noise measurement. Note that the decrease can be stronger, since N is liicely to go up. 

B2. Permanent Quantum 1/f Noise Increase in Junction-Type Devices 

Introduction. Junction-type devices contain pn junctions perpendicular to the current 
density vector. In this case, the current is determined either by diffusion, or, particularly at lower 
temperatures, by recombination in the space charge region of the junction (or by both, in the 
transition interval of temperatures). Quantum 1/f fluctuations in the diffusion constant (related to 
mobility fluctuations through the Einstein relation) and in the recombination rates, both at the 
surface and in the bulk, are causing the 1/f noise in this case. Not all carriers are involved, but 
only those emerging from the scattering or recombination process mentioned. Their number is 
N=I/ex, where x is the lifetime of the carriers, I the current through the junction, and e the 
elementary charge. Since the number of carriers enters in the denominator, the noise power is 
proportional to the first power of the current I for forward bias larger than kT/e, whereas it goes 
like I^ in samples and FET/HFET devices. The main radiation effect comes now from the drastic 
reduction of the lifetime T in the denominator, causing an increase of 1/f noise with irradiation in 
junction devices. There is also a small shift in the current limiting mechanism (mainly in the 
transition region) and a change in the quantum 1/f coefficient for diffusion/mobility fluctuations 
as mentioned in the previous Sec. Bl, but that is usually a much smaller effect here. On top of 
everything are, of course, the large transient radiation effects to be discussed in Sec. B3. 

Derivation. The lifetime of the carriers decreases with the radiation dose J 

1/t = I/XQ +avn' = I/XQ -havKJ, (2.1) 

where K is the factor of proportionality introduced in Eq. (1.6) above, v is the rms speed of the 
electrons in the semiconductor, and a is the well-known Conwell-Weisskopf cross section if the 



defects are ionized. The 1/f noise is calculated below first for a pn junction. 
For a diffusion limited n*-p junction the current is controlled by diffusion of electrons 

into the p - region over a distance of the order of the diffusion length L = (D„T„)"^ which is 
shorter than the length Wp of the p - region in the case of a long diode. If N(x) is the number of 
electrons per unit length and D„ their diffusion constant, the electron current at x is 

I„, = - eD„dN/dx, (2.2) 

where we have assumed a planar junction and taken the origin x = 0 in the junction plane. 
Diffusion constant fluctuations, given by kT/e times the mobility fluctuations, will lead to local 
current fluctuations in the interval Ax 

5AI„,(x,t) = I„,Ax5D„(x,t)/D„. (2.3) 

The normalized weight with which these local fluctuations representative of the interval Ax 
contribute to the total current Id through the diode at x = 0 is determined by the appropriate 
Green function and can be shown to be (l/L)exp(-x/L) for Wp/L » 1. Therefore the contribution 
of the section Ax is 

5AId(x,t) =(Ax/L)exp(-x/L)I„d5D„(x,t)/D„, (2.4) 

with the spectral density 
S^iix,f) = {AxfLf exp(-2x/L) I„/ SD„(x,f)/D„l (2.5) 

For mobility and diffusion fluctuations the fractional spectral density is given by an„JfNA\, 
where ttHnd is determined from quantum 1/f theory. With Eq. (8.1) below we obtain then [20] 

SAid(x,f) = (Ax/L^)exp(-2x/L)(eD„dN/dx)'aH„d/fN. (2.6) 

The electrons are distributed according to the solution of the diffusion equation, i.e. 

N(x) = [N(0) - Np] exp(-x/L); dN/dx = -{[N(0) - Np]/L} exp(-x/L). (2.7) 

Substituting into Eq. (2.6) and simply summing over the uncorrelated contributions of all inter- 
vals Ax, we obtain 

S,d(f) = aH„d(eD„/L^)^ J[N„-Np]V'""^dx/{[N(0) -Np] e"""- + Np}. (2.8) 

We note that eDJL^ = e/x„. With the expression of the saturation current I^ = e(Dn/T„)"^Np and of 
the current I = Io[exp(eV/kT) - 1], we can carry out the integration 

S,d(f) = aHnd(eI/ft„) Jdu/(au +l) = aU^l/fx„) F(a). (2.9) 

Here we have introduced the notations 

u = exp(-x/L),    a = exp(eV/kT) - 1, 

F(a) = 1/3 - l/2a -i- 1/a^ - (l/a-')ln(l+a). (2.10) 

Eq. (2.9) gives the diffusion noise as a function of the quantum 1/f noise parameter ttHnd. A 
similar result can be derived for the quantum 1/f fluctuations of the recombination rate r in the 
bulk of the p - region, the only difference being the presence of ttHnr instead of aH„d in Eq. (2.9). 
The total noise is the given by Eq. (2.9) with aHnd replaced by the sum ttHnd + CLnm 



S,d(f) = (ttHnd + aHn.)(eI/fx„)F(a). (2.11) 

From Eq. (2.1) we obtain for n' 

(2.12) S„(f) = (aHnd + aHj(eI/f)F(a)(l/T„ +avKJ), R-(l/Xo+avKJ), 

which clearly displays a linear increase of 1/f noise with the applied dose (Fig. 1). 
The radiation-induced increase in the 1/f noise power of the emitter junction is the most 

important, because it appears increased by the square of the amplification factor |3 in the 
collector circuit. However, the noise increase in the collector junction yields also a considerable 
contribution. The overall increase will be given by a linear equation similar to what we have in 
Eq. (22) for a single junction. We conclude that according to the Ql/f theory, the junction 
devices will show a much larger noise increase. In the long run, as we noticed above, even a 
decrease of 1/f noise is likely in good FET/HFET devices. 

B3. Transient Radiation Effects in Semiconductor Devices 

These effects are mainly caused by a large flood of current carriers produced by y-rays by 
internal photoelectric effect (e.g., excitation of electrons from the conduction band and from 
localized energy levels), by Compton effect and, if they have more than 1 MeV, also by pair 
formation. Just as we saw above for noise, this affects junction devices again more than 
FET/HFET devices. 

Measures suggested here by us to prevent large damaging transients from BJTs and 
HBTs, would consist of inclusion of a sufficiently large, normally reverse-biased, pn junctions 
both before the emitter connection, and after the collector connection of a bipolar transistor. 
Both diodes are made particularly radiation sensitive, and have the other end grounded. The 
same effect mentioned above will occur then also in the diodes, and will provide a temporary 
shunt, thereby exactly compensating the extra currents to be expected from the transistor 

B4. Noise and Quantum 1/f Effect as Indicators of Radiation Damage; 
The Principle of Auto-Repair 

Radiation damage in electronic devices and integrated circuits was studied by many 
authors, in particular during the last 2 decades. Among the main specialists we mention R.D. 
Schrimpf for silicon devices and R. Zuleeg who pioneered the work on GaAs particularly 
important for VHSIC applications. An excess of As turned out to be useful for the automatic 
defect repair, or healing, mechanism. Electronic noise and the quantum 1/f effect can be used to 
indicate the presence of radiation damage and to trigger automatic repair actions through 
annealing, self-testing and self-reconfiguration. Furthermore they can be used to study the 
mechanism of cumulative radiation-induced damage for various types of particulate and 
electromagnetic radiation including y rays, and for studying the time-dependent effects of large 
dose-rates. 

A review of the literature shows an enormous amount of activity in the field of radiation 



hardening during the last few decades, most of it published in the IEEE Transactions on Nuclear 
Science. A detailed study of the more recent contributions [71]-[113], performed by the author, 
indicates that the present situation is dominated by empirism and by studies performed on a 
particular type of device, for a particular application or class of radiation exposure situations. 
Many results are reflecting the presence of l/f^ components arising from the linear drift caused 
by the return of the system to a state closer to the true equilibrium state. Indeed, the power 
spectrum of a linear drift is known to be proportional to 1/f, and very large at low frequency, 
causing the total power spectral density to be steeper. 

What seems to be missing is a fundamental, all-encompassing theory which can be easily 
applied to all situations. However, such a general theory is extremely difficult to create and may 
not be possible without empirical elements, and does not represent a reasonable alternative to 
using the experience of specialists who have worked in this field for a long time and have 
accumulated a tremendous experience. Nevertheless, for a more restricted domain of low-dose 
and low dose-rate radiation damage, such as caused by the unshielded cosmic and solar 
radiation background, the task is feasible, because we know the formulas describing shot, GR, 
thermal, non-fundamental l/f and quantum 1/f noise. 

For instance, the occurrence of a lorentzian component (bump) in the noise spectrum, of 
the form 

S(f) = 4T/(l+47t2f2) (4.1) 

indicates the presence of carriers with the lifetime x. 
In the absence of pn junctions, the quantum 1/f noise does not change monotonously as a 

function of radiation dose at low radiation dose values. It first decreases and then increases 
when more radiation is absorbed. Indeed, in small monocrystalline probes and devices, with 
large mobility limited by lattice scattering, the presence of a small radiation dose causes defects 
which lower the conventional quantum 1/f noise because they introduce a larger fraction of low- 
angle scattering into a system dominated by large angle lattice scattering, including umklapp and 
intervalley scattering. This is noticed when we apply the formula 

Ssn/nCf) =X (I^/I^i) 2S5^ii/^ii(f) (4.2) 
i 

which shows how the quantum 1/f effect in different Scattering mechanisms determines the total 
quantum 1/f mobility noise spectrum. Indeed, the S§^i/^i(f) factors are proportional to the 
squared momentum change of the scattered carriers. Since the momentum changes are smaller 
in defect scattering, we expect an initial decrease of 1/f noise when small radiation doses are 
applied, provided the defects have become stable in time. 

At larger radiation doses the current paths change, leading to increased quantum 1/f noise 
and increased accidental (non-fundamental) 1/f noise. 

Micro-processors, comparing the actual noise spectrum with pre-calculated spectra stored 
in the memory, can therefore determine the presence and type of radiation damage. They can 
then trigger the optimal annealing process corresponding to the type of radiation damage at hand. 



B5. Phase-Coherence and Low Phase Noise in Multiple Satellites 

An array of satellites (Fig. 2), orbiting the earth with parallel antennas, can be used to 
selectively receive and/or emit electromagnetic waves from/into a very well defined direction 
whose angular width is given by the diffraction limit 

808 = X/2Nacose (5.1) 

in the absence of phase noise. This is caused by the uncertainty principle. Here a is the distance 
between the A^ satellites forming the array and 0 is the angle between the direction of the beam 
and the normal to the linear array of A^ satellites. The length of the array is then L=Na and the 
mean phase difference between neighboring satellites is 

<t) = 27casine/^. (5.2) 

In the presence of phase noise of variance <(5(j))2>, the beam direction error 59 will be 
the sum of both errors: 56 = 5(|,0 + 5o6. The variance is therefore approximated by 

<(50)2> = <(5,i,0)2> + <(5o0)2> = <(5<(,0)2> + (X/2Nacos0)2. (5.3) 

From Eq.(5.2) we obtain 

5^0 = (Ay27tacos0)5(t). (5.4) 

Therefore, Eq. (5.3) becomes 

<(50)2> = <(5<|,0)2> + <(5o0)2> = (Xy27cacos0)2<(6(|))2> + (Ay2Nacos0)2 

= (Xy27tacos0)2[<(5(l))2> + (7c/N)2]. (5.5) 

It is thus desirable to reduce the phase noise variance to a value below the threshold (7i:/N)2. 
According to the quantum 1/f theory [l]-[72] and also for most non-fundamental forms of 

electronic noise present in oscillating systems and resonators included in the multiple satellites 
system, the frequency fluctuations are caused by fluctuations in the dissipation. Therefore, as 
first found by the author [14] in 1978, the spectral density of fractional fluctuations 5co in the 
frequency CO is 

S5ayco(f) = (l/4Q4)Ssy/Y(f). (5.6) 

Here S5Y/-y(f) is the spectral density of fractional fluctuations Sy/y in the dissipation rate y, and Q 
is the quality factor of the resonant system, including resonator and oscillator. This resulting Q 
is close to the Q of the resonator, if a good resonator is used. The spectral density of fractional 
frequency fluctuations S5(o/a)(f) is connected to the spectral density S^{f) of phase fluctuations by 

S6co/o)(f) = (27if/a))2S5<i,(f) (5.7) 
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Antenna Array 

Fig. 2: An antenna array generates a coherent superposition of beams from each antenna in the 
array, with a resulting angular width given by the diffraction limit 5o0 = Ay2Nacos9 in the absen- 
ce of phase noise. 

Consequently, from Eqs. (5.5), (5.6) and (5.7) we obtain 

J(0)/2juf)2(l/4Q4)Ssy/-Xf)df < (7t/N)2 (5.8) 

as the required condition to be satisfied by the maximal allowed noise spectral density of the 
electronic systems used. Here the integral is extended over the frequency interval defined by 
fo=l/T as the lowest frequency and f=l/t as the highest frequency. T is the reciprocal time of a 
given transmission into a well-defined direction. On the other hand, the upper limit can be 
extended to infinity, due to the factor f^ in the denominator of Eq. (5.8), which insures rapid 
convergence. 

The author has generalized Eq. (5.8) also to the case of a 2-dimensional array of 
satellites. For a three dimensional array, only certain emission directions are possible at any 
given frequency, so this case was not considered, because it does not allow a beam sweep at 
constant frequency. 

In the presence of the cosmic and solar radiation, and of radiation caused by hostile 
actions, the satellites need an automatic radiation damage removal system operative at the level 
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of individual devices, integrated circuits and macroscopic electro-physical as well as electro- 
optical components. This system can be based on several parameters, and can be optimized for 
the given performance criteria, including device level and system level stochastic noise and 
quantum 1/f noise.The latter is described for the first time as a result of this project, from first 
principles, in the next Section B6, below. 

In addition, the satellites need to incorporate adaptive stealthing capabilities over several 
optical, microwave and radar frequency domains. This can be achieved on the basis of the 
method developed by the author in US Patent #185979: "Absorptive Coating for the Reduction 
of the Reflective Cross Section of Metallic Surfaces and Control Capabilities Therefor". 

B6. Quantum 1/f Effect in the Radiation Resistance of Antennas 

/. Introduction. It is well known that kinetic coefficients such as the electrical resistance 
of conductors and semiconductors exhibit quantum 1/f fluctuations caused by the quantum 1/f 
effect in the scattering cross sections of the current carriers. Is the radiation resistance of 
antennas an exception? The present Section tries to answer this question, and to suggest ways in 
which the quantum 1/f noise in the radiation resistance can be experimentally verified. 

According to the general quantum 1/f formula [1]-[13] the spectral density of fractional 
fluctuations in any physical cross section or process rate T is 

r-2Sr(f)=2aA/f (6.1) 

with a=e2/h c =1/137 and A=2(AJ/ec)V37C. This is the quantum 1/f effect in any physical 
scattering rate F, and J=ev is the current of the scattered particles of charge e and velocity v. 
The "physical cross sections" and "process rates" are defined by us to contain the quantum 1/f 
fluctuations, in addition to the quantum mechanical expectation value. Here AJ denotes the 
current change caused by the scattering process. 

2. Quantum 1/f antenna loss rate fluctuations. In the case of an antenna, the collective 
"scattering" process affected by quantum 1/f fluctuations is the process of radiation of one 
quantum of the antenna's oscillation energy quanta e=h co. Setting 

aj = dP/dt = P , (6.2) 

where P is the vector of the dipole moment of the antenna of length a, we obtain for the 
fluctuations in the rate F of removal of oscillation energy quanta e=coti from the main antenna 
oscillation mode, the spectral density 

Sr(f) = P4a(AP )V3f7te2c2, (6.3) 

where (AP Y is the square of the dipole moment rate change associated with the process causing 
the radiative removal of a quantum e=Q)h from the main oscillation mode. To calculate it, with 
Ja = dP/dt, we write the energy W of the antenna mode in the form 
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W = nrari = (l/2a2)LefKdP/dt)2 = (l/2a2)Leff(P Y; (6-4) 

The factor two including the potential (capacitive) energy contribution is automatically 

included because we define P here to represent precisely the amplitude of the antenna dipole 
moment rate of change, rather than the oscillating instantaneous value. Here Leff is the effective 
inductance of the antenna dipole. Applying a variation An=l which corresponds to the 
spontaneous emission of one quantum, we get 

An/n = 2IAP I/IP I, or AP =P /2n. (6.5) 

Solving Eq. (6.4) for P and substituting, we obtain 

lAP I = ((Oh a2/2nLeff)"2 (6.6) 

Substituting AP into Eq. (6.3), we get 4a(a)h /2nLeff)/37ce2c2 

r-2Sr(f) = 2ah (0a2/3n7tc2fLeffe2 = A/f. (6.7) 

This result is applicable to the fluctuations in the radiative loss rate F of the antenna. 

3. l/f Fluctuations of the antenna resonance frequency and radiation resistance. The 
corresponding fluctuations in the resonance frequency of the antenna are given by [14] 

a)-2S(,(f) = (l/4Q'*)(A/f) = ah C0a2/6n7tc2fLeffe2Q^ (6.8) 

where Q is the quality factor of the single-mode antenna considered. 
Eq. (6.7) implies fluctuations of the radiation resistance of the antenna, defined by 

Rr=hcor/l2. (6.9) 

The corresponding spectral density of fractional fluctuations of the radiation resistance Rr is thus 
the same 

Rf-^SR^f) = 2ah a)a2/3n7i;c2fLeffe2 = A/f. (6.10) 
This can be further simplified. Indeed, if the antenna is left to ring out without excitation, the 
part of the energy decay rate caused by the radiation is given by 

-dW/dt = Pr=W/x. (6.11) 

Equating the last 2 terms, one obtains 

2(d2p/dt2)/3c3 = Leffj2/2i;. (6.12) 
With 

Ja = dP/dt (6.13) 
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this equation becomes 

Leff=4a)2a2i:/3c3. (6.14) 

Substitution into Eq. (6.10) yields then 

S5RM = [2n7cfxco]-i=[2n7cfa)/2Y]-i= [2n7cfQ]-i. (6.15) 

Here we used the amplitude attenuation coefficient y=\llx and the antenna quality factor Q 
= w/2g = wt. Eq. (6.15) has all the earmarks of a basic quantum 1/f formula applicable with no 
change in all systems of units, with considerable generality. It should be verified experimentally. 
All other equations are easily translated from the Gaussian to the International System. 

B7. Theory of Quantum 1/f Noise in GaN/A10.15Ga0.85N HFETs 

The present Section applies the quantum theory of 1/f noise to predict the 1/f fluctuations 
measured on GaN doped channel HFETs and to compare the experimentally measured values of 
the effective Hooge parameter with the theoretical value. This theory has been successfully used 
and verified by van der Ziel, used and developed by CM. Van Vliet, M. Tacano, G. Bosman, K. 
Gopala, A. Widom, Y. Srivastava, S. Bandyopadhyay, A. Balandin, K. Wang, by us, and by 
many other authors. 

7.1. Uniform channel approximation 

To apply the theory, the HFET channel is first considered here to be similar to a 
parallelipipedic sample of dimensions 50mm gate width, 500A channel depth and 1 mm gate 
length. In second approximation, the reduction in channel conductivity from source to drain is 
also taken into account, in order to find the effective quantum 1/f parameter that is to be 
compared with the measured Hooge parameter. In the uniform channel approximation we expect 
from the 2 1017 cm-3 doping level a number of electrons per unit channel length of 

N'=50mm¥ 0.05mm ¥2 1017cm-3 = 5 109cm-l (7.1) 

at flatband. This allows us to find the "s"-parameter present in of the general quantum 1/f 
formula. This "coherence parameter" is the number of charge carriers in a thin salami-slice-like 
section of the sample. "Thin" means twice the classical radius ro=e2/mc2 = 2.84 10-13 cm of 
the electron. In our case, the parameter is 

s = 2¥5 109 cm-l¥ 2.84 10-13 cm = 2.84 10-3. (7.2) 

Knowledge of the coherence parameter s allows the calculation of the quantum 1/f noise 
parameter 

ao =[2a/p(l+s)]{s + (2/3)(Dv/c)2}. (7.3) 
Here a=eV/zc=l/137. The terms in curly brackets correspond to the coherent and conventional 
quantum 1/f effect contributions respectively.  The effective velocity change Av of the current 
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carriers is present in the conventional term. It is determined by including the average quadratic 
momentum changes experienced by the current carriers in all scattering processes that limit the 
mobility of the carriers: impurity scattering, acoustical and optical phonon scattering, inter-valley 
scattering and umklapp-scattering. They are included with weights of i\iJ[iif, where \i is the 
resulting mobility of the carriers and |ii is the (larger) mobility that would be obtained if only the 
scattering process labeled with the subscript I would be active. The applicable formula is 

(Av/c)' = Zi(Myn,)^(Av/c)il (7.4) 

The velocity change (Av/c)j^ is the appropriate average over the occupied energy levels in the 
band in which the carriers are located energetically. In our case it is the conduction band for 
electrons in the channel of the HFET. This complicates a more exact calculation of the 
conventional l/f term somewhat, unless it is a semiconductor material for which such 
calculations have been performed already. Usually it is sufficient to estimate the conventional 
quantum l/f noise by including the largest contribution, which is from umklapp or inter-valley 
scattering. In our case this yields for the GaN channel the second term in curly brackets in the 
form 

(2/3)(^G/cmeff)^= (2/3)( ^27c/acmeff)^= (2/3)[h/c3.2 10'^cmx0.2me]^ = 4.5 10"^    (7.5) 

However, according to Eq. (7.2), the coherent quantum l/f vestige given by the first term s in 
curly brackets is more than six times larger. This places us in the difficult transition region 
between coherent and conventional quantum l/f effect. In that situation, due to the 
proportionality of s with the number of carriers N' per unit length, due to s«l being negligible 
in the denominator, and due to the preponderance of the coherent quantum l/f term, the 
measured l/f noise (Hooge) parameter will be proportional to N', as indicated by Eq. (7.3). This 
accounts for the increase of the experimentally determined «// with VG*that is evident in Table I 

of the previous paper, as we shall see in detail below. Indeed, VG* is the amount by which the 
gate voltage VG exceeds its threshold value Vy. The number of carriers N' per unit of channel 
length is known to increase with VG*. The factor in rectangular brackets in Eq. (7.3) is 

2a/7c(l+s) = 2/1377c(l+s) = 4.65 lOl (7.6) 

The two terms, coherent and conventional, in Eq. (7.3) yield 

ao=[2a/7t(l+s)]{s + (2/3)(Av/c)^} = 1.32 10'^ + 4.55 10'^ = 1.78 10'^ (7.7) 

for the resulting quantum l/f parameter at flatband. 
In the previous experiments [121] the applied drain voltage used to measure the Hooge 

parameter was VDS=5V. This caused the channel cross section and the number of carriers per 
length unit to decrease dramatically from source to drain. Nevertheless, the effective Hooge 
constant was defined in terms of a constant channel cross section and carrier concentration. 
Therefore, either the measured Hooge constant needs to be corrected for channel non-uniformity, 
or the calculated quantum l/f parameter must be adjusted for channel non-uniformity.   Both 
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ways allow for a meaningful comparison of the Hooge parameter with the resulting quantum 1/f 
parameter. We choose the first path because it yields Hooge parameters which can be better 
compared with those found in other devices with different geometry. In general, we choose to 
compensate for geometrical effects and to obtain geometry-independent results with universal 
applicability. 

7.2. Below saturation: effect of channel non-uniformity 

Using notations similar to those chosen in Warner and Grung, Eq. 5-9 in [122], we will 
describe the effect of a small channel non-uniformity on the observed 1/f noise. We choose the 
y-axis along the electronic drift. The latter occurs over a distance Y slightly longer than the 50 
|im gate length, from source to drain. The x-axis is oriented vertically down from the gate along 
the channel thickness X, and the z-axis is also across the current, along the (usually larger) gate 
width Z. 

a. Approximation neglecting the statistical distribution of the carriers 

In this approach, the number of charge carriers is simply approximated by the net induced 
charge, divided by the charge of the electron. This approximation is limited to above-threshold 
conditions below saturation, neglects the conductance from carriers of both signs that 
compensate their charges, and neglects the Fermi statistical distribution of carriers. It is certainly 
not applicable when the number of carriers, or the conductance predicted, approach, or actually 
become, negative or zero. With these limitations, the element of resistance dR along the current 
can be written, [122], [123] 

 dy  
dR = dy/q^lN'= 2;^„C[VGS-VT-V(y)]   ' (^.8) 

where p,„ is the electron mobility, C the gate capacity per unit area, VGS =VG-VS the gate to 
source voltage, Vj the threshold value of VGS» and V(y) the potential the channel at a distance y 
from the source, or Y-v from the drain. Note that the rectangular bracket in the denominator is a 
first approximation only, based on the simple capacitor model. In general, as we shall see below, 
Fermi statistics is applicable, essentially replacing the bracket [ ] by kBT{exp([ yk^T) -1}, where 
kg is Boltzmann's constant. The quantum 1/f noise in the element of resistance is given by the 
basic quantum 1/f formula for mobility fluctuations 

<(8dR)2>f      tto 
(dR)2      =fdN   ' C^-^) 

where dN is the number of carriers in the element of resistance 

dN = ZQndy/q (7.10) 

and Qn=-C(VGS-VT) is the charge per unit area under the gate, while q=-e is the charge of the 
electron. Using Eq. (7.8) for dR, and (7.10) for dN, we obtain 

16 



tto  qapdy  
f<(5dR)2>f=[dy/q^N']^   = >n2Z3C3[VGS-VT-V(y)]3   " ^^-^^^ 

Multiplying on both sides with the channel current 

I = -dV/dR = -Z^nC[VGS-VT-V(y)]dV/dy (7.12) 

and integrating, yields 

VDS 

n<(6R)2>f = 
qapdV _   gap Vps 

^nZ2C2[VGS-VT-V]2   " ^lnZ2C2 VG*(VG*-VDS)  " ^''^^^ 
0 

Here VG*=VGS'VT- This simple summation of spectra is justified, because both theory and 
experiment have shown that the fluctuations of the various elements dR are uncorrelated, down 
to the smallest experimentally accessible lengths, and down to the electronic correlation length. 
Dividing both sides with IR2 and replacing VDS/I by R on the r.h.s., we obtain 

<(5R)2>f       qOp  qgp        dR     _ qM-nfto   dR     dR 
f     R2        = HnZ2C2RVG*(VG*-VDs)   " ZCVG*R   ^dy ID -    R      [dy IsUy ^D'   C^-^^) 

where we have used Eq. (7.8) at y=L and V(y) = VDS, the drain potential, to define the drain 
value [dR/dy] of [dR/dy]. At y=0 we have V(y) = 0 and we define there in the same way 
[dR/dy] . Note also that multiplication of Eq. (7.12) with dy, followed by integration from 0 to L 
yields in this approximation, with the stringent limitations mentioned above, the expression of 
the channel resistance 

R = (L/Z^lnC)/(VG*-VDs/2) (7.15) 

that is present in the above equations. 

b. Inclusion of Fermi statistics below saturation 

Introducing Fermi statistics, for a GaN/Al^Gai.^N doped n-channel HFET the number of 
carriers per unit length N' of the 2-dimensional channel is written in the form 

N' = ZDV„log{l +exp[(Vo*-V)A^J}. (7.16) 

Here D^f^qmJnh is q times the effective density of states per unit area. Multiplying Eq. (7.13) 
by I/f, this yields the spectral density of V^s fluctuations in terms of device width Z, channel 
current I, and thermal voltage VTh=kT/q 
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^1 

<(5Vos)S=(IIl/fZ'DeffqVj j(a^/fl„)[dX/(X - l)ln' X] ■ (lAl) 

X^l + ^^p(Y^^I^). (7.18) 

Here XQ and X, are the values of X at the source (V=0) and at the drain (V=VDS), while aH=ao(y) 
is a y-dependent form of the quantum 1/f coefficient introduced in Eq. (7.7) above. For (VG*- 

V)/V„«l, 

X-l=(VG*-V)A^,h, (7-19 

and the linear approximation of Eqs. (7.11)-(7.13) is regained for a 2D quantized channel. 
Eqs. (7.13)-(7.17) are applicable if no saturation occurs. In general, part of the channel 

may be sub-threshold. In that case, 

ft.«^' >/- J ,^^ \l    ^fUl^       ^ J 4/,=v^Z^D;i^.ln|Uexp((l'--l')/K.)ll <''°' 

Eq. (7.20) includes the field dependence of a and |i, but neglects the impact ionization 
effect in the subthreshold section of the channel length. Using the fact that the velocity of the 
carriers shows strong saturation in that section, to include impact ionization effect, we split up 
the integral at V(y) = VG*-Vth and write the corresponding second part of the integral in Eq. 
(7.20) separately, with the number of carriers per unit channel length defined as N' = Ich/qVs, 

where v^ is the saturation velocity, and a approximated by its coherent value, a^oh- We also can 
replace the ratio v(E)/E by 3.5 |io, where |io is the low-field mobility. The last form is an 
approximation in which the two denominators are added, allowing the larger one to prevail 
automatically, but keeping a in the general form given by Eq. (7.7). The middle form, with 2 
terms, allows us to find a theoretical expression 

for the experimental Hooge constant defined by ttexp = [Sy/V^] L'^/Re)!. R is here the channel 
resistance and VQ* =VGS-VT. The experimental values a gxp measured at V^s =5V by Balandin et 

al. [121], are 4.9, 4.2, 11, 16 and 17, in units of 10'^ corresponding to VQ* values of 2, 3, 3.45, 
4.25 and 5 volts respectively. Eq. (7.3) yields in the same conditions the values a^^p shown in 
Table I and Fig. 3 below. The agreement is good, with no fudge factors. 

r2i   r 2, 
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Fig. 3: Comparison of the quantum 1/f first-principles results + with the ex- 
perimental results X of A. Balandin et al., on "Flicker Noise in GaN/AlGaN 
Doped Channel Heterostructure FETs", IEEE-Electron Device Letters 19,475-477 
(1998). 
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B8. Phase Noise in RTDs and in Oscillators Based on Them, up to THz Frequencies 

8.1 Introduction. 

For imaging and remote sensing applications, the pliase noise of the THz generator must 
be minimized. This can be done as part of the optimization process on the basis of a properly 
chosen figure of merit. For this, the present Report provides an analytical phase noise expression 
as a function of the device parameters and operation point. The quantum 1/f theory is used to 
calculate from first principles the 1/f noise present in the device parameters and in the resulting 
system frequency from resonant tunneling diodes (RTDs), super-electronic lattice devices 
(SLEDs), Gunn devices (TEDs), and transit time diodes. In general, quantum /f fluctuations in 
the dissipative elements lead to a Q"'* dependence of the spectral density of fractional frequency 
fluctuations and of the corresponding phase noise, where Q is the quality factor. 

Fluctuations with a spectral density proportional to 1/f are found in a large number of 
systems in science, technology and everyday life. These fluctuations are known as 1/f noise in 
general. They have first been noticed by Johnson in early amplifiers, have limited the 
performance of vacuum tubes in the thirties and forties, and have later hampered the introduction 
of semiconductor devices. 

The present Section is focused on the general origin of fundamental 1/f noise as a 
universal form of chaos, and on the cause of its ubiquity. It starts with a special case of the 
general 1/f noise phenomenon, the Quantum 1/f Effect (with its conventional and coherent 
contributions) which is as fundamental as time and space. The 1/f fluctuations are a necessary 
consequence of the mathematical homogeneity of the dynamical (or physical) equations 
describing the motion of an arbitrary chaotic or stochastic nonlinear system. A sufficient 
criterion was derived by the author. It indicates if an arbitrary system governed by a given 
system of nonlinear integro-differential equations will exhibit 1/f noise. The criterion was 
applied to several particular systems, and is used to predict the fundamental quantum 1/f effect as 
a special case. 

8.2. Conventional quantum 1/f effect 

This effect''^ is present in any cross section or process rate involving charged particles or 
current carriers. The physical origin of quantum 1/f noise is easy to understand. Consider for 
example Coulomb scattering of current carriers, e.g., electrons on a center of force. The 
scattered electrons reaching a detector at a given angle away from the direction of the incident 
beam are described by DeBroglie waves of a frequency corresponding to their energy. However, 
some of the electrons have lost energy in the scattering process, due to the emission of 
bremsstrahlung. Therefore, part of the outgoing DeBroglie waves is shifted to slightly lower 
frequencies. When we calculate the probability density in the scattered beam, we obtain also 
cross terms, linear both in the part scattered with and without bremsstrahlung. These cross terms 
oscillate with the same frequency as the frequency of the emitted bremsstrahlung photons. The 
emission of photons at all frequencies results therefore in probability density fluctuations at all 
frequencies. The corresponding current density fluctuations are obtained by multiplying the 
probability density fluctuations by the velocity of the scattered current carriers. Finally, these 
current fluctuations present in the scattered beam will be noticed at the detector as low frequency 
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current fluctuations, and will be interpreted as fundamental cross section fluctuations in the 
scattering cross section of the scatterer. While incoming carriers may have been Poisson 
distributed, the scattered beam will exhibit super-Poissonian statistics, or bunching, due to this 
new effect which we may call quantum 1/f effect. The quantum 1/f effect is thus a many-body or 
collective effect, at least a two-particle effect, best described through the two-particle wave 
function and two-particle correlation function. 

Let us estimate the magnitude of the quantum 1/f effect semiclassically by starting with 
the classical (Larmor) formula Iq^a^/Sc^ for the power radiated by a particle of charge q and ac- 
celeration a. The acceleration can be approximated by a delta function a(t) = Av5(t) whose 
Fourier transform Av is constant and is the change in the velocity vector of the particle during 
the almost instantaneous scattering process. The one-sided spectral density of the emitted 
bremsstrahlung power 4q2(Av)2 /Sc^ is therefore also constant. The number 4q2(Av)2/3hfc3 of 
emitted photons per unit frequency interval is obtained by dividing with the energy hf of one 
photon.  The probability amplitude of photon emission [4q(Av)2/ 3hfc3]i/2eiy is given by the 

square root of this photon number spectrum, including also a phase factor e'T. Let V|/ be a repre- 
sentative Schrodinger catalogue wave function of the scattered outgoing charged particles, which 
is a single-particle function, normalized to the actual scattered particle concentration. The beat 
term in the probability density p=l\|/|2 is linear both in this bremsstrahlung amplitude and in the 
non-bremsstrahlung amplitude. Its spectral density will therefore be given by the product of the 
squared probability amplitude of photon emission (proportional to 1/f) with the squared non- 
bremsstrahlung amplitude which is independent of f. The resulting spectral density of fractional 
probability density fluctuations is obtained by dividing with Ivj/I^ and is therefore 

l\l/|-4S|v„|2(f) = 8q2(Av)2/3hfl^Jc3 =      2aA/fl^=j-2Sj(f), (8.1) 

where a = e2/^c = 1/137 is the fine structure constant and aA = 4q2(Av)2/3hc3 is known as the 
infrared exponent in quantum field theory, and is known as quantum 1/f noise co-efficient, or 
Hooge constant, in electrophysics. 

The spectral density of current density fluctuations is obtained by multiplying the prob- 
ability density fluctuation spectrum with the squared velocity of the outgoing particles. When 
we calculate the spectral density of fractional fluctuations in the scattered current j, the outgoing 
velocity simplifies, and therefore Eq. (8.1) also gives the spectrum of current fluctuations Sj(f), 
as indicated above. The quantum 1/f noise contribution of each carrier is independent, and 
therefore the quantum 1/f noise from N carriers is N times larger. However, the current j will 
also be N times larger, and therefore in Eq. (8.1) a factor N was included in the denominator for 
the case in which the cross section fluctuation is observed on N carriers simultaneously. 

The fundamental fluctuations of cross sections and process rates are reflected in various 
kinetic coefficients in condensed matter, such as the mobility \i and the diffusion constant D, the 
surface and bulk recombination speeds s, and recombination times x, the rate of tunneling jj and 
the thermal diffusivity in semiconductors. Therefore, the spectral density of fractional 
fluctuations in all these coefficients is given also by Eq. (8.1). 

When we apply Eq. (8.1) to a certain device, we first need to find out which are the cross 
sections a or process rates which limit the current I through the device, or which determine any 
other device parameter P.   Second, we have to determine both the velocity change Av of the 
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scattered carriers and the number N of carriers simultaneously used to test each of these cross 
sections or rates. Then Eq. (8.1) provides the spectral density of quantum 1/f cross section or 
rate fluctuations. These spectral densities are multiplied by the squared partial derivative 
(9l/3a)2 of the current, or of the device parameter P of interest, to obtain the spectral density of 
fractional device noise contributions from the cross sections and rates considered. After doing 
this with all cross sections and process rates, we add the results and bring (factor out) the fine 
structure constant a as a common factor in front. This yields excellent agreement with the 
experiment in a large variety of samples, devices and physical systems. 

Eq. (8.1) was derived in second quantization, using the commutation rules for boson field 
operators. For fermions one repeats the calculation replacing in the derivation the commutators 
of field operators by anticommutators, which yields'-^ 

p-2Sp(f) =j-2Sj(f) =a-2Sa(f) =2aA/f(N-l) (8.2) 

This causes no difficulties, since N>2 for particle correlations to be defined, and is practically the 
same as Eq. (8.1), since usually N»l. Eqs. (8.1) and (8.2) suggest a new notion of physical 
cross sections and process rates which contain 1/f noise, and express a fundamental law of 
physics, important in most high-technology applications. 

We turn now to the connection to the coherent Quantum 1/f Effect, essentially caused by 
the uncertainty of the electron mass, by the coherent state of the field of the electron. The coher- 
ent state has an uncertain energy. The coherent state in a conductor or semiconductor sample is 
the result of the experimental efforts directed towards establishing a steady and constant current, 
and is therefore the state defined by the collective motion, i.e. by the drift of the current carriers. 
It is expressed in the Hamiltonian by the magnetic energy E^^^, per unit length, of the current 
carried by the sample. In very small samples or electronic devices, this magnetic energy 

E^ = J(B2/87c)d3x = [nevS/c]2ln(R/r) (8.3) 

is much smaller than the total kinetic energy E|^ of the drift motion of the individual carriers 

Ek = Zimiv2/2 = nSmv2/2 = E^/s. (8.4) 

Here we have introduced the magnetic field B, the carrier concentration n, the cross sectional 
area S and radius r of the cylindrical sample (e.g., a current carrying wire), the radius R of the 
electric circuit, and the "coherece ratio" 

s=Em/Ek =2ne2s/mc2ln(R/r) =2e2N7mc2, (8.5) 

where N' =nS is the number of carriers per unit length of the sample and the natural logarithm 
ln(R/r) has been approximated by one in the last form. We expect the observed spectral density 
of the mobility fluctuations to be given by a relation of the form 

(l/^2)S^(f)=[I/(l+s)][2aA/fN]+[s/(l+s)][2a/TCfN] (8.6) 

which can be interpreted as an expression of the effective Hooge constant if the number N of 
carriers in the (homogeneous) sample is brought to the numerator of the left hand side.  In this 
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equation aA=2a(Av/c)2/37i; is the usual nonrelativistic expression of the infrared exponent, 
present in the familiar form of the conventional quantum 1/f effect [1]-[10]. This equation is 
limited to quantum 1/f mobility (or diffusion) fluctuations, and does not include the quantum 1/f 
noise in the surface and bulk recombination cross sections, in the surface and bulk trapping 
centers, in tunneling and injection processes, in emission or in transitions between two solids. 

Note that the coherence ratio s introduced here equals the unity for the critical value N' = 
N" = 2.10^2/cni., e.g. for a cross section S = 2-10"4 cm^ of the sample when n = 10^^. For small 
samples with N'«N" only the first term survives, while for N'>N" the second term in Eq. (8.6) is 
dominant. 

8.3 1/f Fluctuations in RTDs 

Resonant tunneling diodes have been proposed as generators of THz oscillations and 
radiation. They consist of two potential barriers enclosing a quantum well. Electrons 
penetrating the potential barriers by tunneling are controlled by the quasistationary energy levels 
defined by the penetrating the potential barriers by tunneling are controlled by the 
quasistationary energy levels defined by the potential well. If their energy is close to the first 
energy level in the well, resonance occurs, and a peak Ip of the current through the diode occurs. 
This corresponds to an applied bias voltage Vp. If, however, the applied voltage increases 
further, only a negligibly small non-resonant current trickle remains at the voltage V=Vv and a 
broad valley is observed in the I/V characteristic. Scattering processes that reduce the energy of 
the carriers to a value close to eVp will always be present, generating a finite current minimum 
Iv at Vy. Between Vp and Vy there is a negative differential conductance 

G=-(Ip-Iv)/(Vv-Vp) (8.7) 
on the I/V curve, that is used to generate oscillations. The 1/f noise in ly is given by Eqs. (8.1)- 
(8.2) with 

(Av/c)2=2eVy/m. (8.8) 
Taking for instance Vp=0.4 V, Ip=2.5 lO^A/m^, Vy=0.6 V, Iy=4 10^ A/m2, we obtain with 
meff=0.068 mo, 

NIv-2Si,(f) =2aA/f =7.4/0.068 10-9 =1.3 IQ-V (8.9) 
N is given by 

N=tly/e, (8.10) 
where % is the lifetime of the carriers. With a cross-sectional area of 10'^ cm^ and X=10-10^ we 
obtain N= 2.5 10^. 

Finally, the quantum 1/f frequency fluctuations can be obtained from the formula 

S6oy„=(l/4QXG/G (8.11) 

which is derived in Sec. V below. This finally yields with Eq. (8.1) 

Ssc^^o =(l/4Q*)(4a/37t)(2eVv/mc^) (8.12) 

for the fractional frequency fluctuation spectrum exhibited by the RTD if included in an RF 
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circuit of quality factor Q. 

8.4 Appendix: frequency and phase fluctuations from 1/f noise in dissipation 

Resonant systems can be described as a harmonic oscillator with losses 

dx/dt + ydx/dt + cOo^x = F(t). (8.13) 

The quantum 1/f fluctuations are present in the loss coefficient y.   They are given by an 
expression of the form 

S5y//f) = A/f, (8.14) 

where A is a quantum 1/f coefficient characterizing the elementary loss process. 
The resonance frequency is given by 

0)r'=C0o2 + Y2. (8.15) 

The quantum 1/f fluctuations in the resonance frequency are given by cOrScOr = -lySy, or 

5co,/(o, =-2(y/a),)2&Y/Y = -(l/2Q2)(8y/y), (8.16) 

where Q=0)J2y is the quality factor.  Squaring, averaging and particularizing Eq. (8.16) for the 
unit frequency interval, we obtain the Q"* law 

S/f) =<(6coM)'>f =( l/4Q4)<(&y/y)^>f = A/4fQ4, (8.17) 

where y is the fractional frequency fluctuation Sco/cOr.   This law is also applicable to quartz 
resonators, where it was first introduced [14] in 1978. The phase noise is obtained from 

S(j)(f) = (C0r/27tf)2Sy(f), or L(f) = (l/2)S(j)(f). (8.18) 

two-sided.  The examples in the last two sections show how the phase noise is to be found in 
other solid state sources of THz radiation. 

B9. Quantum 1/F Effect in Biological and Chemical Piezoelectric Sensors 

Piezoelectric sensors used for the detection of chemical agents and for electronic nose 
instruments are based on BAW and SAW resonators. They are also useful in the detection of 
biological agents, and can be specific, particularly if the sensitive surface is activated with the 
right antigen. 

The BAW resonators are used for instance in the "quartz crystal microbalance" (QCM). This 
is usually a polymer-coated resonating quartz disk, a few mm in diameter, with smaller diameter 
metal electrodes on each side and with quality factor Q. The resonance frequency is usually in 
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the 10-30 MHz range. Absorption of gas molecules with mass 5m on the surface of the polymer 
coating gets detected by a reduction of the resonance frequency of the quartz disk, subject also to 
fundamental quantum 1/f frequency fluctuations. The quantum 1/f limit of detection is given by 
the quantum 1/f formula for quartz resonators. To optimize the device we must avoid closeness 
of the crystal volume to the phonon coherence length which corresponds to the maximum error 
and minimal sensitivity situation. Differential measurements that include a reference resonator 
without polymer coating can effectively eliminate temperature fluctuations, power suply 
instability, etc. Adsorbed masses below the pg range can be detected. 

Similarily, SAW resonators are used at about ten times higher frequencies in small 
sensors that operate best with sizes larger than the phonon coherence length. The discussion is 
similar, but applied to the surface and surface waves. 

9.1. Introduction: application of the conventional quantum 1/f effect, a new aspect of 
quantum mechanics 

According to the quantum 1/f effect, quantum-mechanical cross sections o and process 

rates T are considered to be just the expectation values of the physical quantities a and F, that 

also contain the quantum 1/f fluctuations. Therefore, 

Sg^^^(f) = Sgj^^^Cf) = (4a/37if)(Av/c)' = 4a(AP )VSTcfe'c' (9.1) 

Here a = (l/47i;eo)(27Ce2/hc) = 1/137 is Sommerfeld's fine structure constant, a 
dimensionless universal constant constructed from Planck's constant, the charge e of the electron, 
and the speed of light c 

Phonon scattering in the resonator crystal was long suspected to limit the short- and medium- 
term frequency stability in all crystal resonators [124]. Phonon scattering can occur on other 
phonons (particularly at higher temperatures) or on crystal defects (favored by default at low 
temperatures). In both cases this process is shown to yield a 1/f spectrum of resonator frequency 
fluctuations through the conventional Quantum 1/f Effect. As was first shown on this basis with 
the help of a simple harmonic oscillator model [14], bulk acoustic wave (BAW) and surface 

acoustic wave (SAW) quartz resonators ought to have a Q"^ dependence of their FM power 
spectrum.   This has been experimentally verified by Gagnepain and Uebersfeld for BAW 

resonators   [36] when they noticed their 1/Q4-4 law, and by Parker for the SAW case [37]. 

Although the quantum 1/f effect provided the historical basis for the derivation of the Q"4 law 
[14] as being caused by fluctuations in the dissipation rate of the quartz resonator, the exact 
mechanism through which the quantum 1/f effect modulates the dissipation rate remained 
unknown from 1978 to 1991. 

Finally, the bridge directly connecting 1/f noise in frequency standards to the quantum 1/f 
effect was discovered [38]-[40], yielding simple quantum 1/f engineering formulas. In the 
present Section, this thorough understanding and knowledge is used to calculate the 
fundamental sensitivity limits of quartz resonator sensors used for the detection of biological 
and chemical agents. 
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Here is how it works. The rate T of phonon-interactions which remove phonons from the 
main quartz sensor's resonator mode is modulated by the quantum 1/f effect, therefore exhibiting 
observable (macroscopic) quantum fluctuations, while its expectation value remains constant. 
Indeed, whenever a phonon is removed from the main resonator mode, the time-derivative of the 

polarization vector of the quartz crystal dP/dt=P is suddenly affected, suffering a step-like 
• 

modification as a function of time. From Maxwell's equations we know, however, that P is 
added to the current J and that such a modification of the current causes radiation. Solving 
Maxwell's equations we find that as a result of the phonon removal there is a constant energy of 

(l/47t£o)^(AP j2/3c3 radiated away per unit frequency, interval, i.e. per Hertz at any frequency f. 
Dividing this result by the energy of a photon hf, we find that there is thus a probability of 

2a(AP )2/37tfe2c2 for the emission (radiation) of a bremsstrahlung photon of frequency f. SI 
units are used here, while Gaussian units were used in [40]. 

Since there is a probability of 2a(AP )^l'infe^c^ « 1 for the emission of a bremsstrahlung 
photon of frequency f, the Quartz crystal suffers a reaction, or a recoil in its quantum state. This 
causes the phonon-emission rate T to perform quantum oscillations with frequency f and with 
two-sided spectral density S' of fractional fluctuations given by the same expression, S'§r/r(f) = 

2a(AP )2/37tfe2c2. This is here the expression of the quantum 1/f effect. The one-sided 
spectrum is thus, as was mentioned in the last form of Eq. (9.1) 

S6r/r(f) = 4a(AP )2/37i:fe2c2. (9.2) 

This means that any radiation caused or implied by a quantum transition from one state to 
another comes with a price. It reacts back on the system, causing the rate of that transition to be 
modulated by exhibiting observable macroscopic quantum fluctuations. These have a spectral 
density of fractional rate fluctuations identical to the photon-emission probability accompanying 
the transition considered. No knowledge of quantum mechanics is therefore needed in order to 
apply the quantum 1/f effect. One has to divide the energy radiated by the energy hf of one 
photon of frequency f. This is based just the reality of Planck's constant h and Planck's relation 
between photon energy and frequency. Knowledge of electrodynamics is needed, however, in 
order to calculate the energy radiated in a transition. 

The reader interested in a basic understanding of the quantum 1/f effect will find a most 
accessible description at the end of p. 8 and beginning of p. 9 in [54]. That description considers 
scattering of electrons as an example of transition which emits radiation and suffers a quantum 
1/f modulation of its rate, rather than considering scattering of phonons, which, as we believe, is 
most important in crystal resonators. All that is involved in that derivation is the notion of 
DeBroglie wave associated to a particle, or the notion of wave function. Old quantum mechanics 
notions are thus sufficient for a basic understanding of the recoil, or energy-loss mechanism, of 
the quantum 1/f effect (Ql/fE). For a practical application of the Ql/fE, however, classical 
physics is sufficient. 
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9.2. Quartz crystal microbalances 

Piezoelectric sensors are: 
--Used for the detection of chemical agents and for electronic nose instruments; based on 

BAW and SAW resonators. 
-Useful in the detection of biological agents, and can be specific, particularly if the 

sensitive surface is activated through deposition of a layer of the right specific antigen, that 
"attracts" a certain bacterium, microbe, or virus. The antigens are produced by organisms in 
order to fight, or bind, the pathogenic agents mentioned here. 

Piezoelectric sensors are of 2 kinds: bulk acoustic wave (BAW) resonators-based, and 
surface acoustic wave (SAW) resonator based. The former are used for instance in the "quartz 
crystal microbalance" (QCM). This is usually a polymer-coated resonating quartz disk, a few 
mm in diameter, with smaller diameter metal electrodes on each side and with quality factor Q. 
Their resonance frequency is usually in the 10-30 MHz range, and 10 times higher for SAWs. 

These sensors are based on the adsorption of many gas molecules (with total mass 8m) on 
the surface of the polymer coating. This gets detected by a reduction 

y=5v/v=-K5m/m (9.3) 

of the resonance frequency of the quartz disk. However, the latter is also subject to fundamental 
frequency fluctuations. Here K is a constant of proportionality. The quantum 1/f limit of 
detection is given by 

^S5^Jf)=Sy(f), (9.4) 

where Sy(f) is given by formulas [14], [38]-[40], [54] 

Sy(f) = (3'V/fQ\ for V<e', (9.5) 
and 

S(f) = P'eVfVQ', for V>e-\ (9.6) 

as we show below. Here e^ is the phonon coherence volume, first introduced empirically by T. 
Parker et. al. as a noise coherence volume. 

To optimize the device we must avoid closeness of V with e which corresponds to the 
maximum error and minimal sensitivity situation. (See the general graph in Fig. 4 belowj 

To reduce the measurement errors,one uses differential measurements, that include a 
reference resonator without polymer coating and subtract its frequency changes. This can 
effectively eliminate the destabilizing effect of temperature fluctuations, power supply 
instability, etc.  This way, adsorbed masses below the pg=10'^g range can be detected. 

Calculation of the Quantum 1/f Sensitivity Limit 

With <(0>=10"Vs being the average circular frequency of a thermal phonon interacting 
with phonons in the main resonator mode, with n=kT/<(ii>h being the average number of 
phonons in that typical thermal phonon mode, and with T=300K, we obtain approximately for 
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the quantum 1/f noise coefficient P' in Eqs 5-6 (see below) 

p- = (NA^)a^<co>/12n7i:g%ic^= (l/137)(10-27 10^)V 12kT7t 10-^^9 10^°= 1. (9.7) 

For V<8\ his is in good agreement with the known data for quartz resonators of very high Q as 
experimental results obtained by F.L. Walls et al., T. Parker et al., J.R. Vig et al., as well as other 
research groups indicate. Here m is the reduced mass of the elementary oscillating dipoles, N 
their number in the quartz resonator volume, and g a polarization constant of the order of the 
unity. 

9.3. Saw sensors. 

The same way, SAW resonators are used at about higher frequencies in sensors that 
operate in the V>8^ regime. The discussion is similar, but applied to the surface and surface 
acoustic waves. In that case the coherence length of the phonons is smaller than the crystal size, 
and therefore we expect several incoherent noise contributions from various regions of the 
crystal. 

a. Spatial incoherence of phonon loss rate fluctuations in low and intermediate Q 
resonators. 
Considering the v-Wlz^ independently fluctuating regions similar, we replace Eq. (8.1) by 

V 

Sgp^p(f)=E<(Sri/r)2>f     =v-i<(5ri/ri)2>f =4a(APi )2/3jifve2c2. (9.8) 
i=l 

Here we assumed that r=vri and that <(5ri/ri)2>f = vSgr/r(f) is independent of i. With v=V/e we 
finally obtain 

S5r/Kf) = 4a83(APi )2/37tfVe2c2 = 4ae2(APi )2/37cfAe2c2. (9.9) 

Note that the phonon mean free path is about 40 A for bulk wave phonons in quartz at 
room temperature and 500 A at liquid nitrogen temperatures. This approximates the phonon 
coherence length e very well. For SAW phonons the corresponding coherence length values 
may be 4 times lower due to the smaller velocity of the surface wave and due to its stronger 
scattering. The wave is localized within about two coherence lengths e from the surface. 
Therefore, in the incoherent regime V = 2eA is a good approximation. Consequently, we expect 
an increase of S5(o/to(f) proportional with 1/A when the resonant area A is decreased, down to 
very small areas of the order of e^. 
b. Coherent Case ofHigh-0 Resonators 

From Eq. (9.2) we obtain 

S5r/r(f) = 4a(AP )2/37cfe2c2; (9.10) 

The vibrational energy of the crystal can be written in the form 

W = n /z <0)> = 2(Nm/2)(dx/dt)2 =(Nm/e2)(edx/dt)2=(m/Ne2)e2(Pi )2; (9.12) 
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Fig. 4: Quantum 1/f Noise in BAW & SAW Resonators Yields Bio/Chem Sensitivity Limit 
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The factor two includes the potential energy contribution. Here m is the reduced mass of 
the elementary oscillating dipoles, e their charge, g a polarization constant of the order of the 
unity, and N their number in the resonator. Applying a variation An=l we get 

•       • •     • 

An/n=2IAP l/l(P I, orAP =P /2n. (9.13) 

Solving Eq. (9.12) forP and substituting into (9.13), we obtain 

lAP l = (N^<0)>/n)i/2(e/2g). (9.14) 

Substituting AP   into Eq. (9.2), we get 

r2S^(f)=Na ti <co>/3n7imc2fg2=A/f. (9.15) 

Using the harmonic oscillator relation 

0)2 = 0)o2 -2r2, (joSco = -2r5r; (9.16) 

between resonance frequency O) and dissipation F, we obtain 
S5co/co(f) = (l/4Q4)S5Y/7(f) = (l/4Q4)(A/f) = Na ^<C0>/12n7Cmc2fg2Q4; (9.17) 

S(f) = P'V/fQ4, for V<83, (9.18) 
and 

S(f) = P'eVfVQ', for V>e\ (9.19) 
As was stated in Eqs. (9.5)-(9.6) above.   Here, with an intermediary value <(0>=10^/s, with 

n=kT/^<a)>, T=300K and kT=4 •10-21 j^ ^ve get 

p' =(NA^)a ^<a)>/12n7Cg2mc2 = 1022(1/137)( 10-2710^)2/12kT7U 10-27 9 1020 =1      (9 20) 

as stated above in Eq. (9.7). 

c. The Case of Defect Scattering: a two-phonon process. 

A phonon from the main resonator mode scatters on a defect and a phonon of comparable 
frequency emerges into another mode with much smaller phonon occupation number 
n(o=kT/ h 0). In this case we have to replace <0)> by O) and n<co> with Uco, which gives a P-value 
which is (<co>/(D)2 smaller, i.e. lO^-lO^ times smaller. 

d. The General Case 

With r=r' + F", we obtain for the combined phonon and defect scattering case, in 
general, 

p=p'[F'2 + (<(O>/CD)2F"2]/F2. (9.21) 
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Although the defect scattering term is small at room temperature, it may become dominant at 
low temperatures, when the phonon scattering rate T' becomes much smaller than the defect 
scattering rate T". 

Since the 1/f noise level depends on the active volume, in the coherent regime one 
should use the lowest overtone and smallest diameter consistent with other circuit parameters. In 
the incoherent (low Q) case the opposite should be considered. 

9.4. Silicon MEMS resonator sensors 

The classical forms of noise present in the frequency of microelectromechanical systems 
(MEMS) resonators, have been recently investigated and described in detail [123]. The present 
Section extends this investigation to 1/f noise. That is of fundamental nature in MEMS 
resonators, and is given by the universal quantum 1/f effect, with some similarities to the case of 
quartz resonators. When the environmental fluctuations are reduced, e.g., by temperature 
stabilization, elimination of molecular adsorption, etc., the fundamental limitation introduced by 
the quantum 1/f effect becomes visible as a flicker floor in the time-domain noise representation. 
Being ultimately based on Heisenberg's uncertainty relations, this effect defines the quantum 
limit achievable at low frequencies, when the classical sources of noise have been sufficiently 
reduced. 

The quantum 1/f effect manifests itself in MEMS resonators through conventional 
quantum 1/f noise. This is a quantum fluctuation present in the quantum mechanical notion of 
"physical cross section" a and "physical process rate" F, caused by the reaction of the 
electromagnetic field on the charged particle that emitted it, or in general, on the system that 
emitted it. It is given by the spectral density of fractional fluctuations, as in Eq. (8.1), 

S60/0(O =S5r/r(0 = (4a/37if)(Av/c)2, (9.22) 

where Av is the velocity vector change of the current carriers of charge e. As shown in the case 
of BAW and SAW quartz resonators, of ferroelectrics and of antennas, the rate T of interest for 
the calculation of 1/f resonance frequency fluctuations in Si MEMS is the rate of phonon 
removal from the main mechanical oscillation mode of the oscillating bar. As in the above- 
mentioned cases, our mechanism of quantum 1/f noise generation is based on bremsstrahlung 
from electric or magnetic dipoles, rather than from scattering of individual carriers. 

The MEMS resonators are shaped as a bar of micro- or nanometric dimensions incased 
(fixed) at both ends, and subject to bending strain. They are driven by an AC current I flowing 
in a very thin straight wire attached along the bar, in the presence of a strong constant magnetic 
field B, perpendicular to it. Alternatively, they could be driven electrostatically, or capacitively, 
by using the wire, or a metallic thin sheet deposited along that side of the bar, as one of the two 
"plates" of a capacitor. An AC voltage would then be applied to the capacitor at the resonance 
frequency. Note that in fact there is nothing resembling a bar in the actual MEMS devices. In 
practice there are comb resonators, "free-free" resonators, and probably others too (J. Vig., 
private communication). Details are found, e.g., in Clark Nguyen's publications, [126]-[131]. 
For simplicity, we continue to refer here to the idealized case of a bar, using effective dimensions 
that correspond to the actual geometry at hand. 

The approach developed for the case of resonators based on quartz and other 
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piezoelectric substances can not be applied to Si MEMS resonators, because silicon is not 
piezoelectric. It could only be applied to piezoelectric MEMS resonators, using, for instance, 
quartz. We therefore develop a new approach in this paper, applicable to the new, driven MEMS 
resonators.   We consider below both the case of magnetic excitation and the capacitive case. 

A. Magnetic Excitation of a Resonant Silicon MEMS Bar 

The elementary act of dissipation is the absorption of one phonon from the main 
resonator mode. This can happen either through three photon processes, dominant at higher 
temperatures, or through two processes, dominant at low temperatures, in the presence of crystal 
defects of various types. In both cases this elementary act has a spontaneous "bremsstrahlung 
photon emission (probability) amplitude" associated with it, because it causes a sudden reduction 

Am of the rate dm/dt = m of change of the magnetic dipole moment of the system. The 
system is defined here to include the current carrying circuit, the applied magnetic field B with 
the agency generating it, plus the oscillating bar, i.e., the MEMS. The rate in of change of the 
magnetic dipole moment of the system is caused by bending oscillations of the bar with the 
current-carrying wire attached to its side, cutting the lines of force of B while it moves. 

The conventional quantum 1/f noise in the rate of dissipation T is obtained in the CGS 

Gaussian system by simply replacing the current change eAv with Am 

Ssr/Kf) = (4a/37if)(Am /ec)2. (9.23) 

To calculate the change Am  , we note that (ih  )2 is proportional to the transversal vibration 

speed of the bar and to the total mechanical energy W=(n+l/2) /ico in the main oscillation mode 
of the resonator, 

(n+l/2)^0) = K(m )2/2. (9.24) 

Here K is a coefficient of proportionality easy to calculate. When a phonon is removed from the 
main MEMS resonator mode, the energy in Eq. (9.24) is reduced by the amount 

^co = Km Am . (9.25) 

This yields 

(Aril )2=(^o)/iah )2 = ;zco/(2n+l)K. (9.26) 

Eq. (9.23) becomes now 

S5r/r(0 =(4(x/37cO ^ co/(2n+l)K(ec)2 =4co/37tf(2n+l)Kc3 =2 h 0)2/37tfWKc3. (9.27) 

This quantum 1/f noise, proportional to the resonance frequency and inversely proportional to the 
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number of quanta in the main oscillation mode, decreases when the energy in the main resonator 
mode increases. This is characteristic of quantum mechanical spontaneous emission noise in 
general. With {O=10i0rad/sec and W=0.01 erg we obtain about 10-27/fK. 

To estimate the coefficient K, we write the mechanical energy, including both the equally 
contributing kinetic and elastic components, in the form 

W = Meffv2/2, (9.28) 

where Meff is a mass close to the mass M of the bar. Noting that the rate of change in the 
magnetic moment of the system, caused by the motion of the bar of length L with speed v, is 

m = nSdI/dt +nIdS/dt = nSBLv/cL= nSBLvc/2jln(R/as)ds, (9.29) 

we find 

K = Meffv2/m   2 = Meff[CL/SBL]2. (9.30) 

Here we introduced the area S and the inductance L of the AC circuit. We also introduced the 
approximate expression of L in terms of an integral around the whole circuit. It involves the 
radius as of the cross section of the electric wire used for the AC circuit, as a function of the 
length parameter s along the wire. We neglected the term with IdS/dt, because Sco»Lv. We can 

approximate S/2J ln(R/as)ds with R/<ln(R/as)>, where R=S/l is the circuit area S divided by its 

length I. This way we obtain, e.g., R'=s/2jln(R/as)ds = 300 cm as an order of magnitude, and 
c/R'=10^Hz. With these notations and approximations Eq. (9.30) becomes 

K = Meff[c/R'BL]2. (9.31) 

With Meff=10-"g, L=10-3cm and B=104Gauss, we obtain K=103cm-i. Substituting into Eq. 
(9.6), we obtain 

Sar/KO =(4ot/37tf)(R'BL)2 ^a)/(2n+l)Meffe2c4 =4rR'BL)2(o/37tf(2n+1 )M.ffc5 

=2(R'BL)2^a)2/3JtfWMeffc5. (9.32) 

For instance, with the above numerical example, with aj=10"s"', and with W=10-^ erg, we 
obtain lO-22/f. 

B. Electrostatic Excitation of a Resonant Silicon Bar 

The elementary act of dissipation is again the absorption of one phonon from the main 
resonator mode. This time, the quantum 1/f noise is caused by the sudden change in the rate of 
change of the dipole moment p of the capacitor, when the phonon is absorbed. Replacing the 
current change eAv this time with Ap    , we obtain 

Sg^^^f) = 4a(Ap )V37tfe2c2. (9.33) 
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To calculate the change Ap , we note that (p )2 is proportional to the transversal vibration 
speed of the bar and to the total mechanical energy W=(n+l/2)h 0) in the main oscillation mode 
of the resonator, 

(n+l/2)^co = K'(p )2/2. (9.34) 

Here K' is a coefficient of proportionality easy to calculate. When a phonon is removed from the 
main MEMS resonator mode, the energy in Eq. (9.34) is reduced by the amount 

;Z(D = K'p Ap . (9.35) 

This yields 

(Ap )2 = (^o)/K'p )2 = ^co/(2n+l)K'. (9.36) 

Eq. (9.32) becomes now 

Ssr/Kfi =(4(x/3Kf) ^(0/(2n+l)K'(ec)2 =4co/37cf(2n+l)K'c3 =2h    co2/37cfWK'c3.       (9.37) 

This quantum 1/f noise, proportional to the resonance frequency and inversely proportional to the 
number of quanta in the main oscillation mode, decreases when the energy in the main resonator 
mode increases. This is characteristic of quantum mechanical spontaneous emission noise in 
general. With 03=10''rad/sec and W=10"^ erg we obtain about lO'^/fK'. 

To estimate the coefficient K', we write again the mechanical energy in the form 

W = Meffv2/2. (9.38) 

Noting that the rate of change in the electric dipole moment of the system, caused by the motion 
of the bar of linear charge density q is 

p =qLv, (9.39) 
we find 

K' = Meffv2/p  2 = Meff/q2L2. (9.40) 

With Meff=10-"g, L=10-3cm and q=0.6 esu/cm, we obtain K'=2.7 10"5s2cm-3. Substituting into 
Eq. (9.15), we obtain 

Ssr/Kf) = (4a/37Cf)q2L2 ;Z(o/(2n+l)MefKec)2 =4q2L2o)/37tf(2n+1 )M.f-<c3 

= 2q2L2 h C02/37lfWMeffC3. (9.41) 
For instance, with the above numerical example, with co=10''s-', and with W=10-^ erg, we 
obtain 3.6 10-15/f. 

Finally, the quantum 1/f frequency fluctuations can be obtained from the formula 

S5ay(o=(l/4Q'^S6r/r (9.42) 
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which is derived in Sec. IV below. This finally yields with Eq. (9.41) 

S8oyco=(l/2QVL^ ^ C02/37CfWMeffc3. (9.43) 

for the electtiostatic capaduvdy coupled case, and, fiom Eq. (9.31), 

Ssoyco =(1/2Q')(R'BL)2 h a)2/37ifWMeffc5 (9.4^) 

for the fractional frequency fluctuation spectrum exhibited by the magnetically driven MEMS 
resonator. The numerical estimated show that the electrostatically driven resonator is much 
noisier than the magnetically driven one, when it comes to 1/f noise. This is because the 
magnetic dipole radiation is much weaker, being of higher order than the electric dipole 
radiation. 

9.5. Conclusions 

1- The quantum 1/f limit of BAW and SAW QCMs is given by simple formulas allowing 
calculation of the ultimate mass and concentration threshold of detection. 
2- The devices are optimized by avoiding the 'V=^ region. 
3- The magnetic excitation sensors based on MEMS resonators have a lower 1/f noise limit. 
Than the electrostatically excited ones. 
4- The quantum 1/f theory and engineering formulas developed here allow for the optimization 
of the design and implementation of novel, completely monolithic integrated MEMS resonators 
and sensors. 

The author thanks Dr. J.R. Vig for suggesting the MEMS 1/f problem and for his advice 
in many ways. 

BIO. Coherent Quantum 1/f Effect In Cavity Resonators 

Electromagnetic Helmholtz Resonators are oscillant systems that also include dissipative 
elements. If they are oscillating in a well defined mode, they are described by a simple harmonic 
oscillator equation with dissipative coefficient y and resonance frequency co =27iv, 

a\2=t0b2+f. (10.1) 

Differentiating this expression, and dividing by 2co 2, we get the spectral density of fractional 
fluctuations 

S6O)/0) = (1/4Q4)SAY/Y. (10.2) 

The physical current density j, and the resistivity p, must exhibit fundamental quantum 1/f noise 
[125] given by 
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S5j/j(f) = Ssp/p(f)=M,   with     A=2a/7tN. (10.3) 

Here a is the fine structure constant This is the coherent quantum 1/f effect [125] that is applicable, 
because the number of carriers in any "salami slice" is not smaller than 1. That slice is defined 
to be perpendicular to the direction of the current density vector in the wall of the resonator. Its 
thickness equals twice the classical radius of the electron eVmcl= 2.8 10"'^ cm. 

The spectral density of fractional fluctuations is thus the same for the conductivity a and 
electron mobility [i in the resonator walls of area A enclosing the volume V. The coherent 
quantum 1/f formula was used for the quantum 1/f coefficient A. Using N= noA6, for the effective 
numba of earners that is defining the notion of current, of y.aand |X, with no=N/V, and a well-known 

expression 
Q=kV/A5 = 0/27; (10.4) 

(k==l is geometrical factor) of the quality factcr Q in terms of the penetration depth 5, we get the spectral 
density of fiactional fluctuations 

S5v/v =a/27cfkQ3Vno. (10.5) 

For instance, with v=100GHz, Q=104, V=0.03 cm^, and no=51022 cm-3 we obtain S5v/v ==10 

/f. This is a rather small quantum limit that may be hard to observe due to other fluctuations 
present, unless f is very small. 

Bll. Generalization of the Leeson Formula 

The phase noise L(f„) of oscillators is described by the empirical Leeson formula [132], 
with a second term that was introduced by the author based on the quantum 1/f theory [14] under 
this Grant: 

L(/J = 101og[l((-^)^ + l)(f+ l)(^) + ^-i^5^,J     (L-HFormula)(ll.l) 

Here Q, is the loaded quality factor, fo is the resonance frequency, f^ is the flicker corner fre- 
quency of the device generating the oscillations, y is the dissipation rate that causes the osilla- 
tor's free oscillations to attenuate, and 85^,^ is the spectral density of fractional fluctuations in the 
dissipation rate y. P^ is the amplifier's input signal power, and F is its noise figure. The bracket 
[ ] in Eq. (11.1) is S^2. This generalization represents a major breakthrough of wide scientific 
and technical application, that has been realized only recently, and that is formulated here for the 
first time in this form. This is the basis of our ultra-low phase noise effort in MURI #17/2001. 

When he met the present author/PI at the 2001 Frequency Control Symposium in Seattle 
in June 2001, David B. Leeson enthusiastically embraced this generalization (Leeson: private 
communication). It is particularly important for high-tech, high-stability oscillators that are close 
to their quantum limit. It contributes the most important term in that case. 

In modern military communication, radar and electronic warfare (EW) systems, the 
complex frequency, bandwidth and signal-to-noise (S/N) ratio requirements make the direct 
conversion (or homodyne) transceiver architecture superior to the traditional heterodyne RF 
transceiver-based approach. However, because it converts signals directly to (or from) the 
baseband, the direct conversion transceiver demands integrated circuits (and/or semiconductor 
devices) with extremely low 1/f noise. Additionally, because the gain provided by the LNA and 
the mixer is limited, the down converted signal is very sensitive to 1/f noise of the LNAs, filters 
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and mixers. For example, the 95S-1 direct conversion radio produced by Rockwell Collins 
covers input channels from 30KHz to 2GHz and requires an extremely lov^' noise skirt (-140 
dBc/Hz) near the baseband. The direct transceiver performance is also strongly affected by the 
noise performance and/or the spurs-free-dynamic-range (SFDR) of the subsequent analog-to- 
digital (ADC) and digital-to-analog (DACs) converters, especially when the analog-digital 
interface is placed close to the sensor/antenna for utilizing advanced DSP technologies. To meet 
the signal level variances present in typical SIGINT collection scenarios, a dynamic range of 
approximately 80dB is required. This is compatible with most SIGINT systems with a minimum 
detectable signal of -75 dBm and a maximum signal level of 0 dBm. Current state-of-the art in 
GaAs based ADC technology is limited to 60dB (12-bit) at 1 GHz. This performance is 
constrained by the aperture jitter of the current GaAs HBT technology (about 0.1 psec). The 
aperture jitter is the sample-to-sample variation in aperture delays, which can only be reduced by 
further decreasing the semiconductors 1/f noise. 

On the basis of the LH- formula, from a system designer's perspective, the strategy to 
minimize overall phase noise consists in general of five basic steps, (a) One has to maximize the 
unloaded Q of the elements and the loaded Q of the circuit (Handel Q" law term), and (b) 
Maximize the reactive energy by using the highest possible RF voltage across the resonators. 
Since this is limited by the breakdown voltage, a wide gap device like a GaN FET should be 

used, if possible, (c) One has to select devices with a low corner frequency f^. and use a circuit 
design that minimizes quantum 1/f noise, and (d) Reduce phase perturbations by using high 
impedance devices such as GaN HFETs, where the signal-to-noise-ratio can be made very high. 
Furthermore, high biasing the active device (with feedback techniques) can minimize the 
modulation of the I/O dynamic capacitance. The capacitance modulation causes amplitude-to- 
phase conversion and hence introduces phase noise. Finally, one has to (e) select circuit 
topologies with lowest possible noise figures F, and (f) with the lowest possible quantum 1/f 
fluctuation of the dissipation y present in the resonant system (oscillator). Another important 
factor is understanding the large-signal properties of the devices and circuits, e.g., the noise 
upconversion and the degree to which the overall system noise is determined by the low- 
frequency noise of the device. The high impedance and high breakdown voltage in GaN based 
devices offer unique new opportunities for the design of ultra-low phase noise amplifiers and 
systems. The design concepts will thus be drastically different from those used in the well- 
known GaAs counterparts. 

B12. Quantum 1/f Proximity Effect in Nanotechnology 

12.1 Introduction. 

Electrical currents in nanostructures of any nature exhibit unusual 1/f noise. They are 
usually in the transition region between two radically different components of the fundamental 
quantum 1/f noise effect. This transition region between the coherent and conventional quantum 
1/f effects is described by the relation 

an =(l/l+s)a,o„, + (s/l+s)aeoher = (l/l+s)(4a/37t)(Av/c)^-i-(s/l+s)(2a/7u), (12.1) 
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for the quantum l/f parameter CH, where s is a parameter which governs the transition and 
depends on the concentration n of carriers and on the transversal cross section area Q of the 
quantum wire, conductor, semiconductor, sample or device, perpendicular to the direction of the 
current. Specifically, 

s = 2nQro. (12.2) 

Here ro = eVmc^ is the classical radius of the electron, ro= 2.84 10""cm. Therefore, s is twice the 
number of carriers in a salami slice of thickness equal with the classical diameter of the electron, 
normal to the direction of current flow. The resulting spectral density of fractional quantum l/f 
current fluctuations 5j/j is then given by the quantum l/f coefficient a^ through the relation 

S8^,j(f)=aH/fN. (12.3) 

This resulting total dependence on N shows that although the spectral density S§j/j(f) varies mo- 
notonously when the current-carrying cross section Q is reduced to nanoscale dimensions, there 
is a plateau on which the spectral density remains practically constant, while ttH changes its 
value. This plateau is visible in Fig. 6 on page 44 below. Along that plateau, it is possible to 
reduce the cross section Q (and the number of carriers N) of the device without causing the l/f 
noise to increase. However, according to Eq. (12.3), this implies that in the transition region the 
corresponding quantum l/f coefficient ttH increases when the number of carriers per unit length 
of the device increases, as required by Eq. (12.1). Physically, this corresponds to the coherent 
magnetic interaction between the current carriers. 

The question arises then: How far does one need to physically distance two longitudinal 
halves of the current-carrying sample, mentally separated along the center plane parallel to the 
current flow, in order to preclude the influence of the carriers from either half on the an of those 
in the other half? 

This mutual enhancement of l/f noise in the transition region between the predominantly 
coherent and the mainly conventional variation regions in cross section Q is what we will call 
"Induced l/f Noise", or "Quantum l/f Proximity Effect". 

The effect is proportional to the mutual inductance M12 between the two parallel halves, or 
between two parallel currents at a distance d in general. This is shown in Sec. 12.2 below. The 
interaction between carriers, that is introduced by the magnetic field, causes the coherence 
present in the coherent quantum l/f effect. There is a similarity between coherent quantum l/f 
noise power and magnetic energy, or between conventional quantum l/f noise and the kinetic 
energy of the drift motion. The total magnetic energy is not a sum of the contributions of in- 
dividual carriers, but rather proportional to the square of such a coherent sum, i.e., to the squared 
magnetic field. 

In conclusion, we expect the induced l/f noise effect to vary with the distance d between two 
parallel elements of current proportionally to the mutual induction coefficient. This is 
applicable, e.g., to bundles of doped strands of DNA, used as conductors. 
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12.2 Derivation of the quantum 1/f proximity effect 

Consider now two very long straight conductors of length L, of almost equal circular 
cross sections S, and 82=8,, both with approximate radius of the cross section r, carrying currents 
I, =nev8, and Ij = nev82 and separated by a distance a between their axes. Then the magnetic 
energy in Eq. (8.3) becomes, per unit length, 

E^ =(l/L)l(B'/87U)d'x - [(nevS,/c)+(nev82/c)]'ln(R/r) -2(nevS,/c)(nevS2/c)ln(a/r). (12.4) 

8ubstituting a/r=(R/r)(a/R) in Eq. (12.4), we obtain 

Em = [(nev8,/c)'+(nev82/c)']ln(R/r) +2(nev8,/c)(nev82/c)ln(R/a). (12.5) 

Here R is a practically infinite large cutoff of the order of the radius of the circuit that contains 
the straight conductor of length L. Notice that for a=r, when the two conductors are in contact, 
the second term in Eq. (12.4) is zero and the magnetic energy is the well-known energy of a 
single cylindrical conductor of circular cross section 8 of radius r. On the other hand, for a=R 
the second term can be combined with the first term in Eq. (12.4) to yield simply the sum of the 
energies of the two infinitely separated parallel conductors. The approximation indicated in Eq. 
(12.4) uses the same effective radius r in the argument of the slowly varying logarithm present in 
the first term, as is used for each of the conductors separately. Note, however, that using 2r or 
rV2 would ignore the additional magnetic energy caused by currents present inside the 2r or rV2 
radius, close to r, where the 2 conductors touch each other. That would severely under-estimate 
the magnetic energy. 

The second term in Eq. (12.4) is the interaction energy of the two conductors, given by 
minus the work W„ done by us in the separation process against the electrodynamical attraction 
force between the conductors, 

W„ = jFda = J(2I,l2/ac^)da, (12,6) 

when the distance is increased from r to a. The integral from r to a in Eq. (12.5) yields the 
second term in Eq. (12.4) with opposite sign. The negative sign appears because in the 
separation process, the induced-Faraday-emf work W^ done by the system of energy W=IIi<l>i/2 
on the agency (e.g. a battery) to keep the currents constant is twice as large than W^,, and of 
opposite sign. In fact, while we are doing the separation work W„ on the system of two 
conductors, the system, in turn, must do on the battery twice the work W^ performed by us on 
itself, for the benefit of the agency that keeps the current constant in the two conductors. Indeed, 
denoting the fluxes through the circuits to which the two parallel conductors are belonging with 
O, and (j)2 respectively, 

dW(I=const) =EIidO/2; dWb(I=const) =S lidO;; dW JI=const) =-SIidO/2       (12.7) 

with the sum Z runs over i=l and 2, we obtain for the differential dW of the energy W of the 
system of two conductors in the form 
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dW=dW„+dWb=-dW„. (12.8) 

This explains the minus sign in Eq. (12.4). 
Based on symmetry and Sj^S,, we use Eq. (12.5) to write the magnetic energy 

corresponding to the first conductor 

Eml ^ (nevS,/c)'ln(R/r) +(nevS,/c)(nevS2/c)ln(R/a). (12.9) 

To generalize the definition of the parameter s of Eq. (8.5)-(8.6), we divide Eq. (12.9) by 
the kinetic energy of the drift component present in the motion of current carriers in the first 
conductor, per unit length 

Eki = ZmvV2 = nS,mvV2. (12.10) 

This yields 

s = Emi/Ej^i = 2ne'S,/mc'ln(R/r) +2(ne'S2/mc^)ln(R/a), (12.11) 

or 
s = s, + S2{[ln(R/a)]/[ln(R/r)]}, (12.12) 

This form clearly displays the proximity effect in the second term of the expression obtained for 
the s-parameter in the presence of a similar current located at the distance a. 

As we see from Eq. (12.1) and Fig. 6, due to the smallness of oCconv/oc eoher (—10"^ in our 
Example in Fig. 6) the 1/f noise spectral density given by Eq. (12.3) is practically proportional to 
s in the interval 10'^<S<1. This corresponds to the plateau in Fig. 6. What we have proven in 
Eq. (12.12) is that anywhere in this transition region of small to ultrasmall device sizes, the 1/f 
noise power doubles when we simply bring 2 wires or nanodevices closer to each other. When 
we separate them again, a 50% noise reduction can be achieved, by avoiding the proximity 
effect. 

Our result can be easily generalized to arbitrary ratios between the parameters of the two 
wires, wells or devices, such as cross section, carrier concentration, drift velocities, etc. In this 
case the proximity effect will be given by a percentage larger than 100% in the smaller of the 
two wires or devices, and smaller in the larger one. The generalization to any number of 
conductors is also trivial. This effect, based on the quantum theory of 1/f noise, will negatively 
affect the efforts of nanoscale integration, if it is not avoided by quantum 1/f optimization of the 
layout. 

In conclusion, we expect the induced 1/f noise caused by the proximity effect to vary with the 
distance a between two parallel elements of current as shown in Eq. (12.12). This result shows, 
e.g., for bundles of doped strands of DNA, used as conductors, that the 1/f noise will be reduced 
considerably in each strand, if the distance between them is increased. 
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B13. Low-Frequency Noise in Bent Ultrathin Semiconductors 

In ultrathin semiconductor devices, surface scattering can no longer be ignored and 
significantly lowers the mobility of the carriers. This contributes a term in the scattering rate, 
which is proportional to A,/a in first approximation, where a is the thickness of the crystalline 
semiconductor sample. Since umklapp and intervalley scattering are the main limitation on the 
mobility of current carriers in silicon, and since they are affected by the largest conventional 
quantum 1/f effect, we expect a 1/f noise reduction in properly fabricated ultrathin 
semiconductor samples. 

Ultrathin silicon samples and devices are obtained at the Univ. of California Irvine 
Microfabrication Laboratory in the Engineering Gateway building. One of the methods used by 
us involves uniform etching to reduce the thickness of the sample by an order of magnitude. 

To estimate the conventional quantum 1/f effect (CQl/fE) in ultrathin Si devices and 
integrated circuits (IC), we need to also include the effect of the reduction in carrier lifetime x 
due to the surface recombination rate. This increases the 1/f noise in junction devices, because 
the quantum 1/f effect is inversely proportional to the number N of carriers which have 
participated in the generation-recombination-limited current transport through the various p-n 
junctions. This number is, however, given by the GR component of the current I multiplied by 
the lifetime x of the carriers. 

Assuming small samples, the CQl/fE is applicable and is affecting surface scattering 
rates according to the fundamental formula 

S5r/r = (4oc/37c)<(Av/c)2>. (13.1) 

The brackets indicate a statistical average over the parameters of a surface scattering. We obtain 
the 1/f noise power spectrum by substituting a considerably increased thermal velocity for Av, 
because of the surface potential (Vo>0 in n-type) in the presence of an accumulation layer, which 
is not applicable for Vo<0 (depletion in n-type material). However, the case of inversion would 
lead again to a 1/f noise increase in spite of Vo<0, but there is also a carrier identity switch 
which affects the result in this case, due to the difference in effective mass and scattering 
mechanism. 

13.1 Surface scattering and bulk scattering 

The total scattering rate is the sum of surface and bulk scattering rates. Therefore, the 
mobility |i will be determined from the mobility \i\) existent in the absence of surface scattering 
in the bulk material and from the mobility |Xs which would be present in that sample in the 
absence of bulk scattering 

1/H = l/^ib + 1/lts- (13.2) 

The quantum 1/f fluctuations will therefore satisfy the relation 

5n/^2 = 5^ib/^b^ + S^is/^is^- (13.3) 
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Consequently, the CQl/fE spectral density S5|x/p,(f) = <(5|i/|i)2>f satisfies the relation 

S8ji/}i= (^i2/|ib2)<(5^b/|ib)2>f + i\i^/[is^)<id\is/\is)^>f. (13.4) 

For the quantum 1/f noise in the bulk mobility we write 

<(6^lb/^ib)^>f = (4a/37tNf)<(ti Ak/mc)2> = (4a/37uN0(0.75h/amc)2, (13.5) 

where m is the effective mass of the carriers, and the effective Ak was taken to be 0.75 G. Here 
G is the smallest reciprocal lattice vector 2n/a, where a is the lattice constant and h=27tti . 

Finally, a=e^/h c is Sommerfeld's fine structure constant and N is the number of carriers in the 
sample. 

The conventional Ql/fE in the surface-scattering-limited mobility Hs is obtained from Eq. 
(13.1) by substituting 

(Av/c)2 = 6kT/mc2 -i- 2eVo/m. (13.6) 

This yields 

<(5|is/[Xs)2>f = (4(x/37cNf)[6kT/mc2 + 2eVo/mc2], (13.7) 

where e is to be replaced by -e, and m by m' the case of inversion, m and m' being the effective 
masses of the carriers. 

The final expression for the resulting power spectrum of quantum 1/f mobility fluctuation 
is thus 

S5|i/^= Oconv /Nf = (4a/37iNfc2)[(^i/^b)2(0.75h/am)2 

+ (|a/}Xs)2(6kT/m + 2eVo/m)]. (13.8) 

In this expression the quantity in round brackets in the second term on the right hand side is 
always smaller than the corresponding round bracket present in the first term, corresponding to 
lattice scattering, and characteristic for the bulk material. However, the relative contribution of 
the two terms on the right hand side depends on the sample thickness. For a given sample this 
second term can be further reduced by treating the surface in order to obtain a depletion layer 
(with a small Vo<0 for n-type material). 

13.2 Influence of dislocations arising from bending deformation 

Uniform bending with a radius of curvature R will generate a surface density of 
dislocations of p=l/aR and an additional volume density of defects n^js =l/a^R in the given 
ultrathin sample. Assuming we know the measured mobility [i^of the given sample before 
bending, the theoretical mobility |x, =|iia„ice of the ideal sample with no defects (limited by phonon 
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scattering, intervalley and umklapp only) and the concentration of defects n^def in the given 
sample before bending, we can derive for the quantum 1/f noise spectral density of fractional 
fluctuations expected in the bent ultrathin sample the approximate formula 

S5|i/^i = {(^io')/[(l+r)|i, - r^io]'}S'^V,(f), (13.9) 

in which r=ndi/nodef, and S''"g^^(f) is the theoretical quantum 1/f spectral density affecting |i, in an 
ideal sample with no defects, being caused by phonon scattering, intervalley and umklapp only. 
This formula is obtained by neglecting the quantum 1/f noise of defect scattering (both ionized or 
neutral, both impurity defects and lattice defects) compared to the much larger quantum 1/f noise 
of lattice scattering, including phonon scattering, intervalley and umklapp in the ideal lattice. 

If a lattice constant of a=lA and a bending radius of curvature R=10 cm are considered, 
the resulting dislocation densities of p=10' cm"^ and ndjs=10'^ cm "^ have to be compared with the 
pre-existing concentration of defects Ug^^f. Assuming nodef=10'^ cm'\ we obtain r=0.1. The 
resulting correction is a small reduction in the expected noise. However, this calculation 
neglects all current-redistribution effects which result from a non-uniform distribution of 
dislocations introduced by bending. It also neglects the effect of the decreased lifetime of the 
carriers in bent ultrathin ICs, in particular on the junction devices or on other unwanted junctions 
present in the IC. All these effects result in increased conventional quantum 1/f noise. The 
increased non-uniformity of the current distribution also results in an increase of the coherent 
quantum 1/f effect present in the larger samples as we see in the next section. 

13.3 Deviations from the general 1/N dependence of the 1/f noise 
in the presence of a coherent quantum 1/f vestige 

At this point we ask how the Ql/fE changes when we scale a macroscopic conductor, 
semiconductor, sample or device down to ultrasmall thickness. The transition from coherent to 
conventional Ql/fE is given by the relation 

a^^ = (l/l+s)a,o„, -I- (s/l+s)a,„her = (l/l+s)(4a/37i;)(Av/c)^ + (s/l-f-s)(2a/7t), (13.10) 

where s is a parameter which governs the transition and depends on the concentration n of 
carriers and on the transversal cross section area Q of the conductor, semiconductor, sample or 
device, perpendicular to the direction of the current. Specifically, 

s = 2nQro. (13.11) 

Here r,, = eVmc^ is the classical radius of the electron, ro= 2.84 lO'^cm. Therefore, s is twice the 
number of carriers in a salami slice of thickness equal with the classical diameter of the electron, 
normal to the direction of current flow (see Fig. 5). The resulting spectral density of fractional 
quantum 1/f fluctuations is then given by the quantum 1/f coefficient ttH through the Hooge 
relation 

S6^,j(f)=aH/fN. (13.12) 
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Log a   or Log a /N 

Fig. 5: To define the parameter s, a slice as thick as the classical 
electron radius is considered. The number of carriers in it is s. 

H H 

Conventional 

a 

0.1 jim 1 |im 10|im    L 

Fig. 6: The quantum 1/f parameter ttH and the resulting spectral density Sj=aH/Nf 
as a function of the number of carriers in the sample N or of the cross section size L 
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This resulting total dependence on N is shown qualitatively in Fig. 6 above for the transition 
from macroscopic dimensions to ultrasmall samples. It shows that although the spectral density 
varies monotonously when the thickness of the sample and thereby also the size of the current- 
carrying cross section is lowered down to nanoscale dimensions, there is a plateau on which the 
spectral density remains constant, while a^ changes its value. 

14. Quantum 1/f Effect in Spin-Polarized Transport and Spintronic Devices 

The spin-polarized leakage current passing through a closed spin-valve is caused 
by electron spin-flip processes. The rate of these processes controls the rate of current flow. 
Without a spin-flip, the electron can't go through the valve. The electronic spin-flip rate is 
affected by quantum 1/f noise because the spin-flip emits bremsstrahlung just like any sudden 
current change AJ=(e/L)Av would do. The conventional quantum 1/f effect (Ql/fE) in any rate T 
or cross section a is a macroscopic quantum phenomenon described by the quantum 1/f 
engineering formula, 

S8r/r(f) = SSa/a(f) = S6j/j(f) = (4a/37cfN)(Av/c)2. (14.1) 

Here S8r/r(f) is the spectral density of fractional fluctuations in current, 5j/j, in scattering or 

recombination cross section 5a/a, or in any other process rate SF/F. a=e2/fi c =1/137 is 
Sommerfeld's fine structure constant, a magic number of our world depending only on Planck's 
constant fi , the charge of the electron e and the speed of light in vacuum c. A=2{A\/c)^/3'!i is 
essentially the square of the vector velocity change Av of the scattered particles in the scattering 
process whose fluctuations we are considering, in units of c. Finally, N=LN' is the number of 
particles used to define the notion of current j, of cross section a or of process rate F. 

This applies to the quantum 1/f fluctuations of the electronic spin-flip rate, or 
decoherence rate, as mentioned above. Decoherence is caused by the elementary spin-flip of a 
nucleus due to its various interactions. The particular nature of these is not important here, due 
to the well-known quantum 1/f universality that characterizes all infrared divergence phenomena. 
The rate of this process has quantum fluctuations according to Eq. (14.1). It reduces the total 
magnetic moment M of the sample by the magnetic moment |i =eli /2mc =1 Bohr magneton of a 
single electron spin undergoing a change of one h in its spin projection. The current change eAv 

causing bremsstrahlung is here (AM )/e, the change in the rate of demagnetization caused by the 
emission of an energy quantum, a photon. This yields 

S6r/F(f) = 4a<(Av) %/37ifc^ = 4a<(AM )\l3>%itc. (14.2) 

Let N be the number of elementary magnetic dipoles |i=eh /2mc present in the magnetic 
induction field B and aligned parallel to it. Applying a variation AN=2 for a spin reversal, we get 

An/n =AN/N = lAM l/IM 1, or <(AM )'>=<(M )'>/N' = 8|i'HV/h ', (14.3) 

where we used Larmor's theorem M =CDxM, with (iO=N^H/h . Substituting AM into Eq. (14.2), 
we get 

Ss j/j = r-2Sr(f) = 32a^'H'NV3jife'c'h'. (14.4) 
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This is the spectral density of fractional quantum 1/f fluctuations in the rate Tof spin-flip or 
decoherence (electrodynamical Ql/fE only). This spectral density of fractional fluctuations will 
affect the spin-polarized leakage current] through the device. There is also shot noise S5j/j=2ej. 

C. CONCLUSIONS AND RELEVANCE FOR U.S. AIR FORCE, DOD AND CIVILIAN 
APPLICATIONS 

The research performed as part of this Grant project, under the direction of Dr. Gerald L. 
Witt, AFOSR/NE, has considerable relevance for the objectives of the U.S. Air Force, for DOD 
in general, and for many civilian industrial applications. 

Indeed, the space and aerospace battle environment may involve nuclear exchanges, and 
this requires radiation hardening (Sec. B1-B4) of the airplanes and of their electronic and 
communications equipment. In addition there is a threat to the electronic equipment arising from 
some of the directed energy weapons. Even in the absence of conflict, the cosmic and solar ra- 
diation represents a threat, particularly in the region of the van Allen radiation belts, or the radia- 
tion zone of other planets. One of the major components of the radiation threat to electronic 
components is the instantaneous release of large concentrations of current carriers in semicon- 
ductors from sudden irradiation (for that we make only general suggestions. Sec. B3)). Another 
is the creation of a large concentration of defects in the lattice of the semiconductor materials 
used in devices, and the resulting change in the device parameters and in its electronic noise Sec. 
(B1-B2). Low frequency noise, in particular 1/f noise is particularly damaging, because it ap- 
pears also as phase noise (Sec. Bl 1), destabilizing RF and microwave oscillators and systems. 
The quantum 1/f theory provides a scientific understanding and an exact analytical description of 
1/f noise and phase noise at every level, in materials, devices and systems. This description is in 
terms of concrete engineering design and optimization formulas, replacing the earlier empirical 
approach. This provides a clear superiority of equipment developed on scientific basis. 

The formulas and concepts developed in this research show for the first time, from first 
principles, how the I/f noise depends on the radiation dose and on its type, in different types 
of electronic devices (Sees. B1-B2). This influences the selection of the devices used to design 
certain electronic systems with radiation hardening in mind, such as amplifiers, oscillators, and 
systems based on them, such as radars and communication systems, sensors, guidance and con- 
trol units, etc. 

An essential component of military and civilian electronic communications is the 
antenna. It is shown here to have 1/f noise hidden in its so-called radiation resistance (Sec. 
B6). Multiple satellites and arrays, used to bundle a beam very well, are both affected by it, and 
we show here which way. Again, we develop the concepts and the corresponding engineering 
formulas for the first time. 

The importance of phase noise for the Air Force is tremendous. A 10 dB reduction in the 
noise floor will reduce the bit-error-rate by a factor of 10'^ in DSP systems that process real-time 
inputs in a battlefield environment. In a Doppler radar, from the R" law, a 24 dB reduction in the 
noise floor corresponds to a 4 fold increase in range R. The new generation of low-noise elec- 
tronic devices important for the Air Force, revolutionizing both high power systems (radars, ra- 
dio, TV, microwave and THz transmitters, etc. ) and ultra-low power (mini-receivers, MEMS 
sensors, MEMS frequency standards, THz receivers, etc.) is becoming possible due to advances 
in material processing and due to our better handle on 1/f noise and the resulting phase noise 
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(Sec. B5). This poorly understood subject was described with the help of the so-called Leeson 
formula. The present project has resulted in a modification of this basic engineering formula 
with an additional term that is dominant for high tech, high-stability oscillators in any frequency 
domain. This fundamental breakthrough is of tremendous practical importance for the modern 
high-tech industry. It will be reflected in the quality of future military and civilian gadgets 
across the board. It is well worth the sacrifice that the present author has brought for a long time, 
and particularly during this project, under most difficult conditions, and with little support, coop- 
eration, understanding and recognition. To be able to carry out all projects and realize the dis- 
coveries that solved various puzzles and paradoxes, the author often had to postpone publication 
of major results in the open literature, and to use primarily invited or contributed papers at con- 
ference proceedings as his communication with peers. All this would not have been possible 
without the concrete, unwavering, scientific, moral and material support received by the author 
from AFOSR through Dr. Gerald Witt. 

The quantum 1/f formula was used during this Grant to provide for the first time a 
scientific calculation and a practical engineering formula for 1/f noise in GaN/AlGaN HFETs 
(Sec. B7). The agreement with the experimental data of professors Balandin, Wang, 
Vishvanatan et al. from the University of California is very good. These HFETs are of 
tremendous importance for the Air Force and DOD in general, being essential for the new 
generation of solid-state high-power RF and microwave generators. 

Resonant tunneling diodes have a negative differential resistance region in their current 
voltage characteristic. RTDs (Sec. B8) are ideal for microwave generation up to the THz region. 
The quantum 1/f theory was applied by the author during this grant to find both the 1/f noise of 
the RTD, and the resulting phase noise of the oscillator (generator with resonator) based on such 
an RTD. This allows for the first time for a scientific optimization of materials, devices and 
systems for these application. They are also of considerable importance for the mission of the 
Air Force. 

Of major importance for DOD and for the Nation in general, in particular after the Sep- 
tember 11, 2001 tragedy, is the early detection of an attack with biological or chemical weapons, 
in particular a terrorist attack with anthrax, smallpox, the plague, poliomyelitis, nerve gas, etc. 
In June 2001, at the Seattle Frequency Control Symposium the author gave an invited talk on his 
research on the quantum 1/f limits of quartz microbalance (BAW), and SAW, sensors that are 
activated with the antigens displaying affinity to one of the pathogenic agents mentioned above. 
This research, giving for the first time the quantum limits of, and optimization tools for, the bio- 
logical and chemical sensors. (Sec. B9) was done under this Grant. In general, the quantum 1/f 
theory and engineering formulas developed here allow for the optimization of both design and 
implementation of novel, completely monolithic integrated MEMS resonators and sensors. 

The FET-based sensors and other sensors included in the "electronic nose" have also 
been perfected now to the point where they have reached their quantum limit. They are therefore 
limited by the quantum 1/f effect, and subject to Ql/f optimization. There also was successful 
work on Quantum 1/f Effect in Spin-polarized Transport (Sec. B14) during this Grant. 

Another problem of practical importance is the effect of mechanical bending on ultra-thin 
semiconductor samples and credit card shaped ultra-thin integrated circuits. The deformation 
causes an array of dislocations, and a change in 1/f noise that has been calculated with the quan- 
tum l/ftheory(Sec. B13). 

Finally, we have continued our investigation of the fascinating transition region between 
coherent and conventional quantum 1/f effect, because it corresponds to the size of present sub- 
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micron and nano-devices. This led to the introduction of the "quantum 1/f proximity effect" 
(Sec. B12) for the first time during the present grant. This fundamental effect causes the 1/t noise 
in a semiconductor wire to depend on the presence of other similar wires in the vicinity, carrying 
part of the current. It is like a mutually induced 1/f noise, present only in this transition region of 
sizes. This is startling to anyone familiar with the traditional phenomenology of 1/f noise, but 
unaware of the details of the quantum 1/f theory. 
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