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Superfluid Helium Droplet Spectroscopy Equipment 
Development 

Roger E. Miller 
Department of Chemistry 
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Final Report 

Objectives 

The primary goal of this research has been the development of a new helium 

droplet spectrometer, based upon the use of a PPLN-OPO laser. Although the laser is 

commercially available, considerable development was required to make the system 

tunable. We have succeeded in this effort and the laser is now being used to carry out a 

range of studies related to our AFOSR funded research project dealing with the formation 

of highly reactive radical nano-solids. The high output power of this laser system, 

combined with its wide tunability, great enhance the capabilities we have in our 

laboratory. In parallel with the laser developments, we have built up a new helium 

droplet apparatus, which is also now fully functional. The ultimate goal of these studies 

remains the stabiUzation and study a whole new class of free radical nanosolids, resulting 

from the unique cluster growth conditions in helium nanodroplets. The spectroscopic 

methods used in these studies are now well developed. In parallel with these experiments 

on free radicals, studies have been performed on hydrogen clusters, the goal being to 

understand how effective these systems are as isolation media. These studies have 

revealed that, even at the low temperature of the helium droplets (0.37 K), the hydrogen 

molecules are quite mobile, resulting in a single isomer for each cluster size. This has 

important implications concerning the prospects for isolating reactive species in hydrogen 

clusters. 
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Small molecular and atomic free radicals (O, H, OH, CN and NH2) play a key role 

in many important atmospheric' and combustion^ reaction mechanisms and their 

properties have thus been the subject of intense research, hi particular, there is a rich 

literature dealing with the deposition and creation of reactive species in cryogenic solid 

matrices,^'^ including stable and transient complexes with oxygen atoms and ozone " 

and rare gas complexes with OH'^''^ and CN '^''^ hi view of the high reactivity of the 

free radicals, it is not surprising to find that in most cases the radicals are only present in 

low (trace) quantities. The stability of the solid is dependent upon the slow diffusion rate 

of the radicals through the matrix at low temperatures. Low radical concentrations 

translate into low energy densities for these solids, focusing the quest for higher energy 

materials of this type around finding ways to increase the concenfration of radicals in the 

soHd, while at the same time stabilizing them so that they do not react spontaneously. 

The research proposed here takes advantage of methods recently implemented and 

developed in our laboratory to explore an entirely new approach for producing high 

radical densities in nanosoUds. The goal is to completely eliminate (or at least 

dramatically reduce) the need for the inert matrix material used in the matrix isolation 

studies discussed above.   The idea is to make use of the highly structured nature of long 

- range intermolecular interactions in order to help stabilize the radical solids, without the 

need for separating them using molecular spacers. The approach is to grow the 

nanosolids in liquid helium, such that the energy of the radicals is sufficiently low that 

they cannot react, because of the barriers that lie between the van der Waals minima on 

the surface and the much deeper chemical well at short range. 

Status of Effort 

The experimental apparatus buih up over the past two years is shown in Figure 1. 

The PPLN-OPO laser is directed along the helium droplet beam in order to optimize the 

laser induced depletion signals. This is possible because the quadrupole is operated off 

axis. In several cases we are able to deplete a large fraction (0.8) of the droplet beam, 

owing to the high power of the laser. 
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Figure 1: Experimental apparatus. 

The research carried out in the previous grant period has already lead to the 

publication of several papers '^''^''^ In addition, we have a large amount of data that is 

currently being analyzed and will be published in the coming year. 

The developments we have made in the tuning of the laser are being incorporated 

into the commercial system and should make this laser more user friendly for others 

purchasing it in the future. 

Accomplishments and New Findings 

Figure 2 shows a Stark spectrum of the propargyl radical, recorded with an F- 

center laser, along with the corresponding fit. This spectrum was used to obtain the first 

experimental value for the dipole moment of propargyl, namely 0.15 D "*"*. With the 

pyrolysis source at high temperature, the precursor molecule was almost completely 

dissociated. 
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Figure 2: Stark spectrum of the C-H stretch of propargyl. 

Infrared spectra have also been obtained for HCN and HF clusters with Cl, Br 

and I atoms. Figure 3 shows two pendular spectra (a large electric field is used to 

collapse the ro-vibrational spectra into a single peak \ one with the bromine source at 

room temperature and the other with it heated to the point where molecular bromine is 

almost entirely dissociated. The new feature that appears at high temperature is easily 

assigned to the HF-Br complex, 

- hot pyrolysts source (1400K) 
- cold pyrolysis source (275K) 
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Figure 3: Pendular spectra showing the formation of Br-HF. 

from the pickup cell pressure dependence of the signals and the zero field spectrum 

shown in Figure 3. The overall P,Q and R branch structure is obvious in these spectra 



and the complete assignment and fitting is underway. The corresponding X-HCN 

complexes have also been studied and are currently being analyzed. 
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Figure 4: Infrared spectra of X-HF complexes. 

Now that we have all of the capabilities necessary to make and study these radical 

complexes, we are in the position to move on to the more reactive systems discussed 

above, namely those containing multiple free radicals. 
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AFOSR EQUIPMENT GRANT 

"Superfluid Helium Droplet Spectroscopy Equipment Development" 

Vendor 

CTI-Crogenics (Helix) 

Linos Photonics, Incs. 

Linos Photonics, Incs. 

New Focus 

Boc Edwards 

Item Amount 

Coldhead, Compressor 5,592.56 

OS4000OPO 106,000.00 

Mephisto 2500 Pump Laser 59,000.00 

Optical Transport System 585.86 

Edwards Pumping Station 6,821.58 

Total 178,000.00 


