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Abstract 

NSA's Security-Enhanced (SE) Linux enhances 
Linux by providing a specification language for security 
policies and a Flask-like architecture with a security 
server for enforcing policies defined in the language. It 
is natural for users to expect to be able to analyze the 
properties of a policy from its specification in the policy 
language. But this language is very low level, making 
the high level properties of a policy difficult to deduce by 
inspection. For this reason, tools to help users with the 
analysis are necessary. The NRL project on analyzing 
SE Linux policies aims first to use mechanized support 
to analyze an example policy specification and then to 
customize this support for use by practitioners in the 
open source software community. This paper describes 
how we model policies in the analysis tool TAME, the 
Mnds of analysis we can support, and prototype me- 
chanical support to enable others to model their policies 
in TAME. The paper concludes with some general ob- 
servations on desirable properties for a policy language. 

1.    Introduction 

Linux^ is a Unix-style operating system that has 
been used as the basis for distributed systems such as 
the Beowulf clusters for distributed computation orig- 
inally developed by Thomas Sterling and Don Becker 
at NASA Goddard [12]. Linux is a good choice for such 
clusters because it supports high performance networks 
for PC class machines. 

Security-Enhanced (SE) Linux [15, 8] is a modifica- 
tion of Linux initially released by NSA in January, 2001 
that extends Linux with a flexible capability for secu- 
rity. SE Linux provides a language for specifying Linux 

•This work is funded by DARPA. 
•Linux is a registered trademark of Linus Torvalds. 
Manuscript approved February 6,2003.    - 

security pohcies that cover all aspects of the system, in- 
cluding process control, file management, and network 
communications. The SE Linux release includes an ex- 
ample policy specification. Policies are enforced using 
the method in the Flask architecture [16], which uses 
a security server to make poUcy decisions concerning 
whether to grant user requests to the operating sys- 
tem. To make decisions, the security server refers to 
an internal form of the poHcy compiled from the poUcy 
specification. 

Since the most convenient description of the policy 
for user understanding is its "source" specification in 
the policy language, it is natural for users to expect 
to be able to analyze the properties of the policy from 
this source specification. However, though specifica- 
tions in the SE Linux policy language are independent 
of implementation details, the language is very low- 
level and detailed, making the high-level properties of a 
policy difficult to check by inspection. Our experience 
as well as that of others (e.g., [11]) is that mechanized 
formal methods can uncover errors that humans miss 
in inspecting even the most carefully crafted specifica- 
tions. For a user to analyze a typically intricate poficy 
specification, mechanized tools are a practical neces- 
sity. Tools such as Apol from TVesys Technology and 
Tebrowse from the University of North Texas allow one 
to observe simple properties of a policy essentially by 
browsing the policy. For analyzing a policy for deep 
properties, more powerful tools are needed. 

To answer this need, we have taken some initial 
steps to develop tool support for analyzing SE Linux 
security policies using the tool TAME (Timed Au- 
tomata Modeling Environment) [2, 3]. These steps in- 
clude 

1. creation of an abstract SE Linux model in TAME 
with policy-independent and poHcy-dependent 
parts, 

2. design and implementation of an algorithm for ex- 



tracting a subset of a specified security policy on 
which to focus analysis, 

3. design and implementation of algorithms for ex- 
tracting the policy-dependent parts of the model 
from a policy specification, and 

4. use of the results to model an example policy 
based on the policy in the SE Linux release. 

To model any system in TAME, it is necessary to define 
the components of a state machine representation of 
the system: a state space, an initial state or states, and 
a set of transitions. In TAME, transitions correspond 
to actions with preconditions and effects (postcondi- 
tions). In order to accurately model SE Linux plus a 
security policy, both an understanding of Linux and a 
clear definition of the semantics of the policy language 
are essential. For example, an understanding of the 
initialization process in Linux is needed to decide how 
to represent initial states and can also be helpful in de- 
termining the focus for a policy subset. The algorithms 
of step 3 above, which extract functions and predicates 
related to the effects and preconditions of actions, rely 
on a correct interpretation of the meanings of certain 
policy rules. As discussed below, there are places where 
the documentation of the policy language semantics is 
unclear. Using the algorithm in step 2, we have ex- 
tracted a subset of the policy that uses only language 
constructs whose definitions are well documented. 

The ultimate goal of modeling SE Linux^ in TAME 
is to determine whether the security policy has desired 
properties. However, it is also of interest to check prop- 
erties related to the well-formedness of the model and 
the accuracy of the model's representation of the se- 
curity policy. Thus, we are using theorem proving in 
stages to check 

1. a set of standard well-formedness conditions for 
the model, 

2. that the assertions checked by the SE Linux policy 
compiler checkpolicy hold for our model of the 
security policy, and 

3. whether certain desirable security properties hold 
for the model. 

Stage 3 is predicated upon having a reasonable exam- 
ple for a security policy and understanding what its 
intended properties are. Unfortunately, because the 
initial focus of our analysis is the system after initial- 
ization, finding a reasonable example policy is not as 
simple as using the example policy in the release (or a 
subset of this policy). At least for our system configu- 
ration, when SE Linux is initialized and run with the 

^Here and below, a reference to modeling SE Linux implies 
that some security policy is included in the model. 

example policy enforced, no effective user actions are 
permitted [5]. Hence, no user actions can change the 
state in security-relevant ways, and as a result, there 
are no interesting properties to prove for the example 
policy regarding system behavior involving user actions 
after initialization. Thus, one of our tasks is to find a 
reasonable extension of the example policy to analyze. 

The remainder of the paper is organized as follows. 
Section 2 describes the policy language, discusses its 
semantics, and explains why the nature of its seman- 
tics leads us to represent the operating system itself in 
our abstract model of an SE Linux policy. Section 3 
describes how we constructed an example policy for 
analysis. Section 4 gives a brief overview of TAME, 
and then describes how we modeled an example pol- 
icy in TAME and how we have organized the model 
for reuse with other policies. Section 5 describes our 
progress with implementing mechanized support for 
reusing our model. Section 6 describes both simple 
and deep properties which we hope to verify for our 
model, and our approach to the verification. Finally, 
Section 7 discusses policy languages and provides some 
suggestions as to how, with appropriate enhancements, 
the existing policy language could better support both 
policy analysis and policy understandability. 

2.    The SE Linux policy language 
The SE Linux security policy language is described 

in [8], part of the documentation accompanying the SE 
Linux release. We note that this language has changed 
over time. In this paper, we deal primarily with the 
language and example policy from the initial release of 
January 2001, since our initial efforts towards modeling 
policies were based on this language.^ However, our 
policy analysis approach is valid for any version of the 
language. 

The language description in [8] is somewhat infor- 
mal, and is mostly given by example. Some of the lan- 
guage constructs are not fully defined in [8]; however, 
most of the constructs used in the example policy ac- 
companying the release have reasonably complete de- 
scriptions. Although the language permits definition 
of policies based on type enforcement (TE), role based 
access control (RBAC), and multi-level security (MLS), 
we have focused on analyzing policies that use only TE 
and RBAC features. Below, we describe the syntax of 
the TE and RBAC language constructs mentioned in 
[8], and discuss how the semantics of these constructs 
influences how we model policies in TAME. 

^We make an exception for our recent experiments with SE 
Linux, which have of necessity involved the version of the lan- 
guage available in the June 2002 release. Because dealing with a 
moving target is difficult, we have retained the original language 
as the bcLsis of our model rather than continuously adapt the 
details of our approach to changes in the language. 



Policy language syntax. The SE Linux policy lan- 
guage has four kinds of statements: declamtions, rules, 
constraints, and assertions. Declarations include mle 
declarations smd type declamtions. Rules include access 
vector rules, which govern decisions made by the secu- 
rity server about access requests, and transition rules, 
which govern possible role dianges of an object and TE 
type assignments to newly created objects. Constraints 
constrain the maimer in which various access permis- 
sions can be applied to various objects. Assertions are 
statements about whether or not certain kinds of ac- 
cess permissions are ever allowed by the policy. While 
the declarations, rules, and constraints are enforced 
by the security server at run time, the assertions are 
checked by the policy compiler checkpolicy at pohcy 
compile time. Thus, provided checkpolicy works cor- 
rectly, the assertions can be used as simple properties 
of the security policy that are available as lemmas in 
the proof of deeper properties closer to the high-level 
security goals of the policy. 

Each language statement consists of a keyword 
(e.g., allow for most access vector rules and 
typejtransition for TE type transition rules) fol- 
lowed by arguments that are expressed by using other 
language elements such as type names, role names, ob- 
ject classes, attributes, and permissions. The particu- 
lar sets of representatives of these elements can depend 
on the particular policy being defined (and the partic- 
ular Linux configuration for which it is being defined— 
e.g., the particidar kernel modules present). The sets 
tend to be quite large. In the example policy with the 
SE Linux release, there are 3 role names, 28 object 
classes, 22 attributes, 115 permissions, and 253 type 
names of which 21 are parameterized—meaning there 
is a potentially unboimded number of type names. 
Thus, poHcy specifications tend to be quite lengthy, 
complex, and full of low-level detail. 

The complexity of policy specifications is, in prac- 
tice, somewhat reduced by the use of macros. Macros 
can be either set macros that represent sets of per- 
missions, sets of object classes, etc., or rule macros 
that represent sets of rules and, usually, some asso- 
ciated declarations. Although attributes are not de- 
fined as macros, an attribute behaves like a set macro 
in that it can be used to represent the sets of types 
declared to possras that attribute. Rule macros are 
typically parameterized. For example, the rule macro 
user_domain has one parameter. Use of this macro 
with type user_t as parameter for all the rules for a 
user and with type sysadin_t as parameter for some 
of the rules for a system administrator makes it easy 
to see that the example policy allows a system admin- 
istrator all the permissions that it allows a user, and 
more; thus, the macros contribute to the understand- 

ability of the intentions of the pohcy specifier. 

The policy language semantics and its impli- 
cations. Individual constructs in the SE Linux pol- 
icy language, unUke those in higher-level programming 
languages and specification languages such as Z [17] 
and the B language [1], do not have a fixed or uni- 
form semantics. Although every object class has an 
associated set of permissions with names suggestive of 
their intended meanings, the actual semantics of any 
SE Linux permission is determined by how that per- 
mission is used to control system transitions. For ex- 
ample, a successful write system call by a process can 
affect the content of a file, but write permission to the 
file is not equivalent to guaranteed success: the process 
must also have setattr permission to a file descriptor 
for the file. Similarly, the form of an allow rule: 

allow <type_s> <t3rpe_t>:<obj_class> <perm> 

(where <type_s> is the "source type" and <typejt> 
is the "target type") suggests a direct interpre- 
tation for many of its instances, e.g., "a pro- 
cess of type <type_s> can be granted permission 
<perm> to an object of class <obj_class> and type 
<type_t>". However, there are many exceptions in 
which <type_s> is not the type of a process, as in: 

allow file_t file_t:file transition, 

or the type <type_t> is not ^sociated with an object 
in class <obj_class>, as in: 

allow init_t file.t:process execute. 

Hence, the significance of any instance of an SE Linux 
policy rule varies with the nature of the arguments to 
the rule. And ultimately, like permissions, allow rules 
are given their actual semantics by their use in the 
permissions checks controlling system transitions. 

We note that because multiple permissions can be 
needed for an actual flow of information and because 
the semantics of allow rules depend upon how they 
are used in the system, precisely analyzing the pol- 
icy for information flows is more complex than simply 
checking for the existence of a path between security 
contexts by tracing through allow, typejtransition, 
and other rules in the poUcy. Because the meanings 
of the pohcy rules are so intertwined with the oper- 
ating system, one cannot reason precisely about the 
effectiveness of a policy without modeling the system 
to which it is to be apphed. Therefore, to model an 
SE Linux pohcy, we also must model the SE Linux 
operating system on some level. 

3.    Choosing an example policy 

The example policy that accompanies the SE Linux 
release is not a good example to aid in developing our 



analysis methods because 1) it does not contain suffi- 
cient allow rules to make SE Linux usable when it is 
enforced, and 2) it is too large and complex for an ini- 
tial feasibility study. Thus, to obtain a good example 
policy for analysis, we need first to extend that policy 
"judiciously" so that it allows nontrivial user behavior 
after system initialization, and then to extract a subset 
of the extended policy. 

Extending the original policy. The manner in 
which the original SE Linux example policy must be 
extended to be usable is platform dependent. Because 
it is so low-level, it must be customized to work for 
the configuration (e.g., the installed packages and dae- 
mons) of the machine on which it is installed. This can 
be done by running SE Linux in non-enforcing mode 
and logging all the denials of permission requests, and 
then formulating allow rules corresponding to the de- 
nials and adding them to the policy. This must be 
done carefully to ensure that only permissions neces- 
sary for correct operation of the system are added. The 
newrules script provided with the policy can be used 
to generate the necessary allow rules from a log file. 
We have obtained a policy usable with the newer ver- 
sion of SE Linux on our system by adding approxi- 
mately 30 allow rules. For verification purposes, we 
have used these rules as guidance for extending the 
original policy into a reasonable policy to analyze, in 
which there can be nontrivial user behavior after sys- 
tem initialization. 

Choosing a subset. Security policy specifications 
written in the SE Linux policy language are generally 
laxge and complex. For example, the example security 
policy that accompanies the original SE Linux release 
contains (prior to macro expansion) 253 type declara- 
tions, 708 allow rules, and 187 type transition rules. 
(After expanding all but permissions set macros, our 
example subset of the policy alone has more than 1,500 
allow rules.) Such a complex policy requires a possibly 
prohibitive amount of space and time for modeling and 
analysis. 

It is difficult to prove properties of the policy with- 
out modeling the full policy. However, modeling and 
proving properties of a subset can help develop confi- 
dence that the policy achieves its goals. Subsets are 
useful for policy debugging: If the property does not 
hold for the subset, it will not hold for the full pol- 
icy either. And when the property does hold for the 
subset, some evidence has been accumulated about its 
validity for the full policy. 

A subset can be chosen with security properties of 
interest in mind. For example, if one of the security 
properties of interest is that the system log files cannot 

be altered by the user process, the subset should retain 
rules pertaining to the types relevant to the system log 
files (e.g., var J.og_t), the type associated with the user 
process (user_t), and the permissions necessary for the 
write system call (write or append permission to files 
and setattr permission to file descriptors). To fully 
prove certain other properties, e.g., "a user may only 
write to his own files", can require a large portion of 
the policy to be retained. For this property, one may 
wish to restrict the policy subset further by eliminating 
some of the file types, and show that in the smaller 
subset, the user may only write to his own files. This 
approach permits faster initial results. 

In our algorithm, described in more detail in Section 
5, a subset of a security policy is extracted by restrict- 
ing attention to selected sets of types and system calls. 
The policy is then reduced by slicing to contain only 
the types of interest and the set of permissions associ- 
ated with the selected set of system calls. 

For our initial experimental analysis, we consider 
the portion of the operating system necessary for file 
management and process control. Subsets that in- 
clude the types associated with hardware interfaces, 
networking, or initialization of the system could be 
modeled similarly. Another consideration in our choice 
of an initial policy subset for analysis is the lack of 
full documentation of some of the policy language con- 
structs. As noted earlier, our chosen subset avoids 
those constructs. 

4.    Modeling SE Linux in TAME 

4.1.    A TAME overview 
TAME is an interface to the theorem prover 

PVS [14] that simplifies specifying, and proving prop- 
erties of, automata models. To support specifying 
various kinds of automata, TAME provides templates 
that allow the user to specify the standard parts of an 
automaton—its state space, its start state(s), and its 
transitions. To support reasoning about the specified 
automata, TAME provides a set of standard support- 
ing theories and a set of strategies that support proving 
automaton properties either automatically (if possible) 
or using proof steps resembling the natural steps used 
in high-level hand proofs. 

TAME currently supports specifying and reasoning 
about three classes of automata: Lynch-Vaandrager 
timed automata [10], I/O automata [9], and SCR au- 
tomata [6]. The TAME model for SE Linux that we 
have been developing is based on the I/O automata 
model. Table 1 shows how TAME organizes the spec- 
ification of an I/O automaton using a standard set 
of constructs. The type MMTstates represents the 
state space, and the state predicate start specifies 



the members of the state space that are acceptable 
initial states. The data type actions, the predicate 
enabled, and the function trans together specify the 
transitions of the automaton: actions describes the 
set of actions that can trigger transitions, and enabled 
and trans describe the preconditions and effects of 
the actions. Constructors in the datatype actions 
may have parameters that represent the arguments of 
the action. The transitions of the automaton are the 
prestate-poststate pairs (s, trans (a, s)) for which 
enabledCa.s) has value true. 

The proof support provided by TAME is mainly 
aimed at proving invariant properties of automata. 
The invariant properties of greatest interest are state 
invariants (i.e., properties of every reachable automa- 
ton state) and transition invariants (i.e., properties of 
all reachable transitions). A state is reachable if it is 
either an initial state or can be reached from an ini- 
tial state by following finitely many transitions of the 
automaton. State invariants usually must be proved 
by induction over reachable states, with a base case 
for initial states and an induction step for each type of 
action. Tiransition invariants can be proved without in- 
duction, but may require state invariants as lemmas in 
their proofs. As noted in [4], most high-level security 
properties of an SE Linux policy can be represented 
as either state or transition invariants. The existing 
TAME proof support will be useful in proving such 
properti^; however, it can be anticipated that advan- 
tage can be taken of the common features of TAME 
models of SE Linux to add proof steps especially geared 
to these models. This issue is discussed further in Sec- 
tion 6. 

Template Part UserFHIsIn Remarks 
MMTstates Type of the "basic 

state" representing 
the state variables 

A record type with 
a field for every 
state variable 

start State predicate 
«tefimng the 
initial states 

Preferred form: 
s = (some 

record value) 
actions Iteclarations of 

the actions 
Represented as a 
datatype with a 
constructor for every 
kind of action 

enabled Preconditions for 
all the actions 

enabled(a,s)   = 
precondition 
of action a 
in state s 

trans Effects of all flie 
actions 

trans(a,s)   = 
state reached 
from state s 
by action a 

4.2.    A TAME model of SE Linux 

To model SE Linux abstractly in TAME, one must 
choose an appropriate state space, set of initial states, 
and set of transitions. In our TAME model*, the state 
space is determined by a set of variables of which 
the principal variable is objects, the set of objects 
(such as processes, files, directories, file descriptors, 
etc.) managed by the operating system, and there is 
a single initial state. We chose to model the system 
from the point after the system has been initialized, 
and the initial state in our model reflects this. As in 
any TAME model, transitions are the result of actions 
in the datatype actions, which have associated pre- 
conditions and effects. Actions in our model are ab- 
stract system calls issued by processes. Our abstract 
system calls corrrapond to "atomic system operations" 
from which the more complex actual system calls in SE 
Linux can be built. The atomic operations are chosen 
to be as course-grained as possible, but so that each 
requires a fixed set of permissions. This simplifies our 
task of ensuring that we check only the required per- 
missions in our model in checking the precondition of 
a system call invocation. (See also Section 7.) 

The abstract model of SE Linux has two significant 
aspects: a fixed aspect that depends only on the op- 
erating system, and a variable aspect that depends on 
the particular security policy imposed on the operat- 
ing system and, to some extent, on the choice of policy 
subset to model. The fixed parts of the model include 
the state space, those parts of the preconditions of ac- 
tions involving checks of arguments (e.g., if a process 
p issues a write system call with file descriptor argu- 
ment f d, then f d must be one of p's file descriptors), 
and those parts of the effects of actions that do not 
involve type or role transitions^ The variable parts of 
the model include the parts of the preconditions of the 
actions that derive from the policy's allow rules and 
the parts of the effects that derive from the policy's 
type.transition rules. The choice of initial state is 
also variable. E.g., in our initial example model of 
a pohcy subset, our choice of initial state is affected 
by the elimination of that part of the frill policy con- 
trolling what happens during system initialization. A 
more detailed description of the nature of the fixed and 
variable parts of our model is given below. 

In the process of developing our example model, we 
have developed and partially implemented an approach 
that can greatly simplify the modeling process for SE 
Linux with new pohcies. The fixed parts of our model 
can be reused in new models. We are developing user 

Table 1. Major parts of a TAME specification ^Our TAME model can be found on the NRL SE Linux 
project page at http://chacs.nrl.navy.mil/SoftwareEng. 



support for synthesizing the variable parts of new mod- 
els. Our progress towards this end is discussed in Sec- 
tion 5. 

Fixed parts of the model. A major pjirt of our 
model that is fixed is the state space, the cross prod- 
uct of the value spaces associated with the state vari- 
ables. In addition to the principal state variable 
objects, there are two kinds of additional state vari- 
ables: shadow variables and indexing variables. 

The values of the variable objects are sets of 
members of the datatype OBJECT. The constructors in 
OBJECT provide a way to construct an object of every 
class. The formal parameters of the constructors be- 
have like fields in a record. For each object class, the 
choice of formal parameters to require is determined 
by three factors: 1) the need to tag every object with 
its security context (or security label)^, 2) the need 
to represent (abstractly) the effects of system calls on 
the object, and 3) in some cases, the need to be able 
to state system properties of interest. Thus, the argu- 
ments of mkPROCESS include Pcontext to hold the se- 
curity context of a process, Pcontent to count changes 
to internal variables of a process (perhaps due to a 
read system call by the process), and Pstartcontext 
to support formulation of properties concerning how a 
process with a given Pid may change its security con- 
text from its original one. The following extract from 
the declaration of OBJECT shows the full details of our 
abstract representation of processes: 

OBJECT: DATATYPE 

mkUndefOBJ : UndefOBJ? 

nikFILE(Fname: Fullpathname, ...): FILE? 

mkPROCESS: (Pid: PID, 

Pcontent:  nat, 

Pcontext:   SecurityContext, 
Psteirtcontext:   SecurityContext, 
Pexecutable:   OBJECT, 
Pchildren:   Setof[PID], 
Pparent:  PID, 
Pwaiting:   Queue [PID], 
Pstatus:  ProcStatus):   PROCESS? 

mkFD:   (FDid:  FDID,   ...):   FD? 

END OBJECT; 

*In BE Linux, every object has a security context that con- 
tains such information as an associated user, TE type, RBAC 
role, and possibly an MLS security level. The integer-valued 
SID (security identifier) actually used as the security label in SE 
Linux is a session-specific hash encoding of the security context. 
This implementation detail is not necessary in our model. 

The current value of the variable objects in any 
system state contains almost all of the information 
needed to distinguish that state. However, much of 
that information, such as whether objects contains 
a process with a certain Pid value and if so, what 
the OBJECT value of that process is, is very difficult 
to express in terms of objects itself. The purpose of 
shadow variables—in this case, Processpresent: [PID 
-> bool] and Process: [PID -> OBJECT]—is to pro- 
vide more direct access to this information. The index- 
ing variables are used in the management of numerical 
IDs (such as Pid) and version numbers. 

Much of the description of actions in the model is 
also fixed. In particular, the definition of the datatype 
actions essentially consists of declarations of the var- 
ious system calls and their arguments, as in the follow- 
ing extract: 

actions: DATATYPE 

BEGIN 

creat(p.creat:(PROCESS?), 

pn.creat:(Fullpathname)): creat? 

END actions; 

The predicate enabled is defined in TAME as a con- 
junction of other predicates, most essentially the "spe- 
cific precondition" enabled-specif ic. The definition 
of enabled_specif ic is fixed at the top level, becom- 
ing policy-dependent only at the level of evaluation of 
PermissionGranted. For example, as shown below, 
the precondition of creat (p,pn) in s first checks that 
p is a process in s, pn does not name a file (or directory) 
object in s, and parentname (pn) names a directory in 
s; then it checks PermissionGranted. 

enabled_specific(a:actions,   s:states):  boolean = 
CASES a OF 

creat(p,pn): 

Processpresent(Pid(p),s) & 

p = Process(Pid(p),s) ft 

NOT(Filepresent(pn,Currentversion(pn,s), 

s)) ft 
FILE?(File(parentname(pn),s)) ft 

Fclass(File(parentneune(pn) ,s)) = dir ft 

PermissionGranted(creat(p,pn),s), 

ENDCASES; 

The definition of trans, which mainly consists of the 
definitions of the effects of individual system calls, is 
similarly fixed at the top level, becoming policy de- 
pendent only at the level of evaluation of "new object 
type" functions. For example, the "new object type" 
function Newf iletype, which follows the type transi- 
tion rules in the policy to compute the TE type of a 



newly created file from the TE types of 1) the pro- 
cess creating it and 2) its parent directory, is used in 
the creat(p,pn) case of trans in representing the TE 
type of the newly created file object. 

Variable parts of the model. The variable parts 
of our SE Linux model are the policy-dependent parts 
of enabled^^pecif ic and trans as described above, 
together with the initial state. As discussed in Sec- 
tion 5, we have designed and implemented prototype 
tools that aid the Tiser in filling in the policy-dependent 
parts of a TAME model. 

In enabled_specif ic, the policy-dependent part is 
the definition of the predicate PermissionGranted de- 
termining whether the required permissions for system 
calls can be granted. In PermissionGranted in our 
example model, we see (essentially): 

PennissionGraated(a:actions,   s:states):  boolean = 
CASES a OF 

creat(p,pn): 
PathAllowed{CetTE_type(p), 

parentname <pn), 
search, 
s)  & 

Allowed(GetTE.typeCp), 

Newfiletype(GetTE_type(p), 
GetTE_type(File(parentname(pn),s))), 

file, 
create)  k 

Allowed(GetTE_type(p), 
GetTE_type(p), 
fd, 
create)  & 

Allowed(GetTE_type(p), 

GetTE_type (File (paa-entname (pn) , s) ) , 
dir, 
add_nanie), 

EKDCASES 

where the predicate Allowed is directly derived from 
the allow rules in the policy, and the predicate Path- 
Allowed applies Allowed recursively over the ancestor 
directory names of the new file name pn. There is a 
fairly straightforward algorithm for compiling Allowed 
from the specification of a poUcy. The definition of 
PermissionGranted down to the level of Allowed and 
PathAllowed is derived from the description of the per- 
missions associated with particular system calls. Be- 
cause the policy specification language does not yet 
support such a description, it is not yet possible to 
compile the full definition of PermissionGranted from 
a poUcy specification. As discussed in Section 7, a fur- 
ther complication in compiling PermissionGranted is 

the complexity of the relationship of permissions to 
system calls. 

In trans, the policy-dependent part is the defi- 
nitions of the fimctions Newf lletype and Newproc- 
type that compute the types of newly created ob- 
jects. These fimctions can also be compiled firom a 
policy specification, in a manner similar to that used 
for Allowed. 

As discussed in Section 5, the construction of an 
initial state, the choice of a subset to model, and other 
simplifying choices can be supported by a combination 
of techniques. These include a tool for deriving policy 
subsets and libraries fi-om which the user can select 
appropriate sets of system calls and initial state objects 
to include in the model. 

5.    User support for modeling policies 

Because of the size and complexity of policy specifi- 
cations and SE Linux itself, developera using our anal- 
ysis methods will need tool support for creating the 
poUcy-dependent and other variable parts of a TAME 
model for SE Linux. We plan to offer two types of 
support: automatic extraction tools and libraries. We 
have implemented a poficy slicing tool for extracting 
policy subsets. We have also implemented a tool that 
extracts those policy-dependent parts of a TAME 
model that can currently be computed fi-om a speci- 
fication in the policy language and saves these parts 
as PVS theories that can be imported into a TAME 
template for modeling policies. We have made a start 
towards building libraries to aid in the construction 
of the variable but policy-independent portions of the 
model. 

5.1.    Automatic extraction tools 

This section describes our algorithms for automat- 
ically extracting a policy subset and for then creat- 
ing the policy-dependent portions of a TAME model 
for SE Linux from the (possibly reduced) poUcy. The 
first algorithm extracts a policy subset of interest using 
slicing. Rirther algorithms extract 1) the list of allow 
rules, translating them into the Allowed predicate, and 
2) the type.transition rules, translating them into 
the Newf iletype and Newproctype functions. 

Policy slicing. The slicing algorithm allows a user 
to specify a policy subset by specifying a set of TE 
types T and, for each object class oc, a set of per- 
missions PCoc). These sets are chosen based on the 
types and system calls to be analyzed, ^ described in 
Section 3. The permissions in each P(oc) are those 
needed for the system calls that are to be analyzed. 



The permissions are specified as (object class, permis- 
sion) pairs, that is, by object class rather than as a 
monolithic set of permissions. We do this because the 
same permission name may be associated with multi- 
ple classes and it may be desirable to retain the per- 
mission for some object classes while removing it for 
others. For example, many of the object classes have 
a setattr permission, but for the set of system calls 
that we chose for our initial analysis, the setattr per- 
mission is relevant only for the file descriptor class. 

Because we wish both to keep the policy concise 
and to retain useful information on relationships be- 
tween types (as described in Section 2), the policy is 
reduced with all its macros still in place. Set macros 
are reduced according to the specified permissions and 
classes. To do this, the algorithm first determines, by 
examining all uses of a set macro, whether the macro 
defines a set of classes or a set of permissions. If it 
proves to be a permissions macro, the algorithm then 
determines to which class(es) it applies. If a macro 
call has in its argument list a type or the stem of a 
type (e.g., user is the stem of type user_t) not in T, 
the macro call is normally removed. An exception is 
made for calls to the macro assert_execute because it 
recursively defines assertions for the arguments in the 
macro call. In this case, type stems for types not in T 
are removed from the call, but the macro call remains. 

The algorithm removes all permissions from any rule 
involving an object class oc that are not in P(oc), 
and then removes all declarations and rules in TE files 
that either explicitly reference types not in T or have 
no remaining permissions. Because attributes are fre- 
quently used in place of types, the set of attributes 
associated with T is calculated and is used to extend T 
during the slicing process. 

Because T may include parameterized types, it is 
also necessary to recognize uses of types that are in- 
stantiations of these types. For example, our initial 
subset is specified using a T that includes $l_tmp_t. 
Inclusion of this type in T is meant to indicate that the 
subset is to retain all types whose declarations are de- 
rived by instantiation from the (unique) declaration of 
$l_tmp_t. Determining the instantiations of the dec- 
laration of $l_tmp_t is complicated by the fact that 
calls to the macro in which $l_tmp_t is declared can 
be nested inside other macros. This problem is most 
easily solved by expanding the rule macros. Because we 
are reducing the policy with macros in place, we use a 
coarser approach based on the type declarations in the 
policy. Uses of a type explicitly declared in the policy 
are only retained if that type is included in T. Uses of a 
type not explicitly declared in the policy are retained 
if it is possible that the type could be an instantiation 

of a parameterized type in T. For example, atd_tmp_t 
and $l_xserver_tmp_t, two types declared in the full 
policy, are not included in the set T for our initial 
subset; thus, uses of atd_tmp_t and $l_xserver_tmp_t 
are eliminated. Uses of the type user jcserver_tmp_t, 
which has no declaration of its own, are retained in 
spite of the fact that $l_xserver-tmp_t was elimi- 
nated, since user_xserver_tmp_t could be an instanti- 
ation of $l_tmp_t. By following this practice, we avoid 
unintentional deletions from the policy. 

Extracting policy-dependent model parts. An- 
other algorithm has been developed to extract a sim- 
ple form of all allow rules that derive from a set of 
TE files. Allow rules of this simple form have single 
types in their type fields. The object class and per- 
missions fields of rules in this form may contain sets 
or names of sets, exclusive of indirect set descriptions 
involving the complement operator ~ or * for "all as- 
sociated permissions". However, the permissions set 
in the permission field must contain only permissions 
valid for every object in the object class field. 

The algorithm proceeds as follows. All rules that 
are not allows are removed, and the rule macros are 
"flattened", either by using the m4 macro processor, as 
is done by the current implementation, or by determin- 
ing the dependencies among the macros and expanding 
them in bottom-up order. Next, the rules are rewritten 
so that the first and second fields of every rule contain 
a single type. This is done by first replacing every at- 
tribute by its associated type set and then splitting 
any rule with multiple types in a field into a set of 
rules. Occurrences of * and ~ are handled by creat- 
ing a named set that consists of all the permissions for 
the class in the object class field. Each occurrence of 
* is replaced by this named set, and each occurrence 
of ~ is replaced by an explicit subtraction from this 
named set. This step is complicated by the fact that 
the object class field sometimes contains an object class 
macro composed of classes with differing permissions 
sets. E.g., the object class macro dir_f ile_class_set 
contains the class for directories as well as several dif- 
ferent file classes. In such a case, the rule must first be 
split into multiple rules, one for each of the differing 
permissions sets and their corresponding classes. Fi- 
nally, the permissions sets are combined for rules hav- 
ing identical source type, target type, and class type 
fields. After this step, a straightforward translation is 
done to convert the allow rules into the form of the 
Allowed predicate. 

A similar algorithm is used to extract all the type 
transition information. The primary difference is that 
in order to define the functions Newproctype and 



Newf iletype, the type transition information must be 
split based on the class fields in the type_transition 
rules into transitions for defining the TE types of new 
processes and transitions for defining the TE types of 
new files or directorira. 

Implementation of the algorithms. The algo- 
rithms have been implemented using Python [19, 18], 
for both the January 2001 and June 2002 versions of 
the SE Linux policy language. Python was chosen for a 
combination of reasons. Being interpreted, it provides 
good support for rapid prototyping and experimenta- 
tion. Additionally, its data structures are both power- 
fiil and easy to use, and its performance is reasonably 
good. We specified our subset by choosing 67 of the 
253 types in the full policy, including three of the 21 
parameterized types, and focusing on system calls re- 
quiring 36 of the 364 (object class, permission) pairs 
referred to in the full policy. The implementation ex- 
tracts our example subset from the full policy and gen- 
erates the corresponding poUcy-dependent PVS theo- 
ries in 54 seconds.® 

The extraction algorithm is implemented as a set of 
fimctions, at the core of which is a set of speciaHzed 
functions for parsing and extracting relevant informa- 
tion from single language constructs. E.g., allowargs 
is used for extracting argument values from allow-hke 
rules. Higher-level functions used by the algorithms 
rely on these core fiinctions. There are higher-level 
functions to, for example, 1) compute a poUcy slice, 2) 
compute the set of permissions ^sociated with a triple 
consisting of a source type, target type, and class, and 
3) perform the translation of the allow rules in a (full or 
subset) policy into the predicate Allowed in the TAME 
model of the policy. 

5.2.    Library support 

For proving properties of a policy slice based on a 
selection of system calls and TE types, it is only nec- 
essary to model the selected system calls. Thus, the 
actual set of system calls included in the model should 
also be allowed to be a variable part of the model. How- 
ever, the definitions of the preconditions and effects of 
system calls are poUcy-independent down to the level 
of PermissionGranted, Newf iletype, and Newproc- 
type. Thus, down to this level, they can be written just 
once for use in any model. We have begun to develop 
a TAME library of action declarations and the fixed 
parts of action preconditions and eifects for SE Linux 
models. This library can eventually be used to support 
the automatic construction of the (policy-independent) 

^Execution time is for a Sun Ultra 450 with two UltraSPARC- 
II 296 MHz CPUs and 2GB memory, running Solaris 5.6. 

top level definitions for the actions in a model, once a 
user selects the system calls to include. Initially we are 
focusing on 13 system calls for basic file system man- 
agement and process control. Extending the library 
to include system calls related to sockets would allow 
modeling communication over the network. 

As noted previously, the user may also wish (and 
need) to vary the choice of initial state in a model. For 
this variable aspect of the model, another library can 
be developed that allows users to select the processes 
and other objects to automatically include in their de- 
sired initial state. A library of file objects and directory 
objects for the user to choose from can be generated 
from the f ile_contexts file in the SE Linux release, 
but a library of processes for various initial states needs 
to be created by hand. 

6.    Checking properties of models 

As noted in the introduction, we are checking SE 
Linux properties in stages, starting with simple prop- 
erties, and advancing to deeper properties. 

6.1.    Simple properties 

There are two types of simple properties: well- 
formedness properties and policy assertion properties. 
The well-formedness properties are policy-indepen- 
dent, while poUcy assertion properties are policy- 
dependent. 

Well-formedness of the TAME specification as a 
PVS specification is checked simply by applying the 
PVS type checker and proving any type correctness 
conditions that the type checker generates. Addi- 
tional well-formedness conditions include shadow vari- 
able properties, which assert that the shadow variables 
have the intended relation to the variable objects, 
and object type properties, which show that the OBJECT 
components of "reachable" objects have the expected 
object class. Below are an example shadow variable 
property and an example object type property: 

FOMLL (pn: Fullpathname, pid: PID) : 
Processpresent(pid,s)   IFF 
(EXISTS(o:OBJECT):  meinber(o,objects(s))  ft 

PROCESS?(o)  ft 
pid = Pid(o)); 

FOMLL (o: OBJECT): 
member(o,objects(s))  ft PROCESS?(o)  => 
(FILE?(Pexecutable(o))   ft 
Fclass(Pexecutable(o))  = file); 

These can be translated as: "Processpreseiit(pid,s) 
is true if and only if there is a process object in s 
whose Pid is pid" and "the executable associated with 
any process object in s is of file class", respectively. 
Such properties are not true in every state s in the 



state space but are expected to hold in every reachable 
state of the model. Therefore, they must be proved as 
state invariants, in most cases by induction over the 
reachable states. Induction proofs of these properties 
can be facilitated by introducing a new TAME strategy 
for using action preconditions that omits expanding 
PermissionGranted, thus taking advantage of the fact 
that the properties are policy-independent. 

Policy assertion properties are derived directly from 
the neverallow statements that comprise the asser- 
tions of a policy. Such a property can be checked di- 
rectly simply by expanding the Allowed predicate and 
using the result to check that no case forbidden by the 
associated neverallow statement is allowed. Check- 
ing these assertions provides some assurance that the 
definition of Allowed in the model is consistent with 
the specification. 

6.2.    Deeper properties 

The deeper properties of greatest interest are those 
that derive from the security goals that the policy de- 
signer wishes to achieve for a Linux system in a dis- 
tributed environment. A set of eight general goals for 
the example policy in the SE Linux release is given 
in [15]. These goals are stated at a very high level, 
e.g., "protect the integrity of the kernel", "protect 
the administrator role and domain from being entered 
without user authentication", and "protect users and 
administrators from the exploitation of flaws in the 
netscape browser by malicious mobile code". Deter- 
mining the precise properties SE Linux should have to 
achieve the high-level goals is difficult without more 
explicit input from the policy designer. 

Here are two possible deeper properties of interest: 

1. Only a process whose initial TE type is klogd_t, 
or one of its descendents, ever gets permission to 
execute a write system call to kernel log files. 

2. Any process that has search permission in a di- 
rectory has search permission in all ancestors of 
the directory. 

Property 1, which can be formulated as a transition 
invariant, may be one of the properties desired for 
protecting kernel integrity. Property 2, which can 
be formulated as a state invariant, is interesting for 
a diflFerent reason: if this property holds, then ev- 
ery use of PathAllowed involving the search permis- 
sion can be changed to a simple (non-recursive) use 
of Allowed. This would be a very useful lemma in 
proving other properties, since it would allow relatively 
complicated reasoning about the recursive predicate 

PathAllowed to be replaced by more straightforward 
reasoning about the simple predicate Allowed. 

Other properties of interest may be the informa- 
tion flow properties being checked by Herzog and 
Guttman [7]. As noted in Section 2 precise checking 
of such information flow properties cannot be done by 
straightforward reasoning from the policy rules. These 
information flow properties can likely be checked in 
the TAME model, since this model contains more sys- 
tem detail than is embodied in the policy rules alone. 
However, the feasibility of doing so is currently an open 
question. 

6.3.    Feedback from unfinished proof goals 

Every unfinished proof goal occurring in the course 
of the proof of a state or transition invariant corre- 
sponds to a state transition that, if it is reachable, is 
a counterexample: a transition that either fails to pre- 
serve the state invariant or fails to satisfy the transi- 
tion invariant. To handle an unfinished proof goal, one 
can often introduce additional facts that show that the 
prestate in the transition is not reachable. These facts 
may be facts about the specification that have not yet 
been used in the proof (e.g., the inductive hypothe- 
sis), or they may come from separately proved invari- 
ant lemmas or lemmas about the data types used in 
the specification. However, sometimes the unfinished 
goal will correspond to a real counterexample. In such 
cases, it is useful to be able to simulate the system 
to discover whether the prestate is indeed reachable. 
Creating such a simulation capability is work for the 
future. Two possible approaches are 1) use Lisp code 
mimicking the TAME specification of the model; and 
2) create a testing facility within SE Linux that allows 
arbitrary system calls to be issued from arbitrary se- 
curity contexts and allows those parts of the system 
state relevant to invariant properties of interest to be 
observed. 

7.    Discussion 

The nature of our project has led us to consider 
the features of a policy language that are most useful 
for various purposes, especially policy analysis. In our 
efforts towards supporting analysis of SE Linux secu- 
rity policies, we have treated the policy language as a 
specification language. In this section, we first discuss 
the kinds of support that are needed in general from 
a specification language, and the degree to which the 
current SE Linux policy language provides those kinds 
of support. We then discuss possibilities for enhanc- 
ing the support provided by enhancing the language. 
We believe our observations about the SE Linux pol- 
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icy language can provide guidance in the design or en- 
hancement of other policy language. 

T.l.    Desirable properties of a specification 
language 

Features desirable in a specification language in- 
clude: 

1. Adequacy and flexibility. 

2. Good dociunentation, including a well-described 
semantics. 

3. Ease of use. 

4. Usefulness for communication. 

5. Suitability for implementation-independent anal- 
ysis. 

6. Simple support for modifications to achieve par- 
ticular goals. 

Software developers are more likely to add security fea- 
tures to their software if they have access to a security 
policy definition language with the properties listed 
above. 

The current SE Linux policy language is quite 
strong on property 1. Though the question of what 
kinds of security can be provided by use of the lan- 
guage requires farther study, the language is low-level 
enough to resemble an "assembly language" into which 
many high-level security policies can be compiled. 

A major missing factor in the language is a way 
to associate permissions checks with system calls in 
a systematic way that can be tinderstood by policy 
analysis tools. Currently, this information is partially 
documented in [15] in tables and in text; the ultimate 
documentation is in the code of the system calls. A 
related difliculty is that associating a fixed set of per- 
missions with a given system call k problematic due 
to the complexity of the system call code, in which 
different permissions can be checked in different code 
branches. For example, the usual open system call re- 
quires different permissions when it is applied to the 
name of a nonexistent file than when it is applied to 
the name of an existing file. Thus, it might be difiicult 
to specify the full details of the permissions associated 
with system calls in a simple table. One possible so- 
lution is to follow the approach we took in our model, 
namely, to create simple "atomic system operations" 
(i.e., without branches in their code requiring different 
permissions) in terms of which the standard system 
calls can be defined, and associate fixed sets of permis- 
sions with these atomic operations. Abstract models 
could then base their actions on these atomic opera- 
tions rather than the more complex high-level system 

calls. In our model, we have in fact restricted open to 
an operator on existing files, since the usual effect of 
applying open to the name of a file that does not exist 
can be achieved by creat. 

One factor that impedes the degree to which the 
language can fulfill properties 3, 4, 5 and 6 are that 
the language is currently weak with respect to prop- 
erty 2. The incompleteness of documentation is under- 
standable in a product still in the development stages, 
and the documentation has gradually improved. But 
there are still gaps in the documentation. For exam- 
ple, type_change rules are said to be associated with 
relabeling operations, but the exact nature of these 
operations is not documented. A second factor that 
limits properties 3, 4, 5 and 6 in the policy language 
is that it is so low-level. Whether a higher-level lan- 
guage can be designed that will allow policy designers 
to create, modify, and communicate the intentions of 
their policies more easily is an open question. 

7.2.    Possible   improvements   to   the   SE 
Linux policy language 

Several minor modifications to the SE Linux policy 
language would make it more friendly to the analy- 
sis of policy specifications. For example, our policy 
slicing algorithm needs to be able to identify the ob- 
ject class(es) associated with permissions macros. Our 
extraction algorithms for computing Allowed, New- 
f iletype, and Newproctype fi-om a policy specifica- 
tion need to be able to distinguish rule macros from 
set macros, macros for permissions sets from macros 
for object class sets, and so on. Currently, our algo- 
rithms are unnecessarily complicated because this in- 
formation about the macros in the specification has to 
be computed indirectly from other information in the 
specification. This problem could be solved by replac- 
ing the macro construct by a similar construct con- 
taining additional information to (e.g.) 1) distinguish 
rule macros from set macros, 2) distinguish macros for 
permissions sets from macros for object class sets, and 
3) identify the object class or classes associated with a 
permissions set macro. 

Other aspects of the macro construct can make a 
poHcy difiicult to analyze by inspection. One exam- 
ple is the use of parameterized types in macros where 
these types are not locally declared. E.g., the parame- 
terized type $l_home_t is used in the example policy in 
the macro su_domain but only declared in the macro 
user_domain. This is safe only if su.domain is used 
only inside the user .domain macro. This in fact is the 
case in the example policy, but establishing the fact 
that such stray parameterized types are always used 
safely requires considerable computation.   The need 
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for such a safety check would go away if macros were 
replaced by functions not involving global variables. 

Modifying the language into something closer to a 
strongly typed programming language would permit 
the use of functions rather than macros, and facilitate 
other consistency checks that one gets "for free" from 
type checking in such a language. We note that the Z 
specification language, which has some of these charac- 
teristics, was used to specify the security enforcement 
policy for DTOS [13] in a previous related project. The 
SE Linux policy language could almost certainly be 
modified to be more like a programming language and 
still, if desired, retain its low-level characteristics. 

However, a higher-level language that can specify a 
security policy with a clearer relationship to desired 
high-level security features would be much better in 
regard to ease of use, understandability, and ease of 
modifying policies. Using the current language or a 
close relative as the target language to which policies 
in a higher-level language could compile would permit 
the current security server implementation to continue 
to be used to enforce security. 
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