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1    Statement of the problem studied and Significance 

This project concerra development and application of finite difierence methods using Cartesian 
grids for differential equatioiK with complicated geometry or/and with interfaces. 

A model problem is the Poisson equation 

V-(^V«) = /(a:,y), (1) 

with the following two important settings: 

• The solution domain is arbitrary with Neumann or mixed boundary conditions, see Pig 1 (a). 
It is well known that the finite difierence methods generally will lose accuracy for arbitrary 
boundaries. 

• Interface problems defined on a rectangular domain, see Fig 1 (b). The coefiicient ^(x,y) 
may be discontinuous across the interface. Whenever we have situations involving two 
different materials, or the same material but in different states, the physical properties will 
be different across the interface, we have to deal with interface problems. For example, the 
interface between oil and water, the interface between a fluid and a gas bubble are exajnples 
of different materials. The ice-melting, crystal growth, and other soMdification problems are 
examples of interface problems of the same materials but at different states. 

The problems we are interested in come from different applications and they have one, several, 
or all of the following properties: 



• There is one or more complicated geometries, boundaries or interfaces. 

• The coefficients of the differential equations may be discontinuous across interfaces. 

• The solution and its derivatives may be discontinuous across interfaces, 

• There may be discontinuous or singular sources, or dipoles along interfaces, for example 

f = fc + Jsi^-X)dK, 

where T is a cmrve in two dimensions, and a surface in three dimensions, S is the Durac-delta 
function which is not a standard mathematical function and is only defined in terms of the 
distribution theory. 

• The interfaces may be fixed or moving and may develop topologies! changes such as merging 
or breaking. 

1.1    Why Cartesian grids? 

It is true that the finite element method may be used to solve the problems of the interest. 
However we want to develop finite difference methods for the following reasons: 

• There is almost no cost in the grid generation. This is very significant for moving bound- 
ary/interface problems. 

• To get sharp interfaces and solutions, we want to use the infinity norm instead of energy 
norm used in the finite element method. A method converges with high order accmacy in 
the energy norm may not converge at all in the infinity norm. 

• We want to take advantage of many efficient packages/solvers which are written for Cartesian 
grids. 

• Recently, the level set method has been very successful for a number of moving inter- 
face/boundary problems, especially for the problems with topological changes and three 
dimensional problems. The level set function works best with Cartesian grids. 

• Finite difference schemes are generally easier to learn and implement than the finite element 
method. 

2    Summary of the miost important results 

2.1    Algorithms development 

2.1.1    Immersed finite element miethods for interface problems 

We have developed two different finite element spaces for interface problems and developed the 
corresponding Galerkin finite element methods for elliptic interface problems using Cartesian 



grids. Some theoretical results about these finite element methods are also obtained. We believe 
that we are the first to develop these new finite element spaces over Cartesian grids. With the 
new finite element spaces, we are able to derive stable and accurate numerical methods with 
sharp interfaces, see [12, 4]. In the non-conforming finite element space, a basis function is 
defined almost exact the same as the standard piecewise linear finite element space except that 
we enforce the natural jump conditions across the interface. This finite element space have the 
following properties: 

• It has the same support as the standard piecewise linear finite element space. Therefore it 
is very easy to programming, 

• A global basis function may not be continuous across the edges whether the interface cuts 
through. Therefore it is a non-conforming finite element space. 

• Existence and uniqueness of the basis function has been established. 

• Theoretically, for a solution of an elliptic interface problem, we can construct an interpo- 
lation function that approximates the solution to second order, and the first derivatives of 
the solution to first order within each triangle. 

• The method is second order in the L"^ norm and the energy norm. In ternw of the L°° norm, 
a linear to super-linear convergence is expected. 

• The finite element method can be directly applied to three dimensional problems. 

In the conforming finite element space for interface problems, we have shown that it is impos- 
sible to construct a conforming finite element space using polynomials which satisfies the natiural 
jump conditions while it has the same support as the standard piecewise linear basis function 
TKing piecewise polynomials. As a breakthrough, we came to an idea to extend the support of 
the basis function to one m.ore triangle along the direction of the interface. In this way, a piece- 
wise linear and conforming finite element space can be constructed for interface problen^. We 
think this is a major advance in this area. The conforming finite element space has the following 
properties: 

• Existence and uniqueness of the basis function has been established. 

• The finite element space is a conforming finite element space. Therefore most of the standard 
theories for conforming finite element spaces apply directly. High order elements can be 
constructed accordingly. 

• Theoretically, for a solution of an eUiptic interface problem, we can construct an interpo- 
lation function in the finite element space that approximates the solution to second order, 
amd the first derivatives of the solution to first order within each triangle 

• The method is second order in the L"^ norm and in the energy norm. Numerical examples 
show that it is ako second order accurate in the the U^ norm. 



2.1.2 Maximum preserving scheme for elliptic interface problems and applications 

Some new difference methods have been developed for elliptic interface problems that involve 
discontinuous coefficients, singular source terms, non-smooth or even discontinuous coefficients 
across an arbitrary interfaces. The new methods are based on Cartesian grids and satisfy the sign 
property that guarantees the discrete maximum principle using an optimization approach. The 
resulting linear system of equations obtained from the new methods is diagonally dominant and 
its symmetric part is negative definite. The convergence of the new methods have been proved 
by constructing the comparison functions. 

With this work, we have a imique second order finite difference method using Cartesian grids 
for elliptic interface problems that allows variable discontinuous coefficients. This work has solved 
the stability problem for the original immersed interface method and provided theoretical foun- 
dation for the immersed interface method. We believe the new method is the first second order 
method (in the maximum norm) using Cartesian grids for variable discontinuous coefficients that 
can guarantee the discrete maximum principal and second order convergence, see [11]. 

The method has been coupled with a multigrid solver. We have written a general subroutine 
for this methods with the interface been represented by a set of control points. 

The generalization of the method to three dimensional problems is described in [2, 3]. 

The generalization of the method to diffusion and advection equations with a new multigrid 
solver is described in [1]. 

2.1.3 New Formulations and algorithm for interface problems in polar coordinates 

The new methods are based on a formulation that transforms the interface problem with a non- 
smooth or discontinuous solution to a problem with a smooth solution. The new formulation 
leads to a simple second order finite difference scheme for the partial differential equation and 
a new interpolation scheme for the normal derivative of the solution. In conjimction with the 
fast immersed interface method, a fast solver has been developed for the interface problems with 
piecewise coi^tant but discontinuous coefficient using the new formulation in polar coordinate 
system. The work is described in [14]. 

2.2    Applications of new algorithms 

2.2.1    Level-set function approach to an inverse interface problem in shape identifi- 
cation 

A model problem in electrical impedance tomography for the identification of unknown shapes 
from data in a narrow strip along the boundary of the domain is investigated. The representation 
of the shape of the boundary and its evolution during an iterative reconstruction process is 
achieved by the level set method. The shape derivatives of this problem involve the normal 
derivative of the potential along the unknown boundary. Hence an accmrate resolution of its 
derivatives along the unknown interface is essential. It is obtained by the immersed interface 
method. The work for 2D and 3D problems are explained in [6] and [3] respectively. 



2.2.2      Autophobic spreading of drops 

In collaboration with J. K. Hunter of UC Davis and H. K. Zhao of Stanford University, we 
formulate a model for the spreading on a surface of a drop that deposits an autophobic monolayer 
of surfactant. We present numerical solutions of the model equations xising an immersed interface 
method and a level set method, see [5]. 

2.2.3    Immersed Interface Method for Navier-Stokes equations with moving inter- 
face. 

We have derived the jump conditions for Navier-Stokes equations with an interface in 2D and 
3D, see [9]. The immersed interface method for the incompressible Navier-Stokes equations with 
singular forces along one or several interfaces in the solution domain has been developed in [8]. The 
new method is based on a second-order projection method with modifications only at grid points 
near or on the interface. From the derivation of the new method, we expect fiiUy second-order 
accuracy for the velocity and nearly second-order accuracy for the pressure in the maximum norm 
including those grid points near or on the interface. This has been confirmed in our numerical 
experiments. Furthermore, the computed solutions are sharp across the interface. 

Using the fast immersed interface method and the vorticity stream-function formulation, we 
have developed a fast method for Navier-Stokes equations defined on general domains in [13]. 

2.3    Software development 

We have written some public subroutines of fast solvers for Helmholtz and Poisson equations on 
irregular domains either exterior or interior with various boundary conditions have been developed 
and made public through anonymous ftp. 

These subroutines use the fast immersed interface method by introducing a imknown jump 
either in the solution or the normal derivative. Using the fast solver from Fishpack, we implicitly 
solve a hnear system of equations using GMRES iteration. These methods are called fast solvers 
because of the number of iterations is independent of mesh size. While there are similar meth- 
ods for problems with Dhrichlet boundary conditions, our approach for problems with Neumann 
boundary conditiom using some preconditioning techniques is not only unique, but also necessary 
to guarantee the number of iterations to be independent of mesh size. These packages include 

• Fast solv^ for Helmholtz/Poisson equations defined in an arbitrary interior domain with 
Dirichlet boimdary condition. 

• Fast solves for Helmholtz/Poisson equations defined in an arbitrary exterior domain with 
Dirichlet boimdary condition. 

• Fast solves for Poisson equations defined in an arbitrary exterior domain with Dirich- 
let/Neumann boundary condition. 



Our method also works for Helmholtz equations defined in an arbitrary exterior domain, but the 
number of iteration depends oh mesh size. Whether we can derive a fast solver for this type of 
problems is an open question. 

Other applications and contributions can be found in [10, 15, 16, 7] etc.. 
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