
7. PERFORMING ORGANIZATION NAME{S) AND ADDRESS{ES)

Naval Research Laboratory
Marine Geoscience Division
Stennis Space Center, MS 39529-5004

REPORT DOCUMENTATION PAGE FormAppmved
OMB No. 0704-0188

S3 E.2„KKh" H , J f "5"^'°? f infomi«ion"? esttmatol to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining ttie date needed, and completing and reviewing «ie collectton of information. Send comments regarding this burden esMmate or any other asp^a of this collection of Information
induding suggestions for reducmg the burden, to Department of Defense. Washington Headquarters Services, Dliectorate for Information Operations and Reports (0704-0188) 1215 JeffTrS
Davis Highway. Suite 12(M Arlington, VA 22202-4302, Respondents should be award tat notwithstanding any other provision of law, no pereon shall be subject to any penalty for fafcq to
comply with a collection of infomiation if it does not display a currently valid OMB control number j >« any Mwwuy lui wiimg to
PLEASE DO NOT RETURN YOUR FORM TO TOE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

10-FEB-2003

2. REPORT TYPE

Conference Proceedings, (refereed)
4. TITLE AND SUBTITLE

Parallel Software For Processing Hydrographic Data

3. DATES COVERED (Fmm - To)

6.AUTO0R(S)

M.J. MILLER Kizysztof SamowsW pr.) GEW^Y LAYNE

5a. CONTRACT NUMBER

5b, GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

Sd. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

74-7441-L3

9, SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

SPAWAR PMW 155
4301 Pacific Highway
San Diego, CA 92110

8. REPORTING ORGANIZATION
REPORT NUMBER

NRL/PP/7440-03-1008
10. SPONSOR/MONITOR'S ACRONYM(S)

SPAWAR
11. SPONSORWONITOR'S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release,distribution is unlimited

13. SUPPLEMENTARY NOTES 20030416 339
14. ABSTRACT

values, and writing the filtered data to a single file used in additional processing. The pnsblent) Is not computationally intensive, but bound by the system's file writing capability
Subsequent versions of the parallel software developed exploit the strengths of the systeni's hardware to write the output file in ttie most time efficient manner. Each software
veision uses advanced software architecture schemes to achieve better results. Results show ttiat the more responsible the software -mm for oiganiang the data before writing
better the speedup. The critical factor for writing data efficiently Involved the limitation of writing data over a single I/O controller. Our parallel software has fantastic utility v*ere'

the

system specifications do not allow for the use

15. SUBJECT TERMS

hydrographic data processing

16. SECURITY CLASSIFICATION OF:

a. REPORT

unclassified

b. ABSTRACT

unclassified

c. THIS PAGE

unclassified

17. LIMITATION OF
ABSTRACT

Unlimited

18. NUMBER OF
PAGES

10

19a NAME OF RESPONSIBLE PERSON

M. J. Miller
19b. TELEPHONE NUMBER C/nctafes/esKxfe;

228-688-4193

Standard Form 298 (Rev. 8/98)

Parallel Software for Processing
Hydrographic Data

The Naval Research Laboratory
And

The Univereity of Southern Mississippi
Hydrographic Research Center

Stennis Space Center, MS

By

Dr. M J. Miller
Dr. Kizysztof Samowski

Geary Layne

December 2002

1 Introductioii

The Naval Research Laboratory's (NRL) Code 7440 Production Enhancement Team at the Stennis
Space Center h^ been tasked to develop ways to speedup hydrographic data processing at the
Naval Oceanographic Office (NAVO) [Depn02]. This paper pr^ents the final development of a
parallelized vereion of the Pfinloader application customized to run on a Beowulf cluster.

This paper specifically covers software development efforts in early FY02 [Sam02]. In a series of
algorithms, called Schemes D, E, and F, a parallel algorithm previously implemented in Scheme C
(see Figure 1) has been integrated with an improved va^ion NAVO's of flie Pure File Magic
(PFM) library. Former versions of this software not mentioned, namely Schemes A and B, were
used as a design platform for the software architecture found in Scheme C. The main goal of this
work was to increase ^e writing rate of binned data to a physical disk. The final software version is
Scheme F.

The final parallel code of Scheme F achieves the best speedup for the largest available test dat^et.
The simple runs (no filtering) exhibited a speedup of 8 ^ compared to the original, serial
algorithm. Rims with swath filtering showed a top speedup of 8. Rum with area filtering reached a
spe^up of 6.5. Runs with both swath and area filtering showed a top speedup of 7. In all cases,
data strongly suggest Ihat greater speedups could be achieved for larger than tested input datasets.

Section 2 of this paper is devoted to Scheme D. Section 3 presents results on an implemented
threaded veraion of Scheme D. Section 4 deals with results for Scheme E. Section 5 describes
Scheme F. Detailed results are presented on the performance of Scheme F when swath and area
based filtering are enabled. Section 6 presents results illustrating the effect of the physical disk's
I/O throughput rates on speedup results. Section 7 discusses results and fiiture plans.

2 Scheme D

In Scheme D, ^ in Scheme C, nodes are assigned one of the following roles — a master node, an
I/O node, or a slave node. In general, more of the fimctionality of the original PFM library has been
assigned to the slave nodes in Scheme D than in earlier schemes.

• Each slave node sorts read-in sounding data according to bin index and compresses them in
the same way m is done in the original PFM library. The sending buffer is now in the form
of a character string.

• The I/O node receives sounding data in the PFM compressed form and copies them into the
PFM-style depth blocks consisting of six sounding data and a continuation pointer.

• The master node role h^ not been changed fi-om Scheme C.

2.1 Results
Figure 2 illustrates achieved speedups for different loMs. The test datasets are denoted, m
previously, by "L" (the Liberty dataset), "12" (12 files), "24" (24 files), "48" (48 files), and "74"
(74 fite). Timings have been averaged over four runs. Speedup figures are created by comparing
parallel and serial runs. In the case of algorithm speedups, the comparisons are made with
corresponding timings for three Message Passing Interface (MPI) processes. Speaiups exhibited by

Scheme D reach about 7 for the four larger dataset loads. For the smallest dataset. Scheme D shows
a speedup of wound 5, cutting the run time from around 2 min to 23 sec. For the largest input
dataset tested, the measured speedup is 7 fold, reducing execution time from around 24 min to 3
min 20 sec. The optimal number of MPI processes is 9 for this scheme.

File_nameO
Filenamel
File_nmne2

File nameN

Slavel 1 Slave! 1 Slaves Slave4 Slaves

1 '
k f > ̂ A

i i \ 1 i \ 1
R
A
M

R
A
M

R
A
M

R
A
M

R
A
M

Figure 1: Scheme C (the precursor to the schemes presented in this paper)

Threading

3.1 Threading: Initial Plan
The overall processing flow can be improved by grouping tasks into at least two threads on the I/O
node and a slave node. Tasks related to MPI communication can be accompMshed by a separate
thread. A testing program mixing MPI and threading confirmed that MPI Chamleon (MPICH)
allows only a single thread to execute MPI calls. On the I/O node, a sq>arate communication thread
would take care of receiving buffers. The other thread would be responsible for writing data to die
PFM output file. On the slave node, a communication thread would send fall buffere to the I/O
node. The second thread would fransfer and process sounding data from input files to buffers. Tests
are planned to check if the currently used dual-CPU system boards will efficiently support two
application threads. A quad system board for flie I/O node could be used if that proved beneficial.

3.2 Threading the I/O Node: Algorithm
Only one part of the above plan has been implemented: Scheme D hM been tested using Linux
Posix threads on the I/O node only. Processing on the I/O node hM been separated into two threads.
The second thread submits data to an output PFM file. The main thread does all necessary
initialization and then creates one additional thread, called the I/O processing thread. The main
thread acts as flie I/O communication thread. All MPI fonction calls are done only by the I/O
communication thread. The I/O communication thread receives buffers fi-om worker nodes and
submits them to a work queue. The I/O processing thre^ checte the work queue for any fiill
buffers, and uses PFM function calls to write data to the PFM output file. An empty buffer is
returned to the work queue area. The algorithm implements reuse of buffers m order to avoid
reinitializing buffera. All access to the work queue is safeguarded by "a mutex lock" (Mutually
Exclusive Access Lock) mechanism, a standard tool available in the thread library. A set of a few
empty buffers is mitialized in advance on the I/O communication side. If all empty buffera on the
I/O communication node are used, that thre^ entere the work queue and gets their empty buffers.
If no empty buffera are available in the work queue area, the I/O communication thread initializes a
firesh buffer. Only if initializing the fi-esh buffer fails, the I/O communication thread waits for the
I/O processing threwl to return a buffer. The creation of additional buffera is always expected
because PFM library operations are the slowest part of processing (since these library operations
require multiple accesses to the physical disk drive).

7 -

Speedup of Scheme D

Oatasets: tiborty, corticj, A
jialnseis 1Z flic?,, coiifid 4
datasets: 2<l files, config, 4
(latasets: 48 files, config, 4

8 10

number of mpl processes
12 14 16

Figure 2: Achieved speedup of Scheme D for different loads.

3 J Threading the I/O Node: Results
Figure 3 illustrates achieved speedups for different loads. The test datasets are denoted, as
previously, by "L" (the Liberty dataset), "12" (12 files), "24" (24 files), "48" (48 files), and "74"
(74 files). Speedup values for the Scheme D-Threaded vereion are noticeably smaller than the

original Scheme D. Such results could be attributed to the additional overheM of the thread library.
However, results for the largest test dat^et ("74") are especially disappointing, due to the lack of
control of the memory usage on the I/O node in the threaded code. This preliminary tiireaded
vereion has no control on the number of buffers used to keep incoming buffers on the I/O node.
Since worker nodes deliver buflfera much faster than tiie I/O node could possibly write them to a
(slow) physical disk, incoming buffers forced the operating system on the I/O node to use disk
swap space, causing a significait slow down in processing.

Speedup of Scheme D-Threaded

1 -

—I 1
datascts: Liberty, coring. 4
clatasets: 1Z files, contit.!, 4
datasets: 24 files, config, 4
dalBsets: 48 files, conflq. 4

.iff...- _.'•.

8 10 12
number of mpl processes

14 16

Figure 3: Achieved speedups of Scheme D-Threaded for different loMs

Scheme E

4.1 Grouping Sounding Data into Packages of 6
The improved vereion of the PFM library, as well as the original library, writes data to the physical
disk in fixed length blocks. Each block can hold up to six sounding values (the value of six is
configurable). To take advantage of these blocks, soimding data are sent in groups of six (with the
same bin index). At firet, slave nodes send depths grouped into packets of six (with same bin
indexes) to create full deptii records in PFM style. When all input file names have been distributed
(and most of the files have been already processed) the finishing slave nodes have some leftover
depth data. Separately, each node cannot create a final fiiU depth record containing 6 sounding
values for one bin index. Under the direction of the m^ter node, the firet slave node to finish
processing becomes a sorting and grouping node. Then, the other slave nodes send their leftover
data to that sorting node for consolidation. Subsequently, fiiU records are sent to the sorting and
grouping node (the one which currently is accepting data) with the final leftover data sent to the I/O
node. This additional effort of sorting into groups of six dqjtiis hm the advantage of increasing
speed of writing the data to disk as well as avoiding any need to reread and rewrite partially empty
depth records. Further improvements include a new interface function to the PFM library to

accommodate direct writing of blocks to the PFM file. Also, slave nodes are given the additional
task of creation of complete depth blocks. ITiis improvement reduces the FO node's task to simply
updating the continuation pointers before writing data to disk.

4.2 Results
Figure 4 illustrates achieved speedups for different loads, compared with the ori^nal serial
application. The test datasets are denoted, as previously, by "L" (the Liberty dataset), "12" (12
files), "24" (24 files), "48" (48 files), and "74" (74 files). The timings have been averaged fi-om
four runs. A comparison between speedup numbere for Schemes D and E shows that values for
Scheme E are noticeably smaller, excq)t for the largest test dataset. For the smallest dataset.
Scheme E shows a speedup around 4.5, reducing the run time fi-om around 2min to 26 sec. For the
largest input dataset tested, flie measured speedup is around 7, reducing execution time fi-om
around 24min to 3 min 19 sec. The optimal number of MFI processes is 10 for larger dat^ets in
Scheme E.

4.4 Filtering, Recomputing Steps and Final Tune-up
The original filtering fijnctionality works well in the Beowulf cluster environment. The original
swath filtering was being handled sqjarately for each input file. Thus the new distributed scheme of
processing input files by a group of slave nodes has no effect on swath filtering. The same has been
found for the recomputing step and area b^ed filtering, which run without any changes to the code
because they are executed in the serial phase, on the I/O node, only after the PFM file has already
been created.

Speedup of Scheme E

8 -

6 -

-, 1
damsots: tlt50rty, config. 4
dat.tseis
dafasels:
tlafasclS:

12 lilfs, conlKi 4
24 fltes, config. 4
48 file?., config 4

8 10 12

number of mpi processes
14 16

Figure 4: Achieved speedup of Scheme E for different loads

5 Scheme F
A tuned version of the new PFM library was used in Scheme F. Scheme F was tested with four
different setups, involving two possible filtering procedures: swath filtering, area filtering, both
swath and area filtering, and no filtering (called "simple runs"). Each of these four setups has been
tested with iJie standard five data test loads: "L" (the Liboty dat^et), "12" (12 files), "24" (24
files), "48" (48 files), and "74" (74 files). Results with no filtering are illustrated in Figure 5.

Scheme F Speedup
12

10

datasels: Ubcity, conlig. 4
datas,ets 12 fili-s. eonfiq, 4
datasels; 24 files, conlig. 4
tiatasets: 4B riles, cortfig, 4

12 14 16 2 4 6 8 10
number of mpl processes

Figure 5: Achieved speedups of Scheme F with no Filtering

5.1 Effects of Filtering on runtime performance
It was found that Scheme F achieves the best speedup for the largest available test dataset. The
simple runs (no filtering) exhibited a speedup of 10. Runs with swath filtering enabled showed a
top speedup of 8. Rum with area filtering reached a speedup of 6.5. Runs with both swath and area
filtering enabled showed a top speedup of 7. In the simple runs, swath filtering and area-bMcd
filtering are turned off. Figure 6 illustrates achieved speedups for different loads and filter
processing. For the smallest dataset. Scheme F provides a speedup of 4.4.

When swath filtering is turned on, worker nodes filter the sounding data by swath before
assembling them and sending to the I/O node. Since swath filtering puts alditional processing onto
worker nodes, such code behavior is to be expected. Worker nodes perform swath filtering on
sounding data read fi-om the input files. When area filtering is also turned on, fiie I/O node also
performs area filtering of sounding data. Since area filtering is done exclusively by the I/O node
after all sounding data has been written to the PFM file, the area filtering is performed in the serial
phase of overall processing.

6 The Role of Hard Drive Performance
This section presents arguments to support the claim that the application Pfinloader is I/O bound.
When Scheme D WM developed, upgrading the BIOS on each Beowulf cluster node resulted in
significant improvement in the throughput of cluster IDE (ATA 100) disks. These changes

Speedups using Filtering
*

12 -|

in -

Q
^-^

o
Q.

o

6 -

4 -

^—'^<^'
_^ -* "^

.-%--'' —-—"

9 .

0 -
Liberty 12 24 48 74

 None 4.4 6.7 7.2 8.2 9.6

 Swath 3.5 5.5 5.8 7.2 8.3

 Area 3.5 4.1 4.6 5.6 6.5

 Both 3.3 4.8 5.2 6.4 7.3

Number of Files

Figure 6: Speedups using Filtering with 16 MPI processes

Liberty 12
GSF input files

24 48

125.106
Timings of serial code, before BIOS upgrade
203.57 I 439.253 I 946.034

74

1607.132

118.439
Timings of serial code, with BIOS upgrade

192.216 I 412.311 I 893.726 1433.211

5.33% 5.58%
Percentage change

I 6.13% I 5.53% 10.82%

Table 1: Timings of change in hard drive performance

significantly affected the run time of parallel codes as well as the original serial code. The changes
for tiie original serial code are in the range from 5% to 11% (see table 1).

The resulting speedup is presented in figure 7. Speedup numbers are derived by comparing parallel
runs with serial runs. In the case of algorithm speedups, the comparisons are done with
corresponding timings for three MPI processes. The changes range from 29% to 57%, which at
least triples that of corresponding percentage changes for serial runs. The effects of different disk
throu^puts are illustrated in figure 8.

Wgorithtn Speedup <rf Scheme D
3

2.5 -

1.5

datasets
tintascts
daiaseJs
sJatasets

12 files, config. 2 •••
24 lites, config. 2 •••
48 lites, toniig. 2 <••'
74 files, cortlg. 2 -

,-"".,

••..,.-

_£
10 12 2 4 6 8

number of mpl rx'ocesses

Figure 7: Algorithm speedup of Scheme D for different loads
Speedup of Scheme D

10 -

8 -

6 -

2 -

datasets: 12 files, cwiflg. 2
datasets; 24 files, config. 2
rtatasets: 48 files, config. 2
datasets: 74 files, cmiflg. 2
dalasets; Iftcriy, config. 4
c]at,-i'>eb-12 file;:, config 4
datasets: 24 files, config, 4
da(.-iset'j 48 files, fionfig. 4

T**^"

.•^" *!•>#

6 8

numbw of mpl processes
10 12

Figure 8: Effects of different disk throughputs on speedup values for Scheme D

7 Summary

The optimal number of MPI processes for the simple runs with large datasets is 9.6. When area
filtering is turned on, the I/O node filters sounding data by geographic area. Since area filtering is
done exclusively by the I/O node after all sounding data h^ been alre^y written to the PFM file,
this processing adds to the length of the serial phase in the ovarall processing. The serial processing
nature of area filtering causes the greatest reduction in performance. The results generated by
testing two of the four types of processing provide arguments for increasing the size of the Beowulf
cluster. These two processing types are: (a) processing with swath filtering enabled, and (b)
processing with both swath and area filtering enabled. For the largest test dataset, both processing
methods achieved their best speedups when running with the maximal possible number of MPI
processes. However, the same data indicates the speedup incre^e would be modest.

In all CMCS, the data strongly suggests that a speedup greater than 10 could be achieved for larger
datasets. This property is a positive characteristic of the current parallel code. It also strongly
suggests diat the five test datasets have not yet pushed the current code and cluster configuration to
its limits.

8 References
Depner, J. et al. Dealing with Increasing Data Volumes and Decreasing Resources, Oceans
MTS/IEEE, 2002.
Samowski, K., Miller, M.J., Layne, G., Final Project Report FY02, Hydrographic Research
Center, 2002.

10

