
REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, Including the time for reviewing instructions, searching exlstinq data sources aatherino 
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any ither aspect ytl^KSnlfinfSS 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports raTOloisiri215 JeffiSon 
Davis Highway, Surte 1204. Arlington. VA 22202-4302. Respondents should be award that notwithstanding any other provision of law. no person shall be su|ect to any penat fir falnS 
comply with a collection of information If it does not display a currently valid OMB control number luany Mendnyroriaiiingio 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

23-JAN-2003 

2. REPORT TYPE 

Conference Proceedings, (refereed) 
4.TITLEANDSUBT|-n.E 

Designing And Building A Vector Feature Database 

6.AUTH0R(S) 

MARLIN GENDRON        STEPHANIE 8 EDWARDS        GEARY LAYNE 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Research Laboratory 
Marine Geoscience Division 
Stennis Space Center, MS 39529-5004 

5a. CON" 

3. DATES COVERED (From - To) 

RACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

62435N 
5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

74-6636-C3 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office of Naval Research 
800 North Quincy Street 
Arlington, VA 22217 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release.distribution is unlimited 

8. REPORTING ORGANIZATION 
REPORT NUMBER 

NRL/PP/7440--03-1005 
10. SPONSOR/MONITOR'S ACRONYM(S) 

ONR 
11. SPONSOR/MONITOR'S REPORT 

NUMBER(S) 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

High-resolution imagery can be stored on the computer in digital fonn as a picture, for eKample, a digital raster map Image file. These images then can be qeo-reoistered bv 
romputing coefficients from points with known latitude and longitude locations. Features such as roads and airports can be extracted by applying image^processinq techniaues to 
the geo-registered raster image. Attnbutes describing these featores and their geographical locations are stored in a "vector feature database"  The vector feature database 
contains many feature t^ies and Is consideiBd accurate to a given map scale. In a real-time processing system there Is a need to Input attributes and their locations and 
subsequently retneve such feature attributes from the database with minimum processing time. Vne overall size of the database is also a consideration  This paper explores the 
design and constmction of a vector feature database to 1) optimize the size of the database by reducing the number of attributes *ile still maintaining an adequate and unique 
desonption of the featore, and 2) enable high-speed input and retrieval of features. Several data stmotures that might be used to constmct the database are discussed includina 
hash tables, binary-trees, quad-trees, and R-trees. Ultimately a quad-tree stmcture modified to use geographic bitoiaps Is Implemented and evaluated ' 

15. SUBJECT TERMS 

satellite imagery, geo-registered, image processing, raster image, vector map 

16. SECURITY CLASSIFICATION OF: 

a. REPORT b. ABSTRACT e. THIS PAGE 

unclassified       unclassified       unclassified 

17. LIMITATION OF 
ABSTRACT 

Unlimited 

18. NUMBER OF 
PAGES 

19a NAME OF RESPONSIBLE PERSON 

Martin Gendron 

19b. TELEPHONE NUMBER (Indude area code) 

228-688-4773 

Standard Form 298 (Rev. 8/98) 

20030416 336 



Designing and Building a Vector Feature Database 

Marlin Gendron, Naval Research Laboratory 
Stephanie Edwards, Naval Research Laboratory 
Geary Layne, Naval Research Laboratory 

Abstract 

High-resolution imagery can be stored on the computer in digital form as a picture, for example, a digital raster map 
image file. These images then can be geo-registered by computing coefficients fi-om points with known latitude and 
longitude locations. Features such as roads and airports can be extracted by applying image-processing techniques to 
the geo-registered raster image. Attributes describing these features and their geographical locations are stored in a 
"vector feature database". The vector feature database contains many feature types and is considered accurate to a 
given map scale. In a real-time processing system there is a need to input attributes and their locations and 
subsequently retrieve such feature attributes from the database with minimum processing time. The overall size of 
the database is also a consideration. This paper explores the design and construction of a vector feature database to 
1) optimize the size of the database by reducing the number of attributes while still maintaining an adequate and 
unique description of the feature, and 2) enable high-speed input and retrieval of features. Several data structures 
that might be used to construct the database are discussed, including hash tables, binary-trees, quad-trees, and R- 
trees. Ultimately a quad-tree structure modified to use geographic bitmaps is implemented and evaluated. 

Acknowledgments 

This work was funded by the Office of Naval Research through the Naval Research Laboratory under Program 
Element 62435N. The mention of commercial products or the use of company names does not in any way imply 
endorsement by the U.S. Navy. Approved for public release; distribution is unlimited. 

Raster and Vector Database 

Maps come in many forms, such as nautical, aerial, and topographic. Map can be derived from satellite and 
underwater imagery. These maps are usually stored digitally as raster image files or vector databases. Raster maps 
are simply stored in the computer as pixels and usually originate from paper charts scanned into the computer or 
directly from satellite or sonar imagery. Vector feature databases (VFDb) exist as independent feature attributes 
such as roads, airports, and descriptive text that can be overiaid and combined to form a readable map. Features in a 
VFDb exist separately from each other and can be added to or subtracted from the map. Features in raster map 
images can only be pulled out with special feature detection algorithms. These algorithms are often complex and 
CPU intensive. 

When pixels in the raster image or points on a vector feature correspond to points on a surface, such as the Earth, the 
raster image or vector feature is geo-rectified or geo-registered. Several map fdes stored together in a structured way 
form a map database. Digital raster map databases exist at many different resolutions, or map scales, and define how 
individual map files can be pieced together to form complete maps (Lohrenz, 1991). 

The geo-rectifying process occurs by taking control points, at known latitude and longitude points on the Earth, to 
generate coefficients. These coefficients are used to compute new x and y positions in the image. The number of 
control points and their precision determines the accuracy of the raster map. The geographic extent of the image and 
its size in pixel space determines the map scale of the image (Hager, et al., 1990; Landrum, 1989). 

Figures 1 and 2 show grayscale raster map image files that have been geo-rectified. Figure 1 shows a satellite image 
file depicting a highway interchange. Figure 2 shows an geo-rectified file of sidescan sonar imagery with a bright 
spot and shadow of a bottom object marked by a detection algorithm. 



Figure 1 - Geo-Regbtered Satellite Image (Raster) 

Figure 2 - Geo-Registered Sonar Image (Raster) 

Figure 3 shows the highway interchange extracted from the satellite imagery and the shadow and bright spot 
extracted from the sonar imagery. Two different feature detection algorithms were used to accomplish the exttaction 
and produce the figure. 



Htgh»ay cr«sstog 

• ^WB" 
Slsa<3a Briftit 0pftt 

Figure 3 - Examples of Features Extracted From Raster Images 

High-resolution imagery (e.g., one-meter) can cover a large area and contain many image files. The features 
extracted fi-om the imagery can be abundant and difficult to manage. One solution is to store these features in a 
VFDb and provide a fast and efficient means to retrieve them. This paper presents a method for creating a vector 
database of features and populating it with one and two-meter features. The features are stored m a compact two- 
dimensional representation or picture that reduces the amount of attribute information required to describe the 
object. A method is discussed in detail to query the datable and retrieve the features that fall within a geographic 
area of interest (AOI) in the form of a polygon similar to that shown in Figure 4. 

_ Minimum BouraJir^ 
■ Reolar^te (MBR) 
rn An^trf Interest (AOfJ 
'^—^ Polygon 

Figure 4 - Geographic Area of Interest 
around 50m by 30m 

Data Structures 

Various data structures can be considered when building a VFDb, such as hashtables and binary-trees. The hashtable 
maps a hash key to a value in memory without searching through every element to retrieve a desked element. A 
hashing function generates an index number into the element array from a h^h key. Collisions occur when two 
different hash keys generate the same index. The first element hashed is stored at the index location, and subsequent 



elements hashed to the same location are nearby (often just by adding one to the index) and retrieved later in the 
same fashion. 

Trees data stractures are naturally efficient at representing hierarchical data. Rooted trees are comprised of a set of 
nodes (vertices) and a set of arcs (edges) that link a parent node to one of its child nodes. Each root node has one 
parent. Any node can be reached by following a unique path of arcs from the root. When vertices are 
interconnected, the tree is considered bi-directional. 

Binary-trees are the simplest kind of trees and each parent node has at most two children. Binary-trees and hashtable 
data structures are only usefiil for one-dimensional data. Two-dimensional data, like maps and feature data, are 
better managed with data structures like quad-trees and R-trees. A quad-tree is similar to a binary tree, but parent 
nodes have at most four vertices. 

R-trees combine the best features of binary-trees and quad-trees to efficiently store and retrieve two-dimensional data 
(Roussopoulous, Kelly and Vincent, 1995). A R-tree structure is an excellent choice to store the map feature data 
and provide an efficient method to retrieve features inside an AOI, but this paper will present a unique method where 
a quad-tree structure is modified to use geographic bitmaps (GB) to store features on a storage device. This structure 
will allow quick retrieval of features within the AOI and, at the same time, allow for the creation of a binary feature 
map. 

Geographic Bitnmps 

Bitmaps are two-dimensional binary structures in which bits are turned on (set) or off (cleared) and the row and 
column of each bit gives it a unique position. This concept is extended to construct geographic bitmaps (GB), where 
every bit represents a unique location on the Earth at a given map scale. Set bits denote that data exists (each bit 
represents a specific coordinate on the Earth). Although the GB is defined for the entire world at a given map scale, 
memory is only allocated dynamically when groups of spatially close bits are set. This makes the GB a fast and 
compact data structure (Gendron, et al., 1997). 

For this paper, a VFDb is designed so features are stored in tiled GBs without the need to store the actual map 
images. This greatly reduces the overall size of the database. A variable tiling scheme based on feature resolution is 
defined for feature GBs at each level. The feature GBs can contain more dian one feature and some features can 
span more than one GB. Only bits that are part of a specific feature are set. Each feature representation is 
distinguished by its unique central latitude/longitude value. A binary map of the features that fall within an AOI is 
created by logically "ANDING" GBs within the AOI. From the binary map, vectors can later be formed fi-om the 
features and related to feature attributes stored separately in the VFDb. 

Vector Feature Database Using Geographical Bitmaps 

The VFDb presented in this paper is created by first modifying a quad-tree data structure to use GBs, thereby 
reducing the search time. The database stores the feature data below one-degree cell directories (in subdirectories) 
on a storage device in a quad-tree hierarchy based on the feature's central latitude and longitude location. For 
example, a feature with the center latitude/longitude value of 10.34... degrees latitude and 65.09.., degrees longitude 
would be stored below the 10N065E directory on disk. 

To quickly determine which degree cell dkectories exist, a GB of the entire world is created and stored on disk at the 
same level as the cell directories. A set bit in the GB indicates the corresponding one-degree cell directory exists on 
disk. For this paper, only features below 50 degrees latitude and above -50 degrees latitude are stored in the 
database. The size of the world GB is 100 rows by 360 columns: 

Rows = 50 - (-50); Total Latitude 
Columns = 180 - (-180); Total Longitude 
Resolution = 1 degree of latitude and longitude per bit 



i^F"'^R21^^"^>**?-^"' 

The subdirectory structure below a one-degree cell directory is a quad-tree structure with five levels (Figure 5). The 
VFDb testing for this paper contains two-meter feature data on level four and one-meter feature data on level five. 

1 Degree Cell 

=F~ 
5 Lewi Quad-Tree 

Figure 5 - Quad-tree 

To determine which of the four nodes (subdirectories) a latitude/longitude point (Y,X) falls within on any given level 
is found by comparing it with the central latitude/longitude point (CY.CX) of each node at that level, as follows: 

Node One: 
Node Two: 
Node Three: 
Node Four: 

X>=CXandY>=CY 
X>=CXandY< CY 
X< CXandY>=CY 
X<  CXandY<  CY 

To avoid searching down the entire quad-tree subdirectory structure from node to node to determine if features are 
available for an AOI, GBs are stored on level one to indicate which one-meter and two-meter features exist inside 
level four and level five subdirectories, respectively. The one-meter GBs are 16 rows by 16 columns found by: 

Rows = 2<'^''**> 
Columns = 2<'"*« 

with a maximum of 4 GBs (one for each subdirectory node on level 1). 

In terms of latitude and longitude: 

Rows = delta latitude / latitude resolution 
Colunms = delta latitude / latitude r^olution 

where 

delta latitude = 1.0 / 2<*°P'"*; top level = 1 
delta longitude = 1.0 / 2<'«P"^*; top level = 1 



and 

Latitude resolution = 1.0 / a''"*"^ 
Longitude resolution = 1.0 / a""**' 

Each one-meter feature is stored at level five in a GB. The size of the GB is variable, depending on its location on 
its latitude/longitude location, GBs closer to the equator are wider than those fijrther away. The total height and 
width of a node at level five is: 

Total Height = height of level 5 (in metere) / latitude r^olution; latitude resolution = 1 m 
Total Width = width of level 5 (in meters) /longitude resolution; longitude resolution = 1 m 

The size of the one-meter feature GB on level 5 is found by: 

Bitmap height = Total Height / Number of desired tfles 
Bitmap Width = Total Width / Number of desired tiles 

The height and width in meters is calculated as the great circle distance (WGS-84 datum) of the node. For example, 
a level five directory at the lower left comer of the OONOOOE one-degree cell is 3455.45m high and 3478.73m wide.' 
A feature GB in that directory would be 431 bits high by 434 bits wide, if the number of desked tiles is 8. 

Sunilarly, two-meter resolution feature coverage is indicted by a maximum of 4 (8 by 8 bitmaps) stored at level one 
for each of the four nodes of level one. The total height and width of a node at level four would be 6910.89m by 
6910.89m, and would contain two-meter feature GB's of the size 431 bits high by 434 bits wide. Note that this is the 
same size as the one-meter feature GBs, even though the area is twice as large. This is because the resolution of a 
feature at two-meters is exactly half that at one-meter. Figure 6 shows an example of the VFDb, 

.'I      s   L.  t. 

'm>mt t 

Figure 6 - VFDb Structure 



Querying the Datable 

To query the VFDd and find all one-meter features that fall within the defined AOI (Figure 4), a GB of the MBR size 
at one-meter resolution is created and bits are set that geographically correspond to the AOI polygon (Figure 4). A 
software routine capable of draw and filling a polygon inside a GB is used to set the appropriate bits. These routines 
accept the latitude and longitude of the polygon vertices as arguments. 

The degree cells that the MBR falls within are then computed and each of these degree cells is processed one at a 
time. The degree cell GB is read to determine if the degree cells to be processed exist. The one-meter AOI GB is 
logically ANDED with all the one-meter 16 by 16 GBs on level one. For each bit match, the corresponding level 
five directories are read and all feature GB stored there are ANDED with the AOI GB. By repeating this process for 
each set bit and each GB at level one, a feature binary map of one-meter features is formed that span the AOI. Note 
that features may or may not be available for all or some of the AOI. The whole process is repeated to find two- 
meter features on level four by first creating a AOI GB with two-meter resolution and ANDING it with the 8 by 8 
two-meter GB's on level one. 

The following is pseudo code of the query process to create a binary map for one-meter data: 

AOLbitmap = Geo_Bitiiiap_Create (minlat, madat, minion, maxlon, one-meter resolution...) 
World.bitmap = Read_WorId_Bitmap () 
WHILE (degree_eell = Detemiine_Degree_CeIls(AOI_bitniap)) 

If (Bit_fa_Set (WorM_bltmap, degree_ceU)) 
For (All one-meter GBs at level 1 of the degree_cell) 

available_data_bitniap = And_Bitmap (AOI_bitmap, one-meterGB) 
If (Bit_is_Set (avaUable_data_bitniap)) 

Node = Detemiine_Node 0 
Read_Node_Directory (Node) /* At level 5*/ 
Biiiary_niap = AND_Bitmap (Node_GB, AOI_bitniap) 

End 
End 

End 
End 

Attributes 

Each feature in the VFDb has a unique central latitude and longitude value, or simply the center of the MBR. The 
central latitude/longitude value is tied to a separate file that contains attributes similar to those listed below and is 
dependent on the source map data. 

Examples of feature attributes are as follows: 

Attributes: 
Feature Number (1,2,3...) 
Feature Type (Highway, Airport, Sand Ripple, Roclc) 
Bounding Polygon (Vertex Number, Latitude/Longitude...) 
Heading 
Pointe within the Feature (#, latitude/longitude location.,.) 

Conclusion 

This paper presents a method of building a vector database that allows quick retrieval of features at many different 
resolutions. A binary feature map is easily constructed from retrieved features within a geographic AOI. Using 
powerful feature detection algorithms to build GBs of features and extract attributes is one primary means to 



populate the VFDb. The same algorithms can be modified to detect similar features over an AOI and match these 
features with those stored in the database. 

Further implementation, evaluation and testing of the GB VFDb is currently being done. This includes extending the 
database above and below +/-50 degrees latitude. This extension is possible because the current GB data stracture 
supports polar projections. Work also continues on algorithms that will produce feature vectors from the resulting 
binary map of retrieved features. The combination of robust feature detection algorithms, both for post and real-time 
processing, the VFDb, and feature matching algorithms could have many applications, such as supporting navigation 
systems for autonomous vehicles. 



References 

M. L, Gendron, P. B. Wischow, M.E. Trenchard, M,C. Lohrenz, L.M. Riedlinger, MJ, Mehaffey (1997), "Moving 
Map Composer," Naval Research Laboratory, US Patent No. 6,218,965 Bl, 1-29, 

J, Hager, L. Fry, S, Jacks, and D, HOI (1990). "Datums, Ellipsoids, Grids, and Grid Reference Systems," Defense 
Mapping Agency, TM8358.1. 

J. Landrum (1989). "fllustration of the Relationships Among Database Resolution, Map Scale, and Display 
Technique," Naval Ocean Research and Development Activity, NORDA Technical Note 439,1-7, 

M. Lohrenz (1991). "The Navy Standard Compressed Aeronautical Chart (CAC) Database," Naval Research 
Laboratory, SP 024:351:91,1-93. 

N. Roussopoulos, S. Kelley and F. Vincent (1995), "Nearest Neighbor Queries," SIGMOD 1995, San Jose, CA, 


