
REPORT DOCUMENTATION PAGE
Form Approved

OMB NO, 0704-0188

Public Reporting burden for this collection of infoimation is estimated to average 1 tiour per response, including Uie time for reviewing instructions, warching existing data sources,
gathering and niaintaining the data needed, and completing airf reviewing the collection of information. &nd comment regarding this bunlen estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jeffereon Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, I^perwork Reduction Project (0704-0188,) Washington, DC 20503.
1. AGENCY USE ONLY { heave Blank) 2. REPORT DATE 04Apr2003 3. REPORT TYPE AND DATES COVERED

Final 01Sep2002 - 28Feb2003

4. TITLE AND SUBTITLE
Toolkit to Support Parallel Adaptive Computations on Unstmctured Meshes

5. FUNDING NUMBERS
DAAD19-02-C-0080

6. AUTHOR(S)
John Tourtellott, Saurabh Tendulkar, Marie Beall, Mark Shephard

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Simmetrix Inc.
10 Half moon Executive Park Drive
Clifton Park, NY 12065

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Hmm.\^mfi-sTi
n. SUPPLEMENTARY NOTES

The views, opinioiB and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Report developed under STTR contract for topic ARMY02-T003. The Initial development of a sofhware toolkit to support parallel
adaptive numerical analysis is described. The tools are focused on unstructured adaptive techniques, which are among the most
difficult to implement in parallel. To support dynamic load balancing, software was developed to capture and utilize a hardware model,
which represents the set of computing resources available for a given problem (analysis) at hand. Mesh refinement software was
extended for parallel operation, by adding mesh migration steps tiiat enable modifications to be made to mesh entities lying on partition
boundaries. The resulting capabilities were demonstrated In a parallel adaptive Navler-Stokes analysis. A new methodology for solution
transfer, which combines the update of solution Information with the mesh modification, was also Implemented and compared to a
global solution ti-ansfer procedure used In a commercial finite element code. The results showed that the new procedure leads to
smaller relative difference In strain norm. Methods for reducing tiie storage required for adaptively evolving meshes were also
Investigated. An approach based on storing differences between successive mesh iterations showed that a significant reduction in file
space is feasible.

14. SUBJECT TERMS
STTR report, parallel, adaptivlty, load balancing, mesh generation

15. NUMBER OF PAGES
15

16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURrrv CLASSIFICATION
ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev,2^9)

Prescribed by ANSI Std. 239-18
298-102

Toolkit to Support Parallel Adaptive Computations
on Unstructured Meshes

1. Distributed Mesh Environment and Dynamic Load Balancing
Adaptive computation is recognized as a necessary component of reliable scientific
computation. Strategies utilize automatic refinement and coarsening of meshes and order
variation guided by a posteriori estimates. Parallelization of adaptive methods is
complicated by the constantly evolving nature of the domain discretization (the mesh) and
associated computational loads. Even if the initial mesh was distributed for proper load
balance with minimum interprocessor communication, adaptivity will introduce load
imbalances and communication complications. Therefore, tools are required to maintain
effective load balance. Central to these tools is the ability to automatically update the
communication hnks as meshes evolve. These links must communicate information about
mesh changes required on neighboring processors due to a change on the given processor.
Since a number of operations (e.g. mesh modifications and dynamic load balancing) require
the ability to modify the partitions by moving mesh and associated information between
processors, a general set of mesh migration procedures are needed. To maintain load
balance, dynamic load balancing procedures must operate in parallel on an already
distributed mesh.

Parallel processing is being performed on everything from the largest tightly coupled
supercomputers to clusters of workstations. Any adaptive strategy seeking optimal
performance has to account for processor speed, memory, and communications hierarchies.
Such hierarchical and heterogeneous systems are increasingly common and present
additional challenges for the development of efficient dynamic load balancing procedures.

The Phase I effort focused on completing a general set of procedures to maintain
appropriate load balancing of adaptive calculations. Since the resulting capabilities will be
used by a wide variety of applications, a set of basic tools that can be combined in a number
of different ways as appropriate for the specific application were developed. To reahze this,
the Phase I work concentrated on generalizing the current procedures to utilize predictive
methods to load balance the processes. The most general viewpoint of this involves the use
of weights to alter the partitioning so that the resulting partitions are more likely to have
optimal load balancing and communication.

Weighting the resources available to perform the work must include both available
processor power and communication performance. Maintaining load balance while
minimizing communications when doing adaptive simulation applications is usually done
using graph-based re-partitioning that allows assigning weights to both vertices and edges
of the graph. Procedures to set these weights based on an a priori knowledge of the system
hardware can be done via parameters in a hardware model. This should be effective when
the associated computing and communication resources are dedicated to the simulation.
However, in cases where the resources are shared, the speed of processor computation and
communications vary with system load. In these cases it is necessary to monitor the system
performance and to adjust weights in an appropriate manner at the dynamic load balancing

20030502 154

steps. Phase I efforts focused on the development of the hardware model and applying it
with a priori hardware computational and communication parameters. Consideration of
system loading will be added in Phase II,

In Phase I, therefore, the Simmetrix software for parallel mesh adaptation was extended to
better leverage the heterogeneous processing power and communications capabilities found
in modern computing systems using an apriori model. Now, rather than simply creating
equal partitions based on the number of processors, the software can utilize weighting
based on the computational environment to create partitions that are more appropriate for
the available resources.

1.1 Hardware model
The upgraded partitioning software enables applications to tailor mesh partition size to
each processor, based on its individual computational, storage, and network-
communications capacity. To establish a basis for setting partition size, software was
developed to capture a hardware model representing the set of computing resources
available for a given problem (simulation) at hand. The hardware model is organized as a
hierarchy of Computingltem objects and Connectionltem objects. Computingltem objects
represent either individual computing machines or groups of interconnected computing
resources; Connectionltem objects represent the communications paths among
Computingltem objects.

The hardware model implemented in Phase I employs a tree-based model of the partitions.
The root of the tree represents the total execution environment. The children of the root
node represent high level divisions well suited to reflecting different networks connected to
form the total computing environment. Sub-environments like alternative SMP structures
or even processor memory hierarchies are represented through the recursive subdivision of
tree nodes. Each node in the tree reflects its relative computing power and percentage of
load. Computing nodes at the leaves of the tree house data representing the relative
computing power of their processors. Network nodes maintain bandwidth and latency
properties and aggregate computing power calculated as a function of the powers of their
children and the network performance.

The hardware model tree needs to be initialized at the start of a parallel computation to
represent the topology of the network and identify the terminal nodes of the tree with their
relevant characteristics. Ideally this process will be completely automatic, although the
initial implementation was done with prespecified information. Automatic construction of
the hardware model will be considered in the Phase II development.

Figure 1 is the class diagram for the Computingltem software hierarchy. The
Computingltem class itself is an abstract base class for two concrete classes: the
ComputingGroup class, which represents an aggregation of Computingltem objects, and the
ComputingMachine class, which represents a discrete computing platform. Each
Computingltem object contains one or more Port objects, which represent communications-
access points. A typical ComputingMachine object, for example, would include one Port
object to represent the network interface card in the corresponding hardware. The Port

class includes an enumeration to indicate the type of connection supported; examples
include 100-Base-TX, 1000-Base-T, and a generic parallel bus.

In order to represent the complete network topology, the ComputingGroup class also
contains one or more Connectionltem objects and one or more Wire objects. The
Connectionltem object is used to represent network interconnection hardware such as
routers, switches, and hubs, as well as simpler, point-to-point wiring. Wire objects, as
implied by their name, are used to represent the internal connections within a
ComputingGroup object. This includes wires connecting Computingltems to
Connectionltems, Computingltems to other Computingltems, Computingltems to external
Ports, and Connectionltems to external Ports.

^

Computingltem Port

-o
-o
rO

ComputingGroup ComputingMachlne

^

Connectionltem

Wire

Figure 1. Computingltem class hierarchy

Figure 2 shows a simple computing network that can be modeled using the Computingltem
classes. The top of the hardware model hierarchy is a ComputingGroup object, labeled
"system", that represents the entire hardware model. This top-level object contains two
other ComputingGroup objects, labeled "groupl" and "group2". The top-level object also has
a port for its uplink to an external router, and a point-to-point connection between groupl
and group2.

(to router)

r-

{ (uplInN)

I 1

group 1 I

switch

workstations

system

group 21
I !

CupllnK) hub

workstations

I

ii
Figure 2. Example of simple computing workgroup

At the next level down, the groupl object contains a Connectionltem object to represent the
network switch and a set of ComputingMachine objects to represent computing
workstations. ComputingGroup groupl also contains two external ports, one for the switch
uplink (which is also the external port for the system), and the other for a switch input that
is connected to group2. The group2 ComputingGroup object has one port for its uplink
connection to groupl, one Connectionltem object representing a network hub, and a set of
ComputingMachine objects, one for each workstation.

To complete the hardware model, each ComputingMachine object includes a representation
of the resources found in the corresponding hardware platform. For each CPU in the
platform, the ComputingMachine object stores one or more speed metrics (based on, for
example, SPEC, LMbench, or clock speed). Each ComputingMachine object also stores the
amount of physical and virtual memory in the platform, and a list of Port objects.

The Computingltem class hierarchy was implemented and used to create hardware models
for several network examples. To facilitate the instantiation of these hardware models, the
software includes code to create and initialize Computingltem objects from the contents of
an XML-formatted description file. An excerpt from one of those XML files is shown in
Figure 3.

<Cc5mput ingGroup>
<naine>8ysteni</natne>
<Port>

<type>Port_wiring</type>
<name>system-uplink</naine>
<wire>groupl-to-system-uplink</wire>

</Port>
<Coinput iagSroup>

<name>groupl</name>
<Port>

<!-- This port connects groupl to group2 -->
<type>Port_wiriag</type>
<nanie>groupl - dowal iiik</name >
<wire>groupl-downlink</wire>
<wlre>groupl-to-group2</wire>

</Port>

<Port>
<!-- This port goes to (external) router -->
<type>Port_wiring</type>
<nanie>external</naine>
<wire>groupl-uplink</wire>
<wire>groupl-to-syatein-uplink</wire>

</Port>
<ConaectionItem>

<naine>3Coni 4400</naine>
<connectionType>Conn_swltolied</connectionType>
<totalRate>17600</totalRate>
<unit8>PortRate_Mbps</units>
<nuniPor t B >4 8 < /numPort s >
<Port>

<type>Port_100BaseTX</type>
<nattie >main< /name >
<wire>siinO-to-switch</wire>
<wire>slin7-to-switch</wire>
<wire>siinlOO-to-switch</wlre>
<wire>groupl-downlink</wire>

</Port>
<Uplink>

<natne >upl ink< /name >
<type>Port_100BaseTX</type>
<wlre>groupl-uplink</wire>

</Uplink>
</ConnectionItem>
<ComputingMachine>

<name>siinO</nanie>
<serialTag>215e663617</serialTag>
<Port>

<type>Port_100BaseTX</type>
<name>siinO-network</name>
<wire>simO-to-switch</wire>

</Port>
<CPUModel>

<architecture>sparc</architecture>
<byteWidth>4 </byteWidth>
<MIPS>360</MIPS>
<MFLOPS>360</MFLOPS>

</CP0Model>
<CPUModel>

<architeature>sparc</architecture>
<byteWidth>4</byteWidth>
<MIPS>3S0</M1PS>
<MFLOPS>360</MFI,OPS>

</CPUModel>
<physicalMB>512</physicalMB>
<virtualMB>4360</virtualMB>

< /Comput ingMachine >

Figure 3. XML file used to instantiate hardware model (excerpt)

1.2 Load balancing strategy
As noted above, the mesh partitioning software can now support different partition sizes
and, therefore, parallel mesh adaptation can be more optimally tailored to the specific
hardware resources available. In the ideal case, the partitioning software would take
advantage of the entire hardware model, i.e., not only the processing capacity of each CPU,
but also the physical memory size and communications capacity of machines and connection
devices. This would suggest the use of weights to control not only the size of each partition,
but also the size of each partition boundary, based on the communications throughput
available among different computing machines. Since current partitioning software does
not have this capability, a heuristic method was developed to incorporate this

communications information into the partition weights, and to select and assign computing
machines to a specific problem set. Although simplistic and sub-optimal in the general case,
the method was useful for providing reasonable test cases in the Phase I research.

A partition weight is calculated for each computing machine by combining separate metrics
for computational rate and communications rate. Looking at computational rate, in Phase I,
CPU clock rate (in MHz) was used as the speed metric. Since the workload for a given CPU
is expected to expand linearly with the size of the partition, the partition weight for a given
CPU is set proportional to its speed metric.

The communications metric is more involved since it takes into account the
communications paths between each pair of computing machines. The communications
metric will be described using a simplified example, illustrated in Figure 4. In this example,
there are three computing machines, each with the same CPU/speed metric but different
ports (network interface cards) supporting 10,100, and 1000 Mbps, respectively. To keep
the example simple, the machines are interconnected by a 1000 Mbps network switch with
aggregate capacity over 15,000 Mbps (so that the impact of the switch on overall
communications throughput is negligible). For the machines with 10 Mbps and 100 Mbps
ports, the overall communications rate is limited to the port rate. For the 1000 Mbps
machine, the overall communications rate is limited to the rate at which it can
communicate to the other two machines, which, for this example, is 100 plus 10, or 110
Mbps.

switch

10 Mbps 100 Mbf)S 10001

machine 1 machine 2 machine 3

Figure 4. Communications metric example

In addition to the communications rate limit for each machine, the communications metric
also takes into account the network traffic expected for a given partition. In a typical
application, this would be proportional to the partition boundary size. Since there is no
general way to calculate boundary size for a given partition size, the Phase I software uses
a simple estimate that the boundary size is proportional to a power of the partition size. As
an analogy, the surface area of a sphere is proportional to the volume of a sphere raised to
the 2/3 power. The communications metric includes a boundary factor parameter, which
can be set for each application based on user judgment and experience.

To combine the computational and communications metrics, the two values are multiplied
together after raising the communications metric to a bandwidth importance parameter, to
reflect the fact that some applications incur substantial communications overhead and
others incur none. This gives the following equation for each computing machine:

bandwidlliFactor

partitionWeight = computingMetric * communicationsMetric *"•"'*'?'''««»'■

Referring back to the example in Figure 4, the partition weights for different bandwidth
factors are shown in Table 1 (based on a boundary factor of 0.5). For a bandwidth factor of
zero, all three machines have the same weight, since they have the same computing metric.
At a bandwidth factor of 1.0, the weights are proportional to the communications metric.
Since the first machine has a network interface with much lower throughput relative to the
other machines, its partition weight drops rapidly as the bandwidth factor increases.

Table 1. Partition weights for simple example
Machine Bandwidth Factor

0.0 0.5 1.0
machine 1 (10 Mbps) 33.3 % 4.5 % 0.5 %
machine 2 (100 Mbps) 33.3 % 45.5 % 45.0 %
machine 3 (1000 Mbps) 33.3 % 50.0 % 54.5 %

Using this partition weighting scheme, software was written to construct the set of
partition weights for the computing machines in a given hardware model (for a given
boundary factor and bandwidth factor). The software selects and adds one machine at a
time to the set, based on which of the remaining available machines produces the highest
partition weight. (Note that the communications metrics must be recomputed each time a
machine is added to the configuration.)

2. Parallel Adaptive Analysis
Ideally, parallel mesh generation and adaptation should be scalable with respect to time
and memory, efficient in a parallel sense, and mesh stable. A process is considered scalable
if the running time increases slowly with the number of processors, assuming the ratio of
problem size to number of processors is constant. Parallel efficiency refers to how well the
parallel procedure makes use of the computing resources available. A parallel procedure
can be scalable but inefficient, and vice-versa. Mesh stability relates to the quality of the
triangulations. If the quality degrades as the number of processors increases, the
procedures are not mesh stable.

Simmetrix' existing toolkit-based mesh generation and mesh adaptation procedures have
been effectively integrated with CAD representations and mesh-based analysis and error
estimation procedures Interoperability technologies used in these procedures include
operator driven interfaces to solid modeling, file transfer procedures, and object-based
interface abstractions such as CORBA.

A key activity performed during Phase I of this project was the completion and extension of
the current parallel mesh adaptation procedures to support modifications that improve the
mesh, allow refinement to move nodes to the boundary, or perform mesh coarsening. These
are more complex to parallelize since not all the mesh information needed for the operation
may be on the processor partition. The basic parallelization of these processes is done as
follows: The mesh modifications for which all information is on-processor are performed.

Those that require mesh information from other processors request that mesh information
be migrated. After all on-processor modifications are complete, appropriate sets of mesh
migrations are performed to allow more mesh modifications. This is repeated until the
process is complete.

2.1 Parallel mesh refinement
In mesh refinement, new mesh vertices are typically created by splitting mesh edges. If a
mesh edge is on the model boundary, then the new vertex will also be classified on the
model boundary, however, the new vertex may not be at the right spatial location due to the
geometric approximation made by the mesh. The processing of correcting the vertex
location, called snapping, is accomplished by one or more mesh modifications. In parallel,
these modifications would require substantial communications overhead if the affected
mesh entities lay on a partition boundary.

There are three types of vertex snapping, in increasing order of complexity: direct snap,
local mesh modification, and cavity remeshing. Direct snapping is used whenever it is
possible to translate the (new) mesh vertex to its snap position without invalidating any
elements in the mesh. In this case, snapping involves a simple change of coordinates.
However, if direct snapping would cause the mesh to become invalid, then a set of local
mesh modifications are attempted. The software implements seven different mesh
modifications, each with several variations (edge collapse, region collapse, split collapse,
edge swap, edge split, face swap, and vertex motion). Whether a particular modification is
valid depends on many factors unique to each modification such as size and shape checks,
correct representation of topology, model boundary, etc. The basic strategy is to try each
modification in succession. If any modification succeeds, the vertex position is updated and
the process repeated.

If the modification procedures fail to move the new mesh vertex to its snap position, the
third step is to define a cavity around the problem vertex and remesh it using the volume
mesher (which may create additional new mesh vertices on the boundary). Because
remeshing a cavity requires much more computational work than either direct snapping or
local mesh modification, this step is run only after all vertices have been processed using
direct snapping and local modification. In some case, snapping one vertex frees others to be
snapped, so that cavity remeshing can be avoided.

In parallel, snapping is not done to a vertex if it is on a partition boundary. Even if the
vertex is not on the partition boundary but close to it, a modification may fail because some
other mesh entity that would be modified lies on the partition boundary. Synchronizing
information across partitions is not desirable, since the inter-partition communications
overhead could be substantial. For vertices on the partition boundary, every modification
attempt would have to be synchronized, as would the results, since some modifications may
succeed on some partitions and fail on others. For vertices not on the partition boundary
but near enough to affect other mesh entities on the partition boundary, the problem gets
even more complicated.

To avoid this, the parallel strategy is to repartition the mesh so that all modified entities
are in the interior of one partition before snapping. The steps are:

1. Snap all vertices that can be snapped locally while making a list of vertices that
cannot be snapped because they are on a partition boundary or are so near it that all
modifications (and cavity remeshing) fail,

2. Move the partition boundary in a certain direction so as to get the remaining
vertices in the interior. This involves migration of all regions that are affected by
each vertex so that they are in one partition. The criterion as to which partition gets
the set of regions for each vertex should be a converging one, so that mesh entities
are not moved back and forth between repartitioning. The criterion we have chosen
is to let the partition with minimum id get the regions.

3. Again snap all vertices that can be snapped locally.
4. Repeat steps 2-3 until all the partition boundary vertices are snapped. It can be

shown that a maximum of three repartitioning steps are sufficient to snap all mesh
vertices this way.

In doing this, various conflicts emerge in step 2 when different vertices that are to be
snapped share common faces or regions. To resolve this, new software was added to
aggregate these regions and arbitrate their migration among multiple partitions.

In upgrading the mesh refinement software, particularly the seven mesh modification
methods, for parallel operation, a number of tradeoffs were taken into account. With single-
processor refinement, a particular mesh modification can fail for geometric constraints only,
whereas in parallel, a modification can fail for either geometric or partition constraints. If a
modification fails due to a partition constraint, a migration step could be performed and the
modification retried. The decision in Phase I was to not do this, but instead to proceed to
the next mesh modification, trying all modifications locally before migrating mesh regions.
This means that the single-processor and parallel refinement will not, in general, produce
identical results.

One of the test cases for the parallel refinement software is shown in Figure 5. The
geometric model for this is shown in Figure 5a, and a relatively coarse mesh of it is shown if
Figure 5b. The coarse mesh in Figure 5b was the input to both single-processor and parallel
versions of the mesh adapt software, with the resulting meshes shown in Figures 5c and 5d,
respectively. The parallel refinement (Figure 5d) was done using three processors; the mesh
entities are colored differently for each partition, using red, green, and yellow.

i \r
• V--.' •■1'. •>■■•.

a. hubsection model b. initial mesh (before refinement)

c. mesh after serial refinement d. mesh afl;er parallel refinement

Figure 5. Mesh re: dnement test case

2.2 Parallel adaptive analysis
After the load balancing software (described in Section 1) and the parallel mesh refinement
software (described in Section 2.1) were implemented, the resulting capabilities were
incorporated into a parallel adaptive Navier-Stokes analysis. A test was constructed
involving flow over a backward-facing step. The analysis was run on two machines, with
hostnames simO and simlOO. Both machines are Sun workstations with dual CPUs. The

10

simO CPUs run at 360 MHz, and the simO memory bus runs at 100 MHz. The simlOO CPUs
run at 760 MHz, and the simlOO memory bus runs at 150 MHz. Both equal and weighted
partitions, based on the hardware model, were run on 2, 3, and, 4 CPUs.

In all, four mesh refinement iterations were run for each test, with the solver computing 25
time steps between each mesh refinement. Although the main purpose for running the
analysis was to demonstrate the new parallel adaptive capability, run times were recorded
for difierent partition configurations, and are shown in Table 2. Although a relatively
simple hardware model was used, the results do show that the weighted partitioning
strategy does provide a distinct advantage.

Table! 2. Run time data from parallel a iaptive analysis
Number of CPUs Equal

Partitions
Weighted
Partitions

Relative
Speedup simO simlOO

1 1 1724.5 1239.4 28%
1 2 1238.4 812.4 34%
2 2 1104.0 807.3 27%

3. Parallel Transfer of Solution Fields
To have effective parallel, adaptive solution procedures it is necessary to be able to transfer
solution information as the mesh is adapted. This is particularly important for transient
analyses, as errors in the solution transfer process can affect the accuracy of the solution.
As the meshes are modified, solution parameters must be transferred from the original
mesh to the new one. The key issues that must be considered in the process are (i)
preserving conservation of required quantities, (ii) maintaining accuracy, and (iii) the
computational efficiency. The types of mesh modification performed can influence the
complexity of the algorithms needed. The transfer process for a simple subdivision is
straightforward, while for a complete remeshing it is much more complex. The solution
transfer procedures developed should be capable of taking advantage of knowledge of the
type of mesh modification performed when this improves the accuracy or efficiency of the
process.

A promising new methodology for solution transfer combines the update of solution
information with the mesh modification. Most mesh modification procedures can be
expressed as a combination of a small set of local operations including splits, collapses,
swaps, and vertex repositioning. Any solution update scheme that works between two
meshes that are different due to a large number of these operations can also work if only
one operation is applied. Thus it seems reasonable that the solution can be incrementally
updated during each local mesh modification. If done in this way, the updated solution is
available with little additional work after the overall mesh modification is completed. One
of the significant advantages of this procedure is that no searching is required; all of the
entities involved in local modification are known. Thus it is potentially a very fast
operation. During Phase I, an initial version of this procedure was implemented and tested.

This local solution procedure was compared to a global solution transfer procedure used in a
commercial finite element code (DEFORM). The results show that the local solution

11

transfer procedure leads to smaller relative difference in strain norm than the DEFORM
global solution transfer procedure.

In order to compare the two solution transfer procedures, the mesh enrichment steps of a
back extrusion simulation are considered. The number of elements in the original and
enriched meshes for a back extrusion simulation steps are given in Table 3. To obtain the
results of the DEFORM global solution transfer procedure, the original and enriched mesh,
obtained by mesh modifications, are given to DEFORM explicitly, and the global solution
transfer of DEFORM is used.

 Table 3. Number of elements before and after mesh enrichments
Mesh Enrichment After Simulation

Step

9
46
55

Number of Elements
in Input Mesh

5433
5130
10723
9522

Number of Elements
in Output Mesh

5130
10723
9522
13466

The results obtained from the two solution transfer operations are compared by studying
the relative difference in effective strain norms, which is defined by

P I ijnput
relative'

-\e

n I Imput

£2«M.*100, where leh "ilie.fdn
1/2

wn,

In Table 4, the relative difference in effective strain norms, obtained by the two methods,
are compared for some simulation steps. As can be seen from the table, local solution
transfer results in less relative difference than the global solution transfer. While resulting
relative differences in strain norms by local solution solutions transfer remains around 1%,
relative difference by global solution transfer ranges between 5-26% for this particular
simulation.

Tab le 4. Strain norms for local and global solution transfer procedures
Mesh Original Strain Norm Relative Strain Norm Relative

Enrichment Strain Norm by Local Difference in by Global Difference in
Transfer Strain Norm

by Local
Transfer (%)

Transfer Strain Norm
by Global

Transfer (%)
1 0.292136 0.291426 0.243 0.215502 26.232
2 0.929486 0.919560 1.068 0.831938 10.495
3 8.67176 8.51803 1.773 8.222860 5.177
4 10.8806 10.6794 1.396 10.217261 5.663

Effective strain distributions obtained by local and global solution transfer procedures are
plotted in Figure 6. In the figure, the strain distribution of the original mesh is compared
with the strain distribution obtained by the two solution transfer procedures that are

12

applied to an enriched (updated) mesh. Studying the figure, one can see that local solution
transfer procedure results in closer strain distribution to that of original.

Input strain field after step 4

» . .■^ ■-

Updated strain field by
local transfer

Updated strain field by
global transfer

Input strain field after step 9 Updated strain field by
local transfer

Updated strain field by
global transfer

Input strain field after step
65

Updated strain field by
local transfer

Updated strain field by
global transfer

Figure 6. Strain distributions for local and global solution transfer procedures

Time spent for local and global solution transfer procedures for some steps of the simulation
are given in Table 5. The number of elements in the input mesh and the updated mesh are
given in Table 3. Prom the table, one can see that as the number of mesh modifications
increase, the time spent for the local solution transfer increases. Same can be observed for
global solution transfer for number of elements in the meshes. From the table, one can see
that time spent for the local solution transfer is less than the global solution transfer for
the first two mesh enrichment steps, and as number of mesh modifications increases time
spent for local solution transfer might be more than global (as observed in mesh enrichment
3 and 4). Here, it should be noted that, the accuracy of local solution transfer is much
higher than the global one (see Table 4.).

13

Table 5. Time spent for loca" and global solution transfer
Mesh Enrichments

after Step
Number of Mesh

Modifications
Local Transfer (sec) Global Transfer (sec)

4 934 2.47 7.73
9 2719 5.43 11.94

46 6548 20.53 13.25
55 5307 16.33 14.57

4. Results Visualization on Adaptlvely Evolving Meshes
It is well known that the visualization of transient results computed on large parallel
computers is a major issue due to the volume of solution data. This problem is greatly
compounded in an adaptive calculation since the mesh can change thousands of times
during a simulation. This may occur on hundreds of processors so that recovering the
transient mesh may require loading millions of files. For example, some simulations at
SCOREC run on 256 processors and require 17,000 time steps with mesh adaptation every
10 time steps, resulting in a total of 1700 meshes.

Development of actual visualization tools is outside of Simmetrix' mission and there are a
number of very good groups working on these issues. Therefore, our goal is to provide
support for integration with existing and future visualization tools in the structures that we
are developing for supporting parallel, adaptive computation.

Over the past several years, we have been investigating the various issues related to better
integration of simulation and visualization. Our current viewpoint is that one of the most
important issues is that it is necessary to enable the visualization procedures to operate
directly on the same data representation used for the simulation. Today, the typical means
of coupling visualization and simulation requires the translation of data from the
simulation representation to the visualization representation. This results in inefficiencies
far beyond the obvious one of data replication. One example of this is the visualization of
results that are represented by higher order basis functions. Since virtually all
visualization tools support only linear interpolation, the discretization of the results
transferred to the visualization tool must be much finer than the discretization used for the
simulation. This can result in an explosion of the size of the data.

In Phase I, an initial investigation of effective means to represent adaptively evolving
meshes with minimal storage was undertaken. The approach that seems most likely to be
effective is to store only the differences between each mesh as it is adapted, similar to some
of the concepts behind video compression. The Phase I investigation initially looked at
simple logging of the mesh modifications as they were made, so that they could be replayed
to reconstruct the mesh at each adaptation step. This approach, although very
straightforward to implement, was discarded due the excessive/redundant computations
that would incur during reconstruction. A simple test case was implemented by refining one
mesh region in a very coarse mesh (184 regions total). Refining this one region required 150
individual mesh modification events.

14

A second method was investigated that, rather than logging the mesh modifications as they
are computed, compares the original and refined meshes after all modifications are made.
TMs method can take advantage of the fact that many individual modifications involve
common mesh entities and only the final modifications need be stored.

Software was written to generate a list of differences between two meshes. For the same
single-region refinement test, the software found that:

• Of the original 184 mesh regions, 176 were unchanged. 26 new regions were created.
• Of the original 410 mesh faces, 396 were unchanged. 55 new faces were created.
• Of the original 286 mesh edges, 280 were unchanged. 35 new edges were created.
• Of the original 61 mesh vertices, all 61 were unchanged. 6 new vertices were

created.

This suggests that, for minor and/or localized mesh refinements, an incremental file,
containing only the mesh elements to be added may be effective. The same differencing
software was also used to analyze the four meshes generated by adaptive Navier-Stokes
analysis, as described in Section 2.2. A summary of the mesh data is shown in Table 6. In
this test, the number of modifications drops rapidly for each refinement step, as indicated
by the number of elements row. Similarly, the number of new/changed mesh elements also
drops rapidly for each refinement step. By the third refinement step (Mesh 4), the number
of new elements that would have to be added to those already in memory represents only
six percent of the total. These preliminary results indicate that the use of incremental files
may significantly reduce the file space required to store adaptively evolving meshes.

Table 6. Mesh differences from adaptive] Javier-Stokes anal ysis
Meshl Mesh 2 Mesh 8 Mesh 4

No. elements 50,187 115,001 142,985 149,867
No, new elements . 76,693 34,800 9,010
% - 66.7% 24.3% 6.0%

In Phase II, this work will be expanded to further address the integration of simulation and
visualization in a parallel adaptive environment. As described above, the general approach
will be to enable visualization tools to operate directly off of the simulation data structures
that represent the mesh and the solution. One of the side effects is that this will allow very
easy integration of the two capabilities for co-visualization or simulation steering.

15

