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Toolkit to Support Parallel Adaptive Computations 
on Unstructured Meshes 

1. Distributed Mesh Environment and Dynamic Load Balancing 
Adaptive computation is recognized as a necessary component of reliable scientific 
computation. Strategies utilize automatic refinement and coarsening of meshes and order 
variation guided by a posteriori estimates. Parallelization of adaptive methods is 
complicated by the constantly evolving nature of the domain discretization (the mesh) and 
associated computational loads. Even if the initial mesh was distributed for proper load 
balance with minimum interprocessor communication, adaptivity will introduce load 
imbalances and communication complications. Therefore, tools are required to maintain 
effective load balance. Central to these tools is the ability to automatically update the 
communication hnks as meshes evolve. These links must communicate information about 
mesh changes required on neighboring processors due to a change on the given processor. 
Since a number of operations (e.g. mesh modifications and dynamic load balancing) require 
the ability to modify the partitions by moving mesh and associated information between 
processors, a general set of mesh migration procedures are needed. To maintain load 
balance, dynamic load balancing procedures must operate in parallel on an already 
distributed mesh. 

Parallel processing is being performed on everything from the largest tightly coupled 
supercomputers to clusters of workstations. Any adaptive strategy seeking optimal 
performance has to account for processor speed, memory, and communications hierarchies. 
Such hierarchical and heterogeneous systems are increasingly common and present 
additional challenges for the development of efficient dynamic load balancing procedures. 

The Phase I effort focused on completing a general set of procedures to maintain 
appropriate load balancing of adaptive calculations. Since the resulting capabilities will be 
used by a wide variety of applications, a set of basic tools that can be combined in a number 
of different ways as appropriate for the specific application were developed. To reahze this, 
the Phase I work concentrated on generalizing the current procedures to utilize predictive 
methods to load balance the processes. The most general viewpoint of this involves the use 
of weights to alter the partitioning so that the resulting partitions are more likely to have 
optimal load balancing and communication. 

Weighting the resources available to perform the work must include both available 
processor power and communication performance. Maintaining load balance while 
minimizing communications when doing adaptive simulation applications is usually done 
using graph-based re-partitioning that allows assigning weights to both vertices and edges 
of the graph. Procedures to set these weights based on an a priori knowledge of the system 
hardware can be done via parameters in a hardware model. This should be effective when 
the associated computing and communication resources are dedicated to the simulation. 
However, in cases where the resources are shared, the speed of processor computation and 
communications vary with system load. In these cases it is necessary to monitor the system 
performance and to adjust weights in an appropriate manner at the dynamic load balancing 

20030502 154 



steps. Phase I efforts focused on the development of the hardware model and applying it 
with a priori hardware computational and communication parameters. Consideration of 
system loading will be added in Phase II, 

In Phase I, therefore, the Simmetrix software for parallel mesh adaptation was extended to 
better leverage the heterogeneous processing power and communications capabilities found 
in modern computing systems using an apriori model. Now, rather than simply creating 
equal partitions based on the number of processors, the software can utilize weighting 
based on the computational environment to create partitions that are more appropriate for 
the available resources. 

1.1 Hardware model 
The upgraded partitioning software enables applications to tailor mesh partition size to 
each processor, based on its individual computational, storage, and network- 
communications capacity. To establish a basis for setting partition size, software was 
developed to capture a hardware model representing the set of computing resources 
available for a given problem (simulation) at hand. The hardware model is organized as a 
hierarchy of Computingltem objects and Connectionltem objects. Computingltem objects 
represent either individual computing machines or groups of interconnected computing 
resources; Connectionltem objects represent the communications paths among 
Computingltem objects. 

The hardware model implemented in Phase I employs a tree-based model of the partitions. 
The root of the tree represents the total execution environment. The children of the root 
node represent high level divisions well suited to reflecting different networks connected to 
form the total computing environment. Sub-environments like alternative SMP structures 
or even processor memory hierarchies are represented through the recursive subdivision of 
tree nodes. Each node in the tree reflects its relative computing power and percentage of 
load. Computing nodes at the leaves of the tree house data representing the relative 
computing power of their processors. Network nodes maintain bandwidth and latency 
properties and aggregate computing power calculated as a function of the powers of their 
children and the network performance. 

The hardware model tree needs to be initialized at the start of a parallel computation to 
represent the topology of the network and identify the terminal nodes of the tree with their 
relevant characteristics. Ideally this process will be completely automatic, although the 
initial implementation was done with prespecified information. Automatic construction of 
the hardware model will be considered in the Phase II development. 

Figure 1 is the class diagram for the Computingltem software hierarchy. The 
Computingltem class itself is an abstract base class for two concrete classes: the 
ComputingGroup class, which represents an aggregation of Computingltem objects, and the 
ComputingMachine class, which represents a discrete computing platform. Each 
Computingltem object contains one or more Port objects, which represent communications- 
access points. A typical ComputingMachine object, for example, would include one Port 
object to represent the network interface card in the corresponding hardware. The Port 



class includes an enumeration to indicate the type of connection supported; examples 
include 100-Base-TX, 1000-Base-T, and a generic parallel bus. 

In order to represent the complete network topology, the ComputingGroup class also 
contains one or more Connectionltem objects and one or more Wire objects. The 
Connectionltem object is used to represent network interconnection hardware such as 
routers, switches, and hubs, as well as simpler, point-to-point wiring. Wire objects, as 
implied by their name, are used to represent the internal connections within a 
ComputingGroup object. This includes wires connecting Computingltems to 
Connectionltems, Computingltems to other Computingltems, Computingltems to external 
Ports, and Connectionltems to external Ports. 
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ComputingGroup ComputingMachlne 

^ 

Connectionltem 
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Figure 1. Computingltem class hierarchy 

Figure 2 shows a simple computing network that can be modeled using the Computingltem 
classes. The top of the hardware model hierarchy is a ComputingGroup object, labeled 
"system", that represents the entire hardware model. This top-level object contains two 
other ComputingGroup objects, labeled "groupl" and "group2". The top-level object also has 
a port for its uplink to an external router, and a point-to-point connection between groupl 
and group2. 
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Figure 2. Example of simple computing workgroup 

At the next level down, the groupl object contains a Connectionltem object to represent the 
network switch and a set of ComputingMachine objects to represent computing 
workstations. ComputingGroup groupl also contains two external ports, one for the switch 
uplink (which is also the external port for the system), and the other for a switch input that 
is connected to group2. The group2 ComputingGroup object has one port for its uplink 
connection to groupl, one Connectionltem object representing a network hub, and a set of 
ComputingMachine objects, one for each workstation. 

To complete the hardware model, each ComputingMachine object includes a representation 
of the resources found in the corresponding hardware platform. For each CPU in the 
platform, the ComputingMachine object stores one or more speed metrics (based on, for 
example, SPEC, LMbench, or clock speed). Each ComputingMachine object also stores the 
amount of physical and virtual memory in the platform, and a list of Port objects. 

The Computingltem class hierarchy was implemented and used to create hardware models 
for several network examples. To facilitate the instantiation of these hardware models, the 
software includes code to create and initialize Computingltem objects from the contents of 
an XML-formatted description file. An excerpt from one of those XML files is shown in 
Figure 3. 

<Cc5mput ingGroup> 
<naine>8ysteni</natne> 
<Port> 

<type>Port_wiring</type> 
<name>system-uplink</naine> 
<wire>groupl-to-system-uplink</wire> 

</Port> 
<Coinput iagSroup> 

<name>groupl</name> 
<Port> 

<!-- This port connects groupl to group2 --> 
<type>Port_wiriag</type> 
<nanie>groupl - dowal iiik</name > 
<wire>groupl-downlink</wire> 
<wlre>groupl-to-group2</wire> 

</Port> 



<Port> 
<!-- This port goes to (external) router --> 
<type>Port_wiring</type> 
<nanie>external</naine> 
<wire>groupl-uplink</wire> 
<wire>groupl-to-syatein-uplink</wire> 

</Port> 
<ConaectionItem> 

<naine>3Coni 4400</naine> 
<connectionType>Conn_swltolied</connectionType> 
<totalRate>17600</totalRate> 
<unit8>PortRate_Mbps</units> 
<nuniPor t B >4 8 < /numPort s > 
<Port> 

<type>Port_100BaseTX</type> 
<nattie >main< /name > 
<wire>siinO-to-switch</wire> 
<wire>slin7-to-switch</wire> 
<wire>siinlOO-to-switch</wlre> 
<wire>groupl-downlink</wire> 

</Port> 
<Uplink> 

<natne >upl ink< /name > 
<type>Port_100BaseTX</type> 
<wlre>groupl-uplink</wire> 

</Uplink> 
</ConnectionItem> 
<ComputingMachine> 

<name>siinO</nanie> 
<serialTag>215e663617</serialTag> 
<Port> 

<type>Port_100BaseTX</type> 
<name>siinO-network</name> 
<wire>simO-to-switch</wire> 

</Port> 
<CPUModel> 

<architecture>sparc</architecture> 
<byteWidth>4 </byteWidth> 
<MIPS>360</MIPS> 
<MFLOPS>360</MFLOPS> 

</CP0Model> 
<CPUModel> 

<architeature>sparc</architecture> 
<byteWidth>4</byteWidth> 
<MIPS>3S0</M1PS> 
<MFLOPS>360</MFI,OPS> 

</CPUModel> 
<physicalMB>512</physicalMB> 
<virtualMB>4360</virtualMB> 

< /Comput ingMachine > 

Figure 3. XML file used to instantiate hardware model (excerpt) 

1.2 Load balancing strategy 
As noted above, the mesh partitioning software can now support different partition sizes 
and, therefore, parallel mesh adaptation can be more optimally tailored to the specific 
hardware resources available. In the ideal case, the partitioning software would take 
advantage of the entire hardware model, i.e., not only the processing capacity of each CPU, 
but also the physical memory size and communications capacity of machines and connection 
devices. This would suggest the use of weights to control not only the size of each partition, 
but also the size of each partition boundary, based on the communications throughput 
available among different computing machines. Since current partitioning software does 
not have this capability, a heuristic method was developed to incorporate this 



communications information into the partition weights, and to select and assign computing 
machines to a specific problem set. Although simplistic and sub-optimal in the general case, 
the method was useful for providing reasonable test cases in the Phase I research. 

A partition weight is calculated for each computing machine by combining separate metrics 
for computational rate and communications rate. Looking at computational rate, in Phase I, 
CPU clock rate (in MHz) was used as the speed metric. Since the workload for a given CPU 
is expected to expand linearly with the size of the partition, the partition weight for a given 
CPU is set proportional to its speed metric. 

The communications metric is more involved since it takes into account the 
communications paths between each pair of computing machines. The communications 
metric will be described using a simplified example, illustrated in Figure 4. In this example, 
there are three computing machines, each with the same CPU/speed metric but different 
ports (network interface cards) supporting 10,100, and 1000 Mbps, respectively. To keep 
the example simple, the machines are interconnected by a 1000 Mbps network switch with 
aggregate capacity over 15,000 Mbps (so that the impact of the switch on overall 
communications throughput is negligible). For the machines with 10 Mbps and 100 Mbps 
ports, the overall communications rate is limited to the port rate. For the 1000 Mbps 
machine, the overall communications rate is limited to the rate at which it can 
communicate to the other two machines, which, for this example, is 100 plus 10, or 110 
Mbps. 

switch 

10 Mbps 100 Mbf )S 10001 

machine 1 machine 2 machine 3 

Figure 4. Communications metric example 

In addition to the communications rate limit for each machine, the communications metric 
also takes into account the network traffic expected for a given partition. In a typical 
application, this would be proportional to the partition boundary size. Since there is no 
general way to calculate boundary size for a given partition size, the Phase I software uses 
a simple estimate that the boundary size is proportional to a power of the partition size. As 
an analogy, the surface area of a sphere is proportional to the volume of a sphere raised to 
the 2/3 power. The communications metric includes a boundary factor parameter, which 
can be set for each application based on user judgment and experience. 

To combine the computational and communications metrics, the two values are multiplied 
together after raising the communications metric to a bandwidth importance parameter, to 
reflect the fact that some applications incur substantial communications overhead and 
others incur none. This gives the following equation for each computing machine: 



bandwidlliFactor 

partitionWeight = computingMetric * communicationsMetric *"•"'*'?'''««»'■ 

Referring back to the example in Figure 4, the partition weights for different bandwidth 
factors are shown in Table 1 (based on a boundary factor of 0.5). For a bandwidth factor of 
zero, all three machines have the same weight, since they have the same computing metric. 
At a bandwidth factor of 1.0, the weights are proportional to the communications metric. 
Since the first machine has a network interface with much lower throughput relative to the 
other machines, its partition weight drops rapidly as the bandwidth factor increases. 

Table 1. Partition weights for simple example 
Machine Bandwidth Factor 

0.0 0.5 1.0 
machine 1 (10 Mbps) 33.3 % 4.5 % 0.5 % 
machine 2 (100 Mbps) 33.3 % 45.5 % 45.0 % 
machine 3 (1000 Mbps) 33.3 % 50.0 % 54.5 % 

Using this partition weighting scheme, software was written to construct the set of 
partition weights for the computing machines in a given hardware model (for a given 
boundary factor and bandwidth factor). The software selects and adds one machine at a 
time to the set, based on which of the remaining available machines produces the highest 
partition weight. (Note that the communications metrics must be recomputed each time a 
machine is added to the configuration.) 

2. Parallel Adaptive Analysis 
Ideally, parallel mesh generation and adaptation should be scalable with respect to time 
and memory, efficient in a parallel sense, and mesh stable. A process is considered scalable 
if the running time increases slowly with the number of processors, assuming the ratio of 
problem size to number of processors is constant. Parallel efficiency refers to how well the 
parallel procedure makes use of the computing resources available. A parallel procedure 
can be scalable but inefficient, and vice-versa. Mesh stability relates to the quality of the 
triangulations. If the quality degrades as the number of processors increases, the 
procedures are not mesh stable. 

Simmetrix' existing toolkit-based mesh generation and mesh adaptation procedures have 
been effectively integrated with CAD representations and mesh-based analysis and error 
estimation procedures Interoperability technologies used in these procedures include 
operator driven interfaces to solid modeling, file transfer procedures, and object-based 
interface abstractions such as CORBA. 

A key activity performed during Phase I of this project was the completion and extension of 
the current parallel mesh adaptation procedures to support modifications that improve the 
mesh, allow refinement to move nodes to the boundary, or perform mesh coarsening. These 
are more complex to parallelize since not all the mesh information needed for the operation 
may be on the processor partition. The basic parallelization of these processes is done as 
follows: The mesh modifications for which all information is on-processor are performed. 



Those that require mesh information from other processors request that mesh information 
be migrated. After all on-processor modifications are complete, appropriate sets of mesh 
migrations are performed to allow more mesh modifications. This is repeated until the 
process is complete. 

2.1 Parallel mesh refinement 
In mesh refinement, new mesh vertices are typically created by splitting mesh edges. If a 
mesh edge is on the model boundary, then the new vertex will also be classified on the 
model boundary, however, the new vertex may not be at the right spatial location due to the 
geometric approximation made by the mesh. The processing of correcting the vertex 
location, called snapping, is accomplished by one or more mesh modifications. In parallel, 
these modifications would require substantial communications overhead if the affected 
mesh entities lay on a partition boundary. 

There are three types of vertex snapping, in increasing order of complexity: direct snap, 
local mesh modification, and cavity remeshing. Direct snapping is used whenever it is 
possible to translate the (new) mesh vertex to its snap position without invalidating any 
elements in the mesh. In this case, snapping involves a simple change of coordinates. 
However, if direct snapping would cause the mesh to become invalid, then a set of local 
mesh modifications are attempted. The software implements seven different mesh 
modifications, each with several variations (edge collapse, region collapse, split collapse, 
edge swap, edge split, face swap, and vertex motion). Whether a particular modification is 
valid depends on many factors unique to each modification such as size and shape checks, 
correct representation of topology, model boundary, etc. The basic strategy is to try each 
modification in succession. If any modification succeeds, the vertex position is updated and 
the process repeated. 

If the modification procedures fail to move the new mesh vertex to its snap position, the 
third step is to define a cavity around the problem vertex and remesh it using the volume 
mesher (which may create additional new mesh vertices on the boundary). Because 
remeshing a cavity requires much more computational work than either direct snapping or 
local mesh modification, this step is run only after all vertices have been processed using 
direct snapping and local modification. In some case, snapping one vertex frees others to be 
snapped, so that cavity remeshing can be avoided. 

In parallel, snapping is not done to a vertex if it is on a partition boundary. Even if the 
vertex is not on the partition boundary but close to it, a modification may fail because some 
other mesh entity that would be modified lies on the partition boundary. Synchronizing 
information across partitions is not desirable, since the inter-partition communications 
overhead could be substantial. For vertices on the partition boundary, every modification 
attempt would have to be synchronized, as would the results, since some modifications may 
succeed on some partitions and fail on others. For vertices not on the partition boundary 
but near enough to affect other mesh entities on the partition boundary, the problem gets 
even more complicated. 

To avoid this, the parallel strategy is to repartition the mesh so that all modified entities 
are in the interior of one partition before snapping. The steps are: 



1. Snap all vertices that can be snapped locally while making a list of vertices that 
cannot be snapped because they are on a partition boundary or are so near it that all 
modifications (and cavity remeshing) fail, 

2. Move the partition boundary in a certain direction so as to get the remaining 
vertices in the interior. This involves migration of all regions that are affected by 
each vertex so that they are in one partition. The criterion as to which partition gets 
the set of regions for each vertex should be a converging one, so that mesh entities 
are not moved back and forth between repartitioning. The criterion we have chosen 
is to let the partition with minimum id get the regions. 

3. Again snap all vertices that can be snapped locally. 
4. Repeat steps 2-3 until all the partition boundary vertices are snapped. It can be 

shown that a maximum of three repartitioning steps are sufficient to snap all mesh 
vertices this way. 

In doing this, various conflicts emerge in step 2 when different vertices that are to be 
snapped share common faces or regions. To resolve this, new software was added to 
aggregate these regions and arbitrate their migration among multiple partitions. 

In upgrading the mesh refinement software, particularly the seven mesh modification 
methods, for parallel operation, a number of tradeoffs were taken into account. With single- 
processor refinement, a particular mesh modification can fail for geometric constraints only, 
whereas in parallel, a modification can fail for either geometric or partition constraints. If a 
modification fails due to a partition constraint, a migration step could be performed and the 
modification retried. The decision in Phase I was to not do this, but instead to proceed to 
the next mesh modification, trying all modifications locally before migrating mesh regions. 
This means that the single-processor and parallel refinement will not, in general, produce 
identical results. 

One of the test cases for the parallel refinement software is shown in Figure 5. The 
geometric model for this is shown in Figure 5a, and a relatively coarse mesh of it is shown if 
Figure 5b. The coarse mesh in Figure 5b was the input to both single-processor and parallel 
versions of the mesh adapt software, with the resulting meshes shown in Figures 5c and 5d, 
respectively. The parallel refinement (Figure 5d) was done using three processors; the mesh 
entities are colored differently for each partition, using red, green, and yellow. 
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a. hubsection model b. initial mesh (before refinement) 

c. mesh after serial refinement d. mesh afl;er parallel refinement 

Figure 5. Mesh re: dnement test case 

2.2 Parallel adaptive analysis 
After the load balancing software (described in Section 1) and the parallel mesh refinement 
software (described in Section 2.1) were implemented, the resulting capabilities were 
incorporated into a parallel adaptive Navier-Stokes analysis. A test was constructed 
involving flow over a backward-facing step. The analysis was run on two machines, with 
hostnames simO and simlOO. Both machines are Sun workstations with dual CPUs. The 

10 



simO CPUs run at 360 MHz, and the simO memory bus runs at 100 MHz. The simlOO CPUs 
run at 760 MHz, and the simlOO memory bus runs at 150 MHz. Both equal and weighted 
partitions, based on the hardware model, were run on 2, 3, and, 4 CPUs. 

In all, four mesh refinement iterations were run for each test, with the solver computing 25 
time steps between each mesh refinement. Although the main purpose for running the 
analysis was to demonstrate the new parallel adaptive capability, run times were recorded 
for difierent partition configurations, and are shown in Table 2. Although a relatively 
simple hardware model was used, the results do show that the weighted partitioning 
strategy does provide a distinct advantage. 

Table! 2. Run time data from parallel a iaptive analysis 
Number of CPUs Equal 

Partitions 
Weighted 
Partitions 

Relative 
Speedup simO simlOO 

1 1 1724.5 1239.4 28% 
1 2 1238.4 812.4 34% 
2 2 1104.0 807.3 27% 

3. Parallel Transfer of Solution Fields 
To have effective parallel, adaptive solution procedures it is necessary to be able to transfer 
solution information as the mesh is adapted. This is particularly important for transient 
analyses, as errors in the solution transfer process can affect the accuracy of the solution. 
As the meshes are modified, solution parameters must be transferred from the original 
mesh to the new one. The key issues that must be considered in the process are (i) 
preserving conservation of required quantities, (ii) maintaining accuracy, and (iii) the 
computational efficiency. The types of mesh modification performed can influence the 
complexity of the algorithms needed. The transfer process for a simple subdivision is 
straightforward, while for a complete remeshing it is much more complex. The solution 
transfer procedures developed should be capable of taking advantage of knowledge of the 
type of mesh modification performed when this improves the accuracy or efficiency of the 
process. 

A promising new methodology for solution transfer combines the update of solution 
information with the mesh modification. Most mesh modification procedures can be 
expressed as a combination of a small set of local operations including splits, collapses, 
swaps, and vertex repositioning. Any solution update scheme that works between two 
meshes that are different due to a large number of these operations can also work if only 
one operation is applied. Thus it seems reasonable that the solution can be incrementally 
updated during each local mesh modification. If done in this way, the updated solution is 
available with little additional work after the overall mesh modification is completed. One 
of the significant advantages of this procedure is that no searching is required; all of the 
entities involved in local modification are known. Thus it is potentially a very fast 
operation. During Phase I, an initial version of this procedure was implemented and tested. 

This local solution procedure was compared to a global solution transfer procedure used in a 
commercial finite element code (DEFORM). The results show that the local solution 
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transfer procedure leads to smaller relative difference in strain norm than the DEFORM 
global solution transfer procedure. 

In order to compare the two solution transfer procedures, the mesh enrichment steps of a 
back extrusion simulation are considered. The number of elements in the original and 
enriched meshes for a back extrusion simulation steps are given in Table 3. To obtain the 
results of the DEFORM global solution transfer procedure, the original and enriched mesh, 
obtained by mesh modifications, are given to DEFORM explicitly, and the global solution 
transfer of DEFORM is used. 

 Table 3. Number of elements before and after mesh enrichments 
Mesh Enrichment After Simulation 

Step 

9 
46 
55 

Number of Elements 
in Input Mesh 

5433 
5130 
10723 
9522 

Number of Elements 
in Output Mesh 

5130 
10723 
9522 
13466 

The results obtained from the two solution transfer operations are compared by studying 
the relative difference in effective strain norms, which is defined by 

P I   ijnput 
relative' 

-\e 

n I   Imput 

£2«M.*100, where leh "ilie.fdn 
1/2 

wn, 

In Table 4, the relative difference in effective strain norms, obtained by the two methods, 
are compared for some simulation steps. As can be seen from the table, local solution 
transfer results in less relative difference than the global solution transfer. While resulting 
relative differences in strain norms by local solution solutions transfer remains around 1%, 
relative difference by global solution transfer ranges between 5-26% for this particular 
simulation. 

Tab le 4. Strain norms for local and global solution transfer procedures 
Mesh Original Strain Norm Relative Strain Norm Relative 

Enrichment Strain Norm by Local Difference in by Global Difference in 
Transfer Strain Norm 

by Local 
Transfer (%) 

Transfer Strain Norm 
by Global 

Transfer (%) 
1 0.292136 0.291426 0.243 0.215502 26.232 
2 0.929486 0.919560 1.068 0.831938 10.495 
3 8.67176 8.51803 1.773 8.222860 5.177 
4 10.8806 10.6794 1.396 10.217261 5.663 

Effective strain distributions obtained by local and global solution transfer procedures are 
plotted in Figure 6. In the figure, the strain distribution of the original mesh is compared 
with the strain distribution obtained by the two solution transfer procedures that are 
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applied to an enriched (updated) mesh. Studying the figure, one can see that local solution 
transfer procedure results in closer strain distribution to that of original. 

Input strain field after step 4 

» . .■^  ■- 

Updated strain field by 
local transfer 

Updated strain field by 
global transfer 

Input strain field after step 9 Updated strain field by 
local transfer 

Updated strain field by 
global transfer 

Input strain field after step 
65 

Updated strain field by 
local transfer 

Updated strain field by 
global transfer 

Figure 6. Strain distributions for local and global solution transfer procedures 

Time spent for local and global solution transfer procedures for some steps of the simulation 
are given in Table 5. The number of elements in the input mesh and the updated mesh are 
given in Table 3. Prom the table, one can see that as the number of mesh modifications 
increase, the time spent for the local solution transfer increases. Same can be observed for 
global solution transfer for number of elements in the meshes. From the table, one can see 
that time spent for the local solution transfer is less than the global solution transfer for 
the first two mesh enrichment steps, and as number of mesh modifications increases time 
spent for local solution transfer might be more than global (as observed in mesh enrichment 
3 and 4). Here, it should be noted that, the accuracy of local solution transfer is much 
higher than the global one (see Table 4.). 
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Table 5. Time spent for loca" and global solution transfer 
Mesh Enrichments 

after Step 
Number of Mesh 

Modifications 
Local Transfer (sec) Global Transfer (sec) 

4 934 2.47 7.73 
9 2719 5.43 11.94 

46 6548 20.53 13.25 
55 5307 16.33 14.57 

4. Results Visualization on Adaptlvely Evolving Meshes 
It is well known that the visualization of transient results computed on large parallel 
computers is a major issue due to the volume of solution data. This problem is greatly 
compounded in an adaptive calculation since the mesh can change thousands of times 
during a simulation. This may occur on hundreds of processors so that recovering the 
transient mesh may require loading millions of files. For example, some simulations at 
SCOREC run on 256 processors and require 17,000 time steps with mesh adaptation every 
10 time steps, resulting in a total of 1700 meshes. 

Development of actual visualization tools is outside of Simmetrix' mission and there are a 
number of very good groups working on these issues. Therefore, our goal is to provide 
support for integration with existing and future visualization tools in the structures that we 
are developing for supporting parallel, adaptive computation. 

Over the past several years, we have been investigating the various issues related to better 
integration of simulation and visualization. Our current viewpoint is that one of the most 
important issues is that it is necessary to enable the visualization procedures to operate 
directly on the same data representation used for the simulation. Today, the typical means 
of coupling visualization and simulation requires the translation of data from the 
simulation representation to the visualization representation. This results in inefficiencies 
far beyond the obvious one of data replication. One example of this is the visualization of 
results that are represented by higher order basis functions. Since virtually all 
visualization tools support only linear interpolation, the discretization of the results 
transferred to the visualization tool must be much finer than the discretization used for the 
simulation. This can result in an explosion of the size of the data. 

In Phase I, an initial investigation of effective means to represent adaptively evolving 
meshes with minimal storage was undertaken. The approach that seems most likely to be 
effective is to store only the differences between each mesh as it is adapted, similar to some 
of the concepts behind video compression. The Phase I investigation initially looked at 
simple logging of the mesh modifications as they were made, so that they could be replayed 
to reconstruct the mesh at each adaptation step. This approach, although very 
straightforward to implement, was discarded due the excessive/redundant computations 
that would incur during reconstruction. A simple test case was implemented by refining one 
mesh region in a very coarse mesh (184 regions total). Refining this one region required 150 
individual mesh modification events. 
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A second method was investigated that, rather than logging the mesh modifications as they 
are computed, compares the original and refined meshes after all modifications are made. 
TMs method can take advantage of the fact that many individual modifications involve 
common mesh entities and only the final modifications need be stored. 

Software was written to generate a list of differences between two meshes. For the same 
single-region refinement test, the software found that: 

• Of the original 184 mesh regions, 176 were unchanged. 26 new regions were created. 
• Of the original 410 mesh faces, 396 were unchanged. 55 new faces were created. 
• Of the original 286 mesh edges, 280 were unchanged. 35 new edges were created. 
• Of the original 61 mesh vertices, all 61 were unchanged. 6 new vertices were 

created. 

This suggests that, for minor and/or localized mesh refinements, an incremental file, 
containing only the mesh elements to be added may be effective. The same differencing 
software was also used to analyze the four meshes generated by adaptive Navier-Stokes 
analysis, as described in Section 2.2. A summary of the mesh data is shown in Table 6. In 
this test, the number of modifications drops rapidly for each refinement step, as indicated 
by the number of elements row. Similarly, the number of new/changed mesh elements also 
drops rapidly for each refinement step. By the third refinement step (Mesh 4), the number 
of new elements that would have to be added to those already in memory represents only 
six percent of the total. These preliminary results indicate that the use of incremental files 
may significantly reduce the file space required to store adaptively evolving meshes. 

Table 6. Mesh differences from adaptive ] Javier-Stokes anal ysis 
Meshl Mesh 2 Mesh 8 Mesh 4 

No. elements 50,187 115,001 142,985 149,867 
No, new elements . 76,693 34,800 9,010 
% - 66.7% 24.3% 6.0% 

In Phase II, this work will be expanded to further address the integration of simulation and 
visualization in a parallel adaptive environment. As described above, the general approach 
will be to enable visualization tools to operate directly off of the simulation data structures 
that represent the mesh and the solution. One of the side effects is that this will allow very 
easy integration of the two capabilities for co-visualization or simulation steering. 
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