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• Meyers, M.A. "Shear Localization", to appear in Encyclopedia of Materials Science and Technology, 2001. 

• Meyers, M.A., D.J. Benson, O. Vohringer, B.K. Kad, Q. Xue, H.H. Fu, and Y.J. Chen, "Constitutive 
Description of Dynamic Deformation: Physically-Based Mechanisms," Matls. Sci. and Eng. (2002). 

• Benson, D.J., H.H. Fu, and M.A. Meyers, "On the Effect of Grain Size on Yield Stress: Extension into 
Nanocrystalline Domain," Matls. Sci. and Eng. (2002). 

• Xue, Q., M.A. Meyers, and V.F. Nesterenko, "Self-Organization of Shear Bands in Titanium and Ti-6% Al-4% 
V Alloy," Acta mater, 2002. 

• Nemat-Nasser, S., "Dislocation-Based Rate- and Temperature-Dependent Deformation of fee, bcc and hep 
Metals," Proceedings of the ICES2K, Los Angeles, Ca. August 2000. 

C. Submitted 

• Strutt, E., E. Olevsky, & M.A. Meyers, "Self-Propagating High-Temperature Synthesis and Densification of 
Powder Cermets," Materials Science and Engineering 1999. 

• V.A. Lubarda, D.J. Benson, and M.A. Meyers, "Strain-Rate Effects in One-Dimensional Rheological Models of 
Viscoplastic Response", Int'l. J. of Plasticity, submitted 2001 

(Note:  Many of the above referenced papers also acknowledge other contract and grants.   If this information was 

known, at the time of that this list was compiled, then these other contracts/grants have been noted). 

R = reprints sent to ARO ICA 

MA = manuscript sent to ARO ICA 
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SCIENTIFIC PEMONNEL SUPPORTED BY THIS PROJECT AND DEGREES 
AWARDED DURING Tins REPORTING PERIOD 

Post-doc's and Visiting Research Scholars: 
• Jingyi Cheng, Visiting Researcher (Nemat-Nasser) 1999 - 20(X) 
• Weiguo Guo, Visiting Researcher (Nemat-Nasser) 1996 - 1999 
• Sastry Indrakanti, Post-Doc (Nesterenko) 1997 - present 
• Rajeev Kapoor, Post-Doc (Nemat-Nasser) 1998 -1999 
• Yulong Li, Visiting Researcher (Nemat-Nasser) 1996 
• Mingqui Liu, Post-Doc (Nemat-Nasser) 1996-1997 
• Qingchi Liu, Post-Doc (Meyers) 1999 - 2aW 
• Aashish Rohatgi, Post-Doc (Vecchio) 9/99 - present) 
• Andrew Strutt, Asst, Proj Scientist (Vecchio) 
• Juhua Zhang, Post-Doc (not supported) (Nemat-Nasser) 1999 - 2(K)1 

MURI   Consultant: 
Prof. Werner Goldsmith, UC Berkeley 1996 - 2TO1 

Graduate Students: 
Dave Benson (Advisor) 
• Ian Hoang-Phuc Do 1997 -1999 
• Hsueh-Hung Fu 1998 - 2001 (Spring 03 expected graduation) 

Marc A, Meyers (Advisor) 
• Rainer Menig (U, of Karlsruhe, Germany) 
• Marc H. Meyers (UCSD Biology Dept) 
• James Shih (MM Pre-Doctoral Researcher) 1996 -1998 
• Elizabeth (Kristofetz) Strutt (MURI Fellowship) 1996 - present 
• Qing Xue 2000 - 2001 

Sia Nemat-Nasser (Advisor) 
• Jeff McGee 1998-2(X)1 
• Jacob Rome 2000 (UCSD Fellowship) 
• Sai Sarva 1996 to present 

Vitali Nesterenko (Advisor) 
• Yong Liu 1996 -1998 
• Gu Yabei 10/98 - present 

Ken Vecchio (Advisor) 
• David Harach 1998 to 2001 (MURI Fellowship) 
• Aashish Rohatgi 1996 - 1999 

Degrees Received During This Reporting Period: 

• Yong Liu 1998 MS via examination 
• James Shih 1998 
• Ian Do Spring 1999 Ph,D. Thesis - Shock Induced Chemical Reactions of Multi-Material Powder Mixtures: An 

Eulerian Finite Element Computational Analysis" 
• Aashish Rohatgi Fall 1999 Ph.D. Thesis 
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• David Harach Fall 2000 Ph.D. Thesis - Processing, Properties and Ballistic Performance of Ti-A13 Ti Metal 
Intermetallic Laminate (MIL) Composites" 

• Qing Xue, Fall 2001: Ph.D. Thesis - Spatial Evolution of Adiabatic Shear Localization in Stainless Steel, 
Titanium and Ti-6AI-4V Alloy" 

• Jeff McGee, Summer 2002 Ph.D. Thesis - Mechano-electromechanical response of Ionic Polymer Metal 
Composites" 

m.      REPORT OF INVENTIONS (BY TITLE ONLY): 

• Vecchio, K.S., U.S. Patent Application: "Process for Making Metallic/Intermetallic Composite Laminate 
Materials, and Materials so Produced Especially for Use in Lightweight Armor" Application filed Aug. 6, 1998, 
expected to issue early 2002. 

IV.      BRIEF OUTLINE OF RESEARCH FINDINGS FOR THIS REPORTING PERIOD 

Introduction 
The work at UCSD involved a collaborative research effort addressed the following interconnected aspects: 

1) Synthesis and processing of armor materials and composites; 2) Experimental characterization; 3) Development of 
new experimental techniques; 4) Analytical and computational modeling of the basic failure mechanisms; 5) 
Computational simulation of experiments; and 6) Tests of composite models 

SCIENTIFIC ACCOMPLISHMENTS UNDER CEAM (Sia Nemat-Nasser, PI) 
Research directed by Prof. Sia Nemat-Nasser 
Supporting graduate students: Sai Sarva and Jeff McGee, Research Engineers Jon Isaacs and David Lischer, and 
Postdoctoral Researcher Juhua Zhang. 
Collaborators: Vitali Nesterenko, Marc Meyers, and David Benson 

Four Major areas, under Sia Nemat-Nasser's supervision, are as follows: 

• Novel Instrumentation and Measurement Techniques for High Deformation Rate Phenomena 
• Understanding and Experimental Quantification of the Effect of Front-Face Constraint by Thin-Membrane (E- 

glass/Epoxy, Ti-3/2.5 and Carbon-fiber/Epoxy) on the Ballistic Performance of Armor Ceramic Tiles 
• Dislocation-Based Micromechanical Modeling of Titanium Alloys with Extensive Experimental Verification 
• Micromechanics of High Strain-Rate Compression Failure of Ceramics 

1.0 Novel Instrumentation and Measurement Techniques for High Deformation Rate Phenomena 
/./.   Development of dynamic tri-axial Hopkinson bar 

A technique has been developed for dynamic testing under tri-axial compression'. A Hopkinson bar has 
been modified to simultaneously load the sample in radial and axial directions. It consists of larger (27.1 mm) 
and smaller (19.1 mm) incident bars and transmission bars as seen in Fig. 1. Incident and transmission tubes 
which encompass the smaller incident and transmission bars, but move independendy of them, help load a 
Teflon sleeve. The Teflon sleeve surrounds the sample and is restricted by an aluminum sleeve on the outside. 
The sample is machined to be the same diameter as the smaller incident and transmission bars. During the 
test, a large hydrostatic stress is induced in the Teflon sleeve, which in turn exerts a large radial stress on the 
sample. The radial stress increases during the test, as the incident and transmission bars axially load the 
sample and the Teflon sleeve. Due to the radial expansion of the sample during deformation, the Teflon 
sleeve is pre-slit to help recover the sample without any damage. The radial stress is estimated by measuring 
the hoop strain in the aluminum sleeve.   Appropriate solutions are used to calculate the radial stress, 
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depending on if the hoop strain falls in to the elastic, elastic-plastic or plastic regime. A strain rate of 600 s"' 
and radial stress of 100 MPa have been attained, while studying samples such as mortar. 
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Figure 1. Tri-axial test conflguration 

1.2,    Dynamic Characterization of High Velocity Impact and Penetration Phenomena 
1.2.1 Development of a gas-gun with the capabilities of measuring initial and residual projectile 

velocities 

A single stage gas-gun has been developed at the CEAM underground impact laboratory. The barrel 
diameter is 2,54 cm and the length is 5 m. The driving gas is Helium. It is capable of launching a projectile 
at velocities of more that 1000 ms"'. Two velocity sensors at the muzzle end of the barrel, help measure the 
initial velocity of the projectile. They also help trigger the high-speed digital camera and X-ray tod 
circuitry. After penetration of the target, the eroded projectiles exit from the rear surface. Two magnetic coil 
velocity sensors help me^ure the residual velocity of the projectile. The eroded projectiles are r«x)veraJ 
using paper stacks as momentum dump. Two configurations of target assembly have been developed: 

i) The stripped-sabot configuration - Aluminum sabot carri^ the projectile through the barrel. Prior to 
impact, the sabot is stripped by means of a maraging steel stripper. This configuration helps evaluate the 
ballistic performance of the target. See Fig, 2. 
ii) The unstripped-sabot configuration - The sabot is left unstripped. This reduces the sabot debris and results 
in immaculate imagery of the initial stages of penetration, thus helping understand the failure phenomenon. 
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Ejecta traps    Residual velocity sensors 

Figure 2. Stripped-sabot configuration for ballistic tests 

1.2.2 Integration of impact phenomena with high-speed photography of the front and back face 
temporal response of the target 

The Hadland Imacon 200 high-speed digital camera has been used to study the ultra-high speed 
phenomenon of ballistic failure. The camera can be programmed to record a sequence of separate images at 
prescribed time intervals. A sixteen-channel camera was used. The camera is triggered indirectly by the 
velocity sensors on the barrel, thus capturing images of the penetration event with precision timing. Images 
acquired from a point of view normal to the path of projectile, help study the front and rear surface 
characteristics of the ejecta flow, which occurs during penetration of ceramic targets. Accompanying software 
helps image analysis through displacement and velocity measurement tools. 

1.2.3 Flash radiography of penetrator-target interaction 

Flash radiography procedures have been developed to study the projectile-target interaction during 
penetration. The X-ray heads (lOOkV and 450 kV) are also triggered by the velocity sensors on the barrel, 
thus providing dynamic real time images of the projectile penetrating the target. Two configurations have 
been used: 
i) Inclined X-ray - The X-ray heads are placed inclined to the path of the projectile. This reduces the ceramic 
cross-section that is pierced by the X-rays and helps study the interior of the target during penetration. See 
Fig. 3. 
ii) Edge-on X-Ray - The X-ray heads are placed orthogonal to the path of the projectile. Since the target 
thickness is large, the interior is not revealed but it helps study the flow of rod erosion products emerging 
from the front surface. 

ARO P-35888-MS-MUR 10 Final Technical Report 1996-2002 



REPORT DOCUMENTATION PAGE (SF298) 
(Continuation Sheet) 

Inclined X-ray Edge-On X-Ray 

Figure 3. Flash radiography configurations 

2.0 Understanding and Experimental Quantification of the Effect of Front-Face Constraint by 
Thin-Membrane (E-glass/Epoxy, Ti-3/2.5 and Carbon-flber/Epoxy) on the Ballistic 
Performance of Armor Ceramic Tiles 

Experiments^ were performed to study the effect of thin membrane constraint on the ballistic efficiency of 
armor grade 12.7 mm thick AI2O3 ,ues, WHA was used as the projectile material. Impact velocity was 
maintained at approximately 900 ms"' for all the tests. Various materials were used as the flx)nt-fa:e 
constraining membrane. The thickness of the constraining membrane was varied too. Stripped-sabot tests 
were performed to evaluate the ballistic efficiency. The kinetic energy fraction (fKE_ t^ = residual K.E/ initial 
K.E) was calculated. Fig. 4. shows the experimental results. As can be seen, the front-face restraint 
improves the ballistic efficiency dramatically. The baUistic efficiency also improves with increasing 
thickness of the membrane layer. As can be seen, the fxE for the bare tiles is 0.35. The f^ for a three layer 
E-glass/Epoxy pre-preg fabric constrained sample is 0.12. This is a nearly 23% improvement in the ballistic 
efficiency for a mere 2.5% increase in areal density. 
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Figure 4. The effect of front-face constraint on the ballistic performance of allumina tiles 

High-speed photography indicates that the front-face ejecta flow is vastly altered by membrane constraint. 
The ejecta flow for a bare tile is radially disperse, and conical in shape. Constraining the tile results in a 
much more restricted movement of the ejecta, further resulting in a flow that is acute and cylindrical in shape. 
The ejecta velocity for the constrained sample is nearly 40% higher during the intial stages of penetration. 
Flash radiography indicates that the projectiles undergo much greater mushrooming and erosion for a 
constrained sample, indicating increased penetration resistance. 

3.0 Micromechanics of High Strain-Rate Compression Failure of Ceramics 
The dynamic compressive strength and failure mechanisms in ceramics have been studied.^''' Experiments 

have been conducted on SiC under uni-axial compression from strain-rates ranging from 10"* to 9000 s''. 
Quasi-static tests were performed on an Instron test machine. Strain-rates of up to 1200 s"' were reached on a 
12.7 mm Hopkinson bar. Ultra high strain-rate experiments were conducted on a mini Hopkinson bar (4.76 
mm in diameter) to study SiC under uni-axial loading at a strain-rate of nearly 9000 s''. The compressive 
strength was observed to improve from 4.2 GPa under static loading conditions to 8.5 GPa at a strain rate of 
9000 s''. The samples failed by axial splitting. Nucleation of micro-cracks from pre-existing flaws such as 
inclusions, pores and grain boundaries, and their subsequent coalescence results in fragmentation. The 
fragment size was found to be sensitive to strain rate. It decreased with increasing strain rate, indicating that a 
many more micro-cracks are nucleated during a dynamic test. 

Also, the compressive strength of SiC was studied under multi-axial loading. A confining pressure of 300 
MPa was attained by a double-sleeve confinement method. The confinement resulted in an improvement of 
nearly 2 GPa in the compressive strength. The strain-rate sensitivity of the compressive strength is 
maintained. Unlike the unconfined samples, the confined samples failed by fault formation, due to a 
preferential crack growth. The experimental results have been analyzed using a micro-mechanical model, 
previously developed by Nemat-Nasser and Deng.^ They consider an array of interacting wing-cracks, which 
describes the influence of micro-structure on the dynamic behavior of ceramics. The microstructure is described 
in terms of average flaw-size and flaw spacing. The experimental results have been compared to the model and 
it has been observed that the model provides a quantitative description of the results. Fig. 5. shows the 
experimental results and the comparison to the model. The model has been plotted for a flaw size of 90 |im 
and a flaw spacing of 950 |a,m. 
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Figure 5. Experimental results and comparison to wing-crack array model 

4.0 Dislocation-Based Micromechanical Modeling of Titanium Alloys with Extensive Experimental 
Verification. 

Extensive rraearch has been conducted to study the dynamic response of conventional and iso- 
statically hot-pressed Ti-6A1-4V (Ti-6/4) alloys.* The thermo-mechanical response of Ti-6/4 alloys with three 
different microstractures was studied. Experiments were performed from a strain-rate of 10"^ to 7000 s"'. The 
Instron test machine was used for the quasi-static tests and the modified split-Hopkinson bar was used for the 
dynamic tests. The temperature was varied from 77 K to 1000 K. The microstracture of the failed ami 
unfailed samples was examined by optical microscopy. It was observed that depending on the temperature, 
shear bands are formed when the sample is deformed to large strains. The flow sfress was observed to be more 
sensitive to temperature than to strain-rate, A physically based model proposed by Nemat-Nasser and Li' for 
OFHC copper was suitably modified and applied to Ti-6/4. It was concludal that the initial microstracture 
affects only the magnitude of the threshold stress and the athermal part of the flow stress but not the 
dependence of thermally activated part of flow stress on the strain-rate and temperature. 

Similar experimente have also been performed on commercially pure Titanium (CP-Ti). ' It w^ 
observed that the flow stress of CP-Ti is strongly dependent on strain-rate and temperature. A two-stage 
deformation pattern was seen at temperatures below 296 K. A complex three-stage deformation was observed 
at temperatures within the range 296-800K and a single stage deformation was seen at temperatures above 
800K. Intermpted tests involving temperature jumps were performed to understand the underlying 
mechanisms and it was concluded that the three-stage deformation pattern was a r^ult of dynamic strain-aging, 
caused dw. to the interaction between moving dislocations and mobile point defojts in the dislocation core 
area. Also substantial deformation twinning was observed. A model was develo|«d to describe the 
experimental results both qualitatively and quantitatively.' The model combined the concepts of athermal 
long-range and thermally activated short-range barrier with the model of a 'trough' for the thermally activated 
brealaway of dislocations from the core atmosphere. This unified model accurately predicts the response of 
CP-Ti over a range of temperatures and strain-rates. See Fig. 6. 
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Figure 6. Flow stress vs temperature curves for CP-Ti 
(dotted line: experimental, solid lines: theoretical) 

Remarkably, similar but more complex response has been observed in commercially pure 
molybdenum, involving several ranges of temperatures within which dynamic strain-aging has been 
observed'". 
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SCIENTIFIC ACCOMPLISHMENTS UNDER DIRECTION OF PROFESSOR DAVID BENSON 

Computational Simulation of Experiments 

Research directed by Prof. David Benson 
Supporting graduate student Hsueh-Hung (Edward) Fu 
Collaborators: Vitali Nesterenko and Marc Meyers 

The two-dimensional Eulerian finite element program is being re-written to handle three-dimensional problems. 
B^ed on the current rate of progress, the first calculations will probably be June 2000, This project is motivated by 
the three-dimensional nature of the materials being invratigated in the MURI project, e.g., K. Vecchio's comigated 
ME. composite and V. Nesterenko's titanium reinforced with ceramic cylindere. 

1.0       Analytical and Computational Modeling 

Research involved simulating the effect of the cell size on the shock wave attenuation in laminated 
composites. The composites are composed of Cu+Al and Al+Ti, It was foimd that under similar impact 
conditions, there is a strongly nonlinear effect, namely the amplitude of the leading wave increases as the 
cell size decre^es. This behavior is in a dr^tic contrast with the expected response based on a linear 
acoustic analysis or on an analysis based only on the leading shock interaction with interfaces. This effect is 
typical for any laminated composite under strong shock loading, and was earlier experimentally observed for 
the Cu+Al system. The calculations for this material qualitatively agree with the experiments. 

A comparison of bonded and unbonded laminated composites demonstrated that short waves (their duration 
is comparable to the propagation time through one cell) attenuates faster in a bonded composite than in an 
otherwise identical, but unbonded system. Shock waves of a much longer duration attenuate in a similar 
manner in bonded and unbonded systems. 

Vitali Nesterenko and Dave Benson are continuing their investigation of the cold densification of powders. 
P. Haussmann has graduated from UCSD with his MS degree in mechanical engineering and returned to 
Switzerland. Alma Martinez King, an undergraduate student ftmded by the Mc Nair Program, is continuing 
his work on this project. 

Marc Meyers, Dave Bemon, and Hsueh-Hung Fu are modeling the effect of grain size on the flow stress in 
metals. Individual grains are modeled discretely, with the grain boundary having different material propertira 
than the interior of the grain. The grains are generated using a Vomoi construct, and then subjected to 
compressive loading. Initial calculations were i«rformed expHcitly at a moderate strain rate, and we aie 
currently comparing the results to quasi-static calculations performed with the recently ^M implicit 
Eulerian formulation. 

SCIENTIFIC ACCOMPLISHMENTS  UNDER DIRECTION  OF   PROFESSOR   KENNETH 
VECCHIO 

1.0       Development of a New Materials System termed ^Metattic-Intermetallic iMtninate (MIL) 
Composites*. 

The most significant contribution from Professor Vecchio's group was the development of an entirely new 
materials system that was bio-mimetically inspired based on the structure of seashells, notably the abalone 
and conch shell structures. These shell structures consist of hard, brick-like calcium carbonate regions 
called 'nma-e', interlaced in a layered morphology with a viscoelastic protein glue. The individual 
components of the shells, the nacre and protein, have rather poor mechanical properties, however the unique 
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architecture of the layered and 3-D morphology of the structure imparts significant strength, hardness, and 
fracture toughness to these shells. Figure I shows a micrograph of the structure of an abalone shell. 

'*   '•'^K i„-^A^*^.i., a,.. „ 

■ '3^te®» _ 

K^ 
Figure 1. TEM micrograph of the structure of an abalone shell. 

Recognition of the role of the architecture in enhancing the properties of the shells inspired us to create a 
materials system that 'mimicked' the structure of the shells, but composed of materials with significantly 
better mechanical properties for their individual components. Based on some earlier work by U. Anselmi- 
Tamburini and Z.A. Munir attempting to create monolithic intermetallic materials from co-rolled metal 
foils, a concept was developed for creating layered metal and intermetallic structures from a foil metallurgy 
approach. The unique properties of MIL composites arise from the combination of the high hardness and 
stiffness of the intermetallic-aluminide phase alternatively layered with the good strength, toughness, and 
ductility of metal alloys. Figure 2 shows examples of the wide range of layer thickness and phase volume 
fraction the can be achieve routinely in these metallic-intermetallic laminate composites based on the Ti-Al 
system. 

In the case of Ti-Al MIL composites, the specific stiffness (modulus/density) is nearly twice that of steel, 
the specific toughness and specific strength are similar or better than nearly all metallic alloys, and specific 
hardness is on par with many ceramic materials. An interesting comparison of material properties for the 
MIL Composites can be obtained using an Ashby-type plot of compound material properties. Figure 3 
shows a plot having the x-axis a compound function of specific material properties related to structural 
behavior (tensile strength, modulus, fracture toughness, all divided by density) and the y-axis a compound 
function of specific material properties related to blast and/or protection (compressive strength and hardness 
divided by density). In this plot numerous material locations are shown, and in terms of optimizing both 
the structural properties and protection properties, the upper right-hand comer represents the goal. 

Fig. 2. Representative backscattered electron micrographs of Al-Ti composites showing the variation in layer 
thickness and phase volume fraction that can be achieved simply by the selection of initial foil thickness. 
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Fig. 3. Materials property map comparing structural versus blast/ballistic property indexes. 

The location of the MIL composites is shown close to the optimized comer of the plot, and clearly 
demonstotes the tremendous potential of the MIL composites for structural/blast applications. MIL 
composites are fabricated by a reactive foil sintering technique, in open air, using commercially available 
metallic foil and sheet materials, which makes the processing and resulting materials low cost. The 
selection of the foil materials is based on metalUc systems that form aluminides, and to date large-scale 
MIL composites have been fabricated from Ti-Al, Ni-Al, Fe-Al, Cu-Al and shape memory NiTi-Al 
systems, although it appeare it will work for any metal-aluminide system. The composition, physical, airi 
mechanical properties of the MIL composites can be varied and tailored within the thickness of the 
composite by simply varying the individual foil compositions, thickness, and layering sequence. The 
fabrication of metallic-intermetalUc laminate (MIL) composites using this approach has several key 
advantages that make it ideally suited for the production of commercially scalable structural materials. 

Fkst, since the initial materials utilized are in the form of commercially available metallic foils, the initial 
material cost is reasonably low, compared to many of the exotic material processing routes that are 
commonly pursued in small-scale research environments. 

Second, the use of initially ductile metallic foils enables the layers to be formed into complex shapes. This 
opens the door for non-planar (comigated layered) structures, simple machining of individual foils for 
complex, 3-dimensional structures, and near-net shape forming of parts. 

Third, the processing conditions, in terms of temperature, pressure and atmosphere are very modest. 
Processing temperature, in the case of Al foils containing samples is below 700°C, and the processing 
pressures are below 4 MPa, Perhaps the most remarkable feature of the processing of these metallic- 
intermetallie laminate composites is that the processing is carried out in open air, no special inert gas or 
vacuum chamber facilities are necessary. The combination of these various processing features makes the 
processing method itself very low cost, and easily amenable to computer control. 

Fourth, the microstructure of the metallic-intermetalMc laminate composites is determined by the foil 
thickness and composition and the processing condition. Since the material make-up is based on the 
selection of the metal foils, it is possible to completely tailor the microstructure from one surface to the 
other. In addition, since the MIL composites are m^e using metallic foil starting materials, complex ard 
near-net shape formed parts can be fabricated readily by forming the individual metal foils prior to the 
reactive sintering process. 
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2.0 Structural Armor Material 

For armor applications, these metallic-intermetallic laminate composites offer several key features that are 
essential for improved ballistic performance. Although the initial components are metal foils, the reaction 
produced a hard, lightweight intermetallic (e.g. aluminide) phase. The volume fraction and layer thickness 
of this intermetallic phase is controlled by the foil thickness. Since the intermetallic phase is formed from 
the metallic foils, its morphology takes on whatever morphology the initial foils possessed (i.e., corrugated 
foils produce corrugated intermetallic layers). The intermetallic phase, although hard and brittle by nature, 
is contained and constrained by the remnant, unreacted metal (e.g. Ti) layers. As such, during ballistic 
impact the microcracking of the intermetallic layers ahead of the penetrator does not result in catastrophic 
fracture of the material (as happens with monolithic ceramic or intermetallic plates). So although the 
intermetallic layers fragment within the material, they continue to interact with the penetrator, slowing, 
eroding, and deflecting the penetrator. Finally, the remnant metal layers significantly increase the inherent 
fracture toughness of the composite, thereby increasing the energy absorption capacity of the material. 
Figure 4 shows a series of three photographs of cross-sections through MIL composite samples impacted 
by 10-gram WHA penetrators at a velocity of 900 meters/second. The sequence shows samples fabricated 
from Grade 2 Ti foils, (~50ksi. yield strength), Ti-3A1-2.5V foils (-90 ksi. yield strength) and Ti-6A1-4V 
foils (-145 ksi. yield strength), all initially 0.020" thick reacted with 1100 series Al foils of initial 
thickness 0.024", yielding composites containing approximately 20 vol.% Ti and 80 vol.% intermetallic 
(AljTi). 
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Fig. 4. Three photographs of cross-sections through MIL composite samples impacted by 10-gram WHA 
penetrators at a velocity of 900 meters/second, (a) Sample fabricated from Grade 2 Ti foils, (b) Ti-3A1-2.5V foils 

and (c)Ti-6Al-4V foils. 
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The samples have initial areal densities of approx, 7 grams per cm^. The samples were tested in a Depth- 
of-Penetration (DOP) configuration with a steel backing plate at 0.10" standoff. In each case the penetrator 
was stopped within the target, with the depth of penetration decreasing with increasing Ti metal layer 
strength. In the case of the Ti-6-4 MIL composite, the penetration depth is less than 1 cm., suggesting that 
the penetrator would have been stopped with a plate somewhat less than the initial 2 cm. thickness, are! 
perhaps as low as 1 to 1.5 cm, thickness. Since the density of these MIL composites is 3.5 gm/cm^, a 
one-centimeter thick plate has an areal density of 3.5 emJcnf. 

3.0 Corrugated MIL Composites for Enhanced Penetrator Deflection 

A novel and important ballistic feature of these MIL composites is the ability to form materials in which 
the layered structure is inherently oblique to any incoming projectile. Corrugated materials have the added 
advantage of being structurally stiffer, than the corresponding material in flat plate form. The individual 
foils can be initially formed into any complex shape, such as corrugated sheets, stacked together and 
reacted. Fig. 5 shows an example of a corrugated MIL composite, along with a cross-section through a 
projectile impact location. The influence of the obUque corragated layers is evident by the significant 
tilting and deflection of the penetrator. The penetrator used in this ballistic test WM a NATO 308 AP 
round &ed at 700m/s. The lateral deflection is approxunately 2.5 cm, m a plate that was only 2,5 cm 
thick. 

4.0 Through-thickness Strengthening of MIL Composites 

Concepts for direct control of through-thickness strength includes metallic wire stitching. Prior to 
processing, the entire metal foil stack can be places in a CNC end-mill and have a pre-draigned array of 
small holes drilled through the entire foil stack. 

Fig. 5. (a) Corrugated MIL Composites (b) Ballistic Impact of Corrugated MIL composite. 

An appropriately sized wire of Ti, for example, can then be stitched through the array of holes. Once 
reacted, the Ti wire will partially react with the foils, bonding the wire between the layers; however, since a 
central portion of the Ti whe will remain unreacted, the wire will provide three-dimensional strengthening. 
Figure 5 shows a cross-section through a MIL composite that was successfully wire stitched in the through- 

Thickness direction 
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Fig. 6. Cross-section of a wire-stitched, through-thickness strengthened MIL composite 

5.0      MIL Composites Incorporating Ceramics for Enhanced Ballistic Performance 

Since the MIL processing is carried out at very low pressures, it is relatively easy to incorporate monolithic 
or composite ceramic materials directly in the layering to form metallic-intermetallic-ceramic composites. 
As such, production of tiled, brick and mortar, and inclined layered structures can be fabricated. By drilling 
holes and creating cavities within the Al foil layers and embedding ceramic tiles or ceramic particles, it is 
possible to create confined ceramic regions with the hardened intermetallic layers that form during reactive 
sintering of the MIL composites. Figure 7 shows an example of boron-carbide particulate reinforced 
intermetallic layer in a Ti-Al MIL composite. Embedding ceramic tiles within the intermetallic layer 
allows the design of significantly inaeased hardness of the overall composite. Figure 8a shows an initial 
Al foil containing an array of ceramic tiles. Using a series of these layers, stacked in an FCC-type ABC- 
stacking sequence, it is possible to create a structure with no path through the thickness that does not 
involve interaction with at least one ceramic tile (Figure 8b). Figure 8c shows a cross-section through the 
sample of Figure 8b having been impacted by a WHA penetrator. This method of incorporating ceramics 
within the MIL composites may offer tremendous potential for future developments of significantly 
improved ballistic materials. 

Fig. 7.  MIL Composite containing a cavity filled with boron-carbide particulate creating a cermet-type region 
within the intermetallic layer. 
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Fig. 8.  (a) Al foil layer containing a hexagonal array of alumina ceramic disks, (b) Cross-section through reacted 
sample containing the alumina diste, and (c) Cross-section through alumina disk reinforced sample impacted by a 

WHA penetrator at 900 m/s. 

CONCLUSIONS 

Although we feel that we have made tremendous progress in developing a new class of armor materials with great 
potential for lightweight structural armors, we also strongly feel there is good reason to continue fimding more 
ballistic development work on these materials. Clearly, these materials would benefit from a detailed computational 
modeling effort to optimize the microstructure and meso-structures of these materials for ballistic protection. For 
these modeling efforts to be successM, they must be verified and guided by fiirther ballistic testing. 

SCIENTIFIC ACCOMPLISHMENTS UNDER DIRECTION OF PROFESSOR MARC MEYERS 

Dynamic Modeling and Processing of Materials for Dynamic Performance 
Research directed by Prof, Marc Meyers 
Supporting graduate students James Shih Elizabeth Strutt and Q Xue, and Q. Liu (Postdoctoral Researcher) 

1.0       Biomimetic Materials (Marc Meyers, R. Menig - graduate student - U. of I^rlsrahe, M. 
H. Meyers - UCSD-Biology Dept.) 

This exploratory work was completed and two papers are being published.    This work is inspiring 
processing efforts directed by Ken Vecchio on laminate structures and by this investigator on metal-ceramic 
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laminates (see item 4 below). The paper on abalone is already in print in Acta Materialia. The paper on 
conch was conditionally accepted by Materials Science and Engineering and should appear in late 2000. 
Discussions are currently under way to explore other biological systems for possible application in military 
structures. 

2.0       Resilient Materials (Marc Meyers and Elizabeth Strutt, Collaborators: Sia Nemat-Nasser 
and Jon Isaacs) 

In this research, TiC-NiTi composites have been produced by self-propagating high temperature synthesis 
(SHS) combined with quasi-isostatic pressing (QIP) in a granular pressure transmitting medium. 
Compositions with 20, 30, 40, 60 and 80 volume percent NiTi have been prepared. The chemistry has 
been optimized to prevent formation of Ni3Ti. Differential Scanning Calorimetry (DSC) has been 
performed on the various cermets and has confirmed that the martensitic transformation can be induced by 
changes in temperature, even in those composites that have a rigid, interconnected ceramic skeleton. 
Quasi-static compression tests have been performed to study the room temperature response of TiCO.7- 
SONiTi. Preparations are being made to test the TiC0.7-30NiTi composites slightly below Ms to 
determine if stress induced martensite forms in composites with high ceramic content. Ballistic testing of 
the TiC0.7-30NiTi composite with a 1090 steel projectile fired at 500 m/s resulted in defeat of the 
projectile with no visible penetration of the composite. Targets are being machined for more systematic 
ballistic tests. The following papers were submitted for publication: "Self-Propagating High-Temperature 
Synthesis and Densification of Powder Cermets," Strutt, Olevsky, & Meyers, Materials Science aid 
Engineering -submitted; and "Characterization by Indentation of Combustion Synthesized Cermets," 
Olevsky, Strutt, & Meyers, Scripta Materialia - submitted. 

3.0 Damage in Silicon Carbide (Collaborators: Vitali Nesterenko, L. W. Meyer-U. of Chemnitz, 
Germany, David Benson) 

A combined experimental-computational program is in progress to establish the constitutive response of 
damaged SiC. This behavior is very important because the ceramic is comminuted upon impact. Dr. 
James Shih has made significant progress in the past. It is expected that the program currently under way 
will lead to quantitative assessments of the mechanical response of SiC as a function of confining pressure. 
This will be coupled with physical modeling of the phenomena and implementation into computational 
codes. A paper dealing with damage in SiC is in press in Acta Materialia. 

4.0 Ceramic-Metal Laminates 
(Collaborators: Ken Vecchio, H. C. Bryan Chen - Cercom, Q. Liu Post-Doctoral Researcher, Q. Xue, 
Ph.D. candidate) 

This area of research is being initiated and could lead to novel structures well suited for armor applications. 
Cercom has the capability and know-how for the fabrication of SiC layers by tape casting. Preliminary 
experiments are being conducted to establish whether the system investigated (SiC-Ti) present's favorable 
reactions. Past work on B4C-A1 yielded reaction products that were very deleterious to the integrity of the 
structures. 

CONCLUSIONS 
This MURI was instrumental in four important developments. 

The work carried out by Dr. Shih (currently Manager for New Materials, CERDYNE) is being recognized as 
seminal in the area of dynamic behavior of ceramics. He experimentally demonstrated that comminuted SiC 
undergoes shear localization and developed an analytical model that addresses the physical phenomena involved. The 
microstructural evolution in the dynamic deformation of SiC was investigated in the same study and the effect of 
dislocations and politypes was demonstrated. The role of microplasticity in failure initiation was demonstrated. This 
work was recognized in Europe, and Dr. Shih received the best thesis award from the EURDYMAT Association , in 
Krakow (2000). He gave an invited lecture at that meeting. 
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The work of Dr. Xue (currently Post Doctoral Fellow at LANL, working in Dr. Gray's group) dealt with 
the collective behavior and microstructural evolution in shear localization. Dr. Xue demomtrated that shear bands 
self-organize with an evolving spacing, that is size dependent. He developed an analytical model that includes the 
two-dimensional effects and is b^ed on stress shielding. The microstructure within the shear bands i«vealed the 
microcrystalline structure observed earlier for other metals. A quantitative model was developed based on grain- 
boundary diffusion and compatible with rotational dynamic recrystallization. A novel microstructure was revealal 
(quite serendipitously) and confirmed for a second alloy: amorphous regions within the shear bands, due top the 
extreme rates of heating and cooling. This is the first report of amorphization induced by shear localization. 

Additional successful activities included the demonstration that Ti ands SiC can be bonded by reaction. This 
could yield a laminate composite with superior armor jwrformance. This exploratory research should be continued. 
The synthesis and processing of resilient TiC-NiTi cermets has been carried out successfully and balHstic tests 
showed excellent performance. 

A fourth component of the program has been interrupted. Joint experiments planned with Prof. L, W. 
Meyer could not be carried out, but it is hoped that modest funding will be made available by ARO to complete this 
program. 

SCIENTIFIC   ACCOMPLISHMENTS   UNDER   DIRECTION   OF    PROFESSOR    VITALI 
NESTERENKO 

Part I: Behavior of Solid and High Gradient Targets from HIPed Ti-6A1-4V at the Different 
Conditions of High Velocity Impact (plugging and penetration modes) 

Part H: Controlled   Magnetically  Driven High Strain Rate 2-D test of Ti and Stainless 
Steel 

Research directed by Prof. Vitali Nesterenko 

Supporting Gu YaBei, Graduate Student Researcher and Sastry S. Indrakanti Postdoctoral Researcher. 
Dayton Research Institute). 
Collaboration: Part I: Werner Goldsmith (UCB), N.S. Brar (University of Dayton Research Institute); Part II: John 
L. Stokes, Jack S. Shlachter, Robert D. Fulton, (Las Alamos National laboratory, Los Alamos). 

1.0 Synthesis and Processing of Armor Materials and Composites (V.  Nesterenlso and  W. 
Goldsmith) 

Hot isostatic pressing was used to manufacture a variety of porous composite samples where powder CB4C) 
filed tubes of AljOj were placed in the matrix of Ti-6A1-4V in combination with rods and plates under 
different angte to the impact direction. Modeling of residual compressive stresses in ceramics inserted by 
HIPing into matrix of Ti-6A1-4V was performed. 

2.0 Experimental characterization (V. Nesterenko, N. S. Bar) 

The samples from previous ballistic penetration test (in collaboration with N. S. Brar, University of 
Dayton Research Institute) with tungsten (93 %) heavy alloy penetrators (velocity 886-9«) m/s, mass 16.8 
gram, diameter D=4.93 mm, L/D=10) with solid and porous composite samples of Ti-6A1-4V alloy with 
different microstructures (Widmanstatten pattern and wiuiaxed) were investigated. Penetration depth for 
HIPed materials are smaller than in baseline samples of Ti-6A1-4V alloy (forged rod MIL-T-9047G). 
Composite materials with alumina rods and tubes filled with B4C powders demonstrated new features of 
penetration: projectile deflection with self sealing of hole and forced shear localization caused by tube 
fracture. 

Hopkinson bar testing of solid HIPed samples was performed in collaboration with S. Nemat-Nasser. 
New ballistic tests are scheduled in newly processed samples at University of Dayton Research Institute ani 
in UC Berkeley. 
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3.0 Development of New Experimental Techniques (Vitali Nesterenko, John L. Stokes, Jack S. 
Shlachter, Robert D. Fulton, (Los Alamos National Laboratory) 

The first controlled two-dimensional high-strain-rate experiments were performed in the geometry similar to 
the thick walled cylinder, but using magnetically driven implosion at the Pegasus-II facility in collaboration 
with LANL (J.L. Stokes, J.S. Shlachter, R. D. Fulton). Comparative behavior of Ti and 304 stainless 
steel was investigated. A pulsed power capacitor bank capable of delivering several megamperes of current 
to a cylindrical conducting liner, was used for the magnetic implosion of a thick walled cylinder to study 
two-dimensional high-strain-rate flow in different materials. Boundary conditions of loading (dynamic 
pressure) were monitored by the measurement of magnetic field outside of the composite cylinder. The 
kinematics of flow was measured using three radial X-ray radiographs at different azimuthal angles and 
different times after the start of current through the cylinder. The relative azimuthal angles were 0; 120, 
240 degrees and radiographs were obtained at 13, 18 and 30 microseconds following current start. Peak 
current from the capacitor bank occurred at 8 microseconds. It was demonstrated that a magnetically driven 
composite thick walled cylinder is able to preserve cylindrical symmetry at the level of large strain enough 
to initiate material instability and at the same time avoid geometric instability typical for thin walled 
cylinders. The composite liner consisted of separate stacked cylinders of stainless 304 and Ti. The results 
are contrary to the expected behavior based on uniform plastic flow of these materials. This is explained 
based on the plastic flow instability and formation of multiple shear bands. The technique may be used for 
testing of 2-D and 3-D numerical models under controlled boundary conditions and detail kinematics of 
plastic flow. 

CONCLUSIONS 

Powder-based, texture-free homogeneous and high gradient samples with embedded ceramic roads and powder filled 
ceramic tubes of armor were processed from Ti-6A1-4V powder using optimized hot isostatic pressing. Ballistic 
testing of processed target against impact by conical, blunt and long rod projectiles demonstrated better performance 
in comparison with commercially available Ti-6A1-4V alloy MIL-T-9047G with best combination of strength and 
ductility. Elastic and dynamic properties of powder based material were fully characterized. Qualitatively new 
complex pattern of shear bands was found in powder-based material under high strain, high strain rate deformation 
which is probably responsible for imporved ballistic performance. New mechanism of long rod deflection based on 
forced shear instability due to collapse of powder filled voids was demonstrated in high-gradient materials. 

Self organization of shear bands was investigated in different materials and first experimental results were obtained 
for verification with proposed theories of Grady-Kipp, Wright-Ockendon, and Molinari. The lack of self organization 
stage was established for Ti-6A1-4V in striking contrast with Ti and stainless steel at the same conditions of testing. 

Shear instabilty in damaged SiC was established as a major mechanism of high strain, high strain rate flow. New 
phenomena of SiC resintering inside shear band and its dependence on particle size was discovered. Influence of grain 
size and porosity on shear band pattern was demonstrated revealing the stabilization of high strain flow by low level 
of initial porosity. 

Mechanism of anomalous shock attenuation was established in laminar materials like Ti-Al composite. 

V. INTERACTION    WITH    DOD,    DOE    LABORATORIES,    INDUSTRY,    AND 
UNIVERSITIES AND TECHNOLOGY TRANSFER 

Sia Nemat-Nasser: Dr. T. Wright (ARL), visited CEAM March 1998. 

Sia Nemat-Nasser: collaboration with Professor John Willis (Cambridge, UK) on micromechanical modeling of 
dynamic deformation and failure modes of heterogeneous structures, involving several length scales. 

David Benson; Interaction with Professor Wing Kam Liu (Northwestern University), whose graduate student 
developed a research code for Benson's new method for calculating the time step size. 
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• Sia Nemat-Nasser: Presented a well attended informal seminar at ARL, on June 7, 1999, on mechanics of 
ceramic penetration process, to Dr. William J. Gillich and his group. Extensive discussion followed the 
seminar. 

• Vitali Nesterenko:: Discussions with Drs, William A. Gooch, Hubert W. Meyer during Conference on Shock 
Compression of Condensed Matter, American Physical Society meeting. Snowbird, Utah, 27th June 3 July; 
discussion with Dr. Thomas W. Wright on magnetic implosion test for comparison of self organization of shear 
bands in Ti and stainless steel. 

• Ken Vecchio: collaboration with Rusty T. Gray, HI, Los Alamos National Laboratory, collaborating on 
Dynamic Testing of the MIL composites, in particular the Taylor Testing as a function of orientation. 

• Ken Vecchio: collaboration with Ernie Chen, Army Rraearch Laboratory, collaborating on the synthesis of 
novel MIL composites for signature control using trilayer MIL composites of metal-intermetallic -ceramic 
combinations. 

• Dave Benson: Organized ASME IMECE 2000 Symposium on Computational Micromechanics with the 
collaboration of Scott Schoenfeld. 

• Sia Nemat-Nasser: Extensive interaction with Aerojet/Gencorp (Mike Stawovyy, Henri Kun, and B.C. Chouck), 
on high deformation experimentally-based modeling of high strain rate response of tantalum. 

• Sia Nemat-Nasser: Collaboration with Dr. Tim Wright, (U.S. Army Research Laboratory, Terminal Effecte 
Division) visited CEAM February 6-26,2000. 

• Sia Nemat-Nasser: Continued interaction with Aerojet (Mike Stawovyy, Henri Kim, and B.C. Chouck), on high 
deformation experimentally-based modeling of high strain rate response of tantalimi. 

• Vitali Nesterenko: Continued collaboration with Dr. Werner Goldsmith, UC Berkeley, on the synthesis ami 
processing, new characterization and ballistic evaluation of solid and pMed armor materials. Professor 
Goldsmith visited UCSD in October 1999 and February 2000. 

• Vitali Nesterenko: Collaboration with Dr's. J. Shiachter, J. Stokes & R. Fulton from Los Alamos National 
Laboratory on research pertaining to magnetically driven thick walled cyhnder testing. 

• Marc A. Meyers: Continued collaboration with R. Menig (Graduate Student from U. of Karlsruhe) on the 
research pertaining to biomimetic materials in relation to modeling and processing of materials for dynamic 
performance. 

• Marc A. Meyers: Continued collaboration with Lother W. Meyer (University of Chemnitz, Germany) on 
damage of silicon carbide in relation to modeling and processing of materials for dynamic performance. 

• Marc A. Meyers: Continued collaboration with Dr. H.C. Bryan Chen from CERCOM Inc, on ceramic-metal 
laminates in relation to modeling and processing of materials for dynamic performance 

• Ken Vecchio: Continued collaboration with Rusty T. Gray, III, Los Alamos National Laboratory, collaborating 
on Dynamic Testing of the MIL composites, in particular the Taylor Testing as a function of orientation. 

• Ken Vecchio: Ernie Chen, Army Research Laboratory, collaborating on the synthesis of novel MIL composites 
for signature control using trilayer MIL composites of metal-intermetallic -ceramic combinations. 

• Dave Benson: Organized ASME IMECE 2000 Symposium on Computational Micromechanics with the 
collaboration of Scott Schoenfeld. 
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• Sia Nemat-Nasser attended PacRim IV, Maui, HI, November 4-8, 2001 and made a Keynote Presentation in tlie 
session organized by Dr. David Stepp on Damage Evolution and Micromechanics. Title of presentation: 
"Micromechanisms of Compression Failure" 

• Sia Nemat-Nasser attended PacRim IV, Maui, HI, November 4-8,2001 and made an Invited Presentation in the 
session organized by Steve Wax on Ultra-Lightweight Transparent and Novel Concepts. Title of presentation: 
"Novel Ideas in Multi-Functional Ceramic Armor Design" 
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