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Abstract 

 
This thesis examines the ground and excited electronic states of the uranyl 

(UO2
2+) and uranate (UO4

2-) ions using Hartree-Fock self-consistent field (HF SCF), 

multi-configuration self-consistent field (MCSCF), and multi-reference single and double 

excitation configuration interaction (MR-CISD) methods.  The MR-CISD calculation 

included spin-orbit operators.  Molecular geometries were obtained from self-consistent 

field (SCF), second-order perturbation theory (MP2), and density functional theory 

(DFT) geometry optimizations using the NWChem 4.01 massively parallel ab initio 

software package.  COLUMBUS version 5.8.1 was used to perform in-depth analysis on 

the HF SCF, MCSCF, and MR-CISD potential energy surfaces. 

Excited state calculations for the uranyl ion were performed using both a large- 

and small core relativistic effective core potential (RECP) in order to calibrate the 

method.  This calibration included comparison to previous theoretical and experimental 

work on the uranyl ion.  Uranate excited states were performed using the small-core 

RECP as well as the methodology developed using the uranyl ion. 
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THEORETICAL COMPARISON OF THE EXCITED ELECTRONIC STATES OF THE 

LINEAR URANYL (UO2
2+) AND TETRAHEDRAL URANATE (UO4

2-) IONS USING 

RELATIVISTIC COMPUTATIONAL METHODS 

 

I.  Introduction 

 
 

The chemical properties of uranium and plutonium oxides are critically important 

to nuclear applications.  Of particular importance in the chemistry of these actinide 

compounds is the oxidation state.  Uranium, like all the actinides, can possess a wide 

range of oxidation states, ranging from +3 to +6, due to chemical activation of the 

uranium 5f orbitals via relativistic effects.  As a result, the oxidation state of uranium can 

be influenced by its local chemical environment, which in turn influences the geometry 

of the uranium oxide compounds.  Uranium oxidation state plays a very important role 

throughout the nuclear fuel cycle, and it plays a critical role in the mobility of uranium in 

the environment.  This oxidation state can be inferred through spectroscopic 

measurements, providing a simple and inexpensive tool for use in such areas as nuclear 

forensics and environmental monitoring.   

Additionally, the stockpile stewardship1 program demands a thorough 

understanding of the processes by which uranium and plutonium components age, as well 

as the effect this aging has on the reliability and performance of nuclear weapons.  A 

cornerstone of the stockpile stewardship program is theoretical modeling and simulation 
                                                           
1 Stockpile stewardship refers to the substantial effort undertaken by the U.S. Department of Energy to 
maintain and certify the U.S. nuclear weapon arsenal without resorting to underground nuclear testing--
http://www.doe.gov.   
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of the basic physics and chemistry involved in the design, manufacture, maintenance, and 

operation of a nuclear weapon.  Again, non-invasive electronic spectroscopic methods 

can be used to diagnose the extent of nuclear weapon component aging, based on the 

relationship between uranium oxidation state and its local chemical environment. 

Uranium oxidation is of particular interest.  Oxygen and uranium readily react, 

forming a wide range of complex oxides over a range of temperatures and pressures 

(Wanner, 1992).  The uranyl ion, UO2
2+, is an unusually stable oxide of uranium, and it is 

present in a majority of complex uranium(VI) oxides (Pyykkö, 1998:  3787-3788; Zhang 

1999:6880).   

While there is a large amount of experimental data on the various properties of 

uranium and plutonium (Katz et al, 1986; Wanner, 1992), theoretical understanding of 

the spectra of these elements has progressed slowly.  Ab initio2 quantum mechanical 

theoretical techniques have made great strides in understanding of molecules consisting 

of lighter elements, and computational methods have been quite successful in predicting 

thermodynamic and spectroscopic properties of these compounds.  Unfortunately, such 

progress in the actinide compounds has progressed more slowly, for two main reasons. 

The first difficulty is the sheer number of electrons to deal with in actinide 

compounds.  Common uranium oxide compounds such as UO2 have 108 electrons, while 

more complex oxides such as U3O8 have over 300 electrons.  Accurately treating such 

large numbers of electrons becomes computationally intensive, and it has only been in 

the last decade that such molecules can be treated with the accuracy necessary to 

compare theoretical and experimental electronic spectra.  A second difficulty is the fact 

that relativistic effects must be accounted, not as perturbations to, but on an equal footing 

with electron correlation in these heavy molecular systems for even moderate accuracy.  

This is in stark contrast to lighter molecules where relativistic effects can be neglected in 
                                                           
2 Latin for "from the beginning", Merriam-Webster's Collegiate Dictionary, 2002, http://www.webster.com 
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all but high-precision theoretical calculations (Pyykkö, 1998: 563-594; Balasubramanian, 

1997:  1-27).   

With the development of faster computers, especially massively parallel computer 

systems, as well as quantum chemistry software codes designed to take advantage of 

these computer architectures, there has been an increasing number of theoretical 

investigations of actinide compounds.  However, the theoretical calculation of excited 

electronic states for actinide compounds is a difficult problem, and there are relatively 

few in-depth studies of the excited states of uranium oxides necessary for understanding 

the electronic spectra. 

This research focuses on two uranium oxide ions in particular:  uranyl (UO2
2+) 

and uranate (UO4
2-) ions.  Starting from optimized, theoretical, gas-phase molecular 

geometries, electronic spectra calculations from single and double excitations with spin-

orbit coupling included were computed and compared with experimental and other 

theoretical results.  The calculations involving uranyl were used to calibrate and validate 

the method, while those involving UO4
2-

 were an attempt to begin understanding the 

influence of the local oxygen coordination on the electronic spectra of uranium oxides.  

Particular interest was paid to the first excited states of both.   

The theory relevant to calculations of the electronic spectra of uranium oxides is 

laid out in chapter two.  Next, the hardware and software resources used in this research, 

as well as the methodology behind the study of uranyl and uranate electronic spectra is 

described in chapter three.  Results and discussion of the results is included in chapter 

four, followed by conclusions drawn from this research and recommendations for further 

research in chapter five.   
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II.  Theory 

 
 

Ab initio quantum mechanical theoretical techniques have been applied to 

molecules containing light elements with increasing success in the past several decades.  

Application of these theoretical techniques to light-atom molecules, especially organic 

molecules, has yielded vast insight into the properties of these molecules such as 

molecular geometries for ground and transition states, electron affinities, ionization 

potentials and more.  Advances in computing power, coupled with quantum chemistry 

software designed specifically to take maximum advantage of these computers has 

increased the applicability to larger molecules.  Such calculations have become an 

indispensable tool to theoreticians and experimentalists alike. 

Complications arise when applying theory to molecules containing heavy 

elements, especially actinide molecules.  The two most difficult complications to the 

theoretical treatment of heavy-element molecules are increased electron correlation and 

relativistic effects. 

First, these heavy-element molecules contain a large number of electrons whose 

motions are coupled through electrostatic and quantum mechanical interactions.  Electron 

correlation effects can contribute roughly 1 eV (23 kcal/mol) to the total electronic 

energy per electron pair (Raghavachari, 1996:  12960).  Using this rule of thumb, 

electron correlation accounts for 46 eV of the total electronic energy in the uranium 
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atom.  An accurate treatment of electronic correlation is critical in order to perform 

meaningful comparisons between theoretical and experimental spectra. 

A second complicating factor in the theoretical treatment of heavy-element 

molecules is the increasing importance relativistic effects play in the accurate description 

of ground and excited electronic states with increasing atomic number, Z.  Several 

reviews examine relevant chemical effects due to relativistic quantum mechanical 

treatments (Pyykkö, 1988:  563-594; Pepper et al, 1991:  719-741; Kaltsoyannis, 1997: 1-

11). 

Relativistic Effects in Chemistry 

There are three main relativistic effects in atomic and molecular chemistry, all of 

which are roughly the same magnitude, and they approximately scale as Z4 (Pyykkö, 

1988, 564).  The first main relativistic effect is considered a direct relativistic effect, and 

it consists of a radial contraction of atomic orbitals, along with a lowering of the energy 

level of the electronic state.  This effect is due primarily to the relativistic mass increase 

as electron velocities become appreciable fractions of the speed of light.  Simple 

replacement of the relativistic mass expression for the electron in the Bohr radius formula 

yields 

    
( )

2
0

22
0

0

14
em

a c
v−

=
hπε

.    (1) 

Here, h  is Planck’s constant divided by 2π, 0ε  is the permittivity of free space, e 

is the electron charge, and m0 is the electron mass.  As electron speeds, v, approach the 
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speed of light, c, the Bohr radius, a0, shrinks.  Electron orbitals with high densities near 

the nucleus experience the largest contractions, where electron speeds are largest.  For 

electrons in the hydrogenic 1s shell, the average fraction of the speed of light is given by 

137
Z  (Pyykkö, 1988:  563).  For uranium, this is 0.67c, yielding a 1s orbital radial 

contraction of roughly 26%.  All atomic orbitals have some density near the nucleus, 

therefore, all atomic orbitals experience some contraction.  However, the inner s- and p- 

orbitals nearest the nucleus experience the most contraction (Pyykkö, 1988:  563).  In 

light-element molecules, this orbital contraction is small and negligible in all but the 

highest precision calculations, but the effect becomes dramatic in actinide elements such 

as uranium.   

The second relativistic effect is considered to be an indirect effect, and it consists 

of a radial expansion and increase in the electronic energy levels of outer atomic orbitals.  

This is due to more effective nuclear charge screening by the inner, contracted electrons, 

reducing the effective nuclear charge experienced by the outer electrons.  Additionally, 

relativistic contraction of the inner s- and p- electron shells increase the electron density 

near the nucleus, crowding out the outer d- and f- electron shells.  This is due to the fact 

that there is a decrease in electron density near the nucleus for orbitals with increasing 

orbital angular momentum.  Thus, the direct orbital contraction competes with the 

indirect orbital expansion.  In general, the result of this interplay between relativistic 

effects is to contract and stabilize s- and p- atomic orbitals, while d- and f- orbitals 

expand and destabilize in energy.  The orbital expansion and contraction can affect bond 

lengths (Pyykkö, 1988:  571) and force constants (Pyykkö, 1988:  580), which in turn 
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affect molecular vibrational frequencies.  These relativistic effects obviously affect the 

observed spectra of heavy-element molecules, but not as much as the splitting of states 

caused by the third major relativistic effect, spin-orbit coupling. 

Intrinsic electron spin is a natural result of a Lorentz-covariant description of the 

quantum mechanically wave equation (Balasubramanian, 1997:  76-78).  This spin 

angular momentum couples with the electron orbital angular momentum, lifting 

degeneracy in atomic orbitals with angular momentum.  Thus, the three degenerate p- 

orbitals in non-relativistic theory split into one 
2
1p  orbital and two degenerate 

2
3p  

orbitals.  Of the three effects, spin-orbit coupling has the largest impact in atomic and 

molecular spectra, even for low-Z atoms and molecules.  For light atoms, a perturbative 

treatment of spin-orbit coupling known as Russell-Sanders coupling or L-S coupling 

often yields sufficient accuracy for electronic transition energies.  This coupling scheme 

treats magnetic spin-orbit coupling as a small perturbation to the electron-electron 

electrostatic interaction.  Orbital angular momentum and spin angular momentum are still 

“nearly” good quantum numbers in this coupling scheme, and both L and S commute 

with the Hamiltonian in Russell-Sanders coupling scheme.  Atomic states are described 

by term symbols 

SLJ
FDPSL

S
LJ

S

+=
=
=

+

K

K

,,,,
,2,1,0

12

 

with S equal to the total spin multiplicity, and L is the total orbital angular momentum (0, 

1, 2, ..).  Traditional spectroscopic notation is used for the total orbital angular 
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momentum, with S representing zero total orbital angular momentum, P representing one 

unit of orbital angular momentum and so on.  J is the total angular momentum of the 

electron, given by the sum of orbital and spin angular momenta.  Examples of Russell-

Sanders term symbols include 3P2, 1S0, and 3D4 (Gerloch, 1986:  69-74). 

On the other end of the perturbation spectrum, more appropriate for very heavy 

atoms, the electron-electron electrostatic interaction is treated as a perturbation to the 

magnetic spin-orbit coupling.  This coupling scheme is known as j-j coupling.  In this 

coupling scheme, neither L nor S commute with the Hamiltonian.  However, the total 

angular momentum, J, still commutes with the atomic Hamiltonian, and hence, is a good 

quantum number.  The term symbol for j-j coupling is given by the J value for the state 

(Gerloch, 1986:  74-76).   

Figure 1 contains a schematic representation of the two spin-orbit coupling 

extremes (Gerloch, 1986:  61).  The horizontal springs represent electrostatic coupling 

between the electrons, while the vertical springs represent magnetic coupling between the 

electron intrinsic magnetic moments.  In Russell-Sanders coupling, the electron orbital 

angular momenta couple strongly, as do each electron’s spin angular momenta.  These 

total orbital and spin angular momenta then couple weakly.  The opposite is true of j-j 

coupling.  In j-j coupling, each electron’s orbital and spin angular momenta couple 

strongly, and this individual total angular momentum couples weakly with the other 

electrons total angular momenta. 
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Figure 1.  Schematic Representation of the Assumptions in Russell-Sanders and j-j Spin-

Orbit Coupling Schemes (Gerloch, 1986:  61) 

Most elements on the periodic table fall between these two perturbation extremes, 

and so intermediate coupling is more appropriate than either perturbative treatment.  

Intermediate coupling is not a separate coupling scheme, but occurs as deviations from 

the separate perturbative treatments given by L-S and j-j coupling (Gerloch, 1986:  77).  

Figure 2 illustrates the effect of Russell-Sanders, intermediate, and j-j spin-orbit coupling 

on a d2 electronic configuration.  Figure 2 shows the effect of spin-orbit coupling on an 

atomic electronic state with two electrons in the d-shell.  The left-hand side shows the 

term symbols that arise due to Russell-Sanders coupling, while the right-hand side shows 
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the effect of j-j coupling on the same electronic configuration.  Here, the importance of 

spin-orbit coupling to electronic spectroscopy is evident.  Without taking into account 

spin-orbit coupling, both the number of states and their relative ordering will be 

incorrect. 

 

 

Figure 2.  Correlation Diagram of the Various States Arising From a d2 Electronic 

Configuration Using Both Russell-Sanders and j-j Spin-Orbit Coupling (Gerloch, 1986:  

78) 

Relativity also affects the symmetry of molecules, because of electron spin.  

Under the assumption that the total electronic wave function can separated (the product 

of a spatial and spin wave functions), each wave function may possess separate 

symmetry, and the total, observable state symmetry is given by the product of the spatial 
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and spin symmetries.  For example, singlet spin states are completely symmetric, while 

triplet spin states transform like the components of the angular momentum operator.  

Thus, a completely symmetric spatial wave function multiplied by a triplet spin wave 

function will not be totally symmetric.  For systems with a spin-orbit Hamiltonian, the 

symmetry point groups can have twice the number of symmetry operations, and are 

called double point groups.  This doubling of the order of the symmetry point groups is 

due to the introduction of 2
1 -integral angular momentum values.  Systems possessing an 

even number of electrons obey Bose-Einstein (bosons) statistics, and the total wave 

function of bosonic systems is symmetric with respect to rotations by 2π.  Systems 

possessing an odd number of electrons obey Fermi-Dirac statistics (fermions), and 

fermionic wave functions change sign up the exchange of two particles.  This exchange is 

equivalent to a rotation by 2π, and so a rotation of 4π returns a fermionic system to its 

original state.  While bosonic systems transform according to the irreducible 

representations of the single point groups, the rotation by 2π is a new symmetry operation 

for fermionic systems, doubling the order of the symmetry point group.  For example, 

rotations of a closed-shell molecule, such as uranyl (UO2
2+) transforms according to the 

normal irreducible representations of the D∞h point group.  Rotating the molecule by 2π 

leaves the molecule (wave function) unchanged.  However, for an open-shell molecule, 

such as UO2, such is not the case.  Such molecules transform according to the extra 

irreducible representations generated by a rotation of 2π.  Rotating the UO2 molecule by 

2π introduces a phase factor into the total electronic wave function.  A rotation by 4π in 

this case returns the molecule (wave function) to its original configuration. 
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These three main effects, orbital contraction and energy stabilization, orbital 

expansion and energy destabilization, and spin-orbit coupling, along with the 

consequential double group symmetry constitute the chemically relevant relativistic 

effects in atoms and molecules.  The most important, from a spectroscopic standpoint is 

spin-orbit coupling, even in the spectra of the lightest elements.  A quantum mechanical 

treatment of the electron must account for the intrinsic magnetic moment of the electron, 

and the Dirac equation accomplishes this quite elegantly. 

The Dirac Equation 

Relativity has played a role in quantum mechanical systems since the inception of 

the theory.  Attempts at finding a Lorentz invariant form for Schrödinger’s equation led 

to two Lorentz-covariant equations:  the Klein-Gordon equation, and the Dirac equation.  

Schrödinger’s equation, a non-relativistic quantum mechanical wave equation, is given 

by  

          Ψ=Ψ EH ,    (2) 

where the Hamiltonian, H, and energy, E, operators are given by 

    ),(
2

),(),(
2

trV
m

trptrH r
r

r
+= ,    (3) 

and 

        
ti

t
∂

E ∂
−
h)( = .     (4) 

The momentum operator, p, is defined by 

    ∇=
i

trp hr ),( .      (5) 
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Here,  is the electron mass,  is the imaginary number,  is Planck’s constant divided 

by 

m i h

π2  , V ),( trr is the potential energy operator, and )t,(rp r  is the electron momentum.  

is the electronic wave function. Ψ

This equation, because of the non-equivalent treatment of the spatial and temporal 

variables, is not Lorentz invariant, and therefore is limited to non-relativistic phenomena.  

Early attempts at making a Lorentz-covariant equation began by quantizing the Lorentz-

covariant relativistic energy expression 

     .    (6) 42
0

222 cmcpE +=

Again, p is the electron momentum, c is the speed of light, and m0 is the electron 

rest-mass, and E is the electron energy. 

Replacing the energy and momentum expressions with their quantized 

counterparts leads to the Klein-Gordon wave equation for a free particle 

(Balasubramanian, 1997: 99-101; Messiah, 1999:  884-888; Bjorken and Drell, 1964:  4-

6,198-206) 

    Ψ+Ψ∇−=
∂
Ψ∂ 42

0
222

2

2
2 cmc

t
hh− .   (7) 

While this scalar wave function is Lorentz-covariant, it has several undesirable 

properties, making it unacceptable as a wave function for the electron.  First, the 

probability density associated with it is not positive definite, resulting in possible 

negative probability densities.  Additionally, both positive and negative energy solutions 

to this equation exist, complicating early interpretation of the wave function.  The fact 

that the probability density is not positive definite makes this equation a poor choice for 

an electronic wave function; however, the Klein-Gordon turns out to be a valid 
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relativistic wave equation for spin-free fields, such as pi mesons (Messiah, 1999:  888; 

Balasubramanian, 1997:  108). 

Dirac took a different approach in formulating a Lorentz-covariant equation for a 

free electron (Dirac, 1928:  610-624; Dirac, 1928:  351-361; Balasubramanian, 1997:  

110-119).  He began with the same Lorentz-covariant expression for the energy of a free 

particle as the Klein-Gordon equation, 

     .    (8) 42
0

222 cmcpE +=

Taking the square root yields the Dirac Hamiltonian, 

            42
0

22 cmcpH Dirac +±= .   (9) 

Quantizing this expression by the usual substitutions for the energy and 

momentum operators yields a Hamilton that involves a first-order time derivative.  

However, the square root in the operator makes application problematic and hopelessly 

complicated.  Dirac circumvented this problem by introducing a new degree of freedom 

into the relativistic Hamiltonian, effectively completing the square.  This yielded a more 

tractable Hamiltonian operator 

   2
0332211 )( cmpppcH Dirac βααα

trtrtrt
+⋅+⋅+⋅= .  (10) 

The Dirac equation, 

   Ψ+Ψ⋅+⋅+⋅=
∂
Ψ∂ 2

0332211 )( cmpppc
tc

i βααα
trtrtrth ,  (11) 

results from this Hamiltonian (Kellogg, 1997:  4-6). 

Requiring solutions to this equation to simultaneously satisfy the Klein-Gordon 

equation places restrictions on the components of the iα
t  and β  matrices: 

 14



     ijijji δαααα 2=+ ,    (12) 

         12 =β ,    (13) 

and 

       0=+ kk βαβα .    (14) 

In order to satisfy these restrictions both iα
t  and β  must be at least four-by-four 

matrices, which operate on a four-component vector wave function.  The iα
t  and β  

matrices are defined as 
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The Dirac equation is then a set of four, coupled, first order partial differential 

equations in space and time.  The four-component wave function solution to this equation 

corresponds to two positive energy components and two negative energy components, 

each with a spin-up and spin-down component (Messiah, 1999:  888-892, 920-924).  The 

iα
t  operators are velocity operators, while β  is an parity operator.  Observable quantities 

associated with this new internal degree of freedom are t he energy, relativistic mass, 

current density, total angular momentum, spin, and parity.  The operators associated with 

these observables are (Messiah, 1999:  921) 

energy:    2
0)( cm

c
AepeH βαφ +−⋅+=
r

rt
,  

 (19) 

where H is the Dirac Hamiltonian, φ  and A
r

 are external electric and magentic potentials, 

respectively.  The relativistic mass is given by 

    φeHM −= .      (20) 

Current density is found using 

          ( )0)( rrrj rrtr
−⋅= δα ,     (21) 

where ( 0rr )rr
−δ  is the Dirac delta function.  Electron spin is given by 

     iiS σt2
1= ,      (22) 

where iσt  is the ith Pauli spin matrix.  Finally, the parity of the wave function is given by 

      PP 0β= ,       (23) 

 16



where P0 is the initial parity.  These Pauli spin matrices can be expressed in terms of the 

iα
t  matrices (Messiah, 1999:  891):  

     yxz i αασ
ttt

−= ,     (24) 

     zyx i αασ
ttt

−= ,     (25) 

and 

     xzy i αασ
ttt

−= .     (26) 

In the presence of an external field, the Dirac Hamiltonian, HD, becomes 

    2
0)( cm

c
AepceH D βαφ

t
r

rt
+−⋅+= .   (27) 

For the hydrogen atom, in the absence of an external magnetic field, this equation 

reduces to 

    Ψ++⋅=Ψ ])([ 2
0 φβα ecmpcE

trt .   (28) 

While it is possible to construct an exact solution to this equation in terms of 

spherical harmonics for the angular coordinates and hypergeometric functions for the 

radial coordinate, such a construction does not shed much light on the nature of the 

bound energy states.  The details of the solution can be found in various sources 

(Messiah, 1999:   930-933; Balasubramanian, 1997:  159-175; Bethe et al, 1957:  63-71).  

The electronic energy levels for the Dirac hydrogen atom are given by (Bethe et al, 1956:  

67-68) 

   

( ) 
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cm
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Here, α  is the fine structure constant, defined as 

     
c

e
h0

2

4πε
α = ,     (30) 

and the total angular momentum quantum number, j, takes on the values 

     2
1

2
1 , −+= llj .    (31) 

The binding energy of the hydrogen atom is given by 0EEnj − , where .  

Expanding  in powers of 

2
00 cmE =

0EEnj − ( )2αZ , where α  is the fine structure constant given 

above, and assuming 1<<αZ , yields (Bethe et al, 1956:  84) 

    ( ) ( )( )
( ) K−
+
−+

+−= 4

4

2

2

218
863

2 nj
Znj

n
ZEnj

αα .  (32) 

The first term is the non-relativistic energy for the bound electronic states of the 

hydrogen atom.  Higher order corrections involve both the principle quantum number n, 

as well as the total angular momentum quantum number j.  This illustrates the importance 

of a relativistic picture of the atom.  Corrections to the non-relativistic energy increase 

roughly as 4Z .  Note that this Taylor series expansion in powers of ( )2αZ  is appropriate 

for 1<<αZ .  This expansion leads to the Russell-Sanders spin-orbit coupling scheme.  

Such an approximation is not valid for uranium, where 6.0=αZ .  In this case, 

( αZ<< )21
Z

, and the electrostatic electron-electron interaction can be treated as a 

perturbation to the magnetic interaction between the electron and the field of the nucleus.  

This approximation leads to the j-j spin-orbit coupling scheme, which is more appropriate 

for very heavy elements. 
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Detailed examination of the negative energy component solutions to the Dirac 

equation for the free electron shows in the non-relativistic limit where , 

are much larger than the negative energy components, especially in the valence region 

(Balasubramanian, 1997:  143-144).  Thus, the four-component Dirac wave function 

naturally separates into two large and two small components.  Rewriting the Dirac 

equation in terms of two, coupled differential equations with two, two-component wave 

functions yields the Pauli approximation to the Dirac Hamiltonian in the absence of an 

external magnetic field (Balasubramanian, 1997:  145-147) 

2
0

2
0 cmcmE <<−

  
( )

( ) ( )[ ]HpE
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ieE
cmm

eEH Pauli

rrrrr

rv

⋅−×⋅−

⋅+++∇++=

σµσ
µ

µ
ϕϕ

0
0

0

0

02
2

0

2

0

2

22
1

2
1

  (33) 

where H
r

 is the magnetic field, E
r

 is the electric field, and 0µ  is the Bohr magneton, 

defined by 

     
cm

e

0
0 2

h
=µ .     (34) 

While somewhat cumbersome, the separate terms have simple interpretations.  

The first three terms are the non-relativistic Schrödinger Hamiltonian.  The next term is 

the mass-velocity correction that accounts for the variation in electron mass with speed.  

The fifth term is known as the Darwin term, and is a result of “zitterbewegung”, or 

trembling motion.  It is a result of the Heisenberg uncertainty principle.  Non-

relativistically, the uncertainty in the location of an electron can be measured to any 

accuracy using higher and higher energy photons.  Relativistically, there is a limit to this 
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photon energy used to locate the electron, because at photon energies above , pair 

production can occur.  This results in an effective smearing of the charge of the electron 

(Balasubramanian, 1997:  186).  The final two terms account for the spin-orbit coupling 

between the intrinsic electron magnetic moment and the orbital angular momentum.  The 

successes of the Dirac equation is the prediction of electron spin as an observable 

property in the non-relativistic limit, as well as accounting for the correct value for the 

electron magnetic moment.  Thus, the inclusion of electronic spin in the non-relativistic 

theory as an additional assumption is validated and explained in the non-relativistic limit 

of the Dirac equation. 

2
02 cm

Relativistic Many-Electron Hamiltonians 

Now that a Lorentz-covariant electronic wave function is available for the 

hydrogen atom, the next logical step is to try to extend this approach to larger atoms and 

molecules. 

A relativistic wave function for a many-electron atom can be constructed as the 

sum of the one-electron Dirac Hamiltonians along with an electron-electron interaction 

term 

     ∑ ∑
<

+=
i ji

ij
i
d BhH ,    (35) 

where the ith one-electron Dirac Hamiltonian,  is given by i
dh

    2
0)( cm

c
Aepceh i

i
d βαφ

t
r

rt
+−⋅+= ,   (36) 

while Bij represents a general electron-electron interaction term. 
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This approach is analogous with the non-relativistic approximation to the many-electron 

Hamiltonian based upon the one-electron Schrödinger equation for the hydrogen atom. 

Next, a Lorentz-covariant description of electron-electron interactions, Bij, is 

required.  Unfortunately, the electron-electron interaction requires the more detailed 

treatment afforded by quantum electrodynamics, where vacuum interactions, virtual 

photon exchanges, and electron self-interactions are treated perturbatively.  Even then, 

there is no closed form for a Lorentz-covariant electron-electron interaction.  Such 

interactions must be treated approximately (Balasubramanian, 1997:  180; Messiah, 

1999:  955-956; Bethe et al, 1956:  170).  The first such approximation, widely used, is 

the approximation that relativistic corrections to the electron-electron interaction are 

small and negligible, and that the Coulomb interaction is an appropriate description, 

correct to zeroth order.  This leads to the Dirac-Coulomb Hamiltonian (Kellogg, 1997:  

15) 

    ∑ ∑
<

+=
i ji ij

i
dDC r

ehH
0

2

4πε
.    (37) 

Here,  is the interelectron distance.  This Hamiltonian is not Lorentz-covariant; 

however, corrections to the Columbic interaction are small for large electron separation, 

and the Dirac-Coulomb Hamiltonian is quite successful.  Another approach to 

determining the electron-electron interaction is to perturbatively expand the quantum 

electrodynamics interaction term in powers of the fine structure constant, and retain those 

terms of order .  This yields the Dirac-Coulomb-Breit Hamiltonian (Bethe et al, 1956:  

170; Balasubramanian, 1997:  180; Jackson, 1975:  593-595; Breit, 1932:  616-624) 

ijr

α 2
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This approximate Hamiltonian is still not Lorentz-covariant; however, it accounts 

for most of the chemically relevant electron-electron interaction effects.  The first term is 

the electrostatic Coulomb interaction between two electrons, the second term accounts 

for first order magnetic interactions between the intrinsic magnetic moments of the 

electron.  The last term accounts for the retardation of the propagation of the 

electromagnetic field of the electron due to the finite speed of light. 

Another method, based on perturbative expansion of the Dirac-Coulomb-Breit 

Hamiltonian in powers of α2 yields the Breit-Pauli Hamiltonian, given by 

(Balasubramanian, 1997:  193-194) 
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and 

       ∑∑ ⋅+⋅=
i

ii
i

iiexternal pA
cm

esH
cm

eH rrrrh

00

.     (46) 

Here, µ  is the electron magnetic moment, and isr  is the spin angular momentum 

of the ith electron.  The first term, Hnr, is the non-relativistic many-electron Hamiltonian.  

The second term, Hmv, is the mass-velocity term, which corrects for the relativistic 

variation in electron mass near the speed of light.  The third term, Hretardation, corrects for 

the finite propagation speed of the electromagnetic field of the electron.  The fourth term, 

HDarwin, is the Darwin correction, described earlier.  These four terms comprise scalar 

relativistic effects, and do not require a two-component wave function to implement.  The 

fifth term, HSO, is the spin-orbit coupling between the intrinsic spin angular momentum 

of the electron and the orbital angular momenta of all the electrons.  The next term, HSS, 

is the spin-spin coupling between the intrinsic spin-angular momenta of multiple 

electrons.  In order to incorporate these terms, a two-component wave function is 

required.  The last term, Hexternal, involves the interaction with an external electric and 

magnetic field.  While only a perturbative treatment, valid for light atoms and molecules, 

the Breit-Pauli Hamiltonian sheds some light on the expected effects present in 

relativistic many-electron Hamiltonians. 

With a well defined, albeit approximate, many-electron Hamiltonian, the next step 

in constructing relativistic wave functions is based on the Hartree-Fock mean field 
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theory.  This provides the first theoretical method to many-electron systems; however, 

electron correlation is not explicitly included. 

Dirac Hartree-Fock Theory 

The Hartree-Fock (HF) self-consistent field (SCF) method provides the 

theoretical framework to determine, non-relativistically, the properly antisymmetrized 

many-electron single-determinant wave function for atoms and molecules (Szabo et al, 

1989:  108-152; Levine, 2000:  305-312).  It also provides the basis for correlation 

calculations through multi-configuration and perturbation methods. 

The non-relativistic many-electron Hamiltonian is given by (Levine, 2000:  305) 
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The goal of the HF approximation is to find a set of spin-orbitals, which minimize the 

ground state electronic energy.  It is a variational theory, in that the exact ground state 

energy of an atom or molecule is a lower bound to the HF energy.  Additionally, HF 

theory is a single determinant theory.  This means that the ground state wave function 

obtained from the variationally optimized set of spin orbitals contains only a single 

electron configuration.  The optimized set of spin-orbitals satisfy the equations (Szabo et 

al, 1989:  111-112) 
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where aχ  is the spatial wave function of the ath electron.  The total wave function is the 

product of individual electron spatial functions, 
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    Nba χχχχχ KK210 =Ψ .    (49) 

The first two terms are one-electron operators, and correspond to the expectation 

values of the kinetic energy and potential energy of the ath electron in the field of the kth 

nucleus.  The last term is the expectation value of the Coulomb interaction between the 

two electrons.  It can be expanded into two terms 
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Writing equation 50 in operator form yields 
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−

≠a

rr .   (51) 

This final term results in two, one-electron operators, J and K.  The first operator 

is the Coulomb operator and represents the average electric field due to electron two 

experienced by electron one.  This is the origin of the mean-field concept.  Each electron 

experiences an average potential due to all the other electrons.  The second term is an 

exchange potential arising from the Pauli Exclusion Principle.  Because the total wave 

function must be antisymmetric with respect to the exchange of two electrons, the motion 

between electrons with parallel spins is correlated in the HF theory.  As a result, electrons 

experience an exchange potential, quantum mechanical in nature, which repels electrons 

with parallel spins and prevents them from occupying the same orbital (Szabo et al, 1989:  

111-115).  In its eigenvalue form, the HF equations are 
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where aε  is the energy of the ath electron. The one-electron operators are defined by 
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The term in parentheses of the first equation is the Fock operator, .  In 

operator form, this equation is 

)( 1rf r

    )()()( 111 rrrf iai
rrr ψεψ = .    (56) 

Expanding the unknown molecular orbitals, )(ri
rψ , in terms of a finite set of 

known basis functions, kφ , yields 

     ∑
=

=
K

k
kkii cr

1
1 )( φψ r .    (57) 

Here, the c  are molecular orbital coefficients.  This reduces the HF integro-

differential equation to a set of algebraic equations: the Roothan equations (Szabo et al, 

1989:  136-138) 

ki

     ∑ ∑=
ν ν

νµννµν ε iii cScF ,   (58) 

where  is the Fock matrix, defined by µνF
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     )1()1()1(*
1 νµµν φφ frdF ∫=
r ,   (59) 

and  is the overlap matrix, defined by µνS

     )1()1(*
1 νµµν φφ∫= rdS r .    (60) 

Thus, finding the optimal orbitals that minimize the Hartree-Fock energy consists 

of solving the Roothan equations in a self-consistent manner.   

The non-relativistic HF theory and relativistic Dirac-Hartree-Fock (DHF) theory 

are analogous.  In DHF theory (Saue et al, 1997:  937-948; Oreg , 1975:  830-841; 

Aoyama et al, 1980:  1329-1332; Matsuoka et al, 1980:  1320-1328; Kim, 1967:  154-39; 

Lee et al:  1977:  5861-5876; Dyall et al, 1991:  2583-2585), the non-relativistic 

Hamiltonian is replaced with the Dirac-Coulomb Hamiltonian, and the spin-orbitals have 

four components instead of one.  These spinors can be complex, unlike the non-

relativistic case, where the spin-orbitals were real.  This four-component wave function is 

also expanded in a real basis, as was done in the non-relativistic case, where (Saue, 1997:  

939) 
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Here,  and  represent the large and small components, respectively.  There are two 

sets of expansion coefficients now,  and  for the spin-up and spin-down 

components, respectively.  In a manner analogous to the non-relativistic theory, these 

four-spinors are varied until the total electronic energy is minimized.  This leads to a 

L S

α
kc β

kc
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matrix equation similar to the Hartree-Fock theory, except that the Fock matrix and 

expansion coefficients are now complex.  The Fock matrix splits into two parts, a one-

electron matrix (Saue, 1997:  940) 
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and 

     XXXY cV νµµν χχ 22−=W .   (67) 

As in the non-relativistic case, V represents the potential energy of the electron.  Atomic 

units are used here, where 10 === meh , in order to simplify the expressions. 

The two-electron Fock matrix, is given by (Saue, 1997:  940): 
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Here,  represents the Coulomb operator of the spin-up (βα LL JJ , α ) and spin-down ( β ) 

electrons respectively, while  represents the mean-field due to positrons with βα SS JJ ,
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spin-up and spin-down, respectively.  The exchange operator, K, becomes more 

complicated, reflecting the possibility of exchange between electronic ( ) components 

and positronic ( ) components with various spins. 

L

S

One important difference exists between the non-relativistic Hartree-Fock and its 

relativistic counterpart.  In the non-relativistic theory, the energy eigenvalue 

corresponding to the Fock operator was guaranteed to be greater than or equal to the 

exact energy by the variational principle.  In the relativistic case, the existence of 

positronic negative energy solutions means that the DHF energy is not bounded from 

below.  In the non-relativistic case, there were no negative energy solutions.  In the 

relativistic case, electronic solutions look like excited positronic states, and unless care is 

taken during the solution of the relativistic Roothan equations, variational collapse can 

occur.  This occurs because of the fact that a bound electronic-positronic state is 

degenerate with an unbound electronic-postronic state in the relativistic theory.  Thus, 

instead of variationally optimizing the orbitals as in the non-relativistic case, the orbitals 

are minimized with respect to electronic states and simultaneously maximized with 

respect to positronic states.  Another complication with the relativistic DHF theory is that 

the basis sets for the large and small components are related via a “kinetic balance” 

requirement (Dyall, 1991:  2585) 

     LS χσχ ∇⋅=
t .     (69) 

Here, the small component (positronic) wave functions are related to the 2x2 

Pauli spin-matrix, σt , operating on the gradient of the large component (electronic) wave 

function. 
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DHF methods suffer several computational difficulties (Saue, 1997:  937-938).  

First, spin and spatial wave functions are coupled, resulting in complex total wave 

functions in general.  Thus, spatial and spin symmetry can not be handled separately, 

which has resulted in substantial computational savings for non-relativistic computations.  

Another computational difficulty lies in the fact the DHF basis sizes are generally much 

larger than their non-relativistic counterparts.  Both the large and small components are 

expanded in separate, but coupled basis sets.  The small basis set size can be generally 

twice the size of the large component basis.  Computationally, the Hartree-Fock method 

scales minimally as N4, where N is the number of basis functions.  Thus, Dirac-Hartree-

Fock calculations typically involve an order of magnitude or more increase in 

computational complexity over non-relativistic Hartree-Fock computations.  These 

difficulties currently limit DHF methods to atoms and some small molecules.  A recent 

DHF calculation (de Jong, et al, 1999:  45) for UO2
2+ compares the non-relativistic and 

relativistic results for the ground electronic states.  Electron correlation was included in 

this calculation via coupled cluster singles and doubles with some triples (CCSD(T)) 

(Raghavachari, 1996:  12964-12965), and this calculation represents perhaps the all-

electron computational state-of-the-art on the ground state of uranyl (de Jong, 1999:  41-

52).  Figure 3 reproduces the electronic states from the paper.  
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Figure 3.  Electronic Ground State for Uranyl Using Both Non-relativistic HF and Four-

component, Fully Relativistic DHF Methods (de Jong, 1999:  45) 

Dirac-Hartree-Fock theory can result in fairly accurate, fully-relativistic 

calculations of molecular electronic ground states.  Like the non-relativistic counterpart, 

DHF provides the best, single-determinant wave function, ignoring electronic correlation 

effects.  As such, HF and DHF can describe only the electronic ground state.  In order to 

describe the excited electronic states, electronic correlation needs to be incorporated, and 

the wave function must be expanded in a series of determinants.  As was evident in the 

DHF equations, the fully relativistic treatment can become quite complicated and 

computationally intensive.  What is needed is a method that is a compromise between the 

non-relativistic and fully-relativistic methods that also provides computational savings 
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when computing electron correlation energies using multi-configuration methods.  

Relativistic effective core potentials prove to be just such a compromise. 

 

Relativistic Effective Core Potentials 

The DHF method provides a basis for constructing the approximate relativistic 

wave function for atoms and molecules.  It is an all-electron method, and the number of 

electrons that must be treated explicitly for actinide elements and molecules is large.  

Given the requirements for kinetic balance between the basis sets for the large and small 

components, the number of basis functions required for accurate treatment of heavy 

atoms and molecules can easily become formidable for interesting actinide molecules.  

Thus, a method for accurately treating relativity and only explicitly including those 

electrons that are relevant chemically is attractive.  The relativistic effective core 

potential (RECP) method accomplishes both of these goals. 

Several different types of RECPs exist.  Among them include potentials by 

Küchle, Dolg, Stoll, and Preuss (Küchle et al, 1994:  7535-7542), Hay and Wadt (Hay, 

1993:  5469), and Christiansen style RECPs (Ermler et al, 1988:  139-182), among 

others.  The Christiansen style RECPs were selected for this work for their spin-orbit 

operator. 

The RECP method (Pacios, 1985:  2664-2671; Lee et al, 1977:  5861-5876; 

Ermler et al, 1991:  829-846; Ermler et al, 1988:  139-182) is based upon the assumption 

that atomic or molecular electrons can be separated into an inert core region and a 

chemically-active valence region.  The RECPs are generated from the large component 

 32



valence electron solutions to numerical DHF calculations of the form (Pacios et al, 1985:  

2664) 

   ljljljljlj
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lj

v XXKJrU
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Here,  is the number of valence electrons, while νZ ljJ  and ljK  represent the 

Coulomb and exchange terms.  Atomic units are used here.  This equation is inverted in 

order to recover the core potential term for a particular value of  and l j .  The radial 

dependence of the pseudospinor, , is determined from ljX

    )()()( rFrrX ljljlj +=ψ     (71) 

ljX  is referred to as a pseudospinor, because it approximates the two-component, 

electronic portion of the fully-relativistic four-component spinor. 

The wave functions, ljψ , are determined from the large component DHF solutions, 

while the second term,  is selected to cancel radial oscillations in the core region 

and eliminate nodes in the pseudospinor.  It is critical to generate a nodeless 

pseudospinor in order to invert equation 70 and recover the core potential (Pacios, 1985:  

2664).  The core potentials generated are of the form (Ermler et al, 1991:  829-830) 
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Here, jljm  and jljm  are projection operators, ensuring the core potentials 

interact with those parts of the wave function with the corresponding orbital angular 

momentum, l , total angular momentum, j , and z-component of total angular 

 33



momentum, .  While the sum over  is infinite in principle, truncation of the sum at an 

orbital angular momentum one greater than the largest l  quantum number of the core 

electrons introduces negligible error (Ermler et al, 1991:  830).  A weighted average 

relativistic effective core potential is then generated by (Ermler et al, 1991:  830; Ermler 

et al, 1999:  152-153) 
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The purpose for generating the average relativistic effective core potential is to separate 

the scalar relativistic effects (mass-velocity, Darwin terms) from the spin-orbit effects.  

Scalar relativistic effects can be incorporated into spin-free wave functions.  Spin-orbit 

effects require the introduction of electron spin, and consequently, require a two-

component wave function.  An effective spin-orbit Hamiltonian is generated by (Ermler 

et al, 1991:  830; Ermler et al, 1988: 152) 
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where 

   )()1()()(
2
1

2
1 , rlrUrU RECP

l
RECPRECP

l +
⋅+−=∆ .   (76) 

This spin-orbit Hamiltonian can be written in the form (Ermler et al, 1988:  153) 
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The function )(rς  is a constant that depends on the radial quantum number of the orbitals 

involved.  The projection operators ll lmlm  in all forms of the effective core potentials 

ensure that orbitals with the correct angular momentum interact with the correct core 

potential term.  The spin-orbit potential formed this wave acts as a one-electron operator.  

As such, it is only approximately valid for the Dirac-Coulomb Hamiltonian.  Higher-

order electron-electron interactions represented by the Dirac-Coulomb-Breit Hamiltonian 

are not effectively modeled using this spin-orbit operator.   

Once the core potential and spin-orbit potentials are obtained, they are 

approximated by Gaussian function fits of the form 
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with expansion coefficients C  and exponents li ljα , facilitating their use in standard ab 

initio computational packages. 

The benefit of RECPs is that they can be used to incorporate scalar relativistic 

effects in normally non-relativistic theoretical methods such as HF, MCSCF, or Density 

Functional Theory (DFT).  In addition, RECPs offer a way to substantially reduce the 

number of explicitly treated electrons.  RECPs are currently the most commonly used 

method for theoretical studies of heavy element molecules. 

Electron Correlation Models 

The development of accurate relativistic core and spin-orbit potentials enables the 

inclusion of relativistic effects in non-relativistic theoretical methods.  This allows the 

successful application of powerful theoretical methods developed for use in light 
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molecule calculations to be applied to heavy element molecules at a reasonable 

computational cost.  While this section will discuss electron correlation techniques from 

a non-relativistic standpoint, all have either been applied to relativistic calculations 

directly, as with MP2 and MCSCF, or indirectly, via RECPs incorporated into the non-

relativistic technique. 

Electronic correlation effects are not directly observable, according to 

Raghavachari (Raghavachari, 1996:  12960).  Electronic correlation is a measure of that 

energy that is not accurately modeled by the Hartree-Fock theory.  In fact, correlation 

energy is defined as the difference between the exact non-relativistic energy and the 

Hartree-Fock energy.  This inaccuracy, inherent in the Hartree-Fock model, incorrectly 

models the dissociation of molecules into constituent atoms.  Improvements to HF that 

model this energy accurately can predict the correct dissociation energies for molecules, 

among other properties.   

Since the HF single determinant wave function frequently accounts for a large 

fraction of the total electronic energy, one popular and efficient technique for 

determining electron correlation energies is through perturbation theory.  The electron 

correlation is treated as a small perturbation to the HF wave function, and corrections to 

the HF wave function and energy are computed via a perturbation expansion.  The most 

frequently used is second order perturbation theory, also known as Møller-Plesset second 

order perturbation theory (MP2).  In MP2, the Fock operator is the zeroth-order 

Hamiltonian, and both the HF wave function and HF energy are expanded in a power 

series of the perturbation (Raghavachari et al, 1996:  12962; Szabo et al, 1989:  350-353).  

Using this perturbative technique, one can show that the HF energy is correct to first 
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order, and corrections to this energy occur at second order and beyond.  Higher order 

perturbation corrections are possible; however, MP2 is the most frequently used.  The 

perturbed Hamiltonian, 'H , is given by 

     VHH += 0' .     (79) 

The zeroth-order Hamiltonian is the Fock operator, 
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while the perturbation is given by 

     ∑
<

+−=
ji

ijij
ij

KJ
r
1V .    (81) 

The sum of the zeroth and first-order energies correspond to the HF energy.  The second 

order correction to the energy is given by (Szabo et al, 1989:  351). 
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Here, the unperturbed N electron wave function is written as the product of N spatial 

wave functions,  

    Nn χχχχχ LK2100 =Ψ     (83) 

and  represents the Hartree-Fock energy of the i)0(
iE th spatial function.  The result of this 

second-order perturbation expansion of the Hartree-Fock wave function is to introduces 

some single and double excited state energies into the ground state energy.  Singly 

excited wave functions do not couple directly with the HF wave function.  They do; 

however, couple to the doubly excited wave functions, which in turn are coupled to the 

HF wave function.  This is proven in Brillouin’s Theorem (Szabo et al, 1989:  128-129). 
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MP2 theory scales computationally as the number of basis functions (K) to the 

fifth power (K5) (Raghavachari et al, 1996:  12962), making it attractive compared to HF 

alone, which scales as K4.  Higher order perturbations scale as the sixth, seventh, and 

eighth power for third, fourth, and fifth order perturbations respectively, making 

perturbations beyond fourth order computationally demanding and seldom used. 

Another common technique for modeling electron correlation energy is through a 

multi-configurational approach, which involves expanding the wave function in a linear 

combination of excited electronic configurations (Raghavachari et al, 1996:  12962).  

Various expansion terms then represent exciting electrons from the reference 

configuration into a number of excited configurations.  Then all that is necessary is to 

determine the expansion coefficients.  If all possible configuration state functions were 

used, the expansion would be exact; however, in practice, this expansion must be 

truncated.  As with the finite basis set expansion for the single determinant wave 

function, this truncation introduces error into the correlated wave function.  This multi-

configurational technique is necessary to accurately describe excited electronic states.  

The reason for this is that excited electronic states with the same term symbols mix with 

the ground state.  The Hartree-Fock neglects this mixing by writing the wave function as 

a single Slater determinant, however, the actual ground state wave function contains 

contributions with excited states with the same term symbol.  A more accurate wave 

function expansion requires multiple Slater determinants, where each determinant 

represents a particular state (ground and excited).   

One method for improving upon the HF wave function is to include a relatively 

small number of additional configurations (Raghavachari et al, 1996:  12967).  This 
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technique is the multi-configuration self-consistent field method (MCSCF).  In the 

MCSCF approach, the wave function is expanded in a small set of configuration wave 

functions (Szabo et al, 1989:  258). 

    nnMCSCF ccc Ψ++Ψ+Ψ=Ψ ,   (84) K1100

where the c  are CI coefficients.  Then, both the CI and molecular orbital coefficients are 

variationally optimized.  The MCSCF method is identical to the HF method if only one 

expansion wave function is used.  Reference configurations can be chosen to include 

chemically relevant states, or states that may be nearly degenerate with the HF ground 

state.  However, this approach can introduce bias into the calculation (Raghavachari et al, 

1996:  12967).  A way to avoid this bias is to identify a set of active orbitals, typically the 

highest occupied molecular orbitals (HOMO), and include all possible excited 

configurations arising from this active space.  This is a complete active space (CAS) 

approach.  It is beneficial to use a CAS approach when the excited states of a molecule 

may not be well-known; however, the number of configurations included in a CAS 

MCSCF can quickly become enormous if the active space is large, or there are a large 

number of virtual orbitals. 

i

Another benefit to the MCSCF method is that it provides an improved wave 

function for use in the more general configuration interaction (CI) approach.  The CI 

wave function is written as 
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Where the first term is the HF wave function, the second term is a sum over all singly 

excited states from the HF ground state, the third term consists of a sum over all doubly 
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excitations, etc.  Including all possible determinants is a full CI expansion, which 

provides the correlation exactly; however, such an expansion is almost never possible 

except for very small systems using minimal basis sets.  In practice, this CI expansion 

must be truncated at some point.  It can be shown (Szabo et al, 1989:  128-131) that there 

is no direct mixing between the HF ground state and the singly excited states.  However, 

the HF ground state does mix with the doubly excited states, which in turn couples to the 

singly excited states.  Thus, the first logical place to truncate the CI expansion in order to 

obtain an improvement over the HF wave function is to include single and double 

excitations (CISD).  The CISD wave function is given by 
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where the expansion coefficients are variationally optimized.  The CISD method, while 

conceptually simple, is very demanding computationally.  In an N-electron system using 

K basis functions, the number of all possible double excitations is given by (Szabo et al, 

1989:  234) 
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Thus, the CISD method scales roughly as ( ) 222 NK .  Truncating the expansion at the 

quadruple excitation level scales roughly as ( )42 NK 4 , while sextuple excitations scales 

as ( ) .  It is apparent that the CI method increases in computational difficulty very 

quickly.  While the full CI does scale linearly with the size of the system, the truncated 

CI expansions do not. 

662 NK
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By allowing single and double excitations from a multi-reference wave function, 

as opposed to the single reference wave function, some triple and quadruple excitations 

are effectively included in the CISD expansion.  References are those electronic 

configurations from which electrons can be excited out of in the CI expansion.  This is 

known as multi-reference CISD (MR-CISD).  Single- and multi-reference CI expansion 

methods are some of the few theoretical methods available for exploring atomic and 

molecular excited states. 

One important point to note when using CI expansion methods is that the choice 

of orbitals can impact the accuracy of the CI expansion.  There are two types of orbitals 

one can use when performing a CI expansion:  molecular and natural orbitals.  Natural 

orbitals are those orbitals which diagonalizes the density matrix, )',( 11 xx rrγ , given by 

(Szabo et al, 1989:  252-257) 

    )'()()',( 1
*

111 xxxx jij
ij

i
rrrr χγχγ ∑= ,   (88) 

where γ and γij are defined by 

    )'()',()(' 1111
*

11 xxxxdxdx jiij
rrrr χγχγ ∫=   (89) 

The iχ  in equation 88 are the spatial orbitals, while ( )Nxxx r
L

rr ,,, 21Ψ  is the electronic 

wave function, which is the product of the spatial orbitals. 

The molecular orbitals diagonalize the Fock matrix, but they do not diagonalize 

the density matrix.  A CI expansion using the natural orbitals converges faster than one 

formed from molecular orbitals (Szabo et al, 1989:  255).  Thus, a CI expansion using 

molecular orbitals will require more configuration state functions to achieve the accuracy 
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of an expansion formed from natural orbitals.  In many cases, the difference in accuracy 

may be negligible; however, there are some cases were this accuracy difference can be 

substantial.  One difficulty; however, is that in order to obtain the natural orbitals, one 

needs the CI wave function (Szabo et al, 1989:  257).  Luckily, approximate natural 

orbitals, formed from a small number of configurations, such as an MCSCF wave 

function, are almost as good as natural orbitals obtained from the CI wave function 

(Szabo et al, 1989:  257).   

One final note for electron correlation techniques is in order, especially when 

incorporating relativistic spin-orbit effects.  Because electron correlation is determined 

primarily by a two-electron operator between pairs of reference configurations and 

between reference configurations and doubly excited configurations, it is generally more 

difficult to converge computationally than spin-orbit effects.  Spin-orbit effects are 

expressed in the core potential formulation as one-electron operators between pairs of 

reference configurations and singly excited configurations (Yabushita et al, 1999:  5792).  

As a result of the two-electron operator, accurately modeling electron correlation is a 

more difficult problem than inclusion of relativistic spin-orbit effects, and efficiently 

handling the electronic correlation will, in general, lead to accurate inclusion of spin-

orbit effects.  And so, when incorporating spin-orbit effects into electronic structure 

calculations, it makes sense to include them in conjunction with electron correlation at 

the same time, rather than as separate steps (Yabushita et al, 1999:  5792). 

While the previous methods for modeling electron correlation are all based upon 

approximations to the many-electron wave function (Head-Gordon, 1996:  13218), one 

method which is not based on wave functions, has seen tremendous growth and 
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application in the past decade.  This technique is known as Density Functional Theory 

(DFT), and it is based upon the premise that the exact molecular ground state energy is a 

functional of the electron density (Nagy, 1998:  5).  The electronic density, ρ, of an n-

electron system is a function of three variables, while the n-electron wave function is a 

function of 3n variables.  This reduction in degrees of freedom results in substantial 

computation savings with DFT over wave function based methods.  This energy is given 

by (Head-Gordon, 1996:  13218) 

   )()()()()( ρρρρρ xcen VJVTE +++= .   (90) 

Here, T is the kinetic energy, J is the Coulomb repulsion, Ven is the electron-

nuclear interaction, and Vxc is the electron exchange and correlation interaction.  The 

Coulombic electron-electron and electron-nuclear terms are straightforward and can be 

computed classically, using a non-interacting Fermi gas model derivable from a statistical 

treatment of the atom has a degenerate electron gas.  The kinetic energy and exchange-

correlation terms cannot.  Kohn and Sham showed (Kohn et al, 1996:  12974-12975; 

Nagy, 1998:  7-12) that this energy can be recast into a form where the kinetic energy is 

approximated by a system of non-interacting electrons.  This results leads to the Kohn-

Sham equations (Nagy, 1998:  9) 
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Here, v )(rr  is an external potential and  is the wave function.  Thus, the electron 

exchange and correlation interactions, as well as the fraction of kinetic energy not 

accounted for in the non-interacting gas model are wrapped into the exchange-correlation 

functional.  Various attempts at developing an exact form for this functional have been 

unsuccessful; however, several approximate functionals have been developed and 

successfully applied to electronic structure calculations (Head-Gordon, 1996:  13218).  

The most successful correlation functionals have been gradient-corrected approximate 

(GCA) correlation functionals, while successful exchange functionals are based upon 

parameter fits to the exchange energies of noble gases (Head-Gordon, 1996:  13218; 

Nagy, 1998:  41-45).  Combinations of the GCA and semi-empirical functionals form 

hybrid functionals, which also have been very successful in treating many ground-state 

molecular properties.  The accuracy achieved with DFT frequently rivals or beats MP2 

results, with less computational effort.  One drawback to DFT at present; however, is that 

DFT is a ground state theory only.  DFT has not been successful at describing excited 

electronic energies.  In addition, unlike wave function based theories , there is no known 

way to systematically improve the results obtained with DFT.  Without the ability to 

accurately describe excited electronic states directly, or approximate excited electronic 

state energies via a systematic improvement process (perturbation theory), DFT, despite 

its successes, is simply not an option when calculation theoretical electronic spectra of 

uranium oxides. 

iu
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Summary 

This chapter briefly covered some of the theory behind relativistic electronic 

structure calculations.  As evidenced by results from perturbation theory, relativistic 

effects must be included for heavy element compounds, uranium in particular.  

Additionally, electron correlation effects, expected to be large in actinide molecules pose 

additional theoretical challenges.  As a result, theoretical relativistic electronic structure 

calculations on actinide molecules have pushed the state-of-the-art in ab initio molecular 

calculations for many years, and they will continue to do so.   

In order to accurately model excited electronic states in uranium oxides, 

relativistic effects must be incorporated, and some type of multi-configurational approach 

must be used.  Because of the large number of electrons that must be treated in order to 

accurately describe excited electronic states, a fully-relativistic method, such as Dirac-

Hartree-Fock, coupled with either many-body perturbation theory or a multi-

configuration method is too computationally demanding.  By using a relativistic effective 

core potential method, relativistic effects are incorporated to first order, and the number 

of electrons that must be treated explicitly in advanced correlation techniques is reduced.  

These compromises prove to be acceptable in the chemically active valence region of 

uranium, which is responsible for the optical fluorescence spectra in uranyl, as well as 

low energy photoelectron spectra. 
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III.  Resources and Methodology 

 
 

The complexity involved in theoretical studies of heavy-element molecules 

requires powerful computing platforms and specialized software.  While theoretical 

calculations on small, light-element molecules can be performed to within chemical 

accuracy on personal computers (PCs), comparable accuracy with actinide molecules 

often requires, large, massively parallel computers with large amounts of memory, disk 

storage capacity, and high input/output throughput.  Also, software must be specifically 

designed, and theoretical algorithms carefully constructed, in order to make optimal use 

of these computing platforms. 

Hardware Resources 

The theoretical calculations performed in this study used parallel computing 

clusters at AFIT and at the Aeronautical System Center’s (ASC) Major Shared Resource 

Center (MSRC).   

The parallel computing cluster at AFIT consists of 64 PCs running Redhat Linux 

7.3 operating system.  Sixteen of these PCs have 1.4 GHz Athlon Advanced Micro 

Devices (AMD) processors with 775 megabytes (Mb) random access memory (RAM), 20 

gigabyte (Gb) local disk space, and they are networked via fast Ethernet.  The other 48 

PCs each contain dual 1 GHz Pentium III processors, 1 Gb RAM, and 20 Gb local hard 
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disk storage.  Thirty-two of these dual-processors PCs are networked via fast Ethernet, 

while the other 16 dual-processor PCs are networked via Myranet.   

Three parallel clusters were used at the ASC MSRC.  The first two clusters 

consist of Compaq ES 40 and ES 45 machines.  The ES 40 cluster consists of 16 

symmetric multiprocessor (SMP) nodes, with each node containing four, 833 MHz 

processors and 4 Gb shared memory per node.  The cluster has access to a total 

workspace of about 800 Gb (HP/Compaq ES40/45 User’s Guide, 2002:  4).  The Compaq 

ES 45 cluster consists of 81 and 128 SMP nodes containing four, 1 GHz processors per 

node.  Each node has 4 Gb shared memory, and the cluster has a total workspace of 8 Tb 

(HP/Compaq ES40/45 User’s Guide, 2002:  4).   

The third cluster consisted of 132 IBM SP 3 SMP nodes.  Each node contains 

four, 375 MHz processors, 4 Gb shared memory, and 2.4 terabytes (Tb) workspace (IBM 

SP P3 User’s Guide, 2002:  1).   

Software Resources 

This research project used two software packages.  The first package, NWChem 

version 4.0.13, was developed by the Molecular Sciences Software group of the Theory, 

Modeling & Simulation program of the Environmental Molecular Sciences Laboratory 

(EMSL) at the Pacific Northwest National Laboratory (PNNL).  It was designed to 

perform a wide range of molecular calculations on massively parallel computing 

platforms (NWChem, 2002; High Performance Computational Chemistry Group, 2002).  

NWChem was used for geometry optimizations, vibrational frequency calculations, and 

                                                           
3 NWChem home page is at http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html 
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some single point energy calculations without spin-orbit potentials on uranyl and uranate 

ions.   

NWChem was compiled and tested on the AFIT cluster using the GNU FORTRAN 77 

compiler.  It was also installed and tested on the MSRC Compaq ES40/45 clusters by 

MSRC personnel. 

The second software package used was COLUMBUS version 5.8.1.  

COLUMBUS4 (Lischka, 2001; Lischka, 2000; Tilson, 2000; Yabushita, 1999; Sheppard, 

1988) is a suite of FORTRAN programs developed at Ohio State University and Argonne 

National Laboratories, and it is maintained at the University of Vienna, Austria.  

COLUMBUS was used to perform SCF, MCSCF, and two-component MR-CISD 

calculations on both the uranyl and uranate ions.  COLUMBUS was compiled and tested 

on the AFIT cluster using the GNU FORTRAN 77 compiler.  MSRC personnel installed 

and tested COLUMBUS 5.8.1 on the IBM SP P3 cluster.  The SCF and MCSCF 

calculations did not use spin-orbit potentials; however, the MR-CISD calculations 

included spin-orbit potentials for uranium and oxygen.  Unfortunately, COLUMBUS 

5.8.1 does not included a parallelized version of the spin-orbit CI (SOCI) program.  

While this had no effect on the calculation, it limits the practical number of configuration 

state functions (CSFs) in the CI calculation to about 10 million.  COLUMBUS 5.9 does 

have a parallel multi-reference SOCI (MR-SOCI) program. 

                                                           
4 COLUMBUS home page is at http://www.itc.univie.ac.at/~hans/Columbus/columbus.html  
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Geometry Optimizations 

Geometry optimizations were performed using NWChem version 4.0.1 on both 

the uranyl and uranate ions to determine molecular symmetry, bond lengths, and 

vibrational frequencies.   

All geometry optimizations used the DRIVER module of NWChem, with tight 

convergence tolerance.  This corresponded to a root-mean-square gradient tolerance of 

10-5 and a maximum gradient of 1 .  Geometry optimizations were performed 

without symmetry constraints, in order to determine molecular symmetry.  Subsequent 

geometry optimizations used the molecular point-group symmetry determined by this 

geometry optimization.  Only those geometries which yielded all positive and real 

vibrational frequencies at both DFT and MP2 levels of theory were considered to be valid 

molecular geometries.   

5105. −⋅

The following basis sets and effective core potentials were used for the uranium 

atom during the geometry optimizations with NWChem 4.0.1: 

• Christiansen, Ross, and Ermler large-core basis and ARECP (Ermler et al, 

1991:  829-846) 

• Küchle, Dolg, Stoll and Preuss small-core basis and RECP (Küchle et al, 

1994:  7535-7542) 

For the oxygen atoms, the following basis sets and core potentials were used: 

• Pacios and Christiansen large-core basis and RECP (Pacios et al, 1985:  2664-

2671) 
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• Bergner, Dolg, Küchle, Stoll, and Preuss small-core basis and RECP (Bergner 

et al, 1993:  1431-1441) 

• Correlation-consistent, polarized, all-electron, double-ζ basis set (cc-pvdz) 

(Dunning, 1989:  1007-1023) 

• Augmented, correlation-consistent, polarized, double-ζ (aug-cc-pvdz) 

(Kendall et al, 1992:  6796-6806) 

Geometry optimizations were performed using Hartree-Fock SCF, MP2, and DFT 

levels of theory.  For DFT optimizations the B3LYP (Stephans, 1994:  11623), Becke97 

(Becke, 1997), and Becke98 (Becke, 1998:  9624-9631) exchange-correlation functionals 

were used.  Optimization results are included in the next chapter. 

Unconstrained uranyl optimizations resulted in a linear molecule.  As a result, 

subsequent optimizations were constrained using D2h and D4h point group symmetries.   

Unconstrained uranate optimizations indicated a tetrahedral and distorted 

tetrahedral geometries for the gas phase ion.  

Overview of COLUMBUS Calculations 

Once an appropriate geometry was determined, COLUMBUS 5.8.1 was used to 

compute excited electronic state energy levels.  The basic procedure for COLUMBUS 

calculations involved running a series of FORTRAN programs, culminating in the MR-

CISD calculation.  The following programs were run, in order, to compute the excited 

electronic state energy levels:  ARGOS, CNVRT, SCFPQ, MCDRT, MCUFT, MCSCF, 

MOFMT, CIDRT, CIUFT, TRAN, CISRT and CIUDG. 
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The ARGOS program computes the one- and two-electron atomic orbital integrals 

used in the SCFPQ, MCSCF, and CIUDG programs.  The CNVRT program converts 

these integrals into PK supermatrix form, to speed up SCF convergence.  The SCFPQ 

program performs the HF self-consistent field calculations.  The MCDRT and MCUFT 

programs set up the distinct row table for the MCSCF calculations.  The MCSCF 

program performs the multi-configuration self-consistent field calculation, while the 

MOFMT program extracts molecular and natural orbital coefficients from the converged 

MCSCF wave function.  The CIDRT and CIUFT programs set up the distinct row table 

for the MR-CISD calculation.  The TRAN program converts the atomic orbital integrals 

into molecular orbital integrals, and the CISRT program sorts these integrals into groups 

of zero-external, one-external, and two-external integrals (Yabushita et al, 1999:  5797).  

The CIUDG program then diagonalizes the matrix-vector products of the Hamiltonian 

matrix and trial vectors in order to obtain the ground and excited electronic state 

energies. 

COLUMBUS Calculations on Uranyl (UO2
2+) 

Calculations on uranyl were performed using the linear D2h molecular point-group 

symmetry, an abelian subgroup of D∞h.  Refer to Appendix A for a discussion on the 

symmetry aspects of the linear uranyl ion and a definition of D∞h and D2h terms and states 

arising from electronic configurations in uranyl. 

Because of symmetry, the uranyl potential energy surface (PES) could be 

characterized by a single parameter:  the U-O bond length.  With symmetry, there is only 

one symmetry unique oxygen atom in the uranyl ion.  Varying this U-O bond length was 
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equivalent to varying the symmetric stretch normal mode coordinate.  Calculations were 

performed using both the large and small-core uranium RECPs.  The small-core RECP 

was obtained from Dr. Phil Christiansen5.  The small-core basis set was obtained from 

Dr. Russell Pitzer’s group at Ohio State University (OSU).  The small-core basis set is a  

generally contracted basis set, (7s8p7d5f4g)→[7s6p7d2f4g].   

Neither the small-core RECP, nor its associated basis set have been published.  

The only difference between the small-core RECP and the large-core RECP was that the 

small-core potential included the uranium 5d shell in the valence space, while this shell 

was included in the core of the large-core potential.  The basis set used for both the large- 

and small-core uranyl calculations included several diffuse p-functions and four 

polarization g-functions.   

The large core calculations were done in order to calibrate the calculations and 

compare results to those obtained by OSU (Zhang et al, 1999:  6880-6886).  The small 

core calculations were then compared to the large core uranyl results, and both results 

were compared to uranyl spectroscopic data (Denning, 1992:  217-275; Rabinowitch et 

al, 1964:  48).  This comparison allowed for qualitative conclusions to be drawn on the 

accuracies of the large core RECP versus the small core RECP. 

First, a series of SCF calculations were performed over a range of U-O bond 

lengths.  The minimum to this potential energy surface was determined from a 4th order 

polynomial fit to these SCF energies.  Expanding this fitting polynomial in a Taylor 

series about the interpolated equilibrium point, then computing the second derivative 

                                                           
5 Christiansen-style RECPs and spin-orbit potentials can be downloaded from  
http://www.clarkson.edu/~pac/reps.html 
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yielded the symmetric stretch vibrational mode force constant, from which the symmetric 

stretch vibrational frequencies were computed.  This fitting procedure was used to 

determine the potential energy surface minima and symmetric stretch force constants in 

all subsequent calculations on uranyl and uranate.   

Following this series of SCF ground state calculations, a series of MCSCF 

calculations were performed, averaging the  ground-state with the 3  and 

 low lying excited state configurations arising from singlet and triplet A

23 uσ

u

111 uu δσ

1113 uu ϕσ g and 

triplet B1g, B2g, and B3g symmetries.  The π2  and uπ3  orbitals were thoroughly mixed 

in this calculation, in a manner similar to that done in the original calculation at OSU 

(Zhang et al, 1999:  6883).  The uranium 5d orbitals were frozen in the small-core 

MCSCF calculation.  Thus, the uranium 5d orbitals were forced to be occupied in all 

references, however, the 5d electrons were included in the correlation calculations.  

Freezing these electrons prevented excitations from the 5d shell.  Also frozen were the 

highest three Ag virtual orbitals and the highest B1g, B2g, and B3g virtual orbitals.  This 

state-averaged MCSCF wave function over the ground- and first low-lying excited states 

was used in order to obtain a balanced description of the ground and low-lying excited 

states.  Both the large-core and small-core MCSCF calculations were over a restricted 

active space consisting of two electrons in five orbitals, where the first orbital was 

restricted to have at least one electron.   

Next, the converged MCSCF wave function was used as the starting point for a 

MR-CISD computation.  Spin-orbit effects were included in the calculation during this 

step.  The same three references used in the MCSCF calculation were also used in the 
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MR-CISD calculation, and the same core and virtual orbitals were frozen.  The MR-

CISD calculations were performed using both molecular and natural orbitals extracted 

from the MCSCF wave function.  For the large-core calculation, the MR-CISD consisted 

of roughly 3.5 million CSFs.  The small-core calculation had nearly 9 million CSFs.   

As shown in the Appendix A, all states arising from the 1Σg, 3∆g, and 3Φg states 

have either Ag symmetry (Σg states), degenerate Ag+B1g (∆g  states) symmetry, or 

degenerate B2g+B3g (Φg) symmetries.  In the ω-ω spin-orbit coupling scheme6, the states 

with Ag  correspond to  states, those states corresponding with degenerate A+
g0 g+B1g 

correspond with  and 4  states, while degenerate Bg2 g 2g+B3g states correspond with 1  

or 3  states. 

g

g

Because of this degeneracy, the lowest six excited states could be uniquely 

determined by examining the first four roots with Ag symmetry and the first three roots 

with B2g symmetry.  Degeneracy of these roots was checked by computing the first four 

B1g roots at the SCF minimum energy bond length.  Using the minimum MR-CISD 

energies from the fourth-order polynomial fit for each state, the electronic transition 

energies were then computed and compared with experimental data.  State assignments 

were made by examining the CI wave function for each root.  Details for this state 

assignment procedure are contained in Appendix C.  Results from these calculations are 

included in the next chapter.   

                                                           
6 The spin-orbit coupling scheme where electron correlation is small with respect to spin-orbit coupling in 
atoms is j-j coupling.  This coupling scheme is ωω -coupling in linear molecules. 
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COLUMBUS Calculations on Uranate (UO4
2-) 

Geometry optimizations on the uranate ion using both MP2 and DFT indicated 

were dependent on the geometry of the molecule.  Optimizations beginning from a square 

planar molecule converged to a square planar molecule.  Optimizations that began with a 

tetrahedral geometry converged to a tetrahedral geometry.  Optimizing the molecular 

geometry using an asymmetric starting point resulted in a distorted tetrahedral molecule 

using both DFT and MP2.  The square planar and tetrahedral geometries are likely 

stationary points on the potential energy surface.  The tetrahedral geometry was used in 

subsequent calculations, because the potential energy surface could be characterized by a 

single parameter. 

Either D2 or C2v point-groups would be appropriate abelian subgroups of the Td 

symmetry point-group, and the calculation on uranate was carried out using D2 point-

group symmetry.  See Appendix B for a discussion symmetry aspects of the tetrahedral 

uranate ion and a definition of terms and states arising from the Td and D2 point-groups.   

As was the case with the uranyl ion, the uranate ion potential energy surface 

(PES) could be characterized by a single U-O bond length in Td and D2 point-group 

symmetry.  Since there is only one symmetry unique oxygen atom in a tetrahedral 

geometry, varying this bond length simultaneously varied the bond lengths of the other 

oxygen atoms.  This procedure is equivalent to varying the symmetric stretch normal 

mode coordinate in the molecule.  Varying one U-O bond length varied all U-O bonds 

simultaneously by equal amounts.  Based on the spectroscopic accuracy obtained from 
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the small-core uranyl calculation, the uranate calculations were performed using only the 

small-core uranium RECP.   

The initial ARGOS input was generated automatically using the IARGOS 

program.  This method resulted in several errors.  First, the IARGOS program generated 

symmetry adapted linear combinations of the f- and g- functions appropriate for axially 

symmetric molecules.  For the tetrahedral uranate molecule, a symmetry adapted linear 

combination using cubic f- and g- functions was appropriate.  Additionally, the program 

created an incorrect symmetry operation generator for the molecule.  These errors were 

subtle, and were difficult to detect.  They also resulted in electronic energies that did not 

exhibit the appropriate symmetry appropriate for a tetrahedral molecule in D2. 

Another problem was identified with the basis set.  The same basis set used for 

the uranyl calculations was used for the uranate calculations.  SCF and MCSCF 

calculations resulted in exaggerated uranium 7p population, which was unexpected.  

Based on the uranyl results, the uranium 5f orbitals were expected to play a large role in 

the excited states of uranate.  Subsequent analysis revealed that the large number of 

diffuse p-functions and g-polarization functions biased the calculation in favor of the 

uranium 7p orbitals.  The problem was fixed by removing the diffuse p-functions and 

removing all but one g-polarization function.  The absence of non-bonding orbitals in the 

tetrahedral uranate revealed the impact of the diffuse p- and polarization g- functions.  

Similar effects did not show up in the uranyl calculation, because of the presence of the 

non-bonding 1δu and 1φu orbitals.  In the uranyl calculation, the basis set impacted those 

anti-bonding states that were much higher in energy than the low lying states of interest.   
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Again, a series of SCF calculations were performed over a range of symmetric 

stretch normal mode coordinate U-O bond lengths.  Fourth-order polynomial fits were 

used to find the minimum energies and bond lengths for SCF, MCSCF, and MR-CISD 

data.  Expanding this fitting polynomial in a Taylor series about the equilibrium point, 

then finding the second derivative yielded the symmetric stretch force constants for this 

normal mode, which in turn yielded the symmetric stretch vibration frequencies.  From 

the SCF calculation, the uranate HOMO proved to be the 5t2 orbital, while the LUMO 

was the 6t2 orbital.  The SCF results showed a significant HOMO-LUMO energy gap, 

unlike uranyl.  This was due to the absence of non-bonding orbitals, unlike the uranyl 

molecule.  The large HOMO/LUMO energy gap in the uranate molecule indicated a 

single-reference calculation would suffice, as opposed to uranyl, where a state-averaged, 

multi-reference description of the ground state was more appropriate. 

Following this series of SCF ground state calculations, a series of MCSCF 

calculations were performed, using the ground state reference only.  In this aspect, the 

MCSCF calculation was identical to the HF-SCF calculation.  The only reason for 

performing this calculation was to obtain natural orbitals for use in the MR-CISD 

calculation.  As was done in the uranyl calculations, the uranium 5d orbitals were frozen 

in this calculation, meaning they were occupied in all references.  While excitations from 

the uranium 5d shell were not allowed, the electrons were allowed to participate in the 

correlation calculation. 

Using the natural orbital coefficients from the MCSCF calculation as a starting 

point, a single-point MR-CISD calculation was performed on the uranate ion at the 

interpolated SCF minimum U-O bond length.  The references used in the uranate 
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calculation were similar in nature to the uranyl calculation.  Three references were 

chosen:  the ground state, and those references consisting of single excitations into the 

low-lying, unoccupied uranium 5f orbitals (8a1, 6t2), with the requirement of five 

electrons remaining in the HOMO.  A small MR-CISD calculation with all occupied 

orbitals except for the 5t2 HOMO frozen, and 48 virtual orbitals frozen was performed in 

order to characterize the low-lying excited states.  This small calculation yielded the 

symmetry expected of a tetrahedral molecule, and gave a qualitative picture of the nature 

and ordering of the low-lying excited states. 

It was shown in Appendix B that a large number of possible states arise from the 

electron configurations 5 , 56
2t

1
2

5
2 6tt , and 5 .  Unlike the calculation with uranyl, the 

nature and ordering of the low lying excited states for uranate were unknown.  Appendix 

C contains the details for the double-group state assignment for the uranate ion ground 

and excited electronic states. 

1
2

5
21 6tt
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IV.  Results and Discussion 

 
 

In this chapter, the results of the geometry optimizations using NWChem 4.0.1, as 

well as the results of the COLUMBUS 5.8.1 SCF, MCSCF, and MR-CISD calculations 

on both the uranyl and uranate ions will be presented. 
 

Uranyl Geometry Optimization Results 

The initial results of the geometry optimizations for the uranyl ion are presented in 

.  Also listed is a high-fidelity theoretical, four-component, all-electron calculation 

incorporating electron correlation at roughly a triple and quadruple excitation level.  This 

calculation represents the current state-of-the-art in relativistic quantum chemistry 

calculations on uranyl (de Jong et al, 1999:  41-52); unfortunately, excited states were not 

investigated in the study by de Jong et al.  Table 2 and Table 3 lists the interpolated 

minimum bond-length and symmetric stretch vibrational frequency computed from the 

COLUMBUS large- and small-core potential energy surfaces for comparison with the 

NWChem 4.0.1 results.  Several experimental results measuring the vibrational 

frequencies of uranyl are also listed for comparison (Toth et al, 1981:  547-549; Denning 

et al, 1992:  216-275).  The first experimental results from Toth et al are in an aqueous 

HNO3 environment, while the second experiment was performed on a crystal of 

Cs2UO2Cl4.  It is known that the uranyl vibrational frequencies can be perturbed by their 

crystalline or aqueous environment.  However, the strength of the uranyl bond minimizes 

the impact of crystal field perturbations on the uranyl electronic spectra.  Symmetric 

stretch vibrational frequencies vary from 887.9 cm-1 in RbUO2(NO3)3 to 808 cm-1 in 

K2UO2(CO3)2, while the uranyl fluorescent series ranges from 21199.4 cm-1 in 

Table 

1
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RbUO2(NO3)3 to 20096.3 cm-1 in Cs2UO2Cl4 (Rabinowitch et al, 1964:  48).  The largest 

crystal field perturbation on the symmetric stretch vibrational frequency for uranyl is 

roughly 80 cm-1, while the maximum crystal field splitting of the electronic fluorescent 

spectra appears to be roughly 1103 cm-1. 
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Table 1.  Uranyl Geometry Optimization Results 

Uranium 
RECP/basis Oxygen basis method 

Constraint 
Symmetry bond length (Å) 

symmetric 
stretch (cm-1) 

Küchle et al, 
1994 

aug-cc-pvdz 
(Kendall et al, 

1992) 

DFT 
B3LYP D2h 1.6997 1037 

Küchle et al, 
1994 

aug-cc-pvdz 
(Kendall et al, 

1992) 

DFT  
B3LYP D4h 1.6997 1037 

Küchle et al, 
1994 

aug-cc-pvdz 
(Kendall et al, 

1992) 
DFT B3LYP C1 1.6487 1219 

Küchle et al, 
1994 

aug-cc-pvdz 
(Kendall et al, 
1992) 

DFT Becke97 D2h 1.6950 1051 

Küchle et al, 
1994 

aug-cc-pvdz 
(Kendall et al, 

1992) 
DFT Becke98 D2h 1.6924 1059 

Küchle et al, 
1994 

Bergner et al, 
1993 MP2 C1 1.7758 906 

Ermler et al, 
1991 Pacios et al, 1985 DFT B3LYP C1 1.7257 921 

Ermler et al, 
1991 Pacios et al, 1985 DFT B3LYP C1 1.7040 991 

Ermler et al, 
1991 

aug-cc-pvdz 
(Kendall et al, 

1992) 
DFT B3LYP D4h 1.6850 1026 

Ermler et al, 
1991 

aug-cc-pvdz 
(Kendall et al, 

1992) 
DFT Becke97 D2h 1.6834 1038 

Ermler et al, 
1991 

aug-cc-pvdz 
(Kendall et al, 

1992) 
DFT Becke98 D2h 1.6810 1045 

Ermler et al, 
1991 Pacios et al, 1985 MP2 C1 1.7572 891 

Ermler et al, 
1991 

aug-cc-pvdz 
(Kendall et al, 

1992) 
HF SCF D2h 1.6356 1097 

Ermler et al, 
1991 

aug-cc-pvdz 
(Kendall et al, 

1992) 
HF SCF C1 1.6356 1099 

Ermler et al, 
1991 

aug-cc-pvdz 
(Kendall et al, 

1992) 
HF SCF D2h 1.6341 1097 

4-component all-
electron 

theoretical 
calculation7 

DHF + CCSD(T) D2h
2 double 
group  1.715 974 

 

                                                           
7 de Jong et al, 1999 
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Table 2.  COLUMBUS Large-Core Uranyl Ground-State Calculation Results 

Method 
bond length 

(Å) 
symmetric 

stretch (cm-1) 
HF SCF 1.6465 996 
MCSCF 1.6522 1065 

MR-CISD 1.6679 1038 
 

Table 3.  COLUMBUS Small-Core Uranyl Ground-State Calculation Results 

Method 
bond length 

(Å) 
symmetric 

stretch (cm-1) 
HF SCF 1.6625 999 
MCSCF 1.6717 1087 

MR-CISD 1.6869 1062 
 

Table 4 shows the geometry optimization results for the UO4
2- ion.  Both DFT and 

MP2 geometry optimizations yielded tetrahedral (Td) when started in a tetrahedral 

geometry.  Both MP2 and DFT yielded square planar molecules when started from a 

square planar geometry.  An interesting result occurred when MP2 and DFT 

optimizations started with an asymmetric geometry.  The DFT optimizations converged 

to a very flat D2d geometry, almost square planar.  The potential energy surface of this 

geometry was very flat, and the geometry optimization could not converge to the 

specified gradient tolerance of 1 . 5100. −⋅
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Table 4.  Uranate NWChem 4.0.1 Geometry Optimization Results 

U basis O basis method Symmetry bond length 
(Å) 

symmetric 
stretch (cm-1) 

Ermler et al, 
1991 

aug-cc-pvdz 
(Kendall et al, 

1992) 
MP2 C1 

2.0164 
tetrahedral N/A 

Ermler et al, 
1991 

cc-pvdz 
(Dunning et 

al, 1989) 
DFT B3LYP C1 

1.9764 
tetrahedral 724 

Ermler et al, 
1991 

Pacios et al, 
1985 DFT B3LYP C1 

1.9918 
tetrahedral 707 

Ermler et al, 
1991 

aug-cc-pvdz 
(Kendall et al, 

1992) 
DFT B3LYP C1 

1.9851 
tetrahedral 713 

Küchle et al, 
1994 

aug-cc-pvdz 
(Kendall et al, 

1992) 
DFT B3LYP Td 1.9676 750 

Ermler et al, 
1991 

aug-cc-pvdz 
(Kendall et al, 

1992) 
DFT B3LYP C1 

1.933 
nearly square 

planar 
N/A 

 

Large-core Uranyl (UO2
2+) Results 

COLUMBUS 5.8.1 large-core calculation results are presented next.  Figure 4 

shows the results of the HF SCF calculations as a function of bond length.  Because of 

symmetry, this bond length represents the symmetric stretch normal mode coordinate of 

the molecule.  Varying this bond length simultaneously varied both oxygen-uranium 

bond lengths by equal amounts. 
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Large Core SCF PES
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Figure 4.  Large-core Uranyl SCF Potential Energy Surface 

A fourth-order polynomial fit to this data yielded a minimum total electronic 

energy at a bond length of 1.647 Å.  The second derivative of the Taylor series expansion 

about the equilibrium point yielded the force constant for the symmetric stretch normal 

mode.  Table 5 contains the symmetric stretch vibrational frequency, calculated from this 

force constant.  The frequency was scaled by 90%, as is frequently appropriate for SCF 

frequency calculations (Levine, 2000:  703-704). 

Table 5.  Large-core Uranyl SCF Symmetric Stretch Vibrational Frequencies 

State 
Equilibrium Bond 

Length (Å) 
Scaled Vibrational 
Frequency (cm-1) 

+Σ g
1  1.6465 996 
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Next, the state-averaged MCSCF calculation over the 3 , 3 , and  

electron configuration references are shown in Figure 5.   

2
uσ 111 uu δσ 1113 uu ϕσ

Large Core MCSCF PES
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Figure 5.  Large-core Uranyl MCSCF Potential Energy Surface 

Again, equilibrium bond lengths were obtained from fourth-order polynomial fits 

to the MCSCF total electronic energy data, while the symmetric stretch vibrational 

frequencies were obtained from the second derivative of a Taylor series expansion about 

the equilibrium point.  Table 6 lists the equilibrium bond lengths and symmetric stretch 

vibrational frequencies obtained from the MCSCF data. 
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Table 6.  Large-core Uranyl MCSCF Symmetric Stretch Vibrational Frequencies 

State 
Equilibrium Bond 

Length (Å) 

Symmetric Stretch 
Vibrational 

Frequency (cm-1) 
+Σ g

1  1.6521 1065 

g∆3  1.7082 861 

gΦ3  1.7310 815 
 

The MR-CISD calculation was performed using the same three references used in 

the MCSCF calculation.  Both molecular and natural orbital coefficients were extracted 

from the MCSCF wave function and used as the initial guess for the CISD calculation.   

Figure 6 shows the MR-CISD potential energy surface obtained using the 

molecular orbital coefficients as the initial guess to the MR-CISD wave function.   
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Large-core Uranyl MR-CISD Electronic States 
from MCSCF Molecular Orbitals
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Figure 6.  Large-core MR-CISD Uranyl Electronic States from Molecular Orbitals 

Figure 7 shows the MR-CISD potential energy surface obtained by using the 

natural orbital coefficients as the initial guess to the MR-CISD wave function.  As 

explained in the theory section, CI expansions using natural orbitals are generally more 

accurate then those obtained from molecular orbitals.  The improved accuracy of the 

natural orbital CI expansion is illustrated by comparing the shapes of the MR-CISD 

potential energy surfaces obtained using molecular and natural orbital starting guesses.  

The potential energy surfaces obtained using natural orbital expansions yielded smoother 

potential energy surfaces, while the molecular orbital CI expansion resulted in distorted 

potential energy surfaces for the excited states. 
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Large-core MR-CISD Electronic States from 
MCSCF Natural Orbitals
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Figure 7.  Large-core MR-CISD Uranyl Electronic States from Natural Orbitals 

Equilibrium bond lengths and symmetric stretch vibrational frequencies for the 

large-core MR-CISD electronic states obtained from natural orbitals are listed in Table 7. 
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Table 7.  Large-core Uranyl MR-CISD Symmetric Stretch Vibrational Frequencies 

State 
Equilibrium Bond 

Length (Å) 

Symmetric Stretch 
Vibrational 

Frequency (cm-1) 
+
g0  1.6630 1038 

g1  1.6967 840 

g2  1.7022 804 

g3  1.7065 802 

g2  1.7288 839 

g3  1.7252 839 

g4  1.7483 809 
 

Finally, the composition of the MR-CISD wave function formed from natural 

orbitals is listed in Table 8.  The effect of the spin-orbit potential in the CI calculation is 

apparent here.  Compare the number of states arising from the MCSCF and MR-CISD 

calculations spin-orbit.  The MR-SOCI calculation splits the MCSCF states in Figure 5, 

resulting in those states shown in Figure 7.  Compositions do not necessary sum to 100%, 

due to a large number of contributions from configuration state functions with small 

coupling coefficients.  Additionally, coupling coefficients alternated in sign.  Only those 

states with expansion coefficients larger than 0.1 are listed in Table 8. 
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Table 8.  Large-core Uranyl Wave Function Compositions 

State 
Large-Core Wave 

Function Composition 
Zhang et al 

(Zhang, 1999:  6884) 
+
g0  82% 1  +Σ g 83%  +Σ g

1

g1  84%  g∆3 84%  g∆3

g2  58%  g∆3

26%  gΦ3

62%  g∆3

22%  gΦ3

g3  52%  g∆3

26%  gΦ3

6% 1  gΦ

55%  g∆3

23%  gΦ3

6% 1  gΦ

g2  25%  g∆3

3% 1  g∆

56%  gΦ3

21%  g∆3

3%  g∆1

60%  gΦ3

g3  32%  g∆3

48%  gΦ3

4% 1  gΦ

28%  g∆3

51%  gΦ3

4% 1  gΦ

g4  84%  gΦ3 84%  gΦ3

 

Finally, the adiabatic electronic transition energies were computed from the large-

core MR-CISD equilibrium energies.  These results were compared to experimental 

results obtained by Denning et al on Cs2UO2Cl4 (Denning, 1992) and CsUO2(NO3)3 

(Denning et al, 1979).  Shown in Table 9, it is apparent that the MR-CISD method using 

the large-core RECP models the optical electronic spectra of uranyl rather well, to within 

about 3% of the experimental data, on average. 
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Table 9.  Electronic Transition Energies from Large-core MR-CISD Results 

Electronic 
state 

Equilibrium 
bond length (Å) 

adiabatic 
∆E (cm-1) Cs2UO2Cl4 

adiabatic % 
difference 

0g
+ 1.6679    

1g 1.7324 21430 20096 3.2% 
2g 1.7376 22151 20861 3.0% 
3g 1.7402 23378 22051 2.9% 
2g 1.7471 24637 22578 4.4% 
3g 1.7458 26872 26222 1.2% 
4g 1.7547 28736 27738 1.8% 
     
   average 2.9% 

 

Table 10.  Large-core Uranyl Results from Zhang et al (Zhang, 1999:  6884) 

Electronic 
state 

Equilibrium bond length 
(Å) 

Symmetric Stretch 
Vibrational Frequency 

(cm-1) 
adiabatic ∆E 

(cm-1) 
0g

+ 1.668 1103  
1g 1.733 867 20719 
2g 1.739 845 21421 
3g 1.742 847 22628 
2g 1.749 900 23902 
3g 1.747 898 26118 
4g 1.755 880 27983 
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The comparison between this calculation and the one performed by Zhang et al 

(Zhang, 1999:  6884) is quite favorable.  Bond lengths match closely, as do symmetric 

stretch vibrational frequencies.  Adiabatic transition energies are slightly different; 

however, this difference is not unexpected because of the slightly different treatment of 

the ground and excited states versus the calculation performed by Zhang et al.   

Small-core Uranyl (UO2
2+) Results 

The small-core HF SCF potential energy surface is displayed in Figure 8. 
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Figure 8.  Small-core Uranyl SCF Potential Energy Surface 

As was done in the large-core calculations, equilibrium bond lengths and 

minimum energies were computed from fourth-order data fits, while symmetric stretch 

vibrational frequencies were computed from second derivative of the Taylor series 

expansion about the equilibrium point.  Again, the symmetric stretch vibrational 
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frequency from the HF SCF potential energy surface was scaled by 90%.  This data is 

listed in Table 11. 

Table 11.  Small-core Uranyl SCF Equilibrium Bond Length and Symmetric Stretch 

Vibrational Frequency 

State 
Equilibrium Bond 

Length (Å) 

Scaled Symmetric 
Stretch Vibrational 

Frequency (cm-1) 
+Σ g0

1  1.6625 999 
 

The potential energy surfaces obtained from the small-core MCSCF calculation 

are shown in Figure 9. 
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Figure 9.  Small-core Uranyl MCSCF Potential Energy Surface 

Table 12 lists the equilibrium bond lengths and symmetric stretch vibrational 

frequencies obtained from the state-averaged MCSCF results. 
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Table 12.  Small-core Uranyl MCSCF Symmetric Stretch Vibrational Frequencies 

State 
Equilibrium Bond 

Length (Å) 

Symmetric Stretch 
Vibrational 

Frequency (cm-1) 
+Σ g

1  1.6717 1087 

g∆3  1.7263 903 

gΦ3  1.7442 871 
 

As was done with the large-core calculation, the small-core MR-CISD calculation 

was performed using both molecular and natural orbitals as starting points.  The results of 

the CI expansion from the molecular orbital coefficients is shown in Figure 10.  In this 

calculation, the molecular orbital coefficients are particularly poor, as they fail to yield 

bound excited states for uranyl.  This situation does not represent reality. 

Small-core Uranyl MR-CISD Electronic States 
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Figure 10.  Small-core Uranyl MR-CISD Electronic States From Molecular Orbitals 
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The results CI expansion using the natural orbitals are shown in Figure 11.  The 

difference in the accuracies between molecular and natural orbital initial guesses had a 

substantial impact on the final MR-CISD wave function.  With the small-core 

calculation, the accuracy difference makes the difference between bound and unbound 

states. 
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Figure 11.  Small-core Uranyl MR-CISD Electronic States From Natural Orbitals 

The equilibrium bond lengths and symmetric stretch frequencies for the MR-

CISD electronic states are listed in Table 13. 
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Table 13.  Small-core Uranyl MR-CISD Symmetric Stretch Vibrational Frequencies 

State 
Equilibrium Bond 

Length (Å) 
Symmetric Stretch 

Vibrational Frequency (cm-1) 
+
g0  1.6869 1062 

g1  1.7470 882 

g2  1.7571 845 

g3  1.7592 844 

g2  1.7553 885 

g3  1.7546 883 

g4  1.7649 856 
 

Next, the small-core uranyl MR-CISD wave function composition is displayed in 

.  The large-core uranyl wave function composition for the same state is also 

listed for comparison.  The only fundamental difference between the wave functions 

occurs in the 2g states. 

Table 14
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Table 14.  Small- and Large-core Uranyl Wave Function Compositions 

State 

Small-Core MR-CISD 
Wave Function 

Composition 

Large-Core MR-CISD 
Wave Function 

Composition 
+
g0  83% 1  +Σ g 82% 1  +Σ g

g1  84% 3  g∆ 84%  g∆3

g2  37% 3  g∆

46% 3  gΦ

58%  g∆3

26%  gΦ3

g3  40% 3  g∆

38% 3  gΦ

10% 1  gΦ

52%  g∆3

26%  gΦ3

6% 1  gΦ

g2  44% 3  g∆

4% 1  g∆

35% 3  gΦ

25%  g∆3

3% 1  g∆

56%  gΦ3

g3  47% 3  g∆

35% 3  gΦ

2% 1  gΦ

32%  g∆3

48%  gΦ3

4% 1  gΦ

g4  84% 3  gΦ 84%  gΦ3

 

Finally, Table 15 shows the adiabatic excited state transition energies computed 

from the MR-CISD equilibrium energies and compared with the Cs2UO2Cl4 (Denning, 

1992) and CsUO2(NO3)3 (Denning et al, 1979) experimental data. 
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Table 15.  Electronic Transition Energies from Small-core MR-CISD Results 

State 

Equilibrium 
Bond 

Length (Å) 
adiabatic 
∆E (cm-1) Cs2UO2Cl4 

adiabatic 
% diff 

0g+ 1.6869    
1g 1.7470 20813 20096 1.8% 
2g 1.7571 20951 20861 0.2% 
3g 1.7592 22189 22051 0.3% 
2g 1.7553 23549 22578 2.1% 
3g 1.7546 26251 26222 0.1% 
4g 1.7649 27729 27738 0.0% 
     
   average ∆E 0.7% 

 

 78



Table 16.  Comparison Between Theoretical and Experimental Uranyl Fluorescent 

Electronic Spectra and Symmetric Stretch Vibrational Frequencies (Rabinowitch et al, 

1964:  48) 

Compound 
Fluorescent Series 

(cm-1) 
Symmetric stretch vibrational 

frequency (cm-1) 
Rb2UO2Cl4 2H2O 19961 831.8 
K2UO2Cl4 2H2O 19970 831.6 

Cs2UO2Cl4 20096 836.1 
K2UO2(SO4)2 20389 827 
Rb2UO2(SO4)2 20390 838.2 

UO2(NO3)2 6H20 20578 863.9 
Cs2UO2(SO4)2 3H20 20594 860.5 
Large core (OSU) 20719 867 
UO2(NO3)2 3H20 20779 874.0 
Rb2UO2(NO3)4 20808 887.9 

Small core (this work) 20813 882 
K2UO2(NO3)4 20818 870.3 
K2UO2(CO3)2 20943 808.0 

PbUO2(CH3COO)4 20958 853.0 
CsUO2(CH3COO)3 20992 842.2 
RbUO2(CH3COO)3 21049 852.1 

NH4UO2(CH3COO)3 21056 847.0 
CsUO2(NO3)3 21090 884.0 

NH4UO2(NO3)4 21098 885.7 
NaUO2(CH3COO)3 21135 855.2 

KUO2(NO3)3 21183 875.5 
RbUO2(NO3)3 21199 887.9 

Large core (this work) 21430 840 
(NH4)2UO2(SO4)2 23358 840 

   
Experiment average 20884 854.9 

 

The small-core uranyl MR-CISD energies agrees more closely with the 

Cs2UO2Cl4 experimental data than the large-core results, coming within less than 1% of 

the experimental values on average.  Additionally, the experimental transition energies 
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are component averaged, due to the crystal field splitting observed in the experimental 

spectroscopy. 

Based on the orbital coefficients obtained from the SCF wave function, the 3  

LUMO consists of primarily uranium 5d, and 7s orbitals bonding with oxygen 1s orbitals.  

There is also a small oxygen 2p component.  The first excited states, arising from the 

 electron configuration, consist almost entirely of uranium 5f orbitals, indicating a 

charge transfer process between the axial oxygen atoms and the uranium atom.  The last 

three excited states, arising from the 3  electron configuration also are substantially 

of uranium 5f character.  Thus, the lowest lying excited states of uranyl all involve 

charge transfer from oxygen 1s and 2p orbitals to uranium 5f orbitals. 

2
uσ

1113 uu δσ

111 uu ϕσ

Small-core Uranate (UO4
2-) Results 

Based on the accuracy of the small-core uranyl results comparison with the 

precise Cs2UO2Cl4 experimental data, all uranate ion calculations were performed using 

only the small-core RECP.  The SCF equilibrium bond length was computed from fourth-

order polynomial fits to the raw data, while the symmetric stretch (breathing-mode) 

vibrational frequencies were obtained from the second derivative of the Taylor series 

expansion about the equilibrium point.  The resulting HF SCF minimum bond length was 

used for the single-point MR-CISD energy calculation.  Figure 12 shows the HF SCF 

potential energy surface computed.   

 80



Small-core UO4
2- SCF Potential Energy Surface
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Figure 12.  Uranate SCF Potential Energy Surface 

The uranate ground state, since it is a closed shell molecule, is the completely 

symmetric singlet state, or 1A1 in Td symmetry.  The SCF breathing frequency was scaled 

by 90%.  SCF results for the equilibrium bond length and breathing frequency are shown 

in Table 17. 
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Table 17.  Small-core Uranate SCF Symmetric Stretch Vibrational Frequencies 

State 
Equilibrium Bond 

Length (Å) 

Symmetric Stretch 
Scaled Vibrational 
Frequency (cm-1) 

1
1 A  1.9575 780 

 

The small-core uranate MCSCF computation used only the ground state as a 

reference.  The decision to use only a single reference was based upon the relatively large 

HOMO-LUMO energy gap found in the SCF calculation.   

Because the MCSCF calculation only used the ground state as a reference, its 

results should mirror the HF SCF calculation.  In contrast, the uranyl MCSCF calculation 

was state-averaged over the ground state and first excited states.  This was due to the 

relatively small separation in energy between the uranyl HOMO and LUMO.  The only 

benefits from the uranate MCSCF calculation were improved virtual orbital energies as 

opposed to the HF SCF virtual orbital energies, and the ability to extract natural orbitals 

from the MCSCF wave function for use as a starting wave function in the MR-CISD 

calculation. 

Using the natural orbitals extracted from the single-reference MCSCF wave 

function as a starting point, a small MR-CISD calculation was performed using over 

several references.  The references used in the MR-CISD calculation included single 

excitations from the 5  HOMO, which was mainly an oxygen 2p orbital, into the low-

lying uranium 5f orbitals, a situation analogous to the uranyl calculation.  These low-

lying orbitals were the  and 6  orbitals.  The lowest 48 virtual orbitals were frozen in 

this small CI calculation.  In Appendix B, it was determined that there are a possible 13 

6
2t

8 1a 2t
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states of A symmetry, including the ground state, and a total of 12 possible states of B1, 

B2, and B3 symmetry arising from the three references used.  The number of CSFs of A 

symmetry in D2 was 380,521, while there were 380,088 CSFs of B1, B2, and B3 

symmetry.  Compared with the small-core uranyl MR-CISD calculation with nearly 9 

million CSFs, the uranate CI calculation is quite small.  While this is not enough CSFs to 

give a quantitative picture of the excited states of uranate, it should suffice to give a 

qualitative picture of the nature and a rough ordering of excited states.  Table 18 lists the 

double group state assignments and contributing ΓS terms for the states of A symmetry in 

D2, while Table 19 lists the double group state assignments and contributing terms for the 

states of B1 symmetry in D2.   lists the lowest seven double-group states, their 

contributing ΓS terms, and the vertical electronic transition energies to the ground-state.   

Table 20

 83



Table 18.  Small-core Uranate MR-CISD Double Group Terms Of A Symmetry in D2 

and Their ΓS Compositions 

Double Group Term 
Small-Core Wave Function ΓS 

Composition 

1A1 
96% 1A1 from (5t2)6 

1E 85% 3T2 from (5t2)5(4a1)1 

1A2 
91% 3T2 from (5t2)5(6t2)1 

2A2 

55% 1A1 from (5t2)5(6t2)1 
33% 3T1 from (5t2)5(6t2)1 

2E 
66% 3T1 from (5t2)5(6t2)1 
21% 1E from (5t2)5(6t2)1 

 

Table 19.  Small-core Uranate MR-CISD Double Group Terms Of B1 Symmetry in D2 

and Their ΓS Compositions 

Double Group Term 
Small-Core Wave Function ΓS 

Composition 

1T1 

37% 3E from (5t2)5(6t2)1 
26% 3T2 from (5t2)5(4a1)1 
13% 3T1 from (5t2)5(6t2)1 
13% 3T2 from (5t2)5(6t2)1 

1T2 

30% 3E from (5t2)5(6t2)1 
28% 3T1 from (5t2)5(6t2)1 
21% 3T2 from (5t2)5(6t2)1 

2T1 
45% 3E from (5t2)5(6t2)1 
36% 1T1 from (5t2)5(6t2)1 

3T1 
56% 3T1 from (5t2)5(4a1)1 
22% 3A1 from (5t2)5(6t2)1 

2T2 

39% 3T2 from (5t2)5(6t2)1 
29% 3T1 from (5t2)5(6t2)1 
19% 1T2 from (5t2)5(6t2)1 

3T2 
40% 1T2 from (5t2)5(4a1)1 
31% 3T2 from (5t2)5(4a1)1 
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Table 20.  Small-core Uranate MR-CISD Low-Lying Vertical Electronic Transition 

Energies at 1.9253 Å 

Double Group Term
Contributing 
ΓS States 

Vertical ∆E (cm-

1) 

2E 66% 3T1 
21% 1E  34043 

2A1 96% 1A1 33959 
1A2 91% 3T2 33815 
1E 85% 3T2 33571 

2T1 
45% 3E 
36% 1T1 

33480 

1T2 

30% 3E 
28% 3T1 
21% 3T2 

33305 

1T1 

37% 3E 
26% 3T2 
13% 3T1 
13% 3T2 

32633 

1A1 96% 1A1 0 
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V.  Conclusions and Recommendations 

 
 

This thesis has outlined the theory behind several theoretical methods used in 

calculating molecular properties of actinide compounds.  Excited state spectra of the 

uranyl ion was calculated using both large- and small-core RECPs, and the results of 

these calculations were compared with previous theoretical work and experimental 

measurements of fluorescent series spectra.   

The large-core uranyl calculations performed in this research faithfully 

reproduced the calculations performed at OSU (Zhang, 1999), with some small 

variations.  These variations are explained by the slight difference in the treatment of the 

ground and excited states in this calculation as compared with the OSU calculation.   

When compared with the precise spectroscopy obtained for Cs2UO2Cl4 by 

Denning et al (Denning et al, 1976; Denning, 1992), the small-core RECP and basis set 

yield a better match with experiment on average than the large-core results, although both 

RECPs and basis sets compare favorably with experiment.  Because of this, the small-

core RECP outperforms the large-core RECP when examining fluorescent spectra of the 

uranyl ion.   

The match between experimental and theoretical electronic spectra for both the 

large- and small-core calculations for uranyl validates the assumed valence-core 

separability inherent in the relativistic effective core potential approximation.  The large-

core uranyl calculation compared reasonably well with experimental measurements of 

excited electronic spectra, and the calculations involved a relatively modest 

computational effort.  The small-core calculation removed the uranium 5d shell electrons 

from the core potential, and allowed them to participate in the MR-CISD calculation.  
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Assuming the crystal field perturbations to the uranyl electronic energies over the range 

of uranyl-containing crystals measured average to zero, the small core theoretical result is 

in good agreement with the fluorescent series measurements averaged over all the 

experiments.  The implication is then that the average experimental fluorescent spectra 

represents an unperturbed uranyl ion, at least to first order.  Thus, the main trade-off 

between the large- and small-core calculation is the availability of more electrons to be 

correlated, and that this extra electron correlation gives improved results when compared 

with experiment.  Thus, in the uranyl ion, electron correlation is more important than 

relativistic effects, and the 5d electron shell in uranium plays a small role in the chemical 

bonding in uranium oxides. 

The next reasonable step is to examine the excited state spectra of the uranate 

(UO4
2-) ion using this small-core RECP.  This ion is also a closed-shell molecule, and 

geometry optimizations using DFT and MP2 indicate the ion can be stable in a 

tetrahedral geometry, but the flattened tetrahedral geometry had a slightly lower energy 

in the DFT optimization.  Using tetrahedral geometry, the potential energy surfaces could 

be parameterized by a single parameter, the U-O bond length, greatly simplifying the 

study of the potential energy surfaces.  This single bond-length represents the symmetric 

stretch normal mode coordinate of the molecule.  Varying this coordinate simultaneously 

varies all four oxygen-uranium bond lengths by an equal amount.  Comparison between 

the low-lying excited states of uranyl and uranate illustrates the effect the oxygen 

coordination has on the electronic spectra of uranium oxides.   

In the uranyl ion, there are non-bonding uranium 5f orbitals, which are relatively 

unaffected by the oxygen ligands.  In the tetrahedral uranate ion, this is not the case.  

Here, there orbitals are either bonding or anti-bonding:  no non-bonding uranium 5f 

orbitals are present.  The preliminary result of this is that low-lying uranate electronic 

transitions occur in the ultraviolet spectrum, while the similar transitions in the uranyl ion 
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are in the optical spectrum.  This is the reason for the characteristic green-yellow 

fluorescence in many uranium oxides.  The presence or absence of the stable uranyl unit, 

and thus the non-bonding uranium 5f orbitals, dictates the nature of the electronic 

spectra. 

The results of this research reveal the methods and challenges behind the 

theoretical study of actinide molecules.  The study of simple, heavy-element molecules 

such as the uranyl ion has been quite successful; however, application of these theoretical 

techniques to more complicated, and more relevant uranium oxide compounds is 

difficult, both computationally, and theoretically.  Advances in parallel computing and 

software resources has begun to allow the accurate study of increasingly complicated 

actinide molecules.  This capability will have enormous impact on such fields as nuclear 

reactor fuel design, nuclear stockpile stewardship, and nuclear forensics.   
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Appendix A:  Symmetry Considerations for the Linear Uranyl Ion 

All uranyl geometry optimization calculations performed using NWChem 4.0.1 

resulted in a linear molecule.  The most appropriate symmetry point group for a linear 

molecule is the D∞h point group.  COLUMBUS calculations using the graphical unitary 

group approach (GUGA) CI program must be performed using an abelian point group.  

The abelian sub group of D∞h used in this research was the D2h point-group.  The 

correlation table between the D∞h and D2h symmetry point groups is given in Table 21. 

Next, the symmetries of the uranium atomic orbitals in D∞h and D2h, as well as the 

symmetries of linear combinations of the two oxygen atomic orbitals in both the were 

found D∞h and D2h point-groups were found in order to create the ARGOS input file.  

 and  show these orbital symmetries.   Table 22 Table 23

Table 21.  Correlation Between  D∞h and D2h Symmetry Point-Groups (Cotton, 1971:  

359-362). 

D∞h D2h 

Σg
+ Ag 

∆g Ag+B1g 

Φg B2g+B3g 
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Table 22.  Uranium Atomic Orbitals in D∞h and D2h Symmetry Point Groups 

Orbital D∞h D2h 

s σg
+ ag 

zp  σu
+

 au 

yx pp ,  πu b2u+b3u 

2z
d  σg

+
 ag 

yzxz dd ,  πg b2g+b3g 

22,
yxxy dd

−
 δg ag+b1g 

3z
f  σu

+ au 

22 ,
yzxz

ff  πu b2u+b3u 

)( 22,
yxzxyz ff

−
 δu au+b1u 

)3()3( 2222 ,
yxyyxx

ff
−− φu b2u+b3u 
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Table 23.  Two Oxygen Atomic Orbitals Along z-axis in D∞h and D2h 

Orbital D∞h D2h 

ss +  σg
+ ag 

ss −  σu
+ b1u 

zz pp +  σu
+

 b1u 

zz pp −  σg
+ ag 

yy pp +  
xx pp +  

πu b2u+b3u 

yy pp −  
xx pp −  

πg b2g+b3g 

 

Because the references used in the MR-CISD calculation are all products of 

ungerade8 orbitals, all the possible states arising from these references will be gerade.  

The references used in the MR-CISD calculations were the , , and  

electron configurations.  Table 24 shows the possible states arising from these electron 

configurations in both ΛS

23 uσ 11 13 uu δσ 11 13 uu ϕσ

9 and ωω10 coupling schemes.   

                                                           
8 ungerade = odd parity 
9 Russell-Sanders coupling is called LS coupling in atoms, ΛS coupling in linear molecules 
10 j-j coupling in atoms, ωω coupling in linear atoms 
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Table 24.  Uranyl Possible States from CISD References in both ΛS and ωω Coupling 

Schemes 

Reference 
configuratio

n 
Possible States  
(ΛS coupling) 

Possible States 
(ωω coupling) 

23 uσ  
+Σ
g0

1
 +

g0  

11 13 uu δσ  

g

gg

g

1
3

2
1

2
3

3
3

,

∆

∆∆

∆

 

g

g

g

3

2

1

 

1113 uu ϕσ  

g

gg

g

2
3

3
1

3
3

4
3

,

Φ

ΦΦ

Φ

 

g

g

g

4

3

2
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Table 25

Table 25.  Total Wave Function Symmetry in D2h From Reference Electronic 

Configurations 

 shows the spatial, spin, and total wave function symmetries arising from 

each uranyl reference configuration.   

Electron 
configuration 

ΛS 
Term  

D2h Spatial 
Symmetry  

D2h Spin-
Symmetry 

D2h Double-Group 
Symmetry 

3σu
2 1Σg

+ Ag Ag Ag 

3σu
11δu

1 3∆g Ag+B1g B1g+B2g+B3g 

Ag 

B1g 

2 B2g 

2 B3g 

3σu
11φu

1 3Φg B2g+B3g B1g+B2g+B3g 

2 Ag 

2 B1g 

B2g 

B3g 
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Appendix B:  Symmetry Considerations of the Tetrahedral Uranate Ion 

 
The optimum uranate ion geometry found using NWChem 4.0.1 was dependent 

on the starting geometry.  If the geometry optimization was started in a tetrahedral 

configuration, the final geometry was tetrahedral.  The geometry obtained from an 

asymmetric starting point was a flattened tetrahedral, or a D2d molecule.  The D2d 

geometry had was at a slightly lower energy than the tetrahedral geometry using DFT.  

Analysis of the potential energy surfaces of a D2d molecule is complicated by the fact that 

there are two independent bond lengths.  For this reason, the tetrahedral molecular 

geometry was examined.  Using a tetrahedral symmetry, the potential energy surfaces 

could be characterized by a single parameter, as was the case in the uranyl ion. 

A tetrahedral geometry is best described using a Td symmetry point group.  

However, as was the case with the uranyl calculation, the COLUMBUS calculations 

using the GUGA CI program must be performed using an abelian point group.  The 

uranate calculations were performed using the D2 symmetry point-group.  The correlation 

table between the Td and D2 symmetry point groups is given in Table 26. 
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Table 26.  Correlation Table Between Td and D2 Symmetry Point-Groups (Cotton, 1971:  

356-363). 

Td D2 

A1 A 

A2 A 

E A+A 

T1 B1+B2+B3 

T2 B1+B2+B3 

 

In a similar fashion to the uranyl calculations, the Td and D2 symmetries of the 

uranium and four oxygen atomic orbitals was found, and the appropriate ARGOS input 

file was generated.  The symmetries of the uranium orbitals in Td and D2 symmetry point-

groups are shown in Table 27, while the symmetries of the linear combinations of four 

oxygen atoms are shown in Table 28. 
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Table 27.  Linear Combination of Uranium Atomic Orbitals in Td and D2 Symmetry Point 

Groups 

Orbital Td D2 

s A1 A 

zp  
yp  
xp  

T2 

B1 
B2 
B3 

2z
d  

22 yx
d

−
 E A 

xyd  
xzd  
yzd  

T2 
B1 
B2 
B3 

3z
f  

3y
f

 
3x

f  
T2 

B1 
B2 
B3 

xyzf  A1 A 

)( 22 xzy
f

−  
)( 22 xzy

f
−  

)( 22 yzx
f

−  

T1 
B1 

2 
B3 
B
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Table 28.  Combination of Four Tetrahedral Oxygen Atomic s-Orbitals in Td and D2 

Oxygen orbital Td D2 

s A1+T2+T1 A+B1+B2+B3 

zp  
A1+T2+T1 A+B1+B2+B3 

yp  A1+T2+T1 A+B1+B2+B3 

xp  A1+T2+T1 A+B1+B2+B3 

 

Three electronic configurations were used as references in the MR-CISD 

calculation:  the  ground state, as well as  and 5 , which represent 

excitations in the uranium 5f orbitals.  The possible double group states in T

6
25t 1

1
5
2 85 at 1

2
5
2 6tt

d and D2 

symmetry point groups arising from these three references are listed in Table 29 

(Herzberg, 1966:  570).   
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Table 29.  Uranate Total Wave Function Symmetry in D2 From Reference Electronic 

Configurations 

Electron 
configuration 

Td ΓS11 
Terms 

Td Spatial 
Symmetry 

Td Spin-
Symmetry 

Td Double 
Group Terms 

D2 Double Group 
Terms  

6
25t  1

1 A  A1 A1 A1 A 
1
1

5
2 85 at  2

1T  T2 A1 T2 B1+B2+B3 

1
1

5
2 85 at  2

3T  T2 T1 

A2 

E 

T1 

T2 

A 

2A 

B1+B2+B3 

B1+B2+B3 

1
2

5
2 65 tt  

1
1 A  

E1  

1
1T  

2
1T  

A1 

E 

T1 

T2 

A1 

A1 

E 

T1 

T2 

A 

A+A 

B1+B2+B3 

B1+B2+B3 

1
2

5
2 65 tt  

1
3 A  

E3  

1
3T  

2
3T  

A1 

E 

T1 

T2 

T1 

T1 

T1+T2 

A1+E+T1+T2 

A2+E+T1+T2 

B1+B2+B3 

2B1+2B2+2B3 

3A+2B1+2B2+2B3 

3A+2B1+2B2+2B3 

Total    
3A1+2A2+4E+

6T1+6T1 
13A+12(B1+B2+B3) 

 

It is evident from Table 29 that the total number of possible states arising from the 

three electron configuration references is much larger in the tetrahedral uranate ion than 

in the linear uranyl ion.   

                                                           
11 Russell-Sanders coupling in non-linear poly atomic atoms is called ΓS coupling 
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Appendix C:  State Assignments Using MR-CISD Wave Functions 

 

For both the uranyl and uranate ions, the MR-CISD calculation was performed 

using an abelian point-group that was a sub-group of the actual symmetry group 

corresponding to the molecular symmetry.  The SCF, MCSCF and MR-CISD wave 

functions obtained in the calculations all reflect the symmetry of the calculation, which in 

turn, echoed the overall molecular symmetry.   

In the MR-CISD calculations, symmetry considerations and degeneracy reduced 

the total number of calculations necessary to characterized all the possible states arising 

from the electron references.  For the uranyl calculation, calculating four MR-CISD roots 

of Ag symmetry and three roots of B2g symmetry completely characterized the ground 

state and six excited electronic states possible from reference electron configurations (see 

 and ).  Once these MR-CISD wave functions are obtained, all that 

remains is identification of each state corresponding to the particular MR-CISD root. 

Table 24 Table 25

Uranyl MR-CISD State Assignment 

In the case of the uranyl ion, the MR-CISD state assignment was relatively 

straightforward, using the information in Table 24 and the process of elimination.   

The output of the MR-CISD calculation lists electron configurations in the CI 

expansion with a CI coefficient above a certain threshold.  Also listed is the spin 

multiplicity of the configuration.  Listed below is an excerpt from the first MR-CISD root 

of Ag symmetry in the small-core uranyl calculation. 
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--- list of ci coefficients ( ctol =   1.00E-02 )  total energy( 1) =      -246.4005545447 
 
                                                       internal orbitals 
 
                                          level       1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
 
                                          orbital     3    4    5   47   61   77   78   93   94  106  107   79   74   80   95  108 
 
                                         symmetry   ag   ag   ag  b2g  b3g  b1u  b1u  b2u  b2u  b3u  b3u  b1u   au  b1u  b2u  b3u  
 
 path  s ms    csf#    c(i)    ext. orb.(sym) 
 z*  1  1       1  0.908837                        +-   +-   +-   +-   +-   +-   +-   +-   +-   +-   +-   +-                      
 z    1  1       6 -0.035430                        +-   +-   +-   +-   +-   +-   +-   +-   +-   +-   +-        +-                 
 z    1  1      10 -0.035430                        +-   +-   +-   +-   +-   +-   +-   +-   +-   +-   +-             +-            
 z    1  1      13 -0.011775                        +-   +-   +-   +-   +-   +-   +-   +-   +-   +-   +-                  +-       
 

The orbital number lists the unfrozen, occupied core orbitals and reference 

orbitals.  The next line lists the symmetry of each orbital.  The pluses and minuses 

represent electron spin-up or spin-down.  On the left side, the c(i) represents the CI 

coefficient, and the s represents the spin-multiplicity.  For this example, the 79 b3u is the 

 HOMO and is a singlet.  This corresponds to the HF SCF ground state, and is the 

 state.  Identification of the other states proceeds in a similar fashion.  States are most 

easily identified through their  values and spin-multiplicity.  For example, roots of A

23 uσ

+
g0

Ω g 

symmetry can only correspond to even Ω  values.  Thus, Ag roots can only be 0 , , or 

 states, while B

+
g g2

g4 2g roots can only be 1  or  states.  The  state can be identified by 

the fact that there can be no contributions from the 3  configuration.  It can only 

arise from the  reference or from excitations from 

g g3 g4

u

111 uu δσ

1113 uu ϕσ π  orbitals.  The  and 3  

states can be differentiated by the singlet states.  For example, the 2  states contains a 

small contribution from the singlet  configuration.  This uniquely identifies the 

g2 g

g

111 uδ3σ u
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g2  states.  The 3  states are identified by the presence of the singlet 3  

configuration.  The 1  states are identified by the absence of any singlet configurations 

from the  or  reference configurations.  Thus, all seven states arising from 

the three references are uniquely identified and ordered in energy. 

g

1
u

111 uu ϕσ

g

3σ113 u δσ 111 uu ϕ

Uranate MR-CISD State Assignment 

State identification in the tetrahedral uranate ion proceeds in a similar fashion.  

The E states are identified by their degeneracy.  Two consecutive, degenerate roots of A 

symmetry correspond to an E state.  The A1 state can be identified by noting that the first 

root of A symmetry corresponds to the ground state, a 1  state.  Identification of A1A 2 

states is slightly more complicated, and it relies on the CI coefficients of the ground state.  

The A1 and A2 states, while both of A symmetry in D2, are differentiable by the relative 

signs of the CI coefficients of various electron configurations in each wave function.  The 

key to identification of an A2 state is to find electron configurations in the ground state 

that are identical in the A2 state, and examine the CI coefficients.  The CI coefficients of 

the electron configurations in the A1 state should come into the A2 state with different 

signs, while they will have the same sign in another A1 state.  Thus, A1 and A2 states can 

be differentiated by the phases of their wave functions, relative to the CI coefficients in 

the ground state, once a series of identical electron configurations are located between the 

ground state (A1) and the state to be identified. 

Differentiation between T1 and T2 states proceeds along a similar fashion.  

However, the complication here is to first identify either a T1 or T2 state, then use the 
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relative phases of the CI coefficients in identical electron configurations to distinguish 

between the two.  Here, the spin multiplicity can help.  T1 or T2 states can be identified 

by locating a singlet state from a  or  electron configuration.  Therefore, T1
1

1
2at 1

1
1
1 at 1 and 

T2 states can be identified from either singlet states arising from excitations into a1 from 

t1 or t2 orbitals, or into t1 or t2 orbitals from a1 orbitals.  Once one such state is found, 

other T1 or T2 states can be differentiated by examining the relative phases of the CI 

coefficients. 
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List of Abbreviations 

AFIT  Air Force Institute of Technology 

AMD  Advanced Micro Devices 

ARECP Averaged Relativistic Effective Core Potential 

ASC  Aeronautical System Center 

aug-cc-pvdz Augmented, Correlation-Consistent Polarized Valence Double Zeta 

B3LYP Becke Three Parameter Lee-Yang-Parr hybrid exchange-correlation  

  functional 

CAS  Complete Active Space 

CCSD(T) Coupled-Cluster Singles and Doubles (Triples) 

CISD  Configuration Interaction, Single and Double excitations 

CSF  Configuration State Function 

DFT  Density Functional Theory 

DHF  Dirac-Hartree-Fock 

EMSL  Environmental Molecular Sciences Laboratory 

eV  electron volt (1.602176 x 10-19 J) 

Gb  Gigabyte 

GCA  Gradient-Corrected Approximation 

GHz  Gigahertz 

HF  Hartree-Fock 

HOMO Highest Occupied Molecular Orbital 

kcal  kilocalories (4184 J) 

LUMO  Lowest Unoccupied Molecular Orbital 

Mb  Megabyte 
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MCSCF Multi-Configuration Self-Consistent Field 

MHz  Megahertz 

MP2  Møller-Plesset second-order perturbation theory 

MR-CISD Multi-Reference Configuration Interaction with Single and Double 

excitations 

MSRC  Major Shared Resource Center 

O  Oxygen 

OSU  Ohio State University 

PES  Potential Energy Surface 

PC  Personal Computer 

PNNL  Pacific Northwest National Laboratory 

RAM  Random Access Memory 

RECP  Relativistic Effective Core Potential 

SCF  Self-Consistent Field method 

SO  Spin-Orbit 

SOCI  Spin-Orbit Configuration Interaction 

Tb  Terabyte 

U  Uranium 

 

 104



 

Bibliography 

 
 
Aoyama, T., Yamakawa, H., and Matsuoka, O.  “Relativistic self-consistent field 

methods for molecules.  II.  A single-determinant Dirac-Fock self-consistent-field 
method for closed-shell polyatomic molecules.”  Journal of Chemical Physics, 73, 
3:  1329-1332 (22 Apr 80). 

 
“ASC MSRC Hardware Resources.”  n. pag. http://www.asc.hpc.mil/hardware/index.php 

(2002). 
 
Balasubramanian, K..  Relativistic Effects in Chemistry, Part A:  Theory and Techniques.  

John Wiley and Sons, Inc. (1997). 
 
Becke, A., D.  “Density-functional thermochemistry.  V.  Systematic optimization of 

exchange-correlation functionals.”  Journal of Chemical Physics, 107, 20: 8554-
8560 (22 November 1997). 

 
Becke, A., D.  “Density-functional thermochemistry.  IV.  A new dynamical correlation 

functional and implications for exact-exchange mixing.”  Journal of Chemical 
Physics, 104, 3: 1040-1046 (15 January 1996). 

 
Becke, A. D.  “Density-functional thermochemistry.  III.  The role of exact exchange.”  

Journal of Chemical Physics.  98:  5648-5652 (1993). 
 
Becke, A. D.  “Density-functional thermochemistry.  II.  The effect of the Perdew-Wang 

generalized-gradient correlation correction.”  Journal of Chemical Physics.  97, 
12:  9173-9177 (15 December 1992). 

 
Becke, A. D.  “Density-functional thermochemistry.  I.  The effect of the exchange-only 

gradient correction.”  Journal of Chemical Physics.  96, 3:  2155-2160 (1 
February 1992). 

 
Bergner, A., Dolg, M., Küchle, W., Stoll, H., and Preuss, H.  “Ab initio energy-adjusted 

pseudopotentials for elements of groups 13-17.”  Molecular Physics, 80, 6:  1431-
1441 (1993). 

 
Bethe, H. A. and Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms.  

Springer-Verlag (1957). 
 

 105

http://www.asc.hpc.mil/hardware/index.php


Bjorken, J. D., and Drell, S. D.  Relativistic Quantum Mechanics.  McGraw-Hill Book 
Company (1964). 

 
Blaudeau, J.-P., Brozell, S. R., Matsika, S., and Pitzer, R. M.  “Atomic Orbital Basis Sets 

for Use with Effective Core Potentials.”  International Journal of Quantum 
Chemistry, 77:  516-520 (2000). 

 
Bleijenberg, K. C., “Charge transfer transitions within the octahedral uranate group.”  

Journal of Chemical Physics, 73, 2:  617-621 (21 Mar 80). 
 
Breit, G.  “Dirac’s Equation and the Spin-Spin Interactions of Two Electrons.”  Physical 

Review, 39:  616-624 (6 Jan 32). 
 
Breit, G.  “The Fine Structure of He as a Test of the Spin Interactions of Two Electrons.”  

Physical Review, 36, 3:  383-397 (1 Aug 30). 
 
Breit, G.  “Possible Effects of Nuclear Spin on X-ray Terms.”  Physical Review, 35, 12:  

1447-1451 (15 Jun 30). 
 
Breit, G.  “The Effect of Retardation on the Interaction of Two Electrons.”  Physical 

Review, 34, 4:  553-573 (15 Aug 29). 
 
Cotton, F. A.  Chemical Applications of Group Theory, 2nd Edition.  Wiley-Interscience 

(1971). 
 
Darwin, C. G., “The Wave Equations of the Electron.”  Proceedings of the Royal Society 

of London A, 118: 654-680 (1928). 
 
Davidson, E. R. and Feller, D.  “Basis Set Selection for Molecular Calculations.”  

Chemical Reviews, 86:  681-696 (April 1986). 
 
de Jong, W. A., Visscher, L., and Nieuwpoort, W. C.  “On the bonding and the electric 

field gradient of the uranyl ion.”  Journal of Molecular Structure (Theochem), 
458:  41-52 (1999). 

 
Dekock, R. L., Baerends, E., Jan, B., Paul, M., and Snijders, J. G.  “On the Nature of the 

First Excited States of the Uranyl Ion.”  Chemical Physics Letters, 105, 3:  308-
316 (16 March 1984). 

 
Denning, R. G., Snellgrove, T. R., and Woodwark, D. R.  “The electronic structure of the 

uranyl ion Part I.  The electronic spectrum of Cs2UO2Cl4.”  Molecular Physics, 
32, 2, 419-442 (1976). 

 

 106



Denning, R. G., Snellgrove, T. R., and Woodwark, D. R.  “The electronic structure of the 
uranyl ion II..  The electronic spectrum of Cs2UO2(NO3)3 and 
NaUO2(CH3COO)3.”  Molecular Physics, 37, 4, 1089-1107 (1979). 

 
Denning, R. G., Snellgrove, T. R., and Woodwark, D. R.  “The electronic structure of the 

uranyl ion III. Theory.”  Molecular Physics, 37, 4:  1109-1143 (1979). 
 
Denning, R. G.  “Electronic Structure and Bonding in Actinyl Ions.”  Structure and 

Bonding, Volume 79, Springer-Verlag, Berlin-Heidelberg (1992). 
 
Denning, R. G., Green, J. C., Hutchings, T. E., Dallera, C., Tagliaferri, A., Giarda, K.  

Brookes, N. B., Braicovich, L.  “Covalency in the uranyl ion:  A polarized x-ray 
spectroscopic study.”  Journal of Chemical Physics, 117, 17:  8008-8020 (1 
November 2002). 

 
Dirac, P. A. M.  Quantum Mechanics.  4th Edition, Oxford University Press (1958). 
 
Dirac, P.A.M., “The Quantum Theory of the Electron.  Part II.”  Proceedings of the 

Royal Society London, Series A, 117: 351-361 (1928). 
 
Dirac, P.A.M., “The Quantum Theory of the Electron.”  Proceedings of the Royal Society 

London, Series A, 118: 610-624 (1928). 
 
Dunning, T. H. Jr.  “Gaussian basis sets for use in correlated molecular calculations.  I.  

The atoms boron through neon and hydrogen.”  Journal of Chemical Physics, 90, 
2:  1007-1023 (15 January 1989). 

 
Dirac, P.A.M., “The Quantum Theory of the Electron.  Part II.”  Proceedings of the 

Royal Society London, Series A, pp. 351-361 (1928). 
 
Docrat, T. I., Mosselmans, J. F. W., Charnock, J. M., Whiteley, M. W., Collision, D., 

Livens, F. R., Jones, C., and Edmiston, M. J. “X-ray Absorption Spectroscopy of 
Tricarbonatodioxouranate(V), [UO2(CO3)3]5-, in Aqueous Solution.”  Inorganic 
Chemistry, 38:  1879-1882 (1999). 

 
Dyall, K. G., Taylor, P. R., Faegri, K., Partridge, H.  “All-electron molecular Dirac-

Hartree-Fock calculations:  The group IV tetrahydrides CH4, SiH4, GeH4, SnH4, 
and PbH4.”  Journal of Chemical Physics, 95, 4:  2583-2594 (30 Apr 1991). 

 
Ermler, W. C., Ross, R. B., and Christiansen, P. A.  “Spin-Orbit Coupling and Other 

Relativistic Effects in Atoms and Molecules.”  Advances in Quantum Chemistry, 
19:  139-179 (1988). 

 

 107



Ermler, W. C., Ross, R. B., and Christiansen, P. A. “Ab Initio Relativistic Effective 
Potentials with Spin-Orbit Operators.  VI.  Fr Through Pu.”  International 
Journal of Quantum Chemistry, 40:  829-846 (1991). 

 
Foldy, L. L., Wouthuysen, S. A., “On the Dirac Theory of Spin 1/2 Particles and Its Non-

Relativistic Limit.”  Physical Review, 78, 1:  29-36 (25 Nov 49). 
 
Gagliardi, L., and Roos, B. O.  “Uranium triatomic compounds XUY (X, Y = C, N, O):  a 

combined multiconfigurational second-order perturbation and density functional 
study.”  Chemical Physics Letters, 331:  229-234 (1 December 2000). 

 
Garcia-Hernandez, M., Lauterbach, C., Krüger, S., Matveev, A., and Rösch, N.  

“Comparitive Study of Relativistic Density Functional Methods Applied to 
Actinide Species AcO2

2+ and AcF6 for Ac = U, Np.”  Journal of Computational 
Chemistry, 23, 8:  831-846 (2002). 

 
Gerloch, Malcolm.  Orbitals, Terms, and States.  John Wiley and Sons.  (1986). 
 
Griffiths, Trevor, R., Volkovich, Vladimir, A.  “A review of the high temperature 

oxidation of uranium oxides in molten salts and in the solid state to form alkali 
metal uranates, and their composition and properties.”  Journal of Nuclear 
Materials, 274:  229-251 (1999). 

 
Görller-Walrand C, and De Jaegere, S., “Correlation between the vibronic spectra of the 

uranyl ion and the geometry of its coordination.”  Spectrochimica Acta, 28A:  
257-268 (7 May 1971). 

 
Han, Y. and Hirao, K.  “Density functional studies of UO2

2+ and AnF6 (An = U, Np, and 
Pu) using scalar-relativistic effective core potentials.”  Journal of Chemical 
Physics, 113,17:  7345-7350 (1 November 2000). 

 
Harris, D. C., Bertolucci, M. D.  Symmetry and Spectroscopy:  An Introduction to 

Vibrational and Electronic Spectroscopy.  Dover Publications, Inc. (1989). 
 
Harrison, R. J.  “Computational Chemistry for Nuclear Waste Characterization and 

Processing: Relativistic Quantum Chemistry of Actinides.”  n. pag. 
http://www.emsl.pnl.gov:2080/proj/tms/hpcc_actinides/.  June 1997. 

 
Hay, P. J.  Journal of Chemical Physics, 79:  5469 (1983). 
 
Head-Gordon, M.  “Quantum Chemistry and Molecular Processes.”  Journal of Physical 

Chemistry, 100:  13213-13225 (1996). 
 

 108



Herzberg, G.  Molecular Spectra and Molecular Structure III.  Electronic Spectra and 
Electronic Structure of Polyatomic Molecules.  D. Van Nostrand Company, Inc.  
(1966). 

 
High Performance Computational Chemistry Group.  “NWChem, A Computational 

Chemistry Package for Parallel Computers, Version 4.0.1.”  Pacific Northwest 
National Laboratory, Richland, WA, (2002). 

 
“HP/Compaq ES40/45 User’s Guide.”  Aeronautical Systems Center Major Shared 

Resource Center, Release 1.2 (4 September 2002). 
 
Hunt, R. D., and Andrews, L.  “Reactions of pulsed-laser evaporated uranium atoms with 

molecular oxygen:  Infrared spectra of UO, UO2, UO3, UO2
2+, UO3-O2 in solid 

argon.”  Journal of Chemical Physics, 98, 5:  3690-3696 (1 March 1993). 
 
“IBM SP P3 User’s Guide.”  Aeronautical Systems Center Major Shared Resource 

Center, Release 2.0 (28 September 2000). 
 
Ismail, N., Heully, J-L., Saue, T., Daudey, J-P, Marsden, C.  "Theoretical studies of the 

actinides:  method calibration for the UO2
2+ and PuO2

2+ ions."  Chemical Physics 
Letters, 300:  296-302, (1999). 

 
Jackson, J. D.  Classical Electrodynamics, 2nd Edition.  John Wiley and Sons.  (1975). 
 
Kaltsoyannis, N.  "Computational Study of Analogues of the Uranyl Ion Containing the -

N=U=N- Unit:  Density Function Theory Calculations on UO2
2+, UON+, UN2, 

UO(NPH3)3+, U(NPH3)2
4+, [UCl4{NPR3}2] (R = H, Me), and 

[UOCl4{NP(C6H5)3}]-."  Inorganic Chemistry, 39:  6009-6017, (2000). 
 
Kaltsoyannis, N.  "Relativistic effects inorganic and organometallic chemistry."  Journal 

of the Chemical Society, Dalton Transactions, pp. 1-11, 1997. 
 
Katz, J. J., Seaborg, G. T., and Morss, L. R.  The Chemistry of the Actinide Elements, 

2nd Edition, Volumes I and II.  Chapman and Hall Ltd.  1986. 
 
Kellogg, C. B., “An Introduction to Relativistic Electronic Structure Theory in Quantum 

Chemistry.”  unpublished report (12 Sep 97). 
 
Kendall, R. A., Dunning, T. H., Harrison, R. J. “Electron affinities of the first-row atoms 

revisited.  Systematic basis sets and wave functions.”  Journal of Chemical 
Physics, 96, 9:  6796-6806 (1 May 1992). 

 
Kim, Y.  “Relativistic Self-Consistent-Field Theory for Closed-Shell Atoms.”  Physical 

Review, 154, 1:  17-39 (9 Jun 66). 
 

 109



Koelling, D. D., Ellis, D. E., Bartlett, R. J., “Relativistic energy levels and bonding in 
actinide hexafluorides.”  Journal of Chemical Physics, 64, 3:  3331-3340 (1 Jun 
76). 

 
Kohn, W., Becke, A., D., Parr, R., G.  “Density Functional Theory of Electronic 

Structure.”  Journal of Chemical Physics, 100, 12974-12980, (1996). 
 
Krol, D. M.  “Analysis of the Luminescence Spectra of some Uranates.”  Journal of the 

Chemical Society, Dalton Transactions, 6, 8:  687-693 (1981). 
 
Krol, D. M., and Blasse, G., “Luminescence and energy migration in Ba2CaUO6.”  

Journal of Chemical Physics, 69, 7:  3124-3127 (17 Apr 78). 
 
Küchle, W., Dolg, M., Stoll, H., and Preuss, H.  “Energy-adjusted pseudopotentials for 

the actinides.  Parameter sets and test calculations for thorium and thorium 
monoxide.”  Journal of Chemical Physics, 100, 10:  7535-7542 (15 May 1994). 

 
Landau, L. D., and Lifshitz, E. M.  Quantum Mechanics (Non-relativistic Theory).  

Course of Theoretical Physics, Volume 3, 3rd Edition.  Pergamon Press (1977). 
 
Levine, I. N.  Quantum Chemistry, 5th Edition.  Prentice-Hall, Inc.  Upper Saddle River, 

New Jersey (2000).   
 
Lee, Y. S., Ermler, W. C., Pitzer, K. S.  “Ab Initio effective core potentials including 

relativistic effects.  I.  Formalism and applications to the Xe and Au atoms.”  
Journal of Chemical Physics, 67, 12:  5861-5876 (15 Dec 77). 

 
Lewis, W. B., Asprey, L. B., Jones, L. H., McDoweel, R. S., Rabideau, S. W., Paine, R. 

T., “Electronic and vibronic states of uranium hexafluoide in the gas and in the 
solid phase at very low temperatures.”  Journal of Chemical Physics, 65, 7:  
2707-1061 (1 Oct 76). 

 
Lischka, H, “The Columbus Quantum Chemistry Programs Home Page.” n. pag. 

http://www.itc.univie.ac.at/~hans/Columbus/columbus.html.  (1 December 2001). 
 
Lischka H., Shepard, R., Pitzer, R. M., Shavitt I., Dallos M., Müller Th., Szalay P. G., 

Seth M., Kedziora G. S., Yabushita S., and Zhang Z.  “High-level Multireference 
Methods in the Quantum-Chemistry Program System COLUMBUS:  Analytic 
MR-CISD and MR-AQCC Gradients and MR-AQCC-LRT for Excited States, 
GUGA Spin-orbit CI and Parallel CI Density.”  Physical Chemistry. Chemical 
Physics 3: 664-673 (18 December 2000). 

 
Lischka H., Shepard R., Shavitt I., Pitzer R. M., Dallos M., Müller Th., Szalay P. G., 

Brown F. B., Ahlrichs R., Böhm H. J., Chang A., Comeau D. C., Gdanitz R., 
Dachsel H., Ehrhardt C., Ernzerhof M., Höchtl P., Irle S., Kedziora G., Kovar T., 

 110



Parasuk V., Pepper M. J. M., Scharf P., Schiffer H., Schindler M., Schüler M., 
Seth M., Stahlberg E. A., Zhao J.-G, Yabushita S., and Zhang Z. “COLUMBUS, 
an ab initio electronic structure program”, release 5.8.1(2001). 

 
Liu, W., Kuchle, W., and Dolg, M.  "Ab Initio pseudopotential and density-functional all-

electron study of ionization and excitation energies of actinide atoms."  Physical 
Review A, 58, 2:  1103-1109, (1998). 

 
Loewenschuss, A., and Marcus, Yizhak.  “The Entropies of Polyatomic Gaseous Ions.”  

Chemical Reviews, 84, 2:  89-115 (April 1984). 
 
Majumdar, D., Balasubramanian, K., Nitsche, H.  “A comparative theoretical study of 

bonding in UO2
++, UO2

+, UO2, UO2
-, OUCO, O2U(CO)2, and UO2CO3.”  

Chemical Physics Letters, 361:  143-151 (24 July 2002). 
 
Malli, G., and Oreg, J.  “Relativistic self-consistent-field theory for molecules.”  Journal 

of Chemical Physics, 63, 2:  830-841 (15 Jul 75). 
 
Matsika, S., and Pitzer, R. M.  “Actinyl Ions in Cs2UO2Cl4.”  Journal of Physical 

Chemistry A, 105:  637-645 (2001). 
 
Matsika, S., Zhang, Z., Brozell, S. R., Blaudeau, J.-P., Wang, Q., and Pitzer, R. M.  

“Electronic Structure and Spectra of Actinyl Ions.”  Journal of Physical 
Chemistry A, 105:  3825-3828 (2001). 

 
Matsuoka, O., Suzuki, N., Aoyama, T., and Malli, G..  “Relativistic self-consistent field 

methods for molecules.  I.  Dirac-Fock multiconfiguration self-consistent field 
theory for molecules and a single-determinant Dirac-Fock self-consistent-field 
method for closed-shell linear molecules.”  Journal of Chemical Physics, 73, 3:  
1320-1328 (22 Apr 80). 

 
McQuarrie, D. A., Simon, J. D., Physical Chemistry:  A Molecular Approach.  Unveristy 

Science Books (1997). 
 
Meinrath, G.  "Uranium(VI) speciation by spectroscopy." Journal of Radioanalytical and 

Nuclear Chemistry, 224, 1-2:  119-126, (1997). 
 
Morozov, A. M., Morozova, L. G., Feofilov, P. P.  “Luminescence of Uranium in Single 

Crystals with Scheelite Structure.” Optics and Spectroscopy, 32:  50-54 (14 Apr 
71). 

 
Nagy, A.  “Density Functional Theory and Applications to Atoms and Molecules.”  

Physics Reports, 298, 1-79 (1998). 
 

 111



Nakajima, T., Yanai, T., and Hirao, K..  “Relativistic Electronic Structure Theory.”  
Journal of Computational Chemistry, 23:  847-860 (2002). 

 
“NWChem:  High Performance Computational Chemistry Software.”  n. pag. 

http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html (2002).   
 
Pacios, L. F., and Christiansen, P. A.  “Ab initio relativistic effective potentials with spin-

orbit operators.  I.  Li through Ar.”  Journal of Chemical Physics, 82, 6:  2664-
2671 (15 March 1985). 

 
Pepper, M., and Bursten, B. E.  “The Electronic Structure of Actinide-Containing 

Molecules:  A Challenge to Applied Quantum Chemistry.”  Chemical Reviews, 
91:  719-741 (1991). 

 
Perdew, J. P., and Wang, Y.  “Accurate and simple analytic representation of the 

electron-gas correlation energy.” Physical Review B, 45, 23: 13244-13249 (15 
June 1992). 

 
Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., 

and Fiolhais, C.  “Atoms, molecules, solids, and surfaces:  Applications of the 
generalized gradient approximation for exchange and correlation.”  Physical 
Review B, 46:  6671-6687 (1992). 

 
Perdew, J. P.  “Density-functional approximation for the correlation energy of the 

inhomogeneous electron gas.”  Physical Review B, 33, 12:  8822-8824 (15 June 
1986). 

 
Pyykkö, P.  n. pag.  Database “RTAM” (Relativistic Quantum Chemistry Database, 

1915-2002, http://www.csc.fi/rtam/ (2002). 
 
Pyykkö, P.  "Could uranium(XII) hexoxide, UO6 (Oh) exist?"  Chemical Physics Letters, 

328:  415-419, (2000). 
 
Pyykkö, P.  “Quasirelativistic Pseudopotential Study of Species Isoelectronic to Uranyl 

and the Equatorial Coordination of Uranyl.”  Journal of Physical Chemistry, 98:  
4809-4813 (1994). 

 
Pyykkö, P.  "The Large Range of Uranyl Bond Lengths:  Ab Initio Calculations on 

Simple Uranium-Oxygen Clusters."  Inorganic Chemistry, 30:  3787-3788 (1991). 
 
Pyykkö, P.  “Relativistic Effects in Structural Chemistry.”  Chemical Reviews, 88: 563-

594 (March 1988). 
 
Raghavachari, K., Anderson, J. B.  “Electron Correlation Effects in Molecules.”  Journal 

of Physical Chemistry, 100:  12960-12973 (1996). 

 112

http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html
http://www.csc.fi/rtam/


 
Ratner, M. A., and Schatz, G. C.  Introduction to Quantum Mechanics in Chemistry.  

Prentice Hall, Upper-Saddle River, NJ (2001). 
 
Reiher, M., and Heß B.  “Relativistic Electronic-Structure Calculations for Atoms and 

Molecules.”  Modern Methods and Algorithms of Quantum Chemistry, 
Proceedings, 2nd Edition.  John von Neumann Institute for Computing, Jülich, pp. 
479-505 (2000). 

 
Rianda, R., Frueholz, R. P., Kuppermann, A., “Electronic Spectroscopy of UF6 and WF6 

by electron impact.”  Journal of Chemical Physics, 70, 2:  1056-1061 (15 Jan 79). 
 
Saue, T., Faegri, K., Helgaker, T., Gropen, O.  “Principles of direct 4-component 

relativistic SCF:  application to caseium auride.”  Molecular Physics, 91, 5:  937-
950 (20 Feb 1997). 

 
Schmider, H. L., and Becke, A. D.  “Optimized density functionals from the extended G2 

test set.”  Journal of Chemical Physics, 108, 23, 9624-9631 (1998). 
 
Schreckenback, G., Hay, P. J., Martin, R. L.  “Theoretical Study of Stable Trans and Cis 

Isomers in [UO2(OH)4]2- Using Relativistic Density Functional Theory.”  
Inorganic Chemistry, 37:  4442-4451 (1998). 

 
Shepard R., Shavitt I., Pitzer R. M., Comeau D. C., Pepper M., Lischka H., Szalay P. G., 

Ahlrichs R., Brown F. B., and Zhao J.  “A Progress Report on the Status of the 
COLUMBUS MRCI Program System.”  International Journal of Quantum 
Chemistry, Quantum Chemistry Symposium, 22: 149 (1988).  

 
Starostin, N. V.  “Theory of Spectra of Uranate Compounds.”  Optics and Spectroscopy 

32: 820-822 (12 May 71). 
 
Stephans, S. G., Devlin, J. F., Chaboalowski, C. F., and Frisch, M. J.  “Ab Initio 

Calculations of Vibrational Absorption and Circular Dichroisn Spectra Using 
SCF, MP2, and Density Funcitonal Theory Force Fields.”  Journal of Chemical 
Physics, 98:  11623 (1994). 

 
Szabo, A., and Ostlund, N. S.  Modern Quantum Chemistry:  Introduction to Advanced 

Electronic Structure Theory.  Dover Publications, Inc.  Mineola, NY (1996). 
 
Toth, L. M., and Begun, G. M.  “Raman Spectra of Uranyl Ion and Its Hydrolysis 

Products in Aqueous HNO3.”  Journal of Physical Chemistry, 85:  547-549 
(1981). 

 

 113



Tsushima, S., Suzuki, A.  “Ab initio effective core potential study of equatorially 
coordinated uranyl species:  effect of hydration to the calculated properties.”  
Journal of Molecular Structure (Theochem), 487:  33-38 (1999). 

 
Tsushima, S., and Reich, T.  "A theoretical study of uranyl hydroxide monomeric and 

dimeric complexes."  Chemical Physics Letters, 347:  127-132, (2001). 
 
Wanner, H., and Forest, I (editors). Chemical Thermodynamics of Uranium.  Chemical 

Thermodynamics, Volume 1, pp 30-31, 85-98.  North-Holland Elsevier Science 
Publishers (1992). 

 
Van den Berge, S., Miserque, F., Gouder, T., Gaudreau, B., and Verwerft, M.  "X-ray 

photoelectron spectroscopy on uranium oxides:  a comparison between bulk and 
thin layers."  Journal of Nuclear Materials, 294:  168-174, (2001). 

 
Veal, B. W., Lam, D. J., Diamond, H., and Hoekstra, H. R.  “X-ray photoelectron-

spectroscopy study of oxides of the transuranium elements Np, Pu, Am, Cm, Bk, 
and Cf.”  Physical Review B, 15, 6:  2929-2941 (15 March 1977). 

 
Veal, B. W., Lam, D. J., Carnall, W. T., Hoekstra, H. R.  “X-ray photoemission 

spectroscopy study of hexavalent uranium compounds.”  Physical Review B, 12, 
12:  5651-5663 (15 December 1975). 

 
Yabushita, S., Zhang, Z., and Pitzer, R. M.  “Spin-Orbit Configuration Interaction Using 

the Graphical Unitary Group Approach and Relativistic Core Potential and Spin-
Orbit Operators.”  Journal of Physical Chemistry, 103:  5791-5800 (1999). 

 
Zhang, Z., and Pitzer, R. M.  “Application of Relativistic Quantum Chemistry to the 

Electronic Energy Levels of the Uranyl Ion.”  Journal of Physical Chemistry A, 
103:   6880-6886 (1999). 

 

 114



 

Vita 

 
 
 

Captain Eric V. Beck graduated from Carson City High School in Carson City, 

Nevada in 1989.  He completed a Bachelor of Science degree with a dual major in 

physics and mathematics at the University of Nevada, Reno in May 1993.   

Captain Beck joined the United States Air Force in May of 1995, and was 

commissioned in August 1995 at Officer Training School, Maxwell Air Force Base 

(AFB), Alabama.  His first assignment was at the Air Force Research Laboratory, Space 

Vehicles Directorate in the Astrodynamics branch, Kirtland AFB, lasting from October 

1995 through April 1998.  While stationed at Kirtland AFB, Captain Beck co-authored 

the Orbit Analysis Software Survey.  He also assisted data acquisition and analysis for 

high-accuracy orbit determination using angles-only data obtained from the low-cost 

RAVEN telescope.  In addition, he functioned as the laboratory’s representative to 

NASA Lewis Research Center’s Breakthrough Propulsion Physics Steering Group. 

Following his assignment at Kirtland AFB, Capt Beck was assigned to the Air 

Force Information Warfare Center (AFIWC) at Lackland AFB, Texas.  While stationed at 

AFIWC, Capt Beck served as a project engineer in Radio Frequency Measurements 

branch of the Systems and Analysis directorate.  Here, he worked on test and 

measurement of local San Antonio radio and television signals, the MC-130H AN/APQ-

170 multimode radar, and the C-130J AN/APN-241 multimode radar.  Following this 

duty, Capt Beck moved to the Radar and Communications Analysis Flight of the 453rd 

 115



Electronic Warfare Squadron (still at AFIWC), where he contributed to the Air War Over 

Serbia (AWOS) Radar Warning Receiver (RWR) effectiveness after-action report and C-

17 collision avoidance system upgrade vulnerability analysis. 

In August 2002, he entered the Graduate School of Engineering and Management, 

Air Force Institute of Technology in order to pursue a M.S. degree in nuclear physics.  

Upon graduation, he will begin a Ph.D. program in applied physics. 

 

 116



 
REPORT DOCUMENTATION PAGE 

Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

03-10-2003 
2. REPORT TYPE  

Master’s Thesis 
     

3. DATES COVERED (From – To) 
Aug 2002 – Mar 2003 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
DE-A107-021D14328 

4.  TITLE AND SUBTITLE 
 
THEORETICAL COMPARISON OF THE EXCITED ELECTRONIC STATES OF 
THE URANYL AND URANATE IONS  
  
 5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Beck, Eric V., Captain, USAF 
 
 
 5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GNE/ENP/03-01 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Dr. Charles Brennan                                         Dr. Kathy McCarthy  
AFTAC/TMNE                                                INEEL 
1030 South Highway A1A                               PO Box 1625 
Patrick AFB, FL  32925-3002                         Idaho Falls, ID  83415-2208 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  
This thesis examines the ground and excited electronic states of the uranyl (UO2

2+) and uranate (UO4
-2) ions using Hartree-Fock self-consistent field 

(HF SCF), multi-configuration self-consistent field (MCSCF), and multi-reference single and double excitation configuration interaction (MR-
CISD) methods.  The MR-CISD calculation included spin-orbit operators.  Molecular geometries were obtained from self-consistent field (SCF), 
second-order perturbation theory (MP2), and density functional theory (DFT) geometry optimizations using the NWChem 4.01 massively parallel 
ab initio software package.  COLUMBUS version 5.8 was used to perform in-depth analysis on the HF SCF, MCSCF, and MR-CISD potential 
energy surfaces.  Excited state calculations for the uranyl ion were performed using both a large- and small-core relativistic effective core potential 
(RECP) in order to calibrate the method.  This calibration included comparison to previous theoretical and experimental work on the uranyl ion.  
Uranate excited states were performed using the small-core RECP as well as the methodology developed using the uranyl ion. 
  
15. SUBJECT TERMS 
      Relativistic Quantum Mechanics, Actinides, Uranium Oxide, Electronic Spectroscopy, Uranyl, Quantum Chemistry 

16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 
Eric V. Beck, Capt, USAF (ENP) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

129 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 6347; e-mail:  eric.beck@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 

 1


	Acknowledgments
	List of Figures
	List of Tables
	Abstract
	I.  Introduction
	II.  Theory
	Relativistic Effects in Chemistry
	The Dirac Equation
	Relativistic Many-Electron Hamiltonians
	Dirac Hartree-Fock Theory
	Relativistic Effective Core Potentials
	Electron Correlation Models
	Summary

	III.  Resources and Methodology
	Hardware Resources
	Software Resources
	Geometry Optimizations
	Overview of COLUMBUS Calculations
	COLUMBUS Calculations on Uranyl (UO22+)
	COLUMBUS Calculations on Uranate (UO42-)

	IV.  Results and Discussion
	Uranyl Geometry Optimization Results
	Large-core Uranyl (UO22+) Results
	Small-core Uranyl (UO22+) Results
	Small-core Uranate (UO42-) Results

	V.  Conclusions and Recommendations
	Appendix A:  Symmetry Considerations for the Linear Uranyl Ion
	Appendix B:  Symmetry Considerations of the Tetrahedral Uranate Ion
	Appendix C:  State Assignments Using MR-CISD Wave Functions
	Uranyl MR-CISD State Assignment
	Uranate MR-CISD State Assignment

	List of Abbreviations
	Bibliography
	Vita

