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Preface 

This report explains and derives the fundamentals of frequency-hopping 
communication systems. The level of presentation is suitable for those with a 
solid background in the theory of digital communications. Throughout the report, 
there are many streamlined derivations, new derivations, and simplications of the 
classical theory. Section 1 provides the basic definitions, concepts, and rationale 
of frequency hopping. Section 2 presents an overview and comparison of direct, 
digital, and indirect frequency synthesizere. Section 3,4, and 5 concentrate on a 
comparison of the modulations that might be used in a frequency-hopping 
system. Both spectral characteristics and the influence on system performance 
are examined. The effectiveness of Reed-Solomon codes, trellis-coded 
modulation, and turbo codes in suppressing partial-band interference is analyzed 
in Section 6. Section 7 treats frequency-hopping code-division multiple-access 
(CDMA) for both peer-to-peer and cellular systems. The advantages of 
frequency hopping in network applications and the effects of spatial divereity, 
spectral splatter, and the number of equivalent frequency channels are explained. 
Section 8 considers issues in the synchronization of frequency-hopping patterns. 
The comparison and combination of frequency-hopping and direct-sequence 
systems are discussed in Section 9. Section 10 examines the detection of 
frequency-hopping signals with an emphasis on the use of radiometers. Because 
of the essential role of error- correcting codes in frequency-hopping 
communication systems, some of the fundamental results of coding theory are 
presented in Appendix A and used to derive the appropriate receiver 
computations and the error probabilities at receiver outputs. Appendix B 
provides derivations of the signal representations used throughout the main text. 
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1.   Definitions and Concepts 

A spread-spectrum signal is a signal that has an extra modulation in addition to 
the data modulation so that its bandwidth is much wider than is required by the 
underlying data-modulated signal. Spread-spectrum communication systems are 
useful for suppressing interference, making interception difficult, 
accommodating fading and multipath channels, and providing a multiple-access 
capability. The most practical and dominant methods of spread-spectrum 
communications are direct-sequence modulation and frequency hopping of 
digital communications. 

Frequency hopping is the periodic changing of the carrier frequency of a 
transmitted signal. The sequence of carrier frequencies is called the fi-equency- 
hopping pattern. The set of M possible carrier frequencies {/i, /as... , /M} is 
called the hopset. Hopping occurs over a frequency band called the hopping band 
that includes M frequency channels. Each frequency channel is defined as a 
spectral region that includes a single carrier frequency of the hopset as its center 
frequency and has a bandwidth B large enough to include most of the power in a 
signal pulse with the carrier frequency. Figure 1 illustrates the frequency 
channels associated with a particular frequency-hopping pattern. The time 
interval between hops is called the hop interval, and its duration is called the hop 
duration or the hopping period and is denoted by T/,. The hopping band has 
bandwidth W > MB. 

Figure 1. Frequency-hopping pattems. 



Figure 2 depicts the general form of a frequency-hopping system. The frequency 
synthesizers produce frequency-hopping patterns determined by the time-varying 
multilevel sequence specified by the output bits of the code generators. In the 
transmitter, the data-modulated signal is mixed with the synthesizer output 
pattern to produce the frequency-hopping signal. If the data modulation is some 
form of angle modulation ^{t), then the received signal for the ith hop is 

s{t) = \/25cos [2TTfjt + (t){t) + 0i] ,    (z - l)Th <t<iTh        (1-1) 

w^here S is the average power, fj is the carrier frequency for this hop, and 0j is a 
random phase angle for the ith hop. The frequency-hopping pattern produced by 
the receiver synthesizer is synchronized with the pattern produced by the 
transmitter, but is offset by a fixed intermediate frequency, which may be zero. 
The mixing operation removes the frequency-hopping pattern from the received 
signal. The mixer output is applied to a bandpass filter that excludes double- 
frequency components and power that originated outside the appropriate 
frequency channel and produces the data-modulated dehopped signal, which has 
the form of (1-1) with fj replaced by the intermediate frequency. 
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Figure 2. General form of frequency-hopping system: (a) transmitter and (b) receiver. 

Although it provides no advantage against white noise, frequency hopping 
enables signals to hop out of frequency channels with interference or slow 
frequency-selective fading. To fully exploit this capability against narrowband 
interference signals, disjoint frequency channels are necessary. The disjoint 
channels may be contiguous or have unused spectral regions between them. 



Some spectral regions with steady interference or a susceptibility to fading may 
be omitted from the hopset, a process called spectral notching. Multiple 
frequency-shift keying (MFSK) dififers fundamentally from frequency hopping in 
that all the MFSK subchannels affect each receiver decision. No escape from or 
avoidance of a subchannel with interference is possible. 

To ensure the secrecy and unpredictability of the frequency-hopping pattern, the 
pattern should be a pseudorandom sequence of frequencies with a large period 
and a uniform distribution over the frequency channels, and should be generated 
by a multilevel sequence with a large linear span. The large period prevents the 
capture and storage of a period of the pattern by an opponent. The linear span of 
a multilevel sequence is the smallest degree of any linear recursion that the 
sequence satisfies. A large linear span inhibits the reconstruction of the pattern 
from a short segment of it. The set of output bits produced by the code generator 
usually constitutes a symbol drawn from a finite field with the necessary 
properties. A frequency-hopping pattern is obtained by associating a distinct 
frequency with each symbol. A number of methods have been found to ensure a 
large linear span [1], [2]. 

An architecture that enhances the security of synthesizer control is shown in 
Figure 3. The specific algorithm for generating the control bits is determined by 
the key and the time-of-day (TOD). The key is a set of bits that are changed 
infrequently and must be kept secret. The TOD is a set of bits that are derived 
from the stages of the TOD counter and change with every transition of the TOD 
clock. For example, the key might change daily while the TOD might change 
every second. The purpose of the TOD is to vary the generator algorithm without 

Key 
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Code 
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synthesizer 
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 • 

Code 
generator 
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Figure 3. Secure method of synthesizer control. 



constantly changing the key. In effect, the generator algorithm is controlled by a 
time-varying key. The code clock, which regulates the changes of state in the 
code generator and thereby controls the hopping rate, operates at a much higher 
rate than the TOD clock. In a receiver, the code clock is produced by the 
synchronization system. In both the transmitter and the receiver, the TOD clock 
may be derived from the code clock. 

A frequency-hopping pulse with a fixed carrier frequency occurs during a portion 
of the hop interval called the dwell interval. As illustrated in Figure 4, the dwell 
time is the duration of the dwell interval during which the channel symbols are 
transmitted. The hop duration Th is equal to the sum of the dwell time T^ and the 
switching time Tsw The switching time is equal to the dead time, which is the 
duration of the interval when no signal is present, plus the rise and fall times of a 
pulse. Even if the switching time is absent in the transmitted signal, it will be 
present in the dehopped signal in the receiver because of the imperfect 
synchronization of received and receiver-generated waveforms. The nonzero 
switching time, which may include an intentional guard time, decreases the 
transmitted symbol duration Tg. If Tso is the symbol duration in the absence of 
frequency hopping, then Ts = TaoiTd/Th). The reduction in symbol duration 
expands the transmitted spectrum and thereby reduces the number of frequency 
channels within a fixed hopping band. Since the receiver filtering will ensure that 
rise and fall times of pulses have durations on the order of a symbol duration, 
Tau, > Ts in practical systems. 

i^— Dwell time •-] 

\_yi      iw 
1   1                1   1 
!   _jRise|                          [Fallj  
L    .Itimel                                   time[ 

—.-{Deadh*—                                              1 
j time'                                                     j 

Figure 4. Time durations of a frequency-hopping pulse. 



2.   Frequency Synthesizers 

h frequency synthesizer [3], [4], [5], [6] in a frequency-hopping system converts 
a stable reference frequency into the various frequencies of the hopset. The 
reference signal, which is a tone at the reference frequency, is usually the output 
of a frequency divider or multipher fed by a stable frequency source, such as an 
atomic or crystal oscillator. The use of a single reference signal ensures that any 
output frequency of the synthesizer has the same stability and accuracy as the 
reference. The three fundamental types of frequency synthesizers are the direct, 
digital, and indirect synthesizers. Most practical synthesizers are hybrids of these 
fiindamental types. 

2.1   Direct Frequency Synthesizer 

A direct frequency synthesizer uses frequency multipliere and dividers, mixers, 
bandpass filters, and electronic switches to produce output signals at the desired 
frequencies. Among the many methods of direct synthesis, the standard approach 
is the double-mix-divide technique illustrated in Figure 5. The reference signal at 
frequency fr is mixed with a tone at the fixed frequency /«. The bandpass filter 
selects the sum frequency fr + fa produced by the mixer. Another mixing and 
filtering operation with a tone at /& + /i produces the frequency fr + /«+ 
/ft + /i. If the fixed frequencies /„ and /^ are chosen so that 

fa + fb = 9fr (2-1) 

then the divider produces the output frequency fr + /i/lO. In principle, a single 
mixer and bandpass filter could produce this output frequency, but two mixers 
and bandpass filters simplify the filters. Each bandpass filter must select the sum 
frequency while suppressing the difference frequency and the mixer input 
frequencies, which may enter the filter because of mixer leakage. If the sum 
frequency is too close to one of these other frequencies, the bandpass filter 
becomes prohibitively complex and expensive. 

fr 

fa 

BPF 

t 
> BPF 

10/,. + /, 
*10 

/r+/l/W 

fb+fl 

Figure 5. Double-mix-divide module, where BPF = bandp^s filter. 



The double-mix-divide (DMD) system of Figure 5 can be used as a module in a 
direct frequency synthesizer that can achieve arbitrary frequency resolution by 
cascading enough DMD modules. A synthesizer that provides two-digit 
resolution is shown in Figure 6. When the synthesizer is used in a frequency- 
hopping system, the control bits are produced by the code generator. Each decade 
switch passes a single tone to a DMD module. The ten tones that are available to 
the decade switches may be produced by applying the reference frequency to 
appropriate frequency multipliers and dividers in the tone generator. Equation 
(2-1) ensures that the output frequency of the second bandpass filter in DMD 
module 2 is 10/^ -I- /2 + /i/lO. Thus, the final synthesizer output frequency is 
fr + /2/IO +/1/IOO. 
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Figure 6. Direct frequency synthesizer with two-digit resolution. 

Example 1. It is desired to produce a 1.79 MHz tone. Let /r = 1 MHz and /(, = 
5 MHz. The ten tones provided to the decade switches are 5, 6, 7,..., 14 MHz 
so that /i and /2 can range from 0 to 9 MHz. Equation (2-1) yields /a = 4 MHz. 
If f 1 = 1 MHz and /2 = 9 MHz, then the output frequency is 1.79 MHz. The 
frequencies fa and /;, are such that the designs of the bandpass filters inside the 
modules are reasonably simple. □ 

Direct frequency synthesizers provide both very fine resolution and high 
frequencies, but often require a very large amount of hardware. They do not 
provide a phase-continuous output after frequency switching. 

2.2   Digital Frequency Synthesizer 

A digital fi-equency synthesizer converts the stored sample values of a sine wave 
into an analog sine wave with a specified frequency. The periodic and symmetric 
character of a sine wave implies that only values for the first quadrant need to be 
stored. The basic elements of a digital frequency synthesizer are shown in 



Figure 7. The frequency data, which is produced by the code generator in a 
frequency- hopping system, comprises a set of bits that determine the 
synthesized frequency by specifying a phase increment S. The accumulator 
converts the phase increment into successive samples of the phase by adding the 
increment to the content of an internal register after every cycle of the reference 
signal. A phase sample 0 ^nS,n = 0,1,..., defines an address in the read-only 
memory (ROM) at which the value sin 0 is stored. This value is applied to a 
digital-to-analog converter (DAC), which performs a sample-and-hold operation. 
The converter output is filtered to produce the desired analog signal. 
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Figure 7. (a) Digital frequency synthesizer and (b) sample values of sin 6 over one period. 

Let JV denote the numerical capacity of the accumulator, which determines the 
maximum number of ROM addresses that the phase accumulator can specify. 
One sample value of sin 0 is read out after every cycle of the reference signal. If 
N sample values are read out during each period of sin 9, then the frequency of 
the analog signal produced is 

N 
(2-2) 

where fr is the frequency of the reference signal. The output frequency /ofe is 
produced when eveiy Ath stored sample value is read out at the reference rate. 
Thus, if the phase accumulator increments by k after every cycle of the reference 
signal, then 

fok = kA (2-3) 

which implies that A is the frequency resolution and the minimum frequency that 
can be generated by the synthesizer. 



The maximum frequency /„, that can be generated is produced by using only a 
few samples of sin 0 per period. From the Nyquist sampling theorem, it is known 
that fm < frf^ is required to avoid aliasing. Practical DAC and lowpass filter 
requirements further limit /„, to approximately 0.4 /^ or less. Thus, q > 2.5 
samples of sin 6 per period are used in synthesizing /„„ and 

f.r = - (2-4) 
Q 

The lowpass filter may be implemented with a linear phase across a flat passband 
extending to approximately /„,. The frequencies fr and /„, are limited by the 
speed of the digital-to-analog converter. 

Let u denote the number of bits in the accumulator register. The numerical 
capacity of the accumulator is A'^ = 2". Suppose that fmm and /max are specified 
minimum and maximum frequencies that must be produced by a synthesizer. 
Equations (2-2) and (2-3) imply that /min > fr/N and /max < fr/Q- Therefore, 
Q'/max//min < N = 2" and the required number of accumulator bits is 

U =  Llog2(9/niax//min)J + 1 (2-5) 

where [x\ denotes the largest integer in x. 

Suppose that 2" distinct n-bit words are stored in the ROM. Each word represents 
one possible value of sin 9 in the first quadrant or, equivalently, one possible 
magnitude of sin 6. The input to the ROM comprises n + 2 parallel bits. The two 
most significant bits are the sign bit and the quadrant bit. The sign bit specifies 
the polarity of sin 6. The quadrant bit specifies whether sin 6 is in the first or 
second quadrants or in the third or fourth quadrants. The n least significant bits 
of the input determine the address in which the value of sin 6 is stored when 0 is 
in the first or third quadrants. The address specified by the n least significant bits 
is appropriately modified by the quadrant bit when 9 is in the second or fourth 
quadrants. The sign bit becomes one of the n + l ROM output bits. Since the 
phase accumulator uses u >n + 2 bits, and n + 2 bits are needed by the ROM, 
the z/ — n — 2 least significant bits of the accumulator output are not applied to 
the ROM. The memory requirements of a ROM and the number of its input bits 
can be reduced by using trigonometric identities and hardware multipliers. 

Since n ROM output bits specify the magnitude of sin 9, the quantization error 
produces the worst-case noise power 

Eg = (2-")2 = -6n dB ,    (2-6) 

in the digital-to-analog converter output. The magnitude of Eg is called the 
spectral purity of the synthesizer. 

Example 2. It is desired to design a digital synthesizer to cover 1 Hz to 1 MHz 
with a spectral purity greater than 45 dB. According to (2-6), the use of 8-bit 
words in the ROM is adequate for the required spectral purity. If 2.5 <q< 4, 



then since fmax/fmm = 10^, (2-5) yields i/ = 22. Thus, a 22-bit phase 
accumulator is needed, and N = 2^^. The ROM contains 2* = 256 distinct words, 
and requires n + 2 = 10 input bits. If the frequency resolution and smallest 
frequency is to be A < 1 Hz, then (2-2) indicates that fr < N Hz is required so 
that /r = 4 MHz is satisfactory. When the frequency A is desired, the phase 
increments are so small that 2^^/2^'* = 2^^ increments occur before a new address 
is specified and a new value of sin 0 is produced. Thus, the 12 least-significant 
bits in the accumulator are not used in the addressing of the ROM.D 

The direct digital synthesizer can be easily modified to produce a modulated 
output when high-speed digital data is available. For amplitude modulation, the 
ROM output is applied to a multiplier. Phase modulation may be implemented by 
adding the appropriate bits to the phase accumulator output. Frequency 
modulation entails a modification of the accumulator input bits. For a quatemaiy 
modulation, separate sine and cosine ROMs may be used. 

The advantages of the digital frequency synthesizer are its ability to produce 
nearly instantaneous, phase-continuous switching and a very fine frequency 
resolution and its relatively small size, weight, and power requirements. A 
disadvantage is the limited maximum frequency, which restricts the bandwidth of 
the covered frequencies following a frequency translation of the synthesizer 
output. For this reason, digital frequency synthesizers are often used as 
components in hybrid synthesizers. Another disadvantage is the stringent 
requirement for the lowpass filter to suppress frequency spure generated during 
changes in the synthesized frequency. 

2.3   Indirect Frequency Synthesizer 

An indirect frequency synthesizer uses voltage-controlled oscillators and 
feedback loops. The principal components of a single-loop indkect synthesizer, 
which is similar in operation to a phase-locked loop, are depicted in Figure 8. The 
confrol bits, which determine the value of the modulus or divisor N, are supplied 
by a code generator. The input signal at frequency /i may be provided by another 
synthesizer. Since the feedback loop forces the frequency of the divider output, 
(/o — fi)/N, to closely approximate the reference frequency, fr, the output of the 
voltage-confroUed oscillator (VCO) is a sine wave with frequency 

fo = Nfr + fi (2-7) 

where JV is a positive integer. Indirect synthesizers usually require less hardware 
than comparable direct ones, but require more time to switch from one frequency 
to another. Like digital synthesizers, indirect synthesizers inherently produce 
phase-continuous outputs after frequency switching. 
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Figure 8. Indirect frequency synthesizer with single loop. 

Since the output frequencies change in increments of fr, the frequency resolution 
of the single-loop synthesizer is fr. For stable operation and the suppression of 
sidebands that are offset from /o by fr, it is desirable that the loop bandwidth be 
on the order of 0.1 fr. The switching time ts for changing frequencies, which is 
inversely proportional to the loop bandwidth, is roughly approximated by 

25 

fr 
(2-8) 

This equation indicates that a low resolution and a low switching time may not 
be achievable by a single loop. The switching time ts is less than or equal to Tsy, 
defined previously for frequency-hopping pulses, which may have additional 
guard time inserted. 

Phase detectors in frequency-hopping synthesizers are usually digital devices 
that measure zero-crossing times rather than the phase differences measured 
when mixers are used. Digital phase detectors have an extended linear range, are 
less sensitive to input-level variations, and simplify the interface with a digital 
divider. 

A divider is a binary counter that produces a square-wave output. The divider 
counts down by one unit every time its input crosses zero. If the modulus or 
divisor is the positive integer A'", then after A'^ zero crossings, the divider output 
crosses zero and changes state. The divider then resumes counting down from N. 
Programmable dividers have limited operating speeds. Consequently, a divider 
may not be able to accommodate a high-frequency VCO output. This problem is 
solved by the down-conversion of the VCO output by the mixer shown in Figure 
8, but spurious components are introduced by the mixer. Fixed dividers can 
operate at much higher speeds than programmable dividers. Therefore, one might 

10 



consider placing a fixed divider before the programmable divider in the feedback 
loop. However, if the fixed divider has a modulus Nu then the loop resolution 
becomes Nif^ so this solution is usually unsatisfactory. 

A dual-modulus divider, which is depicted in Figure 9, allows synthesizer 
operation at high frequencies while maintaining the frequency resolution equal to 
fr. The dual prescalar consists of two fixed dividers with divisors equal to the 
positive integers P and P + Q. The two programmable dividers count down from 
the integere ^4 and B, where B > A and A is nonnegative. These dividere are 
only required to accommodate a frequency much lower than the frequency /j„ at 
the input of the dual prescalar. The dual prescalar initially divides by the 
modulus P + Q. This modulus changes whenever a programmable divider 
reaches zero. After (P + Q)A input transitions, divider 1 reaches zero, and the 
modulus control causes the dual prescalar to divide by P. Divider 2 has counted 
down to B — A. After P{B — A) more input transitions, divider 2 reaches zero 
and causes an output transition. The two fixed dividers are then reset, and the 
dual prescalar reverts to division by P + Q. Thus, each output transition 
corresponds to A{P + Q) + P{B - A) = AQ + PB input transitions, which 
imphes that the dual-modulus divider has a modulus 

N = AQ + PB,    B>A (2-9) 

and produces the output frequency fm/N. If Q = 1 and P = 10, then the dual- 
modulus divider is called a 10/11 divider, and 

N = 10B + A,    B>A 

which can be incremented in unit steps by changing A in unit steps. 

(2-10) 

Dual prescalar 

/in 
+ (P + Q) 

Modulus 
control 

Divider 1 
-A 

—7T— 

r\. 
Reset 

Divider 2 

—T^— 

/in 
N 

Control bits 

Figure 9. I>ual-modulus divider. 

Example 3. A frequency-hopping system requires a hopset that covers the VHP 
band, 30 to 88 MHz, in 25 kHz increments. By taking fr = 25 kHz, we obtain the 
desired increment, which is equal to the frequency resolution. Equation (2-8) 
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indicates that ts = 1 ms. Equations (2-7) and (2-10) indicate that the band is 
covered by a 10/11 divider if A ranges from A,nin to ^max, B ranges from Bmir 

to Bmax, and 

/i + (10B„i„ + A„,in)(25 • 10^) < 30 • 10 

/i + (10B„,ax + A^ax)(25 • 10") > 88 • 10 

subject to 

If we take Aaim = 0, ^max = 9, and Bmm = 10, then /i < 27.5 MHz and B^ax > 
(351.1 - 4/i) MHz are required. Suitable choices might be /i = 27 MHz and 
■Bmax = 244. Thus, A ranges from 0 to 9 while B ranges from 10 to 244. Dividers 
A and B require 4 and 8 control bits, respectively. If the control bits are stored in 
a ROM, then each ROM location contains 12 bits. The number of ROM 
addresses is at least 2321, the number of frequencies in the hopset. Thus, a ROM 
input address requires 12 bits.D 

To decrease the switching time while maintaining the frequency resolution of a 
single loop, a coarse steering signal can be stored in a ROM, converted into 
analog form by a digital-to-analog converter (DAC), and applied to the VCO (as 
shown in Figure 8) immediately after a frequency change. The steering signal 
reduces the frequency step that must be acquired by the loop when a hop occurs. 
An alternative approach is to place a fixed divider with modulus M after the loop 
so that the output frequency is /o = Nfr/M + fi/M. By this means, fr can be 
increased without sacrificing resolution provided that the VCO output frequency, 
which equals M/o, is not too large for the divider in the feedback loop. 

The switching time can be dramatically reduced by using multiple loops or 
synthesizers that alternately produce the output frequency. When two 
synthesizers are used, one synthesizer produces the output frequency while the 
second one is being tuned to the next frequency following a command from the 
code generator. If the hop duration exceeds the switching time of each 
synthesizer, then the second synthesizer begins producing the next frequency 
before a control switch routes its output to a hopping or dehopping mixer. 

A multiple-loop fi'equency synthesizer uses two or more single-loop synthesizers 
to obtain both fine frequency resolution and fast switching. A three-loop 
frequency synthesizer is shown in Figure 10. Loops A and B have the form of 
Figure 8, but loop A does not have a mixer and filter in its feedback. Loop C has 
the mixer and filter, but lacks the divider. The reference frequency fr is chosen to 
ensure that the desired switching time is realized. If A> M, then loop C does 
not appreciably degrade the switching time. The divisor M is chosen so that 
fr/M is equal to the desired resolution. Loop A and the divider generate 
increments of fr/M while loop B generates increments of fr. Loop C combines 
the outputs of loops A and B to produce the output frequency 
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Figure 10. Indirect frequency synthesizer with three loops. 

/r fo = Bfr + A^ + f, (2-11) 

where B, A, and M are positive integers because they are produced by dividers. 
Loop C is preferable to a mixer and bandpass filter because the filter would have 
to suppress a closely spaced, unwanted component when Afr/M and Bfr were 
far apart. To ensure that each output frequency is produced by unique values of A 
and B, it is required that 

^max = ^min + M - 1 (2-12) 

According to (2-11), a range of frequencies from /mm to /^ax is covered if 

/r 
Bjmnfr + ^minTJ + /l < /min (2-13) 

^max Jr + -Amax , , + /l ^ /max 

To prevent degradation in the switching time, it is required that 

(2-14) 

>M (2-15) 

Example 4. A hopset must cover 30 to 88 MHz in 25 kHz increments with a t^ = 
50 ^s. The single-loop synthesizer of Example 3 cannot provide this short 
switching time. The required switching time is provided by a three-loop 
synthesizer with /^ = 5(X) kHz. The resolution of 25 kHz is achieved by taking 
M = 20. To satisfy (2-15), let ^min = 21. Equation (2-12) then yields A^ax = 40. 
Inequalities (2-13) and (2-14) are satisfied if /i = 28 MHz, Bmin = 1, and 
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^max = 118. The maximum frequencies that must be accommodated by the 
dividers in loops A and B are 20 MHz and 59 MHz, respectively. Dividers A and 
B require 6 and 7 control bits, respectively.□ 

Afractional-N synthesizer uses a single loop and extensive auxiliary hardware to 
produce an output frequency given by 

^° = r + MK- ' 0,1,.-- ,M-1 (2-16) 

where A^i and M are positive integers. Although the switching time is inversely 
proportional to fr as usual, the resolution is fr/M, which can be made arbitrarily 
small in principle. The synthesis method alters the loop feedback by dividing the 
output frequency by TVi + 1 every M/i output cycles but dividing by A^i the rest 
of the time. The effective divisor is then A^ — Ni + i/M. The implementation 
entails adding the number i/M to the content of an accumulator every output 
cycle. Each time the content exceeds unity, a carry bit is generated that causes 
division by A^i + 1 instead of A^i. For example, if /^ = 1 MHz and it is desired to 
generate /o = 9.15 MHz, then A^i = 9 and i/M = 0.15 is added to the content of 
an accumulator every output cycle. The output frequency is divided by A^i + 1 = 
10 every M/i = 1/0.15 = 6.67 output cycles on the average. 

The main elements of a fractional-A?^ synthesizer are shown in Figure 11. The 
cycle swallower is a device that blocks one of the VCO output cycles in response 
to a carry bit from the accumulator. For the VCO to produce a stable output 
frequency, its input must be approximately a direct-current signal. However, for 
every reference cycle, the VCO output undergoes A'^ cycles, and the divider 
output undergoes N/Ni = 1 + i/NiM cycles. Therefore, the relative phase 
between the two phase-detector inputs increases by Ini/NiM radians per 
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Figure 11. Fractional-A^^ frequency synthesizer. 
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reference cycle, and the phase-detector output increases at the same rate. This 
unwanted variation in the phase-detector output is canceled by the amplifier 
output. Since the accumulator output increases by i/M every reference cycle, a 
programmable amplifier with a grain of l-n/Ni yields the output needed for 
cancellation. The main disadvantage of the fractional-iV synthesizer relative to 
the other synthesizers of comparable performance is its production of relatively 
high-level spurious signals that frequency-modulate its output signal. 

Example 5. A hopset must cover 30 to 88 MHz in 25 kHz increments with tg = 
50 /iS. If the output of the fractional-iV synthesizer is frequency-translated by 
25 MHz, then the synthesizer itself needs to cover 5 MHz to 63 MHz. The 
switching time is achieved by taking /^ = 500 kHz. The resolution is achieved by 
taking M = 20. Equation (2-16) indicates that the required frequencies are 
covered by varying Ni from 10 to 126 and i from 0 to 19. The accumulator 
increases its content by i/M = i/20 every reference cycle. The integers Ni and i 
require 7 and 5 control bits, respectively, D 
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3.    Characteristics of Frequency-Hopping Systems 

Frequency hopping may be classified as fast or slow. Fast frequency hopping 
occurs if there is more than one hop for each information symbol. Slow frequency 
hopping occurs if one or more information symbols are transmitted in the time 
interval between frequency hops. Although these definitions do not refer to the 
hopping rate, fast frequency hopping is an option only if a hopping rate that 
exceeds the information-symbol rate can be implemented. Slow frequency 
hopping is usually preferable because the transmitted waveform is much more 
spectrally compact (cf. Table 1, Section 5) and the overhead cost of the switching 
time is reduced. 

Let M denote the hopset size, B denote the bandwidth of frequency channels, 
and Fs denote the minimum separation between adjacent carriers in a hopset. For 
full protection against stationary narrowband interference and jamming, it is 
desirable that Fs>B so that the frequency channels are nearly spectrally 
disjoint. A hop then enables the transmitted signal to escape the interference in a 
frequency channel. 

To obtain the full advantage of block or convolutional error-correcting codes in a 
slow frequency-hopping system, it is important to interleave the code symbols in 
such a way that the symbol errors in a codeword or constraint length are 
independent (for hard-decision decoding) or that the symbols are degraded 
independently (for soft-decision decoding). In frequency-hopping systems 
operating over a frequency-selective fading channel, the realization of this 
independence requires certain constraints among the system parameter values. 
Symbol errors are independent if the fading is independent in each frequency 
channel and each symbol is transmitted in a different frequency channel. If each 
of the interleaved code symbols is transmitted at the same location in each hop 
dwell time, then adjacent symbols are separated by Th after the interleaving. 
Thus, a sufficient condition for nearly independent symbol errors is 

Th > Teoh (3-1) 

where Tcoh is the coherence time of the fading channel. Another sufficient 
condition for nearly independent symbol errors is 

Fs > Bcoh (3-2) 

where Bcoh is the coherence bandwidth of the fading channel. For practical 
mobile communication networks with hopping rates exceeding 100 hops/s, (3-1) 
is rarely satisfied. For a hopping band with bandwidth W and a hopset with a 
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uniform carrier separation, Fs = W/M > B. Thus, (3-2) implies that the number 
of frequency channels is constrained by 

W 
M < ,„ ^    . (3-3) 

max(B, Bcoh) 

if nearly independent symbol errors are to be ensured. If (3-3) is not satisfied, 
there will be a performance loss due to the correlated symbol errors. If 
B < Bcoh, equalization will not be necessary because the channel transfer 
function is nearly flat over each frequency channel. If B > Bcoh, either 
equalization may be used to prevent intersymbol interference or a multicarrier 
modulation may be combined with the frequency hopping. 

Let li denote the length of a block codeword or the constraint length of a 
convolutional code. Let Tdei denote the maximum tolerable processing delay. 
Since the delay caused by coding and ideal interleaving over n hops is 
(n — l)Th + Tg and n distinct frequencies are desired, 

n<mm(MA + ^^^f^) (3-4) 

is required. If this inequality is not satisfied, then nonideal interleaving is 
necessary, and some performance degradation results. 

It is difficult to maintain phase coherence from hop to hop between frequency 
synthesizers in the transmitter and the receiver, primarily because of frequency- 
dependent multipath effects and Doppler shifts. Furthermore, the time-varying 
delay between each received pulse and the synthesizer output in the receiver 
causes the phase shift in the dehopped signal to differ for each pulse. Thus, 
practical frequency-hopping systems use noncoherent or differentially coherent 
demodulators. Unless a pilot signal is available, the hopping rate is very low 
compared to the transmitted symbol rate, or elaborate iterative demodulation 
methods are used. 

In military applications, the ability of frequency-hopping systems to avoid 
interference is potentially neutralized by a repeater jammer (also known as a 
follower jammer), which is a device that intercepts a signal, processes it, and 
then transmits jamming at the same center frequency. To be effective against a 
frequency-hopping system, the jamming energy must reach the victim receiver 
before it hops to a new set of frequency channels. Thus, the hopping rate is the 
critical factor in protecting a system against a repeater jammer. Required hopping 
rates and the limitations of repeater jamming are analyzed in reference [7]. 
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4.   Frequency Hopping with MFSK 

Multiple frequency-shift keying (MFSK) entails choosing one of q frequencies as 
the carrier or center frequency for each transmitted symbol in a communication 
system. When frequency hopping is superimposed on MFSK, resulting in an 
FH/MFSK system, the set of q possible frequencies changes with each hop. The 
general transmitter of Figure 2(a) can be simplified for an FH/MFSK system, as 
illustrated in Figure 12(a), where the code generator output bits and the digital 
input are combined to determine the frequency generated by the synthesizer. 

An FH/MFSK signal has the form 

00    iV^-l 

s{t) = V2SY,  ^Mt- ii^hTs + r,,,) - ITs] cos[2TT{fi + fa)t + <Pi + M 

(4-1) 
i——oo   1=0 

where S = Sg/Ts is the average signal power during a dwell interval, w{t) is a 
unit-amplitude rectangular pulse of duration Tg, Nh is the number of symbols per 

(a) 
Digital 

symbols 
Logic 

* Frequency 
synthesizer 

FH signal 
• 

•     •     • 

Code 
generator 

(b) 

Received 
hH signal Matched 

filter 1 -> 
Envelope 
detector 

^V> 

Hard 
or soft 

decision 
device 

Information 

FH reference 
signal 

bits 

- 
Matched 
filter 2 

—>■ 
Envelope 
detector 

^v. -> Decoder 

• 
• 
• 

• 
• 
• 

• 
• 
• 

u Matched 
filter q 

—► 
Envelope 
detector 

-^V^ 

Figure 12. FH/MFSK (a) transmitter and (b) receiver. 
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dwell interval, /j is the carrier frequency during dwell interval i, fi + fu is the 
MFSK frequency used for symbol I of dwell interval i, ^j is the phase at the 
beginning of dwell interval i, and (pu is the phase associated with MFSK symbol 
I during dwell interval i. If the MFSK is phase continuous from symbol to 
symbol, then (pu = 0; otherwise, it may be modeled as a random variable 
uniformly distributed over [0,27r). The implementation of phase continuity is 
highly desirable to prevent excessive spectral splatter outside a frequency 
channel (Section 5). 

In an FH/MFSK system, each of the q frequencies or tones in an MFSK set can 
be considered as the center frequency of an MFSK subchannel. Therefore, the 
effective number of frequency channels is 

Me = qM (4-2) 

where M is the hopset size. In the standard implementation, the q subchannels of 
each MFSK set are contiguous, and each set constitutes a frequency channel 
within the hopping band. For noncoherent orthogonal signals, the MFSK tones 
must be separated enough that a received signal produces negligible responses in 
the incorrect subchannels. As shown subsequently, the frequency separation must 
be /d = k/Ts, where fc is a nonzero integer, and Tg denotes the symbol duration. 
To maximize the hopset size when the MFSK subchannels are contiguous, fe = 1 
is selected. Consequently, the bandwidth of a frequency channel for slow 
frequency hopping with many symbols per dwell interval is 

B = ± 
Tblog2q 

(4-3) 

where Tj, is the duration of a bit, and the factor logj q accounts for the increase in 
symbol duration when a nonbinaiy modulation is used. If the hopping band has 
bandwidth W, the hopset size is 

M = 
W 
~B 

(4-4) 

where \x\ denotes the largest integer in x. Figure 12(b) depicts the main 
elements of a noncoherent FH/MFSK receiver. Each matched filter corresponds 
to an MFSK subchannel. In practical FH/MFSK systems, the orthogonaUty of the 
q MFSK tones is imperfect because of transients that occur after every hop in the 
receiver. 

4.1   Soft-decision decoding 

To illustrate some basic issues of frequency-hopping communications and the 
effectiveness of soft-decision decoding, we consider an FH/MFSK system that 
uses a repetition code and the receiver of Figure 12(b). Each information symbol, 
which is transmitted as L code symbols, may be regarded as a codewonl or as an 
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uncoded symbol that uses diversity combining. The interference is modeled as 
wideband Gaussian noise uniformly distributed over part of the hopping band. 
Slow frequency hopping with ideal interleaving or fast frequency hopping is 
assumed to ensure the independence of code-symbol errors. The optimal metric 
for the Rayleigh-fading channel and a good metric for the additive-white- 
Gaussian-noise (AWGN) channel without fading is the Rayleigh metric of 
(A-65), which is 

L 

U(1) = J2RL     l = l,2,...,q (4-5) 

where Ru is the sample value of the envelope-detector output that is associated 
with code symbol i of candidate information-symbol /, and L is the number of 
repetitions or code symbols. This metric has the advantage that no side 
information, which is specific information about the reliability of symbols, is 
required for its implementation. A performance analysis of a frequency-hopping 
system with binary FSK and soft-decision decoding with the Rayleigh metric 
indicates that the system performs poorly against worst-case partial-band 
jamming [11] primarily because a single jammed frequency can corrupt the 
metrics. Furthermore, the repetition code is counterproductive because the 
noncoherent combining loss resulting from the fragmentation of the symbol 
energy is greater than any coding or diversity gain. 

Equation (A-64) indicates that a better choice of metric is one with nonlinear 
square-law combining such as 

^(0 = Ew '   ' = 1.2,...,9 (4-6) 
i=l Oi 

where Noi/2 is the two-sided power spectral density of the interference and noise 
over all the MFSK subchannels during code symbol i. A metric that is simpler to 
implement is the adaptive gain-control (AGC) metric: 

^(0 = E^   '    ' = l>2,...,g (4-7) 

The advantage of both metrics is that they incorporate side information contained 
in the {A^oi}^ which are assumed to be known. The subsequent analysis is for the 
AGC metric, but a slightly more complicated analysis indicates that the metric 
(4-6) gives exactly the same performance bounds. 

The union bound (A-46) implies that the information-symbol error probability 
satisfies 

Pis <{q- 1)^2 (4-8) 

where P2 is the probability of an error in comparing the metric associated with 
the transmitted information symbol with the metric associated with an alternative 
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one. It is assumed that there are enough frequency channels that L distinct carrier 
frequencies are used for the L code symbols. Since the MFSK tones are 
orthogonal, the symbol metrics {i?|/iVoi} are independent and identically 
distributed for all values of I and i (Appendix A-1), Therefore, the Chemoff 
bound given by (A-107) and (A-106) with a = 1/2 yields 

^- 2 
(4-9) 

Z — min 
0<s<si 

^[exp{^(i2i-i?!)} (4-10) 

where Ri is the sampled output of an envelope detector when the desired signal 
is present at the input of the associated matched filter, R2 is the outpujt when the 
desired signal is absent, and iVi/2 is the two-sided power-spectral density of the 
interference and noise over all the MFSK subchannels during a code symbol. 

For the g-ary symmetric channel, (A-27), (4-8), and (4-9) give an upper bound on 
the information-bit error probability: 

Pb < %Z^ (4-11) 

For a Gaussian random variable X with mean m and variance tP', a direct 
calculation yields 

£;[exp(aX2)] = 
1 

exp 
am 

a < 
1 

(4-12) 
VI - 2aa^ """ \1 - 2acr^J '    " ^ 2(72 

From the analysis of Appendix A-1 leading to (A-76), it follows that 

Rf = x^ + yf,    1=1,2 (4-13) 

where xi and yi are the real and imaginary parts of Ri, respectively, and are 
independent Gaussian random variables with the moments 

E[xi] = ^/ej2cose,    E[yi] = ^Ej2sme (4-14) 

E[x2] = E[y2] = 0 (4-15) 

var[a;|] = var[yi] = Ni/4 ,    1 = 1,2 (4-16) 

where Ss is the energy per symbol. By conditioning on Ni, the expectation in 
(4-10) can be partially evaluated. Equations (4-12) to (4-16) and the substitution 
of A = s/2 give 

min E 
0<A<1 

1 
1-A2 

exp 
1 + A 

(4-17) 
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where the remaining expectation is over the statistics of A^x- 

To simplify the analysis, it is assumed that the thermal noise is negligible. When 
a repetition symbol encounters no interference, A^i = 0; when it does, 
-^1 = ho/1^-, where JJL is the fraction of the hopping band with interference, and 
Jio is the spectral density that would exist if the interference power were 
uniformly spread over the entire hopping band. Since /u is the probability that 
interference is encountered, (4-17) becomes 

Z = min 
0<A<1 1-A2 

exp    - 
1 + A, 

where 

^=i^='^'^ 

(4-18) 

(4-19) 

m = log2 q is the number of bits per information symbol, and Sb is the energy per 
information bit. Using calculus, we find that 

Z = f^ 
K 

exp 
1 + Ao 

where 

^"-"'2 + T -f- 1 ,  /£l\    ,  /f7 
2 4^2 

1/2 

Substituting (4-20) and (4-19) into (4-11), we obtain 

exp 
/ \Q\xm \ Eb 

\l + \Jlto 

(4-20) 

(4-21) 

(4-22) 

which indicates that a repetition code is useless if // = 1, but if // is fixed and 
small, increasing L invariably improves the interference suppression. Thus, the 
nonlinear diversity combining is potentially effective against stationary 
interference. 

Suppose that the interference is worst-case partial-band jamming. An upper 
bound on Pj, is obtained by maximizing the right-hand side of (4-22) with respect 
to ji, where 0 < yu < 1. Calculus yields the maximizing value of ^: 

-1 

fiQ = mm (4-23) 
.m \Ito 

Substituting (4-23) into (4-22), we obtain an upper bound on Pb for worst-case 
partial-band jamming: 

,1 L 

Pb< < 
■)Tn—2 

(4-24) 
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Since ^o is obtained by maximizing a bound rather than an equality, it is not 
necessarily equal to the actual worst-case ^, which would provide a tighter 
bound than the one in (4-24). 

If £b/Im is known, then the number of repetitions can be chosen to minimize the 
upper bound on P^ for worst-case partial-band jamming. We treat L as a 
continuous variable such that L > 1 and let LQ denote the minimizing value of L. 
A calculation indicates that the derivative with respect to L of the second line on 
the right-hand side of (4-24) is positive. Therefore, if £b/Im < 3/m, then LQ=\; 

if £h/Iia > 3/m, the continuity of (4-24) as a function of L implies that LQ is 
determined by the first line in (4-24). Further calculation yields 

LQ = max (4-25) 

Since L must be an integer, its minimizing value is approximately \LQ\ . The 
upper bound on Pj, for worst-case partial-band jamming when L = LQ is given by 

>m—2 

Pb< { 

2'"-2(i_A|)-iexp 

me 

1 + Ao/ Ito 

^>1 

m      Ito      m 

ito     m 

(4-26) 

This result shows that P^ decreases exponentially as £{,/Jto increases if the 
appropriate number of repetitions is chosen and St,/Ito is large enough. Thus, the 
optimal AGC metric sharply limits the performance degradation caused by 
worst-case partial-band jamming relative to fiiU-band jamming. A comparison of 
(4-26) and (A-86) with NQ -^ J^ indicates that this degradation is approximately 
3 dB forbinaiy FSK. Substituting (4-25) into (4-23), we obtain 

^0= < 

3 £b      4 
> 

4 ito     m 
3 (Sb\ "344 
— , — < -1 < _ 
m X^toj m     Ito     TO 

€b      3 
i 

ito     m. 

(4-27) 

This result shows that the appropriate choice of L implies that worst-case 
jamming must cover three-fourths or more of the hopping band, a task that may 
not be a practical possibility for a jammer. 

For frequency hopping with binary FSK and the AGC metric, a more precise 
derivation [12] that does not use the Chemoff bound and allows iVo > 0 confirms 
that (4-26) provides an approximate upper bound on the information-bit error 
rate caused by worst-case partial-band jamming when NQ is small, although the 
optimal number of repetitions is much smaller than is indicated by (4-25). Thus, 
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the appropriate weighting of terms in nonlinear square-law combining prevents 
the domination by a single corrupted term and limits the inherent noncoherent 
combining loss. 

The implementation of the AGC metric requires the measurement of the 
interference power. One might attempt to measure this power in frequency 
channels immediately before the hopping of the signal into those channels, but 
this method will not be reliable if the interference is frequency-hopping or 
nonstationary. Another approach is to clip (soft-limit) each envelope-detector 
output Rii to prevent a single erroneous sample from undermining the metric. 
This method is potentially effective, but its implementation requires an accurate 
measurement of the signal power for properly setting the clipping level. A 
sufficiently accurate measurement is often impractical because of fading or 
power variations across the hopping band. A metric that requires no side 
information is the self-normalization metric defined for binary FSK as [13] 

^(O-E-5^^,    / = 1,2 (4-28) 

Although it does not provide as good a performance against partial-band 
jamming as the ideal AGC metric, the self-normalization metric is far more 
practical and is generally superior to hard-decision decoding. 

It has been assumed that all subchannels in an MFSK set are jammed or none 
are. However, this assumption ignores the threat of narrowband jamming signals 
that are randomly distributed over the frequency channels. Although (4-26) 
indicates that it is advantageous to use nonbinary signaling when Sb/Ito > 4/m, 
this advantage is completely undermined when distributed, narrowband jamming 
signals are a threat. A fundamental problem, which also limits the applicability 
of FH/MFSK in networks, is the reduced hopset size for nonbinary MFSK 
indicated by (4-4) and (4-3). 

4.2   Narrowband jamming signals 

When the MFSK subchannels are contiguous, it is not advantageous to a jammer 
to transmit the jamming in all the subchannels of an MFSK set because only a 
single subchannel needs to be jammed to cause a symbol error. A sophisticated 
jammer with knowledge of the spectral locations of the MFSK sets can cause 
increased system degradation by placing one jamming tone or narrowband 
jamming signal in every MFSK set. 

To assess the impact of this sophisticated multitone jamming on the receiver of 
Figure 12(b), it is assumed that thermal noise is absent and that each jamming 
tone coincides with one MFSK tone in a frequency channel encompassing q 
MFSK tones [8], [9]. Whether a jamming tone coincides with the transmitted 
MFSK tone or an incorrect one, there will be no symbol error if the desired- 
signal power S exceeds the jamming power. Thus, if It is the total available 
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jamming power, then the jammer can maximize symbol errors by placing tones 
with power levels slightly above S whenever possible in approximately J 
frequency channels such that 

J = 

It<S 

S<It<MS 

MS <It 

(4-29) 

If a transmitted tone enters a jammed frequency channel and It > S, then with 
probability {q — l)/q the jamming tone will not coincide with the transmitted 
tone and will cause a symbol error. If the jamming tone does coincide with the 
correct tone, it may cause a symbol error in the absence of thermal noise only if 
its power level is exactly S and it has exactly a 180° phase shift relative to the 
desired signal, an event with zero probability. Since J/M is the probability that a 
frequency channel is jammed, and no error occurs if It < S, the symbol error 
probability is 

It<S 

It>S 

Substitution of (4-3), (4-4), and (4-29) into (4-30) and the approximation 
\xl ~ X yields 

(4-30) 

P.= < 

g-1 
9 

g-l\ /gfc 

0 

^ <     g 
If 0      log2 q 

logs q      Ito 
(4-31) 

Ito 
>wn 

where £5 = STi, denotes the energy per bit and Ito = It/W denotes the spectral 
density of the interference power that would exist if it were uniformly spread 
over the hopping band. This equation exhibits an inveree linear dependence of Pg 
on Sb/Ito, which indicates that the jamming has an impact qualitatively similar to 
that of Rayleigh fading. It is observed that P^ increases with g, which is the 
opposite of what is observed over the AWGN channel. Thus, binary FSK is 
advantageous against this sophisticated multitone jamming. 

To preclude this jamming, each MFSK tone in an MFSK set may be 
independently hopped. However, this approach demands a lai^e increase in the 
amount of hardware, and uniformly distributed, narrowband jamming signals are 
almost as damaging as the worst-case multitone jamming. Thus, contiguous 
MFSK subchannels are usually preferable, and the FH/MFSK receiver has the 
form of Figure 12(b). An analysis of FH/MFSK systems with hard-decision 
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decoding in the presence of uniformly distributed, narrowband jamming signals 
confirms the superior robustness of binary FSK relative to nonbinary MFSK 
whether the MFSK tones hop independently or not [10]. 

26 



5.   Modulations 

In a network of frequency-hopping systems, it is liighly desirable to choose a 
spectrally compact modulation so that the number of frequency channels is large 
and, hence, the number of collisions between frequency-hopping signals is kept 
small. As discussed in Section 4, binary orthogonal FSK allows more frequency 
channels than MFSK and, hence, is advantageous against narrowband 
interference distributed throughout the hopping band. A spectrally compact 
modulation helps ensure that B < Bcoh so that equaUzation in the receiver is not 
necessary, as discussed in Section 3. This section considers spectrally compact 
alternatives to orthogonal FSK. 

The demodulator transfer function following the dehopping in Figure 2 is 
assumed to have a bandwidth approximately equal to B, the bandwidth of a 
frequency channel. The bandwidth is determined primarily by the percentage of 
the signal power that must be processed by the demodulator if the demodulated 
signal distortion and the intersymbol interference are to be negligible. In 
practice, this percentage must be at least 90 percent and is often more than 95 
percent. The relation between B and the symbol duration may be expressed as 

B = §r (5-1) 
-i-s 

where C is a constant determined by the signal modulation. For example, if 
minimum-shift keying is used, the transfer function is rectangular, and many 
symbols are transmitted during a dwell interval, then C = 0.8 if 90 percent of the 
signal power is included in a frequency channel, and ^ = 1.2 if 99 percent is 
included. 

Spectral splatter is the interference produced in frequency channels other than 
the one being used by a frequency-hopping pulse. It is caused by the time-limited 
nature of transmitted pulses. The degree to which spectral splatter may cause 
errors depends primarily on Fg (see Section 3) and the percentage of the signal 
power included in a frequency channel. Usually, only pulses in adjacent channels 
produce a significant amount of spectral splatter in a frequency channel. 

The adjacent splatter ratio Kg is the ratio of the power due to spectral splatter 
from an adjacent channel to the corresponding power that arrives at the receiver 
in that channel. For example, if B is the bandwidth of a frequency channel that 
includes 97 percent of the signal power and Fg > B, then no more than 1.5 
percent of the power from a transmitted pulse can enter an adj^ent channel on 
one side of the frequency channel used by the pulse; therefore. Kg < 0.015. A 
given maximum value of Kg can be reduced by an increase in Fg, but eventually 
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the value of M must be reduced if W is fixed. As a result, the rate at which users 
hop into the same channel increases. This increase may cancel any improvement 
due to the reduction of the spectral splatter. The opposite procedure (reducing Fs 
and B so that more frequency channels become available) increases not only the 
spectral splatter but also signal distortion and intersymbol interference, so the 
amount of useful reduction is limited. 

To avoid spectral spreading due to amplifier nonlinearities, it is desirable for the 
signal modulation to have a constant envelope, as it is often impossible to 
implement a filter with the appropriate bandwidth and center frequency for 
spectral shaping of a signal after it emerges from the final power amplifier. 
Noncoherent demodulation is nearly always a practical necessity in frequency- 
hopping systems unless the dwell interval is large. Accordingly, good modulation 
candidates are differential phase-shift keying (DPSK) and minimum-shifting 
keying (MSK) or some other form of spectrally compact continuous-phase 
frequency-shift keying (CPFSK) or continuous-phase modulation (CPM). 

The general form of a CPM signal is 

s{t) = A cos[27r/c^ + 4){t, a)] (5-2) 

where A is the amplitude, fc is the carrier frequency, and 0(t, a) is the phase 
function that carries the message. The phase function has the ideal form 

Y^ aig{x - iTs) 
oo    . .•_  

dx (5-3) 

where his a constant called the deviation ratio or modulation index, Tg is the 
symbol duration, and the vector a is a sequence of q-ary channel symbols. Each 
symbol ttj takes one of q values; if q is even, 

ai = ±l,±3,... ,±{q-l),    1 = 0,1,2,... (5-4) 

Equation (5-3) exhibits the phase continuity and indicates that the phase in any 
specified symbol interval depends on the previous symbols. 

It is assumed that the integrand in (5-3) is piecewise continuous so that (t){t, a) is 
differentiable. The frequency function of the CPM signal, which is proportional 
to the derivative of (j){t, a), is 

- oo 

—<f)'{t, Ci) = hJ2 ^i9{t - iTs) (5-5) 
i=—oo 

The frequency pulse g{t) is assumed to vanish outside an interval; that is, 

g{t) = 0 ,   i < 0 ,   t> LTs (5-6) 
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where L is a positive integer and may be infinite. The presence of /i as a 
muMplicative factor in the pulse function makes it convenient to normalize g{t) 
by assuming that 

g{x)dx = - (5-7) 
0 ^ 

If L = 1, the continuous phase modulation is called ajkll-response modulation; if 
L > 1, it is called a partial-response modulation, and each frequency pulse 
extends over two or more symbol intervals. The normalization condition for a 
full-response modulation implies that the phase change over a symbol interval is 
equal to hitai. 

Continuous-phase fi-equency-shift keying (CPFSK) is a subclass of CPM for 
which the instantaneous frequency is constant over each symbol interval. 
Because of the normalization, a CPFSK frequency pulse is given by 

0<t<LT. 
git)={2m' -    - (5-8) 

0,      otherwise 

A binary CPFSK signal shifts between two frequencies separated by fd = h/Tg. 
Minimum-shift keying is defined as binary CPFSK with h = 111 and, hence, 
frequencies are separated by /^ = l/2Ts. The main difference between CPFSK 
and MFSK is that h can have any positive value for CPFSK but is relegated to 
integer values for MFSK so that the tones are orthogonal to each other. A second 
difference is that MFSK is detected with matched filters and envelope detectors, 
whereas CPFSK with /i < 1 is usually detected with a frequency discriminator. 
Although CPFSK explicitly requires phase continuity and MFSK does not, 
MFSK is usually implemented with phase continuity to avoid the generation of 
spectral splatter. 

A measure of the spectral compactness of signals is provided by ^& fractional 
out-of-band power defined as 

P.(;) = 1 _ j^__ ,    ,>o (5-9) 

where / is the frequency variable and S{f) is the two-sided power spectral 
density of the complex envelope of the signal (Appendix B-3), which is often 
called the equivalent lowpass waveform. The closed-form expressions for the 
power spectral densities of QPSK and binary MSK (Appendix B) can be used to 
generate Figure 13. The curves depict Pobif) in decibels as a function of / in 
units of l/Tj,, where Ti, = Ts/ log2 q for a g-aiy modulation. The fractional power 
within a transmission channel of one-sided bandwidth B is given by 

Ko^l- PobiB/2) (5-10) 
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Figure 13. Fractional out-of-band power (FOBP) for equivalent lowpass waveforms of 
QPSK and MSK. 

Usually, KQ inust exceed at least 0.9 to prevent significant performance 
degradation in communications over a bandlimited channel. The transmission 
bandwidth for which A'o = 0.99 is approximately X.lITi, for binary MSK, but 
approximately S/T^ for PSK or QPSK. The adjacent splatter ratio, which is due to 
out-of-band power on one side of the center frequency, has the upper bound 
given by 

K, < -Pob{B/2) (5-11) 

An FH/CPM signal has a continuous phase over each dwell interval with A^^ 
symbols but has a phase discontinuity every Th = NTs -\- Tsw seconds at the 
beginning of another dwell interval. The signal may be expressed as 

oo 

s{t) = V2S Y^ w{t - iTh, Td) cos [2nfit + <P{t, a) + 6^] (5-12) 
i=—00 

where S = Ss/Tg is the average signal power during a dwell interval, w{t, T^) is 
a unit-amplitude rectangular pulse of duration T^ = NTg, fi is the carrier 
frequency during hop-interval i, and 6i is the phase at the beginning of 
dwell-interval i. 

Consider multitone jamming of an FH/CPM or FH/CPFSK system in which the 
thermal noise is absent and each jamming tone is randomly placed within a 
single frequency channel. It is reasonable to assume that a symbol error occurs 
with probability (q— l)/q when the frequency channel contains a jamming tone 
with power exceeding S. Since (4-3) is not applicable to CPM or CPFSK, a 
derivation similar to that of (4-31) yields 
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p. = < 

/to 
<Bn 

HO 
(5-13) 

for sophisticated multitone jamming, where Tb is the bit duration. Since the 
orthogonality of the MFSK tones is not a requirement for CPM or CPFSK, the 
bandwidth B for FH/CPM or FH/CPFSK may be much smaller than the 
bandwidth for FH/MFSK. 

Consider multitone jamming of an FH/DPSK system with negligible thermal 
noise. Each tone is assumed to have a frequency identical to the center frequency 
of one of the frequency channels, A DPSK demodulator compares the phases of 
two successive received symbols. If the magnitude of the phase difference is less 
then 7r/2, then the demodulator decides that a 1 was transmitted; otherwise, it 
decides that a 0 was transmitted. The composite signal, consisting of the 
transmitted signal plus the jamming tone, has a constant phase over two 
successive received symbols in the same dwell interval, if a 1 was transmitted 
and the thermal noise is absent; thus, the demodulator will correctly detect the 1. 

Suppose that a 0 was transmitted. Then the desired signal is -^25 cos 27r/ct 
during the first symbol and —^/Wcos 27rfct during the second symbol, 
respectively, where fc is the carrier frequency of the frequency-hopping signal 
during the dwell interval. When a jamming tone is present, trigonometric 
identities indicate that the composite signal during the first symbol may be 
expressed as 

'25 cos 27r/ct + V2I cos (27rct + #) = y 2S + 2Jt + WSI cos 0 cos (27r/ct + <pi) 
(5-14) 

where I is the average power of the tone, 0 is the phase of the tone relative to the 
phase of the transmitted signal, and <pi is the phase of the composite signal: 

#1 tan -1 ^sha# 

^ + ^/lcosd 
(5-15) 

Since the desired signal during the second symbol is —VlScos 27r/ct, the phase 
of the composite signal during the second symbol is 

(t>2 = tan -1 vising 

-^/S + ^cosO 
(5-16) 

Using trigonometry, it is found that 
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I — s 
COS (02 - 0i) =     , = (5-17) 

y/S^ + P + 2SI{l-2cos-'e) 

If I > S, 102 - 0i| < 7r/2 so the demodulator incorrectly decides that a 1 was 
transmitted. If I < S, no mistake is made. Thus, multitone jamming with total 
power It is most damaging when J frequency channels given by (4-29) are 
jammed and each tone has power I = It/J. If the information bits 0 and 1 are 
equally likely, then the symbol error probability given that a frequency channel is 
jammed with / > 5* is P^ = 1/2, the probability that a 0 was transmitted. 
Therefore, P^ = J/2M if It > S, and P, = 0, otherwise. Using (4-4) and (4-29) 
with 5* = Eb/Tb, It = Ito^^, and [a;J ^ x, we obtain the symbol error probability 
for DPSK and multitone jamming: 

(5-18) Ps-< 

1 

BTjf) 
> 

-1 

f < Bn 
■'to 

BTb<^< wn 
-'to 

0 » ^>WTb 
-'to 

The same result holds f or binary CPFSK. 

As implied by Figure 13, the bandwidth requirement of DPSK with KQ > 0.9, 
which is the same as that of PSK or QPSK and less than that of orthogonal FSK, 
exceeds that of MSK. Thus, if the hopping bandwidth W is fixed, the number of 
frequency channels available for FH/DPSK is smaller than it is for noncoherent 
FH/MSK. This increase in B and reduction in frequency channels offsets the 
intrinsic performance advantage of DPSK and implies that noncoherent FH/MSK 
will give a lower P^ than FH/DPSK in the presence of worst-case multitone 
jamming, as indicated in (5-18). Alternatively, if the bandwidth of a frequency 
channel is fixed, an FH/DPSK signal will experience more distortion and spectral 
splatter than an FH/MSK signal. Any pulse shaping of the DPSK symbols will 
alter their constant envelope. An FH/DPSK system is more sensitive to Doppler 
shifts and frequency instabilities than an FH/MSK system. Another disadvantage 
of FH/DPSK is due to the usual lack of phase coherence from hop to hop, which 
necessitates an extra phase-reference symbol at the start of every dwell interval. 
This extra symbol reduces Eg by a factor {Nh - l)/Nh, where Nh is the number 
of symbols per hop or dwell interval and Nh > 2. Thus, DPSK does not appear to 
be as suitable a means of modulation as noncoherent MSK for most applications 
of frequency-hopping communications, and the main competition for MSK 
comes from other forms of CPM. 

The cross-correlation parameter for two signals Si{t) and S2{t), each with 
energy Eg, is defined as 

1 r^ 
C=-/    si{t)s2{t)dt (5-19) 

^s Jo 
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For CPFSK, two possible transmitted signals, each representing a different 
channel symbol, are 

si(t) - ^/2es/T, cos(27r/it + ^i) ,    S2(t) = ^2^/1; cos(27r/2t + #2) 
(5-20) 

The substitution of these equations into (5-19), a trigonometric expansion and 
discarding of an integral that is negligible if (/i + fzWa » 1, and the evaluation 
of the remaining integral give 

C=—-—[sini27rfaT, + <l>a)-sin<f>i,    U^O (5-21) 
27r/dis 

where fd = fi — h and <pd = <l>i — <p2- Because of the phase synchronization in a 
coherent demodulator, we may take <pd = 0. Therefore, the orthogonality 
condition C = 0 is satisfied ifh = faTs = k/2, where k is any nonzero integer. 
The smallest value of h for which C = 0ish = l/2, which corresponds to MSK. 

In a noncoherent demodulator, 4>d is a random variable, which is assumed to be 
uniformly distributed over [0, Iw). Equation (5-21) indicates that E[C] = 0 for all 
values of h. The variance of C is 

var(C) =  ( -4^;^ ) E 
2nfdTs 

1 

2wfd% 

1 [smith 

six? {2% fdTs -I- <t>d) + sin^ <t>d-2 sin ^^ sin(27r/d + ^d) 

2 

2\   Tvh 

{I-cos2TtfdT,) 

2 

(5-22) 

Since var(C) ^Ofoth= 1/2, MSK does not provide orthogonal signals for 
noncoherent demodulation. If h is any nonzero integer, then both (5-22) and 
(5-21) indicate that the two CPFSK signals dm orthogonal for any <j)d. This result 
justifies the previous ^sertion that MFSK tones must be separated by fd = k/Tg 
to provide noncoherent orthogonal signals. 

A noncoherent FH/CPFSK signal can be represented by (5-12). The power 
spectral density of the complex envelope of this signal, which is the same as the 
dehopped power spectral density, depends on the number of symbols per dwell 
interval, Nh, because of the random phases {9i}. The power spectral density has 
been calculated [14] for binaiy CPFSK, assuming that each di is an independent 
random variable uniformly distributed over [0,27r) and the information symbols 
are ±1 with equal probability. The 99 percent bandwidths of FH/CPFSK with 
deviation ratios h = 0.5mdh = 0.7 are hsted in Table 1 for different values of 
Nh. As JVfc increases, the power spectral density becomes more compact and 
approaches that of coherent CPFSK without frequency hopping. For Nh > 64, 
the frequency hopping causes little spectral spreading. However, fast frequency 
hopping, which corresponds to iVii = 1, entails a very large 99 percent bandwidth. 
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Table 1.99 percent 
bandwidth in l/T^ 
versus symbols per 
dwell interval for 
FH/CPFSK. 

Deviation ratio 

Symbols/dwell h = 0.5 h = OJ 

1 18.844 18.688 

2 9.9375 9.9688 

4 5.1875 5.2656 

16 1.8906 2.1250 

64 1.2813 1.8750 

256 1.2031 1.8125 

1024 1.1875 1.7969 

No hopping 1.1875 1.7813 

This fact is the main reason why slow frequency hopping is usually preferable to 
fast frequency hopping. 

With multisymbol noncoherent detection, full-response CPFSK systems can 
provide a better symbol error probability than coherent PSK systems [15]. For 
r-symbol detection, where r is odd, the optimal receiver correlates the received 
waveform over all possible r-symbol patterns before making a decision about the 
middle symbol. The drawback is the considerable implementation complexity of 
multisymbol detection, even for three-symbol detection. An additional problem 
for FH/CPFSK with multisymbol detection is that the first and last (r - l)/2 
symbols during a dwell interval cannot use the multisymbol detection without 
accessing other dwell intervals, which may cause practical difficulties. 

Symbol-by-symbol noncoherent detection after the dehopping of the FH/CPFSK 
signal can be inexpensively implemented by using a limiter and frequency 
discriminator, as illustrated in Figure 14. Analysis of the limiter-discriminator or 
frequency discriminator [16] provides complicated expressions for the symbol 
error probability in the presence of white Gaussian noise. However, the 
theoretical Ps can be approximated to within a few tenths of a decibel by 

exp    - ^ 
iVo, 

(5-23) 

where the parameter ^ depends on h and the product BTg, and A^o/2 is the 
two-sided power spectral density of the noise. If the frequency discriminator has 
a Gaussian filter and BTg = 1, then it is found that Pg is minimized when h « 
0.7. For CPFSK with h = 0.7 and BT,, = 1, setting ^ = 0.7 in (5-23) provides an 
approximate least-squares fit to the theoretical curve for Pg over the range 
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Figure 14. Frequency discriminator for CPFSK. 
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10-<^ <Ps< 10-2. If BTs = 1, then ^ = 0.5 provides a close fit over the same 
range for orthogonal CPFSK with h=\ and a fairly close fit for MSK(/i = 0.5). 
Thus, the discriminator demodulation of MSK or orthogonal CPFSK provides 
approximately the same performance as envelope detection of orthogonal FSK. 
The practical difference is that noncoherent MSK requires roughly half the 
bandwidth of orthogonal FSK for acceptable levels of spectral splatter and 
intersymbol interference. The increased number of frequency channels due to the 
decreased value of B does not give FH/MSK an advantage over the AWGN 
channel. However, the increase is advantageous against a fixed number of 
interference tones, optimized jamming, and multiple-access interference in a 
network of frequency-hopping systems, as discussed in the next section. 

Since ^ = 0.7 for an FH/CPFSK system with h = 0.7, this system has a potential 
1.46 dB advantage in £s relative to an FH/MSK system with BTg = 1. However, 
since CPFSK with h — 0.7 does not have as compact a spectrum as MSK, the 
FH/CPFSK system will have increased intersymbol interference due to 
bandlimiting and spectral splatter relative to the FH/MSK system. Only if these 
effects are negligible can the potential 1.46 dB advantage be realized. When 
Ng > 64, reducing the spectral splatter of the FH/CPFSK to the same level it is 
for FH/MSK with B = 1/% requkes that B = lA/T^. The increased bandwidth 
lowere f and decreases the number of frequency channels. 
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6.   Error-Correcting Codes for Partial-Band Interference 

When partial-band interference is present, let /to denote the one-sided 
interference power spectral density that would exist if the power were uniformly 
distributed over the hopping band. If a fixed amount of interference power is 
uniformly distributed over J frequency channels out of M in the hopping band, 
then the fraction of the hopping band with interference is 

/* = 
J_ 
M 

(6-1) 

and the interference power spectral density in each of the interfered channels is 
/to///. When the frequency-hopping signal uses a carrier frequency that lies 
within the spectral region occupied by the partial-band interference, this 
interference is modeled as additional white Gaussian noise that increases the 
noise-power spectral density from A^o to A^o + /to//^- Therefore, for hard-decision 
decoding, the symbol error probability is 

where the conditional symbol error probability F{ ) depends on the modulation 
and fading. For noncoherent FH/MFSK and Ricean fading, (A-89) implies that 

+1 'q-l\ K + 1 
Texp 

KXl 

K+1 + {K+1+X)i_ 

(6-3) 

where q is the alphabet size of the MFSK symbols and K. is the Rice factor. When 
there is no fading and the modulation is binary CPFSK, then (5-23) implies that 

F{x) = - exp(-^a;) (6-4) 

For the AWGN channel and no fading, classical communication theory indicates 
that F{x) for DPSK is given by (6-4) with ^ = 1. However, Eg in (6-2) must be 
reduced by the factor Nh/{Nh + 1) because of the reference symbol that must be 
included in each dwell interval. 

If /J. is treated as a continuous variable over [0,1] and /to >> A^o, then 
straightforward calculations using (6-2) and (6-4) indicate that the worst-case 
value of /J, is 

/IQ = mm 
ho 

(6-5) 
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The corresponding woret-case symbol error probability is 

P = i    2e \ Jto /      '     Ito ~ (f.f.\ 
'     ^ I        (   iSs\       iEs ^^ ^^'^^ — exp   ——     ,    ^ < 1 

which does not depend on M because of the assumption that /i is a continuous 
variable. For Rayleigh fading and binary CPFSK, similar calculations using (6-3) 
with q = 2 and K = 0 yield ^o = 1- Thus, in the presence of Rayleigh fading, 
interference spread uniformly over the entire hopping band hinders 
communications more than interference concentrated over part of the band. 

For FH/MFSK with an error-correcting code, the bandwidth of a frequency 
channel must be increased to B = gB„/2(log2 q)r, where r = k/n is the code 
rate and B„ is the bandwidth for binary FSK in the absence of coding. If W, the 
bandwidth of the hopping band, is fixed, then the number of disjoint frequency 
channels available for hopping is reduced to 

M 
2{log2q)rW 

iBu 
(6-7) 

The energy per channel symbol is 

Ss = r(log2 q)S,, (6-8) 

When the interference is partial-band jamming, J and, hence, fx are parameters 
that may be varied by a jammer. It is assumed henceforth that M is large enou^ 
that ^ in (6-2) may be treated as a continuous variable over [1/M, 1]. With this 
assumption, the error probabilities do not explicitly depend on M. 

6.1   Reed-Solomon Codes 

The use of a Reed-Solomon code with MFSK is advantageous against partial- 
band interference for two principal reasons. First, a Reed-Solomon code is 
maximum-distance-separable (Appendix A-1) and hence accommodates many 
erasures. Second, the use of nonbinary MFSK symbols to represent code 
symbols allows a relatively large symbol energy, as indicated by (6-8). 

Consider an FH/MFSK system that uses a Reed-Solomon code with no erasures 
in the presence of partial-band interference and Ricean fading. The demodulator 
comprises a parallel bank of noncoherent detectors and a device that makes hard 
decisions. In a slow frequency-hopping system, symbol interleaving among 
different dwell intervals and subsequent deinterleaving in the receiver may be 
needed to disperse errors due to the fading or interference and thereby facilitate 
their removal by the decoder. In a fast frequency-hopping system, symbol errors 
may be independent so that interleaving is unnecessary. The MFSK modulation 
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implies a q-ary symmetric channel. Therefore, for ideal symbol interleaving and 
hard-decision decoding of loosely packed codes, (A-26) and (A-27) indicate that 

2(9-l),feV' 
E (::,>■(>-.r (6-9) 

Figure 15 shows Pb for FH/MFSK and an extended Reed-Solomon (32,12) code 
in the presence of Ricean fading. The frequency channels are assumed to be 
separated enough that fading events are independent. Thus, (6-2), (6-3), and (6-9) 
are applicable. For K > 0, the curves exhibit peaks as the fraction of the band 
with interference varies. These peaks indicate that for a specific value of Sb/Ito, 
the concentration of the interference power over part of the hopping band 
(perhaps intentionally by a jammer) is more damaging than uniformly distributed 
interference. The peaks become sharper and occur at smaller values of // as 
Sb/ho increases. For Rayleigh fading, which corresponds to K = 0, peaks are 
absent in the figure, and full-band interference is the most damaging. As K 

increases, the peaks appear and become more pronounced. 
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Figure 15. Performance of FH/MFSK with Reed-Solomon (32,12) code, nonbinary chan- 
nel symbols, no erasures, and Ricean factor K. 

Much better performance against partial-band interference can be obtained by 
inserting erasures (Appendix A-1) among the demodulator output symbols 
before the symbol deinterleaving and hard-decision decoding. The decision to 
erase, which is made independently for each code symbol, is based on side 
information, which indicates which codeword symbols have a high probability of 
being incorrectly demodulated. The side information must be reliable so that 
only degraded symbols are erased, not correctly demodulated ones. 
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Side information may be obtained from known test symbols that are transmitted 
along with the data symbols in each dwell interval of a slow frequency-hopping 
signal [17], A dwell interval during which the signal is in partial-band 
interference is said to be hit. If one or more of the Nt test symbols are incorrectly 
demodulated, then the receiver decides that a hit has occurred, and all codeword 
symbols in the same dwell interval are erased. Only one symbol of each 
codeword is erased if the interleaving ensures that only a single symbol of a 
codeword is in any particular dwell interval. Test symbols decrease the 
information rate, but this loss in negligible if iV^ << N^, which is assumed 
henceforth. 

The probability of the erasure of a code symbol is 

Pe = ^lP,^ + (1 - tx)P^ (6-10) 

where Pgi is the erasure probability given that a hit occurred, and P^Q is the 
erasure probability given that no hit occurred. If a single incorrect demodulation 
of one of the Nt known test symbols causes an erasure, then 

P« = l-(l-F,i)^S   i = 0,l (6-11) 

where Pgi is the conditional channel-symbol error probability given that a hit 
occurred and Pgo is the conditional channel-symbol error probability given that 
no hit occurred. 

A codeword symbol error can only occur if there is no erasure. Since test and 
codeword symbol errors are statistically independent when the partial-band 
interference is modeled as a white Gaussian process, the probability of a 
codeword symbol error is 

P, = ix{l - P,i)P,i + {1- /i)(l - P^)P,o (6-12) 

and the conditional channel-symbol error probabilities are 

^^1 = ^ (M f\ I ) '   ^^« = ^ iw) <6-13) 

where (A-84) indicates that for MFSK symbols. 

To account for Ricean fading, one must integrate (6-12) and (6-10) over the 
Ricean density (A-89). In the remainder of this section, we assume the absence 
of fading. 

The word error probability for errors and erasures decoding is upper bounded in 
(A-35), Since most word errors result from decoding failures, it is reasonable to 
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assume that Pb 
by 

Pw/l. Therefore, the information-bit error probability is given 

-     n    n-j 

j=0 i=io 

|p;p/(i-p,-p,r '-J (6-15) 

where ZQ = max(0, \{dm — j)/2\) and \x] denotes the smallest integer greater 
than or equal to x. 

The Pfc for FH/MFSK with q = 5,an extended Reed-Solomon (32,12) code, and 
errors and erasures decoding with A'j = 2 is shown in Figure 16. Fading is 
absent, and (6-10) to (6-15) are used. A comparison of Figure 16 with the K = 00 
curves of Figure 15 indicates that when Sb/No = 20 dB, erasures provide nearly a 
7 dB improvement in the required Sb/Ito for Pb = 10~^. The erasures also confer 
immunity to partial-band interference that is concentrated in a small fraction of 
the hopping band and decrease the sensitivity to Sb/No. 
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Figure 16. Performance of FH/MFSK with Reed-Solomon (32,12) code, nonbinary chan- 
nel symbols, erasures, Nt = 2, and no fading. 

There are other options for generating side information and, hence, erasure 
insertion in addition to demodulating test symbols. One might use a radiometer 
to measure the energy in the current frequency channel, a future channel, or an 
adjacent channel. Erasures are inserted if the energy is inordinately large. This 
method does not have the overhead cost in information rate that is associated 
with the use of test symbols. Other methods without overhead cost [17] use the 
soft information provided by the inner decoder of a concatenated code or use the 
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outputs of the parallel MFSK envelope detectors, which provide the decision 
variables applied to the MFSK decision device of Figure 12b. 

The output threshold test (OTT) compares the largest decision variable to a 
threshold to determine whether the corresponding demodulated symbol should 
be erased. The ratio threshold test (RTT) computes the ratio of the largest 
decision variable to the second largest one. This ratio is then compared to a 
threshold to determine an erasure. If the values of both Et/No and Sb/Im are 
known, then optimum thresholds for the CHT, the RTT, or a hybrid method can 
be calculated [18]. It is found that the OTT tends to outperform the RTT when 
£5/Jto is sufficiently low, but the opposite is true when Sb/ItQ is sufficiently high. 
If side information concerning the presence or absence of the partial-band 
interference is available at the receiver and if the interference power is high, then 
a threshold determined by £b/No only and a separate threshold determined by 
Sb/iNo + Jfo) can be used to further improve the performance of the errors and 
erasures decoding. The main disadvantage of the OTT and the RTT relative to the 
test-symbol method is the need to estimate S^/NQ and either €b/Im or 
4/(iVo + /to). 

Proposed erasure methods are based on the use of MFSK symbols, and their 
performances against partial-band interference improve as the alphabet size q 
increases. For a fixed hopping band, the number of frequency channels decreases 
as q increases, thereby making an FH/MFSK system more vulnerable to 
narrowband jamming signals (Section 4.2) or multiple-access interference 
(Section 7.1). Thus, we examine alternatives that give less protection against 
partial-band interference in exchange for enhanced protection against 
multiple-access interference. 

Figure 17 depicts Pb for FH/MFSK with g = 3, an extended Reed-Solomon (8,3) 
code, and iVt = 4. A comparison of Figures 17 and 16 indicates that reducing the 
alphabet size while preserving the code rate has increased the system sensitivity 
to Sb/No, increased the susceptibility to interference concentrated in a small 
fraction of the hopping band, and raised the required Sb/Im for a specified Pj, by 
5to9dB. 

Another approach is to represent each nonbinary code symbol by a sequence of 
m = log2 q consecutive binary channel symbols. Then an FH/MSK or FI^PSK 
system can be implemented to provide a large number of frequency channels and, 
hence, better protection against multiple-access interference. Equations (6-10), 
(6-11), and (6-13) are still valid. However, since a code-symbol error occurs if 
any of its m component channel symbols is incorrect, (6-12) is replaced by 

P, = l-[1-Hil- P,i)P,i - (1 - ^)(1 - P,o)Psor (6-16) 

and (6-14) is replaced by (6-4), where $, = 1/2 for MSK and ^ = 1 for DPSK. The 
results for an FH/DPSK system with an extended Reed-Solomon (32,12) and Nt 
= 10 binary test symbols are shown in Figure 18. It is assumed that N^ » 1 so 
that the loss due to the reference symbol in each dwell interval is negligible. The 

41 



10^ 

-1 10 

l-io-^ 

a x> 
p 
5.10-3 

g 
ffl 10^ 

10 -5 

10 -6 

fb/No = 20 dB 

£:b/No=10dB 

/ 

fb/lto = 5 dB 

"^ --, 5 dB 

7 
\ 8.5 dB ^ ^•-'' ^^ 

2dB .12 dB 
_UJ  \i 

0       0.1       02      03      0.4      05      OJ6      0.7      OS.      0.9 
Fraction of band with interference 

Figure 17. Performance of FH/MFSK with Reed-Solomon (8,3) code, nonbinary channel 
symbols, erasures, Nt = 4, and no fading. 
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Figure 18. Performance of FH/DPSK with Reed-Solomon (32,12) code, binary channel 
symbols, erasures, Nt = 10, and no fading. 

plots in Figure 18 are similar in form to those of Figure 16, but the transmission 

of binary rather than nonbinary symbols has caused approximately a 10 dB 

increase in the required Sb/Ito for a specified P^. Figure 18 is applicable to 

orthogonal FSK and MSK if Et/ha and Sb/N^ are both increased by 3 dB to 

compensate for the lower value of ^. 
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An alternative to erasures that uses binary channel symbols is an FH/DPSK 
system with concatenated coding, which has the form illustrated in Figures A-14 
and A-15. Although generally unnecessary in a fast frequency-hopping system, 
the channel interleaver and deinterleaver may be required in a slow frequency- 
hopping system to ensure independent symbol errors at the decoder input. 
Consider a concatenated code comprising a Reed-Solomon (n, k) outer code and 
a binary convolutional inner code. The inner Viterbi decoder performs hard- 
decision decoding to limit the impact of individual symbol metrics. Assuming 
that Nh » 1, the symbol error probability is given by (6-2) and (6-4) with 
1 = 1. The probability of a Reed-Solomon symbol error, Pgi, at the output of the 
Viterbi decoder is upper bounded by (A-131) and (A-118). Setting Pg = Pgi in 
(6-9) then provides an upper bound on P^. Figure 19 depicts this bound for an 
outer Reed-Solomon (31,21) code and an inner rate-1/2, K = 7 convolutional 
code. This concatenated code provides a better performance than the Reed- 
Solomon (32,12) code with binary channel symbols, but a much worse 
performance than the latter code with nonbinary channel symbols. 
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Figure 19. Performance of FH/DPSK with concatenated code, haid decisions, and no 
fading. Inner code is convolutional (rate = 1/2, K = 7) code and outer code is Reed- 
Solomon (31,21) code. 

Figures 4 to 7 indicates that a reduction in the alphabet size for channel symbols 
increases the system susceptibility to partial-band interference. The primary 
reason is the reduced energy per channel symbol. 
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6.2   Trellis-Coded Modulation 

Trellis-coded modulation is a combined coding and modulation method that is 
usually applied to coherent digital communications over bandlimited channels 
(Appendix A-2). Multilevel and multiphase modulations are used to enlarge the 
signal constellation while not expanding the bandwidth beyond what is required 
for the uncoded signals. Since the signal constellation is more compact, there is 
some modulation loss that detracts from the coding gain, but the overall gain can 
be substantial. Since a noncoherent demodulator is usually required for 
frequency-hopping communications, the usual coherent trellis-coded 
modulations are not suitable. Instead, the trellis coding may be implemented by 
expanding the signal set for M/2-ary MFSK to M-ary MFSK [19]. Although the 
frequency tones are uniformly spaced, they are allowed to be nonorthogonal to 
limit or avoid bandwidth expansion. 

Trellis-coded 4-ary MFSK is illustrated in Figure 20 for a rate-1/2 code with four 
states. The signal set partitioning, shown in Figure 20(a), partitions the set of 
four signals or tones into two subsets, each with two tones. The partitioning 
doubles the frequency separation between tones from A Hz to 2A Hz. The 
mapping of code bits into signals is indicated. In Figure 20(b), the numerical 
labels denote the signal assignments associated with the state transitions in the 
trellis for a four-state encoder. The bandwidth of the frequency channel that 
accommodates the four tones is approximately B = 4A. 

There is a trade-off in the choice of A because a small A allows more frequency 
channels and thereby limits the effect of multiple-access interference or 
multitone jamming, whereas a large A tends to improve the system performance 
against partial-band interference. If a trellis code uses four orthogonal tones with 
spacing A = 1/Tb, where Tb is the bit duration, then B = 4/Tb. The same 
bandwidth results when an FH/FSK system uses two orthogonal tones, a rate-1/2 
code, and binary channel symbols since B = 2/7^ = 4/Tb. The same bandwidth 
also results when a rate-1/2 binary convolutional code is used and each pair of 
code symbols is mapped into a 4-ary channel symbol. The performance of the 
4-state, trellis-coded, 4-ary MFSK frequency-hopping system [19] indicates that 
it is not as strong against worst-case partial-band interference as an FH/MFSK 
system with a rate-1/2 convolutional code and 4-ary channel symbols or an 
FH/FSK system with a Reed-Solomon (32,16) code and errors and erasures 
decoding. The advantage of trellis-coded modulation in a frequency-hopping 
system is its relatively low implementation complexity. 

6.3   1\irbo Codes 

Turbo codes provide an alternative to errors and erasures decoding for 
suppressing partial-band interference. A turbo-coded frequency-hopping system 
that uses spectrally compact channel symbols will also resist multiple-access 
interference. An accurate estimate of the variance of the interference plus noise. 
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Figure 20. Rate-1/2, four-state trellis-coded 4-ary MFSK: (a) signal set partitioning and 
mapping of bits to signals, and (b) mapping of signals to state transitions. 

which is modeled as zero-mean, white Gaussian noise, is always needed in the 
iterative turbo decoding algorithm (Appendix A-4). When the channel dynamics 
are much slower than the hopping rate, all the received symbols of a dwell 
interval may be used in estimating the variance associated with that dwell 
interval. 

Consider an FH/DPSK system in which each code bit can take the values +1 or 
—1. The architecture of interactive turbo decoding and channel estimation is 
illustrated in Figure 21. The log-likelihood ratio (LLR) of a bit Uk conditioned on 
a received sequence y = {yiy2 ... Vn) of demodulator outputs is defined as the 
natural logarithm of the ratio of the a posteriori probabiHties: 

i(«fe|y) = In 
'Pjuk = +l|y)' 
P(«fe = -l|y). 

(6-17) 
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Figure 21. Receiver and decoder architecture for frequency-hopping system with turbo 
code. 

Successive estimates of the LLRs of the code bits are computed by each 
component decoder during the iterative decoding of the turbo code. The usual 
turbo decoding is extended to include the iterative updating of the LLRs of both 
the information and parity bits. The fact that 

P{u, =-l\y) = 1 - P{uk =+l\y) 

and (6-17) imply that the a posteriori probabilities are 

Pik = P{uk = +l|y) = 

Pok = P{uk = -l|y) = 

l+exp[-L(Mfc|y)] 

exp[-L{uk\y)] 
l+exp[-L(wfc|y)] 

(6-18) 

(6-19) 

(6-20) 

Using these equations, the channel estimator can convert a LLR transferred after 
a component decoder iteration into estimates of pi^ and pok- The estimate of the 
variance of the interference plus noise during dwell interval j may be based on 
the Nh demodulator outputs during the dwell interval and is given by [20] 

'tj l^-^T Yl [Pofc(?/fc + if+PikiVk - 1?] + c (6-21) 
'^ fc=0 

where yk is the kth component of y during dwell interval j and c is a constant 
added to unbias the estimate. The set of estimates a^j for all the dwell intervals is 
sent to the other component decoder for the next decoding iteration. 

A simulation of a turbo-coded FH/DPSK system [20] that uses (6-21) indicates 
that its performance is more than 2 dB better than that shown in Figure 16. The 
rate-1/3 turbo code uses two 4-state recursive systematic convolutional encoders, 
each with octal generator (5,7), a 200-bit turbo interleaver, ideal channel 
interleaving, 5 decoder iterations, Nh = 10, and Sb/No = 20 dB, which is known 
a priori by the receiver. After each iteration by a component decoder, its LLRs 
are updated and the extrinsic information is transferred to the other component 
decoder. 
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Estimates of the independent random carrier pliase and the Rayleigh fading 
amplitude for each dwell interval can be integrated into the iterative decoding of 
a turbo code if these parameters are constants over the dwell interval [20], [21]. 
Bit estimates generated by one component decoder are used in computing 
parameter estimates that are passed to the other component decoder. For a 
sufficiently large dwell interval, the resulting performance is almost as good as 
theoretically possible with perfect side information about the carrier phase and 
the fading amplitude. Known symbols may be inserted into the transmitted code 
symbols to facilitate the estimation, but the energy per information bit is reduced. 
Increasing N^ improves the estimates because they may be based on more 
observations and more known symbols can be accommodated. However, since 
the reduction in the number of independent hops per information block of fixed 
size decreases the diversity, and hence the independence of errors, there is a limit 
on Nh beyond which a performance degradation occurs. 

Although turbo codes are generally used with binary channel symbols, their 
error-correcting capability is strong enough to compensate for the relatively low 
channel-symbol energy. However, if the system latency and computational 
complexity of turbo codes is unacceptable, then there is a tradeoff in the choice 
of the modulation and code. 
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7.   Frequency-Hopping Multiple-Access Networks 

Frequency-hopping systems are usually part of ^frequency-hopping code- 
division multiple-access (FH/CDMA) network in which all systems share the 
same M frequency channels. In a synchronous FHICDMA network, the systems 
coordinate their frequency transitions and hopping patterns. Consequently, as 
many as M frequency-hopping signals can be simultaneously accommodated by 
the network with insignificant multiple-access interference at any of the active 
receivers. Network coordination is much simpler to implement than for a 
direct-sequence CDMA network because the timing alignments must be within a 
small fraction of a hop duration instead of a small fraction of a spreading- 
sequence chip. Multipath signals and errors in range estimates can be 
accommodated at some cost in the energy per information bit by increasing the 
switching time between frequency-hopping pulses. However, some type of 
centralized or cellular architecture is required, and such an architecture is often 
unavailable. 

7.1   Asynchronous FH/CDMA Networks 

An asynchronous FHICDMA network has systems that transmit and receive 
autonomously and asynchronously. When two or more frequency-hopping 
signals using the same frequency channel are received simultaneously, they are 
said to collide. Since the probability of a collision in an asynchronous network is 
decreased by increasing the number of frequency channels in the hopset, it is 
highly desirable to choose a data modulation that has a compact spectrum. Good 
candidates are FH/CPFSK systems that use a frequency discriminator for 
demodulation. Binary CPFSK with h = 0.7 and BTs = 1 provides excellent 
potential performance if the spectral splatter and intersymbol interference 
generated by this modulation are negligible. However, for approximately the 
same degree of spectral splatter and intersymbol interference as MSK with BT^ = 
1, the bandwidth must be increased so that BTs = 1-4, which reduces the number 
of frequency channels M in a fixed hopping band. This much reduction in M is 
enough to completely offset the intrinsic performance advantage of binary 
CPFSK with h = 0.7. Thus, the choice between the latter and MSK will depend 
on the details of the impact of the spectral splatter and intersymbol interference. 

Let d represent the duty factor, which is defined as the probability that an 
interferer using the same frequency channel will degrade the reception of a 
symbol. Thus, d = qiq2 is the product of the probability qi that an interferer is 
transmitting and the probability ^2 that a significant portion of the interferer's 
transmitted waveform occurs during the symbol interval. The probability g2 is 
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upper bounded and well approximated by the probability that there is any overlap 
in time of the interference and the symbol interval. For synchronous frequency 
hopping, 92 = 1- Since Tg^ > T^, it follows from elementary probability that for 
asynchronous frequency hopping, g2 ~ (2d + Ts)/Th. For voice communications 
with voice-activity detection, qi = 0.4 is a typical value. Assuming that an 
interferer may transmit in any frequency channel with equal probability, the 
probability that a potentially interfering signal collides with the desired signal 
during a symbol interval is 

When a collision occurs, the symbol is said to be hit by the interfering signal. For 
MFSK, M is given by (6-7). 

Consider an FH/CDMA network of iV + 1 asynchronous systems with negligible 
spectral splatter and intersymbol interference. The code symbols are interleaved 
so that each code symbol of a codeword is transmitted in a separate dwell 
interval. The switching time T^^ > T^ so that each potentially interfering 
frequency-hopping signal uses at most one frequency channel during the 
reception of one symbol of a desired signal. The 2Nt test symbols are split into 
separate sets of iV^ > 1 test symbols at each end of a dwell interval [17]. Thus, if 
a code symbol is hit by one or more of the N interfering signals, then at least one 
set of the test symbols in that same dwell interval is also hit. For analytical 
simplicity, we make the following assumptions: 

1. If at least one of the two test symbols at the opposite ends of a dwell 
interval is hit, then an erasure is always m^e. Thus, if a code symbol is 
hit, an erasure is always made. 

2. If a code symbol is not hit, then this condition has a negligible influence on 
the probability that one of the two end test symbols is hit. 

3. The probabiUty that both end test symbols are hit is negligible. 

These assumptions are approximately valid ifNh» Nt>l and the N 
interfering signals have approximately the same or more power than the desired 
signal. 

The first assumption implies that the probability of the erasure of a code symbol 
is 

P, = [1 - (1 - cf] + (1 - cfP^o (7-2) 

where P^ is the erasure probabiUty given that no hit of the code symbol 
occurred. Observe that if neither of the end test symbols is hit, then no test 
symbol is hit. Therefore, the assumptions imply that 

Peo = 2[l-(l-c)^]-h[2(l-c)^-l]a- '-'^t 
^...m 

(7-3) 
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where the first term is the probabiHty that one of the two end test symbols is hit, 
and the term in braces is the probability that although no test symbols are hit, an 
erasure occurs because at least one of the detected test symbols is incorrect. For 
MFSK modulation and no fading, each channel symbol is a code symbol and 
F{x) is given by (6-14). Under the first assumption, the code-symbol error 
probability is 

:>. = (l-cni-P.o)F(|) (7-4) 

Suppose that each code symbol is represented by m = log2 q binary channel 
symbols that are interleaved over m dwell intervals. Since all m channel symbols 
must be received correctly for there to be no code-symbol error, then the 
independence of channel-symbol errors implies that 

Ps = l i-(i-cni-p, ■^Hk) (7-5) 

where F{x) is given by (6-4) with ^ = 1/2 for orthogonal FSK or MSK and ^ = 1 
for DPSK. Equation (6-15) gives Pb for errors and erasures decoding. The 
fundamental advantage of MSK is the reduced bandwidth per frequency channel. 
Thus, instead of (6-7), 

M 
rW 

^MSK 
> 

2rW 
(7-6) 

since BMSK < BJ2. 

Figure 22 illustrates Pb versus N for FH/MFSK, FH/FSK, FH/DPSK, and 
I^/MSK systems that use a Reed-Solomon (32,12) code with errors and erasures 
decoding against asynchronous multiple-access interference. The plots are 
computed from (7-2) to (7-5) with M given by (6-7) for MFSK and orthogonal 
FSK, and the lower bound in (7-6) for MSK. In all cases, W/B^ = 1000 and d = 
1. The 5-ary MFSK channel symbols have Nt = 2 while the systems that use 
binary channel symbols have iV^ = 10. The huge benefit obtained from using 
binary channel symbols and the further substantial benefit from using MSK are 
apparent in the figure. These benefits must be weighed against the disadvantage 
of binary channel symbols in the presence of partial-band interference, as shown 
in Section 6. The figure illustrates that as Sb/No drops from 17 dB to 14 dB, the 
FH/MSK systems degrade substantially while the FH/MFSK systems degrades 
imperceptibly. 
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Figure 22. Performance of frequency-hopping systems with Reed-Solomon (32,12) code, 
various modulation, erasures, WjB^ = 1000, rf = 1, and no fading. Nt = 10 for binary 
modulations; Nt = 2 for 5-ary MFSK. 

To obtain good performance against both partial-band interference and 
multiple-access interference, a turbo code and binary channel symbols are 
needed. However, even if €g is known, perhaps through power control, the turbo 
decoder computation must be modified to account for the fluctuations from 
symbol-to-symbol in the interference-plus-noise variance caused by multiple- 
access interference [20]. When DPSK is the modulation, suitable modifications 
use (A-141) and (A-134). 

If a turbo code is not feasible, then a Reed-Solomon code with errors and 
erasures decoding is a good choice. However, a tradeoff is necessary in the choice 
of the modulation. If one is primarily interested in avoiding multiple-access 
interference, then binary channel symbols are desirable. If stronger protection 
against partial-band interference but weaker protection against multiple-access 
interfeience is needed, then nonbinary channel symbols are preferable. 

7.2   Mobile Peer-to-Peer and Cellular Networks 

The two principal types of CDMA are direct-sequence CDMA and frequency- 
hopping CDMA. Two major advantages of frequency hopping are that it can be 
implemented over a much larger frequency band than it is possible to implement 
direct-sequence spi^ading, and that the band can be divided into noncontiguous 
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segments. Another major advantage is that frequency hopping provides 
resistance to multiple-access interference, while not requiring power control to 
prevent the near-far problem. In direct-sequence systems, accurate power control 
is crucial but becomes much less effective as the fading rate increases. These 
advantages of frequency hopping will be decisive in many applications. 

Mobile peer-to-peer communications are used in mobile communication 
networks that possess no supporting infrastructure, fixed or mobile; each user has 
identical signal processing capability. Peer-to-peer communications have both 
commercial applications and important military applications, the latter primarily 
because of their robustness in the presence of node losses. Mobile frequency- 
hopping CDMA systems [22] are suitable for both peer-to-peer and cellular 
communication networks. Power control and, hence, current direct-sequence 
CDMA are not viable for peer-to-peer communications because of the lack of a 
centralized architecture. Current plans to use multiuser detection in direct- 
sequence CDMA systems still require power control, which is highly desirable 
for the synchronization. 

Compared with the alternatives, CDMA is advantageous for cellular networks 
because it eliminates the need for frequency and timeslot coordination among 
cells, allows complete frequency reuse in all cells, and can fully exploit 
intermittent voice signals and sectorization. Both frequency-hopping and direct- 
sequence systems are viable choices for mobile cellular CDMA communications. 

Through analysis and simulation, a unified evaluation of the potential 
performance of both mobile peer-to-peer and sectorized cellular frequency- 
hopping CDMA systems is presented. The equivalent number of frequency 
channels and the minimum signal-to-noise ratio (SNR) are defined and shown to 
be important parameters in understanding and predicting network capacity. The 
effects of spectral splatter are analyzed. Separated orthogonality is defined and 
shown to be useful in completely eliminating intracell or intrasector interference. 
Spatial diversity by postdetection rather than predetection combining is proposed 
and shown to be invaluable. Noncoherent demodulation by a frequency 
discriminator rather than parallel matched filters and envelope detectors is 
proposed and shown to be effective. It is shown that even without exploiting 
either its natural bandwidth advantage or power control, frequency-hopping 
CDMA provides an uplink capacity nearly the same as direct-sequence CDMA 
with realistic power-control imperfections. 

The propagation path losses are modeled as the result of power-law losses, 
shadowing, and fading. In the absence of shadowing and fading, the received 
signal power at an omnidirectional antenna for communications over a fixed 
range r has an average value called the area-mean power, where the average is 
calculated over a specified geographic area. The power-law model assumes that 
the area-mean power has the form 
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r  •-" 
P. = Po^^J (7-7, 

where po is the power when the range is r = Ho, and (3 is the power law. A 
typical value of the power law for an urban area is ^ = 4. In the absence of 
fading, the received local-mean power fluctuates about the area-mean power due 
to shadowing, which is the effect of path-to-path differences in terrain profiles 
for paths of the same distance. On the basis of extensive empirical data, the 
local-mean power pi is assumed to be lognormally distributed, which implies that 

ft-paO«/'° (7-8) 

where ^ is a zero-mean random variable with a normal distribution. The standard 
deviation of ^ is denoted by a^, which is expressed in decibels and is assumed to 
be the same for all signals. A straightforward derivation using (7-7) and (7-8) 
indicates that the probability distribution function of the normalized local-mean 
power pi/po is 

F(a;) = l-ierfcJ—hi 
2 10"., 

(7-9) 

where erfc{ } denotes the complementary error function and a = (10 log^o e)/ 
-^. The fading causes a power fluctuation about the local-mean power. 

It is assumed that L omnidirectional antennas are deployed to achieve spatial 
divemty at the mobiles. The antennas are separated from each other by several 
wavelengths, so that the fading of both the desired signal and the interfering 
signals at one antenna is independent of the fading at the other antennas. A few 
wavelengths are adequate because mobiles, in contrast to base stations, tend to 
receive superpositions of reflected waves arriving from many random angles. 
Because of practical physical constraints, spatial diversity will ordinarily be 
effective only if the carrier frequencies exceed roughly 1 GHz. Polarization 
divemty and other forms of adaptive array processing are alternatives. 

One method of combining antenna outputs is predetection combining, which 
requires the estimation of the signal and interference-plus-noise power levels at 
each antenna for maximal-ratio combining or selection diversity and requires the 
cophasing of the L antenna outputs for maximal-ratio or coherent equal-gain 
combining. Since the relative phases and power levels of the signals at the L 
antennas change after every hop, it is almost always impractical to implement 
predetection combining. As a much more practical alternative, a receiver can 
combine the demodulated outputs rather than the signals from the L antennas. 
This postdetection combining eliminates the cophasing and does not require the 
time alignment of L signals in practical applications because any misalignment is 
much smaller than a symbol duration. The estimation of power levels can be 
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eliminated by the use of a fixed combining rule, such as equal-gain or square-law 
combining. 

In the receiver of a frequency-hopping system, each antenna output is dehopped 
and filtered. The interference plus noise in each dehopped signal is approximated 
by independent bandlimited white Gaussian noise, with equivalent power given 
by 

K 

where a"^ is the thermal noise power, K is the number of active interfering 
mobiles, and p^i is the local-mean interference power received from mobile i. 
The Gaussian model is reasonable, especially for large numbers of mobiles, 
because the interference signals are asynchronous, fade independently, and 
experience different Doppler shifts. The total interference power is 
approximately uniform (white) over the receiver passband following dehopping 
if BTs = C ^ 1 • The L diversity antennas are assumed to be close enough to 
each other that the power-law losses and shadowing are nearly the same, and thus 
the local-mean power from a mobile is the same at each antenna. Each active 
interfering mobile may actually represent a cluster of mobiles. In this cluster, 
some discipline such as carrier-sense multiple access is used to ensure that there 
is at most one transmitted signal at any time. 

The desired signal is assumed to experience frequency-nonselective Rayleigh 
fading. The Rayleigh fading model is appropriate under the pessimistic 
assumption that the propagation paths are often obstructed, and thus, the power 
of the direct line-of-sight signal is small compared with the reflected signal 
power. Frequency-nonselective fading occurs if JB < Bcoh- Rayleigh fading may 
be negligible if mobile speeds are very low, which would occur if each mobile 
consisted of a person walking. Shadowing would still occur but would be slowly 
varying over time. 

Spectrally compact CPFSK signals do not have enough frequency shift to be 
demodulated by classical noncoherent demodulators with parallel matched filters 
and envelope detectors, but can be demodulated by a frequency discriminator. 
We consider binary MSK with discriminator demodulation. For postdetection 
diversity, the outputs of L discriminators are weighted and combined. The 
weighting is by the square of the envelope at the input to each discriminator. 
When the desired signal undergoes independent Rayleigh fading at each antenna 
and the channel parameters remain constant for at least one symbol duration, a 
calculation using the results of Adachi and Parsons [23] yields the symbol-error 
probability 

(7-11) 
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where C, = BTs, p = Ps/<^i, and Ps is the local-mean power of the desired signal. 
The information-bit error rate following hard-decision decoding can be 
calculated from Ps with well-known equations. The theoretical loss due to using 
postdetection rather than predetection combining is less than a decibel [23], 

7.3   Peer-to-Peer Simulation Results 

This section considei^ a peer-to-peer network of independent, identical, 
frequency-hopping systems that have omnidirectional antennas, generate the 
same output power, share the same carriers and frequency channels, and are 
nearly stationary in location over a single symbol duration. Since for peer-to-peer 
communications it is assumed that an interfering mobile may transmit in any 
frequency channel with equal probability, the probability that power from an 
interferer enters the transmission channel of the desired signal is 

F, = ^. (7-12) 

It is assumed that M is sufficiently large that we may neglect the fact that a 
channel at one of the ends of the hopping band has only one adjacent channel 
instead of two. Consequently, the probability that the power from an interferer 
enters one of the two adjacent channels of the desired signal is 

2d 

The probability that the power enters neither the transmission channel nor the 
adjacent channels is (1 — 3d/M). These equations make it apparent that the 
performance of a frequency-hopping system depends primarily on the ratio 
Ml = M/d. This ratio is called the equivalent number of channels because any 
decrease in the duty factor has the same impact as an increase in the number of 
frequency channels; what matters most for performance is this ratio. 

In the simulation, the locations of the mobiles are assumed to be uniformly 
distributed in a circular region surrounding a specific mobile receiver, as 
illustrated in Figure 23. Therefore, the radial distance of a mobile from the 
receiver has the probability distribution function 

Gir) = |j ,      0<r<R (7-14) 

where R is the radius of the circle. The distance of the desired mobile is 
randomly selected according to this distribution with R = RQ, where i2o is the 
maximum communication range and corresponds to a received area-mean signal 
power equal to po- The distance of each interfering mobile is randomly selected 
according to this distribution with R = Ri. The selected distance of the desired 
mobile is substituted into (7-9) as the value of r, and then (7-9) is used to 
randomly select the- local-mean power of the desired signal at the receiver. The 
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X Desired mobile 
O Interfering mobile 

Figure 23. Geometry of a peer-to-peer communication network. 

probabilities given by (7-12) and (7-13) are used to determine if an interfering 
mobile produces power in the transmission channel or in one of the adjacent 
channels of the desired signal. If the power enters the transmission channel, then 
the power level is randomly selected according to (7-9) with the distance of the 
mobile substituted. If the power enters one of the adjacent channels, then the 
potential local-mean power level is first randomly selected via (7-9) and then 
multiplied by Kg to determine the net interference power pui that appears in 
(7-10). The effects of po and a"^ are determined solely by the minimum area- 
mean SNR, which occurs at the maximum range r = RQ of the desired signal and 
is equal to Po/cTn- Once the local-mean power levels and the noise power are 
calculated, the symbol error probability Pg is calculated with (7-10) and (7-11). 
Each simulation experiment was repeated for 10,000 trials, with different 
randomly selected mobile locations in each trial. The performance measure is the 
spatial reliability, which is defined as the fraction of trials for which Pg is less 
than a specified performance threshold E. The appropriate value of the threshold 
depends on the desired information-bit error probability and the error-correcting 
code. The spatial reUability is essentially the probability that an outage does not 
occur. 

Figures 24 to 26 depict the results of three simulation experiments for peer-to- 
peer networks. The figures plot the spatial reliability as a function of K for 
various values of L, assuming (7-11), Rayleigh fading, MSK, and that j3 = 4,as = 
8 dB, £; = 0.01, C=l,Ks= 0.015, i?o = 1, and /2i = 2. The value of Kg results 
from assuming contiguous frequency channels with center frequencies separated 
by B. The units of RQ and Ri are immaterial to the calculation of the spatial 
diversity. 

Figure 24 provides a baseline with which the other figures may be compared. For 
this figure, the assumptions are that Mi = 250, and the minimum area-mean SNR 
= 20 dB. The number of equivalent frequency channels Mi could model voice 

56 



^ .»-* 

e 

a. 

1 

0.98 

0.96 
0.94 

0.92 

0.9 

0.88 

0.86 

0.84 

0.82 

0.8 

**% 

■•-'•-tS>^.      L = 4 
i-^* 

£=3-v,:++-. ,..,^H-4-+-+^^ 

L = 2 

^.  L=\ 

0    5    10   15   20   25   30   35   40   45   50 
Number of interferers 

Figure 24. Sp^ial reliability for Mi = 250 and minimum area-mean SNR = 20 dB. 

communications with M = 90 channels and d = 0.36; alternatively, it could 
model continuous data communications with M = 225 and d = 0.9. The figure 
illustrates the dramatic performance improvement provided by dual spatial 
divemty when Rayleigh fading occurs. Further increases in diversity yield 
diminishing returns. One can assess the impact of the spectnd splatter in this 
example by setting if^s = 0 and observing the change in the spatial reliability. The 
change is smaU, and nearly imperceptible if i^ < 25. 

Figure 25 illustrates the effect of increasing the number of equivalent channels to 
M\ = 500. Let the capacity of the network be defined as the maximum number of 
interfering mobiles for which the spatial reliability exceeds 0.95. Figures 24 and 
25 and other simulation results indicate that for the parameter values selected, the 
capacity C for dual spatial diversity is approximately proportional to Mi; 
specifically, C « 0.07 Mi for 100 < Mi < 1000. If ^ is increased to 0.02, the 
capacity for dual spatial diversity increases by approximately 20 percent. 

Figure 26 illustrates the sensitivity of the network to an increase in the minimum 
area-mean SNR, which may be due to a change in po or a^. For no spatial 
diversity or dual divereity, a substantial performance improvement occurs when 
the minimum area-mean SNR = 25 dB. Other simulation results indicate that a 
decrease in the minimum area-mean SNR below 20 dB severely degrades 
performance. 

Since (7-11) relates Pg to p, the local-mean signal-to-interference-plus-noise 
ratio (SINR), the spatial rehabUity has an altemative and equivalent definition as 
the fraction of trials for which the SINR exceeds a specified threshold Zi. Thus, 
the curves labeled L = 1,2,3, and 4 in Figures 24 to 26 (and later in Figures 28 
to 31 correspond to Zi = 17.7 dB, 10.0 dB, 7.7 dB, and 6.5 dB, respectively. 

57 



Ij ■■■^i- *+*--tt-+^ 

0.98 

0.96 ^■'^-^vL=J^'   ^-'■'•^:ttit>t+: 

^0.94 ^^^""""""^^"—^ 

3 0.92 . 
<n 

••5    0.9 ■ - 
^ 
rt  0.88 . . 

■ *H \ •V _ 

a 0.86 . 
00 ^--^.-'^ L=l 

0.84 - 

0.82 - 

n «  '   v' 

0 5     10   15   20   25   30   35   40   45   50 
Number of interferers 

Figure 25. Spatial reliability for Mi = 500 and minimum area-mean SNR = 20 dB. 
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Figure 26. Spatial reliability for Mi = 250 and minimum area-mean SNR = 25 dB. 

7.4   Cellular Systems 

In a cellular network, each base station assigns separate directional sector 
antennas or separate outputs of a phased array to cover disjoint angular sectors in 
both the transmitting and receiving modes. Typically, there are three sectors, and 
27r/3 radians are in each angular sector. The mobile antennas are assumed to be 
omnidirectional. Ideal sector antennas have uniform gain over the covered sector 
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and negligible sidelobes. With these antennas, only mobiles in the covered sector 
can cause multiple-access interference on an uplink from a mobile to a base 
station, and the number of interfering signals on the link is reduced by a factor s 
approximately equal to the number of sectors. Only the antenna serving a cell 
sector oriented toward a mobile can cause multiple-access interference on a 
downlink from the controlling base station to a mobile. Therefore, the number of 
interfering signals is reduced approximately by a factor s on both the uplinks and 
downlinks. Practical sector antennas have patterns with sidelobes that extend into 
adjacent sectors, but the performance degradation due to overlapping sectors is 
significant only for a small percentage of mobile locations. Ideal sector antennas 
are assumed in the subsequent simulation. 

Spatial diversity may be obtained through the deployment of L antennas in each 
mobile and L antenna elements for each sector antenna of each base station. The 
antennas are separated from each other enough that the fading of both the desired 
signal and the interfering signals at one antenna is independent of the fading at 
the other antennas. A few wavelengths are adequate for a mobile because it tends 
to receive superpositions of reflected waves arriving from many random angles. 
Many wavelengths separation may be necessary for a base station located at a 
high position, and polarization divemty may sometimes be a more practical 
means of obtaining diversity. 

In a cellular network, the frequency-hopping patterns can be chosen so that at 
any given instant in time, the frequencies of the mobiles within a cell sector are 
all different and, hence, the received signals are all orthogonal if the mobile 
transmissions are properly synchronized. Exact synchronization on a downUnk is 
possible because a common timing is available. The advancing or retarding of the 
transmit times of the mobiles enables the arrival times at the base station of the 
uplink signals to be synchronized. The switching time or guard time between 
frequency-hopping pulses must be large enough to ensure that neither a small 
synchronization error nor multipath signals can subvert the orthogonality. The 
appropriate transmit times of a mobile can be determined from position 
information provided by the Global Positioning System and the known location 
of the base station. Alternatively, the transmit times can be determined from 
arrival-time measurements at the base station that are sent to the mobile. These 
measurements may be based on the adaptive thresholding [24] of the leading 
and/or trailing edges of a sequence of frequency-hopping pulses. 

Let Ng denote the number of mobiles assigned to a cell sector. To ensure 
orthogonality of Ng received signals within a cell sector, a simple procedure is to 
generate a periodic frequency-hopping pattem that does not repeat until all the 
carrier frequencies in a hopset of size M > Ng have been used. Mobile n is 
assigned this pattem with a delay of n — 1 hop durations, where n = 1,2,..,, JVg. 
If the patterns associated with different sectors are all drawn from a set of 
one-coincidence sequences [25], then any two signals from different cells or 
sectors will collide in frequency at a base station at most once during the period 
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of the hopping patterns. However, the use of one-coincidence sequences 
throughout a network requires frequency planning, which may be too costly in 
some applications. 

It is possible to ensure not only the orthogonality of Ng signals in a sector but 
also that the received carrier frequencies in any two patterns are separated by at 
least uB, where ?/ is a positive integer, so that the spectral splatter is greatly 
reduced or negligible. Let A; = 0,1, 2,..., M - 1 label the hopset frequencies in 
ascending order. Suppose that a frequency-hopping pattern is generated that does 
not repeat until all the carrier frequencies in a hopset of size M > uNg have been 
used. When mobile 1 hops to frequency k, mobile n hops to frequency [k + u 
(n — 1)] modulo M. Frequency-hopping signals that use frequencies determined 
by this procedure are called separated orthogonal signals. Choosing z/ = 2 will 
generally be adequate because spectral splatter from channels that are not 
adjacent will be nearly always insignificant if a spectrally compact data 
modulation is used. 

Frequency-hopping CDMA networks largely avoid the near-far problem by 
continually changing the carrier frequencies so that frequency collisions become 
brief, unusual events. Thus, power control in a frequency-hopping CDMA 
network is unnecessary, and all mobiles may transmit at the same power level. 
When power control is used, it tends to benefit signals from mobiles far from an 
associated sector antenna, while degrading signals from mobiles close to it. 
Simulation results [26] indicate that even perfect power control typically 
increases system capacity by only a small amount. There are good reasons to 
forego this slight potential advantage and not use power control. The required 
overhead may be excessive. If geolocation of mobiles is done by using 
measurements at two or more base stations, then the power control may result in 
significantly less signal power arriving at one or more base stations and the 
consequent loss of geolocation accuracy. 

Consider communications between a base station and a mobile assigned to sector 
A of a particular cell, as illustrated in Figure 27 for a hexagonal grid of cells. 
Because of orthogonality, no other signal in sector A will use the same carrier 
frequency at the same time and thereby cause interference in the transmission 
channel (current frequency channel) of either the uplink or downlink. Consider 
another sector covered by the sector antenna of sector A; an example is sector B. 
Assuming that an interfering signal may independently use any frequency in the 
network hopset with equal probability, the probability that a mobile in the 
covered sector produces interference in the transmission channel of the uplink 
and degrades a particular symbol is 

Pm = -jf. (7-15) 

This equation also gives the probability that a sector antenna serving another 
sector that is oriented toward the desired mobile degrades a symbol by producing 
interference in the transmission channel of the downlink. Because of 
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Figure 27. Hexagonal grid of cells. Communicators are in sector A. Sector B is an inter- 
fering sector. 

orthogonality within each sector, no more than one signal from a sector will 
produce interference in the transmission channel of either link. A sector with 
mobiles that may interfere with communications over an uplink or a sector with 
an anteima that may produce interference over a downlink is called an interfering 
sector. 

It is assumed that M is sufficiently large that we may neglect the fact that a 
channel at one of the ends of the hopping band has only one adjacent channel 
within the band instead of two. Let iVi = 1 if a signal from an interfering sector 
uses the transmission channel of communicators in sector A; let iVi = 0 if it does 
not. The probability that iVi = 1 is Ng/M. The Ng — Ni interference signals from 
a sector that do not enter the transmission channel are assumed to be randomly 
distributed among the M — 1 frequency channels excluding the transmission 
channel. There are (^ZN^) ^^ys to choose the chaimels with interference 
signals. There are Q ways to choose one of the two adjacent channels to have an 
interference signal and (jy^^jvf-i) ways to choose Ng — Ni — 1 charmels with 
interference signals out of the M — 3 channels excluding both the transmission 
channel and the adjacent channels. The probability that an adjacent channel with 
an interference signal actually receives interference power is qi. Similarly, there 
is one way to choose both adjacent charmels with interference signals and 
(jVs-i^f-2) w*y^ t° choose Ng — Ni—2 channels with interference signals out of 
M — 3 channels. The probability that exactly one of the two adjacent channels 
with interference signals actually receives interference power is 2gi(l — gj). 
Because of the sector synchronization, either all of the signals from a sector 
overlap a desired symbol with probability §2 or none of them do. Therefore, the 
probability that a symbol is degraded by interference in exactly one of the 
«ljacent channels of the communicators is 
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^«1   = ( M-1 >.      91 g2 +     . M_\ .    2gi(l - gi)g2 

2d{N,-Ni) 
{M-l){M-2) 

[M -2-q,{Ns-N,- 1)],   M>Ns. (7-16) 

Similarly, the probability that a symbol is degraded by interference in both 
adjacent channels is 

\Ns-N1-2) „2, 
°2 -     ( A/-1 \   9i9: 

c^gi (iV. - iVi) (iV. - A^i - 1) 
(M-l)(A/-2) 

M > A^. • (7-17) 

For adjacent-channel interference from within sector A, P^i and Pa2 are given by 
the same equations with A^i = 1 to reflect the fact that one of the mobiles is the 
communicating mobile. 

Suppose that separated orthogonal frequency-hopping patterns with zv = 2 are 
used. There is no adjacent-channel interference from sector A. If a signal from an 
interfering sector B uses the transmission channel so that A^i = 1, an event with 
probability Ng/M, then the carrier separation of the signals generated in sector B 
ensures that there is no adjacent-channel interference from sector B. Suppose that 
no signal from sector B uses the transmission channel so that A^i = 0. 
Interference in exactly one adjacent channel results if the transmission channel of 
the desired signal in sector A, which may be any of M — Ng channels, is located 
next to one of the two end channels of the set of A^^ separated channels being 
used in sector B, neglecting hopset end effects. It also results if the transmission 
channel is located between two separated channels, of which only one is 
currently being used in sector B, again neglecting hopset end effects. Therefore, 
the probability that a symbol is degraded by interference in exactly one of the 
adjacent channels of the communicators is 

Pn^     = + 77 ^9i(l-9i) M-N,     M-N. ' s 
Q2 

[{Ns -l){l-q,) + 2] ,    M>2Ns,Ni = 0. (7-18) 
M-Ng 

Interference in both adjacent channels results if the transmission channel is 
located between two separated channels of sector B and both are being used, 
neglecting hopset end effects. Therefore, the probability that a symbol is 
degraded by interference in both adjacent channels is 

^°'"^^M^F^'     M>2Ns,N^=0. (7-19) 
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7,5   Cellular Simulation Results 

In the simulation, the spatial configuration consists of a hexagonal grid of cells 
with base stations at theh centers. Each cell has a radius RQ from its center to a 
comer. A central cell is surrounded by an inner concentric tier of 6 cells and an 
outer concentric tier of 12 cells, as depicted in Figure 27. Other tiers are assumed 
to generate insignificant interference in the central cell. An equal number of 
mobiles, each transmitting at the same power level, is located in each sector and 
served by that sector's antenna. This assumption is pessimistic since slightly 
improved performance may be possible if a mobile is served by the sector 
antenna providing a signal with the least attenuation, and if hysteresis effects 
during handoffs are not too severe. Each signal transmitted by a sector antenna is 
allocated the same power. The set of frequency-hopping patterns used in each 
sector is assumed to be selected independently of the other sectors. Since the 
parameter RQ in (7-7) and (7-9) is equal to the maximum communication range, 
Po is the minimum received area-mean power of a desired signal. The location of 
each mobile within a sector is assumed to be uniformly distributed. 

In each simulation trial for communications in sector A of the central cell, the 
location of the desired mobile is randomly selected according to the uniform 
distribution. The selected distance of the desired mobile is substituted into (7-9) 
as the value of r, and then (7-9) is used to randomly select the local-mean power 
of the desired signal at the receiver. Each transmitting and receiving beam 
produced by a sector antenna is assumed to have a constant gain over its sector 
and zero gain elsewhere. 

For an uplink of sector A, interference is assumed to arrive from mobiles within 
sector A, mobiles in the 6 sectoi^ of the two cells in the inner tier that were 
covered by the beam of sector A, and mobiles in the 11 complete sectors and 2 
half-sectors of the five cells in the outer tier completely or partially covered by 
the beam. The 2 half-sectors are approximated by an additional complete sector 
in the outer tier. Equations (7-15) to (7-19) are used to determine if a sector 
contains mobiles that produce power in the transmission channel or in one or 
both of the adjacent channels. If the sector does, then the locations of the three or 
fewer interfering mobiles are randomly selected according to the uniform 
distribution, and their distances from the central cell's base station are computed. 

For a downlink of sector A, interference is assumed to arrive from the facing 
sector antenna of each cell in the two surrounding tiere. Equations (7-15) to 
(7-19) are used to determine if a signal generated by an interfering sector antenna 
produces power in the transmission channel or the ^jacent channels of the 
desired signal. If so, then the distance between the sector antenna and the desired 
mobile is computed. 

If the power from an interferer enters the transmission channel, then the power 
level is randomly selected according to (7-9), with the appropriate distance 
substituted. If the power enters an adjacent channel, then the potential local-mean 
power level is first randomly selected via (7-9) and then multipUed by Ks to 
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determine the net interference power p„j that appears in (7-10). The shadowing 
parameter ag is assumed to be the same for all signals originating from all cells. 
The effects of po and cr^ are determined solely by Po/cr"^, the minimum area- 
mean SNR. Since only ratios affect the performance, the numerical value of RQ 

in the simulation is immaterial and is set equal to unity. 

Once the local-mean power levels and the noise power are calculated, the symbol 
error probability is calculated with (7-10) and (7-11). Each simulation 
experiment was repeated for 20,000 trials, with different randomly selected 
mobile locations in each trial. The performance measure is the spatial reliability, 
which is a function of p, the SINR. The appropriate value of the threshold E 
depends on the desired information-bit error probability and the error-correcting 
code. 

Figures 28 to 31 depict the results of four simulation experiments for the uplinks 
of a cellular network. The figures plot spatial reliability as a function of Ng for 
various values of L, assuming MSK, three sectors, and that /5 = 4, QI = 0.4, 92 = 
1.0, (T, = 8 dB, £; = 0.01, C = 1, and A'^ = 0.015. The value of A; results from 
assuming contiguous frequency channels with the center frequencies separated 
by 5. 

Figure 28 provides a baseline with which other figures may be compared. For 
this figure, separated orthogonal frequency hopping with u=^2,M= 100, and 
minimum area-mean SNR = 30 dB are assumed. The figure illustrates the 
dramatic performance improvement provided by dual spatial diversity when 
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Figure 28. Spatial reliability for uplinks, separated orthogonal hopping, M = 100, and 
minimum area-mean SNR = 30 dB. 
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Rayleigh fading occurs. Further increases in diversity yield diminishing returns. 
One can assess the impact of the spectral splatter in this example by setting 
Ks = 0 and observing the change in spatial reliability. The change is insignificant 
because by far the most potentially damaging splatter arises from mobiles in the 
same sector as the desired mobile, and the separated orthogonality has eliminated 
it. 

Figure 29 shows the effect of using orthogonal rather than separated orthogonal 
frequency hopping. The performance loss is significant in this example and 
becomes more pronounced as M decreases. When separated orthogonal 
frequency hopping is used and the spectral splatter is negligible, then the spatial 
reliability depends primarily on Mi = M/d, the equivalent number of channels. 
In Figure 28, Mi = 250. 
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Figxire 29. Spatial reliability for uplinks, orthogonal hopping, M = 100, and minimum 
area-mean SNR = 30 dB. 

Figure 30 illustrates the effect of increasing M to 200, and hence increasing Mi 
to 500. The uplink capacity Cu of a cellular network is defined as the maximum 
number of interfering mobiles per cell for which the spatial reliability exceeds 
0.95. Figures 28 and 30 and other simulation results indicate that for three 
sectors per cell, dual divemty, and the other parameter values selected, the uplink 
capacity is C« w 0.108 Mi for 50 < Mi < KM). This equation is sensitive to 
parameter variations. If the shadowing standard deviation o"s is lowered to 6 dB, 
it is found that C„ increases by roughly 57 percent. Alternatively, if the threshold 
E is raised to 0.04, corresponding to SINR = 7 dB, it is found that C„ increases 
by roughly 59 percent. 
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Figure 30. Spatial reliability for uplinks, separated orthogonal hopping, M = 200, and 
minimum area-mean SNR = 30 dB. 

Figure 31 illustrates the sensitivity of the network to a decrease in the minimum 
area-mean SNR, which may be due to a change in either po or o-^. A substantial 
performance loss occurs when the minimum area-mean SNR is reduced to 
20 dB, particularly for no spatial diversity or dual diversity. Other simulation 
results indicate that an increase in the minimum area-mean SNR beyond 30 dB 
barely improves performance. 

The downlinks of a cellular network are considered in Figure 32, where the 
models and parameter values are otherwise the same as in Figure 28. The 
performance is worse for the downlinks of Figure 32 than for the uplinks of 
Figure 28 because of the relative proximity of some of the interfering sector 
antennas to the desired mobile. The downlink capacity Cd, which is defined 
analogously to the uplink capacity, is Cd ~ 0.072 Mi for 50 < Mi < 1000. A 
more realistic comparison of the downlinks and uplinks must take into account 
the differences between the high-power amplifiers and low-noise amplifiers in 
the base station and those in the mobiles. Assuming a net 10 dB advantage in the 
minimum area-mean SNR for the downlinks, Figures 31 and 32 provide a 
performance comparison of the two links. The performance of the downlinks is 
still slightly worse if L > 2 and A^^ > 4. The difference in performance is further 
increased if physical constraints limit the downlinks to L = 1 or 2 while L = 4 for 
the uplinks. 

Compared with direct-sequence systems, frequency-hopping systems have a 
bandwidth advantage in that frequency hopping over a large, possibly 
noncontiguous, spectral band is as practical as direct-sequence spreading over a 
much smaller, necessarily contiguous, spectral band. Even deprived of its 
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Figure 31. Spatial reliability for uplinks, separated orthogonal hopping, M = 100, and 
minimum area-mean SNR = 20 dB. 
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Figure 32. Spatial reliabiUty for downlinks, separated orthogonal hopping, M = 100, and 
minimum area-mean SNR = 30 dB. 

bandwidth advantage, as well as power control and the use of one-coincidence 
codes, frequency-hopping CDMA can provide nearly the same multiple-access 
capacity over the upUnks as direct-sequence CDMA subject to realistic power- 
control imperfections [22], 
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7.6    Summary 

The performance of frequency-hopping CDMA communications in a mobile 
peer-to-peer network is greatly improved by the use of spatial diversity, which 
usually requires carrier frequencies in excess of 1 GHz. A crucial parameter is 
the number of equivalent frequency channels, which can be increased not only by 
an increase in the number of frequency channels, but also by a decrease in the 
duty factor of the network users. The data modulation method that is most 
suitable appears to be MSK or some other form of CPFSK or CPM. For these 
modulations, BTg ^ 1, and the scenario modeled, the spectral splatter from 
adjacent channels, is not an important factor if the number of interferers is much 
smaller than the number of equivalent channels. 

For a specified sectorization, diversity, and waveform, the capacity of a cellular 
frequency-hopping CDMA network is approximately proportional to the 
equivalent number of frequency channels. Thus, a desired capacity can be 
attained by choosing a sufficiently large number of frequency channels. A major 
advantage of frequency hopping is that these channels do not have to be 
spectrally contiguous but can be scattered throughout a large spectral band. 
Another advantage is that power control is not required. Its absence allows a 
substantial reduction of system complexity and overhead cost and facilitates 
geolocation. Sectorization, orthogonality, and dual diversity are invaluable, but 
higher levels of diversity offer sharply decreasing gains. If spectral splatter is a 
problem, separated orthogonal signaling can be used to eliminate it. The overall 
Hmit on the capacity of a frequency-hopping CDMA network appears to be set 
more by the downlinks than the uplinks. 

Frequency hopping may be added to almost any communication system to 
strengthen it against interference or fading. For example, the set of carriers used 
in a multicarrier direct-sequence CDMA system or the subcarriers of an 
ofthogonal frequency-division-multiplexing (OFDM) system may be hopped. 
The purpose of OFDM is to enable high data-rate communications without an 
elaborate equalization system by transmitting symbols simultaneously over a 
number of subcarriers. 

68 



8.    Synchronization of Frequency-Hopping Patterns 

The synchronization of the reference frequency-hopping pattern produced by the 
receiver synthesizer with the received pattern has two stages: acquisition and 
tracking. During acquisition, the reference pattern is synchronized with the 
received pattern to within a fraction of a hop duration. The tracking system 
further reduces the synchronization error, or at least maintains it within certain 
bounds. For communication systems that require a strong capabiMty to reject 
interference, matched-filter acquisition and serial-search acquisition are the most 
effective techniques. The matched fiher provides rapid acquisition of short 
frequency-hopping patterns, but requires the simultaneous synthesis of multiple 
frequencies. The matched filter may also be used to detect short patterns 
embedded in much longer frequency-hopping patterns. Such a detection can be 
used to initialize or supplement serial-search acquisition, which is more reMable 
and accommodates long pattems. 

8.1   Matched-Filter Acquisition 

Figure 33 shows a programmable matched-filter acquisition system that provides 
substantial protection against interference [27]. It is assumed that a single 
frequency channel is used during each hop interval that occurs during 
acquisition. One or more programmable frequency synthesizers produce tones at 
frequencies /i, /2,. •. , /jv, which are offset by a constant frequency from the 
consecutive frequencies of the hopping pattern for code acquisition. Each tone 
multiplies the received frequency-hopping signal and the result is filtered so that 
most of the received energy is blocked, except the energy in a frequency-hopping 
pulse at a specific frequency. The threshold detector of branch k produces dfc(t) = 
1 if its threshold is exceeded, which ideally occurs only if the received signal 
hops to a specific frequency. Otherwise, the tlireshold detector produces dfc(t) = 
0. The use of binaiy detector outputs prevents the system from being 
overwhelmed by a few strong interference signals. Input D(t) of the comparator 
is the number of frequencies in the hopping pattern that were received in 
succession. This discrete-valued, continuous-time function is 

N 

D{t) = Y,dk[t-iN-k + l)Th] (8-1) 
k=l 

where Th is the hop duration. These waveforms are illustrated in Figure 34(a) for 
N = S. The input to the threshold generator is 

L{t) = Dit + Th) (8-2) 
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Figure 33. Matched-filter acquisition system with protection against interference. 

Figure 34. Ideal acquisition system waveforms: (a) formation of D{t) when N = 8, and 
(b) comparison of D{t) and V{t). 
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Acquisition is declared when D{t) > V(t), where V{t) is an adaptive threshold 
that is a function of L{t). An effective choice is 

F(t) = min[L{t) + ^o, N] (8-3) 

where IQ is a positive integer. In the absence of noise and interference, L(t) = 0 
and V{t) = lo during the hop interval in which D{t) = N, as illustrated in Figure 
34(b). If j of the N frequency channels monitored by the matched filter receive 
strong, continuous interference, then L{t) = j and V{t) = j + lo during this hop 
interval ifj<N — IQ, and D{t) > V{t). During other intervals, j + lo < 
Vit) < N, but D{t) = j. Therefore, V{t) > D{t), and the matched filter does 
not declare acquisition. False alarms are prevented because L{t) provides an 
estimate of the number of frequency channels with continuous interference. 

When acquisition tone k is received, the signal in branch k of the matched filter is 

rfc(t) = ^25 cos 27r/ot + ^cos(27r/ot + <f>) + n{t) (8-4) 

where /o is the intermediate frequency, the first term is the desired signal with 
average power S, the second term represents tone interference with average 
power J, n{t) is zero-mean, stationary Gaussian noise and interference, and <{> is 
the phase shift of the tone interference relative to the desired signal. The power in 
n{t) is 

Ni = Nt + Ni (8-5) 

where Nt is power of the thermal noise and Ni is the power of the statistically 
independent noise interference. 

Bandpass filters are used instead of filters matched to the acquisition tones 
because the appropriate sampling times are unknown. The passbands of the 
bandpass filters in the branches are assumed to be spectrally disjoint so that tone 
interference entering one branch has negligible effect on the other branches, and 
the filter outputs are statistically independent of each other. To prove the 
statistical independence of the noise, let Rnir) and Snif) denote the 
autocorrelation and power spectral density, respectively, of the stationary 
Gaussian noise n{t) in the received signal. Let hi{t) and h2{t) denote the 
impulse responses and Hi{f) and HaC/) the transfer functions of two bandpass 
filtere. Since the same Gaussian noise process enters both filters, their outputs are 
jointly Gaussian. The cross-covariance of the jointly Gaussian, zero-mean filter 
outputs is 

C   =   E hi{Ti)n{t - Ti)dTi   / h2{T2)n{t - T2)dT2 

=    /   j  hi{Ti)h2{T2)Rn{T2 - Ti)dTi dT2 

= j j j hi{n)h2iT2)S{f) exp[i27r/(T2 - n)]df dn drj 

=   [ Sif)H^{f)H*{f)df (8-6) 
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where all the integrals extend over (-00,00). Thus, C = 0, if Hi (/) and H2{f) 
are spectrally disjoint. If the noise is white and, hence, S{f) is a constant, then 
C = 0 if Hi{f) and i?2(/) are orthogonal. When C = 0 for all pairs of bandpass 
filters, the threshold-detector outputs in the A'^ branches are statistically 
independent. 

Suppose that noise interference is present in a branch, but that tone interference 
is absent so that 7 = 0. The stationary Gaussian noise has the representation 
(Appendix B-3) 

n{t) = nc{t) cos 27r/ot — ns{t) sin l-nfot (8-7) 

where nc{t) and ns{t) are zero-mean Gaussian processes with noise powers equal 
to A^i. In practice, the matched filter of Figure 33 would operate in continuous 
time so that acquisition might be declared at any moment. However, for 
analytical simplicity, the detection and false-alarm probabilities are calculated 
under the assumption that there is one sample taken per hop dwell time. From 
(8-5) with 7 = 0 and (8-7), it follows that 

rk{t) = y^Z2(t) + Z|(t)cos[27r/oi + Ht)] (8-8) 

where 

Zi{t) = V2S + ricit) ,   Z2{t) = ns{t) ,   ^(i) = tan"^ 
ns{t) 

ricit) 
(8-9) 

Since nc{t) and na{t) are statistically independent (Appendix B.3), the joint 
probability density function of Zi and Z2 at any specific time is 

^^("^'"^^=^2^'^P 2Ni 
(8-10) 

Let R and 0 be implicitly defined hy Zi = R cos 0 and Z2 = 7? sin 0. The joint 
density of 7? and 0 is 

^^(^'') = 2;^^"H m )^r>0,\e\<n   (8-11) 

The probability density function of the envelope-detector output 
R = \/Zf{t) + Zlit) is obtained by integration over 9. Using (A-59) gives 

where 7o() is the modified Bessel function of the first kind and order zero, and 
u{r) = 1 if r > 0 and u{r) = 0 if r < 0. 

The detection probability for the threshold detector in the branch is 
/•oo 

Pn = /    h{r)dr (8-13) 
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where rj is the threshold. The Q-function is defined as 

Qia,/3) 

Applying this definition. 

a;exp I — 
x^ + a^^ 

I lQ{ax)dx 

Pi 11 Q 
m     rj 

In the absence of noise interference, the detection probability is 

Pio = Q 

(8-14) 

(8-15) 

(8-16) 

If the acquisition tone is absent, but the noise interference is present, the 
false-alarm probability is 

,2 

Poi exp    - V 
2Ni 

(8-17) 

In the absence of both the acquisition tone and the noise interference, the 
false-alarm probability is 

Poo = exp 
jj^ 

2M 
(8-18) 

In (8-15) to (8-18), the first subscript is 1 when the acquisition tone is present 
and 0 otherwise, whereas the second subscript is 1 when interference is present 
and 0 otherwise. 

Suppose that tone interference is present in a branch. We make the pessimistic 
assumption that this tone has a frequency exactly equal to that of the acquisition 
tone, as indicted in (8-4). A trigonometric expansion of the interference term and 
a derivation similar to that of (8-15) indicates that given the value of <f>, the 
conditional detection probability is 

PiM = Q\ 
'2(S + I+ ^Sl cos (t>)        T] 

Nt mi (8-19) 

If ^ is modeled as a random variable uniformly distributed over [0,27r), then the 
detection probability is 

1 
Pii = - /   PnWrffl 

TT Jo 
(8-20) 

where the fact that cos <j) takes all its possible values over [0, TT] has been used to 
shorten the integration interval. If the acquisition tone is absent, but the tone 
interference is present, the false-alarm probability is 

Poi = 0 
11 

Ni ' ^Wi 
(8-21) 
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It is convenient to define the function 

(8-22) 

where (^) = 0 if a > b. Given that m of the N matched-filter branches receive 
interference of equal power, let the index j represent the number of interfered 
channels with detector outputs above r;. If 0 < j < i, there are ("?) ways to 

choose j channels out of m and (^Ij') ways to choose i - j channels with 
detector outputs above t] from among the N -m. channels that are not interfered. 
Therefore, the conditional probability that D{t) = i given that m channels 
receive interference is 

P{D = i\m) = (3{i,N,m,Phx,Pm) ,   /i = 0,1 (8-23) 

where /i = 1 if the acquisition tones are present and /i = 0 if they are not. 
Similarly, given that mof N acquisition channels receive interference, the 
conditional probability that L{t) = I is 

P{L = l\m) = P{l,N,m,Phi,Pho),   h = 0,l (8-24) 

If there are J interference signals randomly distributed among a hopset of M 
frequency channels, then the probability that m out of N matched-filter branches 
have interference is 

Pm =   "^M^" (8-25) 

(N\ /M-N\ 
Vm/ V J—m ) 

o 
The probability that acquisition is declared at a particular sampling time is 

To\n{N,J) N N 

PA-^    Yl    PmJ2P(^ = ^\'^)  Yl PiD = k\m) (8-26) 
m=0 /=0 k=V{l) 

When the acquisition tones are received in succession, the probability of 
detection is determined from (8-23) to (8-26). The result is 

,  (N\/M-N\    .. 

P^=    E (Mr   E^(^'^'"^'-Po^'-Poo) E Pik,N,m,PruPio) 

mm{N,J) /N\ /M-N\    N N 

E    .Mr^E/^(^'^'"^>-Poi,Poo) E 
m=0 \j) 1=0 k=V(l) 

(8-27) 

For simplicity in evaluating the probability of a false alarm, we ignore the 
sampling time preceding the peak value of D{t) in Figure 34 because this 
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probability is negligible at that time. Since the acquisition tones are absent, the 
probability of a false alarm is 

/m /M-m 
PF=    J2    ^"'}M:"    T,W,N.m,Poi,Poo) Yl m,N,m,Poi,Poo) 

min(JV,J) /m/M-N\    N N 

E    ^"'(M^   T.W,N.rn,PouPoo) ^ 
m=0 \j) 1=0 k=V(l) 

(8-28) 

If there is no interference so that J = 0, then (8-27) and (8-28) reduce to 

sN-k f-"   (8-29) p- = Effl^ood-Poo)-^ E (f)^&(i-ao) 
1=0   ^    ^ k=V(l) ^    ^ 

P^ = 1:(^)pUl-Poor-' E   (f)ifo(l-Poor-*   (8-30) 

The channel threshold r] is selected to maintain a required Pp when there is no 
interference and the values of IQ, N, and Nt are given. The value of IQ is then 
selected to maximize P^ given the values of N and S/Nt. The best choice is 
generally IQ = [iV/2j. For example, suppose that iV = 8, Pj? = 10""^, and the 
signal-to-noise ratio is S/Nt = 10 dB when an acquisition tone is received. A 
numerical evaluation of (8-30) then yields rj/^/Ni = 3.1856 and IQ = 4 as the 
parameter values that maintain Pp = 10~^ while maximizing P^ in the absence 
of interference. The threshold pair rj/^Nl = 3.1896, IQ = 4 is the choice when a 
fixed comparator threshold V{t) = IQ is used instead of the adaptive threshold of 
(8-3). If D{t) and L{t) are sampled once every hop dwell interval, then the 
false-alarm rate is Pp/Th. 

As an example, suppose that noise jamming with total power Nu is uniformly 
distributed over J matched-filter frequency channels so that 

,r Nit 
Ni = ^ (8-31) 

is the power in each of these channels. Interference tones are absent and N = B, 
M = 128, and S/Nt = 10 dB. To ensure that Pp = 10""^ in the absence of 
jamming, we assume that lo = 4 and ij/^/Nl = 3.1856 when an adaptive 
comparator threshold is used, and that lo = 4 and rj/^Wt = 3.1896 when a fixed 
comparator threshold is used. Since Pu is relatively insensitive to J, its effect is 
assessed by examining Pp. Figure 35 depicts Pp as a fiinction of Nu/S, the 
jamming-to-signal ratio. The figure indicates that an Captive threshold is much 
more resistant to partial-band jamming than a fixed threshold when Nu/S is 
large. When Nu/S < 10 dB, the worst-case partial-band jamming causes a 
considerably higher Pp than full-band jamming. It is found that muMtone 
jamming tends to produce fewer false alarms than noise jamming. Various other 
performance and design issues and the impact of frequency-hopping interference 
are addressed in [27]. 
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Figure 35. False-alarm probability for matched-filter acquisition system. 

8.2   Serial-Search Acquisition 

As illustrated by Figure 36, a serial-search acquisition system for frequency- 
hopping signals determines acquisition by attempting to develop the receive^ 
frequency-hopping pattern to an intermediate frequency, and then comparing the 
output of an energy detector (Section 10.2) to a threshold. 

If the detector integration is over several hop intervals, strong interference or 
deep fading over a single hop interval can cause a false alarm with high 
probability. This problem is mitigated by making a hard decision after integrating 
over each hop interval or even less in the presence of fast fading. After A^ 
decisions, a test for acquisition is passed or failed if the comparator threshold has 
been exceeded ZQ or more times out of A'". 

A trial alignment of the frequency-hopping pattern synthesized by the receiver 
with the received pattern is called a cell. If a cell passes certain tests, acquisition 
is declared and the tracking system is activated. If not, the cell is rejected, and a 
new cell is produced and tested. Let Pop and Poa denote the probabilities that 
the comparator threshold is exceeded at the end of a hop interval when the 
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Figure 36. Serial-search acquisition system. 

correct cell is tested and interference is present and absent, respectively. Let Pu 
denote the probability that an acquisition test is passed when the correct cell is 
tested. If the N acquisition tones in a test are distinct, then a derivation similar to 
that of Section 8.1 yields 

min(JV,J)  /N\ fM-N\    N 

m=0 V J / l=lo 

(8-32) 

where IQ > 0. Similarly, the probability that an acquisition test is passed when an 
incorrect cell is tested and no acquistion tones are present is 

mia{N,J) 

= E 
in=0 

/N\ /M-N\    N 

\j) l=lo 

(8-33) 

where Ppp and Ppa are the probabilities that the threshold is exceeded when an 
incorrect cell is tested and interference is present and absent, respectively. A 
suitable choice for IQ is [N/2j. Since the serial-search system of Figure 36 has 
an embedded radiometer, the performance analysis of the radiometer given in 
Section 10.2 can be used to obtain expressions for P^p and P^a, Ppp, and Ppa. 

To test a new cell, the reference pattern synthesized by the receiver is either 
advanced or delayed relative to the received pattern. A number of search 
techniques are illustrated in Figure 37, which depicts successive frequencies in 
the received pattern and six possible receiver-generated patterns. The small 
arrows indicate test times while the large arrows indicate times at which 
acquisition is declared or subsequent verification testing begins. The step size, 
which is the separation in hop durations between cells, is denoted by 6. 
Techniques (a), (b), and (c) entail inhibiting the code-generator clock after each 
unsuccessful test. Technique (d) advances the reference pattern by skipping 
frequencies in the pattern until acquisition is declared. The small misalignment 
technique (e) is effective when there is a high probability that the reference and 
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Figure 37. Search techniques for acquisition. 

received patterns are within r hops of each other. The code generator temporarily 
forces the reference signal to remain at a frequency for Ir + 1 hop intervals 
extending both before and after the interval in which the frequency would 
ordinarily be synthesized. If the misalignment is less than r hops, then acquisition 
occurs within 2r + 1 hop durations. In the figure, r = 1, the initial misalignment 
is one-half hop duration, and it is assumed that the first time the reference and 
received frequencies coincide, detection fails, but the second time results in 
acquisition. Technique (f) entails waiting at a fixed reference frequency until this 
frequency is received. This technique results in a rapid search if the reference 
frequency is slightly advanced relative to the received pattern. The reference 
frequency, which may be determined by the key and TOD bits (Section 1), must 
be periodically shifted by at least the coherence bandwidth so that neither fading 
nor interference in any particular frequency channel prevents acquisition. 

A reduced hopset with a short pattern period may be used temporarily to reduce 
the time uncertainty region and, hence, the acquisition time. In a network, a 
separate communication channel or cueing frequency may provide the TOD to 
subscribers. After detection of the TOD, a receiver might use the small 
misalignment technique for acquisition. 
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The search control system determines the integration intervals, the thresholds, 
and the logic of the tests to be conducted before acquisition is declared and the 
tracking system is activated. The details of the search control strategy determine 
the statistics of the acquisition time [8], [9], [24]. The control strategy is usually 
a multiple-dwell strategy that uses an initial test to quickly eliminate improbable 
cells. Subsequent tests are used for verification testing of cells that pass the initial 
test. The multiple-dwell strategy may be a consecutive-count strategy, in which a 
failed test causes a cell to be immediately rejected, or an up-down strategy, in 
which a failed test causes a repetition of a previous test. Figure 38 depicts the 
flowgraph of an up-down strategy that requires L test to be passed before 
acquisition is declared. The up-down strategy is preferable when the interference 
or noise level is high [28]. 

C^n^^U 
Verification mode 

^ JWOlt^ll IIUJUC 
1 

Start 
Test! 

Pass 
Test 2 

Pass 
TestL  >■ 

1 Fail Fail 
Fail 

■- 

1 

Pass   ■ 

Reject Lock 

Figure 38. Flowgraph of up-down control strategy. 

A verification test could be b^ed on the comparison of the detected energy level 
to a threshold, as is done during the initial test. A more elaborate but potentially 
far more powerful procedure is to base the verification on detected bit patterns 
that are compared with a stored reference word. Bit synchronization may be 
established by oversampling the detected bits with N samples per bit and then 
comparing sets of samples separated by N samples with the reference word. 

A large step size decreases the number of incorrect cells that must be tested 
before the correct cell is tested. However, as the step size increases, there is a 
decrease in the signal energy in the integrator output when a correct cell is tested. 
This issue is illustrated by Figure 39, which depicts the ideaUzed amplitude 
function of the comparator input in Figure 36 for a single pulse of the received 
and reference signals in the absence of noise. Let Tg denote the delay of the 
reference pattern relative to the received pattern. Suppose that one tested cell has 
Te = —X, where 0 < a; < 5Th, and the next tested cell h^ Tg = 5% — x 
following a cell rejection. The largest amplitude of the integrator output occurs 
when I Tel =y, where 

y = min(a;,5Th — x),   0 <x < 5Th (8-34) 
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Figure 39. Amplitude of comparator input as function of relative pattern delay. 

Assuming that x is uniformly distributed over (0,5Th), y is uniformly distributed 
over (0, 5Th/2). Therefore, 

E{y'] = 

STh 
4 

12 

(8-35) 

(8-36) 

The correct cell is considered to be the one for which |re| = ?/. If the amplitude 
function approximates the triangular shape depicted in the figure, the comparator 
input when |re| = y has the amplitude 

■^ — ^max I 1 
Td. 

(8-37) 

Therefore, the signal energy entering the comparator is reduced on the average 
by the factor 

E y_ _ 1     ^n     8'Tl 
2Td     12T2 

(8-38) 

because of the misalignment of patterns when the correct cell is tested. For 
example, (8-38) indicates that the average loss of 1.1 dB when Th = T^ and 
5 =1/2; if 6=1, then the loss is 2.3 dB. 

The serial-search acquisition of frequency-hopping signals is faster than the 
acquisition of direct-sequence signals because the hop duration is much greater 
than a spreading-sequence chip duration for practical systems. Given the same 
time uncertainty, fewer cells have to be searched to acquire frequency-hopping 
signals because the step sizes are longer in time. 

8.3   Tracking System 

The acquisition system ensures that the receiver-synthesized frequency-hopping 
pattern is aligned in time with the received pattern to within a fraction of a hop 
duration. The tracking system must provide a fine synchronization by reducing 
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the residual misalignment after acquisition. The delay-locked and tau-dither 
loops used for the tracking of direct-sequence signals can be adapted to 
frequency-hopping signals [8], However, the predominant form of tracking used 
in frequency-hopping systems is provided by the early-late gate tracking loop 
[29], which is shown in Figure 40 along with the ideal associated waveforms for 
a typical example. The course control is provided by the acquisition system. In 
the absence of noise, the envelope detector produces a positive output only when 
the received frequency-hopping signal r(t), and the receiver-generated 
frequency-hopping replica, ri(t), are offset by the intermediate frequency /Q. 

The gating signal g{t) is a square-wave clock signal with transitions from —1 to 
+1 that control the frequency transitions of 7-i(t). The early-late gate functions as 
a signal multiplier. Its output, u{t), is the product of the gating signal and the 
envelope-detector output, v{t). The error signal is the time integral of u{t) and is 
a function of Tg, the delay of 7\{t) relative to r{t). The error signal can be 
expressed as a discriminator characteristic, e{5), which is a function of 
5 = Te/Th, the normalized delay error. For the typical waveforms shown, 5 is 
positive, and hence so is e{8). Therefore, the voltage-controlled clock (VCC) will 
increase the transition rate of the gating signal, which will bring ri(t) into better 
time-alignment with r(t). 
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Figure 40.  Early-late gate tracking:   (a)  loop,  (b)  signals,  and  (c) discriminator 
characteristic. 
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9.   Comparison and Combination of Frequency-Hopping and 
Direct-Sequence Systems 

Frequency-hopping systems reject interference by avoiding it, whereas direct- 
sequence systems reject interference by spreading it. However, the effect of 
partial-band interference on a frequency-hopping system is similar to the effect 
of high-power pulsed interference on a direct-sequence system. The interleaving 
and error-correcting codes that are effective against one of these types of 
interference are effective against the other. Error-correcting codes are" more 
essential for frequency-hopping systems than for direct-sequence systems 
because partial-band interference is a more pervasive threat than high-power 
pulsed interference. 

When frequency-hopping systems and direct-sequence systems are constrained 
to use the same band with a fixed bandwidth, then direct-sequence systems have 
an inherent advantage because they can use coherent PSK rather than a 
noncoherent modulation. Coherent PSK has an approximately 4 dB advantage 
over noncoherent MSK over the AWGN channel and an even larger advantage 
over fading channels. However, the potential performance advantage of direct- 
sequence systems is often illusory for practical reasons, A major advantage of 
frequency-hopping systems relative to direct-sequence systems is that it is 
possible to hop in frequency over a much wider band than can be occupied by a 
direct-sequence signal. This advantage more than compensates for the relatively 
inefficient noncoherent demodulation that is almost always required for 
frequency-hopping systems. Other major advantages of frequency hopping are its 
reduced susceptibility to the near-far problem, its relatively rapid acquisition, and 
the possibility of excluding frequency channels with steady or frequent 
interference. 

Interleaving of the code symbols over many dwell intervals provides a large level 
of diversity to slow frequency-hopping systems operating over a frequency- 
selective fading chaimel. These systems are usually insensitive to variations in 
the Doppler spread of the channel because the additional diversity due to the 
time-selective fading is insignificant. In contrast, the diversity combining in a 
direct-sequence receiver depends on the small number of branches or 
demodulators in its rake receiver, and the system is relatively sensitive to 
variations in the Doppler spread. Slow frequency-hopping systems usually 
outperform comparable direct-sequence systems unless the Doppler spread is 
large or most of the power in the received signal is concentrated in a small 
number of resolvable multipath components [30]. 
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A hybrid frequency-hopping direct-sequence system is a frequency-hopping 
system that uses direct-sequence spreading during each dwell interval or, 
equivalently, a direct-sequence system in which the carrier frequency changes 
periodically. In the transmitter of the hybrid system of Figure 41, a single code 
generator controls both the spreading and the hopping pattern. The spreading 
sequence is added modulo-2 to the data sequence. Hops occur periodically after a 
fixed number of sequence chips. In the receiver, the frequency hopping and the 
spreading sequence are removed in succession to produce a carrier with the 
message modulation. Because of the phase changes due to the frequency 
hopping, noncoherent modulation, such as DPSK, is usually required unless the 
hopping rate is very low. Serial-search acquisition occurs in two stages. The first 
stage provides alignment of the hopping patterns, whereas the second stage over 
the phase of the pseudonoise sequence finishes acquisition rapidly because the 
time uncertainty has been reduced by the first stage to less than a hop duration. 
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Figure 41. Hybrid frequency-hopping direct-sequence system:  (a) transmitter and 
(b) receiver. 

A hybrid system combats partial-band interference in two ways. The hopping 
allows the avoidance of the interference spectrum part of the time. When the 
system hops into the interference, the interference is spread and filtered as in a 
direct-sequence system. However, during a hop interval, interference that would 
be avoided by an ordinary frequency-hopping receiver is passed by the bandpass 
filter of a hybrid receiver because the bandwidth must be large enough to 
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accommodate the direct-sequence signal that remains after the dehopping. This 
large bandwidth also limits the number of available frequency channels, which 
increases the susceptibility to narrowband interference and the near-far problem. 
Thus, hybrid systems are seldom used except in specialized militaiy applications 
because the additional direct-sequence spreading weakens the major strengths of 
frequency hopping. 
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10.   Detection of Frequency-Hopping Signals 

An interception receiver intended for the detection of frequency-hopping signals 
may be designed according to the principles of classical detection theory or 
according to more intuitive ideas. The former approach is useful in setting limits 
on what is possible, but the latter approach is more practical and flexible and less 
dependent on knowledge of the characteristics of the frequency-hopping signals. 

10.1   Ideal Detection 

To determine whether a signal s{t) has been received over the AWGN channel 
based on the observation of the received signal r{t), classical detection theory 
requires that one choose between the two hypotheses. Hypothesis Hi is that the 
signal is present, whereas hypothesis HQ is that the signal is absent. Over the 
observation interval 0 <t <T,r{t) under the two hypotheses is 

,(,)      f^W + n(.),       Hi ^^^_^^ 
I     n(t)       ,       Ho 

where n{t) is white Gaussian noise with two-sided noise-power spectral density 
A^o/2. To enable a tractable analysis, the idealized assumptions are made that the 
hopset is known and that the hop epoch timing, which includes the hop-transition 
times and the hop rate, is known. Consider slow frequency-hopping signals with 
CPM (FH/CPM), which includes continuous-phase MFSK. The signal over the 
ith hop interval is 

s{t) = V2S cos [27r fjt + (^(d„, t) + (f)i] , {i-l)Th<t< iTh (10-2) 

where S is the average signal power, fj is the carrier frequency, 0(d„, t) is the 
CPM component that depends on the data sequence d„, and 0j is the phase 
associated with the zth hop. The parameters fj, 0j, and the components of d„ are 
modeled as random variables. 

The coefficients in the expansion of the observed waveform in terms of 
orthonormal basis functions constitute the received vector r = [ri r2 ... r^]. Let 
0 denote the vector of parameter values that characterize the signal to be 
detected. The average likelihood ratio [31], which is compared with a threshold 
for a detection decision, is 

,, ,     EelfirlHue)] 
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where f{r\Hi, 0) is the conditional density function of r given hypothesis Hi 
and the value of 0, f{r\Ho) is the conditional density function of r given 
hypothesis HQ, and E0 is the expectation over the random vector 0. The 
coefficients in the expansion of n{t) in terms of the orthonormal basis functions 
are statistically independent. Since each coefficient is Gaussian with variance 
No/2, 

mHu0) = ti-^^w 
t\yMNo 

in - Sjf 
No 

/(■■w-nv^-p(-l) 

(10-4) 

(10-5) 

where the {si} are the coefficients of the signal. Substituting these equations into 
(10-3) yields 

A(r) = E0<eiq) 
N N 

^0 ^ iVo ^ 
(10-6) 

Expansions in the orthonormal basis functions indicate that if iV ^- 00, the 
average likelihood ratio may be expressed in terms of the signal waveforms as 

A[r(t)] = S,|exp   ^^  r{t)s{t)dt-^^  | (10-7) 

where £ is the energy in the signal waveform over the observation interval of 
duration T. 

The M carrier frequencies in the hopset are assumed to be equally likely over a 
given hop and statistically independent from hop to hop for Nh hops. Dividing 
the integration interval in (10-7) into N^ parts, averaging over the M frequencies, 
and dropping the irrelevant factor 1/M, we obtain 

iVfc    M 

(10-8) 

AiiH*)l/i] = ^d„#i|exp 
2    /'"'' Ft. 
- r(t)s(t)dt-f (10-9) 

where the condition in the argument of Ay [ ] indicates that the carrier frequency 
over the ith hop is fj, the expectation is over the remaining random parameters 
d„ and ^j, and £h is the energy per hop. The decomposition in (10-8) indicates 
that the general structure of the detector has the form illustrated in Figure 42. The 
average likelihood ratio of (10-8) is compared with a threshold to determine 
whether a signal is present. The threshold may be set to ensure the tolerable 
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Figure 42. General structure of optimum detector for frequency-hopping signal with N^ 
hops and M frequency channels. 

false-alarm probability when the signal is absent. Assuming that Sh = STh is the 
same for every hop and carrier frequency, we may drop the irrelevant factor 
exp{-6h/No) in (10-9), which only affects the threshold level. 

Each of the Nd data sequences that can occur during a hop is assumed to be 
equally likely. For coherent detection of FH/CPM [32], we set 0j = 0 in (10-2), 
substitute it into (10-9), and then evaluate the expectation to obtain 

^d (2\/2S  r^'' 1 
Ay [r{t) \fj] = V exp <^ —— / r(t) cos [27r/,i + 0(d„, t)] }     (coherent) 

^        [   ^0   J{i-i)n J 
(10-10) 

where irrelevant factors have been dropped. This equation indicates how Ajj in 
Figure 41 is to be calculated for each hop i and each frequency channel j 
corresponding to carrier frequency j. Equations (10-8) and (10-10) define the 
optimum coherent detector for any slow frequency-hopping signal with CPM. 

For noncoherent detection of FH/CPM [32], the received carrier phase (f)i is 
assumed to be uniformly distributed over [0, 27r) during a given hop and 
statistically independent from hop to hop. Averaging over the random phase in 
addition to the sequence statistics and dropping irrelevant factors yields 

n=l        \ 

where /o() is defined by (A-59), 

■ijn 

No 
(noncoherent) (10-11) 

Rijn = \ I r{t) COS [xjn{t)]dt]   +(/  '     r{t)sm[xjn(t)]dt\ 
{.J{i-l)Th ) lJ{i-l)Th ) 

(10-12) 

and 

Xjnit)   =   27rfjt + (j){dn,t) (10-13) 
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Equations (10-8), (10-11), (10-12), and (10-13) define the optimum noncoherent 
detector for any slow frequency-hopping signal with CPM. The means of 
producing (10-11) is diagrammed in Figure 43. 

A major contributor to the huge computational complexity of the optimum 
detectors is the fact that with Ng data symbols per hop and an alphabet size q, 
there may be iV^ = g^* data sequences per hop. Consequently, the computational 
burden grows exponentially with Ng. However, if it is known that the data 
modulation is CPFSK with a modulation index h = 1/K, where Kisa positive 
integer, the computational burden has a linear dependence on Ns [32], Even then, 
the optimum detectors are extremely complex when the number of frequency 
channels is large. 

The preceding theory may be adapted to the detection of fast frequency-hopping 
signals with MFSK as the data modulation. Since there is one hop per MFSK 
channel symbol, the information is embedded in the sequence of carrier 
frequences. Thus, we may set Nd = l and ^(d„,t) = 0 in (10-10) and (10-11). 
For coherent detection, (10-10) reduces to 

^jHt)\fj] = exp 
2^25   Z''^''- 

"1^ r{t) cos (27r/jt) dt 
i-l)Th 

(coherent) 

(10-14) 
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Figure 43, Optimum noncoherent detector for slow frequency hopping with CPM: 
(a) b^ic structure of frequency channel j for hop i with parallel cells for N^ candidate 
data sequences, and (b) cell for data sequence n. 
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Equations (10-8) and (10-14) define the optimum coherent detector for a fast 
frequency-hopping signal with MFSK. For noncoherent detection, (10-11), 
(10-12), and (10-13) reduce to 

^iMt)\fj] = -^0 I       j^    '^ I (noncoherent) (10-15) 

Kij 
fiTh -]2        r  pTh 
/ r{t) cos{2TTfjt)dt    +    / r{t) sm{27rfjt)dt 

JH-DTH . J(i-1)T,. '(i-l)Th 

2 

(10-16) 

Equations (10-8), (10-15), and (10-16) define the optimum noncoherent detector 
for a fast frequency-hopping signal with MFSK. Performance analyses for the 
detectors of fast frequency-hopping signals are given in [33]. 

Instead of basing detector design on the average likelihood ratio, one might apply 
a composite hypothesis test in which the presence of the signal is detected while 
simultaneously one or more of the unknown parameters under hypothesis Hi are 
estimated. To simultaneously detect the signal and determine the frequency- 
hopping pattern, (10-8) is replaced by the generalized likelihood ratio: 

A [r{t)] = n .^^. i^ij l^(t)\fj]} (10-17) 
i=l 

where the equations and subsystems for Aij[r{t)\fj] remain the same. Equation 
(10-17) indicates that a maximum-likelihood estimate of fj is made for each hop. 
Thus, an optimum test to determine the frequency channel occupied by the 
frequency-hopping signal is conducted during each hop. Although the detection 
performance is suboptimum when the generalized likelihood ratio is used to 
design a detector, this detector provides an important signal feature and is 
slightly easier to implement and analyze [32], [33]. 

10.2   Wideband Radiometer 

Among the many alternatives to the optimum detector, two of the most useful are 
the wideband radiometer and the channelized radiometer. The wideband 
radiometer [24] is notable in that it requires virtually no detailed information 
about the parameters of the frequency-hopping signals to be detected other than 
their rough spectral location. The price paid for this robustness is much worse 
performance than more sophisticated detectors that exploit additional 
information about the signal [32]. The channelized radiometer is designed to 
explicitly exploit the spectral characteristics of frequency-hopping signals. In its 
optimal form, the channelized radiometer gives a performance nearly as good as 
that of the optimum detector. In its suboptimal form, the channelized radiometer 
trades performance for practicality and the easing of the required a priori 
information about the signal to be detected. 
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Suppose that the signal to be detected is approximated by a zero-mean, white 
Gaussian process. Consider two hypotheses that both assume the presence of a 
zero-mean, white Gaussian process over an observation interval 0 < t < T. 
Under HQ only noise is present, and the power spectral density is NQ, while under 
Hi both signal and noise are present, and the power spectral density is iVj. Using 
N orthonormal basis functions as in the derivation of (10-4) and (10-5), we find 
that the conditional densities are 

-.^1 /   rn 
fi^m = ll-j=e^p{--L\ i = 0,l (10-18) 

Calculating the likelihood ratio, taking the logarithm, and merging constants with 
the threshold, we find that the decision rule is to compare 

N 

V = ^rf (10-19) 
1=1 

to a threshold. If we let JV —> oo and use the properties of orthonormal basis 
functions, then we find that the test statistic is 

V= I    r^{t)dt (10-20) 
Jo 

which defines an energy detector- or radiometer. Although it was derived for a 
white Gaussian process, the radiometer is a reasonable configuration for 
determining the presence of unknown deterministic signals. 

A radiometer may have one of the three equivalent forms shown in Figure 44. 
Consider the system of Figure 44a, which gives a direct realization of (10-20). 
The bandpass filter is assumed to be an ideal rectangular filter with center 
frequency /c, bandwidth W, and output 

r{t) = s{t) -I- n{t) (10-21) 

where sit) is a deterministic signal, and nit) is bandlimited white Gaussian noise 
with a two-sided power spectral density equal to NQI2. Substituting (10-21) into 
(10-20), taking the expected value, and observing that n{t) is a zero-mean 
process, we obtain 

E[V] =   [   s%t)dt+ [  E[nHt)]dt 
Jo Jo 

= € + NoTW (10-22) 

which indicates that the radiometer output is an unbiased estimate of the total 
energy in r(t). 

According to the resulte of Appendix B-2, a bandlimited deterministic signal can 
be represented as 

s{t) = Scit) cos 27r/ct - Ss(t) sin 2Trfct (10-23) 
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Figure 44. Radiometers: (a) passband, (b) baseband with integration, and (c) baseband 
with sampling and summation. 

Since the spectram of s{t) is confined within the filter passband, sdt) and Ss{t) 
have frequency components confined to the band |/| < W/2. The Gaussian noise 
emerging from the bandpass filter can be represented in terms of quadrature 
components as (Appendix B-3) 

n{t) = nc{t) cos 277fct - ns(t) sin 27r/ct (10-24) 

where ndt) and ns{t) have flat power spectral densities, each equal to A'o over 
I/I < W/2. Substituting (10-24), (10-23), and (10-21) into (10-20) and assuming 
that fc»Wandfc» l/T, we obtain 

I     fT -^     r-T 
^=27     [sc{t) + nc(t)f dt + - j    [s,{t) + n,{t)fdt (10-25) 

A straightforward calculation verifies that the baseband radiometer of Figure 
44(b) also produces this test statistic. 

The sampling theorems for deterministic and stochastic processes (Appendix 
B-4) provide expansions of Sc(t), Ssit), ndt) and ns{t) that facilitate a statistical 
performance analysis. For example, 

^w = E w. sinc(Wt — i) (10-26) 

where sine x = (sin7ra:)/7ra:. Since the Fourier transform of the sine function is a 
rectangular function, using Parseval's theorem from Fourier analysis and 
evaluating the resulting integral yields the approximations: 
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'   sinc2(PFt-i)dtw  /     sinc^{Wt-i)dt = —    0<i<TW    (10-27) 
0 J-oo W 

JfT poo 

'   sm.c{Wt - i)smc{Wt - j)dt «   /    smc(T¥t - i)sinc(Wt - i)dt = 0, 
0 J-oo 

Mi 
(10-28) 

The rapid decline of sine a; for |:r| > 1 implies that 

/   sinc^CWt - i)dt fs 0,    i<Qoxi>TW 
Jo 

Substituting expansions similar to (10-26) into (10-25) and then usmg the 
preceding approximations, we obtain 

(10-29) 

V 
1 

m E 
i=i ^ w)+"nw, 

(10-30) 

where 7 = [TWJ and it is always assumed that TW > 1. The error introduced 
by (10-29) at i = 0 and the error introduced by (10-27) at i = TW are both nearly 
1/2W. For other values of i, the errors caused by the approximations are much 
less than 1/2W^ and decrease as TW increases. Equation (10-30) becomes an 
increasingly accurate approximation of (10-25) as 7 increases. A test statistic 
proportional to (10-30) can be derived for the baseband radiometer of Figure 
44(c) without invoking the sampling theorems and the accompanying 
approximations. 

Because n{t) is a zero-mean Gaussian process and has a power spectral density 
that is symmetrical about /c, ndt) and na{t) are zero-mean, independent 
Gaussian processes (Appendix B-3). Thus, ndi/W) and rigQ/W) are zero- 
mean, independent Gaussian random variables. Equation (B-40) implies that the 
power spectral densities of ndt) and ns{t) are 

Scif) = Ssif) 
No ,       I/I < W/2 

0   ,       I/I > W/2 

The associated autocorrelation functions are 

RC{T) = Rsir) = NoWsinciWr) 

This expression indicates that ndi/W) is statistically independent of ndJ/W), 
i ^ j, and similarly for ns{i/W) and ns{j/W). Therefore, (10-30) becomes 

V = -iJ24 + J2B!} (10-33) 

(10-31) 

(10-32) 

i=l »=1 
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where the Ai and the B, are statistically independent Gaussian random variables 
with unit variances and means 

Thus, 2V/NQ has a noncentral chi-squared (x^) distribution [24] with 27 degrees 
of freedom and a noncentral parameter 

-'^'O Jo JVo Jo ^^0 

The probability density function of Z = 2V/No is 

fz{x) = - (-j exp f —j 7^_i (^v^j w(x) (10-37) 

where /„() is the modified Bessel function of the first kind and order n, and u{x) 
= 1, X > 0, and u{x) = 0, a; < 0. Using the series expansion in A of the Bessel 
function and then setting A = 0 in (10-37), we obtain the probability density 
function for Z in the absence of the signal: 

fz{x) = ^:^x''-'exp(^-^^u{x),    A = 0 (10-38) 

where r{x) is the gamma function. 

By straightforward calculations using the statistics of Gaussian variables, (10-33) 
and the subsequent results yield 

E[V] = S + No-f (10-39) 

var(V^) = 2No£ + N^-f (10-40) 

Equation (10-39) approaches the exact result of (10-22) as TW increases. 

Let Vt denote the threshold level to which V is compared. A false alarm occurs if 
V >Vt when the signal is absent. Application of (10-38) yields the probability of 
a false alarm: 

/•OO 1 

'2Vt 
l-r(^,7) (10-41) 
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where the incomplete gamma function is defined as 

T{x, a) 
r(a) 

e-H"-^dt (10-42) 

and r(oo5 a) = T{a). Integrating (10-41) by parts 7 — 1 times yields the series 

7-1 

No 
exp 

i=0 

ii 
No 

(10-43) 

Since correct detection occurs ifV >Vt when the signal is present, (10-37) 
indicates that the probability of detection is 

P, D 
1 /i;\(7-i)/2 

2Ft/JVo (I) exp 
v + X' 

'7-1 s/vX\ dv (10-44) 

The generalized Marcum Q-function is defined as 

Qmia,0)=        x^-j       exp( —j I^_^{ax)dx (10-45) 

where m is a nonnegative integer, and a and 0 are nonnegative real numbers. A 
change of variables (10-44) yields 

PD = Q^(^,Vm/No) (10-46) 

The threshold I4 is usually set to a value that ensures a specified Pp. To derive an 
easily computed closed-form expression for Vt in terms of Pp, we first 
approximate (10-41). When TW » 1,7 ?s TW, and the central Umit theorem 
for the sum of independent, identically distributed random variables with finite 
means and variances indicates that the distribution of V given by (10-33) is 
approximately Gaussian. Using (10-39) and (10-40) with £ = 0 and the Gaussian 
distribution, we obtain 

Vt - NoTW 

exp 
jv - NpTWf 

2NITW 
dv 

Q XNiTwyz-^l ' TW»1 (10-47) 

where Q{x) is defined by (A-30). Inverting this equation, we obtain Vt in terms 
of Pp and No. Accordingly, if we estimate the value of NQ to be No and Pp is 
specified, then the threshold should be 

Vt ft! No^TWQ-^ {Pp) + NoTW ,    TW » 1 (10-48) 

where Q~^ () denotes the inveree of the function Q(). In the absence of a signal, 
(10-22) indicates that NQ = E[V]/TW. Thus, No can be estimated by averaging 
sampled radiometer outputs when it is known that no signal is present. 
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In some applications, one might wish to specify the/a/^<? alarm rate, which is the 
expected number of false alarms per unit time, rather than Pp. If successive 
observation intervals do not overlap each other except possibly at end points, 
then the false alarms rate is 

T 
(10-49) 

For TW > 100, the generalized Marcum Q-function is difficult to compute. 
Thus, we seek an approximation that is easier to compute and to invert. If V is 
approximated by a Gaussian random variable, then (10-39) and (10-40) imply 
that 

D Q 
Vt-NpTW-e 

{N^TW + 2Noey/\ 
TW » 1 (10-50) 

Figure 45 depicts Pp versus S/NQ for a wideband radiometers with NQ = NQ and 
PF = 10"^. Equations (10-48) and (10-50) are used to calculate Vt and Pp, 
respectively. The figure illustrates the increased energy required to maintain a 
specified PD as TW increases. The figure also illustrates the impact of the 
imperfect estimation of A'o when Pp = 10"^ and TW = 10^. When the 
estimation uncertainty is enough that iVo = 1.001 iVo, the detection probability is 
lowered considerably. 

25 30 35 
Energy-to-noise-density ratio, dB 

Figure 45. Probability of detection versus S/NQ for wideband radiometer with Pp = 
10~^ and various values of TW. Solid curves are the No = A^o; dashed curve is for 
NQ = l.OOlA^o- 
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The sensitivity of the radiometer to errors in NQ when TW is large, which has 
been observed experimentally [34], is due to the fact the 6[V] contains a bias 
term equal to NQTW and var(F) contains a term equal to N§ TW, as indicated 
by (10-39) and (10-40). Setting NQ high enough that NQ > NQ ensures that Vt 
will be large enough that the required Pp is achieved regardless of the exact 
value of NQ. It is important that NQ/NQ is as close to unity as possible to avoid 
degrading Px> when TW is large. Consequently, the radiometer output due to 
noise alone, which provides NQ, should be observed often enough that NQ closely 
tracks the changes in NQ that might result from small changes in the circuitry or 
the environmental noise. 

When Vt is specified, the value of S/NQ necessary to achieve a specified value of 
PD may be obtained by inverting (10-44), which is computationally difficult but 
can be closely approximated [35]. The approximation (10-50) yields the 
necessary value 

§- « [Q-HPD)f + ^^-TW + \Q-HPn)\^[Q-HPj,)f + ^^-TW, 

TW»l (10-51) 

If Vt is approximated by (10-48), then a substitution into (10-51) and a 
rearrangement of terms yields 

— w hVTW(3 +ih- 1)TW +1^(0,1, TW, h),     TW » 1       (10-52) 
iVo 

where 

0 = Q-\PF),  ^ = Q-HPD),   h = NO/NO (10-53) 

i^i0,^,TW,h)=e + ^TWm 2h-l + 
2f3h 

s/TW ' TW _ 

2   ll/2 

+ (10-54) 

As TW increases, the significance of the third term in (10-52) decreases, while 
that of the second term increases \ih>\. Figure 46 shows EJNQ versus TW for 
Po = 0,99 and various values of Pp and h. 

Denoting the intercepted signal power by S and the signal duration by Ti, we 
find from (10-53) with £ = STi that the intercepted power necessaiy to achieve 
specified values of P^ and either Pp or F is 

S_ 

No W lb Y^ + ih-i)w + ^ 

Ti<T 

Ti>T 
(10-55) 

As long as Ti > T, this equation indicates that increasing the observation 
interval decreases the required power. However, if Ti < T, an increase in the 
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Figure 46. Energy-to-noise-density ratio versus TW for wideband radiometer with PQ = 
0.99 and various values of Pp and h. 

observation interval increases the required power. The required power determines 
the transmitter range that can be accommodated by the wideband radiometer. If 
the outputs of V independent radiometers are averaged, the required power is 
reduced by the factor l/y^. 

10.3   Channelized Radiometer 

A channelized radiometer comprises K parallel radiometers, each of which has 
the form of Figure 44 and monitors a disjoint portion of the hopping band of a 
frequency-hopping signal, as depicted in Figure 47. The largest of the sampled 
radiometer outputs is compared to a threshold I4 stored in a comparator. If the 
threshold is exceeded, the comparator sends a 1 to the summer; otherwise it sends 
a 0. If the hop dwell epochs are at least approximately known, the channelized 
radiometer may improve its detection reliability by adding the I's produced by N 
consecutive comparator outputs corresponding to multiple frequency hops of the 
signal to be detected. A signal is declared to be present if the sum V equals or 
exceeds the integer r, which serves as a second threshold. The two thresholds Vt 
are r are jointly optimized for the best system performance. 

Ideally, K = M, the number of frequency channels in a hopset, but many fewer 
radiometers may be a practical or economic necessity; if so, each radiometer may 
monitor Mr frequency channels, where 1 < Mr < M. Because of insertion 
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Figure 47. Channelized radiometer. 

losses and the degradation caused by a power divider, it is unlikely that many 
more than 30 parallel radiometers are practical. An advantage of each radiometer 
covering many frequency channels is the reduced sensitivity to imprecise 
knowledge of the spectral boundaries of frequency channels. Since it is highly 
desirable to implement the parallel radiometers with similar circuitry, their 
bandwidths are assumed to be identical henceforth. 

To prevent steady interference in a single radiometer from causing false alarms, 
the chaimelized radiometer must be able to recognize when one of its constituent 
radiometers produces an output above the threshold for too many consecutive 
samples. The channelized system may then delete that constituent radiometer's 
output from the detection algorithm or it may reassign the radiometer to another 
spectral location. 

In the subsequent analysis of the channelized radiometer of Figure 46, the 
observation interval of the parallel radiometers, which is equal to the sampling 
interval, is assumed to equal the hop duration T^. The effective observation time 
of the channelized radiometer, T = NTh, should be less than the minimum 
expected message duration to avoid processing extraneous noise. Let Ppi denote 
the probability that a particular radiometer output at the sampling time exceeds 
the comparator threshold Vt when no signal is present. This probability is given 
by the right-hand side of (10-41). Therefore, (10-48) implies that if the sampling 
times are aligned with the frequency transitions, then the threshold necessary to 
achieve a specified Ppi is 

Vt « No^/MrThBQ-^iPpi) + NoMrThB ,     MrThB » 1 (10-56) 

where B is the bandwidth of each of the Mr frequency channels encompassed by 
a radiometer passband. The probability that at least one of the K parallel 
radiometer outputs exceeds Vt is 

PF2 = l-{l-PFif (10-57) 

^suming that the channel noises are statistically independent because the 
radiometer passbands are disjoint. The probability of a false alarm of the 
chaimelized radiometer is the probabiUty that the output V exceeds a threshold r: 

^2(1 PF2f- (10-58) 
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To solve this equation for Pp2 in terms of Pp, we observe that the incomplete 
beta function is defined as 

F{x\a, b) = —i— / f-\l - tf-^dt,     0 < x < 1 
B{a, b) Jo (10-59) 

where B{a, b) is the beta function and F{l\a, b) = 1. In terms of this function, 
(10-58) becomes 

PF = F{PF2\r,N-r + l) (10-60) 

The inverse of the incomplete beta function, which we denote by F~\ may be 
easily computed by Newton's method or approximations [35]. Therefore, 
(10-56), (10-57), and (10-60) may be combined to determine the approximate 
threshold necessary to achieve a specified Pp: 

Vt « No^m\BQ-'[l-[l-F-'{PF\r,N-r + l)Y^'''j+NoMrThB, 

MrThB » 1 (10-61) 

where it is assumed that NQ does not vary across the hopping band, and hence 
there is one NQ and one Vt for all the parallel radiometers. 

If the intercepted signal duration, Ti, is less than the observation time T, we 
assume for simplicity that A^i = Ti/Th, the number of sampling intervals during 
which the signal is present, is an integer. Furthermore, we assume that at most a 
single radiometer contains the intercepted signal during each sampling interval. 
Let PD\ denote the probability that a particular radiometer output exceeds the 
threshold when a signal is present in that radiometer. Thus, (10-46), (10-36) and 
(10-50) imply that 

PDI = 

Vt - NoMrThB - Eh 
Q 

{N^MrnB + 2NoShf' 
MrThB » 1      (10-62) 

where L = [MrThB\ and Eh is the energy per hop dwell time. Let PD2 denote 
the probability that the threshold is exceeded by the sampled maximum of the 
parallel radiometer outputs. It is assumed that when a signal is present it occupies 
any one of M frequency channels with equal probability and that all radiometer 
passbands are within the hopping band. Consequently, the signal has probability 
Mr/M of being in the passband of a particular radiometer and probability 
KMr/M of being in the passband of some radiometer. Since a detection may be 
declared in response to a radiometer that does not receive the signal, 

PD2 = 
KMr r 

M 1 - (1 - PDI) (1 - PFif-' +    1 
KMr 
M 

PF2     (10-63) 
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where the second term vanishes if the radiometer passbands cover the hopping 
band so that KMr = M. The probabihty of detection associated with the 
observation interval when the signal is actually present during Ni < N of the 
hop intervals is 

JV 

^- = EE 
i=r j=0 

PL (1 - PD^T'-' n7 (1 - PF2) 
N-Ni-i+j 

(10-64) 

If the minimum duration of a frequency-hopping signal is known, the 
overestimation of N might be avoided so that Ni = N. The detection probability 
then becomes 

i=:r   ^     '^ 

= FiPD2hN-r + l) 

N-i 

(10-65) 

A suitable, but not optimal, choice for the second threshold is r = iN/2\ when 
the full hopping band is monitored by the channelized radiometer. In general, 
numerical results indicate that 

r = 
2M 

(10-66) 

is a good choice for partial-band monitoring. 

If detection decisions are made in terms of fixed observation intervals of duration 
T = NTh, and successive intervals do not overlap except possibly at end points, 
then the false alarm rate defined in (10-49) is an appropriate design parameter. 
This type of detection is called block detection, and the false-alarm rate is 

F = 
NTH 

(10-67) 

To prevent the risk of major misalignment of the observation interval with the 
time the signal is being transmitted, either block detection must be supplemented 
with hardware for arrival-time estimation or the duration of successive 
observation intervals should be less than roughly half the anticipated signal 
duration. 

A different approach to mitigating the effect of a misalignment, called binary 
moving-window detection, is for the observation interval to be constructed by 
dropping the first sampling interval of the preceding observation interval and 
adding a new sampUng interval, A false alarm is considered to be a detection 
declaration at the end of the new interval when no signal is actually present. 
Thus, a false alarm occurs only if the comparator input for an added sampling 
interval exceeds the threshold, the comparator input for the discarded sampling 
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interval did not, and the count for the preceding observation interval was r — 1. 
Therefore, the probability of a false alarm is 

PFQ = C(0, l)C(r -1,N- 1)C(1,1) (10-68) 

where 

C{i, N) = (^^ PU (1 - PF2)''"^ ,   i<N (10-69) 

It follows that the false-alarm rate is 

-PFO T     (N\ ^T   ,^        r>    \N+l-r 

Since the right-hand side of (10-69) is proportional to the first term of the series 
in (10-58) 

rPp 
F < -TT^ (10-71) 

~ NTh 

A comparison of this inequality with (10-67) indicates that the false alarm rate 
less than r times as large for moving-window detection as it is for block 
detection. Thus, moving-window detection requires a slightly higher comparator 
threshold for the same false-alarm rate and, hence, slightly more signal power to 
detect a frequency-hopping signal. However, moving-window detection with 
N ^ Ni » 1 inherently limits the misalignment between the occurrence of the 
intercepted signal and the observation interval. For some observation interval, the 
misalignment is not more than Th/2. 

As an example, it is assumed that there are M = 2400 frequency channels, the 
signal duration is known and there is no misalignment so that A^i = N, block 
detection is used so that (10-67) is applicable, F = IQ-yTh, B = 250/Th, and 
No = NQ. Figure 48 plots PD versus EH/NQ for the channelized radiometer with 
full hopping-band coverage so that Mr = M/K, and several values of K and A'^. 
The figure also shows the results for a wideband radiometer with TW = BT^M 
iV = 6 • 10^ • iV, and iV = 150 or 750. It is observed that the channelized 
radiometer with /C = 30 is much better than the wideband radiometer when 
A/" = 150, but loses its advantage for PD < 0.995 when N = 750. The substantial 
advantage of the channelized radiometer with K = M and M^ = 1 is apparent. 
As A'^ increases, the channelized radiometer can retain its advantage over the 
wideband radiometer by increasing K accordingly. 

In Figure 49, N = Ni = 150 and K = 30, but Mr and NQ/NQ are variable. The 
fraction of the hopping band monitored by the channelized radiometer is denoted 
by /? = KMr/M. It is observed that when NQ = 1.001 A^o, there is only a small 
performance loss for the channelized radiometer despite the fact that 
TW = 9 • 10^. The relative insensitivity of the channelized radiometer to small 
errors in TVQ is a major advantage over the wideband radiometer. The figure 
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illustrates the following tradeoff when K and M are fixed: as Mr decreases, 
fewer frequency channels are monitored, but less noise enters a radiometer. The 
net result is beneficial when /3 is reduced to 20 percent. However, the figure 
indicates that for /? = 10 percent or 5 percent, the hopping-band coverage 
becomes inadequate to enable a Pp greater than 0.995 and 0.96, respectively, 
regardless of SH/NQ- Thus, there is a minimum fraction of the hopping band that 
must be monitored to ensure a specified Pp. Many other aspects of the 
channelized radiometer, including the effects of timing misalignments, are 
examined in [35]. 
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Appendix A.   Error-Correcting Codes 

Error-correcting codes [36], [37], [38], [39] are vital in fully exploiting the 
potential capabilities of spread-spectrum communication systems. In this section, 
some of the fundamental results of coding theory are presented and used to 
derive the appropriate receiver computations and the error probabilities at 
receiver outputs. 

A-1   Block Codes 

An (n, k) block code is a set of codewords, each of which has n symbols and 
represents k information symbols. Each symbol is selected from an alphabet of q 
symbols, and there are q*^ codewords. If g = 2"*, then an (n, fc) code of g-ary 
symbols is equivalent to an (mn, mk) binary code. A block encoder can be 
implemented by using logic elements or memory to map a fe-symbol word into 
an w-symbol codeword. After the waveform representing a codeword is received 
and demodulated, the decoder uses the demodulator output to determine the 
information symbols corresponding to the codeword. If the demodulator 
produces a sequence of discrete symbols and the decoding is based on these 
symbols, the demodulator is said to make hard decisions. Conversely, if the 
demodulator produces analog or multilevel quantized samples of the waveform, 
the demodulator is said to make soft decisions. The advantage of soft decisions is 
that reliability or quality information is provided to the decoder, which can use 
this information to improve its performance. 

The Hamming distance between two sequences with an equal number of symbols 
is defined as the number of positions in which the symbol of one sequence diffei^ 
from the corresponding symbol of the other sequence. The minimum Hamming 
distance between any two codewords is called the minimum distance of the code. 
When hard decisions are made, the demodulator output sequence is called the 
received sequence or the received word. Hard decisions imply that the overall 
channel between the encoder output and the decoder input is the classical binary 
symmetric channel. If the channel symbol error probability is less than one-half, 
then the maximum-likelihood criterion implies that the Hamming distance 
should be used to decide which codeword was transmitted. A complete decoder, 
which implements the maximum-likelihood criterion, assumes that the correct 
codeword is the one that is the smallest Hamming distance from the received 
word. An incomplete decoder does not attempt to correct aU received words, 

A conceptual three-dimensional representation of the vector space of sequences 
of length n is depicted in Figure A-1, Each codeword occupies the center of a 
decoding sphere with radius t in Hamming distance, where t is a positive integer. 
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Figure A-1. Conceptual representation of vector space of sequences of length n. 

For a complete decoder, planar boundaries define decision regions surrounding 
each codeword. A received word is assumed to be a corrupted version of the 
codeword enclosed by the boundaries. A bounded-distance decoder is an 
incomplete decoder that attempts to correct symbol errors in a received word if it 
lies within one of the decoding spheres. Since unambiguous decoding requires 
that none of the spheres may intersect, the maximum number of random errors 
that can be corrected by a bounded-distance decoder is 

t = L(d„, - 1)/2J (A-1) 

where dm is the minimum Hamming distance between codewords and \x\ 
denotes the largest integer less than or equal to x. When more than t errors occur, 
the received word may lie within a decoding sphere surrounding an incorrect 
codeword or it may lie in the interstices (regions) outside the decoding spheres. If 
the received word lies within a decoding sphere, the decoder selects the incorrect 
codeword at the center of the sphere and produces an output word of information 
symbols with undetected errors. If the received word lies in the interstices, the 
decoder cannot correct the errors, but recognizes their existence. Thus, the 
decoder fails to decode the received word. 

Since there are (") [q — iy words at exactly distance i from the center of the 
sphere, the number of words in a decoding sphere of radius t is determined from 
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elementary combinatorics to be 

t 

i=0   ^   ^ 

Since a block code has g* codewords, q'^V words are enclosed in some sphere. 
The number of possible received words is q^ > g*F, which yields 

(A-3) 

This inequality with t given by (A-1) establishes the Hamming upper bound on 
the minimum distance. 

A block code is called a linear block code if its codewords form a fe-dimensional 
subspace of the vector space of sequences with n symbols. Thus, the vector sum 
or difference of two codewords of a linear block code is a codeword. If a binary 
block code is linear, the symbols of a codeword are modulo-two sums of 
information bits. Since a linear block code is a subspace of a vector space, it 
must contain the additive identity. Thus, the all-zero sequence is always a 
codeword in any linear block code. Since nearly all practical block codes are 
hnear, block codes are assumed to be linear henceforth. 

The Hamming weight of a codeword is defined as the number of nonzero symbols 
in a codeword. For binary block codes, the Hamming weight is the number of 1 's 
in a codeword. For a linear block code, the sum of two codewords is another 
codeword with weight equal to the distance between the two original codewords. 
By adding the codeword c to all the codewords, we find that the set of Hamming 
distances from any codeword c is the same as the set of codeword weights. 
Consequently, in evaluating decoding error probabilities, one can assume without 
loss of generality that the all-zero codeword was transmitted, and the minimum 
Hamming distance is equal to the minimum weight of the nonzero codewords. 

A systematic block code is a code in which the information symbols appear 
unchanged in the codeword, which also has additional parity symbols. In terms 
of the word error probability for the binary symmetric channel, every linear code 
is equivalent to a systematic linear code [36]. Therefore, systematic block codes 
are the standard choice and are assumed henceforth. Some systematic codewords 
have only one nonzero information symbol and n — k parity symbols. These 
codewords have weights that cannot exceed n — k + 1. Since the minimum 
distance of the code is equal to the minimum codeword weight, 

dm<n-k + l (A-4) 

This upper bound, which is called the Singleton bound, is vaUd for all linear 
block codes. A code that has d^ = n — fe + 1 is called a maximum-distance- 
separable code. 
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A cyclic code is a linear block code in which a cyclic shift of the symbols of a 
codeword produces another codeword. This characteristic allows the 
implementation of encoders and decoders that use linear feedback shift registers. 
Relatively simple encoding and hard-decision decoding techniques are known for 
cyclic codes belonging to the class of Bose-Chaudhwi-Hocquenghem (BCH) 
codes, which may be binary or nonbinary. A BCH code has a length that is a 
divisor of q^ — 1, where m > 2, and is designed to have an error-correction 
capability of i = \_{5 — 1)/2J, where 5 is the design distance. Although the 
minimum distance may exceed the design distance, the standard BCH decoding 
algorithms cannot correct more than t errors. The parameters (n, k, t) for binary 
BCH codes with 7 < n < 127 are listed in Table A-1. 

Table A-1. Binary BCH 
codes. 

n k t D, n k t D, n A; t D, 
7 4 1 1 63 45 3 0.1592 127 92 5 0.0077 

7 1 3 1 63 39 4 0.0380 127 85 6 0.0012 

15 11 1 1 63 36 5 0.0571 127 78 7 1.68 10-4 

15 7 2 0.4727 63 30 6 0.0088 127 71 9 2.66 10-'* 

15 5 3 0.5625 63 24 7 0.0011 127 64 10 2.48 10-^ 

15 1 7 1 63 18 10 0.0044 127 57 11 2.08 10-6 

31 26 1 1 63 16 11 0.0055 127 50 13 1.42 10-'' 

31 21 2 0.4854 63 10 13 0.0015 127 43 14 9.11 io-« 

31 16 3 0.1523 63 7 15 0.0024 127 36 15 5.42 10-9 

31 11 5 0.1968 63 1 31 1 127 29 21 2.01 10-6 

31 6 7 0.1065 127 120 1 1 127 22 23 3.56 10-^ 

31 1 15 1 127 113 2 0.4962 127 15 27 7.75 10-7 

63 57 1 1 127 106 3 0.1628 127 8 31 8.10 10-7 

63 51 2 0.4924 127 99 4 0.0398 127 1 63 1 

A perfect code is a block code such that every r? -symbol sequence is at a distance 
of at most t from some ri-symbol codeword, and the sets of all sequences at 
distance t or less from each codeword are disjoint. Thus, the Hamming bound of 
(A-3) is satisfied with equality, and a complete decoder is also a bounded- 
distance decoder. The only perfect codes are the binary repetition codes of odd 
length, the Hamming codes, the binary Golay (23,12) code, and the ternary 
Golay (11,6) code. 

Repetition codes have only one information bit represented by n binary code 
symbols. When n is odd, the (n, 1) repetition codes are perfect codes with 
dm = n and t = {n — l)/2. A hard-decision decoder makes a decision based on 
the state of the majority of the demodulated symbols. Although repetition codes 
are not efficient for the additive white Gaussian noise (AWGN) channel, they can 
improve the system performance for fading channels if the number of repetitions 
is properly chosen. 
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A Hamming (n, k) code is a BCH code that has d„i = 3, t = 1, and 

n-k _ I 
n = ^ — (A-5) 

9-1 

A Hamming code is a perfect code that is capable of correcting all single errors. 
Binary Hamming codes are found in Table A-1. The Golay (23,12) code is a 
binary cyclic code that is a perfect code with dm = l and t = 3. 

The extended Golay (24,12) code is formed by adding an overall parity symbol to 
the Golay (23,12) code, thereby increasing the minimum distance to dm = 8. As a 
result, some received sequences with four errors can be corrected with a 
complete decoder. The (24,12) code is often preferable to the (23,12) code 
because the code rate, which is defined as the ratio k/n, is exactly one-half, 
which simplifies the system timing. 

In general, any (n, k) linear block code with an odd value of dm can be converted 
into an (n + 1, fc) extended code by adding a parity symbol. The advantage of the 
extended code stems from the fact that the minimum distance of the extended 
code is increased by one, which improves the performance. However, the 
decoding complexity and code rate are usually changed insignificantly. 

Nonbinary block codes can accommodate high data rates efficiently becatise 
decoding operations are performed at the symbol rate rather than the higher 
information-bit rate. Reed-Solomon codes are nonbinary BCH codes with 
n = g — 1 and are maximum-distance-separable codes with dm = n — k + l. For 
convenience in implementation, q is usually chosen so that q = 2"*, where m is 
the number of bits per symbol. Thus, w = 2"* — 1 and the code provides 
correction of 2"*-ary symbols. Most Reed-Solomon decoders are bounded- 
distance decoders with t = [{dm — 1)/2J. 

The weight distribution of a code is a list of the number of codewords with each 
possible weight. The weight distributions of the Golay codes are list in Table 
A-2. Analytical expressions that can be used to compute the weight distribution 
are known in some cases. Let Ai denote the number of codewords with weight l. 
For a binary Hamming code, each Ai can be determined from the weight- 
enumerator polynomial 

n 

Aix) = Y, Aix' = -[(1 + xf -^ n(l + s)(»-i)/2(l - a;)(«+i>/2]     ^^.gj 
1=0 " 

For a maximum-distance-separable code, AQ = 1 and [37] 

Ai = (^) (« - 1) E (-1)' f ~i ^) 4-'-'- ,  d^<l<n (A-7) 

The weight distribution of other codes can be determined by examining all valid 
codewords if the number of codewords is not too large for a computation. 
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Table A-2. Weight 
Distribution of Golay 
Codes Weight 

Number of Codewords 

(23,12)       (24,12) 

0 1 1 

7 253 0 

8 506 759 

11 1288 0 

12 1288 2576 

15 506 0 

16 253 759 

23 1 0 

24 0 1 

Error probabilities for hard-decision decoding 

There are two types of bounded-distance decoders: erasing decoders and 
reproducing decoders. They differ only in their actions following the detection of 
uncorrectable errors in a received word. An erasing decoder discards the 
received word and may initiate an automatic retransmission request. For a 
systematic block code, a reproducing decoder reproduces the information 
symbols of the received word as its output. 

Let Ps denote the channel-symbol error probability, which is the probability of 
error in a demodulated code symbol. It is assumed that the channel-symbol errors 
are statistically independent and identically distributed, which is usually an 
accurate model for systems with appropriate symbol interleaving (Section A-3). 
Let P^ denote the word error probability, which is the probability that a received 
word is not decoded correctly due to both undetected errors and decoding 
failures. There are (") distinct ways in which i errors may occur among n 
symbols. Since a received sequence may have more than t errors but no 
information-symbol errors, 

i=t+\ 
^-^ E (?)^«(i-^«r' (A-8) 

for a reproducing decoder that corrects t or few errors. For an erasing decoder, 
(A-8) becomes an equality. For error-correcting decoders, t is given by (A-1) 
because it is pointless to make the decoding spheres smaller than the maximum 
allowed by the code. However, if a block code is used for both error correction 
and error detection, an erasing decoder is often designed with t less than the 
maximum. If a block code is used exclusively for error detection, then t = 0. 

Conceptually, a complete decoder correcdy decodes when the number of symbol 
errors exceeds t if the received sequence lies within the planar boundaries 
associated with the correct codeword, as depicted in Figure A-1. When a 
received sequence is equidistant from two or more codewords, a complete 
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decoder selects one of them according to some arbitrary rule. Thus, the word 
error probability for a complete decoder satisfies (A-8). If Pg < 1/2, a complete 
decoder is a maximum-likelihood decoder. 

Let Pt(d denote the probability of an undetected error, and let Pa/ denote the 
probability of a decoding failure. For a bounded-distance decoder 

Pud+Pdf=Yl f"1 ^^*(i - ^*)"" <A-9> 
i=t+i \*/ 

Thus, it is easy to calculate P^f once P^a is determined. Since the set of Hamming 
distances from a given codeword to the other codewords is the same for aU given 
codewords of a linear block code, it is legitimate to assume for convenience in 
evaluating P^ that the all-zero codeword was transmitted. If channel-symbol 
errors are statistically independent and occur with the same probability Ps, then 
the probability of an error in a specific set of i positions of the received word is 

Pe(i)^piii-Psr-' (A-io) 

For an undetected error to occur at the output of a bounded-distance decoder, the 
number of erroneous symbols must exceed t and the received word must lie 
within an incorrect decoding sphere. Let N{1, i) is the number of sequences of 
Hamming weight i that Me within a decoding sphere of radius t associated with a 
particular codeword of weight I. Then iV(l, i)/{q — 1)* is the number of sets of 
these sequences such that in each set the nonzero symbols occur in i particular 
positions. Using (A-10), we obtain 

„ min(j+t,n) ,     .. 

(g - 1)* 
t=t+l l=max(i-t,dm)       ^^ ^ 

mm.{i+t,n) 

E (rfr   (1 - ^^)""'    E    ^'^(^' i)    <A-i 1) 
i=t+l   ^ ' l=max(i—t,dm) 

Consider sequences of weight i that are at distance s from a particular codeword 
of weight I, where |l — i| < s < t so that the sequences are within the decoding 
sphere of the codeword. By counting these sequences and then summing over the 
allowed values of s, we can determine N{1, i). The counting is done by 
considering changes in the components of this codeword that can produce one of 
these sequences. Let j denote the number of nonzero codeword symbols that are 
changed to zeros, a the number of codeword zeros that are changed to any of the 
iq — 1) nonzero symbols in the alphabet, and fi the number of nonzero codeword 
symbols that are changed to any of the other (q — 2) nonzero symbols. For a 
sequence at distance s to result, it is necessaiy that 0 < j < s. The number of 
sequences that can be obtained by changing any j of the I nonzero symbols to 
zeros is (^.), where (^) = 0 if a > b. For a specified value of j, it is necessary that 
a = j + i —I to ensure a sequence of weight i. The number of sequences that 
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result from changing any a of the n — I zeros to nonzero symbols is (""') 
{q — 1)°. For a specified value of j and hence a, it is necessary that P = s — j— 
a = s + l — i — 2j to ensure a sequence at distance s. The number of sequences 
that result from changing /3 of the I — j remaining nonzero components is ('"•') 
{q — 2)^, where 0^ = 0 if x 7^ 0 and 0° = 1. Summing over the allowed values of 
s andj, we obtain 

x{q- iy^'-^{q - 2y+^-'-^^ (A-12) 

Equations (A-11) and (A-12) allow the exact calculation of Pud- 

When q = 2, the only term in the inner summation of (A-12) that is nonzero has 
the index j = {s + 1 — i)/2 provided that this index is an integer and 
0 < (s + / — i)/2 < s. Using this result, we find that for binary codes, 

mj)= E (!iZf)(^)' ^ = 2 (A-13) 
s=\l-i\   V     2     /   V     2     / 

The word error probability is a performance measure that is important primarily 
in applications for which only a decoded word completely without symbol errors 
is acceptable. When the utility of a decoded word degrades in proportion to the 
number of information bits that are in error, the information-bit erroj-probability 
is frequently used as a performance measure. To evaluate it for block codes that 
may be nonbinary, we first examine the information-symbol error probability. 

Let Pisij) denote the probability of an error in information symbol j at the 
decoder output. In general, it cannot be assumed that Pis{j) is independent of j. 
The information-symbol error probability, which is defined as the unconditional 
error probability without regard to the symbol position, is 

1   ^ 
^i^ = lJl^M (A-14) 

The random variables Zj,j = 1,2,... ,k, are defined so that Zj = 1 if 
information symbol j is in error and Zj = 0 if it is correct. The expected number 
of information-symbol errors is 

E[I] ^ E 
k 

L j=i 

k k 

= E^[^i] = E-P"(^') (A-15) 
j=\ j=l 

where E[ ] denotes the expected value. The information-symbol error rate is 
defined as E[I]/k. Equations (A-14) and (A-15) imply that 

Pis = ^ (A-16) 
k 
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Thus, the information-symbol error probability is equal to the information- 
symbol error rate. 

Let Pdsij) denote the probability of an error in symbol j of the codeword chosen 
by the decoder or symbol j of the received sequence if a decoding failure occure. 
The decoded-symbol error probability is 

1   " 
Pds = -y2PdsiJ) n ^—^ 

A derivation similar to that of (A-16) yields 

E\D\ 
Pds = n 

(A-17) 

(A-18) 

where E[D] is the expected number of decoded-symbol errors. Thus, the 
decoded-symbol error probability is equal to the decoded-symbol error rate. 

It can be shown [40] that for cyclic codes, the error rate among the information 
symbols in the output of a bounded-distance decoder is equal to the error rate 
among all the decoded symbols; that is. 

Pis = Pds (A-19) 

When this equation is valid, the calculation of Pis is significantly simplified 
because Pas can be expressed in terms of the code weight distribution, whereas 
an exact calculation of Pis requires additional information. 

An erasing decoder makes an error only if it fails to detect one. Therefore, 
Pds = Pud and (A-11) implies that for an erasing decoder 

"       /     P     \ ' mm{i+t,n) 

Prf, = 5^ ( J3Y )  (1 - Pa)""^       H       ^iNihi)    (erasingdecoder) 
l=max{i—t,dm) 

(A-20) 
i=t+l 

q-1 

The number of sequences of weight i that lie in the interstices outside the 
decoding spheres is 

(^ inin(i+t,n) 

n-       J2       AiNil,i),    i>t + l (A-21) 
J=max(i—t,dm) 

where the firat term is the total number of sequences of weight % and the second 
term is the number of sequences of weight i that he within incorrect decoding 
spheres. When i symbol errors in the received word cause a decoding failure, the 
decoded symbols in the output of a reproducing decoder contain i errors. 
Therefore, the decoded-symbol error rate is 

min(i4-t,n) 

Pds=Y^Pe{i) 
t+1 

E 
J=inax(i—t,dm) 

AiN{l,i)--^L{i)- 
n n 

(reproducing decoder) 

(A-22) 
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Even if Pis = Pds, two major problems still arise in calculating Pis from (A-20) 
or (A-22). The computational complexity may be prohibitive when n and q are 
large, and the weight distribution is unknown for many linear or cyclic block 
codes, Hence, approximations are highly desirable. 

The packing density is defined as the ratio of the number of words in the q'^ 
decoding spheres to the total number of sequences of length n. From (A-2), it 
follows that the packing density is 

For perfect codes, Dp = I. If Dp > 0.5, undetected errors tend to occur more 
often then decoding failures, and the code is considered tightly packed. If Dp < 
0.1, decoding failures predominate, and the code is considered loosely packed. 
The packing densities of binary BCH codes are listed in Table 1. The codes are 
tightly packed if n = 7 or 15. For k > 1 and n = 31,63, or 127, the codes are 
tightly packed only if t = 1 or 2. 

To approximate Pis for tightly packed codes, let A{i) denote the event that ^ 
errors occur in a received sequence of n symbols at the decoder input. If the 
symbol errors are independent, the probability of this event is 

P[A{i)] = (^)Pi(l - PsT-' (A-24) 

Given event A{i) for i such that dm <i < n, it is plausible to assume that a 
reproducing bounded-distance decoder usually chooses a codeword with 
approximately i symbol errors. For i such that t + 1 <i < dm, it is plausible to 
assume that the decoder usually selects a codeword at the minimum distance dm- 
These approximations, (A-19), (A-24), and the identity (") ^ = (Izl) indicate 
that Pis for reproducing decoders is approximated by 

i=t+l ^   ^ i=dm+'i.  ^ ^ 

The virtues of this approximation are its lack of dependence on the code weight 
distribution and its generality. Computations for specific codes indicate that the 
accuracy of this approximation tends to increase with P^d/Pc^f- The right-hand 
side of (A-25) gives an approximate upper bound on Pis for erasing bounded- 
distance decoders, for loosely packed codes with bounded-distance decoders, and 
for complete decoders because some received sequences with i + 1 or more 
errors can be corrected and, hence, produce no information-symbol errors. 

When there are relatively few sequences in decoding spheres, it is plausible that 
Pis for a reproducing bounded-distance decoder might be accurately estimated 
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by ignoring undetected errors. Dropping the terms involving N{1, i) in (A-21) 
and (A-22) and using (A-19) gives 

Pis > E (" IT) Piil - Psf-' (A-26) 

The virtue of this lower bound as an approximation is its independence of the 
code weight distribution. The bound is tight when decoding failures are the 
predominant error mechanism. For cycHc Reed-Solomon codes, numerical 
examples [40] indicate that the exact Pjg and the approximate bound are quite 
close for all values of Pg when t > 3, a result that is not surprising in view of the 
paucity of sequences in the decoding spheres for a Reed-Solomon code with t > 
3. A comparison of (A-26) with (A-25) indicates that the latter overestimates Pis 
by a factor of less than dm/{t + 1) as P^ -* 0. 

A q-ary symmetric channel or uniform discrete channel is one in which an 
incorrectly decoded information symbol is equally likely to be any of the 
remaining q — 1 symbols in the alphabet. Consider a linear (n, k) block code and 
a q-my symmetric channel such that g is a power of 2 and the "channel" refers to 
the transmission channel plus the decoder. Among the g — 1 incorrect symbols, a 
given bit is incorrect in g/2 instances. Therefore, the information-bit error 
probability is 

n=^P,. (A-27) 

Let r denote the ratio of information bits to transmitted channel symbols. For 
binaiy codes, r is the code rate. For block codes with m = logj q information bits 
per symbol, r = mkln. When coding is used but the information rate is 
preserved, the duration of a channel symbol is changed relative to that of an 
information bit. Thus, the energy per received channel symbol is 

e, = rSt, = —4 (A-28) 
n 

where Ei, is the energy per information bit. When r < 1, a code is potentially 
beneficial if its error-correcting capability is sufficient to overcome the 
degradation due to the reduction in the energy per received symbol. For the 
AWGN channel and coherent binary PSK, the classical theory indicates that the 
symbol error probability at the demodulator output is 

where 

^. = 011/^1 (A-29) 

''<^'=;^r^'"'(-^)*=^*(^) '^-'°' 
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and erfc() is the complementary error function. For noncoherent detection of 
q-ary orthogonal signals over an AWGN channel, it is shown subsequently that 

exp 
/ -t-   i        \ 7, / 

imrSb 
(A-31) 

which decreases as q increases for sufficiently large values of Sb/No. The 
orthogonality of the signals ensures that at least the transmission channel is g-ary 
symmetric, and hence (A-27) is at least approximately correct. 

If the alphabets of the code symbols and the transmitted channel symbols are the 
same, then the channel-symbol error probability Pcs equals the code-symbol 
error probability Pg. If not, then the q-ary code symbols may be mapped into 
^i-ary channel symbols. If q = 2"' and qi = 2""!, then choosing m/rrii to be an 
integer is strongly preferred for implementation simplicity. Since any of the 
channel-symbol errors can cause an error in the corresponding code symbol, 

Ps = l-{1- PcsT/"^' (A-32) 

A common application is to map nonbinary code symbols into binary channel 
symbols (mi = 1). In this case, (A-27) is no longer valid because the 
transmission channel plus the decoder is not necessarily q-ary symmetric. Since 
there is at least one bit error for every symbol error, 

— < n < TTt 7T (A-33) 
m 2{q — 1) 

This lower bound is tight when Pcs is low because then there tends to be a single 
bit error per code-symbol error before decoding, and the decoder is unlikely to 
change an information symbol. For coherent binary PSK, (A-29) and (A-32) 
imply that 

1- l-Q 
'2rSb 

No 
(A-34) 

Error probabilities for soft-decision decoding 

The simplest practical soft-decision decoding entails the use of erasures to 
supplement hard-decision decoding. A symbol is said to be erased when the 
demodulator instructs the decoder to ignore that symbol during the decoding. An 
erasure occurs when the demodulator output indicates that the symbol is 
unreliable. If a code has a minimum distance d^ and a received word is assigned 
e erasures, then all codewords diifer in at least dm — e of the unerased symbols. 
Hence, u errors can be corrected if 2z/ -f-1 < dm — €. If dm or more erasures are 
assigned, a decoding failure occurs. Let P^ denote the probability of an erasure. 
For independent symbol errors and erasures, the probability that a received 
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sequence has i errors and j erasures is PjP|(l — Pa — PeT * •'. Therefore, for a 
bounded-distance decoder. 

w ^EgC)C->.'^(--=-^)"- ■«-j 

io = max(0,[(d^-i)/2l) (A-35) 

where fa;] denotes the smallest integer greater than or equal to x. This inequality 
becomes an equality for an erasing decoder. For the AWGN channel, decoding 
with optimal erasures provides an insignificant performance improvement 
relative to hard-decision decoding, but erasures are often effective against fading 
or sporadic interference. Codes for which errors and erasures decoding is most 
attractive are those with a relatively large minimum distance such as 
Reed-Solomon codes. 

When soft decisions are made, a number called the metric is associated with each 
possible codeword. The metric is a function of both the codeword and the 
demodulator output samples. A soft-decision decoder selects the codeword with 
the largest metric. The information bits are then recovered from this codeword. 

Let y denote the n-dimensional vector of noisy output samples t/j, t = 1,2,... , 
n, produced by a demodulator that receives a sequence of n symbols. Let X| 
denote the Ith codeword vector with symbols a:|j, i = 1,2,,.. , n. Let /(y|xi) 
denote the likelihood function, which is the conditional probability density 
function of y given that xj was transmitted. The maximum-likelihood decoder 
finds the value of 1,1 < I < q*', for which the likelihood function is largest. If 
this value is IQ, the decoder decides that codeword IQ was transmitted. Any 
monotonically increasing function of /(y|xi) may serve as the metric of a 
maximum-likelihood decoder. A convenient choice is often proportional to the 
logarithm of/(y|x|), which is called the log-likelihood function. If the 
demodulator outputs are statistically independent and a single output corresponds 
to each code symbol, then the log-likelihood function for each of the q^ possible 
codeword is 

n 

In/(y|xO = Y,^ fiViM ,      I = 1,2,... ,g*^ (A-36) 

where fiyilxu) is the conditional probability density function ofpi given the 
value of a; ji. 

For binary PSK communications over the AWGN channel, if codeword I is 
transmitted, then the received signal representing symbol i is 

nit) = ^j2SsXu'4}{t) cos 27r/et + ni{t) ,    0<t<Ts,   i = 1,2,... , n (A-37) 

where £s is the symbol energy, Tg is the symbol duration, /c is the carrier 
frequency, xu = +1 when binary symbol i is a 1 and rrij = — 1 when binary 
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symbol i is a 0, ij^it) is the unit-energy symbol wavefomi, and ni{t) is 
independent, zero-mean, white Gaussian noise. Since t/^(i) has unit energy and 
vanishes outside [0, r^]. 

I 
Ts 

2 \tl^{t)\'dt = 1 (A-38) 

For coherent demodulation, a frequency translation to baseband is provided by 
multiplying rj(i) by cos 2nfct. After discarding a negligible integral, we find that 
the matched-filter demodulator, which is matched to i'{t), produces the output 
samples 

Pi = \fSsl2xii + /    ni{t)ip(t) cos 27r/ct dt ,    ^ = 1,2,... , n        (A-39) 
Jo 

These outputs provide sufficient statistics because 'ip{t) COS2T:fct is the sole basis 
function for the signal space. Since ni{t) is statistically independent of nk{t) 
when i ^ k, the {yi} are statistically independent. 

The autocorrelation of each white noise process is 

E[ni{t)ni{t + T)] = ^5{T) ,    z = l,2,...,n (A-40) 

where Noi/2 is the two-sided power spectral density of ni{t) and 5{T) is the Dirac 
delta function. A straightforward calculation using (A-40) and assuming that the 
spectrum of ^(t) is confined to |/| < /c indicates that the variance of the noise 
term of (A-39) is A^oi/4. Therefore, the conditional probability density function of 
yi given that xu was transmitted is 

f{yiM=     , exp 
^y^rNoi/2 

iVi - \/Ssl2xiiy' 
Noi/2 

i = l,2,...,n   (A-41) 

Since yf and xf^ = 1 are independent of the codeword I, terms involving these 
quantities may be discarded in the log-likelihood function of (A-36). Therefore, 

" the maximum-likelihood metric is 

t/(0 = E^'    ^ = 1,2,...,2'= (A-42) 

which requires knowledge of Noi, i = 1,2,... ,n. 

If each Noi = No, a constant, then this constant is irrelevant, and the 
maximum-likelihood metric is 

n 

U{l) = J2xuyi,    I = 1,2,...,2'' (A-43) 

Let P2{S) denote the probability that the metric for an incorrect codeword at 
distance 5 from the correct codeword exceeds the metric for the correct 
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codeword. After reordering the samples {yi}, the difference between the metrics 
for the correct codeword and the incorrect one may be expressed as 

6 5 

^i^) = H(^ii - ^2i)t/i = 2 ^ xiiPi (A-44) 

where the sum includes only the 5 terms that differ, xu refers to the correct 
codeword, X2i refers to the incorrect codeword, and x^i = —xu. Then P^iS) is 
the probability that D{S) < 0. Since each of its terms is independent, D{S) has a 
Gaussian distribution. A straightforward calculation using (A-41) and Sg — rit 
yields 

2(5r56 

which reduces to (A-29) when a single symbol is considered and 5=1. 

A fiindamental property of a probability, called countable subadditivity, is that 
the probability of a finite or countable union of events B„, n = 1,2,..., satisfies 

P{UnB:)<Y,P{Bn) (A-46) 
n 

In communication theory, a bound obtained from this inequality is called a union 
bound. To determine P^ for linear block codes, it suffices to assume that the 
all-zero codeword was transmitted. The union bound and the relation between 
weights and distances imply that P^ for soft-decision decoding satisfies 

n 

Pw<Y, ^'^2(0 (A-47) 

Let /3| denote the total information-symbol weight of the codewords of weight I. 
The union bound and (A-16) imply that 

Pis < T 1^2(0 (A-48) 

To determine 0i for any cyclic (n, k) code, consider the set Si of Ai codewords of 
weight I. The total weight of all the codewords in Si is A-r = lAi. Let a and /? 
denote any two fixed positions in the codewords. By definition, any cyclic shift 
of a codeword produces another codeword of the same weight. Therefore, for 
every codeword in Si that has a zero in a, there is some codeword in Si that 
results from a cyclic shift of that codeword and has a zero in /3. Thus, among the 
codewoids of Si, the total weight of all the symbols in a fixed position is the 
same regardless of the position and is equal to Ax/n. The total weight of all the 
information symbols in 3i is jSi = kAr/n = klAi/n. Therefore, 

Pis < J2 ^^«^2(0 (A-49) 
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Although it is theoretically advantageous, optimal soft-decision decoding cannot 
be efficiently implemented except for very short block codes, primarily because 
the number of codewords for which the metrics must be computed is 
prohibitively large. Approximate maximum-likelihood decoding algorithms are 
available. The Chase algorithm [38] generates a small set of candidate 
codewords that will almost always include the codeword with the largest metric. 
Test patterns are generated by first making hard decisions on each of the received 
symbols and then altering the least reliable symbols, which are determined from 
the demodulator outputs given by (A-39). Hard-decision decoding of each test 
pattern and the discarding of decoding failures generates the candidate 
codewords. The decoder selects the candidate codeword with the largest metric. 

For digital computations to be performed, soft-decision information must be 
quantized. Two levels of quantization correspond to hard decisions. More than 
two levels require analog-to-digital conversion of the demodulator output 
samples. Because the optimal location of the levels is a function of the signal, 
thermal noise, and interference powers, automatic gain control is often necessary. 
For the AWGN channel, it is found that an eight-level quantization represented 
by three bits and a uniform spacing between threshold levels cause no more than 
a few tenths of a decibel loss relative to what could theoretically be achieved 
with unquantized analog voltages or infinitely fine quantization. 

Calculations for specific communication systems and codes operating over the 
AWGN channel have shown that approximately 2 dB of additional signal power 
is required for a hard-decision receiver to produce the same information-bit error 
rate as the corresponding optimal soft-decision receiver. However, soft-decision 
receivers are much more complex to implement and may be too slow for the 
processing of high information rates. For a given level of implementation 
complexity, hard-decision decoders can accommodate much longer block codes, 
thereby at least partially overcoming the inherent advantage of soft-decision 
decoders. In practice, soft-decision decoding other than erasures is seldom used 
with block codes of length greater than 50. 

Performance examples 

Figure A-2 depicts the information-bit error probability Pb = Pis versus £b/No 
for various binary block codes with coherent PSK over the AWGN channel. 
Equation (A-25) is used to compute Pf, for the Golay (23,12) code with hard 
decisions. Since the packing density Dp is small for these codes, (A-26) is used 
for the BCH (63,36) code, which corrects t = 5 errors, and the BCH (127,64) 
code, which corrects i = 10 errors. Equation (A-29) is used for Pg. Inequality 
(A-49) and Table A-2 are used to compute the upper bound on Pb = Pis for the 
Golay (23,12) code with optimal soft decisions. The curves illustrate the power 
of the soft-decision decoding. For the Golay (23,12) code, soft-decision decoding 
requires approximately 2 dB less £b/No to achieve Pb = 10~^ than hard-decision 
decoding. Only when Pb < 10"^ does the BCH (127,64) begin to outperform the 
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Figure A-2. Information-bit error probability for binary block (n, k) codes and coherent 
PSK. 

Golay (23,12) code with soft decisions. If €b/No < 3 dB, an uncoded system 
with coherent PSK provides a lower P^ than a similar system that uses one of the 
block codes of the figure. 

Figure A-3 illustrates the performance of loosely packed Reed-Solomon codes 
with hard-decision decoding over the AWGN channel. The lower bound in 
(A-26) is used to compute the approximate information-bit error probabilities for 
binary channel symbols with coherent PSK and for nonbinary channel symbols 
with noncoherent MFSK. For the nonbinary channel symbols, (A-27) and (A-31) 
are used. For the binary channel symbols, (A-34) and the lower bound in (A-33) 
are used. For the chosen values of n, the best performance at Pj, = 10~^ is 
obtained if the code rate is k/n pa 3/4. Further gains result from increasing n and 
hence the implementation complexity. Although the figure indicates the 
performance advantage of Reed-Solomon codes with MFSK, there is a major 
bandwidth penalty. Let B denote the bandwidth required for an uncoded binary 
PSK signal. If the same data rate is accommodated by using uncoded binary 
FSK, the required bandwidth for demodulation with envelope detectors is 
approximately 2B. For uncoded MFSK using g = 2"* frequencies, the required 
bandwidth is 2'^B/m because each symbol represents m bits. If a Reed-Solomon 
(n, k) code is used with MFSK, the required bandwidth becomes T^nB/mk. 
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Figure A-3. Information-bit error probability for Reed-Solomon (n, k) codes. Modulation 
is coherent PSK or noncoherent MFSK. 

Metrics and error probabilities for MFSK 

For q-ary orthogonal symbol waveforms, si{t), S2{t),..., Sg{t), q matched filters 
are needed, and the observation vector is y = [yi y2 ... y^], where each y^ is an 
n-dimensional row vector of matched-fiher output samples for filter k with 
components y^i, i = 1,2,... ,n. Suppose that symbol i of codeword / uses 
unit-energy waveform s^{t), where uisa function of iandl. If codeword / is 
transmitted over the AWGN channel, the received signal for symbol i can be 
expressed in complex notation as 

ri{t) = Re[y/2S'sS^it)e^^^^^'+^^'^+ni{t),   0<t<Ts,   i = l,2,...,n 

(A-50) 

where ni{t) is independent, zero-mean, white Gaussian noise with two-sided 
power spectral density iVoi/2, /c is the carrier frequency, and 6i is the phase. 
Since the symbol energy for all the waveforms is unity, 

rTs 

I Jo 
\sk{t)\'dt = 1 ,    k = l,2,...,q 

The orthogonality of symbol waveforms implies that 

Jo 
Sjn{t)sl{t)dt = 0 ,    rriy^n 

(A-51) 

(A-52) 
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A frequency translation to baseband is followed by matched filtering. Matched- 
filter k, which is matched to Sfe(t), produces the output samples 

Vki /'n(t)e-^'2-^'*4(t)dt,  i = l,2,.., 
Jo 

,n k = l,2,...,q      (A-53) 

The substitution of (A-50) into (A-53), (A-52), and the assumption that each of 
the {sk{t)} has a spectram confined to |/| < fc yields 

yki = ^/€j2^'%,+ /    ni(t)e-^'2-^^*sJ(t)di (A-54) 

where Sk,/ = lifk = P and Sk^ = 0 otherwise. 

Equation (A-40) implies that the real and imaginary components of the noise 
term in (A-54), which are jointly Gaussian, are uncorrelated and, hence, 
independent and have the same variance iVoi/4, Since the density of a complex- 
valued random variable is defined to be the joint density of its real and imaginary 
parts, the conditional probability density function of y^i given ${ and Ski, is 

f iVkilSkujOi) = 
1 

/ 

TtNoi/2 
exp 

Vki - ^Sj2e^^tSkt, 

\ 
Noi/2 

(A-55) 

The independence of the {«»(<)}, the orthogonality condition (A-52), and the 
white Gaussian character of the noise ensure the conditional independence of the 
{yu} for all values of fc and i. 

For coherent signals, the {$i} are tracked by the phase synchronization system 
and thus ideally may be set to zero. The likelihood fimction is the product of qn 
densities given by (A-55). Forming the log-likelihood function with the {Bi} set 
to zero, and eliminating irrelevant terms that are independent of I, we obtain the 
maximum-likelihood metric 

n 

.,0 = ^5^ (A-56) 

where Vu = y^i is the sampled output of the filter matched to s^{t), the signal 
representing symbol i of codeword I. If each Noi = No, then the maximum- 
likelihood metric is 

Uil) = Y^ReiVu) (A-57) 
t=i 

and the common value NQ does not need to be known to apply this metric. 

For noncoherent signals, it is assumed that each $i is independent and uniformly 
distributed over [0,2w), which preserves the conditional independence of the 
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{Vki} given the {4/J- Expanding the argument of the exponential function in 
(A-55), expressing yki in polar form, and integrating over 6i, we obtain the 
conditional probability density function 

fivki 14,0 
1 

7rNoi/2 
exp 

IVkif + ^sSk,j2 
Noi/2 h 

^^s\yki\5^ kv 

N, Oi 
(A-58) 

where /o() is the modified Bessel function of the first kind and order zero, and 

1    f^"" 
IQ{X) = 7— /     exp{xcosu)du (A-59) 

27r Jo 

Let Rii = \y^i\ denote the sampled envelope produced by the filter matched to 
Su{t), the signal representing symbol i of codeword /. We form the log-likelihood 
function and eliminate terms and factors that do not depend on the codeword /, 
thereby obtaining the maximum-likelihood metric 

U{l) = J2lnIo 
i=l 

'SSgRii 
(A-60) 

Oi 

If each Noi = A'o, then the maximum-likelihood metric is 

/SSgRii 
Uil) = J2^Io(- 

iVo 
(A-61) 

and ^/S'S/NQ must be known to apply this metric. 

From the series representation of Io{x), it follows that 

From (A-59), we obtain 

Io{x) <expf ^j 

Io{x) < exp{x) ,   X >0 

(A-62) 

(A-63) 

The upper bound in (A-62) is tighter for 0 < x < 2, while the upper bound in 
(A-63) is tighter for 2 < a: < 00. If we assume that Ru/Noi is often less than 2, 
then the approximation of IQ{X) by exp(j;^/4) is reasonable. Substitution into 
(A-60) and dropping an irrelevant constant gives the metric 

"      p2 
(A-64) 

If each Noi = A^o, then the value of A'o is irrelevant, and we obtain the Rayleigh 
metric 

m) = Y.K (A-65) 
i=l 
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which is the maximum-likeMhood metric for a Rayleigh fading channel. 
Similarly, (A-63) can be used to obtain suboptimal metrics suitable for large 
values of RU/NQI. 

To determine the maximum-likelihood metric for making a hard decision on each 
symbol, we set n = 1 and drop the subscript i in (A-60). We find that the 
maximum-likelihood symbol metric is In {IQ{S/E£'SRI/NQ)], where the index I 
ranges over the symbol alphabet. However, since this function increases 
monotonicaliy and S/ES^/NQ is a constant, the optimal symbol metrics or 
decision variables are ii| or i?f for I = 1,2,... , q. 

For noncoherent MFSK, matched-filter I is matched to the unit-energy waveform 
si{t) = Ae-xp{j27rfit), 0 < < < T^, where A = l/^^. If r(t) is the received 
signal, a frequency translation to baseband and a parallel set of matched filters 
and envelope detectors provide the decision variables 

Rl f Jo 
r(t)e-J2'^/-*e-^'2-/'*dt (A-66) 

The orthogonality condition (A-52) is satisfied if the adjacent frequencies are 
separated by k/Ts, where fc is a nonzero integer. Expanding (A-66), we obtain 

p2   _   p2    I    p2 

Ric = A        r{t) cos [27r(/e 4- fi)t] dt 
Jo 

Ris = A [ \{t)sin[2irif^ + fi)t]dt 
Jo 

(A-67) 

(A-68) 

(A-69) 

These equations imply the correlator structure depicted in Figure A-4, where the 
irrelevant constant A has been omitted. The comparator decides what symbol 
was transmitted by observing which comparator input is the largest. 

To derive an alternative implementation, we observe that when the waveform is 
si{t) = A cos 27r(/c -f- /i)t, 0 <t <Ta, the impulse response of a filter matched 
to it is Acos 27r(/c + fiJiTs - *), 0 < t < T^. Therefore, the matched-filter 
output at time t is 

yiit) = A f r(r) cos [27r(/e + /i)(T-t-hr,)]dr 
Jo 

= AU r{T) cos [27r(/, + /,)T] drl cos [27r(/e + fi){t - T,)] 

+A U r{T) sin [27r(/e + BT] drX sin [27r(/e + fi){t - T,)] 

= ARiit) cos [27r(/e + /i)(t - T^) -I- <f>{t)] ,   0 < t < T^ (A-70) 
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Figure A-4. Noncoherent MFSK receiver using correlators. 

where the envelope is 

Ri{t) = AI \J r{r)cos[27T{f, + fi)r]dT 
n2 

+ r(r)sin[27r(/, + /0r]dr 

1/2 

(A-71) 

Since Ri{Ts) = Ri given by (A-67), we obtain the receiver structure depicted in 
Figure A-5, where the irrelevant constant A has been omitted. A practical 
envelope detector consists of a peak detector followed by a lowpass filter. 

To derive the symbol error probability for equally likely MFSK symbols, we 
assume that the signal si{t) was transmitted over the AWGN channel. The 
received signal has the form r{t) - y/2£s/Ts cos [27r (/c + fi)t + 9] + n{t), 
0<t<Ts. Since n{t) is white. 

E[n{t)n{t + r)] = ^5{T) (A-72) 

Using the orthogonality of the symbol waveforms and assuming that fc + fi » 
1/Ts in (A-68) and (A-69), we obtain 

E[Ru] = ^/Sj2cose ,    E[Ru] = \/Sj2sme 

E[Ri,] = E[Ru] = 0,    1 = 2,...,q 

var(i?,c) = var(i?/,) = No/4: ,    1 = 1,2,... ,q 

(A-73) 

(A-74) 

(A-75) 

Since n{t) is Gaussian, Ric and Ris are jointly Gaussian. Since the covariance of 
Ric and Ris is zero, they are mutually statistically independent. Therefore, the 
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Figure A-5, Noncoherent MFSK receiver with passband matched filters. 

joint probability density function of Ric and Ris is 

gi{ric,ris) 
1 

exp 
jric - micf + (ris - muf 

iVo/2 
(A-76) 

7riVo/2 

where rtiic = E[Ri^ and mis = E[Ru]. 

Let Ri and &i be implicitly defined by Ric = Ri cos Bi and Ris = Ri sin 6|. 
Using the Jacobian of the transformation, we find that the joint density of Ri and 
eiis 

g2{r,d) = ^rpexp 
TTiVo 

r^ — 2rmic cos 6 — 2rmis sin 6 + m|, + mf^ 

iVo/2 
r > 0,   1^1 < TT (A-77) 

The density of the envelope Ri is obtained by integration of (A-77) over 6. Using 
trigonometry and (A-59), we obtain the density 

^3(r) = ^exp( - 
r^ + m|, + m.; 

No/2 
u{r)       (A-78) 

where «(r) = 1 if r > 0, and u{r) = 0 if r < 0. Substituting (A-73), we obtain the 
densities for the i?j, I = 1,2,.,., g: 

/i(r)==|exp 
r-' + e, 

No/2 

a/2 \ .  / ^8Sy\      ,  . 

No 
(A-79) 

/,(.) = _ exp (^-^^ «W.    I = 2,...,g (A-80) 

The orthogonality of the symbol waveforms and (A-72) imply that the random 
variables {Ri} are independent. A symbol error occurs when Si{t) was 
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transmitted if Ri is not the largest of the {/?,}. Since the {Ri} are identically 
distributed for / = 2, • • • ,q, the probability of a symbol error when si{t) was 
transmitted is 

poo r  pr 

Ps = l- /   f2{y)dy 
Jo    Uo 

Substituting (A-80) into the inner integral gives 

f2{y)dy =: 

9-1 

fi{r)dr (A-81) 

/ 
exp    - 

No/2 
(A-82) 

Expressing the (q - l)th power of this result as a binomial expansion and then 
substituting into (A-81), the remaining integration may be done by using the fact 
that for A > 0, 

r exp    — 
262 M'-fy- b exp 

262 
(A-83) 

which follows from the fact that the density in (A-79) must integrate to unity. 
The final result is the symbol error probability for noncoherent MFSK over the 
AWGN channel: 

^. = E i (-!)'« 
i=l i + 1 

q-1 
i 

exp 
i£. 

(^ + l)iVo 
(A-84) 

A generalization for binary FSK is easily derived. Let NQJI and iVo2/2 denote 
the two-sided power spectral densities of the white Gaussian noise in the filter 
matched to the transmitted signal and the other matched filter, respectively. 
Changing NQ to A^oi in (A-79) and No to A'02 in (A-80), substituting into (A-81) 
with q = 2, and evaluating the integrals by using (A-83), we obtain 

P, = 
N< 02 

A^oi + A^( 
exp 

02 A^oi + A^( 
(A-85) 

02, 

Therefore, if it is equally likely that either 7Voi/2 or 7^02/2 is the noise density in 
the filter matched to a transmitted symbol, then interchanging the roles of A'oi 
and N02 in (A-85) and averaging over the two possibilities gives the symbol error 
probability for noncoherent FSK over the AWGN channel: 

^^-2^''Pl     iVoi + A^o2 
(A-86) 

which depends only on the average noise power spectral density of the two 
matched filters, not on the individual levels Noi and iVo2- If No\ = N02 = No, 
then (A-86) reduces to the classical formula 

P,= exp 
2^0. 

(A-87) 

128 



When frequency-nonselective fading occurs, the symbol energy may be 
expressed as £s(^^, where Sg represents the average energy and a is a random 
variable with Ela^] = 1. For Ricean fading, the probability density function of a 
is [15] 

/«(r) = 2(K + l)r exp{-K - (K + l)r2}/o(^K(K +l)2r)M(r)        (A-88) 

where «is Rice factor. Replacing Ss by f gO^ in (A-84), an integration over the 
density (A-88) and the use of (A-83) yield 

9-1 . 

exp 

g-l\ K + 1  
i   / K + 1 + (K + 1 + fs/iVo)? 

KiEs/NQ 

For binaiy FSK, 

K+1 

^'     2{K+1)+S,/NO 
exp 

2{K + 1) + SS/NO\ 

(A-89) 

(A-90) 

Chemoff Bound 

The moment generating function of the random variable X with distribution 
function F{a) is defined as 

M(s 
/oo 

exp(sa;)rfF 
•oo 

(x) (A-91) 

for all real s for which the integral is finite. For all nonnegative s, the probability 
that X > 0 is 

(A-92) 
roc />oo 

P[X>0]= /    dF(x) <  /    exp(sa:)dF(a;) 
Jo Jo 

Comparing (A-91) and (A-92), we conclude that 

^ [^ > 0] < M{s),   0<s<si (A-93) 

where si is the upper limit of an open interval in which M{s) is defined. To make 
this bound as tight as possible, we choose the value of s that minimizes M{s). 
Therefore, 

^ [^ > 0] <  min M(s) 
0<8<8l 

(A-94) 

The right-hand side of this inequality is called the Chemoff bound. It is 
potentially useful if it can be more e^ily evaluated than P[X > 0]. From (A-94) 
and (A-91), we obtain 

P[X>b]<  min M{s) exp(-s6) 
0<s<si 

(A-95) 
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Since the moment generating function is finite in some neighborhood of s = 0, 
we may differentiate under the integral sign in (A-91) to obtain the derivative of 
M(s).Theresuhis 

/oo 

xexp{sx)dF{x) (A-96) 
■oo 

which implies that M'(0) = E[X]. Differentiating (A-96) gives the second 
derivative 

/oo 

x^ exp{sx)dF{x) (A-97) 
■GO 

This equation shows that M"{s) > 0, which implies that A4{s) is convex in its 
interval of definition. Suppose that 

E{X) < 0 ,    P[X > 0] > 0 (A-98) 

The first inequality implies that M'(0) < 0, and the second inequality implies 
that M{s) —> oo as s —^ 00. Thus, since M(0) = 1 and M{s) is convex, it has its 
minimum value less than unity at some positive s = SQ. We conclude that (A-98) 
is sufficient to ensure that the Chemoff bound is less than unity and SQ > 0. 

The Chemoff bound can be tightened if X has a density function f{x) such that 

f{-x)>f{x),    x>0 (A-99) 

For s in A, where A is the open interval over which M{s) is finite, (A-91) 
implies that 

/•oo pO 

M{s) =   /    exp{sx)f(x)dx + /     exp{sx)f{x)dx 
Jo J-oo 

/•oo poo 

> /    [exi){sx)+ exp(—sx)]f{x)dx =  /    2cosh{sx)f{x)dx 
Jo Jo 

/•oo 

> 2 /    f{x)dx = 2P[X > 0] (A-lOO) 
Jo 

Thus, we obtain 

i^[^>0] <^minM(s) (A-101) 
2 seA 

In this version of the Chemoff bound, the minimum value SQ is not required to be 
nonnegative. However, if (A-98) holds, then the bound is less than 1/2, SQ > 0, 
and 

P[X>0]<1 min M{s) (A-102) 
2 0<s<si 
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In soft-decision decoding, the encoded sequence or codeword with the largest 
associated metric is converted into the decoded output. Let U{j) denote the value 
of the metric associated with sequence j of length L. Consider additive metrics 
having the form 

UU) = Y,miJJ) (A-103) 
t=i 

where m{j, i) is the symbol metric associated with symbol i of the encoded 
sequence. Let j = 1 label the correct sequence and j = 2 label an incorrect one. 
By suitably relabeling the I symbol metrics that may differ for the two sequences, 
we obtain 

P2{1) < P[U(2)>Uil)] 
I 

53[m(2,i)-m(l,i)]>0 
i=l 

(A-104) 

where the inequality results because U(2) = U(l) does not necessarily cause an 
error if it occurs. In all practical cases, (A-98) is satisfied for the random variable 
X = U{2) — U{1). Therefore, the Chemoff bound implies that 

PM) < a min E 
0<s<si 

exp < s ^ N(2, i) - TO(1, i)] 
i=l 

(A-105) 

where sj is the upper limit of the interval over which the expected value is 
defined. If (A-99) is satisfied, then a = 112; otherwise, a = 1. 

If m(2, i) — m(l, i), i = 1,2,..., I, are independent, identically distributed 
random variables and we define 

Z=  min ^[exp{s[m(2,i) — TO(l,i)]}] 
0<s<si 

then the Chemoff bound is given by 

(A-106) 

(A-107) 

This bound is often much simpler to compute than the exact P2H). As I 
increases, the central-limit theorem implies that the distribution of X = U{2)— 
U{1) approximates the Gaussian distribution. Thus, for large enough I, (A-99) is 
satisfied when E[X] < 0, and we set a = 1/2 in (A-107). For small I, (A-99) may 
be difficult to establish mathematically, but is often intuitively clear; if not, 
setting a = 1 in (A-107) is always valid. 

These results can be applied to hard-decision decoding, which can be regarded as 
a special case of soft-decision decoding with the following symbol metric. If 
symbol i of a candidate sequence j agrees with the corresponding detected 
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symbol at the demodulator output, then m.{j, i) = I; otherwise m(j, i) = 0. 
Therefore, m(2, i) - m(l, i) in (A-106) is equal to +1 with probability Pg and 
-1 with probability (1 - P^). Thus, 

Z = min [(1 - Ps)e-' + P.e^l 

= [4Ps(l-Ps)f' (A-108) 

for hard-decision decoding. Substituting this equation into (A-107) with a = 1, 
we obtain 

P2{l)<m{l-Ps)f' (A-109) 

This upper bound has great generality since no specific assumptions have been 
made about the modulation or coding. 

A-2   Convolutional Codes and Trellis Codes 

A convolutional encoder converts an input of k information bits into an output of 
n code bits that are Boolean functions of both the current input and preceding 
information bits. After k bits are shifted into a shift register and k bits are shifted 
out, n code bits are read out. Each code bit is a Boolean function of the outputs 
of selected shift-register stages. A convolutional code is linear if each Boolean 
function is a modulo-2 sum because the superposition property applies to the 
input-output relations and the all-zero codeword is a member of the code. For a 
linear convolutional code, the minimum Hamming distance between codewords 
is equal to the minimum Hamming weight of a codeword. The constraint length 
K of a convolutional code is the maximum number of sets of n output bits that 
can be affected by an input bit. A convolutional encoder is systematic if the 
information bits appear unaltered in each codeword. In contrast to a block 
codeword, a convolutional codeword can represent an entire message of 
indefinite length. 

A simple example of a nonsystematic linear convolutional encoder with k=l,n 
= 2, and K = 3is shown in Figure A-6(a). The shift register consists of 3 stages, 
each of which is implemented as a bistable memory element. Information bits 
enter the shift register in response to clock pulses. After each clock pulse, the 
most recent information bit becomes the content and output of the first stage, the 
previous contents of the first two stages are shifted to the right, and the previous 
content of the third stage is shifted out of the register. The outputs of the 
modulo-2 adders (exclusive-OR gates) provide two code bits. The generators of 
the output bits are the functions gi = [101] and g2 = [111], which indicate the 
stages that are connected to the adders. In octal form, the two generators are 
represented by (5, 7). The encoder of a nonsystematic convolutional code with 
k = 2,n = 3, and K = 2is shown in Figure A-6(b). In octal form, its generators 
are (13,12,11). 
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Figure A-6. Encoders of nonsystematic convolutional codes with (a) it' = 3 and rate = 1/2 
and (h}K = 2 and rate = 2/3. 

Since k bits exit from the sliift register as k new bits enter it, only the contents of 
the first {K — l)k stages prior to the arrival of new bits affect the subsequent 
output bits of a convolutional encoder. Therefore, the contents of these (K — l)k 
stages define the state of the encoder. The initial state of the encoder is generally 
the all-zero state. After the message sequence has been encoded {K — l)k zeros 
must be inserted into the encoder to complete and terminate the codeword. If the 
number of message bits is much greater than (K — i)k, these terminal zeros have 
a negligible effect and the code rate is well approximated by r = k/n. 

A trellis diagram depicts the structure of a convolutional code. A trellis diagram 
corresponding to the encoder of Figure A-6(a) is shown in Figure A-7. Each of 
the nodes in a column of a trellis diagram represents the state of the encoder at a 
specific time prior to a clock pulse. The first bit of a state represents the content 
of stage 1, while the second bit represents the content of stage 2. Branches 
connecting nodes represent possible changes of state. Each branch is labeled with 
the output bits or symbols produced following a clock pulse and the formation of 
a new encoder state. In this example, the first bit of a branch label refers to the 
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Figure A-7. Trellis diagram corresponding to encoder of Figure A-6. 

upper output of the encoder. The upper branch leaving a node corresponds to a 0 
input bit, while the lower branch corresponds to a 1. 

If the encoder begins in the all-zero state, not all of the other states can be 
reached until the initial contents have been shifted out. The trellis diagram then 
becomes identical from column to column until the final {K — \)k input bits 
force the encoder back to the zero state. Every path from left to right through the 
trellis represents a possible codeword. 

Each branch of the trellis is associated with a branch metric, and the metric of a 
codeword is defined as the sum of the branch metrics for the path associated with 
the codeword. A maximum-likelihood decoder selects the codeword with the 
largest metric (or smallest metric, depending on how branch metrics are defined). 
The Viterbi decoder implements maximum-likelihood decoding efficiently by 
sequentially eliminating many of the possible paths. At any node, only the partial 
path reaching that node with the largest partial metric is retained, for any partial 
path stemming from the node will add the same branch metrics to all paths that 
merge at that node. 

Since the decoding complexity grows exponentially with constraint length, 
Viterbi decoders are limited to use with convolutional codes of short constraint 
lengths. A Viterbi decoder for a rate-1/2, K = 1 convolutional code has 
approximately the same complexity as a Reed-Solomon (31,15) decoder. If the 
constraint length is increased to K = 9, the complexity of the Viterbi decoder 
increases by a factor of approximately 4. 

Sequential decoding of convolutional codes [37] is a suboptimal method that 
does not invariably provide maximum-likelihood decisions. However, because its 
implementation complexity only weakly depends on the constraint length, very 
low error probabilities can be attained by using long constraint lengths. The 
number of computations needed to decode a frame of data is fixed when Viterbi 
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decoding is used, but is a random variable when sequential decoding is used. 
When strong interference is present, the excessive computational demands and 
consequent memory overflows of sequential decoding usually result in a higher 
Pf, than for Viterbi decoding and a much longer decoding delay. Thus, Viterbi 
decoding is preferable for most communication systems and is assumed in the 
subsequent analysis of the performance of convolutional codes. 

To bound the information-bit error probability for the Viterbi decoder, we assume 
that the convolutional code is linear and that binary symbols are transmitted. 
With these assumptions, the distribution of either Hamming or Euclidean 
distances is invariant to the choice of a reference sequence. Consequently, 
whether the demodulator makes hard or soft decisions, the assumption that the 
all-zero sequence is transmitted entails no loss of generality in the derivation of 
the error probability. Let a{l, i) denote the number of paths diverging at a node 
from the the correct path, each having Hamming weight I and i incorrect 
information symbols over the unmerged segment of the path before it merges 
with the correct path. Thus, the unmerged segment is at Hamming distance I from 
the correct all-zero segment. Let df denote the minimum free distance, which is 
the minimum distance between any two codewords. Although the encoder 
follows the all-zero path through the trellis, the decoder in the receiver essentially 
observes successive columns in the trellis, eliminating paths and thereby 
sometimes introducing errors at each node. The decoder may select an incorrect 
path that diverges at node j and introduces errors over its unmerged segment. Let 
E[Ne{j)] denote the expected value of the number of errore introduced at node j. 
It is known from (A-16) that the information-bit error probability equals the 
information-bit error rate, which is defined as the ratio of the expected number 
of information-bit errors to the number of information bits applied to the 
convolutional encoder. Therefore, if there are N branches in a complete path, 

1    ^ 

i=i 

Let Bj{l, i) denote the event that the path with the largest metric diverges at node 
j and has Hamming weight I and i incorrect information bits over its unmerged 
segment. Then, 

E\NM] = £5^£?[iVe(i)|B,.ai)]F[B,.(l,i)] (A-111) 
1=1 l=d} 

when ElN^{j)\Bj{l, i)] is the conditional expectation of N^ij) given event 
Bj{l, i), P{Bj{l, i)\ is the probability of this event, and J, and Dj are the 
maximum values of i and I, respectively, that are consistent with the position of 
node j in the trelMs. When Bj{l, i) occurs, i bit errors are introduced into the 
decoded bits; thus, 

E[Ne{j)\Bj{l,i)] = i (A-112) 
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Since the decoder may already have departed from the correct path before node 
j, the union bound gives 

P[Bjil,i)]<a{l,i)P2{l) (A-113) 

where P2{1) is the probability that the correct path segment has a smaller metric 
than an unmerged path segment that differs in / code symbols. Substituting 
(A-111) to (A-113) into (A-110) and extending the two summations to oo, we 
obtain 

^     oo      oo 

^''^fcEE^«<^'^)^2(0 (A-1 14) 
i=l l=df 

The information-weight spectrum is defined as 

oo 

B{1) = J2 ^«(^' 0>    I > df (A-115) 
i=l 

In terms of B{1), (A-114) becomes 

-     oo 

n<^5Z ^(0^2(0 (A-116) 
l=dj 

For coherent PSK signals over an AWGN channel and soft decisions, (A-45) 
indicates that 

^^(') = Q(\/^1 (A-U7) 

When the demodulator makes hard decisions and a correct path segment is 
compared with an incorrect one, correct decoding results if the number of 
symbol errors in the demodulator output is less than half the number of symbols 
in which the two segments differ. If the number of symbol errors is exactly half 
the number of differing symbols, then either of the two segments is chosen with 
equal probability. Assuming the independence of symbol errors, it follows that 
for hard-decision decoding 

^2(0 
E       0)iPi{l-Ps)'-\     /is odd 

i=(Hl)/2 \V 

(A-118) 

Soft-decision decoding typically provides a 2 dB power savings at P^ = 10 ^ 
compared to hard-decision decoding for communications over the AWGN 
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channel. Since the loss due to even three-bit quantization usually is 0,2 to 0.3 dB, 
soft-decision decoding is highly preferable. 

Among the convolutional codes of a given code rate and constraint length, the 
one giving the smallest upper bound in (A-116) can sometimes be determined by 
a complete computer search. The codes with the largest value of dj are selected, 
and the catastrophic codes, for which a finite number of demodulated symbol 
errors can cause an infinite number of decoded information-bit errors, are 
eliminated. All remaining codes that do not have the minimum value of B{df) 
are eliminated. If more than one code remains, codes are eliminated on the basis 
of the minimal values of B{df + 1), B{df + 2),,.,, until one code remains. For 
binary codes of rates 1/2,1/3, and 1/4, codes with these favorable distance 
properties have been determined [41]. For these codes and constraint lengths up 
to 12, Tables A-3, A-4, and A-5 list the corresponding values of df and 
B{df + i),i = 0,l,...,7. Also listed in octal form are the generator sequences 
that determine which shift-register stages feed the modulo-two addere a 
associated with each code bit. For example, the best K = 3, rate-1/2 code in 
Table A-3 has generators 5,7, which specify the connections illustrated in Figure 
A-6(a). 

Table A-3. Parameter 
Values for 
Convolutional Codes 
with Rate = 1/2 and 

K df Generatore 

Bidf + i)fori = 0, ] I,...,6 

0 1 2 3 4 5 6 

3 5 5,7 1 4 12 32 80 192 448 

Favorable Distance 4 6 15,17 2 7 18 49 130 333 836 
Properties. 5 7 23,35 4 12 20 72 225 500 1324 

6 8 53,75 2 36 32 62 332 701 2342 

7 10 133,171 36 0 211 0 1404 0 11,633 

8 10 247,371 2 22 60 148 340 1(X)8 2642 

9 12 561,763 33 0 281 0 2179 0 15,035 

10 12 1131,1537 2 21 1(X) 186 474 1419 3542 

11 14 2473,3217 56 0 656 0 3708 0 27,518 

12 15 4325,6747 66 98 220 788 2083 5424 13,771 
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Table A-4. Parameter 
Values for 

K rf/ Generators 

B{ds + i)\ for i = = 0,1,... ,6 

0 1 2 3 4 5 6 

with Rate = 1/3 and 3 8 5,7,7 3 0 15 0 58 0 201 

Favorable Distance 4 10 13, 15, 17 6 0 6 0 58 0 118 
Properties. 5 12 25, 33, 37 12 0 12 0 56 0 320 

6 13 47, 53, 75 1 8 26 20 19 62 86 

7 15 117, 127,155 7 8 22 44 22 94 219 

8 16 225,331,367 1 0 24 0 113 0 287 

9 18 575, 673, 727 2 10 50 37 92 92 274 

10 20 1167,1375,1545 6 16 72 68 170 162 340 

11 22 2325,2731,3747 17 0 122 0 345 0 1102 

12 24 5745,6471,7553 43 0 162 0 507 0 1420 

Table A-5. Parameter 
Values for 
Convnliitinnal CnHps: K df Generators 

B(rf/+ i) for i = 0, \ 

0     12      3      4 

>  • • • 1 

5 

6 

6 

with Rate = 1/4 and 3 10 5, 5, 7, 7 1 0 4 0    12 0 32 

Favorable Distance 4 13 13, 13,15,17 4 2 0 10      3 16 34 
Properties. 5 16 25, 27, 33,37 8 0 7 0    17 0 60 

6 18 45, 53, 67,77 5 0 19 0    14 0 70 

7 20 117,127,155,171 3 0 17 0    32 0 66 

8 22 257,311,337,355 2 4 4 24    22 33 44 

9 24 533,575,647,711 1 0 15 0    56 0 69 

10 27 1173,1325,1467,1751 7 10 0 28    54 58 54 

Approximate upper bounds on P^ for rate-1/2, rate-1/3, and rate-1/4 
convolutional codes with coherent PSK, soft-decision decoding, and infinitely 
fine quantization are depicted in Figures A-8 to A-10. The curves are computed 
by using (A-117), A; = 1, and Tables A-3 to A-5 in (A-116) and then truncating 
the series after seven terms. This truncation gives a tight upper bound in P^ for 
Pb ^ 10~^. However, the truncation may exclude significant contributions to the 
upper bound when Pb > 10~^, and the bound itself becomes looser as Ph 
increases. The figures indicate that the code performance improves with 
increases in the constraint length and as the code rate decreases if /< > 4. The 
decoder complexity is almost exclusively dependent on K because there are 
2^"^ encoder states. However, as the code rate decreases, more bandwidth and a 
more difficult bit synchronization are required. 
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Figure A-8. Infonnation-bit error probability for rate = 1/2 convolutional codes with dif- 
ferent constraint lengths and coherent PSK. 

Figure A-9. Information-bit error probability for rate = 1/3 convolutional codes with dif- 
ferent constraint lengths and coherent PSK. 
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Figure A-10. Information-bit error probability for rate = 1/4 convolutional codes with 
different constraint lengths and coherent PSK. 

For convolutional codes of rate l/n, two trellis branches enter each state. For 
higher-rate codes with k information bits per branch, 2^" trellis branches enter 
each state and the computational complexity may be large. This complexity can 
be avoided by using punctured convolutional codes. These codes are generated 
by periodically deleting bits from one or more output streams of an encoder for 
an unpunctured rate-l/n code. For a period-p punctured code, p sets of n bits are 
written into a buffer from which p + u bits are read out, where I < i^ < (n — l)p. 
Thus, a punctured convolutional code has a rate of the form 

r = P 
p + u 

l<u<{n-l)p (A-119) 

The decoder of a punctured code uses the same decoder and trellis as the parent 
code, but uses only the metrics of the unpunctured bits as it proceeds through the 
trellis. The upper bound on Pb is given by (A-116) with A; = 1. For most code 
rates, there are punctured codes with the largest minimum free distance of any 
convolutional code with that code rate. Punctured convolutional codes enable the 
efficient implementation of a variable-rate error-control system with a single 
encoder and decoder. However, the periodic character of the trellis of a punctured 
code requires that the decoder acquire frame synchronization. 

Coded nonbinary sequences can be produced by converting the outputs of a 
binary convolutional encoder into a single nonbinary symbol, but this procedure 
does not optimize the nonbinary code's Hamming distance properties. Better 
nonbinary codes, such as the dual-A; codes, are possible [38] but do not provide 
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as good a performance as the nonbinary Reed-Solomon codes with the same 
transmission bandwidth. 

In principle, B{1) can be determined from the generating function, T{D, I), 
which can be derived for some convolutional codes by treating the state diagram 
as a signal flow graph [36], [37]. The generating function is a polynomial in D 
and I of the form 

r( A/) = ££«(!, i)i?'r (A-120) 
i=l l=d f 

where a{l, i) represents the number of distinct unmerged segments characterized 
by I and i. The derivative at J = 1 is 

&r{Dj) 
di 

^=1        i=l l=df 

(A-121) 
l=df 

Thus, the bound on P^ given by (A-116), is determined by substituting PaCO ^ 
place of D^ in the polynomial expansion of the derivative of T{D, I) and 
multiplying the result by 1/fc. In many applications, it is possible to establish an 
inequality of the form 

PaCO < aZ^ (A-122) 

where a and Z are independent of I. It then follows from (A-116), (A-121), and 
(A-122) that 

Ph< 
a dT{D, I) 
k      dl 

(A-123) 
I=1,D=Z 

For soft-decision decoding and coherent PSK, P2(l) is given by (A-117). Using 
the definition of Q{x) given by (A-30), changing variables, and comparing the 
two sides of the following inequality, we verify that 

1 poo ["     1 

Qis/^^+0) = -^        exp        {y+^/^7Tpf  dy 
yliT Jo L   ^ 

< 
1 

exp 
V27r 
v>0,  /3>0 

f Jo 
exp iiv+^f dy, 

A change of variables yields 

(A-124) 

(A-125). 

Substituting this inequality into (A-117) with the appropriate choices for i/ and f3 
gives 

P2{1) < Q (^^) e^ l-il - df)r€,/No] (A-126) 

141 



Thus, the upper bound on P2(l) may be expressed in the form given by (A-122) 
with 

Z = ey:p{-7'£b/No) 

(A-127) 

(A-128) 

For other channels, codes, and modulations, an upper bound on P2{1) in the form 
given by (A-122) can often be derived from the Chemoff bound. 

Trellis-Coded Modulation 

To add an error-correcting code to a communication system, while avoiding a 
bandwidth expansion, one may increase the number of signal constellation 
points. For example, if a rate-2/3 code is added to a system using QPSK, then the 
bandwidth is preserved if the modulation is changed to eight-phase PSK 
(8-PSK). Since each symbol of the latter modulation represents 3/2 as many bits 
as a QPSK symbol, the channel-symbol rate is unchanged. The problem is that 
the change from QPSK to the more compact 8-PSK constellation causes an 
increase in the channel-symbol error probability that cancels most of the 
decrease due to the encoding. To overcome this problem, the coding and 
modulation processes must be integrated. 

Trellis-coded modulation, the most widely used modulation that incorporates 
coding, is usually produced by a system of the form shown in Figure A-11. For 
k > I, each input of k information bits is divided into two groups. One group of 
ki bits is applied to a convolutional encoder while the other group of k2 = k — ki 
bits remains uncoded. The ki + 1 output bits of the convolutional encoder select 
one of 2*^1"'"^ possible subsets of the points in the constellation of the modulator. 
The ^2 uncoded bits select one of 2''^ points in the chosen subset. If ^2 = 0, there 
are no uncoded bits and the convolutional encoder output bits select the 
constellation point. Each constellation point is a complex number representing an 
amplitude and phase. 

kj bits Convolut. 
encoder 

kj + l 
bits 

^ 

k-> bits 
Signal 

mapper 

Constellation 
point 

^ Modulator 
Output 

Figure A-11. Encoder for trellis-coded modulation. 

For example, suppose that k = 2,ki = k2 = l, and n = 2 in the encoder of Figure 
A-11, and an 8-PSK modulator produces an output from a constellation of 8 
points. Each of the four subsets that may be selected by the two convolutional- 
code bits comprises two antipodal points in the 8-PSK constellation, as shown in 
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Figure A-12. If the convolutional encoder has the form of Figure A-6(a), then the 
treUis of Figure A-7 illustrates the state transitions of both the underlying 
convolutional code and the trellis code. The presence of the single uncoded bit 
implies that each transition between states in the trellis corresponds to two 
different transitions and two different phases of the transmitted 8-PSK waveform. 

~\>'     V ,-' 
■ r\_     ' 

Figure A-12. The constellation of 8-PSK symbols partitioned into 4 subsets. 

In general, there are 2*^^ parallel transitions between every pair of states in the 
trellis. Often, the dominant error events consist of mistaking one of these parallel 
transitions for the correct one. If the symbols corresponding to parallel transitions 
are separated by large Euclidean distances and the constellation subsets 
associated with transitions are suitably chosen, then the trellis-coded modulation 
with soft-decision "Viterbi decoding can yield a substantial performance 
improvement [36], [37], [38], This improvement usually ranges from 4 to 6 dB, 
depending on the number of states and, hence, the implementation complexity. 
The minimum Euclidean distance between a correct trellis-code path and an 
incorrect one is called the free Euclidean distance and is denoted by dfes/£^. Let 
Bfe denote the total number of information bit errors associated with erroneous 
paths that are at the free Euclidian distance from the correct path. The latter paths 
dominate the error events when the SNR is high. An analysis similar to the one 
for convolutional codes indicates that for the AWGN channel and a high SNR, 

B fe 
k Q 

2No 
(A-129) 

A-3   Interleaving 

An interleaver is a device that permutes the order of a sequence of symbols. A 
deinterleaver is the corresponding device that restores the original order of the 
sequence. A major application is the interleaving of modulated symbols 
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transmitted over a communication channel. After deinterleaving at the receiver, a 
burst of channel symbol errors or corrupted symbols is dispersed over a number 
of codewords or constraint lengths, thereby facilitating the removal of the errors 
by the decoding. Ideally, the interleaving and deinterleaving ensures that the 
decoder encounters statistically independent symbol decisions or metrics, as it 
would if the channel were memoryless. Interleaving of channel symbols is useful 
when error bursts are caused by fast fading, interference, or even decision- 
directed equalization. 

A block interleaver performs identical permutations on successive blocks of 
symbols. As illustrated in Figure A-13, mn successive input symbols are stored 
in a random-access memory (RAM) as a matrix of m rows and n columns. The 
input sequence is written into the interleaver in successive rows, but successive 
columns are read to produce the interleaved sequence. Thus, if the input 
sequence is numbered 1, 2,..., n, n + 1,..., mn, the interleaved sequence is 1, 
n -I-1,2n + 1,..., 2, n + 2,..., mn. For continuous interleaving, two RAMs are 
needed. Symbols are written into one RAM matrix while previous symbols are 
read from the other. In the deinterleaver, symbols are stored by column in one 
matrix, while previous symbols are read by rows from another. Consequently, a 
delay of ImnTg must be accommodated and synchronization is required at the 
deinterleaver. 

Input A > 1 2 •       •       • n 

A > n+l n + 2 •       •       • 2n 

• 
• 
• 

A > 

• 
• 
• 

• 
• 
• 

(m-l)n+l (m-l)n + 2 •       •       • mn 

4 
' 
k 

'                                                        1 

C ►utput 

Figure A-13. Block interleaver. 

When channel symbols are interleaved, the parameter n equals or exceeds the 
block codeword length or a few constraint lengths of a convolutional code. 
Consequently, if a burst of m or fewer consecutive symbol errors occurs and 
there are no other errors, then each block codeword or constraint length, after 
deinterleaving, has at most one error, which can be eliminated by the error- 
correcting code. Similarly, a block code that can correct t errors is capable of 
correcting a single burst of errors spanning as many as mt symbols. Since fading 
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can cause correlated errors, it is necessaiy that rtiTa exceed the channel 
coherence time. Interleaving effectiveness can be thwarted by slow fading that 
cannot be accommodated without large buffers that cause an unacceptable delay. 

Other types of interleavers that are closely related to the block interleaver include 
the convolutional interleaver and the helical interleaver [15]. A helical 
interleaver reads symbols from its matrix diagonally instead of by column in 
such a way that consecutive interleaved symbols are never read from the same 
row or column. Both helical and convolutional interleavers and their 
corresponding deinterleavers confer advantages in certain applications, but do 
not possess the inherent simplicity and compatibility with block structures that 
block interleavers have. 

h pseudorandom interleaver permutes each block of symbols pseudorandomly. 
Pseudorandom interleavers may be applied to channel symbols, but their main 
application is as critical elements in turbo encoders and encoders of serial 
concatenated codes that use iterative decoding (Section A-4).The desired 
permutation may be stored in a read-only memory (ROM) as a sequence of 
addresses or permutation indices. Each block of symbols is written sequentially 
into a RAM matrix and then interleaved by reading them in the order dictated by 
the contents of the ROM. 

If the interleaver is large, it is often preferable to generate the permutation 
indices by an algorithm rather than storing them in a ROM. If the interleaver size 
is iV = mn = 2" — 1, then a linear feedback shift register with v stages that 
produces a maximal-length sequence can be used. The binary outputs of the 
shift-register stages constitute the state of the register. The state specifies the 
index from ItoN that defines a specific interleaved symbol. The shift register 
generates all N states and indices periodically. 

An S-random interleaver is a pseudorandom interleaver that constrains the 
minimum interleaving distance. A tentative permutation index is compared with 
the S previously selected indices, where 1 < 5 < iV. If the tentative index does 
not differ in absolute value from the S previous ones by at least S, then it is 
discarded and replaced by a new tentative index. If it does, then the tentative 
index becomes the next selected index. This procedure continues until all N 
pseudorandom indices are selected. The S-random interleaver is frequently used 
in turbo or serial concatenated encoders. 

A-4   Concatenated Codes 

A concatenated code uses multiple levels of coding to achieve a large error- 
correcting capability with manageable implementation complexity by breaking 
the decoding process into stages. In practice, two levels of coding have been 
found to be effective. Figure A-14 is a functional block diagram of a 
communication system incorporating a concatenated code. The channel 
interleaver permutes the code bits to ensure the random distribution of code-bit 
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Figure A-14. Concatenated coding in transmitter and receiver. 

errors at the input of the concatenated decoder. Concatenated codes may be 
classified as classical concatenated codes, turbo codes, or serial concatenated 
codes. 

Classical Concatenated Codes 

Classical concatenated codes are serial concatenated codes with the encoder and 
decoder forms shown in Figure A-15. In the most common configuration for 
classical concatenated codes, an inner code uses binary symbols and a Reed- 
Solomon outer code uses nonbinary symbols. The outer-encoder output symbols 
are interleaved, and then these nonbinary symbols are converted into binary 
symbols that are encoded by the inner encoder. In the receiver, a grouping of the 
binary inner-decoder output symbols into nonbinary outer-code symbols is 
followed by symbol deinterleaving that disperses the outer-code symbol errors. 
Consequently, the outer decoder is able to correct most symbol errors originating 
in the inner-decoder output. The concatenated code has rate 

r = riro 

where ri is the inner-code rate and vo is the outer-code rate. 

(A-130) 
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symbols 
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Figure A-15. Structure of serial concatenated code: (a) encoder and (b) classical decoder. 
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'Hirbo Codes 

A variety of inner codes have been proposed. The dominant and most powerful 
concatenated code of this type comprises a binary convolutional inner code and a 
Reed-Solomon outer code. At the output of a convolutional inner decoder using 
the Viterbi algorithm, the bit errors occur over spans with an average length that 
depends on the signal-to-noise ratio. The deinterleaver is designed to ensure that 
Reed-Solomon symbols formed from bits in the same typical error span do not 
belong to the same Reed-Solomon codeword. In the worst case, the inner decoder 
produces bit errors that are separated enough that each one causes a separate 
symbol error at the input to the Reed-Solomon decoder. Since there are m times 
as many bits as symbols, the symbol error probability Pgi is upper bounded by m 
times the bit error probability at the inner-decoder output, where m = logg q is 
the number of bits in a Reed-Solomon code symbol, and is lower bounded by this 
bit error probability. Thus, for binary convolutional inner codes, 

^    oo ,00 

- ^ Bil)P2il) < P,i < i2|l ^ B{l)P2{l) (A-131) 
l=df l=df 

where P2{1) is given by (A-107) and (A-106). Assuming that the deinterleaving 
ensures independent symbol errors at the outer-decoder input, and that the 
Reed-Solomon code is loosely packed, (A-26) and (A-27) imply that 

2(g -ITE(i_i)^ai(l-nir^ (A-132) 
' i=t+l  ^ ^ 

For coherent PSK modulation with soft decisions, P2(l) is given by (A-116); if 
hard decisions are made, (A-118) applies. 

Figure A-16 depicts examples of the approximate upper bound on the 
performance in white Gaussian noise of concatenated codes with coherent PSK, 
soft demodulator decisions, an inner binary convolutional code with k=l, 
K = 1, and rate = 1/2, and various Reed-Solomon outer codes. Equation (A-132) 
and the upper bound in (A-131) are used. The bandwidth required by a 
concatenated code is B/r, where B is the uncoded PSK bandwidth. Since 
(A-130) gives r < 1/3, the codes of the figure require less bandwidth than 
rate-1/3 convolutional codes. 

Turbo codes are parallel concatenated codes that use iterative decoding [36], 
[42], [43]. As shown in Figure A-17, the encoder of a turbo code has two 
component encoders, one of which directly encodes the information bits while 
the other encodes interleaved bits. The iterative decoding requires that both 
component codes be systematic and of the same type, that is, both convolutional 
or both block. 

A turbo convolutional code uses two binary convolutional codes as its 
component codes. The multiplexer output comprises both the information and 
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Figure A-17. Encoder of turbo code. 

parity bits produced by encoder 1 but only the parity bits produced by encoder 2. 
Because of their superior distance properties, recursive systematic convolutional 
encoders are used in turbo encoders [36]. Each of these encoders has feedback 
that causes the shift-register state to depend on its previous outputs. Usually, 
identical rate-1/2 component codes are used, and a rate-1/3 turbo code is 
produced. However, if the multiplexer punctures the parity streams, a higher rate 
of 1/2 or 2/3 can be obtained. Although it requires frame synchronization in the 
decoder, the puncturing may serve as a convenient means of adapting the code 
rate to the channel conditions. The purpose of the interleaver, which may be a 
block or pseudorandom interleaver, is to permute the input bits of encoder 2 so 
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that it is unlikely that both component codewords will have a low weight. Thus, 
the turbo code has very few low-weight codewords, whether or not its free 
distance is large. Terminating tail bits are inserted into both component 
convolutional codes so that the turbo trellis terminates in the all-zero state and 
the turbo code can be treated as a block code. 

To produce a rate-1/2 turbo code from rate-1/2 convolutional component codes, 
alternate puncturing of the even parity bits of encoder 1 and the odd parity bits of 
encoder 2 is done. Consequently, an odd information bit has its associated parity 
bit of code 1 transmitted. However, because of the interleaving that precedes 
encoder 2, an even information bit may have neither its associated parity bit of 
code 1 nor that of code 2 transmitted. Instead, some odd information bits may 
have both associated parity bits transmitted, although not successively because of 
the interleaving. Since some information bits have no associated parity bits 
transmitted, the decoder is less likely to be able to correct errors in those 
information bits. A convenient means of avoiding this problem, and ensuring that 
exactly one associated parity bit is transmitted for each information bit, is to use 
a block interleaver with an odd number of rows and an odd number of columns. 
This procedure, or any other that separates the odd and even information bits, is 
called odd-even separation. Simulation results confirm that odd-even separation 
improves the system performance when puncturing and block interleavers are 
used, but odd-even separation is not beneficial in the absence of puncturing [43]. 
In a system with a small interleaver size, block interleavere with odd-even 
separation usually give a better system performance than pseudorandom 
interleavers, but the latter are usually superior when the interleaver size is large. 

The interleaver size is equal to the block length or frame length of the codes. As 
the block length increases, the performance of a turbo convolutional code often 
approaches within less than 1 dB of the information-theoretic Mmit. However, as 
the block length increases, so does the system latency, which is the delay 
between the input and final output. The potentially large system latency and the 
system complexity are the primaiy disadvantages of turbo codes. 

A maximum-likelihood decoder minimizes the probability that a received 
codeword or an entire received sequence is in error. A turbo decoder is designed 
to minimize the error probability of each information bit. Under either criterion, 
an optimal decoder would use the sampled demodulator output streams for the 
information bits and the parity bits of both component codes. A turbo decoder 
comprises separate component decoders for each component code, which is 
crucial in reducing the decoder complexity. Each component decoder uses a 
vereion of the maximum a posteriori (MAP) or BCJR algorithm proposed by 
Bahl, Cocke, Jelinek, and Raviv [36], [43]. As shown in Figure A-18, component 
decoder 1 of a turbo decoder is fed by demodulator outputs corresponding to the 
information bits and the parity bits of code 1, while decoder 2 is fed by outputs 
corresponding to the information bits and the parity bits of code 2. For each 
information bit u^, the MAP algorithm computes the log-likelihood ratio (LLR) 
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Figure A-18. Decoder of turbo code. I = interleaver; D = deinterleaver. 

of the probabilities that this bit is +1 or —1 given the vector y of demodulator 
outputs applied to the component decoder: 

Afc = ln 
P{uk = +l|y) 
P{uk =-l\y)\ 

(A-133) 

The LLRs of the information bits are iteratively updated in the two component 
decoders by passing information between them. 

It can be shown that for communications over an AWGN or fading channel using 
coherent PSK, A^ for each component decoder can be decomposed as [43] 

Afc = L{uk) + L{ysk\uk) + Le{uk) 

where the a priori LLR is initially 

L{uk) = In 
PjUk = +1) 
P{Uk = -1). 

(A-134) 

(A-135) 

ysk is the demodulator output corresponding to the systematic or information bit 
Uk, and the extrinsic information Le{uk) is a function of the demodulated output 
sequence y excluding ysk, but including outputs corresponding to the parity bits 
processed by the component decoder. The term L{ysk\uk), which represents 
information about Uk provided by ysk, is defined as 

L{ysk\uk) = In 
fiVskWh = +1) 
f{ysk\uk = -1) 

(A-136) 

where f{ysk\uk = j) is the conditional density of ysk given that Uk = j. Let A^ofc 
denote the noise power spectral density associated with Uk- For coherent PSK, 
(A-41) with 2/j -^ ysk, -/Voi —> A'ofc, and xn —> auk, where a accounts for the 
fading attenuation, gives the conditional density 

fivskW = ±1) 
1 

V^Nok/2 
exp 

{ysk T VSs/2ay 
Nok/2 

(A-137) 
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Substitution into (A-136) yields 

LiVskluk) = LcVak ,    Lc = 4tt^r^ (A-138) 
iVofe 

Tlie channel reliability factor Lc must be known or estimated to compute A^. 

Since almost always no a priori knowledge of the likely value of the bit uu is 
available, P{uu) = 0.5 is assumed, and L{uu) is set to zero for the first iteration 
of component decoder 1. However, for subsequent iterations of either component 
decoder, L{uk) for one decoder is set equal to the extrinsic information L^iuk) 
calculated by the other decoder at the end of its previous iteration. As indicated 
by (A-134), Le{uk) can be calculated by subtracting L{uk) and LcVsk from A^, 
which is computed by the MAP algorithm. Since the extrinsic information 
depends primarily on the constraints imposed by the code used, it provides 
additional information to the decoder to which it is transfered. As indicated in 
Figure A-18, appropriate interleaving or deinterleaving is required to ensure that 
the extrinsic information Lei{uk) or Le2(«fc) is applied to each component 
decoder in the correct sequence. When the iterative process terminates, the LLR 
Afe2 from component decoder 2 is deinterleaved and then applied to a device that 
makes a hard decision. Performance improves with the number of iterations, but 
simulation results indicate that Uttle is gained beyond roughly 4 to 12 iterations. 

The generic name for a version of the MAP algorithm or an approximation of it 
is soji-in soft-out (SISO) algorithm. The log-MAP algorithm is an SISO 
algorithm that transforms the MAP algorithm into the logarithmic domain, 
thereby simplifying operations and reducing numerical problems while causing 
no performance degradation. The max-log-MAP algorithm and the soft-output 
Viterbi algorithm (SOVA) are SISO algorithms that reduce the complexity of the 
log-MAP algorithm at the cost of some performance degradation [36], [43]. The 
max-log-MAP algorithm is roughly 2/3 as complex as the log-MAP algorithm 
and typically degrade the performance by 0.1 dB to 0.2 dB at P^ = 10~*. The 
SOVA algorithm is roughly 1/3 as complex as the log-MAP algorithm and 
typically degrades the performance by 0.5 dB to 1.0 dB at P^ = 10~^. The MAP, 
log MAP, max-log-MAP, and SOVA algorithms have complexities that increase 
Unearly with the number of states of the component codes. 

The log-MAP algorithm is roughly 4 times as complex as the standard Viterbi 
algorithm [43]. For 2 identical component decoders and typically 8 algorithm 
iterations, the overall complexity of a turbo decoder is roughly 64 times that of a 
Viterbi decoder for one of the component codes. The complexity of the decoder 
increases while the performance improves as the constraint length K of each 
component code increases. The complexity of a turbo decoder using 8 iterations 
and component convolutional codes with if = 3 is approximately the same m 
that of a Viterbi decoder for a convolutional code with K = 9. 

If iVofc is unknown and may be significantly different from symbol to symbol, a 
standard procedure [31] is to replace the LLR of (A-136) with the generalized 
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log-likelihood ratio 

L{ysk\uk) = In 
J{ysk\uk = -i,A^2) 

(A-139) 

where A^i and A^2 are maximum-likelihood estimates of A'OA; in the corresponding 
densities. From (A-137), we obtain the estimates 

Ni = 4(y,fe - y/E;j2af ,   N^ = 4(t/,fc + y/sj2af (A-140) 

Substituting these estimates into (A-137) and then substituting the results into 
(A-139), we obtain 

L{ysk\uk) = ln 
IVsk + y^Sj2a\ 

(A-141) 

A turbo block code uses two linear block codes as its component codes. To limit 
the decoding complexity, high-rate binary BCH codes are generally used as the 
component codes, and the turbo code is called a turbo BCH code. The encoder of 
a turbo block code has the form of Figure A-17. Puncturing is generally not used 
as it causes a significant performance degradation. Suppose that the component 
block codes are binary systematic (rii, ki) and (n2, k2) codes, respectively. The 
interleaver has an array into which kik2 information bits are written as ki 
columns and k2 rows. Encoder 2 converts each set of k2 interleaver output bits 
into a codeword of ^2 bits. The multiplexer passes the ni bits of each of the k2 
encoder-1 codewords, but only the n2 — ^2 parity bits of ki encoder-2 codewords 
so that information bits are transmitted only once. Consequently, the code rate of 
the turbo block code is 

r = 
kik2 

k2ni + (n2 - k2)ki 
(A-142) 

If the two block codes are identical, then r = k/{2n — k). If the minimum 
Hamming distances of the component codes are dmi and djn2, respectively, then 
the minimum distance of the concatenated code is 

dml + djn2 — 1 (A-143) 

The decoder of a turbo block code has the form of Figure A-18, and only slight 
modifications of the SISO decoding algorithms are required. Long, high-rate 
turbo BCH codes approach the Shannon limit in performance, but their 
complexities are higher then those of turbo convolutional codes of comparable 
performance [43]. 

Approximate upper bounds on the bit error probability for turbo codes have been 
derived [36], [43]. Since these bounds are difficult to evaluate except for short 
codewords, simulation results are generally used to predict the performance of a 
turbo code. 
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Serial Concatenated Codes with Iterative Decoding 

The encoder for n serial concatenated code has the form of Figure 15(a). When 
iterative decoding is used, usually both component codes are either binary 
systematic block codes or binary systematic convolutional codes. The outer 
encoder generates wi bits for every ki information bits. After the interleaving, 
each set of rii bits is converted by the inner encoder into ^2 bits. Thus, the overall 
code rate of the serial concatenated code is fci/wa. If the component codes are 
block codes, then an outer {rii, fci) code and an inner (n2, wi) code are used. A 
functional block diagram of an iterative decoder for a serial concatenated code is 
illustrated in Figure A-19. For each inner codeword, the input comprises the 
demodulator outputs corresponding to the n^ bits. For each iteration, the inner 
decoder computes the LLRs for the rii systematic bits. After a deinterleaving, 
these LLRs provide extrinsic information about the wi code bits of the outer 
code. The outer decoder then computes the LLRs for all its code bits. After an 
interleaving, these LLRs provide extrinsic information about the rii systematic 
bits of the inner code. The final output of the iterative decoder comprises the ki 
information bits of the concatenated code. Simulation results indicate that a serial 
concatenated code with convolutional codes tends to outperform a comparable 
turbo convolutional code for the AWGN channel when low bit error probabilities 
are required [36]. 

j^_. 1 
Input 

Inner 
decoder 
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decoder 
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 *■ 
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I 

Figure A-19. Iterative decoder for serial concatenated code. D = deinterleaver; I = inter- 
leaver. 

Ibrbo Product Codes 

A product code is a special type of serial concatenated code that is constructed 
from multidimensional arrays and Hnear block codes. When iterative decoding is 
used, a product code is called a turbo product code. An encoder for a 
two-dimensional turbo product code has the form of Figure 15(a). The outer 
encoder produces codewords of an (rii, ki) code. For an inner (^2, ^2) code, ^2 
codewords are placed in a ^2 x Wi interleaver array of fc2 rows and rii columns. 
The block interleaver columns are read by the inner encoder to produce rii 
codewords of length ^2 that are transmitted. The resulting product code has 
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parameters n = nin2, k = kik2, and code rate 

r =  
nin2 

(A-144) 

If the minimum Hamming distances of the outer and inner codes are dmi and 
dm2, respectively, then the minimum Hamming distance of the product code is 

dm = d, ml"m2 (A-145) 

Comparing this equation with (A-143) indicates that dm for a turbo product code 
is generally larger than dm for a turbo block code with the same component 
codes. The decoder for a turbo product code has the form shown in Figure A-20. 
The demodulator outputs are applied to both the inner decoder, and after 
deinterleaving, the outer decoder. The LLRs of both the information and parity 
bits of the corresponding code are computed by each decoder. These LLRs are 
then exchanged between the decoders after the appropriate deinterleaving or 
interleaving converts the LLRs into extrinsic information. For a given 
complexity, the performance of turbo product codes and turbo block codes are 
similar [43]. A large reduction in the complexity of a turbo product code in 
exchange for a relatively small performance loss is obtained by using the Chase 
algorithm (Section A-1) in the SISO algorithm of the component decoders [44]. 

Input 

D 
Output 
 ► Inner 

decoder 

1              1 -—> Outer 
decoder —> 
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Figure A-20. Decoder of turbo product code. D = deinterleaver; I = interleaver. 

Tbrbo IVellis-Coded Modulation 

Turbo trellis-coded modulation (TTCM), which produces a nonbinary 
bandwidth-efficient modulation, is obtained by using identical trellis codes as the 
component codes in a turbo code [45]. The encoder has the form illustrated in 
Figure A-21. The code rate and, hence, the required bandwidth of the component 
trellis code is preserved by the TTCM encoder because it alternately selects 
constellation points or complex symbols generated by the two parallel 
component encoders. To ensure that all information bits, which constitute the 
encoder input, are transmitted only once and that the parity bits are provided 
alternately by the two component encoders, the symbol interleaver transfers 
symbols in odd positions to odd positions and symbols in even positions to even 
positions, where each symbol is a group of bits. After the complex symbols are 
produced by signal mapper 2, the symbol deinterleaver restores the original 

154 



Input 
.    Trellis 
, encoder! 

—> 
—> 
—> 

Signal 
mapper 1 

Selec tor 

.          3                   ) 

Channel 
interleaver ,    I ? 5 

1 
Symbol 

interleaver - 
Trellis 

encoder 2 

—> 
—> 
—» 

Signal 
mapper 2 -^ 

Symbol 
deinterl. 

Modulator 
Output 

Figure A-21. Encoder for turbo trellis-coded modulation. 

ordering. The selector passes the odd-numbered complex symbols from mapper 
1 and the even-numbered complex symbols from mapper 2. The channel 
interleaver permutes the selected complex symbols piior to the modulation. The 
TTCM decoder uses a symbol-based SISO algorithm analogous to the SISO 
algorithm used by turbo-decoders. TTCM can provide a performance close to the 
Shannon limit for the AWGN channel, but its implementation complexity is 
much greater than that of conventional trellis-coded modulation [43]. 

155 





Appendix B.   Signal Representations 

B-l   Hilbert TVansform 

Consider a real-valued function g(t) defined in the time interval —oo < t < oo. 
The Hilbert transform of g{t) is defined by 

mm]=m 9iu) 
IT .l-oo t-U 

du (B-l) 

Because this integrand has a singularity, we define the integral as its Cauchy 
principal value. Thus, 

I      du = lim     / 
t — U 

du + g{u) du 
t+€ u 

(B-2) 

provided that the limit exists. Subsequently, integrals are to be interpreted as 
Cauchy principal values if they contain singularities. 

The definition of the Hilbert transform indicates that g{t) may be interpreted as 
the convolution of ^(t) with 1/wt. Therefore, g{t) results from passing g{t) 
through a linear filter with an impulse response equal to l/wt. The transfer 
function of the filter is given by the Fourier transform 

.F 
TTtJ      i-. 

exp(-j27r/t) 
TTt 

dt (B-3) 

where j = y — 1. This integral can be rigorously evaluated by using contour 
integration. Alternatively, we observe that since 1/t is an odd function. 

.F s} = -''[ sin 27r/t 

TTt      " 
dt 

= -isgn(/) 

where sgn(/) is the signum function defined by 

[ 1,   / > 0 
sgn(/) = <   0,   / = 0 

-1. /<o 

(B-4) 

(B-5) 

Let G{f) = J'igit)), and let G{f) = r{g{t)}. Equations (B-l) and (B-4) and 
the convolution theorem imply that 

G{f) = -3 smif)G{f) (B-6) 
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Because H[g{t)] results from passing g{t) through two successive filters, each 
with transfer function —j sgn(/), 

Him] = -m (B-7) 

provided that G(0) = 0. 

Equation (B-6) indicates that taking the Hilbert transform corresponds to 
introducing a phase sift of -90 degrees for all positive frequencies and +90 
degrees for all negative frequencies. Consequently, 

H[cos2TTfQt] = sin27r/ot (B-8) 

H[sm2Trfot] = -cos2nfot (B-9) 

These relations can be formally verified by taking the Fourier transform of the 
left-hand side of (B-8) or (B-9), applying (B-6), and then taking the inverse 
Fourier transform of the result. If G{f) = 0 for |/| > W and /o > W, the same 
method yields 

H[g{t) cos 2TTfot] = g{t) sm27rfot (B-10) 

H[g{t) sm27rfot] = -g{t) cos2TTfot (B-11) 

B-2   Analytic Signal and Complex Envelope 

A bandpass signal is one with a Fourier transform that is negligible except for 
fc - W/2 < I/I < /e + W/2, where 0 < H^ < 2/^ and fc is the center 
frequency. If H^ << fc, the bandpass signal is often called a narrowband signal. 
A complex-valued signal with a Fourier transform that is nonzero only for / > 0 
is called an analytic signal. 

Consider a bandpass signal g{t) with Fourier transform G{f). The analytic signal 
ga{t) associated with g{t) is defined to be the signal with Fourier transform 

Ga{f) = [l + sgn(f)]G(f) (B-12) 

which is zero for / < 0 and is confined to the band \f - fd < W/2 when / > 0. 
The inverse Fourier transform of (B-12) and (B-6) imply that 

ga{t) = g{t)+jg{t) (B-13) 

The complex envelope of g{t) is defined by 

9i{t) = 9a{t) exp[-j27rU] (B-14) 

where fc is the center frequency if g{t) is a bandpass signal. Since the Fourier 
transform of gi{t) is Ga{f + fc), which occupies the band |/| < 1^/2, the 
complex envelope is a baseband signal that may be regarded as an equivalent 
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lowpass representation of g{t). Equations (B-13) and (B-14) imply that g{t) may 
be expressed in terms of its complex envelope as 

git) = R4giit) exp(i27r/et)] (B-15) 

The complex envelope can be decomposed as 

9iit) = gcit)+jgsit) (B-16) 

where gdt) and ^^(t) are real-valued functions. Therefore, (B-15) yields 

git) = gdt) cos(27r/et) - ^,(t) sin(27r/et) (B-17) 

Since the two sinusoidal carriers are in phase quadrature, gdt) and ^^(t) are 
called the in-phase and quadrature components of ^(t), respectively. These 
components are lowpass signals confined to |/| < W/2. 

From Parseval's relation in Fourier analysis and (B-6), we obtain 

/OO /"OO pco /»oo 

fit)dt= \Gif)fdf=        \Gif)fdf=        g\t)dt      (B-18) 
■OO J—QO J—OQ J—OO 

Therefore, 

/OO />oo /»co poo 

\giit)fdt=l     \gait)fdt=l    gHt)dt+        g%t)dt 
•OO J—OO J—OO J—OO 

/OO 

g'^it) dt = 2€ (B-19) 
-OO 

where € denotes the energy of the bandpass signal git). 

B-3   Stationary Stochastic Processes 

Consider a stochastic process n(t) that is a zero-mean, wide-sense stationary 
process with autocorrelation 

Rnir) = E[n{t)nit + T)] (B-20) 

where E[x] denotes the expected value of x. The Hilbert transform of this 
process is the stochastic process defined by 

TT J_^ t-U 

where it is assumed that the Cauchy principal value of the integral exists for 
almost every sample fimction of n{t). This equation indicates that n(t) is a 
zero-mean stochastic process. The zero-mean processes n(f) and ri(t) am jointly 
wide-sense stationary if their correlation and cross-correlation functions are not 
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functions oft. A straightforward calculation using (B-21) and (B-20) gives the 
cross correlation 

Rnnir) = E[n{t)h{t + T)] = - H ?^du = Rnir) (B-22) 
■K J_^ T-U 

A similar derivation using (B-7) yields the autocorrelation 

Rnir) = E[h{t)h{t + r)] = Rnir) (B-23) 

Equations (B-20), (B-22), and (B-23) indicate that n{t) and n{t) are jointly 
wide-sense stationary. 

The analytic signal associated with n{t) is the zero-mean process defined by 

na{t) = n{t) + jh{t) (B-24) 

The autocorrelation of the analytic signal is defined as 

Ra{T) = E[nl{t)na{t + T)] (B-25) 

where thee asterisk denotes the complex conjugate. Using (B-20) and (B-22) to 
(B-25), we obtain 

Rair) = 2R^{T) + 2jRn{r) (B-26) 

which establishes the wide-sense stationarity of the analytic signal. 

Since (B-20) indicates that i?„(r) is an even function, (B-22) yields 

RnM = Rn{0) = 0 (B-27) 

which indicates that n{t) and h{t) are uncorrelated. Equations (B-23), (B-26), 
and (B-27) yield 

Rn{0) = Rn{0) = l/2Ra{0) (B-28) 

The complex envelope of n{t) or the equivalent lowpass representation of n(t) is 
the zero-mean stochastic process defined by 

ni{t) = na{t) exp(-j27r/et) (B-29) 

where /c is an arbitrary frequency usually chosen as the center or carrier 
frequency of n{t). The complex envelope can be decomposed as 

ni{t) = nc{t) + jn,{t) (B-30) 

where ndt) and ns{t) are real-valued, zero-mean stochastic processes. 
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Equations (B-29) and (B-30) imply that 

n{t) = R4niit)expiJ27tU)] 

= nS) cos{2irfS - n,(t) sin(27r/et) (B-31) 

Substituting (B-24) and (B-30) into (B-29) we find that 

nS) = n{t) cos(27r/ct) + h{t) sin(27r/ct) (B-32) 

n^Ct) = n{i) COS{2TVfct) - n{t) sin(27r/c*) (B-33) 

The autocorrelations of ndt) and ns(t) are defined by 

Rc{r) = E[nS)ncit + T)] (B-34) 

and 

i?,(r) = £[n,(<)n,(t + r)] (B-35) 

Using (B-32) and (B-33) and then (B-20), (B-23), and (B-24) and trigonometric 
identities, we obtain 

Rair) = RS{T) = Rnir) cos(27r/er) + R^{T) sm{27r f^r) (B-36) 

which shows explicitly that if n{t) is wide-sense stationary, then ndt) and ns{t) 
are wide-sense stationary with the same autocorrelation fiinction. The variances 
of n(t), Wc(t), and ns{t) are all equal because 

i?e(0) = RsiO) = RniO) (B-37) 

A derivation similar to that of (B-36) gives the cross correlation 

Rcsir) = E[ncit)n,it + r)] = ^„(T) cos(27r/eT) - H„(T) sin(27r/eT)   (B-38) 

Equations (B-36) and (B-38) indicate that ndt) and ng{t) are jointly wide-sense 
stationary. Equations (B-28) and (B-38) give 

RcsiO) = 0 (B-39) 

which implies that ndt) and ns(<) are uncorrelated. 

Equation (B-21) indicates that h{t) is generated by a linear operation on n(t). 
Therefore, if n{t) is a zero-mean Gaussian process, h{t) and n{t) are zero-mean 
jointly Gaussian processes. Equations (B-32) and (B-33) then imply that ndt) 
and ndt) are zero-mean jointly Gaussian processes. Since they are uncorrelated, 
ndt) and ndt) are stetistically independent, zero-mean Gaussian processes. 

The power spectral density of a signal is the Fourier transform of its 
autocorrelation. Let S{f), Sdf), and Sdf) denote the power spectral densities 
of n(t), ndt), and ns{t), respectively. We assume that S'„(/) occupies the band 
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fc - W/2 <\f\<fc + W/2 and that fc > W/2 > 0. Taking the Fourier 
transform of (B-36), using (B-6), and simplifying, we obtain 

lo, l/l > W/2 

Thus, if n(t) is a passband process with one-sided bandwidth W, then ndt) and 
ns{t) are baseband processes with one-sided bandwidths W/2. This property and 
the statistical independence of nc(t) and ns{t) when n{t) is Gaussian make 
(B-31) a very useful representation of n{t). 

Similarly, the cross-spectral density of ndt) and ns{t) can be derived by taking 
the Fourier transform of (B-38) and using (B-6). After simplification, the result is 

S  (f) = l -^'f^" ^^ ~ ^'^ -Sn{f + fc)],     l/l < W/2 
lo, l/l > w/2 

If Sn{f) is locally symmetric about fc, then 

Sn{fc + f) = SM-f),    \f\<W/2 (B-42) 

Since a power spectral density is a real-valued, even function, Sn{fc — /) = 
Snif - fc). Equation (B-42) then yields 5„(/ + /,) - 5„(/ - /e) for 
l/l < W/2. Therefore, (B-41) gives Scs{f) = 0, which implies that 

RCS{T) = 0 (B-43) 

for all r. Thus, ndt) and ns{t + r) are uncorrelated for all r, and if n(;t) is a 
zero-mean Gaussian process, then nc{t) and ns(t + r) are statistically 
independent for all r. 

The autocorrelation of the complex envelope is defined by 

Ri{r) = ^E[n'^{t)ni{t + T)] (B-44) 

where the 1/2 is inserted so that 

Ri{0) = Rn{0) (B-45) 

which follows from (B-28) and (B-29). Substituting (B-30) into (B-44) and using 
(B-36) and (B-38), we obtain 

Ri{r) = RciT)+jRcs{r) (B-46) 

The power spectral density of n;(i), which we denote by -S';(/), can be derived 
from (B-46), (B-41), and (B-40). If 5„(/) occupies the band fc - W/2 <\f\< 
fc + W/2 and fc > W/2 > 0, then 

S,^f) = hsAf + fc), \f\<W/2 
lo, l/l > w/2 
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Equations (B-36) and (B-38) yield 

Rnir) = Rcir) cos(27r/eT) - Rcsir) sm{27rf.r) (B-48) 

Equations (B-48) and (B-46) imply that 

Rnir) = Re [Riir) exp {j27rfcT)] (B-49) 

We expand the right-hand side of this equation by using the fact that Re[z] = 
{z + z*)/2. Taking the Fourier transform and observing that Si{f) is a real-valued 
function, we obtain 

Snif) = ISiif - /e) + ^Si{-f - /e) (B-50) 

If Snif) is locally symmetric about fc, then (B-47) and (B-42) imply that 
Si{-f) = Siif), and (B-50) becomes 

Snif) = ISiif - /,) + iSiC/ + /e) (B-51) 

Many useM communication signals are modeled as having the form 

sit) = Adi it) cos(27r/e< + 6)+ Ack (t) sin(27r/et + 0) (B-52) 

where 6 is an independent random variable that is uniformly distributed over 
0 < ^ < 27r. The modulations have the form 

oo 

diit) =  Y^ ttik-tpit -kT-To- ti),    i = 1,2 (B-53) 
fe=—oo 

where {uik} is a sequence of independent, identically distributed random 
variables, aik = +1 with probability 1/2 and Ojfe = —1 with probability 1/2, ipit) 
is a pulse waveform, T is the pulse duration, ti is the relative pulse offset, and To 
is an independent random variable that is uniformly distributed over the interval 
(0, T) and reflects the arbitrariness of the origin of the coordinate system. Since 
Uik is independent of ain when n ^ fc, it follows that ^[a^ajn] = 0, n ^ fc. It 
follows that the autocorrelation of diit) is 

Raiir) = E[diit)diit + T)] 
oo 

=   Yl Elicit - kT-To-ti)'iljit-kT-To-ti + T)]   (B-54) 
fc=—oo 

Expressing the expected value as an integral over the range of To and changing 
variables, we obtain 

1       p-l'^-H 
Rdiir) =   y2 ^ ipix)il)ix + T)dx 

fc=-oo-      Jt-kT-T-ti 

1  /"^ 
= - /     tpix)ipix + T)dx,   i = 1,2 (B-55) 

■'■   J—oo 
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This equation indicates that di{t) and 0^2(t) are wide-sense stationary processes 
with the same autocorrelation. 

If the sequences {aik} and {02A-} are statistically independent, then the 
autocorrelation of s{t) is 

RS{T) - Yi?di(r) cos(27r/cr) + Y^d^ir) sm{27rf^r) (B-56) 

where Rdiir) and Rd2ir) are the autocorrelations ofdi{t) and 0^2(i), respectively. 
This equation indicates that s{t) is wide-sense stationary. If the sample functions 
ofdi{t) and d^it) have Fourier transforms that vanish for |/| > f^, then (B-10), 
(B-11), (B-24), and (B-29) indicate that the complex envelope of s{t) is 

Slit) = Adiit) - jAd^it) (B-57) 

Equation (B-44) and the independence ofdi(t) and d2(t) imply that the 
autocorrelation of si(t) is 

A"^ A^ 
Ri{r) = —Rdi{T) + —Rd2{r) (B-58) 

The power spectral density of si{t) is the Fourier transform of Riij). From 
(B-58) and (B-55), we obtain the density 

SiU) = A'^^^ (B-59) 

where G{f) is the Fourier transform of t/'(i). 

In a quadriphase-shift-keying (QPSK) signal, di{t) and d2{t) are usually 
modeled as independent random binary sequences with pulse duration T = 2Tb, 
where T^ is a bit duration. The component amplitude isA= y/S^/Tb, where Sb is 
the energy per bit. If il)(t) is rectangular with unit amplitude over [0,2Tb], then 
(B-59) yields the power spectral density for QPSK: 

Siif) = 2^6sinc2226/ (B-60) 

which is the same as the density for PSK. For a binary minimum-shift-keying 
(MSK) signal with the same component amplitude, 

iP{t) = V2sm(^)  ,    0<t<2Tb (B-61) 

Therefore, the power spectral density for MSK is 

SiU) 
16^6 rcos(27rr6/) 

7r2 [i6r2/2-iJ 
(B-62) 
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B-4   Sampling Theorems 

Consider the Fourier transform G{f) of an absolutely integrable function g{t). 
The periodic extension of <?(/) is defined as 

oo 

G(/)= J2Gif + iW) (B-63) 

where W is the period of G{f) and it is assumed that the series converges 
uniformly. Suppose that G{f) has a piecewise continuous derivative so that it can 
be represented as a uniformly convergent complex Fourier series: 

<5(/)=  E Ckexp(-j2irk^\ (B-64) 
fc=—oo 

where the Fourier coefficient Ck is given by 

1      fW/2 

-W/ 

I     fW/2   _ / .X 

Substituting (B-63) into (B-65) and interchanging the order of the summation and 
the integration, which is justified because of the uniform convergence, we obtain 

■,       oo        .w/2 / f\ 

We change variables and observe the exp(j27rfci) = 1 to obtain 

I       <x>       pW/2+iW / f \ 

""^^ Wfl2 Gif)ei,plj2wk^-j27rki) df 
^ AZ~^J-W/2+iW \ W J i=—oo 

r»oo 
/ 

Since g(t) is absolutely integrable, the last integral is the inverse Fourier 
transform of G{f) evaluated at t = k/W, and 

Substituting (B-68) into (B-64) yields the Poisson sum formula: 

fc=—oo      \      / \ / 

where the series converges uniformly. 
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Suppose that the Fourier transform vanishes outside a frequency band: 

G(/) = 0,    \f\>W/2 (B-70) 

It follows that 

AV/2 

9{t)=  f      G{f)eMJ^^ft)df 
J-W/2 

(B-71) 

Since G{f) = G{f) for |/| < W/l, (B-71) and (B-69) and the interchange of a 
summation and integration yield 

9{t) =   2^ P I T77 ) 777 /        exp w. 

Evaluating this integral and defining 

sine X = 

J2nf   t 
W. 

df (B-72) 

sinTTo: 
nx 

(B-73) 

we obtain the sampling theorem for deterministic signals: 

oo /  h \ 

(B-74) 
fc=—oo 

Consider a wide-sense stationary stochastic process n{t) with autocorrelation 
Rn{T) and power spectral density S'„(/), which is the Fourier transform of 
Rn{r).lf 

Sn{f)=0,    \f\>W/2 

then it follows from the sampling theorem that 

(B-75) 

oo /  h \ 

fc=—oo 

For an arbitrary constant a, the Fourier transform of R{r — a) is 5„(/) 
exp(-j27r/a;), which is zero for |/| > W/2. Therefore, (B-76) can be applied to 
i?^(r) = Rn{r — a), which gives 

i?n(T -a)=  J] Rnl:^-a] smc{Wr - k) (B-77) 
k=—oo ^ ^ 

We define the stochastic process 

"       / Jc \ 

k——v       ^       ' 

(B-78) 
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An expansion indicates that the mean square difference between n{t) and n^{t) is 

■E{[nit) - nS)f} = Rn{Q) - 2 I] ^ (< - ^) sinc(l¥t - fc) 

+ Y^ mic{Wt -i)YRni ^^ ) sinc(Wt - k)     (B-79) 

Since Rnir) = i2,^(—r), the repeated use of (B-77) yields 

lim E{[n{t) - n^{t)f} = 0 (B-80) 

which states that the mean square difference between n{t) and nt,{t) approaches 
zero. Thus, the sampling theorem for stationary stochastic process is 

n{t) = Y nl — ) simiWt - k) (B-81) 
fc=—oo       ^       ' 

where the equality holds in the sense of (B-80). 
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