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Editorial

It is a great privilege for me to serve as guest editor of the first issue of the Journal of Computational Electronics,
and it seemed only natural to make the kick-off of this new journal coincide with the publication of the Proceedings
of the 8th International Workshop on Computational Electronics (IWCE), held at the Beckman Institute of the
University of Illinois on October 15~18, 2001. Over the last decade, the IWCE has grown into the main forum
where new results and ideas in computational electronics are presented and discussed. A national Workshop on
Computational Electronics was first held in 1990 at the Beckman Institute, under the auspices of the National
Center for Computational Electronics and the National Science Foundation. The goal of the meeting was to foster
interdisciplinary interaction between scientists in electrical engineering, physics, applied mathematics and computer
science. The experiment proved to be very successful and in 1992 the first IWCE was held, again at the Beckman
Institute, followed by events in Leeds, U.K. (1993); Portland, OR (1994); Tempe, AZ (1995); Note Dame, IN (1996);
Osaka, Japan (1998); Glasgow, U.K. (2000), and again Urbana, IL (2001). The next workshop will be for the first
time in Italy, in 2003. The format of IWCE creates many opportunities for interaction and discussion among the
participants, always with a large representation of graduate students who are particularly encouraged to attend and
present papers or posters. Many lasting collaborative interactions have resulted from discussions initiated at an IWCE.

The Journal of Computation Electronics fills the need for a publication dedicated to physical simulation of devices
and processes, with a focus on interdisciplinary work and large scale supercomputing applications. The community
typically attending IWCE best represents the audience addressed by the Journal of Computational Electronics, but
the composition of this community has grown over the years to include even more discipline areas. The emphasis of
the first workshops was on classical device simulation approaches (drift-diffusion and hydrodynamics models) and
particle Monte Carlo methods, while other areas have gained increasing importance at following meetings. These
areas include quantum transport and quantum device simulation, opto-electronics, process simulation and, more
recently, molecular devices, MEMS and transport in biological ion channels. Rapid technological advances in new
directions of research and the widespread availability of high performance computers and clusters, have clearly
challenged the computational electronics community to address simulation problems of increasing complexity in
the nano-technology area. These efforts require even more contributions from other fields of expertise, from heat
transfer and micro-fluidics to computational chemistry and computational biology.

I believe that the Journal of Computational Electronics has the potential to become the pre-eminent publication on
multidisciplinary aspects of electronics simulation, with the editorship in the capable hands of David Ferry and Karl
Hess, some of the most respected scientists in computational electronics (and incidentally the two people who have
been most influential on my own professional career). The membership of the editorial board includes international
leaders, covering an impressive range of expertise in all relevant areas. While working on the preparation of the
IWCE-8 proceedings issue, I was also very impressed by the high quality of the contributions and I am confident
that the Journal of Computational Electronics is off to a good start. If the quality of future submission to the regular
issues will continue to be on this level, the success of this new journal is assured.

The quality of the papers submitted for publication on the IWCE proceedings also reflects the commitment by
funding agencies and institutions that have continued to support the workshop over the years. IWCE-8 would not
have been possible without the direct support of the National Science Foundation, the Beckman Institute of the
University of Hlinois, the US Office of Naval Research, the Distributed Center for Advanced Electronics Simulation
(DesCATrtES), and the technical sponsorship of the IEEE.

Umberto Ravaioli
University of Illinois at Urbana-Champaign
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Eigenstate Selection in Open Quantum Dot Systems: On the True Nature
of Level Broadening*

R. AKIS,’ D.K. FERRY AND J.P. BIRD
Center for Solid State Electronics Research and Department of Electrical Engineering,
Arizona State University, Tempe, AZ 85287-5706, USA
richard.akis@asu.edu

Abstract. We show that transport in open quantum dots can be mediated by single eigenstates, even when the
leads allow several propagating modes. The broadening of these states, generally localized in the interior, can
be virtually independent of lead width. As such, the Thouless argument, invoked to suggest that all states should
be unresolvable under these conditions, can in fact fail. Thus, any transport theory based on such assumptions (in
particular, random matrix theory) must be called into question, as the fluctuations produced by these states can
in fact dominate the conductance. These trapped states also produce interesting and potentially useful effects in

coupled dot systems as well.

Keywords: device modeling, quantum transport, quantum dots

1. Introduction

First applied to disordered conductors, the Thouless
argument relates the conductance of a system to the
diffusion-induced broadening of its energy levels. Ac-
cordingly, a metal may be viewed as a system with
strongly-broadened energy levels, while an insulator is
one whose density of states (DOS) consists of isolated
peaks (Thouless 1977). While the Thouless argument
provides an understanding of the origins of localization
in disordered conductors, it has recently become possi-
ble to study electron transport in ballistic quantum dots
(Jalabert, Baranger and Stone 1990, Baranger, Jalabert
and Stone 1993a, b, Lin and Jensen 1996, Wirtz, Tang
and Burgdorfer 1997, Marcus et al.1992, Chang et al.
1994, Bird et al. 1996, 1999, Sachrajda et al. 1998).
These open structures consist of a central scattering
cavity that is coupled to external reservoirs by means of
quantum point contacts (QPCs). Since the conductance
of these structures (measured in units of the dimension-
less conductance e?/h) is typically larger than unity,
it is often thought that the Thouless argument may be

*Work supported by the Office of Naval Research.
To whom correspondence should be addressed.

used to imply that their discrete DOS is unimportant
for an understanding of transport. A key feature of the
Thouless argument is an assumption of uniform level
broadening, independent of the specific details of the
energy states. While this seems reasonable for diffusive
conductors, in open quantum dots we demonstrate here
that the level broadening is highly non-uniform and that
single eigenstates may remain resolved, thus demon-
strating that the Thouless argument does not generally
hold. These results have important implications for the-
oretical analyses of such structures.

This paper is organized as follows. In Section 2, the
Thouless argument is summarized. In Section 3, our
method of calculation is briefly described. A discus-
sion on conductance resonances in open dots is found
in Section 4. In Section 5, we discuss decomposing the
open dot wave functions in terms of closed dot eigen-
states. In Section 6, the focus is shifted to coupled dot
systems. Conclusions are drawn in Section 7.

2. The Thouless Argument

The Thouless argument follows by noting that the
energy levels in a conductor of length L should be
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uncertain by an amount I' &~ hD/L?, where D is the
diffusion constant and L/ D is the time required to dif-
fuse across the sample. Since the average level spac-
ing in the conductor may be written as A = 1/NgL¢,
where Ny is the DOS and d is the dimensionality, the
ratio I'/ A may be written as (Lee, Stone and Fukuyama
1987):

r m
— = —NgLY. 1
A=z NE (1
Using the Einstein relation (0 = e?Ng D) to relate
the DOS to the conductivity (o), Eq. (1) may be sim-
plified to yield:

h
—2(7L

d-2 =g, (2)
e

r —

<=
where g is the dimensionless conductance, with units of
2/ h. Equation (2) is the crux of the Thouless argument
and suggests that, in a metallic conductor (g > 1), the
level broadening, I, is always comparable to, or greater
than, the average level spacing. In a dot whose point
contacts each support N propagating modes then, by
assuming Ohmic addition of the two point contacts, the
conductance may be written as g = N. Since N > |
is required for the dot to be open, it is therefore often
argued that Eq. (2) proves that the energy levels of open
dots can never be resolved (I' > A for N > 1).

3. Method of Calculation

Our simulations are performed on a discrete lattice
using a numerically stabilized variant of the transfer
matrix approach (Usuki et al. 1995). The dot is
enclosed inside a waveguide which extends a finite
number of lattice sites in the transverse (y) direction.
The structure is broken down into a series of slices
along the longitudinal (x) direction. Imposing an
electron flux from the left, one translates across
successive slices and, on reaching the end, one
obtains the transmission coefficients which enter the
Landauver-Biittiker formula to give the conductance.
In cases where we examine closed dots, to obtain the
spectrum and the eigenstates, we solve a finite dif-
ference Schrodinger equation with Dirichet boundary
conditions. This sparse matrix eigenvalue prob-
lem is done numerically by using ARPACK routines
(www.caam.rice.edu/software/ARPACK/index.html),
which use Lanczos/Arnoldi factorization.

B(T) 0.25 -0.25 B(T) 0.25

Figure 1. In (a). a portion of the spectrum is plotted as a function
of £ and B for 2 0.3 um square dot. The conductance. G, is plotted
vs. encrgy, E, and magnetic ficld. B. for open quantum dots with
leads allowing (b) onc mode. (c) four modes and (d) ninc modes.
The lighter regions of shading correspond to higher values of the
conductance G. The dot schematics are shown in the insets. The
labels a and b correspond to the positions of Fano resonances.

4. Conductance Resonances in Open Dots

We begin by showing the correspondence between the
energy spectrum of a closed square dot with the conduc-
tance features exhibited by the open system. Figure 1(a)
shows a portion of the energy spectrum as a function of
magnetic field for a 0.3 um quantum dot. Figure 1(b)
shows what happens when the dot is now opened and
connected to external waveguides by QPCs that are
at the top edge of the dot as shown in the inset. In
this case the width of the QPCs have been adjusted
so that a single mode propagates. What is plotted is
G(E, B) with lighter shading corresponding to higher
conductance. For the entire energy range shown in this
picture, G < 2¢%/h. The picture shows resonant be-
havior, as indicated by the striations that are super-
imposed on the conductance. Comparing this picture
with the spectrum shown in Fig. 1(a), G(E, B) clearly
shows the influence of the closed dot DOS, as the ba-
sic pattern is reproduced. However, certain resonance
lines appear to be shifted in comparison to their spectra
counterparts and there are certain features in the con-
ductance that apparently do not have a spectral analog.
In particular, there are linear resonance features that
actually cross at B = 0 T. In contrast, the spectrum
shows lines that appear linear for much of the range




shown, but bend over in the region near B =0T . Thus,
rather than crossing, they appear to form a type of anti-
crossing. This line shifting and line creation illustrates
another effect that the QPCs have—they act as a pertur-
bation that results in the creation of new eigenstates not
present in the perfectly square system. In Fig. 1(c), the
QPCs have now been adjusted to permit four modes to
propagate. The conductance here ranges from ~2¢%/ h
to ~8¢2/ h. Despite the fact that the dot is far more
“open” than in the previous case there is still resonant
behavior. However, the picture is somewhat simplified
compared to Fig. 1(b). What remains are a series of
parabolic curves as well as sets of almost parallel res-
onance lines, tilted to the left and the right, forming a
very regular cross hatched pattern. These patterns yield
characteristic fingerprints in the conductance fluctua-
tions that have in fact been observed experimentally
(Bird, Akis and Ferry 1999). In Fig. 1(d), the QPCs
support nine modes. Here the parallel lines have van-
ished, leaving only the parabolic striations. Clearly
the broadening introduced by the QPCs is highly
nonuniform.

In Fig. 2(a) and (b), respectively, we plot G(E) vs.
E, focusing on the conductance resonances labeled “a”
and “b” in the previous figure. The asymmetric line-
shape of these features is characteristic of Fano res-
onances, which occur in systems where quasi-bound
states are coupled to a continuum (see Gores et al.
(2000) and references therein). These may be repre-
sented by the functional form (Gores et al. 2000):

Go(e +q)?

G=G
b+ 211

, (3
where ¢ = (E — Eg)/ T, Eg is the energy on reso-
nance, ¢ is an asymmetry parameter that depends on
the background phase shift, G, the background con-
ductance that the resonance sits upon, and G¢ deter-
mines the magnitude. The dashed lines are the fits.
Significantly, the resonance in (b) is sharper than in
(a), even though the QPCs are much wider. The in-
sets show the resonant wave functions which are both
of the “bouncing ball” variety. That is, the standing
waves trapped between the upper and lower bound-
aries appear to be aligned with the orbital trajectory
that a classical billiard would take if it were bouncing
between them. This behavior is reminiscent of the scar-
ring of the wave function by classical orbits observed
in chaos theory (Heller 1984). The two resonant states
shown here can be thought of as being largely equiv-
alent. The resonance in (b) however occurs at a lower

Eigenstate Selection in Open Quantum Dot Systems 11
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Figure 2. Conductance, G vs. energy, E, for the single mode dot
(a) and the nine mode dot (b). Fits to the Fano resonance formula are
also plotted as dotted lines.

energy because the “effective” dot size is larger. This
point is explored in further detail in the next section.

5. Eigenstate Decomposition

The relationship between the open dot resonances and
the eigenstates of the corresponding closed system can
be quantified by doing a spectral decomposition. Since
closed-dot eigenstates form an orthogonal basis set,
the wave functions of the open dot can be expressed
as a linear combination of these states by means of
projection in the dot region:

Y= Z qu’;'cllosed’ where C,, == (1/, | ¢5/0sed). @)

Figure 3(a) shows G(E) vs. E for a nearly square dot
(the dimensions are 0.3 um by b =0.307 pum, the non-
commensurate shape was chosen to insure that the lev-
els of the rectangular dot were not degenerate). The
QPCs allow 2 modes in the energy range displayed. At
the top are markers that indicate the positions of the
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G (2e%/h)

7 75 80

6.05

(e) ®

Figure3. (a) G(E)vs. E forthe rectangular dot. The marks at the top
indicate the positions of the eigenenergics for the closed rectangle,
and the marks at the bottom are for the T-shaped cavity. Left insct:
the rectangular decomposition. Right inset: the T decomposition.
(b) |[¥(x. ¥)| vs. x and ¥, the wave function in the interior region of
the open dot £ = 5.988 meV. (¢) As in (b) but for E=5.9915 meV.
(d) The 69th eigenstate of the rectangle. (e) The 70th eigenstate of
the rectangle. (f) A lincar combination of the states shown in (d) and
(e). (g) The 74th cigenstate of the T-shaped cavity.

68th through 70th eigenenergies for closed rectangular
dot. At the bottom are markers for the 73th and 74rd
eigenenergies for a second type of dot in the form of a T-
shaped cavity (note the inset in the bottom left corner).
The conductance over this energy range shows two ma-
jor resonances, the first of which, at E = 5.988 meV
{marked b) lines up with both rectangular and T eigen-
states. Figure 3(b) shows the corresponding open dot
wave function, which happens to closely resemble the
68th rectangular state and the 73rd T state. The sec-
ond resonance, at £ =5.9915 meV, marked c, lines up
only with a T state. Figure 3(c) shows the correspond-
ing open dot wave function. The left inset shows the
decomposition of this wave function in terms of rectan-
gular states. Two states, n = 69 (Fig. 3(d))and n = 70
(Fig. 3(e)), which bracket the resonance, yield the vast
majority of the total. The lincar combination these two
states produces (f), which is virtually identical to (c)
in the interior region. If we stopped here, one might
conclude that, despite the presence of a resonance, the
fact that a number of eigenstates contribute indicates

that the level structure of the dot is not preserved. This
however is wrong, because the rectangular cavity is
not the appropriate system for comparison. This is il-
lustrated by the right inset of (a), which gives the T state
decomposition. Here, a single state, n = 74 (panel (g))
of the T cavity yields the vast majority of the ampli-
tude. Comparing (g) with (c), it is difficult to pick out
the open state from the closed one. The 74th T state can
be viewed as a hybridized state resulting from a pertur-
bation (the extensions added onto the sides to mimic the
QPCs) which has mixed the 69th and 70th rectangular
states together. A very important property of this statc
is that, despite the fact that it results from a T geome-
try, the amplitude is almost entirely concentrated away
from the perturbing leads. The 74th state survives in the
open system precisely because of its locality and appar-
ent disconnection from the QPCs, an ironic result since
the QPCs provided the perturbation that created it.

Quantum dots have generated much interest as a test
bed for the study of quantum chaos (Jalabert, Baranger
and Stone 1990; Baranger, Jalabert and Stone 1993a,
b, Lin and Jensen 1996, Wirtz, Tang and Burgdérfer
1997, Marcus et al. 1992, Chang et al. 1994). It has
been predicted that certain physical properties should
depend on whether the dot has a geometry with classi-
cally regular behavior (e.g. the rectangle) or a geometry
that induces classical chaos, such as the stadium. How-
ever, with regards to this resonance phenomena, the
stadium actually behaves in a very similar manner to a
rectangular dot.

This is illustrated by Fig. 4(a), which shows the con-
ductance for an open stadium quantum dot. Here the
system is very open- the width of the QPCs is 60% of
the breadth of the dot. The energy here is normalized to
the average level spacing (A = 2h?/m* A, where A is
the stadium area). The squares represent the energy lev-
els of the standard stadium, and the triangles those of a
perturbed stadium, as shown in the lower right inset. In
both cases, twelve eigenvalues lie in the plotted energy
range. In contrast, G exhibits only three well-defined
resonances over this same range, which we label with
the indices (i)-(iii). All three resonances line up in en-
ergy with eigenstates of the perturbed stadium, while
resonances (ii) shows no correspondence to a standard
stadium eigenvalue. The perturbed stadium states in
question, the 134th, 138th and 142nd, are shown as in-
sets in Fig. 5(b). As with the previous example, these
surviving states are all scarred by “bouncing ball” or-
bits with amplitude concentrated away from the QPCs.
As one might expect, the states that have amplitude
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Figure 4. (a) G(E) vs. E/A for an open stadium with six modes
in the QPCs. The squares and triangles represent the energies of the
eigenstates of the unperturbed and perturbed stadium, respectively.
The circles are fits to the Fano formula. (b) The perturbed-stadium
decomposition coefficients |C,|? vs. E/A and E,/A. The 134th,
138th and 142nd eigenstates are shown as insets.

Figure 5. States 64 through 67 of an asymmetric coupled dot
system.

near the outer perimeter of the dot do not survive when
the dot is opened up.

By fitting to the Fano formula, one can obtain the
level widths, which we find to be only a small fraction
of the average level spacing in each case (I' = 0.075A
(), 0.097A (ii), and 0.104A (iii)). It should be noted
that the values one obtains for the level widths of these
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particular states is remarkably stable over a large range
of QPC openings.

InFig. 4(b), we plot the decomposition |C,, | vs. E/A
and E,/A. We have included the E, /A axis and made
this a three-dimensional plot to call attention to the
actual spacing of the energy levels. Significantly, we
see that the width of the 134th state, as inferred from
the breadth of the decomposition peak along the E/A
axis, 1s larger than the spacing between the 134th and
135th levels. Similar observations may also be made
concerning the other resonant states. Nonetheless, the
decompositions remain dominated by the contribution
of single eigenstates. Contrary to naive assumptions,
the mere proximity of levels in energy need not be an
obstacle to being able to resolve individual states in
open dots. In a one-dimensional quantum-well prob-
lem, lowering the barriers leads to broadening of states
inasimple and predictable manner. In two-dimensional
quantum dots, the situation is far more complex. The
geometry of the system plays as important role in de-
termining the level broadening as the size of the QPC
opening itself.

6. Coupled Dot Systems

QPCs, as we have shown, can generate resonant states
with amplitude localized or concentrated in particular
regions of a dot, these states resulting from a mixing
of unperturbed dot states. When two or more dots are
coupled together, one expects a similar process to take
place, whereby “atomic”, single-dot, states become hy-
bridized to generate the “molecular” states of the cou-
pled system.

In Fig. 5, we show states 64-67 of an asymmetric
dot system, with the right dot having a smaller radius.
These results clearly show that the coupled system can
show a combination of behavior-coupled dot states that
have strong single dot characteristics (e.g. state 66, and,
to a lesser extent, state 65), as well as states where the
two dots truly act collectively as one unit (e.g. state 64).
These results suggests that the transition from “atomic”
to “molecular” behavior is not a simple one and there
can be an intermingling of these regimes. In the past, it
has been suggested that, once the QPC is wide enough
to support a single mode, the coupled system essen-
tially behaves as if it were simply one large single dot
(Livermore et al. 1996). Here, the connecting QPC sup-
ports 2 modes, well beyond the tunneling regime. The
fact that the 66th state shown here has almost all its
amplitude concentrated in one dot suggests interesting
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Figure 6. (a) G(E) vs. E/A for a three stadium chain is plotted
(solidline). The dashed line is the single stadium result from Fig. 5(a).
The labels a, b and ¢ correspond the energies of the wave functions
shown in panels (b), (c) and (d) respectively.

practical possibilities. One can engineer a coupled sys-
tem whereby states close in energy each have this am-
plitude localization, but in different dots.

In Fig. 6, we illustrate this using an open chain of
three coupled stadium dots. Each of the individual sta-
diums is identical to that used in the previous section.
Comparing the single dot conductance with that of the
chain, one sees that resonances (i) and (iii) have been
split into multiple resonances, while (ii) has become
deeper and wider. If more dots were added, these fea-
tures would ultimately correspond to the formation of
bands and gaps (Leng and Lent 1993, 1994). The wave
functions shown in panels (b), (c) and (d) show the
switching behavior alluded to above, with the ampli-
tude of the wave function being switched between in-
dividual dots depending on the energy. In an actual
experimental realization of such a system, the system
parameters that would be tuned to achieve such effects
could be the gate voltage or an applied magnetic field.

7. Conclusions

We have demonstrated that level quantization is pre-
served in the open dots, but is done so selectively. With

regards to the selection of particular states, the QPCs
perform this task by “anti-selection”—certain closed
dot states are not allowed in the open system. Scarred
states in particular tend to survive because their ampli-
tude is localized in certain dot regions. The QPCs also
act as a perturbation which creates new states by hy-
bridization. A model that assumes uniform level broad-
ening cannot provide an accurate general description
for the physics of open dots and so the Thouless argu-
ment cannot really be applied. This result has impor-
tant implications. In particular, the RMT based semi-
classical approach (Jalabert, Baranger and Stone 1990,
Baranger, Jalabert and Stone 1993a, b, Lin and Jensen
1996, Wirtz, Tang and Burgdorfer 1997, Marcus et al.
1992, Chang et al. 1994) commonly applied to open
dots has a far more limited range of validity than pre-
viously thought, as it assumes a completely broadened
spectrum a priori and ignores the resonant structure
that can actually dominant the conductance fluctua-
tions. It should also be mentioned that scarred reso-
nant states analogous to ours, with amplitude locali-
zed in the interior, have also been found in simula-
tions of Coulomb blockaded dots (Silvestrov and Imry
2000). These earlier results combined with those shown
here, indicate that there is no simple transition between
“closed” and “open” regimes. Any distinction made
simply on the basis of mode number and/or average
level spacing is a purely arbitrary one.

In closing, it should be noted that most of the ef-
fects discussed here (for example, the robust nature of
the leve! widths) are a manifestation of resonance trap-
ping, a phenomenon previously noted in the context of
nuclear physics (Muraviev et al. 1999) and microwave
cavities (Persson et al. 2000).
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On the Completeness of Quantum Hydrodynamics: Vortex Formation
and the Need for Both Vector and Scalar Quantum Potentials
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Abstract. The conditions for the occurrence of quantized vortices in electron flow are examined critically in the
context of quantum hydrodynamic modelling. The presence of vortices is shown to be described by the coupling
to a new vector quantum potential which augments the conventional scalar quantum potential used in hydrodnamic

and density gradient modelling of semiconductor devices.
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1. Introduction

The present interest in decanano semiconductor FETs,
open quantum dot structures and prospective quantum
computing devices has led to a substantial increase in
the use of quantum hydrodynamic, quantum Monte
Carlo and Wigner function simulations. These methods
have been successfully deployed in one-dimensional
problems such as resonant tunnelling devices, although
some questions linger over the validity of the quantum
potential models (Barker and Ferry 1998), especially
the high temperature approximations. Here we describe
results from a detailed analytical and numerical study
of 2D and 3D quantum transport in semiconductors
under conditions in which quantized vortices (Barker,
Ferry and Akis 2000, Barker 2001, Lent 1990) may
occur.

2. Vortex Formation: Pure State Description

It is well-known that the equations of pure-state
quantum hydrodynamics may be derived by taking
the polar form for the wavefunction and separating
out the real and imaginary parts of the Schrodinger
equation. This results in the continuity equation for the
amplitude squared n = R? and a Hamilton Jacobi-like
equation (for S the phase of the wavefunction) the

radient of which leads to an Euler-like equation for
the velocity field defined by v = J(r, #)/n(r, t) (here
the particle current density is J = n(r, £)VS(r, t)/m).
There are two differences with classical hydrodynamic
models: first, there appears a scalar quantum potential
Vo = (—h?*/2m)n~Y2V2 /n within the Euler equation;
secondly, the resulting equations of motion are not
complete, there remains an additional constraint im-
posed by the single-valuedness of the wavefunction
leading to the quantization of velocity circulation
(Barker and Ferry 1998):

fv-dr:Nh/m (1)
c

Any spatial circuit C through which a vortex occurs in
the velocity flow leads to a non-zero integer in con-
dition (1). Vortex cores occur along the strong nodal
lines of the amplitude R (r, t) of the wavefunction,
where the phase S/ is indeterminate. Here we de-
fine a strong nodal line X;(r, t) such that in its vicinity
R~1r—x;|V (N; > 1 : integer). The scalar quantum
potential becomes singular at the strong nodal points:

Vo = —(W2/2m)V2R/R ~ —(h*/2m)N}? [ v — x;|*
)

This form of quantum potential leads to the formation
of quantized vortices in which the velocity field attains
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the magnitude: v = N;%i /(m|r — x;|). There arc analo-
gies with a classical vortex filament, but we note that
the current density remains finite: J o< |r — x;[*V !,

3. Examples of Vortex States

Vortex formation is intimately related to the projec-
tion of the flow into a pure angular momentum state.
For example, the states of a coherent 2DEG elec-
tron confined to a closed circular quantum dot in-
clude eigenstates of angular momentum M7 states for
which the flow is a pure vortex with velocity field of
magnitude vy = % (Fig. 1). Generalising to a cylin-
drical dot there are drifted angular momentum states
of the form W ~ (k.r)M exp[i(M ¢ + k.z — et/ 1)] for
which the amplitude and phase satisfy R ~ (k.r)" and
S=Mh¢ +hk.z — et =h{ArcTany/x]+ k.z —et/h).
The corresponding flow has a central vortex line and
the quantum trajectories (Barker 2001) are helical (see
Fig. 2). Itis anticipated that any obstacle to the velocity
flow that may generate angular momentum will lead to
vortex formation. Indeed, we have found this to be the
case in the numerical solution to the time-dependent
Schrédinger equation (TDSE) for flows of electrons in
coupled open quantum dots in the presence of atomistic
impurities. Figure 3 shows the vortex formation in the
velocity field, the particle probability density in contour
and landscape form for a gaussian wavepacket travel-
ling along a 2D quantum waveguide containing an open
quantum dot. This result is a frame from a sequence
of solutions to the TDSE computed using a new high
speed algorithm (Barker, Watling and Wilkins 2001).
This example is a 2D analogue of Kelvin’s smoke
ring vortex experiment. In Fig. 4 we display the
corresponding quantum potential and note that it is not
singular (soft core) at the vortex centres. This work

Figure 1. Velocity flow in a circular quantum dot: vortex filament.

Figure2. Helical velocity flow inidealised cylindrical quantum dot.

is part of a systematic study of vortex formation in
the electron flow past obstacles (imcluding impurities)
in open quantum dot structures (Fig. 5). We note that
the topological model of quantum flows developed in
(Barker 2001} explains the vortex pairs in Fig. 4 in
terms of the flow repulsion of classical trajectories re-
flecting of the exit walls of the quantum dot and which
would otherwise cross. Finally we note that by adding
a coupled magnetic field to the Hamiltonian leads to
states in which circulation may occur due to cyclotron
motion as well as orbital angular momentum induced
by the geometry. For example the familiar Landau
states take on a revealing form if cylindrical boundary
conditions are imposed (for example in a quantum dot
with perpendicular magnetic field). It is easy to show
that the states and velocity flows satisfy:

W(r, ¢. 2) = Ryp(r)e™? e’

o1
e=7‘zw,.lN + 5(1 + M| - M)} + p2/2m

3)
2 IMI1/2 2
Ryp(r)~ (ﬁ) CXP[“(ﬁ)/z] 1F
3 2
—-N,1 M|, | —
[ ()
_ Mhn 1 ]
S e 2%
2Mh
V= 5 — W (¢ 4)
mr

1
C= 5{—_)'i + \J}
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Figure 5. Schematic of coupled quantum dots with discrete impu-
rity sites.

Here we obtain a strong nodal line through r =0, and
the flow comprises a quantized filamentary vortex (an-
gular momentum MT) and a classical vortex arising
from the cyclotron motion. These flows have opposite

sign (Fig. 6) and hence the velocity is zero along the sta-
tionary Landau orbit atr = /2(N 4+ M + 1/2)/ where
w.=eB/m,l = /h/mo..

4, Difficulties

In the above examples there is a problem with the mag-
nitude of the velocity field which diverges on a vortex
line, although the current density and particle density
vanish. From a computational point of view, solving
the ab initio quantum hydrodynamic (QHD) equations
(which is essentially the route taken in density gradient
device modelling or quantum Monte Carlo) for the ve-
locity flow will be unstable near a vortex corc. There is
no such stability problem if the velocity field is deduced
from a solution to the TDSE. Our numerical studies

Velocity field shows
flow separation
M>0

‘ Effective radius of orbit
oy r=y2AN+M +1/2) 1
200 |

100

-100 N T

(N +1
€ rudial = (N+ E)ha)‘,

Eror = S(M+|M Dhoo,

Figure 6. Velocity flow separation in clectron flow in a cylindrical
Landau state.

(Fig. 3) also show that vortex flows with soft cores (non-
divergent velocity) occur for time-dependent flows in
2DEGs but there are still stability problems for QHD.
There is also a contradiction if ab intio QHD is pursued
since the equations of QHD are only valid for irrota-
tional flow (as may be seen by a careful derivation from
the Schrodinger theory) whereas the existence of vor-
tices implies curl v # 0.

5. The Vector Quantum Potential

To describc vortex motion self-consistently with ab
initio quantum hydrodynamics we propose the intro-
duction of a vector quantum potential a(r, ¢) into
the formalism of a fully gauge-invariant quantum hy-
drodynamics. This new term appears in the quantum
Euler equation as a force field F=—mv x (V x a).
It accounts exactly for the possibility that the velocity
field v = J(r, t)/n(r, t) is not everywhere irrotational:
V x v 5 0. In the vicinity of a strong nodal line for
example we find the vector quantum potential obeys:

Vxa=N;h / 8(r — x;(s)(dx; /ds)ds  (5)

This leads to the formation of quantized vortices with
circulation N;i/m. Equation (4) should be regarded as
the source equation for the field a, where the vortex
line must be determined from a separate solution to
the angular momentum density equations either from a
projection of the true quantum state or by using the ab
initio angular momentum density continuity equations.

A fully gauge-invariant form of Eulerian QHD is
then possible with the additional inclusion of electro-
magnetic fields via the vector and scalar potentials A
and .

mv=VS§+ag—eA 6)
% {mv —ap + eA}-dr =nh @)

a
m% +mv. Vv = -V[O(X, 1)+ Vp(x. 1)]
—mv x V x (ap(x.t) — eA) 8)

Condition (7) is the general condition for velocity cir-
culation and permits a fully QHD picture of for example
the Aharonov-Bohm effect.

These concepts may be extended to mixed-state
problems based on Wigner functions, Quantum Monte




Carlo and finite temperature Quantum Hydrodynamics
and will described elsewhere.

6. Discussion and Conclusions

Our studies suggest that there are strong possibilities
for vortex formation in the transport of carriers in de-
canano FETs due to angular momentum generation by
flow through the atomistic fluctuation potential aris-
ing from the discrete impurities. QHD modelling of
such devices will require a capability to describe vortex
formation and destruction if it is to accurately ac-
count for fluctuation phenomena. In conclusion we
have demonstrated that vortex formation corresponds
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to the coupling to a novel type of vector quantum po-
tential which leads to the quantization of velocity cir-
culation in a similar fashion to the vector potential
associated with a quantizing magnetic field.
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Abstract. The possibility of developing an extension of density functional methods but using generalised currents
as coordinates is examined as a possible route for future device modelling at atomistic scales in the presence of

strong many body effects.
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1. Introduction

There have been great successes for density functional
theory in computational chemistry and many body the-
ory, particularly for the basic ground state structure.
The success has been largely due to the minimum en-
ergy theorem for ground states, which has an analagous
power to that of thermodynamics for equilibrium states.
In particular for ground states it is only necesary to
work with the single particle density rather than the
full many-body wavefunction or density matrix. It is
pertinent to investigate whether a similar formalism is
available for open many-body systems such as the inter-
acting inhomogeneous carrier gas in a semiconductor
device. As semiconductor devices push into the 20—
30 nm scale, atomistic effects, strong many body pro-
cesses and significant environmental coupling suggest
that an approach is required to transport and switch-
ing based on a more radical formalism than the Wigner
equation or the density gradient/quantum Monte Carlo
methodology. Indeed, as the possibility of novel quan-
tum computing devices and devices based on nan-
otubes and biochemical structures emerge there is a
need for a transport formalism that builds in many-
body effects and the self-consistent electronic states.
Over the last ten years there has been much advocacy of
non-equilibrium thermodynamic Green function tech-
niques, but their numerical simulation has led to se-
rious problems of convergence and stability and in a

functional methods, semiconductor transport theory

sense they contain too much information. At first sight
quantum hydrodynamics (QHD) provides a possible
minimalist approach with its focus on carrier density
fields, carrier velocity fields energy density fields and
so on, coupled through various continuity equations.
However, in a recent study of QHD we have found that
there are serious difficulties with the velocity flow pic-
ture and a better approach is to use the current densities
explicitly. In this paper we therefore make a prelimi-
nary examination of a new approach to quantum trans-
port theory which we wish to base on an old idea due
to Dashen and Sharp (1968) that quantum mechanics
may be described by using currents J and densities p
as coordinates rather than the usual {r, p} of canoni-
cal phase-space variables. This approach is appealing
because it should shed light on many-body quantum hy-
drodynamics where the inclusion of interactions has so
far been phenomenological (relaxation time models).
The overall aim would be to devise non-perturbative
formalism with a simple dependece of system proper-
ties on the density and currents.

2. Difficulties with QHD

It is well-known that the equations of pure-state quan-
tum hydrodynamics may be derived by taking the po-
lar form for the wavefunction and separating out the
real and imaginary parts of the Schrodinger equation.
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This results in the continuity equation for the amplitude
squared n = R* and a Hamilton Jacobi-like equation
(for the phase § of the wavefunction) the gradient of
which leads to an Euler-like equation for the velocity
field defined by

v=J(r.1)/p(r,1) ey

(here the particle current density is J =p(r,)VS
(r. t)/m). There are two differences with classical hy-
drodynamic models: first, there appears a scalar quan-
tum potential {from now on choosing unitsfr = m = 1)

QI o

within the Euler equation; secondly, the resulting equa-
tions of motion are not complete, there remains an ad-
ditional constraint imposed by the single-valuedness of
the wavefunction leading to the quantization of velocity
circulation (Barker):

‘(fv-dr:Nh 3)
c

Any spatial circuit C through which a vortex occurs in
the velocity flow leads to a non-zero integer in condi-
tion (3). Vortex cores occur along the strong nodal lines
(Barker) of the amplitude the wave-function, along
which the phase § is indeterminate. The scalar quan-
tum potential (2) becomes singular at the strong nodal
points and within the quantized vortices the velocity
field attains the magnitude: v = N;/|r — x;| which di-
verges along the nodal line r=x;. This non-physical
result illustrates the danger with over-interpreting the
velocity field and more seriously leads to numerical
instabilities in solutions to the QHD equations for the
velocity flow. However, the carrier density and current
density remain finite at the vortex core: p & |r —x;|?V
and J o [r — x;[*¥~! where N is a positive integer.
Recently (Barker) we have shown that the constraint
(3) may be incorporated into QHD via a vector quan-
tum potential, but the fact remains that there is an in-
trinsic problem with a formalism based on the veloc-
ity field (1). Can we then develop a formalism based
on density and currents? One approach was advocated
by Dashen and Sharp (1968) for stationary quantum
mechanics and extended by Pardee, Schessinger and
Wright (1968) to stationary many-body problems. In
the following we look at an extension of their approach
from the point of view of transport theory focussing
mainly on the one particle problem. The full many-
body version will be discussed elsewhere.

3. The Current-Charge Density Formalism

In the Dashen-Sharp formalism (Dashen and Sharp
1968) the current and density operators are introduced
in the usual way as bi-lincar combinations of quan-
tum field operators. To illustrate the ideas in a simple
fashion we focus on spinless bosons in the present pa-
per without loss of generality. The density and current
density opcrators are then:

p(x) = Y (X)P(x)

4
1
Jx) = (Z)[IW(X)VI//(X) — (VY (x))y ()]
with commutation relations:
[o(x), p(y)] =0
]
[o(x), J,(y)] = —i -5_—[8(x — Y)p(x)]
X )
3 S
[J,(x), Ju()] = _ia_x_[a(x — ¥, (x)]
i[5 = D0
Ve

The total momentum P, the Hamiltonian / and the
total number of particles N are given by:

P=/J(x)d3x H=Hy+V+U

Hy = f Ho)dx = % f d*x[Vp(x) - 2iJ(x)]

X —— [V p(x) + 203001 6)
p(x)

1
vy f dx d*y p()PWIV (Ix — yI)

U= % / d*x px)U(x) N = / d*x p(x)
Following Sharp (1968), the key step is to introduce
a functional representation of the algebra (5-6). we
choose the eigenvectors of the density operator as ba-
sis states and within that space we define a wave func-
tional: ¥(p) = (p | W). The scalar product is defined
by the functional form:

(V| @) =/‘1’(p)+¢(/))D(p) )

The measure D was not defined by Dashen and Sharp
but the functional integration may done over the eigen-
values of the density operator which are delta functions
located at the position of each particle. The action of



the current operator on these states is then represented
by the functional derivative:

8
J— > —ip(r)V——o ®)
dp(r)
The energy spectrum follows from:

HY(p) = EW¥(p) )

4. Relation to QHD
We observe from (5) that in this picture the quantum

potential (2) appears naturally (note the Laplacian term
in (5) integrates out). In particular we may write:

Ho= [ Huo a's = 5 [ @xtvoe - 2i300)

1
x — - [Vp(x) + 21 J(x)]

— — 3 .
Hy=T)+ TQ =3 /d xJ(X)p(X) Jx)
1 3 1
+ §_/d xV,o(x);)(—X) - Vp(x)
where
Tolpl = = / XV —— - Vo(x)
[4] =32 N
8 p(x) an

v, — 3Tolol _ 1){ Vp)2 2Vp
°T s —<§ (7 —p}

The quantum potential of QHD is thus the density func-
tional derivative of the density-dependent part of the ki-
netic energy operator. Equations (10) and (11) provide
a starting point for the development of a generalised
hydrodynamic picture based on continuity equations
for currents and densities and with an explicit quantum
potential.

5. Single Particle Picture

For a single particle we may first find the functional
corresponding to particle at rest, which requires

HoWo = 0=>[Vp(x) + 2iJ(x)]¥o(p) =0
8
= (Vp(X) + 2pV8—)‘I'o(p)
0
== (570 + V5 o) =0=> (1)
2p

p
(ifp # 0)
1 8
V<§ In p(x) + a—p—)%(p) =0
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Equation (12) has the solution (by analogy with first
order differential equations):

Yy = exp[—% / o(x)1n p(x) d3x] (13)

Similarly, using (6) we find the functional for a free
particle with momentum p as:

Wy = exp[/ {ip X — %lnp(x)}p(x) d%} (14)

Guided by these results, we examine a single particle
in a potential U(x) and look for a functional in the form

1
W(p) = exp[ / p(x){g(x) ~5n p(x)} d3r] (15)
From the eigenvalue equation

HWY(p) = E¥(p) = E//O(X) Ix¥(p)  (16)

where we have used the integral over the density is
unity for one particle, we obtain:

fd3x{%V2g+ %(ng +U - E}p =0 (17)

The density is arbitrary so the integrand of (17) must
vanish and using the transformation

g§=-lng (18)

we find ¢ is a solution to the Schrodinger equation:
1,
—EV +Uip=Eyp (19)

These results were first obtained by Pardee,
Schessinger and Wright (1968) using the Dashen-
Sharp formalism (Dashen and Sharp 1968) .

6. The Gutter Potential
The gutter potential has been widely used in trans-
port modelling: it describes a quantum waveguide in

a 2DEG in the form:

1
Ux,y) = szyz —Fx (20)
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thus the potential is confining in the y-direction
and is open in the x-direction. In the case F=0
we have a confining harmonic oscillator potential
and the corresponding density functional is found to
be:

I
v, = expl:/ 5[21’[7.\'-!— ]n[H"%(w'/zy)
= In p(x, N}px, y)dx (Iy] (1)

where H,, is the mth order Hermite Polynomial. In
the case F #0 the term in ipx in (21) is replaced
by In((2r ~¥2F~1/2)113 Ai (—x)) where Ai is the Airy
function.

The expectation values for the current and density
operators in the state W(p) give the usual density and
current obtained in orthodox quantum mechanics.

For N particles in the ground state of the confining
potential (F = 0) the density functional becomes:

V= exp[f %{w yz —Inp(x, V)}p(y, y)dy dy]
(22)

Important correlation functions such as the two-particle

correlation function G may be computed easily. For

example G for the ground state is given by {o(y)p(y’))
and it may be determined from the projection of the
operator equation

(. I = =iVI8(y = ¥)p(]
on the ground state and using the hermiticity of the anti-

commuator of J(v) and p(y’). The resulting differential
equation has the well-known solution:

G = (p(MpO) = (p() 8(y — ¥
+ (1 = 1/N){p(») (p(»))-

7. Conclusions

A time-dependent formalism may be constructed by
replacing the stationary Schrodinger equation (9) by
the time-dependent form:

b
i— |V >=H|V>. (23)
ot

The densities and currents are now defined over the
full space-time domain. In particular, it is found that
the generalised continuity equation holds (by forming
the commutator [H, p])

d

V-(J)+E

(p} = 0. (24
In the non-interacting case we may derive the time-
dependent generalisation of (15)

Y(p,t)= exp[/ p(x){g(x, 1) — % In p(x)} (13r]
(25)

where g(x, 1) = —Ing(x, t) is related to the solution
@(x, 1) of the time-dependent Schrodinger equation
—1V? + U)p = i(3/dt)p. This brief overview of
the formulation of the current and density formalism
shows that the quantum potential occurs naturally in
this picture, there are no divergence issues with using
the currents and densities unlike conventional QHD. In
future reports we aim to explore the extension of this
picture to a generalised hydrodynamic picture of trans-
port based on non-perturbative functional methods.
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A Space Dependent Wigner Equation Including Phonon Interaction
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Abstract. We present a kinetic equation which is obtained after a hierarchy of approximations from the generalized
Wigner function equation which accounts for interaction with phonons. The equation treats the coherent part of
the transport imposed by the nanostructure potential at a rigorous quantum level. It is general enough to account
for the quantum effects in the dissipative part of the transport due to the electron-phonon interaction. Numerical
experiments demonstrate the effects of collisional broadening, retardation and the intra-collisional field effect. The
obtained equation can be regarded as a generalization of the Levinson equation for space dependence. An analysis
shows that the equation is nonlocal in the real space. This quantum effect is due to the correlation between the

interaction process and the space component of the Wigner path.

Keywords: Wigner function, nanostructure, quantum electron-phonon interaction, Monte Carlo method

Introduction

The quantum transport in far from equilibrium con-
ditions is determined not only by the nanoscale of
the device potential, but also by dissipative processes
due to interaction with phonons. Usually the boundary
conditions are given by electrons in traveling states
entering into a nanodevice from the leads. If only
the coherent part of the transport is considered, these
states remain isolated from the notch states, which ex-
ist at the lower energy regions of the device poten-
tial. In this case unphysical simulation results can be
obtained (Frensley 1990). Thus dissipative processes
which are due to interaction with phonons must be
taken into account. The electron-phonon interaction
links the traveling and the notch states and correctly
redistributes the electrons into the device. It has been
shown that the electron phonon interaction greatly af-
fects the device parameters of the resonant tunnel-
ing diodes (Zhao et al. 2001). While the theoretical
and numerical aspects of the application of the coher-
ent Wigner equation are well established, the inclu-
sion of the electron-phonon interaction is still under
investigation.

Approximations

A rigorous inclusion of the phonon interaction is
provided by the generalized Wigner function (WF)
(Bordone et al. 1999) f,,(r, p, {n}, {m}, t) which along
with the electron coordinates r, p depends also on the
phonon coordinates {n} = {n,...,nq,...} with nq
being the number of phonons in mode q. Of interest is
the reduced WF f,,(r, p, 1), whichis obtained by taking
the trace of the generalized WF over the phonon system
and thus depends only on the electron coordinates. An
exact equation for the reduced WF can not be obtained
from the generalized Wigner equation, since the trace
operation does not commute with the electron-phonon
interaction Hamiltonian.

The task is to obtain from the generalized Wigner
equation a closed equation for the reduced WF. The
approximations include a weak scattering limit in
the phonon interaction, assumption of an equilibrium
phonon system, mean phonon number approximation,
and an effective field in the scattering-Wigner potential
correlation.

The generalized Wigner equation couples an element
fuw(...,{n},{m},t) to four neighborhood elements
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givenby f,.(..., {n} L 14 (m}, 0), fu(... (0}, {m} £
14, 1) for any phonon mode q. The equations for the
four neighboring elements involve elements which are
secondary neighbors with respect to the ({n}, {m}) el-
ement. In this way the diagonal elements, involved in
the trace operation are linked to all off-diagonal ele-
ments. As a first approximation we consider the weak
scattering limit, which neglects all links to the elements
placed outside the nearest off-diagonals. This assump-
tion ignores higher order electron phonon interactions.

The evolution process begins with an initially de-
coupled electron-phonon system and involves transi-
tions between the diagonal and the first off-diagonal
elements. The next approximation is to replace the oc-
cupation numbers 14 involved in the transitions with
the equilibrium phonon number n(q): This is done by
performing the trace operation at the consecutive time
steps of the evolution. With this it is assumed that
the phonons stay in equilibrium during the evolution
(phonon bath). This allows to perform the trace opera-
tion and to obtain a closed equation set for the reduced
WEF. The set consists of a main equation for the reduced
WF coupled to two auxiliary equations. The latter arise
from the first off-diagonal terms of the generalized WF
and describe the electron-phonon interaction. While the
equation for the reduced WF is real, the two auxiliary
equations are complex and mutually conjugated. The
formal solution of the auxiliary equations is given by
the Neumann series, which can be substituted into the
main equation.

The implicit inclusion of the Neumann expansions
in the main equation is rather inconvenient and we look
for an approximation where the two auxiliary equations
can be solved explicitly. If the potential term in the
two auxiliary equations is approximated by the mean
homogeneous electric field E throughout the device
(mean field approximation), the solution to the two
auxiliary equations can be explicitly expressed in terms
of the reduced WF. This approximation concerns only
the phonon interaction, while the potential term in the
equation for the reduced WF is treated exactly. A single
equation for the reduced WF is obtained.

f[l'(rﬁ pv I)
!
= fo(rp.0n P 0) +/ dr’fdp’V,f,
0

x (rp.m, p' — P(t’))fu-(r(p‘l')s P ’I)

' '
+2 / dr’ / dr” Y FXq)
¢ 0 ;

r 1 ,
X cos(f dr};(e(pm) —e(pery —1q) — Tzcuq'))
-
! h ! ! " ’ "
X I"(q )fu- (r(p,r") + "—2:] (f -1 ), Puy — hq ! )

- (’1(‘1') + l)fu (r(p.l”) + Z—q(’l - f")', pu"). f”) }

mn
i r ,
=21 a'f d&" )y F(q
A A qZ P
"o
X cos(/ dtﬁ(é (pir)) — €(pry +1q') +7‘1a)q')>
{

’ TTq, ! " "
x {n(q ).fw("(p,"’) ~ o " =17), pum t )
! hq’ ! n
- D fo ny — —— (" —1),
(n(q) + D f, ("(p.r ) 2m( )
P + g, t”) } M

Here V,, is obtained by the Wigner transform of the
device potential V corrected by the potential of the
homogeneous field E. The rest of the notations will be
explained below.

Analysis of the Equation

The reduced WF is expressed as a sum of contributions
coming from the initial distribution, the interaction of
the electron with the device potential and the electron-
phonon interaction.

The contributions from the first two terms to the
value of f,.(r,p,?) occur on the Newton trajectory
(rp.m, Pey) initialized by r, p at time 7. The initial con-
dition f; evolves on this trajectory and adds to f,, its
value at point (r(p.0y, Pi0))-

The term from the potential provides information
to fu.(t) from f,.(+") at previous times t’' € (0, 7). This
information is nonlocal in the momentum part of the
phase space, but it is local in the real space part of
the trajectory r, ), t' € (1, 0). The contribution of this
term can be evaluated from the knowledge of f,.(r¢p.r).
p’, t’) at the past of the evolution defined on the real
space part of the trajectory.

A novel effect arrises due to the correlation between
the phonon momentum /g’ and the space component
of the trajectory in the scattering terms. At the begin-
ning of the scattering, the real trajectory is shifted by
2972 (¢ _ ). The interaction proceeds in two steps, e.g.

n

for the terms in the first curly brackets: The first half




of a phonon momentum is absorbed (emitted) at £”. At
¢’ the second half is absorbed—real absorption, or the
first half is absorbed back (virtual emission). In both
cases the position at ¢’ is just the right one, r¢ 1), Per)),
which evolves to r, p at ¢. The term related to the last
curly brackets is analyzed in similar way. In contrast
to the Wigner equation without phonon interaction,
the obtained equation becomes nonlocal in the real
space.

The classical limit # — 0 in the phonon interaction
leads to a Wigner equation with a Boltzmann scattering
term. For a bulk semiconductor with an applied elec-
tric field E the equation resembles the Levinson equa-
tion (Rammer 1991), or equivalently the Barker-Ferry
equation without damping of the electron lifetime.

Simulation Results

We investigate equation for quantum effects which are
purely due to the electron-phonon interaction. Equation
(1) is written for a bulk semiconductor in presence of an
applied electric field. Cylindrical coordinates (r, k, ¢)
with r chosen normal to the field direction are used in
the wave vector space. A transformation is used which
shifts the coordinate system in time with the electric
field. To solve (1) arandomized backward Monte Carlo
algorithm is applied (Gurov and Whitlock 2001).

Simulation results for GaAs with a PO phonon with
constant energy hw are presented. The initial condi-
tion is a sharp Gaussian function of the energy. A
very low temperature, where the physical system has
a transparent semiclassical behavior is assumed. The
solutions are obtained on cut lines parallel to the field,
(k > 0,r = 0), opposite to the field, (k < 0,r = 0)
and normal to the field, (k = 0,7 > 0).

Collisional Broadening and Retardation

The effects of collisional broadening and retardation
exist already at zero electric field. Figures 1-3 present
snapshots of the evolution of the semiclassical and
quantum solutions |k|f(0, |k],¢) for times 100 fs,
200 fs and 300 fs as a function of |k|>. The quantity
|k|? is proportional to the electron energy in units 10'*
m~2. Semiclassical electrons can only emit phonons
and loose energy equal to a multiple of the phonon
energy hw. They evolve according to a distribution,
patterned by replicas of the initial condition shifted to-
wards low energies.
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Figure 1. Initial distribution function (initial d.f.), semiclassical

(SC) and quantum (Q) solutions kf (0, k, t) for 100 fs evolution
time at zero electric field.
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time at zero electric field.
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The electrons cannot appear in the region above the
initial distribution. The quantum solutions demonstrate
two effects of deviation from the semiclassical behav-
ior. There is a retardation in the build up of the remote
peaks with respect to the initial condition peaks. The
replicas are broadened and the broadening increases
with the distance to the initial peak. The broadening
is due to the lack of energy conservation in the inter-
action. At low evolution times the cosine function in
(1) weakly depends on the phase space variables. With
the increase of the time, the cosine term becomes a
sharper function of these variables and in the long time
limit tends to the semiclassical delta function. Accord-
ingly the first replica of the 100 f's is broadened. The
quantum solution resembles the main pack and the first
replica of the semiclassical solution after 300 fsevolu-
tion time while the remote replicas remain broadened.
The retardation of the quantum solutions is associated
with the memory character of the equation. The two
time integrals in (1) lead to a delay of the build up of
the replicas as compared to the single time integral in
the Boltzmann case.

Intra-Collisional Field Effect

Figure 4 compares the 200 f's solutions as a function of
k < O for different positive values of the field. The first
replica peaks are shifted to the left by the increasing
electric field. The numerical solution in the semiclas-
sically forbidden region, above the initial condition,
demonstrates enhancement of the electron population
with the growth of the field.
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Figure 5. Solutions kf(O, k. 1) for positive & values and evolution
time 200 fs. The electric field is 0, 6 kV/em. and 12 kV/em.

For states below the initial condition the energy of
the field is added to the phonon energy. Accordingly
the solution behaves as in presence of a phonon with
energy higher than fiw; the distance between the first
replica and the initial condition increases. For states
above the initial condition the energy of the field re-
duces the phonon energy and thus the electron popu-
lation in the vicinity of the initial condition increases.
Just the opposite effects appear in the region of posi-
tive k values. This is demonstrated in Fig. 5. The peaks
of the first replica are shifted to the right and there is
no enhancement of the electron population above the
initial condition. The field has a pronounced effect on
the broadening and retardation of the solutions: A com-
parison of the first replicas and the main peaks under
the initial condition on Figs. 4 and 5 show that the field
influences the effects of collisional broadening and the
retardation.

Conclusion

Starting from a full quantum mechanical model we
have identified the physical assumptions necessary to
derive an approximate but closed model for the re-
duced Wigner function. The obtained equation can be
regarded as a generalization of the Levinson equation
that includes the real space dependence. It is shown
that the finite duration of the phonon interaction gives
rise to a space non-locality of the quantum transport
process. Quantum effects in electron phonon interac-
tion have been demonstrated numerically. Observed
are collisional broadening, retardation and the intra-
collisional field effect.
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Abstract. Wigner simulations of resonant tunneling diode (RTD) self-excited oscillations are discussed with
respect to the upper frequency limit of operation and their sensitivity to large scale perturbations. These studies
offer the most practical assessment of phase noise, response times of RTDs and of the coupling of quantum well

space charge to its environment.
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Introduction

Negative differential conductivity devices sustain self-
excited relaxation oscillations that arise from nonlin-
earities. These nonlinearities can not be regarded as
small since they control the operating level of the os-
cillator. Phase noise exists in self excited oscillator be-
cause the latter has no time-reference. A solution to the
oscillator equations that is shifted in time is still a solu-
tion. Noise can induce a time-shift in the solution, and
this time-shift looks like a phase change in the signal
(hence the term “phase noise™).

For a suitable set of parameters the RTD exhibits
negative differential conductance and it too operates as
a self excited oscillator (Verghese, Parker and Brown
1998). The properties of the RTD self excited oscillator
scale much the same way as a van der Pol oscillator, so
long as the device sustains negative conductance. But
in general negative conductance which is a dynamic
effect disappears at sufficiently high frequency. The
RTD also exhibits phase noise, but the response of the
system is slower than that of a self sustained oscillator
with a defined region of negative conductance because
the response of the carriers to any perturbation occurs
over a finite period of time.

To illustrate these features the RTD was incorpo-
rated into the Fig. 1 circuit (Grubin and Buggeln to
be published). In the simulation we replaced the diode

by a time dependent Wigner-Poisson algorithm that
included a device capacitance, and placed that com-
bination in parallel with an external capacitor, all in
series with the other elements. When the noise calcu-
lations were performed a parallel current source was
introduced into the RTD circuit.

The external circuit was treated as a boundary con-
dition to the Wigner equation. The boundary circuit
equations are:

dvD 27TZ() . .
DT Rp i@ —~ip@®)},
m
di R . R
i E%; {UAPPLIED @ —vp@+i) ;OAD}

The terms in Eq. (1) are dimensionless. The nor-
malized quantities are obtained as follows. From the
Wigner function and the calculated DC current voltage
relation Ip(Vp), we identify the current /p at the NDC
threshold potential energy Vp. From thisvp = Vp/Vp
and i =1/Ip. We also identify a device resistance
Rp = Vp/Ip, a circuit impedance Zg = /L/Cp,
a circuit period T,y = 2w+/LCp, and the dimension-
less time t = ©/T,. It is important to note that for
a given applied bias, device, load resistance and cir-
cuit impedance, the boundary conditions scale with
time providing the device current scales with time. Our
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Figure 1. The circuit used for self-excited oscillations.

simulations with the Wigner function indicate that as
long as the device sustains sufficient negative conduc-
tance over a cycle, the current versus time profiles are
approximately independent of frequency.

The Oscillatory Characteristics and the Space
Charge Profiles

Figures 2 and 3 (from Grubin and Buggeln (to be pub-
lished)) illustrate the self-excited oscillation, the dy-
namic current voltage relation and the space charge
profiles. Starting from a steady state equilibrium so-
lution a step change in bias is introduced. Because of
the presence of storage elements such as inductors and
capacitors the change in potential encrgy across the
device is gradual as displayed in Fig. 2 (dashed line).
For this transient we see repetitive oscillations settling
in after the first two cycles. We also show the particle
current through the device (solid line). We see that af-
ter about ten ps, the potential energy across the device
reaches a value of approximately 280 meV, which is the
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Figure2. (Top) Transicnt particle current and potential energy drop
for a 22 GHz oscillation. (Bottom) Several cycles of the dynamic IV
for the oscillation.

threshold for NDC. There is a drop in current and a fur-
ther increase in the potential energy across the device
accompanied by an increased (albeit oscillatory) parti-
cle current. After passing its peak, a decreasing voltage
is accompanied by a decreasing current whose values
that are significantly below those accompanying the in-
creasing voltage. This voltage decrease continues until
the potential energy passes somewhat below the orig-
inal NDC threshold, where there is a sudden increase
in current, followed by a subsequent current decrease
until a minimum is reached. The oscillation settles into
a period of ~46 ps, for a frequency near 22 GHz. The
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Figure3. (Top) Potential energy and (bottom) space charge profiles
for the first ~8 ps of the transient.

dynamic current voltage relation, which is obtained by
eliminating time from the current-time and voltage-
time profiles is also shown in Fig. 2, and displays the
hysteresis described in the above paragraph.

The interesting feature of the Fig. 2 oscillation is that
it essentially maintains this form up to about 120 GHz.
There are modifications in detail, the maximum and
minimum values of particle current and voltage are al-
tered, and the NDC region weakens, with the latter fea-
ture being responsible for the cessation of oscillations.
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Figure 3 displays the space charge and potential en-
ergy profiles during the first cycle of the oscillation just
before NDC threshold. The features to observe are the
increasing charge in the quantum well with increasing
bias, as well as the formation of charge on the emitter
side of the first barrier. Accompanying this is enhanced
depletion on the collector side of the second barrier, sat-
isfying the condition of global charge neutrality. Also
note that as the potential energy increases, but prior
to the NDC threshold, there are significant changes in
the value of the potential energy of the quantum well.
However, immediately prior to the current drop-back
when there is significant charge accumulation in the
quantum well, the voltage change within the quantum
well is small compared to that across the second bar-
rier. Indeed just prior to threshold, most of the voltage
change occurs across the collector side of the structure.
(The arrow in Fig. 3(a) denotes the change in potential
energy as a function of bias. That in Fig. 3(b) shows the
increased emitter charge accumulation with increased
bias, as well as the movement of the collector charge
depletion region. The quantum well charge continues
to increase with bias change.) The details of Figs. 2 and
3 are discussed more fully in Grubin and Buggeln (to
be published).

Effect of Perturbations on the Phase
of the RTD Self-Excited Oscillation

To initiate the RTD noise study we force a change in
the particle current at two instants of time, while the
Wigner simulation was running. The calculation was
performed for a device with the same parameters as
that of Figs. 2 and 3 with the exception that the sus-
tained oscillation occurred at 113.7 GHz. See Fig. 4.
The fluctuations are indicated by the arrows.

Two important features should be noticed. First, the
oscillation recovered from the perturbation within one
cycle, and second there is a shift in the period. The
shift in the period is the origin on the phase noise. The
magnitude of the shift depends upon the duration of
the fluctuation. Here the duration of the fluctuation was
a substantial fraction of the oscillatory period. It also
depends upon the original placement of the fluctuation.

We have also introduced fluctuations by introduc-
ing temporal variations in such quantities as the phe-
nomenological relaxation time. Such a fluctuation
might represent a temporal change in the principle type
of scattering event. In each case, for the percent changes
introduced the self-excited oscillation was restored.




36 Grubin

Potential Energy Drop {meV)

=
]
=%
E
=
=
‘@
2
73
a
B
3
=
=
<
P-4
=
=
=
o
@

Time (psec)

Particle Current Density {Ampsim?)
Potential Energy Drop (meV)
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The Physical Model Used in the Simulations

The basic quantum transport equation is the Wigner
equation (Wigner 1932):

_ Uk x) | Rk Ofulk, X)
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The potential energy in Eq. (2) consists of two contri-
butions, the barrier/well configuration (single or mul-
tiple) and the potential energy arising from Poisson’s
equation. In the simulations discussed here the contri-
butions from Poisson’s equation were treated classi-
cally as aterm V., Vpossson - Vi f“' (k, x). The barriers
were square permitting an analytical integration of the
Wigner integral, which was used in all of our studics
(see Grubin and Buggeln to be published).

What about dissipation? The tack taken here is to
relax the Wigner function, with:

(af,,-(k, -\') _ fu(k «") - f()(k~ 4\—)

ot ) DISSIPATION 7(x)
(3)

The relaxation time approximation in the above form
leads to source and sink terms in the continuity equa-
tion. To avoid sink terms others have multiplied the
equilibrium distribution function by the ratio of the
non-equilibrium carrier density to the equilibrium car-
rier density. We have done both.

The question of interest is what is fo(k. x)? The form
of the equilibrium distribution function is dependent
upon the model used to connect current at the open
boundary and must represent the spatially dependent
distribution associated with barriers, scattering. self-
consistency, and the external circuit. The boundary con-
dition used here sets the normal derivative, with respect
to position, of the distribution function to zero. This
provides the requisite zero current conditions. Further,
to enhance the possibilities of flat-band open bound-
ary conditions the relaxation time in the vicinity of
the boundaries was set at least an order of magnitude
smaller that elsewhere in the devices.

In performing the simulations we break the device
into a classical and quantum region. The bounding
reservoir region is treated classically, with the central
region representing the quantum mechanical region.
Within this framework the Wigner integral is multiplied
by a modulating function that is equal to unity within
the ‘quantum region’ and zero elsewhere. For calcula-
tions discussed here the device length was 200 nm, the
quantum region was at least 120 nm long and included
the cladding regions.

Conclusions
The study indicates that the RTD can operate as a self

excited oscillator and that it can recover from pertur-
bations in the current. These perturbations introduce




changes in phase, which are a main component of phase
noise in the RTDs. The computational times for these
studies are sometimes excessive. But the physics indi-
cates that when the device is undergoing self-excited
oscillations, it can be characterized and treated as a
simple non-linear NDC element, with temporal scal-
. ing determined by simple SPICE type algorithms. The
Wigner simulation is needed to determine the upper fre-
quency of sustained oscillations and to enhance the un-
derstanding of device operation. The Wigner function
is also needed to determine the phase noise, because
the recovery time depends on the detail time transients
of the carriers.

RTD Relaxation Oscillations 37

Acknowledgments

This study was supported by the Office of Naval
Research.

References

Grubin H.L. and Buggeln R.C. RTD relaxation oscillations and the
time dependent Wigner equation, to be published.

Verghese S., Parker C.D., and Brown E.R. 1998. Phase noise of a
resonant-tunnelng relaxation oscillator. Applied Physics Letters
72(20): 2550-2552.

Wigner E. 1932. On the quantum correction for thermodynamic equi-
librium. Physical Review 40: 749-759.




Journal of Computational Electronics 1: 39-42, 2007

V]
3 s ~
© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Modeling of Shallow Quantum Point Contacts Defined on AlGaAs/GaAs
Heterostructures: The Effect of Surface States
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Abstract. We have developed a program for the simulation of devices defined by electrostatic confinement on the
two-dimensional electron gas in AlGaAs/GaAs heterostructures. Our code is based on the self-consistent solution
of the Poisson-Schrodinger equation in three dimensions, and can take into account the effects of surface states at
the semiconductor-air interface and of discrete impurities in the doped layer. We show results from the simulation
of quantum point contacts with different lithographic gaps, whose conductance is computed by means of a code

based on the recursive Green’s functions formalism.

Keywords: heterostructures, mesoscopic devices, surface states

1. Introduction

The confining potential and the charge density in meso-
scopic devices defined by electrostatic confinement in a
shallow two-dimensional electron gas (2DEG) strongly
depend on the properties of the surface, i.e., on the den-
sity of states and the semiconductor-air interface. For
this reason, the accurate simulation of such devices re-
quires that proper boundary conditions be enforced at
the exposed semiconductor surface (Chen and Porod
1993, Davies and Larkin).

As shown in lannaccone et al. (2000), the assump-
tion of Fermi level pinning at the exposed surface, as
well as the assumption of a constant electric field at the
semiconductor-air interface, corresponding to a frozen
surface charge, are not adequate to achieve results in
quantitative agreement with experiments. In particu-
lar, for the case of quantum point contacts defined by
split gates on an AlGaAs/GaAs heterostructure, these
assumptions provide reasonably good results for small
lithographic gaps, while for larger gaps do not even
reproduce pinch-off of the channel, which is experi-
mentally observed (Iannaccone et al. 2000).

A more detailed model of surface states must there-
fore be used: in particular, we use a model typical of
metal-semiconductor contacts (Sze 1981), and based
on two parameters: an “effective” work function ®* of

the exposed surface, and a constant density of surface
states per unit energy per unit area D;. If E is the en-
ergy of the vacuum level, we assume that surface states
with energy lower than Ey — g ®* behave as accep-
tor states, while surface states with energy higher than
Ey — q®* behave as donor states.

2. Simulations

We have considered several quantum point contacts de-
fined by split gates on an AlGaAs/GaAs heterostruc-
ture, with different lithographic gaps. The layer struc-
ture consists of an undoped GaAs substrate, an undoped
12 nm Aly »Gag gAs spacer layer, a 31 nm layer of doped
GaAs (approx. 10'® cm™?) and an undoped 9 nm GaAs
cap layer.

We have solved self-consistently the Schrédinger
and Poisson equations in a three dimensional domain
in order to obtain the profiles of the first subband and of
the electron density in the 2DEG. The potential profile
in the three-dimensional structure obeys the Poisson
equation

VIe@)V()] = —qlp(F) — n() + Ny ) — Ny )],
ey
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where ¢ is the electrostatic potential, ¢ is the dielectric
constant, p and n are the hole and electron densities,
respectively, N} is the concentration of ionized donors
and N isthe concentration of ionized acceptors. While
hole, acceptor and donor densities are computed in the
whole domain with the semiclassical approximation,
the electron concentration in the 2DEG is computed
by solving the Schrodinger equation with density func-
tional theory.

The observation that electron confinement is strong
along the direction perpendicular to the AlGaAs/GaAs
interface has led us to decouple the Schrodinger equa-
tioninto a 1D equation in the vertical () directionand a
2D equation in the y-z plane: the density of states in the
horizontal plane is well approximated by the semiclas-
sical expression, since there is no in-plane confinement,
while discretized states appear in the vertical direction.
The single particle Schrédinger equation in 3D reads

a1l a a1 oa

2 9x my X 2 dy m, 3y
a1 a ) @
2

————— U+ V¥ =FEVy,
2 9z m. d: +

we can write W(x,y,z) as W(x,y,z) = ¥(x,y,2)
x(y, z). By substituting the above expression in (2)
we obtain the following expression

712818 [h’ala

2 3\m dx 2 dym, dy
a1 a
+————|¥x+Vyx=Evx, 3
2 9z m. 9z

where the dependence on x, y and z is omitted for
clarity. If ¢ satisfies the Schrédinger equation along
the x direction

————— 1% E(y , 4
3 A aAw+ v=E(y,2)¥ C))
by substituting (4) in (3) we obtain
ol a+h23 1 3 ’
2 oym,dy  20:m.0:]" %
=Eyx—E(y,2)¢x. (5)

Assuming that ¥ (x, y, z) is weakly dependent on y and
z, and defining

. a1 a ra1d

Ihys=s————— - ————, 6
. 2dymyady 2 3zm:o: ©

(5) can be approximated as

vTx =YIE — Ei(y, )1 x (7)

where E; is the i-th eigenvalue of (4). Since E",-(y. o)
in the cases considered is rather smooth in y and -, we
will assume that eigenvalues of (7) essentially obey the
2D semiclassical density of states.

The confining potential V' can be written as V =
Ec + Ve, where Ec is the conduction band and V,.,,.
is the exchange-correlation potential within the local
density approximation (Inkson 1984).

2

Vere = —
B 47T28()€,

-3 ()] ®)

For GaAs, we have m, =m, =m. =m =0.06Tm,.
where my is the electron mass, therefore the electron
density can be written as

kgTm &
’7(-\',)’»2)— 2 ZI]//I(\ )’gé)l

X ln[l + exp(______&(y,/\z T— Er)] ()
tp

where v; and E; are the eigenfunctions and eigenvalues
of (4), respectively.

To solve self-consistently the Poisson-Schrédinger
equation, we have used the Newton-Raphson method
with a predictor/corrector algorithm close to that pro-
posed in Trellakis et al. (1997). In particular, the
Schrodinger equation is not solved at each Newton-
Raphson iteration step. Indeed, if we consider the
eigenfunction constant within a loop and eigenvalues
shifted by a quantity ¢(¢ — ¢), where ¢ is the potential
used in the previous solution of the Schrodinger equa-
tion and ¢ is the potential at the current iteration, then
the electron density becomes

nix,y,z)
LBT’"ZW:(\ . ‘)l

X lnl:l + exp<— Eiy.2) - fFT'*’ q(¢p — ¢))]
B

(10

The algorithm is then repeated cyclically until the
norm of ¢ — ¢ is smaller than a predetermined value.
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Figure 1. Plot of the parameter § as a function of the gate voltage
Ve for a quantum point contact with lithographic gap of 112 nm.

Once the subband profile is obtained, the conduc-
tance in the channel is computed with a method based
on recursive Green’s functions (Macucci, Galick and
Ravaioli 1995).

2.1. Decoupling of the Schridinger Equation

In order to assess the validity of the approximation
which led us to decouple the Schrodinger equation, we
define

a(x,y,2) = Tytix — ¥ilyxs (11)

alx, y, z) is the difference between the left-hand sides
of (5) and (7), and, if the approximation is valid, must
be much smaller than the right-hand side in any point
of the domain. This means that the term &8, defined
as

a(x,y, z)
§ = max = 4
xyz2|[E — E(y,2)]dx

(12)

must be much smaller than 1.

In Fig. 1 we plot § as a function of the voltage ap-
plied on the split gates for a quantum point contact
with lithographic gap of 112 nm. As can be seen, § is
smaller than 1078 and therefore the approximation is
very good.

3. Results

To reach convergence at the desired temperature of
4.2 K, a preventive “cooling” procedure is required,
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sheet efectron density (m'2)

0

Figure 2. Gate layout of a quantum point contact with lithographic
gap of 112 nm (top), theoretical first subband profile (center) and
electron density in the 2DEG (bottom).

starting from 100 K, and progressively decreasing the
temperature.

The parameters of the surface state model and
the concentration of donors in the doped layer have
been extracted from measurements on purposely fab-
ricated test structures (Pala et al. submitted): ®* =
4.85 eV, Dg=5x%x 102 ¢cm=2 eV~!. Np has been
chosen as a fitting parameter in order to reproduce
the experimental pinchoff voltages of QPCs with dif-
ferent lithographic gaps. The best fit is provided by
Np =0.8 x 10'® cm™3. The electron concentration in
the 2DEG is 4 x 10! cm—2,

In Fig. 2 we plot the gate layout (above), the first
subband in the 2DEG (center), and the electron den-
sity in the 2DEG (below) for a quantum point contact
with lithographic gap of 112 nm and applied voltage of
—05V.

Theoretical G-V curves of QPCs with lithographic
gap of 57, 112 and 140 nm are shown in Fig. 3. With
just one fitting parameter (Np), computed pinch-off
voltages agree within 5% with the average experimen-
tal pinch-off voltages measured on the same structures
(Fiori et al. submitted).

The concentration of impurities in the doped layer
plays an important role in the electrical properties
of devices realized on a 2DEG (Thean, Nagaraja
and Leburton 1997). A simulation that takes into ac-
count the random distribution of impurities in the
bulk is therefore necessary. In particular we assume
that implanted impurities in the bulk obey a Poisson
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Figure 3. Simulated conductance as a function of gate voltage for
devices with lithographic gaps of 57, 112. and 140 nm.
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Figure 4. Simulated conductance as a function of gate voltage for
16 nominally identical quantum point contacts with ¢ = 57 nm. but
different actual discrete dopant density.

distribution. We have then simulated an ensemblc of
devices with identical nominal doping profile but dif-
ferent actual distribution of discrete impurities.

Simulated G-V curves of nominally identical quan-
tum point contacts with different “actual” dopant dis-
tribution are shown in Fig. 4. For each point of the grid
we have considered its associated element of volume
AV and the nominal doping concentration Np. The
actual number of impurities in AV is obtained as a
random number N’ extracted with Poisson distribution
of average AVNy. Dividing N' by AV we obtain the
actual local density of dopants.

We have obtained a standard deviation of the pinch-
off voltage on, =41.5 mV, which is about a haif of
the experimental value (Fiori er al. submitted). Such
difference may be due to other sources of dispersion of
the pinch-off voltage, such as geometric tolerances.

4. Conclusion

A solver of the Poisson-Schrddinger equations in three
dimensions has been developed. which includes a
model for surface states based on two parameters: an
“effective” work function of the surface states and the
density of surface states per unit area per unit encrgy.
We have demonstrated that in the simulation of shal-
low QPCs the Schrodinger equation may be solved
only in the vertical direction, with practically no loss
of accuracy.

We have shown that our code can also include the
effect of discrete impurities in the doped layer. and that
such an effect accounts for about a half of the dispersion
of pinch-off voltage measured in experiments.
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Study of Noise Properties in Nanoscale Electronic Devices Using
Quantum Trajectories
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Abstract. Noise properties in nanoscale devices are studied extending, via quantum trajectories, the classical
particle Monte Carlo techniques to devices in which quantum non-local effects are important. This approach can be
used to study noise in a wide range of frequencies and can also be easily coupled to a Poisson solver to study long
range Coulomb effects in noise characteristics. As a numerical example, we have studied noise in a tunneling barrier
showing that the results obtained within our approach exactly reproduce those of the standard Landauer-Buttiker

formalism in the zero frequency limit.

Keywords: noise, mesoscopic transport, Bohm trajectories, Monte Carlo technique

1. Introduction

The recent forecast predicts a new generation of elec-
tronic devices in the nanometer scale such as 10 nm
channel length transistors (Naveh and Likharev 2000).
The electrical characteristics of these devices are de-
termined by an interesting interplay between quantum
mechanical (QM) and classical theories. Among other
nanoscale topics, the noise due to the discreteness of
the electron charge has become a very active field of re-
search in mesoscopic devices where classical and quan-
tum knowledge merge together. The Landauer-Buttiker
scattering approach has become the standard to study
nanoscale devices when phase-coherence is preserved.
It provides a transparent description of electron trans-
port, both, for the average current values, I, due to
Landauer (1957):

1‘=if T (fy — fo)dE 0
wh 0

and for the spectral power of current fluctuations, Sy,
mainly due to Buttiker (1990) who, using a second
quantization formalism, showed that the spectral power

*To whom correspondence should be addressed.

density for one-dimensional systems at low frequencies
can be expressed as:

2 o0
5(0) = %/0 (T{fe (= fR) + fo- (1= 1))
—T2.(fy — fo)*} dE @)

where ¢ is the absolute value of the electron charge,
T is the transmission coefficient as a function of the
total electron energy E and fi,z are the Fermi-Dirac
occupation functions at the left (right) reservoir related
with the chemical potentials at the right and left, 1, /&
(see Fig. 1). (See alternative demonstrations of Lesovik
(1989) and Yurke and Kochanski (1990).)

On the other hand, when phase-coherence does not
play an essential role, a classical particle description,
based on Monte Carlo (MC) techniques, has been
used by several authors (Gonzdlez et al. 1998, 1999,
Korotkov and Likharev 2000) to study fluctuations in
mesoscopic systems.

In this letter we present an approach, based on quan-
tum trajectories associated to time dependent wave
packets, to study not only the average current, but
also current fluctuations in nanoscale devices. It ex-
tends the classical MC technique to devices where QM
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Figure . Schematic potential profile considered for the numerical
simulation. Electrons are described by Bohm trajectories along the
whole simulating box that includes the sample and the two reservoirs.

phase-coherent effects (such as tunneling through a po-
tential barrier) are of prime importance. In particular,
the use of Bohm trajectories ensures that the average re-
sults of the standard QM theory are exactly reproduced
and, at the same time, that the discrete nature of elec-
trons is implicitly considered (Bohm 1952). With our
method, the classical MC techniques used to compute
current and spectral power density can also be applied
in phase-coherent devices. Our approach is useful to
study noise in a wide range of frequencies and can also
be easily coupled to a Poisson solver to study the effects
of long range Coulomb interaction between carriers in
the noise characteristics of tunnel devices. Our work
is based on previous ideas of Landauer (Martin and
Landauer 1992, Landauer 1989) who studied shot noise
within a wave-packet point of view.

2. Noise in Terms of Wave Packets

Although the Buttiker formalism (1990) has become
the standard to study noise in coherent devices, other
more-intuitive approaches have also successfully ex-
plained noise characteristics in these devices. Among
others, together with Th. Martin (and with the goal of
reproducing the Buttiker results), Landauer provided a
simple derivation of the spectral power density of the
shot noise (i.e. expression 2) within a time dependent
wave packet picture (Landauer 1989). In the following,
part of his analysis will be repeated for convenience.
Let us assume a one-dimensional system with quantum
ballistic transport. For each small energy interval, AE,
the current can be represented as a set of §-pulses of
area +q which account for the random transmission

of electrons between the reservoirs. A positive pulse is
measured when a wave packet incident from the left
electrode is transmitted to an empty state in the right
reservoir. The probability of thiseventis T - f; (1— fz),
where | — fg factor accounts for the Pauli principle.
The transmission from right to left gives a negative
pulse whose probability is T - fz(1 — f,). For a single
injection event, the average value of charge detected at
the right contact is defined as:

Q=) T-ful = fr)+(=q)-T- fr(l = f1)
=q-T-(ft. — fr)

In order to compute the noise as the standard devia-
tion of O, we compute the square average value of the
measured charge:

Q=g (Tf (1 = fo) + (=q) - (Tf g1 = £L))

In this regard, the power of the current fluctuations can
be computed as:

AT =0 (0P =q-(Tf (1 = fr)
+ (=g - (Tfp(1 = f1L) — (@T(fL — fr))

To obtain $(0) we just have to integrate W over the
whole energy range multiplied by the one-dimensional
density of incoming electrons (which in our one di-
mensional case can be computed as v = dE/ hm (Irmy
1997)). By doing this integration, expression 2 is ex-
actly reproduced. As we will show in this work, this
alternative picture for electronic noise is quite natu-
rally supported within Bohm interpretation of QM
(Bohm 1952).

3. Our Model

During last years, the research of our group has been
focused on extending the classical MC techniques to
quantum devices where phase coherence plays an im-
portant role. Focused on the resonant tunneling devices
(which have a rich QM phenomenology), we have de-
veloped a quantum MC formalism and we have ob-
tained self-consistent results for the average current
(Oriols et al. 1998, 1999). Our present approach is
an extension of that previous work where we deal,
not only with average values, but with fluctuations.
In this regard, in order to be able to compute noise
characteristics from quantum MC simulations special,
attention has to be devoted to two points: the injection




statistics and the measurement of the current. After a
brief introduction to the use of Bohm trajectories for
the simulation of electronic transport in mesoscopic
devices, in this section we will focus on these two
topics.

Bohm’s interpretation of QM exactly reproduces the
statistical predictions of the standard Copenhagen in-
terpretation and, at the same time, provides a causal
description for the individual behavior of QM systems.
Within the Bohm’s interpretation, all the particles of a
quantum pure state ensemble follow different and well-
defined causal trajectories under the combined influ-
ence of the classical potential, V (x, t), and a new term
called the quantum potential, Q(x, t), which is directly
related to the wave function (Bohm 1952). In order to
compute Bohm trajectories, first, the time-evolution of
a wave packet W(x, 7), solution of the time-dependent
Schrodinger equation, must be known. Then, according
to Bohm approach, the instantaneous velocity, v(x, t),
for an electron located at position x and time ¢ is
given by v(x, t)=J(x, t)/|¥(x, t)|* where J(x, t) is
the quantum mechanical particle current density. The
electron causal trajectory, x = x(x,, t), is determined
by integrating v(x, t) after fixing its initial position x,.
This initial position accounts for the unavoidable un-
certainty in QM and is randomly selected according
to the probability |W(x,, 0)|>. Let us notice that the
main difference between a classical MC scheme and
our proposal lies in the expression used to compute
electron velocity: in the former, the velocity is propor-
tional to the local electric field, while in our approach,
the electron velocity takes into account the QM non-
local effects via W(x, ¢). The detailed procedure that
we use for the computation of Bohm trajectories has
been published elsewhere (Oriols et al. 1998, 1999)

Let us move to the injection model of our QM sim-
ulator. When dealing with mesoscopic device simula-
tions, the modeling of carrier injection from thermal
reservoirs is a delicate problem. According to Levitov
and Lesovik (1993) and Levitov, Lee and Lesovik
(1996), under degenerate conditions one should use a
Binomial distribution instead of a Poissonian one. An
injection model for MC particles has been developed by
Gonzilez et al. (1999) showing its accuracy to describe
either non-degenerate or completely degenerate condi-
tions in one-dimensional mesoscopic conductors. In
our quantum MC simulator, we will use that model.
As we have previously noticed, the rate of incoming
electrons impinging with velocity v, upon the bound-
ary between the leads and the conductor, v, is given by
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the product of their velocity and the one dimensional
density of states v =v.dk/m = hk.dk/m*n = dE/ hn
(where we have taken a parabolic isotropic relation
for the energy-momentum relationship and an effec-
tive mass equal to m™*). On the other hand, the injection
model has to take into account the occupation function
at the leads. In this regard, the probability of inject-
ing a wave packet with a positive central momentum
k. depends on the probability of occupation in the left
reservoir, fi , and also on the probability that there is no
wave packet with the same central momentum £, at the
right contact, 1— fx. This point differs from Gonzdlez’s
model that deals with point particles and only consid-
ers the occupation function in the left reservoir. Our
algorithm to inject particles from the left contact with
velocity vy is the following: At each time interval of
duration, v=! = m*n/ hk.Ak an attempt to introduce
a wave packet takes place (in our case, Ak is the in-
verse if the wave packet spatial dispersion Ak = 1/0).
Then, a random number » uniformly distributed be-
tween zero and one is generated, and the attempt is
considered successful only if r < fi, - (1 — fg). Simi-
lar arguments are used to inject electrons from the right
reservoir. This procedure exactly takes into account the
injection noise of the system (Gonzélez et al. 1999).
Then, each time that an electron is definitively injected
in the simulating box, its initial position is selected ac-
cording to the probability presence |W(x,, 0)|? (Oriols
et al. 1998). The uncertainty in the initial position is
transferred to an uncertainty in the transmittance (i.e.
there are electrons that can pass through the barrier and
others that are reflected). This additional random se-
lection takes into account the partition noise due to the
barrier.

The second topic that we want to address is the mea-
surement of the current. The meaning of measurement
in QM carries some difficulties related to the behavior
of the wave function during the measurement process.
However, in our approach, since we deal with causal
trajectories, current can be computed following clas-
sical MC techniques. In particular, according to the
extension of Ramo-Shockley theorem to semiconduc-
tor devices (Cavalleri et al. 1971, Pellegrini 1986), the
total instantaneous current / (t) through each cross sec-
tional area of the device, the sum of conduction and
displacement current, is computed as:

N(1)

10="2% e 3
i=1
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where L is the length of the device, N(t) is the total
number of carriers which are instantancously inside the
device, and v;(x, 1) is the value of the Bohm velocity
at time 7 and position x. The level i identifics each
electron, and only those within 0 < x < L are con-
sidered (see Fig. 1). Once the current is recorded for
a sufficient long period of time (in our simulation 50
ps), the power spectral density, S(w), of the current
fluctuations can be computed by Fourier transform-
ing the autocorrelation function of the current fluctua-
tions following standard classical MC methods (Varani
et al. 1994).

4. Numerical Results

In order to show the capabilities of this approach we
will provide a numerical example of noise in single
tunneling barrier devices. We will focus on low fre-
quency noise to compare our results with the standard
Buttiker formalism. We will consider ballistic elec-
tronic transport in a one-dimensional tunneling bar-
rier. Our example, schematically described in Fig. 1,
consists in two highly doped layers of AsGa separated
by a layer of Al;AsGa,_, that introduces a 0.3 eV
potential barrier height. We assume that the applied
bias, V, falls only in the barrier region without volt-
age fluctuations in the contacts. The two AsGa lay-
ers are considered large enough to be characterized
as perfect reservoirs with the Fermi-Dirac distribution
Sfrr at 300 K with u; = pp+¢q - V. We consider
injection from both reservoirs, left and right, but from
a unique energy. In this regard, we define two wave
packets with the same central energy, £ = 0.15 eV,
but different initial central positions and opposite cen-
tral wave vectors. At time ¢ = 0, the initial probability
presence of each wave packets, |¥(x, 0)|* corresponds
to a Gaussian wave packet with a spatial dispersion
o = 130 A, which is much longer than the sample
length (L = 40 A). The wave packet evolution is cal-
culated by solving the Schrodinger equation along a
simulating box of 2048 A, that includes the sample
and the two reservoirs (a unique effective mass equal
to 0.067 times the free electron mass is used). In order to
compare our numerical results with Buttiker formalism
(i.e. with Eq. 2), the potential profile is considered to be
time independent without Poisson self-consistency (see
Fig. 1).

In Fig. 2, the simulated values of the current ob-
tained from a total simulation time of 50 ps and AT =
0.25 fs, are represented. The instantaneous current is
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Figure2. (a)Instantancous current for the device described in Fig. 1
with an applicd bias V = 0.075 Volts and jtg = pty = 0.2 eV. The
insct show two electron pulses.

computed from Eq. 3 and shows positive and negative
one-electron pulses associated to left and right injec-
tion (see inset of Fig. 2). Each pulse corresponds to an
electron that spends a time L /v, to traverse the bar-
rier. The velocity of electrons is not exactly constant
mainly because of the applied potential that provides
electrons with a higher velocity near the right contact.
Following the standard procedure (Varani et al. 1994),
the one-side spectral noise power of the current fluctu-
ations, S(w), can be computed from /(). In Fig. 3 we
see that S(w) has a constant value for low frequencies
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Figure 3. The one-side noise spectral power density S,(‘u') for
sample of Fig. 1 for V = 0.15 Volts and jtg = ;. = 0.2 eV.




and starts to decrease at a frequency associated to the
electron transit time across the sample (in our case the
transit time is 20 f's and the cut-off frequency 50 THz).
In order to test the validity of our approach, we com-
pare our results with those obtained from the Buttiker
formalism. The comparison is carried out in terms of
the Fano factor, F, defined by S;(0) = F -2.¢q - L
The analytical results are computed from Egs. (1) and
(2) considering a mono-energetic system where T is
defined as the average transmission coefficient of the
wave packets (Leavens and Aers 1993). The numer-
ical results are computed by repeating the results of
Fig. 3 for different applied bias. In Fig. 4(a) we have
plotted the transmission coefficient and the left/right
occupation functions f; /fx for the different applied
bias. Since the applied bias lowers the effective barrier,
T grows with V. On the other hand, for high voltages
fr is so low that only injection from the left reser-
voir is representative. In Fig. 4(b), we have compared
the Fano factor between our approach (squares) and
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Figure 4. Noise characteristics as a function of the applied bias V:
(a) The transmission coefficient T and occupation functions f7,/r
(b) the Fano factor F computed within our model (squares) and within
Biittiker formalism (circles).
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Buttiker formalism (circles). The excellent coincidence
for the Fano factor shows the viability of using Bohm
trajectories in a MC scheme for studying noise char-
acteristics in phase-coherent mesoscopic devices. For
low bias, the transmittance through the barrier is so low,
that the electrons follow a Poisson distribution. On the
other hand, as we have said, for high voltages only the
injection form the left reservoir must be considered,
but since the transmission coefficient of the barrier is
moderately high, shot noise following a binomial par-
tition process appears. Hence, the expected Fano factor
approximates F' = 1 — f; - T. Itis interesting to notice
that, as we see in Fig. 4, for fg close to f; the Fano
factor can be greater than 1 (this situations means a
very low current). The equivalence between both ap-
proaches for the low frequency limit is not surprising
since, as we have seen in the introduction, S(0) can be
deduced just with probability argument for the partition
noise of the barrier and the injection noise (Landauer
1989, Irmy 1997).

5. Conclusions

In conclusion, we have developed a MC simulator for
phase-coherent mesoscopic devices by means of Bohm
trajectories associated to time dependent wave packets
to describe the electron path. Our approach is based
on two fundamental characteristics of the Bohm’s ap-
proach: the average QM results (such as average cur-
rent or transmission coefficient) are perfectly repro-
duced in terms of Bohm trajectories; and the discrete
nature of electrons is explicitly considered in Bohm’s
formulation (allowing noise computation using clas-
sical techniques). In this regard, this work follows the
path opened by Martin and Landauer (1992), Landauer
(1989) who deduced Buttiker formalism within a sim-
ple wave packet framework. The main potentialities of
our approach are related with its capability to include
a Poisson solver to obtain self-consistent potential pro-
files and noise spectra at high frequencies. These con-
ditions are not easily accounted for in present phase-
coherent noise theories and drastically modify noise
characteristics.
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Monte-Carlo Simulation of Clocked and Non-Clocked QCA Architectures

L. BONCI, M. GATTOBIGIO, G. IANNACCONE AND M. MACUCCI
Dipartimento di Ingegneria dell’ Informazione, Universita degli studi di Pisa, Via Diotisalvi 2, I-56126 Pisa, Italy

Abstract. We present a Monte Carlo simulation of two implementations of Quantum Cellular Automaton (QCA)
circuits: one based on simple ground state relaxation and the other on the clocked cell scheme that has recently
been proposed by Téth and Lent. We focus on the time-dependent behavior of two basic circuits, a binary wire and
a majority voting gate, and assess their maximum operating speed and temperature requirements for different sets

of fabrication parameters.

Keywords: QCA circuits, nanoelectronics ,Coulomb Blockade

1. Introduction

Quantum Cellular Automata (QCA) represent an origi-
nal approach, first proposed by Lent ez al. (1993), to the
implementation of logic circuits, exploiting the bistable
properties of a cell made up of 4 quantum dots or nodes
and containing 2 excess electrons. The initial proposal
of QCA circuits was based on two-dimensional arrays
of such cells and on letting the system relax down to the
ground state, so that the result of the computation was
obtained as the state of a group of cells located along the
boundary of the array. However, if ground state compu-
tation is performed with relatively large QCA arrays,
the evolution of the system can get temporarily stuck
in a metastable state and reach the ground state (and
thus the correct logical output) only after an extremely
long time (Landauer 1994). To avoid this problem, an
adiabatic logic scheme has been proposed, in which
the evolution of the system is driven by a multi-phase
clock (Lent and Tougaw 1997). This scheme involves
modulation of the interdot barriers, in order to keep
each cell always in its instantaneous ground state and
to lock it, i.e. freeze its state, before it is used to drive
a neighboring cell.

An interesting approach to the modulation of the
inter-dot barriers in a metal-dot QCA implementation
has been proposed in Téth and Lent (1999): it consists
in implementing the barrier with two additional dots,
whose potential can be varied by means of an external
voltage.

Metastable states are no longer a problem for adia-
batic logic, but we need to consider that signal propa-
gation is limited by the switching time of single cells.
In particular, proper operation can be obtained only
if tunneling transition rates are large enough to allow
electrons to actually tunnel into the expected dot dur-
ing the active state of the cell. In Bonci, Iannaccone
and Macucci (2001) we evaluated the switching time
by computing the electron tunneling rates as a function
of material parameters and cell geometry. Here we use
such results to test the operation of circuits made up of
non-clocked and clocked cells via a Monte Carlo sim-
ulation and we compare the achievable performance.

2, QCA Circuit Simulator

The numerical simulation has been performed by
means of a Monte Carlo code that we have developed,
based on the orthodox Coulomb Blockade theory and
specifically suited to handle circuits containing clocked
single-electron devices (Macucci, Gattobigio and
Tannaccone to appear). Our software allows simulat-
ing circuits with voltage sources that have an arbitrary
piecewise linear time dependence.

In addition, since cotunneling plays an important
role in some regimes of operation of QCA circuits,
it has been taken into consideration, although approxi-
mately, on the basis of the formulation in Fonseca et al.
(1995).
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Figure 1. Chain made up of six clocked cells.

We study two different circuits: a linear chain made
up of six QCA cells and a majority voting gate made
up of eight QCA cells, both of them in the clocked and
non-clocked version. The clocked chain, relaying on
relaxation down to the ground state, is shown in Fig. 1.
The non-clocked versions are much simpler: each cell
is made up of a square whose sides are represented by
four tunneling capacitors (Co for the horizontal sides
and Cy for the vertical sides), neighboring cells are
connected via ideal capacitors C and the state of the
first cell is enforced via C* capacitors connected to the
two outer nodes of the input cells (Bonci, lannaccone
and Macucci to be published).

In the two cases we use a different simulation strat-
egy, due to the different principle of operation. In the
non-clocked case we are strictly following the ground-
state calculation paradigm: to obtain the logical output
of the circuit we need to wait until the systern has re-
laxed to the ground state. By repeating several times
the simulation, we are able to verify circuit reliabil-
ity (i.e. whether or not the correct logical output is
achieved after a given time) and to compute the aver-
age time the circuit needs to reach the correct logical
output.

Table 1.

In the clocked case the switching time is imposed
from the outside. In order to verify circuit operation
we follow the time evolution of each single cell and
verify whether it is in the expected logical state during
the proper time intervals. We do not need to perform
an ensemble average in this case, because statistics are
obtained over a large enough number of clock cycles.

We have performed calculations for two sets of sys-
tem parameters. The first set has been derived from the
recent experiments which have successfully demon-
strated operation of simple QCA gates (Orlov et al.
1999, Amlani et al. 1999, 2000). The second one was
obtained from our previous work, in which we dis-
cussed the limits of clocked QCA devices (Bonci,
Iannaccone and Macucci 2001) from a theoretical
point of view. The experimental and the theoretical
choices of parameters are shown in the Tables 1 and 2,
where, for the clocked case, C¢ represents the coupling
capacitor between neighboring cells. The theoretical
set represents a compromise between miniaturization,
efficiency and technical feasibility, at least in perspec-
tive, since fabrication of the corresponding extremely
small and precise structures is not yet achievable with
current technology.

Circuit paramcters for the non-clocked case.

C, C, C,. c* Ry
Experimental parameters (Orlov et al. 1999, 400 aF 288 aF 88 aF 1aF 200 kQ
Amlani er al. 1999, 2000, Orlov er al. 2000)
Theoretical parameters (Bonci. lannaccone 53aF  53aF  2aF 0.1aF 200k

and Macucci 2001)




Table 2.  Circuit parameters for the clocked case.
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c

Performed experiments (Orlov et al. 1999,
Amlani et al. 1999, 2000, Orlov et al. 2000)

Theoretical prediction (Bonci, lannaccone 53 aF

and Macucci 2001)

C C2 Cs Cs Ce Rr
4202F 300aF 25aF 80aF  200aF S0aF 200 kQ
12aF 12aF 3.57aF 148aF 1aF 200kQ

3. Binary Wire Simulations

We start by simulating a binary wire based on the ex-
perimental parameters. In the non-clocked case the re-
laxation time to the ground state is a statistical quantity
whose average value (t,.;) is shown in Fig. 2, as a func-
tion of temperature. We notice that (t,.;) decreases as
temperature increases. This is due to the increased tun-
neling rate, which helps driving the evolution of the
system out of metastable states, but this phenomenon
is limited by the fact that beyond a certain temperature
fluctuations prevents the binary wire from reaching a
stable ground state at all.

Knowledge of the average quantity (t,.;) is not suffi-
cient to assess the speed of the circuit. We need to take
into consideration the distribution of relaxation times,
which is quite broad and exhibits long tails: this implies
that (z,.) is actually too conservative an estimate. We
notice also that, as temperature decreases, the impor-
tance of cotunneling events increases.

The situation is similar if we choose the other pa-
rameter set, which we have defined as “theoretical”.
The overall behavior is comparable with the previous
parameter choice, with the only significant difference
consisting in the possibility to achieve a higher operat-
ing temperature.

we—_—
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Figure 2. Average relaxation time (1) as a function of tempera-
ture. In the dashed region the operation is completely disrupted due
to thermal fluctuations. The values of cell parameters are shown in
the first row of Table 1.

Let us now consider the clocked architecture of
Fig. 1: by means of an external clock signal, we en-
force a well defined switching time, which is not de-
pendent on the relaxation to the ground state any more.
In this case we need to assess whether the system is
fast enough to follow the clock and thereby to provide
the correct final output. The error probability depends
both on the clock rate and on the operating tempera-
ture. With too fast a clock the cell is not able to switch
properly, and the same may happen for too large values
of the temperature.

We performed runs over several (250) clock cycles
and we checked the logical state of the second and
of the sixth (last) cell of the chain. In this way, we
were able to compute the percentage of correct output
P., over the total number of clock cycles. With this
prescription, we obtained the result shown in Fig. 3.
The deterioration of the circuit evolution with increas-
ing clock frequency is clear; moreover P, decreases as
we move along the chain, due to the fact that the error
probability increases as the number of cells that have
processed the information increases.

We repeated the simulation with the theoretical
parameter set obtaining the results shown in Fig. 4.
Similar comments apply to these results, although

0.01 0.1 1 T (s) 10
Figure 3. Probability of correct operation (P, ) for the second and
the last cell in the clocked chain of Fig. 1 as a function of the clock
period. The solid curve refers to the last cell while the dashed one
refers to the second cell. The values of cell parameters are shown in
the first row of Table 2.
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Figure 4. Probability of correct operation (P,,,) for the second and
the last cell in the clocked chain of Fig. I as a function of clock
period. The solid curve refers to the last cell while the dashed one
refers to the second cell. The values of cell parameters are shown in
the second row of Table 2.

the temperature range is different (we moved up two
orders of magnitude). In this case we can find a region
of correct operation extending down to a clock period
of 5 x 107 s and to a temperature of 2.5 K. This could
be an acceptable operating condition, at least for some
niche application. This result is worth of discussion. A
rough dimensional analysis, based on the RyC ™! time
constant, would give a tipical switching time of 102 s,
much shorter than the one obtained by means of numer-
ical simulation. There are indeed several phenomena
that degrade circuit operation. The actual probability
for an electron located in the central dot of a cell to
switch to a side dot can be obtained by considering
the difference between the voltage drops on the upper
and lower tunneling junctions. With our choice of pa-
rameters the voltage difference due to another electron
located in the other half of the same cell is 3 mV and
corresponds to a current of 2.5 x 10'! electrons per
second, i.e., to a switching time 4 times larger than the
previous estimate. This is true for intracell switching,
but we need to consider switching due to the influence
of a neighbor cell. The voltage unbalance in this case
is typically 5 times smaller and thus the switching time
has to be increased by the same factor. A further mul-
tiplying factor comes out from the clock time pattern.
In order to inhibit unwanted transitions, the locked and
null state need to have a energy difference with respect
to the active state much larger than K37, therefore the
active region represents only one tenth of the rising
segment of the control voltage. Moreover, this segment
represents 1/4th of the clock pattern and thus the active
region is restricted to a time interval which is 40 times
smaller than the clock period. Finally, we need to
consider that a clock rate in a logical circuit can be

L L L Il
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Figure 5. Probability of correct operation (P,,) for the output cell
in a clocked majority voting gate as a function of clock period.
We studied two different temperatures: 7 = | K (dashed line) and
T =2.5 K (solid line). The values of cell parameters are shown in
the second row of Table 2.

considered safe if it is at least ten times smaller than
the maximum theoretical rate.

The overall multiplying factor stemming from these
considerations approaches 10%, bringing us very close
to the numerical results.

4. Simulation of a Majority Voting Gate

In the previous section we studied a simple QCA wire,
the basic element of QCA logic. A further step consists
in considering a circuit that performs a slightly more
complex logical operation, such as a majority voting
gate. This circuit is expected to provide at the output
the logical state which is present at the majority of the
inputs. We start with the simulation of a non-clocked
circuit, computing {t,,;) as the average over several re-
alizations. We find results similar to those for the binary
wire, with an increase of the average relaxation time,
as should be expected as a consequence of the greater
circuit complexity.

Finally, we study a clocked majority voting gate and
report the results in Fig. 5, for the theoretical choice
of parameters. If we compare Fig. 5 with Fig. 4 we
notice, as in the case of the non-clocked version, an
overall increased error probability, which further limits
the maximum operating speed.

5. Conclusions

We have investigated the time-dependent behavior
of clocked and non-clocked QCA circuits, obtaining
results for the maximum operating speed and operat-
ing temperature for two choices of parameters. In the




non-clocked circuits, relaxation to the ground state is
a statistical process with a broad distribution charac-
terized by long tails. Even with the theoretical set of
parameters, which corresponds to a conceivable, al-
though not yet feasible, implementation of QCA cells,
the maximum speed that can be achieved is unsatis-
factory, on the one side because of the action of inter-
mediate metastable states into which the evolution of
the system gets trapped at low temperature and, on the
other side, because of the disrupting action of thermal
fluctuations at higher temperatures.

The clocked architecture allows to overcome the
problem of metastable states and to achieve much faster
operation, with improved control of data flow. We have
shown that, with a very optimistic choice of parameters,
it is possible to achieve clock frequencies and operat-
ing temperatures that can be acceptable for some niche
application in which the other advantages of QCA sys-
tems may play a role. The layout complexity is, how-
ever, very significantly increased moving to the clocked
architecture, due mainly to the need for clock distribu-
tion lines, which makes practical implementation very
challenging.
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Abstract. We present results of both Gaussian wave-packet tunneling though a single barrier structure and RTD
operation achieved from a particle-based Ensemble Monte Carlo (EMC) simulation that is based on the Wigner
distribution function (WDF). Methods of including the Wigner potential into the EMC, to incorporate naturally
quantum phenomena, via a particle property we call the affinity are discussed. Results showing tunneling and

correlation build-up in both cases are presented.

Keywords: Wigner function, Monte Carlo, resonant tunneling diode

Current device technologies are already at, or quickly
approaching, the scales whereby quantum effects due
to the strong confinement of carriers and direct source-
drain tunneling will begin to dominate (Kawaura et al.
1997, Ferry 1985). Ensemble Monte Carlo (EMC) has
always been the most vigorous and trusted method for
device simulation as it has again and again proven to
be reliable as well as predictive. However, EMC relies
on the particle nature of the electron, but quantum me-
chanical phenomena arise from the wave-like nature of
the electron. In order to resolve quantum mechanical
effects, the wave-like nature of the electron needs to
be incorporated into the EMC. To do this, we use the
obvious similarities between the Boltzman transport
equation and the Wigner function transport equation
(Ferry and Grubin 1995, Wigner 1932). While not fre-
quently used, the Wigner distribution function has had
success in modeling resonant tunneling diodes (RTD)
(Kluksdahl et al. 1989, Ravaioli et al. 1985, Frensley
1987). To incorporate the WDF, and most importantly,
the Wigner potential (which is anon-local potential and
is responsible for the quantum effects) into the EMC,
we assign an additional property to the electrons that

*Work supported by the office of Naval Research.
'To whom correspondence should be addressed.

we term the affinity. The affinity can have any value
whose magnitude less then 1, which allows us to eas-
ily incorporate any fractional or negative values which
the WDF may acquire. By maintaining the essence of
the EMC, we allow the particle nature of the EMC
to survive and we can then study quantum mechani-
cal effects in the simulation. Other methods have been
developed to incorporate the WDF into an EMC
(Jacoboni et al. 2001, Garcia-Garcia et al. 1998). How-
ever, our method depends on calculating the Wigner
potential exactly and updating the electron (particle)
distribution within the standard EMC to account for
this non-local correction to the density in the system.
Although other, non-WDF methods to include quan-
tum effects have been developed, such as the effective
potential (Shifren, Akis and Ferry 2000, Akis et al.
2001), these methods account for certain phenomena
associated with the wave-like nature of the electron but
cannot account for tunneling, correlation or interfer-
ence effects (Ferry et al.).

As mentioned, we assign the particles in the EMC a
new property that we call the affinity. The affinity is a
value, whose magnitude is less then 1, that the parti-
cles carry which represents the particle’s contribution
to the entire electron distribution. With this, we are
able to construct the Wigner function from the particle
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distribution using
fleky =) 8 —x) 8k — k) AW, (1)

where A(i) is the particle affinity and the delta func-
tions represent the existence of a classical particle. This
distribution function can then be used to calculate the
non-local Wigner potential (NLP), given as

df(-\‘qut) 1 ' 7 7
- = kWﬂ‘ X, { k]
™ Zﬂhfd S EDf k4K,
(2a)
where

Wix, k') = fd.x’sin(k'.\")

fers) () o

and where V is the (barrier) potential in the system.
This term is added to the EMC transport equation and
is used to update the particle distribution. The NLP
term incorporates all quantum mechanical effects into
the system. Apart from the NLP term, the remainder
of the simulation is a standard EMC simulation, where
the ensemble value is redefined as

_ i ADQO)
(@"TZET’

where A(/) is again the particle affinity and Q(i) is
the specific quantity of the system of interest (such as
velocity orenergy). As can be seen, if A(/)is set to one,
the regular definition of the ensemble is regained. Also,
it is important to note that all particles in the system
are treated normally as they would be in a standard
EMC. That is, all particles in the system, regardless of
affinity are drifted using the standard drift term, and all
particles will be scattered, although scattering has not
yet been added to the simulation. A full description of
the method can be found in Shifren and Ferry (2001, in
press). The method has been used to study a Gaussian
wave-packet incident on a single potential barrier and
to study a resonant tunneling diode (RTD).

Initially we were interested in the study of a Gaussian
wave-packet incident on a single potential barrier, as
the problem is well understood. Due to the fact that
the problem is strictly quantum mechanical (that is,
in the absence of any dissipation, the barrier is the
only source of perturbation in the system), it gives a

3

clear indication of the effectiveness of including tun-
neling, correlation and interference into a EMC us-
ing our WDF approach. To fully test the effectiveness
of the technique, the solutions to this problem were
tested against solutions of a direct WDF solution and
that of solving the Schrodinger equation. The results
where not only evaluated by comparing resulting den-
sities and transmission coefficients, but also by the use
of Bohm trajectories. The results confirmed that our
quantum EMC not only correctly calculated tunnel-
ing coefficients but also produced the correct Bohm
trajectories (comparable to the other two fully quan-
tum mechanical approaches). These results can be seen
in Shifren and Ferry (2001). However it is interest-
ing to view the actual phase-space distributions of the
Gaussian as it interacts with the barrier to fully iden-
tify not only the interference and tunneling, but also
the correlation that is naturally incorporated into the
system. Figure 1 shows the Gaussian during its peak
interaction with the barrier, that is, before the reflected
and transmitted pulse has fully formed. It is important
to note the large build up of “negative” density in the
Wigner distribution before the barrier. This large nega-
tive region is thought to be a region of large uncertainty
where no electrons may exist, and is a purely quan-
tum mechanical phenomenon seen in our particle based
EMC. Figure 2 is the same Gaussian however further
along in the process when the transmitted and reflected
wave-packets have fully formed. Here, the large corre-
lation still exists between the two waves. As the waves
move further apart the correlation between them will
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Figure 1. Gaussian wave-packet as it initially begins to interact
with a single potential barrier which is 3 nm wide and 0.3 eV high.
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Figure 2. Gaussian wave-packet after it has interact with a sin-
gle potential barrier, which is 3 nm wide and 0.3 eV high, and the
transmitted and reflected wave-packets have been fully formed. The
correlations between these two wave-packets increases as they move
further apart.

continue to grow. The correlation allows the two waves
to recombine and under time reversibility in the sys-
tem. However, any form of dissipation in the system
will destroy this correlation. It is clearly evident that
the system correctly accounts for quantum effects,
and more realistic devices and situations may also be
studied.

The first device we have studied is the RTD, made
up of GaAs bulk regions that are doped 1 x 10'® cm™3
with 3 nm AlGaAs intrinsic barrier regions and a 5 nm
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Figure3. I-V curveforanRTD generated using the Wigner function
quantum Monte Carlo.
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GaAs intrinsic well region. The simulations were run
unbiased for a few pico-seconds until steady-state was
reached and this steady-state distribution was used as
the initial state to compute I-V characteristics for the
device. The simulation was run in incremental biases
until steady-state was reached from 0 V to 0.5 V. The
resulting I-V is seen in Fig. 3. Two things are evident.
From Fig. 3 the expected RTD I-V characteristics are
seen. The NDR is seen due to the resonant level which
exists in the device being swept through as a bias is ap-
plied. If we consider Fig. 4, which is the phase-space
distribution function located at the peak bias point of

0.7+
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Figure4. Phase-space distribution from the Wigner function quan-
tum Monte Carlo generated at the peak bias point seen in Fig. 3.
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Figure 5. Phase-space distribution from the Wigner function quan-
tum Monte Carlo generated at the valley bias point seen in Fig. 3.
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Figure 6. Phase-space distribution from the Wigner function quan-
tum Monte Carlo generated at the maximum bias point seen in Fig. 3.

the I-V curve in Fig. 3, we notice that there is a large
negative correlation that exists. As the device is reso-
nant at the peak, it experiences an increase in tunneling
through the barrier region which in turn generates large
correlation between the transmitted and reflected den-
sities. If the bias is increased to the valley of the I-V
curve, the distribution of Fig. 5 is obtained. As can be
seen, there is no longer a large amount of negative cor-
relation, although it does still exist. The device is no
longer in resonance and returns to the “normal” tun-
neling regime. Finally, Fig. 6 shows the distribution
at the maximum bias point on the I-V curve. What is
important to note here is that there is little if no corre-
lation. The device is biased such that the 0.5 V applied
is larger then the 0.3 eV barriers. As may be inferrcd
from the figure the density flows over the barriers and
is no longer in the tunneling regime.

By developing this new method of EMC, we hope
to make it possible to include quantum mechanical

effects, namely tunneling, interference and correlation
into an EMC simulation of more realistic devicces, in-
cluding full dissipation via non-local phonon scattering
and self-consistency. EMC has long been the method
of choice for device simulation due to its reliability and
predictive capabilities. By correctly including quantum
mechanical effects, this new development should lead
to new approaches in the simulation and understanding
of ultra-small devices.
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Abstract. We discuss the use of the effective potential to incorporate quantum effects in device models. While
threshold shifts and charge set-back are handled well, tunneling is not well handled by this approach, or by any

other local potential approach.

Keywords: device modeling, transport, quantization, tunneling

1. Introduction

Quantum effects are known to occur in the channel of
MOSFETs, where the confinement is in the direction
normal to the oxide interface. For quite some time, there
has been a desire to categorize this quantization and
determine the role it plays in semiconductor devices.
Often, this is found by solving the Schrodinger and
Poisson equations to find the actual position of the
charge and the changes in mobility and capacitance
(Vasileska et al. 1997). More recently, it has become of
interest to include a quantum potential as a correc-
tion to the solutions of the Poisson equation in self-
consistent simulations (Zhou and Ferry 1992). This
latter approach has come to be called the “density-
gradient” approach, since the quantum potential is de-
fined in terms of the second derivative of the square root
of local density. Such an approach is highly sensitive to
noise in the local carrier density, and the methodology
is highly suspect in cases of strong quantization (Ferry
and Barker 1998).

We have developed a different approach, which in-
troduces an effective potential. Here, the natural non-
zero size of an electron wave packet in the quantized
system, is used to introduce a smoothing of the lo-
cal potential (found from Poisson’s equation) (Ferry
2001). This approach naturally incorporates the quan-
tum potentials, which are approximations to the effec-
tive potential. The introduction of an effective potential
follows two trends that have been prominent in statis-
tical physics during most of the twentieth century and

into the current century. These are the non-zero size
of an electron wave packet and the use of a modified
potential to describe quantum effects within classical
statistical mechanics. Here, we review these two ap-
proaches and show how they combine to give a form
for the effective potential. We then show how the quan-
tum potential derives from the effective potential as an
approximation, and finally provide results from sim-
ulations to compare these approaches. We also esti-
mate the problems in incorporating tunneling via this
approach.

2. The Effective Potential

In order to describe the packet in real space, one must
account for the contributions to the wave packet from
all occupied plane wave states (Ferry 1998). That is,
the states that exist in momentum space are the Fourier
components of the real-space wave packet. If we want
to estimate the size of this wave packet, we must uti-
lize all Fourier components, not just a select few. (This
approach is familiar from the definition of Wannier
functions and their use to evaluate the size of a bound
electron orbit near an impurity.) This is not the first at-
tempt to define the nature of the quantum wave packet
corresponding to a (semi-)classical electron. Indeed,
the study of the classical-quantum correspondence has
really intensified over the past few decades, due in no
small part to the rich nature of chaos in classical sys-
tems and the search for the quantum analog of this
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chaos. This has led to a number of studies of the mani-
festation of classical phase-space structure (Skodje
et al. 1989). These have shown that meaningful sharp
structure can exist in quantum phase-space representa-
tions, and these can profitably be used to explain (or
to interpret) quantum dynamics; e.g. to study the quan-
tum effects that arise in otherwise classical simulations
for semiconductor devices. The use of a Gaussian wave
packet as a representation of the classical particle is the
basis of the well-known coherent-state representation.
In the latter approach, the phase-space representation
of the quantum density localized at point x is given by
Glauber (1963), Klauder (1963, 1964) and Klauder and
Sudarshan (1968)

o x—q’ p-(x—q
xip.q) = Wexp[‘ 22 VT ]
(1)

As in most cases, the problem is to find the value of
the spatial spread of the wave packet, which is defined
by the parameter o, which is related to the width of the
wave packet.

At the same time, there has been a growing inter-
est in methods which allow the reduction of quantum
calculations to classical ones, through the introduction
of a suitable effective potential. The earliest known ap-
proach was provided by Wigner (1932), where he intro-
duced an expansion of the classical potential in powers
of i and B = 1/kgT, which led to

o 8%V N
8mkpT 0x?

Veg(x) ~ V(x) + 2)
This series led to the well-known Wigner-Kirkwood
expansion of the potential that is often used in solutions
for the Wigner distribution function. However, the se-
ries has convergence problems below the Debye tem-
perature and in cases with sharp potentials, such as the
S$i-Si0; interface. Feynman and Hibbs (1965) found a
similar result, but with the factor 8 replaced by 24. He
also introduced a different approach, in which an ef-
fective potential is introduced through the free energy.
For the case of a free particle, he shows that the exact
variational minimization leads to a Gaussian weighting
of the potential around the classical path, and this auto-
matically includes quanturn effects into the trajectory.
Indeed, Feynman found that the smoothing parameter
o should have the value
. W%

= 3 _— (3)
12mkpgT 24w

o

where Ap is the thermal de Broglie wavelength. The
connection of this to our wave packet lies in the fact that
the total Hamiltonian for a spatially varying potential
involves weighting the potential at x by the density at
this position. Then, the Gaussian spread of the density
is easily transformed into a Gaussian weighting of the
effective potential (Ferry 2001).

Many people have extended the Feynman approach
to the case of bound particles (Giachetti and Tognetti
1985, Feyman and Kleinert 1986, Cao and Berne 1990,
Voth 1991, Cuccoli et al. 1992) and particles at inter-
faces (Kriman and Ferry 1989). The effective poten-
tial approach has been recently reviewed by Cuccoli
et al. (1995). These approaches use the fact that the
most-likely trajectory in the path integral no longer
follows the classical path when the electron is bound
inside a potential well. The introduction of the effec-
tive potential and its effective Hamiltonian is closely
connected to the return to a phase-space description,
as discussed above. This can be done at present only
for Hamiltonians containing a kinetic energy quadratic
in the momenta and a coordinate-only dependence in
the potential energy. That is, it is clear that some mod-
ifications will have to be made when non-parabolic
energy bands, or a magnetic field, are present. How-
ever, the Gaussian approximation is well established
as the method for incorporating the purely quantum
fluctuations around the resulting path. The key new in-
gredient for bound states (such as in the potential well
at the interface of a MOSFET) is the need to determine
variationally the dominant path and hence the “cor-
rect” value for the parameter o. For the case in which
the bound states are well defined in the potential, both
Feynman and Kleinert (1986} and Cuccoli et al. (1992)

find
h? h
o2 = 1 cot (f)_i’ @
4mkgT f f?
where
ha)()
= 5
f TR )

and hiwy is the spacing of the subbands. If we take the
high-temperature limit, then we can expand for small
f,and

2 h2
12mkpT

(6)

to leading order, which agrees with (3). In Si, this gives
a value of 0.52 nm for the value to be used in the




direction normal to the interface (at room temperature).
A different mass would be used for transport along the
channel, and this gives a value of 1.14 nm.

It is important to note that the density-gradient po-
tential is easily derived as a low-order expansion to the
actual effective potential, although there will be dif-
ferences in the numerical factors among different ap-
proaches to this quantity (Ferry 2001). We can expand
the effective potential when it is a slowly varying func-
tion of position. That is, we take the effective potential
from the defining lines in (1) and use a Taylor series
expansion as

W)=
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The first term allows us to bring the potential outside
the integral, while the second term vanishes due to the
symmetry of the Gaussian. The third term becomes the
leading correction term, which gives us

2

v
Vejf(x)=V(X)+0'2—a?+...' (8)

We note that this result gives a value for the smoothing
parameter, if we compare with the results of Wigner
(1932), of

oM %
8mkpT 167°
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and a factor of 1.5 smaller for the Feynman result.

3. The Good

We may easily incorporate the effective potential into
MOSFET simulations, as the Gaussian weighting is
simply a multi-dimensional smoothing of the potential,
which is found from Poisson’s equation. A simulation,
in which the transport is handled by an ensemble Monte
Carlo approach, quite generally finds that the threshold
voltage is shifted and the carrier density is moved away
from the interface. Both effects are a result of quantiza-
tion within the channel (Ferry et al. 2000). Treatment
of an SOI device is discussed in a separate paper in this
proceedings (Ramey and Ferry 2002), as is the role of
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surface roughness scattering in the transient response of
a MOSFET (Formicone et al. 2002). With the proper
evaluation of the smoothing parameter o, agreement
with both the quantization energy and the amount of
charge set-back from the interface are found to agree
well with a full Poisson-Schrodinger simulation (Ferry
2001).

The above results show us that the effective poten-
tial is a very good approach in which to incorporate
the quantum effects into device simulation. But, how
does this approach compare with the density gradient
approach? In order to answer this question, we have
collaborated with the device simulation group at the
University of Glasgow, headed by Prof. Asen Asenov,
to simulate a simple MOSFET. Recently, the results of
this collaboration were presented at SISPAD (Watling
et al. in press). In this work, the quantum influence
on threshold voltage, carrier density profile and Ip-
Vi current characteristics were investigated within a
modified drift diffusion framework. Results from the
new effective potential algorithm were compared with
those from the well-established density gradient ap-
proach. Here, it was found that the density-gradient
approach agreed better with the Poisson-Schrodinger
simulations, and that the effective potential pushed the
charge too deep into the channel. However, the value of
o used was 0.7 nm, which is 40% too large and prob-
ably accounts for these results. One must be careful
here, as the exact values of the smoothing parameters
used will dramatically effect the position and value of
the peak in the density, as will the grid spacing used.

We have also shown that by using an appropriate
effective potential, obtained by convolving the self-
consistent potential with a Gaussian, we can replicate
certain quantum behavior in a quantum point contact
by using classical physics (Shifren ez al. 2000). Signifi-
cantly, in contrast to the Bohm potential method, one is
not required to actually solve Schrédinger’s equation in
all situations using this method. While densities enter-
ing into the Poisson equation were obtained quantum
mechanically in this study (necessitated by the strong
quantization in this particular quasi-one-dimensional
system), one can obtain good results simply by con-
volving the potentials obtained from a particle-based
Poisson solver.

4. The Bad

Various forms for the quantum (e.g., the density-
gradient) potential are really approximations to the full
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effective potential. As a result, use of the latter is to
be preferred, since the integral smoothing will reduce
fluctuations while the derivative forms amplify fluc-
tuations. Moreover, the effective potential carries the
entire quantization effects, which arise from the non-
zero size of the electron wave packet. This means that
the effective potential is already of a nature to be used
for mixed wave functions, whereas the density gradient
approaches have severe problems in this case, particu-
larly near nodal points of the composite wave function
(Ferry and Barker 1998). The problem, however, is in
deciding upon the size of the smoothing parameter .
As mentioned above, a value near 0.5 nm is believed to
be correct based upon an evaluation of the bound energy
levels in the quantum well formed at the Si-SiO; inter-
face. The value for motion along the interface, however,
is not so well determined.

Feynman found that the smoothing parameter o
should have the value given by (3) for free particles. On
the other hand, a different result can be found by taking
the approach of Wannier functions. In the ideal case,
the Wannier function is an atomically-sharp, localized
wave packet formed by a sum over all Bloch functions
within a (full) band. However, if the band is only par-
tially full, as is the case in semiconductors, then the sum
should only run over the occupied states. Assuming that
these are given by a Maxwell-Boltzmann distribution,
we are led to a value of the smoothing parameter of
Ferry (2001)

2 _ 3%

T

(10)
which gives a value for o of 16.1 nm, which is some
14 times larger than the 1.14 nm obtained from (3).
The result from Wigner (1932) gives a value of 1.7 nm,
which lies in between these two limits. Thus, differ-
ent theoretical approaches give a rather large degree of
uncertainty in this value.

The importance of the smoothing parameter, for
transport along the channel, lies in its effect on the
source-channel barrier, which governs transport in the
MOSFET. Over-smoothing of this barrier reduces its
effective height too much, which results in an overly
large drain-induced barrier lowering (DIBL) and af-
fects the source-drain tunneling. While we can gain a
quite good estimate of the correct value for the normal
direction from coupled Poisson-Schrodinger solutions,
this is not the case for the value along the channel. Here,
there is usually insufficient information on the details
of the source, channel, and extension dopings that are

present in actual devices to use either measurements
or simulations of DIBL to unfold the best value for o.
Source-drain tunneling is also not a good test, for there
is considerable doubt over the ability of effective po-
tentials to correctly simulate tunneling processes (dis-
cussed below). However, the use of an effective poten-
tial greatly affects the resulting DIBL, particularly in
sub-threshold situations, that is found in simulations.
As a consequence, it is important to get better data
on actual fabricated ultrasmall devices, particularly the
actual values of the various impurity concentrations,
sidewall spacers, and oxide thicknesses (including the
transitional SiO, regions).

An alternative approach, which may shed light on the
proper values to take for the smoothing parameter, may
be found from studies of mesoscopic structures fabri-
cated in Si. For example, recent studies of St quantum
dots could be used to study carefully the potential bar-
riers, and the transmission through these barriers, as a
means of evaluating the smoothing introduced by the
effective potential. While quantum point contacts intro-
duce lateral confinement potentials, it is the shape in
the longitudinal part of the saddle potential that affects
transport. We have shown that classical particles can
be induced to follow quantum behavior in such quan-
tum point contacts (Shifren et al. 2000), so the study
of these could shed light on the proper values to use
in MOSFET simulations. It is hoped that such studies
will appear in the not-too-distant future.

5. The Ugly—Tunneling

It is absolutely clear that a hydrodynamic approach to
the solution of quantum tunneling has given effective
results. This was first demonstrated by Dewdney and
Hiley (1982), when they solved the Schrédinger equa-
tion and used the quantum potential to determine the
trajectories flowing through the barrier (and those that
were reflected). This has been repeated even for studies
of quantum chemistry (Wyatt 1999). In general, these
studies use a Gaussian wave packet, which impinges
upon a barrier. However, it has also been shown that
the shape of the packet itself affects the tunneling coef-
ficient (Lopreore and Wyatt 1999), The trajectories that
make it “over” the barrier are first accelerated by the
quantum potential that exists at the initial time of the
simulation. Thus, a sharper packet will give more tun-
neling, but it also contains more high momentum states
that can actually go over the barrier. It is important to
remember here that these simulations actually solve the
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Figure 1. Bohm trajectories for a wave packet tunneling through
a barrier located between the two horizontal lines. Only trajectories
starting in the front of the wave packet (higher momentum states)
have sufficient momentum to traverse the barrier.

Schrodinger equation, with an ex post facto determi-
nation of the quantum potential, even when solved in a
density-velocity space. Such a solution for the result-
ing trajectories is shown in Fig. 1, and similar solutions
have been obtained with Wigner function simulations
(Shifren and Ferry 2001).

However, when we attempt to solve for a tunnel-
ing problem using only the density-gradient approach,
without solving the Schrédinger equation, we do not
get good results. One can consider just why this occurs.
While the density is continuous at the hetero-interface
between the semiconductor channel and the tunneling
barrier (continuity of the wave function), its derivative
is not necessarily continuous. In fact, the density must
decay quite rapidly due to the fact that this state lies
well below the barrier energy. This gives a sharp spike
arising from the second derivative of the density, so
that the quantum potential is composed of significant
discontinuities, and a smooth tunneling behavior is not
achieved. In fact, in our own simulations of this, we find
significant charge storage in the barrier, which is not ac-
counted for in any classical or semi-classical approach.
This charge storage is thought to be non-physical and
a result of the inapplicability of the density-gradient
approach to tunneling problems. The failure can be
traced to a deeper physical meaning, and that is the fact
that tunneling occurs in quantum mechanics through a
non-local effect of the barrier on the wave function.
This non-locality is easily seen when a phase-space
representation, such as the Wigner function, is used.
When we use the density-gradient potential, or even the
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effective potential, we are changing the problem to a
local one, which means that we should not see quantum
effects such as tunneling.

The failure in tunneling problems is also present with
the effective potential. We can study this to some ex-
tent by using a Gaussian wave packet and propagat-
ing it through the tunneling barrier using the Wigner
equation of motion. We use a barrier height of 0.3 eV
and thickness of 3 nm. However, instead of using the
full non-local potential terms, we replace these with a
smoothed local potential. There are two ways to ap-
proach this. In the first, we use a series of wave packets
with different spatial extents while keeping the smooth-
ing of the barrier at 0.5 nm. Then, for wave packets with
o = 0.5, 2,4, and 8 nm, the same tunneling coefficient
T = 0.08 is obtained. The only problem is that the tun-
neling coefficient expected for the mean momentum of
the wave packets is 0.15!

In the second approach, we smooth the barrier with
a Gaussian of the same width as the incoming wave
packet. These results are shown in Fig. 2, where we plot
the tunneling coefficient as a function of the energy cor-
responding to the mean momentum of the phase space
wave packet. Here, the tunneling coefficient varies from
0.02 to large values for packets whose energy varies
from 0.12 eV to >0.2 eV, respectively. Again, how-
ever, the computed tunneling coefficient for the mean
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Figure 2. The tunneling coefficient for a wave packet whose stan-
dard deviation is used for the smoothing Gaussian of the potential.
Here we plot the tunneling coefficient as a function of the energy cor-
responding to the mean momentum of the phase space wave packet.
The solid curve is that for a single plane wave of the same energy,
without any smoothing of the barrier. The width of the packet is a
parameter on the calculated curves.




64  Ferry

Distance (nm)

3 2 -1 0 1 2 3
Wave Vector (109 m")

Figure 3. A wave packet is interacting with the barrier (delincated
by the two dark lines). Note that, while most of the packet is reflected.
the transmitting part is actually accelerated during passage through
the barrier region. This is thought to be unphysical, and is a result of
numerical diffusion in momentum space.

momentum of the packets is shown by the solid curve,
and there is no agreement in the results. In essence,
the “tunneling coefficient” is largely a result of signifi-
cant fractions of the wave packet undergoing classical
transport over the barrier, which we show in Fig. 3.
One can think about the width of the packet induc-
ing some trajectories, with momentum corresponding
to energies above the barrier, to pass the barrier clas-
sically. However, wider packets have fewer of these
trajectories, but they are still important. Thus, we ex-
press the results in terms of “over the barrier” effects.
This is coupled to the fact that the increased smooth-
ing is actually lowering the barrier height, as shown in
Fig. 4,so that the tunneling coefficient for the smoothed
barrier increases. The tunneling behavior exhibited by
these approximations, using both the density gradi-
ent potential and the effective potential, do not give
meaningful results for tunneling. On the other hand,
Ancona et al. (2000) claim to be able to treat tunneling
with the density gradient approach. Notwithstanding
the fact that improper boundary conditions are used
in the simulation (one cannot have both the density
and the quasi-Fermi energy continuous at the hetero-
interface), the results are interesting but are more likely
a result of having too many unknown parameters with
which to play. More work needs to be done on such
simulations to ascertain whether the above arguments
preclude achieving good simulations of tunneling, in
which case the latter results are merely fortuitous, or
whether either of these approaches can be amended to
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Figure 4. The effective potential barrier after smoothing allows the
average energy of the wave packet to approach. or even surpass.
the peak of the barrier. The horizontal lines correspond to mean
momentum in the simulation for Fig. 2.

allow treatment of tunneling in device simulations, as
claimed by Ancona et al.

6. Discussion

The effective potential approach has been successfully
used to account for quantization effects in several simu-
lations of a MOSFET. The effective potential provides
a set-back of the charge from the interface, and a quan-
tization energy within the channel. Both of these effects
lead to an increase in the threshold voltage, which is
apparent in the output characteristics of the device it-
self. However, the transport of the carriers along the
channel, which is in a direction normal to the quanti-
zation direction, suffers from not having a good the-
oretical expression for the smoothing, and good ex-
periments to clarify this have not yet been done. The
approach using an effective potential automatically in-
cludes the density-gradient approach, which is at best
an approximation to the more accurate effective poten-
tial. The computational cost of the effective potential
approach is low, with less than a 10% increase in cpu
time required to smooth the potential. As a result, this
approach is readily incorporated within standard sim-
ulators at modest increase in complexity.

On the other hand, the use of these approximate po-
tentials for tunneling problems counteracts the non-
locality of tunneling itself by using some form of a lo-
cal potential. As a result, really nasty results are often
obtained from this approach, and it is not clear whether



or not some corrections can be added to improve the
situation.
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Wigner Paths for Quantum Transport
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1-41100 Modena, Italy

Abstract. A Monte Carlo algorithm based on the concept of Wigner paths has been developed to study quan-
tum transport in mesoscopic systems in strict analogy with the traditional Monte Carlo simulation used to solve
the Boltzmann transport equation. Scatterings with both phonons and impurities can be accounted for. As re-
gards a structure potential profile the effect of the corresponding classical force can be inserted in the dynamics
of the free flight, while quantum effects due to rapid potential variations are included as a special scattering

mechanism.

Keywords: Wigner paths, quantum transport, Monte Carlo, mesoscopic systems

1. Introduction

The Wigner-path (WP) concept, developed by the
group of the authors in the recent years (Pascoli
et al. 1998, Bertoni et al. 1999, Jacoboni et al.
2001), is based on the linearity of the dynamical
equation for the Wigner function (WF). WP’s are
defined as the paths followed by “simulative parti-
cles” carrying §-contributions of the WF through the
Wigner phase-space, and are formed by ballistic free
flights separated by scattering processes. Scattering
with phonons, impurities, and an arbitrary potential
profile can be included. Thus, the integral transport
equation can be solved by a Monte Carlo (MC) tech-
nique by means of simulative particles following classi-
cal trajectories, in complete analogy to the “Weighted
Monte Carlo” solution of the Boltzmann equation in
the integral form. More precisely, the solution of the
Wigner equation is obtained as a sum of contributions
calculated along WP’s formed by ballistic fragments,
described by classical dynamics, separated by interac-
tion vertices due to electron-phonon or potential inter-
actions. The authors have developed a MC code based
on the above concepts, in strict analogy with the tra-
ditional MC simulation technique used to study semi-
classical transport phenomena.

2. The Physical System

The general system we are considering is formed by one
electron (or, equivalently, many non-interacting elec-
trons) subject to a constant and uniform accelerating
field E, to a structure potential (or to a given config-
uration of imputities (Menziani, Rossi and Jacoboni
1989)) V (r), and to the interaction with phonons. The
Hamiltonian of the system is given by

H=Hy+V@)+Vs@)+H,+H._,, (1)

where
Vi(r)=—eE-r,
and
h2
HO - _—V27
2m

H, = bibha,,
H,_, =) ihF(q)(b,e'" —bie™"),
q

are the free electron term (with m electron effective
mass), the Hamiltonian for the free phonon system
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and the electron-phonon interaction term respectively.
In the above expressions b, and b,, are the annihila-
tion and creation operators for the phonon mode ¢,
wy is the frequency of the phonon mode ¢, and F(q)
is a function depending on the type of phonon scat-
tering analyzed. The generalized WF (Rossi, Jacoboni
and Nedjalkov 1994) for an electron-phonon system
is:

.fll’(rs p1 {"q}‘. {";}v t)
= / dr' e M+ 112, {ng}lp(D)Ir — 712, {n})
2
where n, is the occupation number of the phonon mode
q (the curly brackets indicate a set of phonon occu-
pation numbers for all possible phonon modes), and
p is the density operator of the electron-phonon sys-
tem. Tracing over the phonon coordinates provides the

WF representative of the electron system (Brunetti,
Jacoboni and Rossi 1989).

3. Integral Equation and Neumann Expansion
Taking the time derivative of Eq. (2) and using the

Liouville-von Neumann equation for the evolution of
the density matrix, we obtain:

a
_fll‘(rv P {’7q}s {”:'}v 1)

dsm"‘< + 3. ngllH. pOr =3, W)
@)

lh

Using the Hamiltonian given in Eq. (1) the r.h.s. of the
above equation can be written as the sum of five terms.
Developing the calculations (the full derivation is given
in Bertoni et al. (1999) leads to

0
e
m

ot _(,E'Vp>fll'(rw D, {”q}!{”;}vt)

1
= ;};(8((”('}) - g({";])) fu'(rs p, {”q}v {nill’ t)

+ fdp’ Vulr, p' = p) fulr, p', {ng}, {ng}. 1)
+ (S[)/l.fll')(r’ P, {”q}v {”:I}’ ’)- (4)

where
E({ng)) = Z nghw, (5)
q

is the energy of the phonon state {1}, the transfer func-
tion V,, is defined by

1 1 s

ips 2

fdse zh[v(r+2)
——V(r—%):l, (6)

Vlr, p) =

and

‘p/lfll (r D, {"q} {”I} t)
-——ZF(q)l nq

ﬁ !
X f"-(r. pP— —;L, {ny, ...,
—e'“’"./nq:

hq' ,
X f,,,(r,p+ —g—,{nl,...,nq'— l,...}.{nq},t)

ng+1,...},

_Hiqr [
e llq,

hq
X fur (r p+ {nq} {n}, q.—l,...},t
+e""’"‘/n;, +1

hq' ' ,
X f,,,(r,p—“—:?q—,{nq}, {nl,...,nq.-i—1,...},{)),

is the contribution of the electron-phonon interaction.

Each term on the r.h.s of Eq. (7) represents a phonon
interaction event (vertex) that changes only one set
of phonon coordinates, increasing or decreasing the
phonon occupation number of mode ¢’ by one unity
and changing the electron momentum by 'i‘zL The Lh.s.
of Eq. (4) has the same form as the classical Boltzmann
equation (BE). Thus path variables can be used in anal-
ogy with the Chambers formulation of transport. Then,
integrating over time, one obtains

fulr.p. (ng}. {ng). 1)

= fu(rOC, p. 11, POr, p. 15 1), {ng) ng). 1)
x o~ W/ME(ngh—e(lmytr—2)




n / " gt e~ mteting—e(tre—1 { / dy’
.

X Vw(r(())(ra p’ t, t/)’ P, - p(O)(r7 P, ta t,))
x fu(rOw, p,t; 1), p', (ng}, ng), )
+ S fu)(rOr, p. 151,

PO, p. ;1) {ng}, ing}, t’)}. (®)

F
© oy = P 2 — g
rr,p,t;8) =r m(t s)+ o (t—s) ©)

PO, p.t;s) =p—F(t —s)

are the position and the momentum of the particle at
time s if at time ¢ it has position  and momentum p
and the force F is constant; the upper (0) indicates that
no scattering occurs between s and ¢. ¢, represents the
time of the initial condition, when the WF is supposed
to be known.

In more compact form, Eq. (8) can be written as

fw(r’ P7 {nq}’ {n:]}7 t) - fo + SVf + Sllff + Seff
+Sas f + Ses f 10)

where

fO = fw(r(O)(ra p, t;to)v
PO, p. 1), {ng}, {ng) ) (11)

t
Svfzf dt,/dp/vw(r(o)("’P,tQt/)’
t

p = pOw, p.t; ")) fu(rOw, p,t5 1),
P (ngh {nl).1')  (12)

t
Sy f = f dr' Y F(ghe' T 00, o 1
15 q'

x fu(r®, p.t:t), PO, p. 151)
—hq' /2, {n1, .oy 1,000, (ng), t'),
(13)

and S f, Sus f, Ses f are defined, similarly to S,¢ £, as
the time integration of the three last terms on the r.h.s.
of Eq. (7), respectively; a and e indicate an absortpion
and an emission event, respectively, while f and s refer
to the first and second phonon arguments, as defined in
Eq. (2).

Equation (10) may be iteratively substituted into it-
self giving a Neumann expansion that describes the
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evolution of the WF as a sum of contributions contain-
ing increasing powers of the interaction coupling:

fulr, o Angl, (), 00 = fo+ ) Sifo+ ) _SiS; fo
i ij

+ 5 SiS;Scfo oo (14

i,].k

where i, j,k =V, af, ef, as, es.

4. “Particle” Simulation and Wigner Paths

Equation (14) is expressed as a sum of terms, then can
be evatuated by means of the MC technique (Rossi,
Poli and Jacoboni 1992). Given the sum

S = Za; (15)

a possible MC algorithm for its evaluation is the fol-
lowing: a set of arbitrary probabilities p; are defined,
subject to the conditions

pi=0(pi>0ifa; £0), i=12,...

Then a term g; is selected with the probabilities p;, and
the estimator

ai
§ = — an
Di

is evaluated. This is a correct estimator of the sum S,
since its expectation value is

©=3p =S (8)

If, instead of a single sum &, we have to evaluate a set
of sums

S = Zaki (19)

a set of arbitrary probabilities py; are defined, subject
to the conditions

Puz0(pu>0ifay #0), i=1,2,..., > pu=1.
ki

(20)
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Then a term a; is selected with probability p;; and
the estimators

Sj= 8y 1)

are evaluated, where §y; is the Kronecker symbol. These
are correct estimators of the sums S;; in fact their ex-
pectation values are

agi
()= pk,-;i&j =Y a;=8. (@
ki M i

It should be noticed that the selection of a single term
of the matrix ay; yields an estimate of all the sums in
Eq. (19): this estimate is ay;/py; for the kth sum and
zero for the other sums.

The above algorithm can be easily generalized to
avaluate integrals, and sum of integrals (Rossi, Poli
and Jacoboni 1992). It should be emphasized that the
probabilities used in the algorithm are arbitrary. The
correctness of the estimator does not depend on them,
while, on the other hand, its variance does. A suitable
choice of the probabilities may reduce drastically the
variance of the result.

Moving one step further, we notice that each term
of Eq. (14) is, of its own, a sum, and again, each term
of such sum contains further sums and integrals (sce
Eqgs. (12) and (13)). The MC solution must select a
particular term of Eq. (14), then the single contribu-
tion to the sum (that is the sequence i jk ...), then the
value of the sum appearing in the integrand, and finally
the value of the integrand function. Finally, in the es-
timator, the particular selected value of the integrand
is divided by the probability of that choice. This com-
bination of choices corresponds to select the number
of scattering processes, their sequence, the exchanged
momenta, and the scattering times. Once the scattering
times are determined the coordinates in the phase-space
are related to the ones in the WF argument on the Lh.s.
of Eq. (14) through relations of the type of those given
in Eq. (9). Thus each term of the series can be treated
as the weighted contribution of a path consisting of
segments of classical trajectories separated by scatter-
ing events. This is a so called Wigner path (Pascoli
et al. 1998, Bertoni et al. 1999, Jacoboni et al. to ap-
pear). Once the exact correspondence between a spe-
cific term (a; for the case of Eq.(15), a;; for the case
of Eq. (19)) and a specific WP is understood, then it
is clear that WP’s can be choosen in differcnt ways;
as for example following the same procedure of the

traditional MC codes used for studying semiclassical
transport.

If the argument of the WF on the Lh.s. of Eq. (14) is
fixed the Neumann expansion is of the type of Eq. (15)
where the various a; are the possible paths starting at
time ¢ from the phase-space point (r, p) and going back
in time up to the intial condition (backward procedure).
On the other hand, we may leave the argument of the
WF undefined. In this case the Neumann expansion is of
the type of Eq. (19) and the WP can be choosen starting
from a particular point of the phase-space and moving
forward in time. The particular choice of the term ay;
leads to estimate the value ay;/ py; for the kth sum, cor-
responding to a particular value of the WF in the final
point reached at the time ¢, while the contribution to the
WF for all the other points in the phase-space has to
be taken zero. Whatever approach is choosen, the so-
lution of Eq. (14) is then obtained by generating a very
large number of paths, until the required precision in
the result is achieved.

5. Towards an Efficiency Encrease

Since, as just mentioned, the above described MC ap-
proach is based on the simulation of a number of WP’s,
where the larger is the number of paths accounted for,
the better is the statistical precision achieved, the main
limitation to an extensive application of the method has
been, so far, the simulation times required to obtain re-
liable results.

To improve the efficiency of the codes we have de-
veloped a method that allows to treat the scattering of
the carrier with the potential profile separating the ef-
fect of the classical force from quantum corrections,
and we have included in our algorithms the quantum
self-scattering mechanism (Rossi and Jacoboni 1992).

It is well known that the effect of a potential V (r)
in the Wigner equation, given by the integral term of
the type in Eq. (4), reduces to the classical-force term
on the Lh.s. of the Wigner equation for potentials up to
quadratic. In the general case, it is possible to separate
the effect of the classical force from quantum correc-
tions by defining the quantity

Vi, r)=VaE+r)-vVe) - r.

Now the dynamical equation for the Wigner function
(see Eq. (4) where, for semplicity, phonon scattering




has been removed) becomes

afw
—f_ + viw + vafw(r7 p)
ot m

= oy f dp' Vu(r,p — p) fu(r,p),  (23)
where F = —(eE + VV (1)) is the classical force, and
Vw(r, p), the usual integral kernel with V in place of
V,is a term including only quantum corrections to the
classical orbits. The Lh.s. of Eq. (23) is identical to the
Liouvillian of the BE, while the first term on the r.h.s.
describes quantum effects in the form of a collisional
integral due to a sort of “quantum potential” (a sim-
ilar approach was introduced by Lozovik and Filinov
(1999)).

A further improvement in the efficiency of the algo-
rithm should derive from the inclusion of the quantum
self-scattering mechanism. This method is based on the
introduction of an appropriate immaginary part of the
self-energy I' = 1/t which plays a role analogous to
that of the maximum scattering rate in the traditional
MC method. Let us define

fot,p.ty =" fr p), 29
performing the derivative with respect to time we get
0
at
Substituting Eq. (25) into Eq. (23) and using Eq. (24)
leads to

- 0
fw = _Fe—r(f_tO)fw + e_r(t_rf})afw- (25)

0 = P_ = .

afw’f"rgvfw'Fvafw

fdp’ Vo, p~ PV Fur, pP)+T o
(26)

= Qnh)

where the introduction of the exponential factor brings
about an additional interaction mechanism, with a con-
stant coupling I'. The WP’s method is then applied to
Eq. (24). This algorithm makes possible the inclusion in
the simulation of a higher number of scattering events,
thus allowing to reach longer and physically more sig-
nificative simulation times, and, at the same time, in-
troduces a “natural distribution” for the flight duration.
Using the transfer function V,,, the time integration and
the Neumann expasion, implies that now between one
scattering and another the factor e 7@~ has to be
added (that is canceled with the weight if I' is used to
generate the free flights, as in the traditional MC), and
at each scattering event a choice has to be performed
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(with arbitrary probabilities) whether selecting a physi-
cal scattering or a self-scattering. Then the probabilities
used are accounted for in the evaluation of the weight.

A MC simulation of the Wigner equation with the
above splitting between classical force, whose effect
is included in the free flight dynamics, and quantum
effects as collision integral and including the quan-
tum self-scattering mechanism, is at present under
development. The algorithm implemented, for a case
where no phonons are included, and preliminary results
are presented in the following sections.

6. A Possible Algorithm

The mathematical model presented in Section 4 shows
that the way of selecting the WP’s is completely free. As
a consegquence a number of different algorithms can be
devised according to the specific problem to be faced.
Here we describe a specific one, among those we have
developed, where the separation between the classical
force and the quantum corrections is accounted for, the
quantum self-scattering is included, and, for simplicity,
no phonon-scattering is considered. In particular we
describe a backward procedure for the case of electrons
in a one-dimensional device, where an applied electric
field E and a potential profile V (x) are present.

1. Definition of the data of the physical system, of the
simulation time ¢ (of the order of 10~!! s) and of
I' = 1/7,tobe used for the quantum self-scattering
contribution. The device is supposed to be empty
att = 0.

2. Definition of the potential profile by means of an
analitycal expression (steps and barriers can be
well described by means of combinations of Fermi
functions).

3. Selection of a specific point (x, p) of the phase-
space, where the WF has to be evaluated.

4. The weight of each paths is initialized to weight
=1.

5. Starting from the final point (x, p) of the phase-
space at time ¢, a free flight dr is considered (d¢
is taken a constant and of the order of 10717 s).
A new point (x’, p’) at time t — dt is determined
according to classical equation of motion:

l(eE + VV(x) a2
2 m
+ (eE + VV(x)) dt

m

X —dty=x—Lar+
m

p't—dry=p
@7)
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6a. If the boundary is reached a value is assigned to
the WF, given by

fulx, p, ) = fOx., p.) x weight

where f*)(x., p.)is the assigned boundary condi-
tion (x. being the position of the boundary and p,
the value of the momentum when the boundary is
reached). The simulation proceeds from step 10)

6b. Ifthe simulation time reaches the initial value t =0,
Su(x, p.t) is set zero, since as initial condition
we assume f)(x., p.) on the boundary at any
time, and 0 inside the device at t = 0. The simula-
tion proceeds from step 10).

7. Once the new coordinates of the simulative particle
are evaluated, a choice is made about performing
or not a scattering according to the scattering prob-
ability Py = (1 — e~9/7)

8. If no scattering is selected, the weight of the path
is multiplied by the factor exp(—dt/t)/(1 — Py), x’
and p’ are substituted by x and p and the simulation
proceeds from step 5).

9. In case a scattering event is choosen the weight of
the path is multiplied by the factor 1/ P;, and a fur-
ther selection is perfomed between scattering with
the potential profile (with probability Py(x") =
[ dpIVu(x', p)| x dt/P;, where T is choosen
in such a way that Py <1 always) and a self-
scattering (with probability Py =1 — Py(x")).

9a. In the self-scattering case the weight of the path is
multiplied by the factor exp(—dt/t)/ Py, x" and
p’ are substituted by x and p and the simulation
proceeds from point 5).

9b. If a scattering with the potential is choosen
then the exchanged momentum Ap is determined
(with a probability P(Ap) o« |V, (x’, Ap)]), the
weight of the path is multiplied by the factor
exp(—dt/t)/P(Ap)/Py(x"), and the simulation
proceeds from step 5) with phase-space coordi-
nates (x = x’, p = p’ — Ap).

10. The procedure is repeated until the established
number of paths is reached. Then an average over
the number of simulated paths is performed.

11. Back to step 3) a new point of the phase-space is
considered.

7. Preliminary Results

In the following we present few preliminar results of the
above algorithm. The sample device is a 200 nm wide

With quantum corrections

P/ (2r/nm)

Only classical trjectories

P/ (2/nm)
o

| BT § 1 SN R
10

0
Position (nm)

Figure 1. 2D graphs of the WF for the case of a barrier 2 meV
high and 2 nm wide. A comparison is performed between the case in
wich the quantum corrections are included (top) and the case where
only classical orbits arc considered (bottom). The two vertical lines
indicate the position of the potential barricr, while the orizontal one
indicates the classical treshold. determincd by the barrier height.
Darker tones of grey indicate higher values of the WF, while the zero
value is white.

system of GaAs, with a potential barrier centered in the
middle of the system istelf. In the present simulation
electrons are entering the device from the left boundary
(nagative values of x, positive values of p).

Figure 1 shows a 2D graph of the WF for the case
of a barrier 2 meV high and 2 nm wide. A comparison
is performed between the case in wich the quantum
corrections are included (top) and the case where1only
classical orbits are considered (bottom). The steps in
the barrier zone are due to the discretization in the mo-
mentum space. While in the classical plot the WF is
zero in the positive x region below the barrier hight
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Figure 2. comparison between the classical WF (dashed line) and
the WF including quantum corrections (solid line) for a specific value
of the position x = 7 nm. The parameter of the system are the same
as in Fig. 1.

treshold, the quantum result, due to tunneling phenom-
ena, shows positive contribution to the WF in this clas-
sically forbidden region.

This effect is more noticeble in Fig. 2, where the
comparison between the classical distribution function
(dashed line) and the quantum WF (solid line) is pre-
sented for a specific value of the position x = 7 nm.
The parameter of the system are the same as in Fig. 1.
Figure 3 shows the same comparison of Fig. 2, for a
Barrier of 3 meV.

While from the qualitative point of view these results
give us confidence on the correctness of the method,
they are still unsatisfactory as practical tool from the
quantitative respect. So far problems related to the con-
vergence of the variance did not allow us to study more
realistic physical situations. On the other hand, just the
above mentioned great flexibility of the WP’s approach
make us confident that this limitation can be overcome
just finding out a more efficient way of selecting the
paths. In this direction we are now focusing our re-
search efforts.
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Figure 3. Same as in Fig. 3, for the case of a 2 nm wide, 3 meV
high, barrier.
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Parallelization of the Nanoelectronic Modeling Tool (NEMO 1-D)
on a Beowulf Cluster
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Abstract. NEMO’s main task is the computation of current-voltage (I-V) characteristics for resonant tunneling
diodes (RTDs). The primary model for high performance RTDs is the full band sp3s™ tight binding simulation, which
is based on a numerical double integral of energy and transverse momentum over a transport kernel at each bias
point. A full charge self-consistent simulation invoking this model on a single CPU is prohibitively expensive, as the
generation of a single I-V curve would take about 1-2 weeks to compute. Simplified charge self-consistent models,
eliminating the numerical momentum integral for the quantum mechanical charge self-consistency, followed by
a single pass double integration for the current, have been used in the past. However, Computation on a parallel
computer now enables the thorough exploration of quantum mechanical transport including charge self-consistency
effects within the entire Brillouin zone based on the double integral. Various parallelization schemes (fine, coarse,
and mixed) are presented and evaluated in their performance. Finally a comparison to experimental data is given.

Keywords: NEMO, heterostructures, tunneling, parallel, cluster, tight binding, adaptive mesh

1. Introduction
1.1. Nanoelectronic Modeling (NEMO)

The Nanoelectronic Modeling tool! (NEMO) was de-
veloped as a general-purpose quantum mechanics-
based 1-D device design and analysis tool from 1993—
98 by Texas Instruments/Raytheon. NEMO enables the
fundamentally sound inclusion of the required physics
to study electron transport in resonant tunneling diodes
(RTDs): bandstructure, scattering, and charge self-
consistency based on the non-equilibrium Green func-
tion approach. The theory used in NEMO and the ma-
jor simulation results are published (see Klimeck ez al.
1997, Bowen et al. 1997 and references therein).
NEMO’s main task is the computation of current-
voltage characteristics for high performance resonance
tunneling diodes at room temperature. The primary
transport model used for these simulations is based on a
sp3s™ tight binding representation of the non-parabolic

To whom correspondence should be addressed.

bands and the integration of a momentum and energy
dependent transport kernel. The total energy integral
and the transverse momentum integral extends over
the occupied states in the RTD. The energy integral
typically covers about 1 eV, and the transverse momen-
tum typically extends to about 10% of the Brillouin
zone from the I' point for typical InGaAs/InAlAs
RTDs on an InP substrate. The physical model has been
discussed in detail (Bowen et al. 1997) before. Pre-
vious simulations (Klimeck et al. 1997, Bowen et al.
1997) which agreed quantitatively with experiment
were lacking one major feature: the models in which the
current and the potential/charge were calculated were
not self-consistent with each other. The parallelization
of NEMO described and characterized in this paper
enables such self-consistent simulations.

1.2.  Parallelization on Cluster Computers

The availability of relatively cheap PC-based Beowulf
clusters offers research and/or development groups an
affordable entry of into massively parallel computing.
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Ourresearch group at JPL has developed, implemented,
and maintained various generations of clusters (Cwik
et al. 2001). The benchmarks that are presented in this
paper were run on a 32 node, 64 CPU Pentium 11
933 MHz cluster connected on a standard 100 Mbps
network. Parallel code was developed using the Mes-
sage Passing Interface (MPI).

2. Code Parallelization
2.1. The Transport Kernel

NEMO’s core numerical task is the integration of a
transport kernel, K, at the nth bias voltage to obtain
current, /,,, and charge N, ; on every site {. That kernel
is dependent on the total energy, E, the transverse mo-
mentum, k, the potential profile and applied voltage,
V,..i» and the charge at the previous bias voltage, ¢,, .

{InaNn.i} zde/kdkK(E,k, Vn.isqn—-l) (])

(L. Nyi} = de}Cl(Ea Vi) Tsu-Esaki (2)

Equation (2) stems from the typical Tsu-Esaki assump-
tion (Tsu and Esaki 1973) of parabolic transverse sub-
bands which enables an analytic integration over k.
Equations (1) and (2) result in significantly different
currents (Bowen et al. 1997) and charge distributions.
The charge N; must be computed self-consistently with
the electrostatic potential through Poisson’s equation.
Different charge distributions, N;, will result in dif-
ferent potential distributions, V,, ;, which will in turn
result in different current distributions, /7,,. However,
the best (Klimeck er al. 1997, Bowen et al. 1997) that
was done due to realistic time constraints so far was
to compute N; from Eq. (2) self-consistently with V), ;,
and then perform a one-pass calculation with a fixed
potential to obtain a current using Eq. (1). Paralleliza-
tion of NEMO makes a fully charge self-consistent
simulation possible by moving the computation time
down to 10-20 hours on an adequately sized cluster
(16-32 nodes).

The benchmark I-Vs presented in this paper are
based on a semi-classical charge-self-consistent poten-
tial (Thomas-Fermi) with 70 bias points, including 21
momentum points resolving up to 7% of the Brillouin
zone around I". The integral over total energy is per-
formed with an adaptive search algorithm (Klimeck
et al. 1998) that starts from 200 energy nodes and

resolves resonances in the transmission and the charge
density through iterative refinement.

2.2. Parallelization Around Bias Points

Typical I-Vs span a voltage of 0.7 V, which results with
a typical resolution of 0.01 V in 70 bias points. If the
simulation does not need to include any charge accu-
mulation effects from one bias point to the next (hys-
teresis or switching), then the dependence on ¢, in
Eq. (1) canbe neglected and all bias points n can be con-
sidered independent of each other. This simplification
suggests a parallelization scheme where the individ-
ual bias points are farmed out to different CPUs. This
scheme implies minimal communication between the
CPUs and minimal interference of the algorithm with
the remaining 250,000 lines of C, FORTRAN, and F90
code in NEMO.

Various implementations for such an outer loop par-
allelization are possible. In the simplest case, all the
bias points are distributed to N CPUs in a single com-
munication step and the results could be gathered in
a second communication step. Such a scheme may be
hampered by a load balancing problem, since the com-
putation time needed for each bias point may vary from
one to the next for various reasons: the energy range
in which transport is computed is bias dependent, the
charge self-consistency may require a different number
of iteration steps at different biases (especially at the
I-V turn-off), and in a cluster of workstations the CPU
speed may vary. To treat this load balancing problem
and to minimize the communication contention with
the central CPU, a master/slave approach was chosen,
where the master’s job is to distribute single bias points
to available slaves and to gather completed I-V points
from slaves. Such an approach can be very inefficient
on a few CPUs, since the master is mostly sitting idle,
waiting for results to be returned. However, MPI can be
instructed such that a master and a slave run on a single
CPU simultaneously, where the master CPU only gets
real CPU time when it is needed for communication. In
the benchmarks performed here a master was assigned
to it’s own CPU.

The line marked with circles in Fig. 1(a) indicates
the actual CPU times that were obtained on our cluster
as a function of number of processors. Almost perfect
scaling with processors up to 15 CPUs can be observed,
when a step-like structure becomes apparent for an in-
creasing number of CPUs. At 24 and 36 CPUs almost
perfect scaling can be seen, which can be explained
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Figure 1. (a) Total time for the computation of an I-V without
charge self-consistency (only semi-classical charge self-consistency)
as a function of number of CPUs used in the paralle] algorithms. Ideal
performance is depicted as a straight line on a log-log scale. 70 bias
points (I), 21 k points, adaptive E grid. Parallelization in I, k, and
E. (b) Speed-up due to parallelization compared to the single CPU
performance.

with the finite number of 70 bias points that are com-
puted. To illustrate this point more clearly, Fig. 1(b)
shows the speed-up due to parallelization as a function
of number of CPUs. From 24 to 35 CPUs, at least one
CPU must compute 3 bias points, and, although some
CPUs finish earlier after computing just 2 bias points,
the whole I-V is not finished until all CPUs report their
results. Similar load imbalance with 1 or 2 bias points
per CPU causes the step from 36 to 64 CPUs. If the
number of bias points is increased to several hundred,
almost perfect scaling without the steps in Fig. 1 is ob-
served (not shown here). However, a realistic number
of bias points was chosen to show the problems with
the parallelism.

Figure 1 shows good efficiency in the parallelism
over bias points. However, from a device research point
of view, it is often very instructive to study a single
bias point in detail, and it is desirable to get results as
fast as possible. Additionaly, in calculations that con-
sider charge accumulation, the dependence on g, in
Eq. (1) can not be neglected, the bias points are there-
fore not independent of each other and parallelization
around the bias points may result in an incorrect I-V. A
parallelization that is finer grain than parallel voltage
points is therefore desirable.

2.3.  Parallelization of Transverse
Momentum Integral

The integral over the total energy, E, of Eq. (1) re-
sults in an integrand, J(k), that is still a function of
transverse momentum, k. This integrand can be shown
(Klimeck, Bowen and Boykin 2001a, 2001b) to be typ-
ically monotonically decreasing from k = 0. Only in
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rare cases is the electron transport aniotropic (Klimeck
2001), implying that the function J (k) can be resolved
well with only a few numerical nodes, typically 15-29.
The benchmark simulations are based on 21 points.

Since the workload for each k point is about the
same, a simple parallelization scheme was chosen: the
k points are distributed to all available CPUs. With only
21 k points available, good scalability of the parallel
algorithm is limited to 21 CPUs, with a strongly visible
load imbalance step at 11 CPUs (triangles in Fig. 1).

The parallelization around & points does not appear
to be very advantageous in the benchmark shown here,
except for the commensurability points at 11 and 21
CPUs. Note, however, that simulations of hole transport
(Klimeck, Bowen and Boykin 2001a, 2001b) required
about 150 & points due to the large anisotropy in J (k),
and the parallelization around k points was essential to
obtain results at a single bias point.

24. Parallelization of Total Energy Integral

The integral of the transport kernel over total energy is
the lowest level integral that is evaluated in NEMO. For
high performance RTDs, where the resonances are not
narrow in energy, this integral is typically? performed
in an adaptive Simpson-type 3 and 5 point algorithm,
where 2 energy points are added to the 3 point integral
to evaluate the change of the overall integral value.
The work-load is identical for each energy suggesting
a complete distribution of all new required refinement
energies to the available CPUs in one communication
step. In a typical structure, only one or two resonances
must be resolved well within the energy range of in-
terest. The final refinement steps will therefore request
two or four new energies to be computed. The lim-
ited number of new energy nodes requested towards
the end of the refinement limits the performance of
this energy parallelism. Figure 1 (crosses) shows a re-
spectable scaling with increasing number of CPUs up
to 20 CPUs. Increased communication costs for large
numbers of CPUs actually degrades the performance
beyond 40 CPUs on this cluster with a slow 100 Mbps
network. Preliminary results on our new cluster, which
is equipped with a 2 Gbps network, show significantly
improved scaling of this fine grain parallelism.

2.5. Multiple Levels of Parallelism

The coarse and the medium grain (/ and k) parallel
schemes show significant load balancing problems for
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Figure 2. (a) Total compute time as a function of number of CPUs

for three different parallclization schemes. Simultencous paralleliza-
tion in I-k and I-E improves performance over simple paraliclization
in1. (b) Specd-up due to parallelization measured against single CPU
performance.

larger numbers of CPUs in a realistic I-V computation.
The fine grain parallelism (E) is communication lim-
ited and load-balancing limited. To enable a speed-up
of a realistic I-V calculation a combination of these
parallel algorithms has been implemented. Each bias
point (I) can now be assigned to a group of CPUs,
this I group can be subdivided into different groups of
momentum points (k), and these k groups can be sub-
divided into groups of energy points (E). Four paraliel
schemes are therefore possible: I-k, I-E, k-E, and I-k-E.
The user can specify the desired level of parallelism and
the size of the groupings. An automated assignment of
group sizes tries to select large parallel groups starting
from the coarse level parallelism. Figure 2 compares
the performance of parallelism in I-k and I-E to the
parallelism in I. At 64 CPUs a significant improvement
of the speed-up from 32 to 45 is achieved. Some com-
mensurability steps in the performance as a function of
number of CPUs are still visible suggesting the possi-
bility of improvement on the automated CPU grouping
algorithm.

3. Comparison to Experiment

The structure considered here is part of the NEMO
InP testmatrix (Klimeck et al. 1997). The sample con-
sists of an undoped central structure InGaAs/InAlAs/
InGaAs/InAlAs/InGaAs with 7/17/17/17/7 mono-
layers, respectively. The central structure is surrounded
by 50 nm low doping (10'® cm~3) buffer and high dop-
ing (5 x 10" cm™3) contacts.

The simulations in the benchmark presented in
Figs. 1 and 2 are based on a Thomas-Fermi (TF) semi-
classical charge self-consistent potential. The resulting
I-V curve is compared in Fig. 3(a) in dashed line to
experimental data (thick solid line). To achieve bet-
ter agreement on the overall peak shape, a simulation
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Figure 3. Computed 1-V characteristics for a InGaAs/InAlAs
RTD compared to experimental data. (a) Benchmark simulations
using semi-classical (Thomas-Fermi) self-consistency and full quan-
tum (Hartree) self-consistency. Hartree self-consistency represents
the shape of 1-V properly. (b) Improved simulation capabilities:
(1) charge and current from Eq. (2), (2) charge from Eq. (3). current
from Eq. (1), and (3) charge and current from Eg. (1).

must include (Klimeck er al. 1997, Bowen et al. 1997)
quantum charge self-consistently in the potential cal-
culation. Such a fully self-consistent simulation using
the 10 band sp3s* tight binding model is shown here
for the first time in Fig. 3(a) with a thin solid line.

A simulation solely based on Eq. (2) shown in
Fig. 3(b) with a thin dashed line shows a significant cur-
rent over shoot (Bowen et al. 1997) at the I-V turn-off.
A single pass computation of the current with Eq. (1)
using the self-consistent potential of Eq. (2) results in
a smoothing (Bowen ef al. 1997) of the current spike.
The unphysical rounding in the NDR (thin dashed line)
was neglected in previous runs (Klimeck et al. 1997,
Bowen er al. 1997). With the new parallel NEMO code,
the current and the charge can now be computed fully
self-consistently (thin solid line).

4. Summary

This work shows the utility of low-cost, high perfor-
mance Beowulf clusters for the design and charac-
terization of electronic devices using physics-based
simulation software. Various parallelization schemes
(coarse, medium, fine, and mixed grain) are shown for
the NEMO 1-D simulator resulting in the capability
to simulate for the first time full charge self-consistent
simulations including full bandstructure effects within
a significant portion of the Brillouin zone using the
sp3s* tight binding model.
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Notes

1. See http://hpc.jpl.nasa.gov/PEP/gekco/nemo or search for
NEMO on http://www.raytheon.com.

2. Instructures where the barriers are thick, such as quantum wells,
or hole structures (Klimeck, Bowen and Boykin 2001a), the res-
onances are very sharp in energy (<0.01 ueV) and the adaptive
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algorithm can be shown to be quite ineffective compared to a
resonance finding-based algorithm (Klimeck et al. 1998).
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Towards Fully Quantum Mechanical 3D Device Simulations
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Abstract. We present a simulator for calculating, in a consistent manner, the realistic electronic structure of three-
dimensional heterostructure quantum devices under bias and its current density close to equilibrium. The electronic
structure is calculated fully quantum mechanically, whereas the current is determined by employing a semiclassical
concept of local Fermi levels that are calculated self-consistently. We discuss the numerical techniques employed
and present illustrative examples that are compared with quantum transport calculations. In addition, the simulator
has been used successfully to study shape-dependent charge localization effects in self-assembled GaAs/InGaAs

quantum dots.

Keywords: nano-devices, simulations, quantum dots

1. Introduction

State-of-the-art simulators for semiconductor nano-
structures and optoelectronic nano-devices roughly
fall into two classes (Anonymous 2000): some models
focus on the equilibrium electronic structure. They
attempt to predict, as accurately as possible, the free
and bound charge density as well as optical properties
of quantum wells, wires, and dots on a length scale
that ranges from nm to pm. Several models of this
kind have been developed in the last few years that can
deal with fully three-dimensional device geometries,
and invoke one-band (Kumar, Laux and Stern 1990,
Laux 1987), or several-band k - p models (Grundmann,
Stier and Bimberg 1999, Pryor 1998, 1999, Cusack,
Briddon and Jaros 1996), tight binding methods
(Carlo 2001). The second class of models focus on
current-voltage characteristics and attempts to solve
quantum transport equations, using non-equilibrium
Green functions (Lake et al. 1997, Klimeck, Lake
and Blanks 1998), Wigner functions (Bordone et al.
1999, Grubin, Buggeln and Kreskovsky 2000, Ferry,
Akis and Vasileska 2000), or the Pauli master equation
(Fischetti 1998, 1999). Presently, they are still limited
to one spatial dimension and/or put less emphasis on
details of the electronic structure. Thus, a simultaneous
realistic treatment of the electronic structure and the

quantum transport problem for 3-D structures still
poses a challenging task.

In this paper we discuss a simulator that we are cur-
rently developing for a wide class of 3-D Si and III-
V nano-structures (Hackenbuchner et al. 2001). It at-
tempts to bridge the two types of approaches described
above, albeit with a stringent limitation that makes it
feasible to simulate three-dimensional structures: we
solve the electronic structure problem accurately but
restrict the current evaluation to situations close to equi-
librium where the concept of local quasi-Fermi levels
is still justifiable. This approach may be viewed as a
low-field approximation to the Pauli master equation
(Jones and March 1973). In this paper, we present the
numerical methods involved, illustrate this method for
simple 1-D situations that allow a detailed comparison
with the full Pauli master equation approach that has
recently been developed by Fischetti (1998, 1999), and
briefly show that this simulator successfully predicts
the electronic and optical properties of self-assembled
GaAs/InAs quantum dots.

2. Method
The nano-device simulator that we have developed so

far solves the 8-band-k - p-Schrédinger-Poisson equa-
tion for arbitrarily shaped 3-D heterostructure device
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geometries, and for any (III-V and Si/Ge) combina-
tion of materials and alloys. It includes band offsets
of the minimal and higher band edges, absolute defor-
mation potentials (Van de Walle 1989), local density
exchange and correlations (i.e. the Kohn-Sham equa-
tions), total elastic strain energy (Pryor et al. 1998,
Grundmann, Stier and Bimberg 1995) thatis minimized
for the whole device, the long-range Hartrce potential
induced by charged impurity distributions, voltage in-
duced charge redistributions, piezo- and pyroelectric
charges, as well as surface charges, in a fully self-
consistent manner. The charge density is calculated
for a given applied voltage by assuming the carricrs
to be in a local equilibrium that is characterized by
energy-band dependent local quasi-Fermi levels Er.(x)
for charge carriers of type ¢ (i.e. in the simplest case,
one for holes and one for electrons),

2 E C - Ei('
nw =7y wa(-(x)l'f(%—)- M

These local quasi-Fermi levels arc determined by
global current conservation V - j. =0, where the cur-
rent is assumed to be given by the semi-classical re-
lation j.(x) = p.n(x)VEg(x) (see, e.g. (Selberherr
1984)). Recombination and generation processes are
included additionally. The carrier wave functions ;.
and energies E;. are calculated by solving the multi-
band Schrodinger-Poisson equation. The open sys-
tem is mimicked by using mixed Dirichlet and von
Neumann boundary conditions (Fischetti 1998, Lent
and Kirkner 1990, Frensley 1992) at Ohmic contacts.

3. Computational Schemes

For a given nano-structure, the computations start by
globally minimizing the total elastic energy (Pryor
et al. 1998, Grundmann, Stier and Bimberg 1995)
using a conjugate gradient method. This determines
the piezo-induced charge distributions, the deformation
potentials and band offsets. Subsequently, the 8-band-
Schrodinger, Poisson, and current continuity equations
are solved iteratively. All equations are discretized ac-
cording to the finite difference method invoking the
box integration scheme (Kumar, Laux and Stern 1990,
Laux 1987, Selberherr 1984). The irregular rectilincar
mesh is kept fixed during the calculations. As a prepara-
tory step, the built-in potential is calculated for zero ap-
plied bias by solving the Schrodinger and Poisson equa-
tion self-consistently employing a predictor-corrector

approach (Trellakis et al. 1997) and setting to zero the
electric field at the Ohmic contacts. For applicd bias,
the Fermi level and the potential at the contacts are then
shifted according to the applied potential which fixes
the boundary conditions. The main iteration scheme
itself consists of two parts. In the first part. the wave
functions and potential are kept fixed and the quasi-
Fermi levels are calculated self-consistently from the
current continuity equations, employing a conjugate
gradient method and a simple relaxation scheme. In the
second part, the quasi-Fermi levels are kept constant,
and the density and the potential are calculated self-
consistently from the Schrodinger and Poisson equa-
tion. The discrete 8-band-Schrodinger equation repre-
sents a huge sparse matrix (typically of dimension 10°
for 3D-structures) and is diagonalized using the Jacobi-
Davidson method (Bai et al. 2000) that yields the re-
quired inner eigenvalues and eigenfunctions close to
the energy gap. We very slightly shift the spin-up and
spin-down diagonal Hamiltonian matrix elements with
respect to each other in order to avoid degeneracies
and guarantee orthogonal eigenstates automatically.
To reduce the number of necessary diagonalizations,
we employ an efficient predictor-corrector approach
(Trellakis et al. 1997) to calculate the potential from the
nonlinear Poisson equation. In this approach, the wave
functions arc kept fixed within one iteration and the
density is calculated perturbatively from the wave func-
tions of the previous iteration (Trellakis et al. 1997).
The nonlinear Poisson equation is solved using a mod-
ified Newton method, employing a conjugate gradient
method and line minimizations. The code is written in
Fortran 90 and consists of some 170000 lines by now.

4. One-Dimensional Examples and Comparison
to Pauli Master Approach

In this section we illustrate the present method by
studying simple one-dimensional examples that we can
compare to full Pauli master equation results (Fischetti
1998). As discussed above, our method amounts to
calculating the electronic structure of a device fully
quantum mechanically, yet employing a semiclassi-
cal scheme for the evaluation of the current. As we
shall see, the results are close to those obtained by
the full Pauli master equation (Fischetti 1998) pro-
vided we limit ourselves to situations not too far from
equilibrium.

As a first example, we consider a one-dimensional
(Si-based) n-i-n structure (Fig. 1) at room temperature
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Figure 1. Calculated potential energy and electron density of n-i-n
structure, as a function of position inside the structure. Results from
presently developed method (full lines) are compared to results from
Pauli master equation (Fischetti 1998) (dashed lines).

with 100 nm long n-typed regions and a doping con-
centration of n = 10’7 cm~>. The applied bias is 0.25 V.
As one may expect, true quantum mechanical effects
play little role in this case and both the present, the
semiclassical drift-diffusion as well as the Pauli mas-
ter equation (PME) approach of Fischetti (1998) yield
practically identical results for the density and potential
profile. We would like to point out, that this good agree-
ment is a nontrivial finding, as we calculate the density
quantum mechanically according to Eq. (1) with self-
consistently computed local Fermi levels rather than
semiclassically. Our current density of 3.6 x10* A/cm?
compares well with the PME result of 6.8 x 10* A/cm?.
However, we note that the current is directly propor-
tional to the mobility in our model; changing the mobil-
ity (that we treat as constant in this example) therefore
changes the value of the current but does not affect the
electron density or potential profile.

In Fig. 2 we show results for a Si-SiO,-Si struc-
ture with a 3 nm barrier of 3 eV height and a for-
ward bias of 1 V. Again, our calculated density and
potential profile can be seen to agree very well with
the PME method (Fischetti 1998). Due to the high bar-
rier, the current density predicted by the PME is only
of the order of 1078 A/cm?. In our approach, the tun-
neling current density is still small but significantly
higher (103 A/cm?). This originates in our simplified
treatment of boundary conditions which mimic an open
system by linearly combining stationary (non-current
carrying) solutions of the Schrodinger equation with
von Neumann and Dirichlet boundary conditions at the
contacts (Lent and Kirkner 1990, Frensley 1992). For
a high barrier near the middle of the device, the min-
imum electron density for zero or small bias lies near
the center of the barrier irrespective of the boundary
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Figure 2. Calculated potential energy ® and electron density # of
Si-8i0;-Si structure with 3 nm barrier, as a function of position inside
the structure. Results from presently developed method (full lines)
are compared to results from Pauli-master equation (Fischetti 1998)
(dashed lines).

conditions used. This is in contrast to current carrying
scattering solutions that travel from left to right (right
to left) and reach their minimum at the right (left) side
of the barrier. While this difference has practically no
effect on the potential and density outside the barrier, it
raises the tunneling current significantly for small bias
and very high barriers. We are currently generalizing
our approach by filtering out scattering states from the
stationary Schrédinger solutions and deriving appro-
priate open boundary conditions, in analogy to very
recent work of Laux and Fischetti (unpublished).
Finally, we study the same n-i-n structure as in
Fig. 1, but with an additional well of 10 nm width
and 0.1 eV depth. Figure 3 shows the potential pro-
file. The well supports three strongly localized states.
Quantum mechanics yields a smaller electron density
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Figure 3. Calculated potential energy ® and local electron Fermi
level Ex with a 10 nm wide quantum well for a n-i-n structure as a
function of position. The full line is obtained with the present method,
whereas the dashed line shows the classical drift-diffusion solution.
Also shown are the positions of the three localized energy levels of
the well.
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in the well region than the classical Thomas-Fermi
(drift-diffusion) solution which is a physically plau-
sible result. This leads to a larger potential drop across
the well region which in turn results in a higher
current density J. The classical drift-diffusion solu-
tion gives J =2.2 x 10* A/cm? whereas the present
model gives J =2.5 x 10* A/cm?. The localized states
themselves contribute very little to the current. As a
consequence, the local Fermi level is practically con-
stant across the bound states which provides an a-
posteriory justification of invoking non-local quantum
mechanics concurrently with the semi-classical con-
cept of local Fermi levels. In fact, no conflict arises for
situations close to equilibrium since the spatial vari-
ation of the occupancy of any given eigenstate turns
out to be negligible for three reasons: (i) Deeply bound
states do not contribute to the current and thus do not
lead to a gradient of the Fermi level; (ii) the Fermi level
has the largest variation in regions where the density is
very low (within barriers, for example); (iii) very ex-
tended states that are treated formally as bound states
in our method are either not occupied because of their
high energy, or occur in regions of high density (near
contacts, for example) where the quasi-Fermi level is
nearly constant.

In summary, the electronic density and potential cal-
culated with the presently developed scheme as a func-
tion of applied bias agrees excellently with the more
rigorous Pauli master equation approach. More work
will be needed, on the other hand, to model ultrasmall
tunneling currents accurately.

5. Piezoelectric Fields and Electron-Hole
Localization in Quantum Dots

We have applied our simulator to study theoreti-
cally single-quantum-dot photodiodes consisting of
self-assembled InGaAs quantum dots with a diame-
ter of 3040 nm and heights of 4-8 nm that are em-
bedded in the intrinsic region of a Schottky diode
(Hackenbuchner er al. 2001). Recent experiments
(Findeis et al. 2001, Fry et al. 2000) have indicated
inverted electron-hole alignments with the electron at
the base and the hole at the top of the dot, in contrast to
what earlier theoretical calculations (Pryor 1998, 1999,
Cusack, Briddon and Jaros 1996, Jones and March
1973) had predicted. Our study reveals that the elastic
strain and accompanying piezoelectric fields strongly
depend on the geometric shape and alloy composition
of dots. We find, in agreement with (Grundmann, Stier

(b)

Figure 4. Side view of calculated (a) pyramid-shaped and (b) lens-
shaped InGaAs quantum dots. The height in the center is 8 nm for
both dot shapes. The light and dark regions are iso-surfaces of the pos-
itive and negative piczoelectric charge densities. respectively, with a
magnitude of 5 x 10'8 ¢fem?,

and Bimberg 1999), dots of pyramidal shape to pos-
sess large piezoelectric polarization charges in the cor-
ners that lead to a strong hole confinement near the dot
edges (Fig. 4(a)). By contrast, lens-shaped dots of sim-
ilar size have much weaker charges and are found to
lead to electron and hole states near the center of the
lens which significantly improves the exciton absorp-
tion (Fig. 1(b)). Importantly, as we have shown else-
where (Hackenbuchner et al. 2001), we find the hole
to be localized at the apex (top) and the electron at the
base exactly as has been suggested by Fry et al. (2000).

Acknowledgments
Financial support by the Deutsche Forschungsge-

meinschaft and by the Office of Naval Research
under Contract No. N00014-01-1-0242 is gratefully




Towards Fully Quantum Mechanical 3D Device Simulations 85

acknowledged. We are indebted to Frank Stern for help-
ful discussions in the early stage of the project.

References

Anonymous. 2000. In: Proc. of the 7th Int. Workshop on Compu-
tational Electronics, Glasgow, Scotland, May 22-25, 2000 and
papers therein.

Bai Z., Demmel J., Dongarra J., Ruhe A., and van der Vorst H.
(Eds.). 2000. Templates for the Solution of Algebraic Eigenvalue
Problems. SIAM, Philadelphia.

Bordone P, Pascoli M., Brunetti R., Bertoni A., Jacoboni C., and
Abramo A. 1999. Phys. Rev. B 59: 3060.

Cusack M.A., Briddon PR, and Jaros M. 1996. Phys. Rev. B 54:
R2300.

Di Carlo A. 2001. Proc. 12th Int. Conf. on Nonequilibrium Carrier
Dynamics in Semiconductors, Santa Fe, 2001, also to appear in
Physica B.

Ferry D.K., Akis R., and Vasileska D. 2000. Electron Device Meet-
ing, [EDM 2000 Tech. Digest Papers, pp. 287-290.

Findeis F., Baier M., Beham E., Zrenner A., and Abstreiter G. 2001.
Appl. Phys. Lett. 78: 2958.

Fischetti M.V. 1998. J. Appl. Phys. 83: 270.

Fischetti M.V. 1999. Phys. Rev. B 59: 4901.

Frensley W.R. 1992. Superlattices and Microstructures 11: 3470.

Fry PW., Itskevich LE., Mowbray D.J. er al. 2000. Phys. Rev. Lett.
84: 733.

Grubin H.L., Buggeln R.C., and Kreskovsky J.P. 2000. Superlattices
and Microstructures 27: 533.

Grundmann M., Stier O., and Bimberg D. 1995. Phys. Rev. B 52:
11969.

Grundmann M., Stier O., and Bimberg D. 1999. Phys. Rev. B 59:
5688.

Hackenbuchner S., Sabathil M., Majewski J.A., Zandler G., Vogl P,,
Beham E., Zrenner A., and Lugli P. 2001. Proc. 12th Int. Conf. on
Nonequilibrium Carrier Dynamics in Semiconductors, Santa Fe,
2001, also appear Physica B.

Jones W. and March N.H. 1973. Theoretical Solid State Physics.
Wiley, Vol. 2.

Klimeck G., Lake R., and Blanks D.K. 1998. Phys. Rev. B 58: 7279.

Kumar A., Laux S.E., and Stern E. 1990. Phys. Rev. B 42: 5166;
Laux S.E. 1987. In: Miller J.J.H. (Ed.), Proc. 5th Int. Conf. on
Numerical Analysis of Semiconductor Devices and Integrated
Circuits (NASECODE V), Boole, Dun Laoghaire, Ireland,
pp- 270-275.

Lake R., Klimeck G., Bowen R.C., and Jovanovic D. 1997. J. Appl.
Phys. 81: 7845; Project “NEMO”, http://www.cfdrc.com/nemo/
index.html.

Laux S. and Fischetti M. V. Presented at this conference, unpublished.

Lent C.S. and Kirkner D.J. 1990. J. Appl. Phys. 67: 6353.

Pryor C. 1999. Phys. Rev. B 57: 7190.

Pryor C. 1999. Phys. Rev. B 60: 2869.

Pryor C., Kim J., Wang L.W., Williamson A.J., and Zunger A. 1998.
J. Appl. Phys. 83: 2548.

Selberherr S. 1984. Analysis and Simulation of Semiconductor De-
vices. Wien, Springer.

Trellakis A., Galick A.T., Pacelli A., and Ravaioli U. 1997. J. Appl.
Phys. 81: 7880.

Van de Walle C. 1989. Phys. Rev. B 39: 1871.




Journal of Computational Electronics 1: 8§7-91, 2002

V]
B ore .
(© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Simulation of Field Coupled Computing Architectures Based on Magnetic
Dot Arrays
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Abstract. In this paper, we demonstrate that field-coupled nanomagnets can be used for digital information
processing. The operation of logic devices is based on a QCA-like architecture, where information propagates by
magnetostatic interaction between individual magnetic dots. Micromagnetic simulations indicate that simple logic
gates function properly. Efficient design tools, based on the single-domain approximation are developed.

Keywords: magnetic nanocomputing, QCA, micromagnetic design, SPICE

1. Introduction

Magnetic data storage research is currently exploring
the possibilities of storing a single bit of information
in a single-domain ferromagnetic particle. Magnetic
interaction between these particles might cause the
loss of information which, of course, is an undesir-
able characteristics in a storage device. In this paper,
we will show, how one can take advantage of such
interactions and how to utilize them for information
processing.

The architecture is based on the idea of Field-
Coupled Computing, i.e. using electric or magnetic
interaction between nanosystems to perform compu-
tational tasks. This is similar to the Quantum-Dot Cel-
lular Automata (QCA) concept, which was originally
proposed for Coulomb-coupled quantum dots (Lent
et al. 1993). Several nanosystems have been studied
as building blocks of QCA: Single-Electron QCA’s
have already been demonstrated (Snider ef al. 1999),
molecular structures have been proposed, and the fea-
sibility of magnetic QCA was experimentally verified
(Cowburn and Welland 2000).

Here, we give the first overview of the design of
nanomagnetic logic devices. We will introduce the ‘adi-
abatic control’ of magnetic nanostructures, and pro-
pose that appropriate external field control can reliably
put the nanomagnet system into the desired state. We
will present micromagnetic simulations of functioning

devices, and use the single-domain approximation as a
design tool.

2. The Classical Theory of Micromagnetics

This well-known theory exhaustively describes the
behavior of ferromagnetic materials, if the size and
time scale of interest is large enough that quantum-
mechanical effects (i.e. the exchange interaction) can
be treated quasi-classically. This quasi-classical ap-
proach works for spatial dimensions larger then few
nanometers, and times longer than picoseconds. The
Landau-Lifshitz equation describes, how the magneti-
zation M(r, t) changes under the influence of an effec-
tive field Heg(r, ¢):

AM(r, ¢ «
;t ) _ —yM(r, 1) x Heg(r, 1) — A—/I%[M(r, 1)

X M(r, ) X He(r, )] ey

Where y is the gyromagnetic ratio, « is the damping
constant and M is the saturation magnetization of the
material (Hubert and Schafer 1998). The effective field
consists of four parts:

Heff(r7 t) = Hdip(r’ t) + Hext(r’ t) + Hexch(r’ t)
+ Hanis(ra t) (2)
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Hyip(r, 1) represents the dipole-dipole interactions and
H..(r, r) denotes the external magnetic field. Both are
‘real’ magnetic fields, which result from the solution of
Maxwell’s equations. H,an(r, r) models the exchange
interactions between the moments, and is proportional
to the Laplacian of the magnetization. H,;s(r, t) takes
into account the anisotropic nature of the material. This
system of coupled partial differential equations almost
always calls for numerical solutions. There are several
software packages available for this task (Donahue and
Porter 1999). The steady-state solution for larger (typ-
ically micron or bigger) bulk materials is a magnetic-
domain structure.

3. Application to Nanomagnets:
The Single-Domain Approximation

If the typical size of the nanomagnet is smaller than
the single-domain limit, then the exchange field usu-
ally overwhelms the dipole field, thus forcing a par-
allel alignment of magnetic moments inside the par-
ticle. The single-domain limit for a cubic permalloy
particle is about 50 nm. If this approximation is ap-
plicable, then the magnetization of a particle can be
represented by a single vector (three scalar numbers),
instead of a vector field. This results in a significant
simplification for the qualitative understanding of the
behavior of the particle, and the numerical simulation
of dots becomes much easier. Moreover, the behav-
ior of the single-domain particle becomes much more
predictable, unlike the complex switching characteris-
tics of a multi-domain particle with its complicated de-
pendence on the ‘history’ of its magnetization. Single-
domain particles have a very simple hysteresis loop,
with a well defined switching field.

A nanomagnet logic device consists of a finite num-
ber of dots. Denoting the average magnetization and
effective field of the i-th dot by M®(r) and HY)(1) re-
spectively, the magnetization vector obeys the follow-
ing equation of motion:

de(!)
dt

= —yMO() x H(1)
_ 52’_[

5

M (1) x MD(e) x Hf:if)f(t)] @)

These are three ordinary differential equations for each
dot. The effective field is given by:

H{ () = HO(1) + NOMO(r) + Z Ci;MY(1)
Jjencighbors

C))

It consists of three parts: the first is the external field,
the second is the self-demagnetization field which de-
pends on the shape of the nanomagnet, and the third
part describes the interaction with neighboring dots.
N is a matrix containing three scalar numbers:

Ni 0 0
NO=10 N © 5)
0 0 N

The above system of ODE-s is just one possible form
of the single-domain approximation (or the so-called
Stoner-Wohlfarth model (Hubert and Schafer 1998)).
The matrices N and C are given for various approxima-
tions, see Hubert and Schafer (1998), Cowburn et al.
(1999) and Stamps and Hillebrands (1999) for details.

There is still some debate in the literature under what
conditions the single-domain approximation is valid,
and when it breaks down. We performed most of our
simulations both with and without the single-domain
approximation, and ‘a posteriori’ verified its validity.
Our calculations gave the same results (typically, with
less than 10% deviation), however, the single-domain
approximation often overestimates the switching fields.
All the simulations used the material parameters for
permalloy.

4. The Nanomagnet as Bistable Switch

Let us consider now a pillar-shaped single domain
nanomagnet, as schematically shown in Fig. 1. Due to
the strong shape anisotropy (N. < N,, N,), the mag-
netization of a dot in steady state is always paraliel with
its longest axis, here pointing upwards or downwards.

z T

(a) (b)

Figure 1. A single nanomagnet pillar (a) and its two stable magne-
tization states (b).
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In logical sense, this dot is a bistable switch, and stores
one bit of digital information. We assign the logical
value ‘1’ to the magnetization pointing up, and ‘0’ for
magnetization pointing down. The miniaturization of
the magnets is ultimately restricted by the fact that their
switching energies have to be larger than &7, and their
switching speed is limited by the precession frequency.
These restrictions still yield an impressive integration
density of 10'° cm™2, and speed in the GHz regime.
Storage architectures address all dots individually by a
read-write head or metallic wires.

5. Adiabatic Control of Magnetic
Nanostructures: The Nanowire

A line of magnetically-coupled permalloy pillars can
be thought of a magnetic nanowire.

Let us assume, that the leftmost pillar is pinned, i.e.
its magnetization is fixed, and pointing up. We can con-
sider the dipole chain as an inverter-chain in the logical
sense (Fig. 2). If we can guarantee that the wire is in its
ground state, it transmits binary information from its
input to its output, and the state of every dot in the wire
is determined by the input. Note that in the physical
structure, the input dot is slightly thinner than the other
dots, resulting in a higher switching field for this dot.

In order to move the wire from an arbitrary initial
state to its ground state, we use adiabatic control by
external fields. The details of this process are shown
in Fig. 3. In the first phase, an external field is applied
which is able to switch every dot, except for the input
dot (which has a higher switching field, as discussed
above). By the end of the first phase, the ‘memory’ of
the structure is erased: the magnetic moments of the

a)

‘1’|

b)

Figure 2. The physical structure of the inverter (a) and its logic
equivalent (b).
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Figure 3. Adiabatic pumping of the nanowire. The initial meta-
stable state (a) eliminated by a strong external field (b). Slowly
releasing the field (c), the system relaxes to the zero-field ground
state (d).

wire dots are in line with the strong external field, re-
gardless of their previous state. In the second phase, this
external field is slowly released. In this phase, the mo-
ments order according to the state of the first dot, which
retained its magnetization. The term ‘adiabatic con-
trol’ is used since the dots always remain close to their
ground state during the second phase. As no preces-
sion of the magnetization vector occurs, complicated
nonlinear dynamics are suppressed. The results of the
micromagnetic simulation (shown in Fig. 3) agree well
with the qualitative expectations.
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Figure 5. The equivalent-circuit model of a single nanomagnet dot.

The possibility of adiabatic control in magnetic
nanostructures is onc of the main results of our work.
We think that even in large-scale arrays. not only
the statistical propertics of the system. but the mag-
netization state of individual dots can be reliably
controlled.

6. Toward More Complex Structures:
Majority Gate

The majority gate is a threc-input, universal logic gate.
which can realize basic logic functions. as schemati-
cally shown in Fig. 4. An OR gate is realized by setting
its control input to ‘1’ and it behaves as an *AND’
gate by setting the control input to ‘0°. The majority
gate can be operated by the same ‘adiabatic pumping’
scheme as the wire. In the ground state, the central dot
is antiparallel with the majority of input dots. Since
the interaction between diagonally adjacent dots might
have undesired effect on the operation of the device,
the design requires more care than for a single wire.
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Figure 6. SPICE—simulation: the z-component of magnetization in a nanowire (in M, units). The phases (a). (b). ... corresponds to the stages
in Fig. 3. The dashed linc is the external control field.
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The logic blocks presented above (inverting wire,
majority gate), in principle, are sufficient for building a
logic device of arbitrary complexity. Another degree of
freedom is that nanomagnets with different shapes have
a different response to external magnetic fields. There-
fore, a homogenous external field can ‘target’ specific
groups of similarly-shaped nanomagnets in a larger ar-
ray. Our calculations show that we can take advantage
of this fact for clocking the circuit by external fields,
and realizing sequential circuits this way.

The realization of basic nanomagnet arrays appears
feasible, given the technological base for data stor-
age applications. The maximum possible complexity
of nanomagnet networks mostly depends on the er-
ror tolerance of the design. Work on this issue is in
progress.

7. Design Tools: The Circuit Model
of Nanomagnets

An important result of our work is that nanomagnet
logic devices can be designed with methods similar
to electronic circuits. To fully exploit this analogy, we
present a circuit model for nanomagnet dots.

We can identify the magnetization-vector compo-
nents of each nanomagnet as a formal voltage, which
obeys the differential Egs. (3) and (4). Then, these equa-
tions are formally equivalent to the voltage change on
a capacitor which is charged by current sources given
by the right-hand sides of Egs. (3) and (4). In this fash-
ion, Egs. (3) and (4) can formally be represented by a
circuit, as schematically shown in Fig. 5.

Now we can use standard circuit-simulation tools,
such as SPICE for micromagnetic design. Figure 6
shows the results from a particular nanowire-
simulation. We can look at M, as an electric signal
in a real circuit.

8. Summary and Outlook

We proposed coupled ferromagnetic dots as possible
building blocks for magnetic QCA-like nanocomput-
ers. Carefully applied external fields make possible the
individual, precise control of the state of nanomagnets
inside a larger array. Starting from the micromagnetic
equations, we have shown operating logic devices, and
developed design tools for easily simulating them. Our
work suggests that nanomagnets are promising candi-
dates not only for nonvolatile information storage, but
also for nanocomputing as well.
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Abstract. The open-boundary planar supercell stack method treats three-dimensional quantum transport in meso-
scopic structures in a numerically stable and efficient manner. The method formulates quantum mechanical scattering
problems for the supercell geometry as sparse linear systems, which can be solved by iterative methods. Recent
improvement in the solution algorithm using a seven-diagonal pre-conditioner has resulted in over two orders
of magnitude of numerical acceleration, bringing more flexibility in the range of problems that can be solved. We
demonstrate the effectiveness of the seven-diagonal pre-conditioning algorithm by applying it to the studies of inter-
face roughness in double barrier resonant tunneling structures and tunneling characteristics of n* poly-Si/SiO/p-Si
with ultra-thin oxides undergoing dielectric breakdown.
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1. Introduction interfacial inhomogeneities in double barrier reso-

nant tunneling diodes can induce lateral localization

The exactly solvable, real-space, open-boundary pla-
nar supercell stack method (OPSSM) has been ap-
plied to a variety of topics involving three-dimensional
quantum transport in mesoscopic devices (Ting 1999a).
The method was designed for studying elastic scat-
tering effects due to impurities, interface roughness,
and alloy disorder in our studies of 2D (double bar-
rier heterostructures), 1D (quantum wires electron
wave guides), and 0D (quantum dots) mesoscopic de-
vice structures. OPSSM studies have demonstrated:

of wave functions (Ting, Kirby and McGill 1994),
strongly attractive impurities can produce additional
transmission resonance (Kirby, Ting and McGill 1993),
clustering effects in alloy barriers can reduce barrier ef-
fectiveness, and surface roughness in quantum dots can
cause large fluctuations in transmission characteristics
(Kirby, Ting and McGill 1994). In addition, OPSSM
has also been used to study resonant tunneling via
self-organized quantum dot states (Wang er al.
1998), and interface roughness effects (Ting 1998)
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and dielectric breakdown (Ting 1999b) in n* poly-
Si/Si0,/p-Si tunnel structures containing ultra-thin ox-
ide layers. In this paper, we present the results of our
recent work on numerical acceleration. These new im-
plementations have led to up to two orders of magnitude
gains in computational efficiency, greatly extending the
range of applicability of OPSSM.

2. Method

The generic device structure treated by OPSSM con-
sists of a slab of active region sandwiched between
two semi-infinite, homogeneous, flat-band electrode
regions. The active region is described by a stack of
planar supercells that can take on quasi-3D variations.
Let the z-axis be the direction of current flow. Then
the active region is composed of a stack of N. layers
perpendicular to the z-direction, with each layer con-
taining a periodic array of rectangular planar supercells
of N, by N, sites. Within each planar supercell, the po-
tential assumes lateral variations as dictated by device
geometry. A one-band nearest-neighbor tight-binding
Hamiltonian is used to describe the potential and effec-
tive mass variations over this volume of interest (Ting
1999a).

OPSSM formulates quantum mechanical scattering
problems for supercell geometries as a complex, non-
Hermitian, sparse linear system Ax = b. Here A is the
Hamiltonian matrix, augmented by special terms rep-
resenting opening boundary conditions; x is a vector
containing the coefficients of the tight-binding orbitals
{which is equivalent to the envelope function in the
effective mass approximation); and b is a vector de-
scribing the open boundary condition (Ting 1999a).
As the order of the linear system (N, x Ny x N.) can
be quite large, direct solution methods are impracti-
cal since the LU factorization of A is almost dense,
requiring computational times that are proportional to
N2} x N} x N., which is prohibitively expensive for all
but the smallest supercells. However, the linear sys-
tem can be solved iteratively using the Quasi-Minimal
Residual (QMR) method (Freund and Nachtigal 1991,
1996), which is capable of treating non-Hermitian sys-
tems. As with other iterative methods, the conver-
gence behavior and efficiency of QMR depends on the
eigenvalue spectrum of A. In some cases QMR may
not work or may converge too slowly to be practical.
These problems can be greatly ameliorated by em-
ploying a good pre-conditioner (Freund and Nachtigal

1991, 1996). The idea is to use a pre-conditioning ma-
trix M to transform the original problem into an cquiv-
alent one (M~'A)x = M~'b. The transformed linear
system has the same solution as before. but can have a
completely different eigenvalue spectrum. which could
be much easier to solve than the original problem. The
ideal pre-conditioner M should be easily invertable.
and should approximate A4 is some sense. (Note that if
M = A, the problem is solved.) While the inversion of
M introduces additional computation, for good choices
of M, however, the transformed problem can be solved
in significantly less number of iterations than the orig-
inal one. While there are general techniques, such as
the incomplete LU factorization (Meijerink and van der
Vorst 1997, Chan and van der Vorst 1997), for generat-
ing pre-conditioners for general sparse matrices, there
is still a practical need for pre-conditioning techniques
that can take advantage of the specific features of a par-~
ticular problem class. Obviously, the more knowledge
we have of the special features, the better we could ex-
ploit it to in the construction of a good pre-conditioner.
In this work, we present the results from the appli-
cation of a seven-diagonal pre-conditioner (Cao un-
published), which appears to be well suited to our
system.

The design of seven-diagona! pre-conditioner is
based the structure of the sparse matrix A, which we
briefly describe here and refer reader to Ting (1999a)
for details. There are several ways the non-zeros are
introduced in the matrix A. Intra planar supercell in-
teractions (on-site and nearest neighbor) give rise to
five non-zero diagonals in A. Interactions connecting
adjacent planar supercells contribute to two diagonals.
In-plane supercell periodicity generates four sparsely
populated diagonals. And finally, the open boundary
conditions introduce two dense blocks near the upper
left and lower right corners of A. To achieve both effec-
tiveness and efficiency, we choose to ignore the dense
blocks in constructing a pre-conditioner. Taking ac-
count of these dense blocks in M could make M harder
to factorize. Because they arise from open boundary
conditions associated with incident, reflected and trans-
mitted plane waves, rather than the mesoscopic struc-
tures, we assume that they do not affect the eigenval-
ues of A as much as the rest of the non-zeros. Due to
the nature of the open boundary condition, the dense
blocks are related to discrete Fourier transform. They
are well-conditioned, and do not need to be explic-
itly generated in order to perform the matrix-vector
multiplication A v for any given vector v, which is an
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operation required at each iteration step of the QMR
solver. The inclusion of the dense blocks in M would
also have made it more costly to multiply M~! to arbi-
trary vectors. The pre-conditioner is thus constructed
from A by ignoring the dense blocks and the four sparse
diagonals generated by planar supercell periodicity. Ef-
fectively, M represents a 7-diagonoal pre-conditioner
of A, even though A itself has many more non-zeros in
addition to these 7 diagonals. We setM = LU ,where L
and U are lower and upper triangular matrices, respec-
tively, so that L + U has the same non-zero pattern as A
except those dense blocks. The non-zeros of L and U
are generated in the way that mimics the in-complete
LU factorization of A sans dense blocks and sparse
diagonals. The application of this pre-conditioner
turns out to be very effective, as shown in the next
section.

3. Results and Discussions

Figure 1 illustrate the performance gains achieved us-
ing a 7-diagonal pre-conditioner in typical applications
involving the studies of interface roughness effects
in GaAs/AlAs double barrier resonant tunneling
heterostructures (Ting, Kirby and McGill 1994). The
supercell stack consists of N, = 26 layers, and the size
of the planer supercell is 64 x 64. We plot the
computed transmission coefficient and the number
of iterations required for reaching convergence over
an energy range of interest, using both non-pre-
conditioned and pre-conditioned algorithms, and with
different convergence tolerances. Cutoffs of 10,000
and 50,000 iterations are imposed to limit the total
run time. In general, we find that the number of
iterations required to reach convergence increases with
increasing incoming electron energy, or decreasing
deBroglie wavelength. Without pre-conditioning,
almost all points in the spectrum with energy greater
than the resonance energy fail to converge within
50,000 iterations. The application of the 7-diagonal
pre-conditioner substantially reduces the number of
iterations required to reach convergence. As a result,
very few points in the spectrum failed to converge.
Figure 2 shows application to the study of ultra-thin
oxide tunnel structures with embedded nano-filaments
as a model of dielectric breakdown (Ting 1999b). The
supercell stack consists of N; = 37 layers of 64 x 64
planer supercells. In this case, convergence was reach
within the limit of 60,000 iterations for all cases. How-
ever, without pre-conditioning, more than half of points
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Figure 1. Tunneling calculation for a GaAs/AlAs double barrier
structure with interface roughness are performed with and without
preconditioning, using different convergence tolerances and limits on
iteration numbers. The upper panel shows transmission coefficient
spectra, and the lower panel shows convergence iteration counts.

required 60,000 iterations. With pre-conditioning,
all except for 2 points converged in fewer than 400
iterations. Table 1 summarizes the timing results for
some typical applications, and documents the degree of
numerical acceleration resulting from the application
of the 7-diagonal pre-conditioner. The combination of
a suitable pre-conditioner and a more judicious choice
of convergence tolerance resulted in almost a 300-fold
speed-up in large supercell applications.

With over two orders of magnitude of numerical ac-
celeration, we are now able to obtain more accurate
results by using larger supercells. Previously, calcula-
tions of interface roughness effects on resonant tunnel-
ing properties of double barrier heterostructures were
performed using modestly sized (20 x 20 or 32x32)
planar supercells (Ting, Kirby and McGill 1994, Ting
and McGill 1996). The resulting transmission spec-
tra always contained satellite peaks above the main
resonance. While these satellite peaks were very useful
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Figure 2. Tunncling calculation for an ultra-thin oxide layer em-
bedded with nano-filaments under two biasing conditions are per-
formed with and without preconditioning, using different conver-
gence tolerances and limits on iteration numbers. The upper pancl
shows transmission cocfficient spectra. and the lower panel shows
convergence iteration counts.

in clarifying the interface roughness assisted resonant
tunneling mechanism, they are also identified as ar-
tifacts induced by the periodic boundary condition
associated with the finite supercell (Ting, Kirby and
McGill 1994). Ting, Kirby and McGill (1994) sug-
gested that the use of larger supercells could suppress
these artifacts. However, previous attempts plagued
by convergence problems, as is evident from the
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Figure 3. Transmission cocfficient spectra of GaAs/AlAs double
barricr structure computed using various supercell sizes. Numerical
acceleration by pre-conditioning made large supercell calculations
possible, thus enabling the reduction of artifacts due to supercell-
periodic scattering.

non-preconditioned results in Fig. 1, which shows
that the 64 x 64 results are not usable due to lack
of convergence. Figure 3 shows transmission coeffi-
cients calculated for three different planar supercell
sizes (16 x 16, 32 x 32, and 64 x 64) using the 7-
diagonal pre-conditioner. The finite supercell artifacts
in the 16 x 16 and 32 x 32 results have essentially dis-
appeared from the 64 x 64 result.

Table 1. Speed-up obtained in typical 3D scattcring calculations with a 7-diagonal pre-conditioncer.

No pre-conditioner 7-Diagonal preconditioner Speed-up
DBH 16 x 16 x 26 8.92h 1.66 h 5.4
DBH 32 x 32 x 26 208.7 h 176 h 12
DBH 64 x 64 x 26 151t h 283.2h >5
(Poor convergence) (Good convergence)
MOS 64 x 64 x 37 1618.5 h 23.2h 70
(Tol = 1E-10)
MOS 64 x 64 x 37 1618.5 h 57h 284

(Tol = 1E-10)

(Tol = IE-7)
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In summary, we demonstrated over two orders of
magnitude of numerical acceleration in our solution
algorithm of 3D quantum mechanical scattering code
by using a seven-diagonal pre-conditioner. The im-
provement brings more flexibility in the range of quan-
tum device modeling problems that can be solved
numerically.
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Numerical Investigation of Shot Noise between the Ballistic
and the Diffusive Regime
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Abstract. We investigate shot noise suppression in several mesoscopic structures by means of a numerical ap-
proach based on the computation of the transmission matrix with the recursive Green’s function method. We retrieve
the “universal” values of the suppression factor obtained with random matrix theory for chaotic cavities and diffusive
conductors. We then extend the investigation to more complex structures, such as multiple cascaded cavities and
partially diffusive systems, and discuss the consequences on the shot noise suppression factor. Finally, we analyze
the behavior of shot noise in an electron waveguide containing a large number of scatterers as the spatial position

of the scatterers is changed from a regular array to a random distribution.

Keywords: shot noise, mesoscopic, chaos, ballistic

1. Introduction

During the last few years remarkable theoretical
(Lesovik 1989, Biittiker 1990, Beenakker and Biittiker
1992, Jalabert, Pichard and Beenakker 1994, Gonzalez
et al. 1998) and experimental (Kumar ez al. 1996,
Liefrink er al. 1994, Oberholzer et al. 2001) results
have drawn significant attention to the issue of shot
noise suppression in mesoscopic conductors. The most
recent theoretical work in this field has been based
on the random matrix approach (RMT), which has al-
lowed prediction of the shot noise suppression down
to 1/3 of the full shot value in diffusive conductors
(Beenakker and Biittiker 1992) and of the suppres-
sion down to 1/4 in chaotic ballistic cavities (Jalabert,
Pichard and Beenakker 1994). The RMT approach is
quite powerful, but it cannot be easily extended to
generic geometries; we have been interested in expand-
ing the investigation of shot noise suppression to arbi-
trary mesoscopic structures, and, to this purpose, we
have developed a numerical method based on an opti-
mized recursive Green’s function technique. With this
method, we can treat generic structures, with the inclu-
sion of the effects of atomistic distributions of dopants
leading to a diffusive regime, and we can handle situ-
ations with a few hundreds of propagating modes. It is

possible to show that the “universal” suppression fac-
tors 1/3 and 1/4 are easily retrieved, respectively, for
a conductor with a large enough density of elastic scat-
terers and for a structure with a symmetric cavity with
small enough input and output apertures. We study shot
noise in nanostructures containing single and multiple
cascaded cavities, noticing that the shot noise suppres-
sion is substantially independent of the number of cav-
ities, and then take into consideration the case in which
one of the cavities is filled with randomly distributed
scatterers, arguing, on the basis of a simple circuit anal-
ogy, why the shot noise reduction factor becomes the
same as for purely diffusive conductors. Finally, we in-
vestigate the transition that shot noise suppression in
an electron waveguide containing a large number of
scatterers undergoes as we move from a regular spatial
distribution of such scatterers to a random distribution.

2. Model

Although our approach is general and can be applied
to an arbitrary potential landscape, we consider, for
the sake of computational simplicity, a device geom-
etry defined by hard walls, with obstacles and bound-
aries characterized by right angles. The transmission
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matrix t, whose elements represent the transmission
coefficient from each input mode to each output mode,
is computed by means of the recursive Green’s func-
tion approach (Sols et al. 1989, Macucci, Galick and
Ravaioli 1995), which has been specifically optimized
to guarantee sufficient numerical precision when han-
dling up to a thousand of the slices characterized by
constant transverse potential into which the structure
has to be subdivided for the calculations that we will be
presenting. Once ¢ has been obtained, we compute the
transmission coefficients in a representation in which
the transmission matrix is diagonal, multiplying ¢ by its
hermitian conjugate +' and finding the eigenvalues T;
of tt1. Following Lesovik (1989) the shot noise power
density can be written as

2
q
Y =47|qV|'ZT,-<1 —-T), )

where /1 is the Planck constant, g is the electron charge
and V is the applied voltage. Since the power spectral
density of full shot noise is

2q2
Si, =2ql=2(/T|V|Zi:Ti» ©)

we can conclude that the Fano factor y, i.e. the ratio of
the actual shot noise power spectral density to the full
shot noise, is given by

2T =T
CONT

which can be immediately evaluated once the T; coef-
ficients are known.

3)

3. Numerical Results

We have first investigated the shot noise suppres-
sion in chaotic cavities (defined by apertures that are
much narrower than the cavities themselves), retrieving
(Macucci, lannaccone and Pellegrini 2001) the value of
1/4 for the Fano factor, as predicted by Jalabert et al.
(1994), if the number of propagating modes is larger
than about 20. We have then studied a more complex
structure, made up of two cascaded cavities, each 5 um
long, created in an electron waveguide with a width of
5 pm by delimiting them with diaphragms 250 nm
thick and 1 um wide, as shown in the inset of Fig. 1.
We report the Fano factor for this structure in Fig. 1 as

Fano factor
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Figure 1. Fano factor for two cascaded chaotic cavities as a func-
tion of the Fermi encrgy. expressed in units of the threshold Eyp for
propagation of the Jowest mode in the empty waveguide. The inset
contains a graphic representation of the confinement potential.

a function of the Fermi energy (expressed as a multi-
ple of the threshold energy E for propagation of the
lowest mode in the empty waveguide), and notice that
the average value is around 0.25, as in the case of a
single cavity. The structures we are studying are rel-
atively large, in order to allow propagation of a suf-
ficiently large number of modes, to be in the regime
in which the “universal” suppression factors are mean-
ingful (Beenakker and Biittiker 1992).

We have also computed the Fano factor for three
cascaded cavities, obtaining results that, although with
larger fluctuations, are almost coincident with those
for two cavities. The same happens for larger numbers
of cascaded cavities, and even if we include interme-
diate diaphragms with different widths, as long as the
rightmost and the leftmost apertures are symmetric. We
notice that the actual shot noise suppression factor fluc-
tuates rather widely as a function of the Fermi energy
for all of the numerical results, and equals the asymp-
totic value predicted by random matrix theory only on
the average.

A qualitatively different behavior is however ob-
served if at least one of the cascaded cavities is filled
with randomly distributed obstacles, which lead to a
complex scattering pattern and to transport in the dif-
fusive regime, i.e. a condition in which the elastic mean
free path is much smaller than the device dimensions.
In Fig. 2 we report the noise power spectral density as a
function of the Fermi energy for two cascaded cavities,
each with a length of 5 um and a width of 5 um, delim-
ited by constrictions that are 1 um wide and 0.25 um
long. Within the cavity region we have included 200
randomly distributed hard-wall 56.2 nm x 50 nm ob-
stacles. Although the cavity is delimited by symmetric
apertures, the Fano factor moves up to slightly less
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Figure 2. Fano factor for two cascaded chaotic cavities, one of
which is filled with randomly distributed scatterers, as a function of
the Fermi energy, expressed in units of the threshold Ey for propaga-
tion of the lowest mode in the empty waveguide. The inset contains
a graphic representation of the confinement potential.

than 1/3, significantly departing from the 1/4 result
and reaching a typically diffusive behavior. The inset
in the figure shows the device geometry, with the posi-
tion of the obstacles.

An extremely simplified interpretation of this behav-
ior can be derived from a circuit analogy. Let us con-
sider a series of two current noise sources, with power
spectral densities S, and Sj,, providing contributions
of the same order of magnitude (as they are both of shot
origin and share the same average current) and associ-
ated with different resistances R; and R, each of which
is in parallel with the corresponding current noise
source. If we want to determine the current noise power
spectral density S, ,, they produce on an external load
R, weobtain S;,, = (S, R? + S, R2)/(R1 + Ry + R)?,
therefore the predominant contribution is the one as-
sociated with the larger resistance, which in our case
corresponds to the diffusive region. Clearly, this is not
an exact analogy, because the electron waveguide sec-
tions do not rigorously correspond to circuit elements
in series, although the presence of a diffusive region
has a strongly decoupling action between the different
sections.

Another interesting aspect of the transition from bal-
listic to diffusive transport can be observed by applying
our computational method to a quantum wire contain-
ing scatterers and looking at the dependence of the shot
noise suppression factor on the position of such scatter-
ers. If we have a regular pattern of scatterers, arranged
in a square lattice, it has been shown (Macucci in press)
that, at least for relatively small numbers of scatterers,
shot noise is suppressed by a factor increasing with the
portion of the waveguide surface occupied by the scat-
terers and saturating around 0.16. On the other hand, we
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Figure 3. Fano factor for an electron waveguide filled with a square
lattice of scatterers, as a function of the Fermi energy, expressed in
units of the threshold Eo for propagation of the lowest mode in the
empty waveguide. The inset contains a graphic representation of the
confinement potential.

know that, for a large number of randomly positioned
scatterers, shot noise is suppressed by the universal fac-
tor 1/3 (Macucci, Iannaccone and Pellegrini 1999). We
have performed a calculation of the Fano factor for a
section of electron waveguide containing a very large
number of square obstacles (570), each with a side 200
times smaller than the waveguide width, for two cases
differing for the spatial arrangement of the scatterers,
but not for their density. In one case we have a regu-
lar square lattice, with 19 rows and 30 columns, in the
other case we gencrate the coordinates of the scatterers
as randomly distributed variables over the same region
of space. Results are shown in Fig. 3 (for the square lat-
tice) and in Fig. 4 (for the random case), in which we
report the Fano factor as a function of the Fermi energy,
expressed as a multiple of the energy for propagation of
the lowest mode in the empty waveguide. Each figure
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Figure 4. Fano factor for an electron waveguide filled with ran-
domly distributed scatterers, as a function of the Fermi energy, ex-
pressed in units of the threshold Eq for propagation of the lowest
mode in the empty waveguide. The inset contains a graphic repre-
sentation of the confinement potential.
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contains an inset showing the position of the obstacles
within the waveguide. It is apparent that, although the
density of scatterers is the same in the two cases, the
noise suppression sharply differs: for the regular lattice
we observe an average value of the Fano factor around
0.1, which, considering the relatively low scatterer-to-
waveguide area ratio, is in good agreement with the
results obtained in Macucci (in press); when, instead,
scatterers are distributed randomly, the 1/3 “univer-
sal” suppression factor predicted by random matrix
theory (Beenakker and Biittiker 1992) is immediately
retrieved.

4. Conclusions

We have investigated shot noise suppression in meso-
scopic conductors in a regime that varies from ballis-
tic, with the inclusion of simple scattering geometrics,
to diffusive, observing how the shot noise suppression
factor varies and fluctuates around the “universal” val-
ues 1/4 and 1/3 for the chaotic cavitics and for the
diffusive regime, respectively. We have also observed
that the 1/4 suppression factor is not influenced signif-
icantly by the characteristics and number of cascaded
chaotic cavities, as long as the leftmost and rightmost
apertures are of the same width. Furthermore, we have
shown that the presence of a diffusive region within
an electron waveguide leads to a Fano factor around
1/3 with little influence from the other geometrical de-
tails of the structure, and we have justified this result
on the basis of a simple circuit analogy. Finally, we
have investigated the change in the shot noise suppres-
sion factor in an electron waveguide, as the position of
a large number of scatterers is varied from regular to
random without varying their spatial density: a transi-
tion is observed from transport in a periodic structure to

the diffusive regime. Further work is planned to better
understand this transition as the scatterer arrangement
is gradually changed from regular to random and as a
function of the actual statistica! distributions used for
the scatterer coordinates.
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Abstract. Conventional ohmic boundary conditions are shown to be inconsistent with density-gradient (DG)
theory. New ohmic conditions that are consistent with DG theory are then derived and illustrated with two device
examples. The first example uses a short p-n diode to understand the basic situation while the second treats a
MOSFET contact and studies the “insulator proximity effect” seen at the point/edge where the ohmic contact abuts

an insulator.
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1. Introduction

Density-gradient (DG) theory is a well-known gener-
alization of diffusion-drift (DD) theory that enables
lowest-order effects of quantum mechanics to be in-
cluded in conventional device simulations (Ancona
and Tiersten 1987, Ancona and Iafrate 1989, Ancona
1990a). This theory has been applied to a variety of
device problems including inversion layer (Ancona
2000), SOI (Wettstein, Schenk and Fichtner 2001) and
heterostructure (Ancona 1990b) confinement, random
impurity effects in MOSFETs (Asenov et al. 2001) and
tunneling from semiconductors (Ancona et al. 2000)
and metals (Ancona 1992).

In steady-state the equations of DG theory govern-
ing electron and hole transport inside a semiconductor,
as expressed in terms of quasi-Fermi level variables,
are

V. (uunVe,)=—R,
A
V. [bnvs] - E(q)n + ¢no - W),

V- (uppVO,) =R (la)

V. [b,Vr] = %(—@,, + o+ ) (1b)
V(&VY¥)=qgn—p+ N, —Ny) (1c)

where s* = n, r*> = p, ®, and @, are the respec-

tive quasi-Fermi levels for electrons and holes, ¢,,(n)
and ¢,,(p) are the density-dependent parts of the elec-
tron and hole chemical potentials (which typically take
either Maxwell-Boltzmann or Fermi-Dirac form), b,
and b, measure the strengths of the gradient (quantum)
contributions to the electron and hole chemical poten-
tials and all other quantities have their usual meanings.
These governing equations of DG theory are 5 PDEs
forthe 5 variables ¥, n, p, ®, and ® ,. With appropriate
boundary conditions appended, they can be solved in
order to analyze a variety of device situations involving
quantum effects.

Of particular interest for this paper are the bound-
ary conditions used to represent ohmic contacts. Ohmic
BCs are peculiar in that their physical fidelity is almost
always unimportant. Instead of attempting to simulate
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the complex physics (including tunneling) of a low-
resistance metal-semiconductor junction, one is instead
generally satisfied merely to have simple, easily imple-
mented conditions that give good numerical behavior
with little added contact resistance. In DD theory—
which obtains from (1) when b, and b, vanish—the
usual conditions on the electron and hole quasi-Fermi
levels are

b, = (Dp = V() (2?1)

where V) is the applied voltage. Their equality implies
interfacial equilibrium with

Y=V - ¢pn(l)) = Vo + duo(n),
P = Peg»

(2b)
n= g,

of which conditions only one (on v} is needed to solve
DD boundary value problems.

2. Ohmic Boundary Conditions for DG Theory

The naive approach for handling an ohmic contact in
DG theory is simply to impose the DD conditions (2).
That this fails to work under all conditions is the main
point of this paper.

To derive consistent BCs, the standard field theoretic
approach is to employ integral forms of the governing
equations. To illustrate, the integral form of the force
balance equation on electrons is

fn-d>,,dS:/f,,dV (3a)
s v

where V is an arbitrary volume with surface §, n is
the outward normal vector on § and f, is the (drag)
force exerted by the lattice on the electrons (which in
the bulk is given by v,/u,). The BC associated with
(3a) is then derived by choosing V to be a Gaussian
pillbox bisected by the semiconductor-metal interface
and allowing the pillbox to collapse to the interface.
Doing so, we find that ¢, must be continuous if the
interface exerts no force on the electrons (as should be
the case for an ohmic contact) so that the right hand side
of (3a) gives no contribution in the limit. Employing
a similar argument for holes, we find that &, is also
continuous across the ohmic interface and thus have
shown that the DD ohmic BCs of (2a) are consistent
with DG theory.

Proceeding in a precisely analogous fashion, we next
derive a consistent condition on the electron density for
DG theory by starting from the integral form of (1b):

/n - [byVs]dS =/ %(Cbu — @ — YAV (3b)
s v

Again applying this to a Gaussian pillbox and taking
the appropriate limits, we obtain

n-vs=0 (4a)

where we have assumed the metal is ideal so that its
carrier density is uniform and that the electron density
in the semiconductor remains bounded as the limit is
taken. A similar Neumann condition may also be de-
rived for the holes

n-vr=0 (4b)

These derivations show that for consistency with DG
theory the BCs on the carrier densities at an ohmic
contact should be Neumann rather than Dirichlet as in
the DD BCs in (2b).

Now it is true that under most circumstances (see
below) the electrostatics will constrain the majority
carrier density—say, holes—forcing quasi-charge neu-
trality with p = N,. This implies that if one uses the
DD ohmic BC on p in (2b), (4b) will still be satisfied
and little error will accrue. However, the electrostatics
imposes no such constraints on the minority carriers
(electrons) and so enforcing the DD condition n = n.,
will lead to a violation of (4a) whenever DG (quan-
tum) effects are significant near the contact. This in-
consistency is also evident in the fact that in DG theory
Neg 7 N2/ Pey-

Finally, in DD theory the conditions on ¥ in (2b)
come directly from (2a) and the definitions of ¢, and
¢,,.' In DG theory neither of these conditions will be
strictly valid because they are absent the gradient cor-
rections demanded by (1b). Nevertheless, the condition
on ¥ derived from the majority carriers (holes), i.e.,
¥ =V ~@,.(p), will usually be well satisfied because
again the electrostatics forces the majority carrier den-
sity to vary slowly.

3. Example: Short pn Diode

If the minority carrier diffusion length in the region
contacted ohmically is comparable to the size of the
region, then minority carrier current will be significant
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and the proper handling of the ohmic BC for minority
carriers will be critical. We therefore examine the case
of a short pn diode, i.e., one for which L < /D, using
a general-purpose 1-D DG solver. In Fig. 1 we com-
pare the density profiles computed using DG theory
with conventional ohmic BCs and with the new DG
BCs. The majority carrier profiles in Fig. 1(a) are grid
independent and, as expected, are nearly identical apart
from the slope at the contact. For the minority carriers
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Figure 1. (a) Profiles of the hole density in the p-type region of
a short pn diode showing good agreement in the treatment of the
majority carrier. The only significant difference is due to the DG BC
enforcing zero slope at the contact located at x = 100 nm. (b) Profiles
of the electron density in the p-type region of a short pn diode (contact
located at x = 100 nm) showing the inconsistency of the DD BCs in
their treatment of the minority carriers. The several DD BC (dashed)
curves differ only in the grids used in the calculations. The DG BC
instead gives the grid-independent result shown.
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Figure 2. The dependence on grid spacing of the DG-simulated
currents through a short pn diode. Note the large errors made if the
DD BCs are used especially when the minimum grid spacing is very
small.

(Fig. 1(b)) instead we find that the conventional ohmic
conditions give grid-dependent results, a clear sign of
their ill-posedness. The finer the mesh the narrower the
boundary layer over which the solution adjusts to meet
the inconsistent boundary condition and the worse the
solution gets. The new DG BCs are instead seen to
be well-behaved (i.e., give grid-independent solutions)
yielding the profile also shown in Fig. 1(b).

The crucial importance of the minority carrier con-
dition for the short diode is shown in Fig. 2 where we
compare the current densities at Vy = 0.5 V (forward
bias) for a number of different minimum grid spacings
(all grids are non-uniform with the finest grid spacing
occuring at the contact). The poor performance of the
conventional ohmic BCs is evident. Only at very large
grid spacings do these conditions start to give reason-
able results; in this case, discretization error is dom-
inating and the new DG BCs do not perform as well
because they have been discretized using a first-order
formula (in contrast with the PDEs that are treated to
second-order).

When the minority carrier diffusion length is de-
creased, bulk generation/recombination processes start
to equilibrate the minority carriers and the inconsis-
tency of the DD conditions (2b) has less impact be-
cause (i) the minority carrier density gradient is smaller
so that the DG corrections are reduced and (ii) the
contribution of minority carriers to the total current
(at the contact) is smaller and hence errors in their
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Figure 3. The effect of device size normalized by the diffusion
length on the errors in the currents in a pn diode (at the contact to the
p-region). When the device is large the majority carricrs dominate
and the error in the minority carrier current computed using the DD
BCs. though still present. is irrelevant.

treatment are less relevant. To see these effects we plot
(Fig. 3) the current density for a pn diode (at the contact
to the p-region) as a function of the normalized thick-
ness of the diode (L/+/D1). A small minimum grid
spacing (0.01 A) was used so as to magnify the error
associated with the inconsistent DD ohmic BCs. As
seen in the figure, as the normalized length increases
above about one the electron contribution, though still
in error, is insignificant.

A final illustration (Fig. 4) compares the errors in
the I-V characteristic of the short diode (inset) as com-
puted with the DD BCs (dashed) and with the DG BCs
applied only to the minority carriers (solid). The purc
DD case again shows the undesirable grid dependence
previously noted (Fig. 1(b)). And when the DG BCs
are applied solely to the minority carriers very littlc er-
ror is seen except at high forward voltages (> 1.1 V).
Since the latter condition produces high-level injec-
tion it seems reasonable that the DD BC (2b) applied
to the majority carriers should produce errors because
the particular value of N 4 should no longer be relevant
and the contact should instead act simply to source/sink
carriers so as to preserve quasi-charge neutrality.

4. Insulator Proximity Effect

A second issue relating to ohmic contacts arises in 2-
D/3-D problems in which the ohmic contact adjoins an
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Figure 4. The relative errors in the I-V characteristics when either
the DD BCs are used (dashed) or when the DD BCs are applied solely
to the minority carriers (solid).
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Figure 5. Electron density contours (maximum of 1.8 x 10 em™?

and spaced by factors of 1.8) ncar the corner where a MOSFET
contact abuts the gate insulator calculated using the new DG ohmic
BCs. Note the lateral repulsion of the carriers by the insulator at the
contact edge.

insulator (see Fig. 5) so that there exists a “triple point”
(or “triple edge”) where a semiconductor, a metal and
an insulator all come together. To understand this is-
sue, first note that in DG theory the BCs applied at a
semiconductor-insulator junction are electrostatic con-
ditions plus
nN-Vo,=n-Ve, =0, n=p=ngu (&)
where the first two conditions are zero current con-
ditions (strictly valid only if no interface states are
present) and the latter two, with 14, being a known
small concentration (say, 1 cm™), approximate the
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effect of barrier repulsion.? One can readily see that
the ohmic BC on majority carriers used by DD theory
(p = peg = Na) would, at the edge of the ohmic con-
tact, conflict with the insulator condition p = ngmay.
The discontinuity in p implies an infinite gradient and
hence numerical problems. This trouble originates in
the incorrect assumption that the ohmic contact is ideal
right up to its edge. In fact, there will be an “insulator
proximity effect” in which the insulator will repel the
electrons in the adjacent metal thereby modifying the
properties of the contact. (A similar repulsion of course
occurs in the semiconductor, however, this is already
treated by the DG equations (1)). A proper treatment
of the situation therefore requires that the metal (and
perhaps the insulator?) be treated as non-ideal. This
can indeed be done within DG theory (Ancona 1992),
but in keeping with the aforementioned crudeness of
ohmic BCs we look for a way of modifying the BCs so
as to retain an electrostatically ideal metal.

To this end, we note that using the new Neumann
BCs in (4) at the metal interface eliminates the conflict
noted in the previous paragraph with the Dirichlet con-
ditions in (5) applied at the insulator interface. There is
similarly no conflict between the conditions on ®,, and
@, in (2a) and (5). So the only potential source of trou-
ble is the condition on . As discussed in Section 2,
at an ohmic contact we take v =V — ¢,o(p) (where
holes are the majority carrier). If this BC were to be
used up to an insulator edge, the decrease of p from
N4 to ngpay caused by the insulator proximity effect
would imply a variation in ¢ which would violate the
electrostatic BC (for an ideal metal) that the tangen-
tial component of the electric field should vanish. This
inconsistency results because the DG correction in the
condition on ¥ (implied by the PDE (1b),) has been
ignored. Including this term would, however, require
treating the metal as non-ideal, so we instead eliminate
the dependence on density entirely using the simple
expedient:

V=9:=V —¢p(Ns) (6

where . is the value of ¢ at the ohmic contact far
from the insulator. The first equality represents a cum-
bersome non-local condition and so is best replaced
(at least outside of the high-level injection regime

discussed earlier) by the simple approximation of the
second equality. Obviously (6) will become problem-
atic when the contact is so small that no part of it is far
from the insulator, e.g., with a quantum point contact.
In this case, it seems impossible to avoid treating the
non-idealities of the metal (and perhaps the insulator).

To illustrate the DG treatment of a “triple point”
numerically, in Fig. 5 we show a contour plot of the
electron density near the corner where a MOSFET con-
tact abuts the gate insulator. The calculations were per-
formed using the simulation code PROPHET (Rafferty
et al. 1998). The new DG ohmic BCs are seen to per-
form quite well, including exhibiting the carrier repul-
sion in the contact region associated with the insulator
proximity effect.
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Notes

1. As usual, the condition on v derivable from the integral form of
(1c) merely gives an equation with which one can determine the
surface charge density at the contact a posteriori.

2. A proper treatment of barrier repulsion would include a non-ideal
insulator that permitted barrier penetration (and could be treated
using DG theory (Ancona 1990b)). However, for high barriers
this would merely adjust the value of ngyap, providing only a
minor correction. In the case of an infinite insulator barrier, 7gma)
vanishes.
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Abstract. We have developed a quantum simulation too! to investigate transport in molecular structures. The
method is based on the joint use of a Density functional tight-binding (DFTB) and of a Green’s function technique
which allows us the calculation of current flow through the investigated structures. Typical calculations are shown
for carbon-nanotube-based field effect transistors, sensors and for DNA fragments.
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1. Introduction

Molecular electronics is attracting more and more at-
tention both for its potential applications and for the
interesting physical properties. Electronic conduction
through a variety of different molecules has been stud-
ied experimentally by many groups. However the trans-
port problem is still an open issue in these materials
and a detailed microscopic investigation is necessary.
In the following we will introduce a simulation ap-
proach able to describe the current flow in molecular
structures. The approach is based on the density func-
tional tight-binding description of the system coupled
to a Green’s function technique.

2. Theory

The system we would like to describe can be generally
divided in two parts: (i) the contacts a (ii) the molec-
ular region. The contacts represent semi-infinite leads
that end at the molecular region. On the other end,
the molecular region can be any kind of atom collec-
tion such as the active part of a device or the molecule
we would like to study via tunneling microscopy. In
this work we consider the description of the system
made via Density Functional Tight-Binding (DFTB)
(Porezag et al. 1995, Elstner ef al. 1998). We will not

enter in the details of the method which can be found
in literature (Porezag et al. 1995, Elstner ef al. 1998).
In order to solve the “current flow” problem, we need
to use open boundary condition for the Kohn-Sham
equations. Let’s consider the case with two contacts and
a molecular region, under the assumption that there is
no direct interaction between contacts. The hamiltonian
for the full system can be described in blocks as follows

H, T.,u 0
H=|Ty, Hy Tus ey
0 Tsw Hs

where H,, g the hamiltonian of the «, 8 contact, T is
the contact-molecule coupling Hamiltonian and S is
the overlap matrix

Se Sem O
S=|Sue Sm Sug )
0 Spnw  Sp

Now, from the equation of the Green’s function G of
the full system

GR=[(E+inS—HI"'S[E+inS—HIGE =1
3)
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and defining the Self-Energy operator
B = (ESyu — Thags " (ESurt — Tam)  (4)

we can express the Green’s function of the molecular
region as

GY = [ESy —Hy - =F1! &)

where
xf =) "=f (6)

Here g is the the Green function of the uncoupled leed
(see Di Carlo et al. (in press), Guinea et al. (1983),
Lopez Sancho, Lopez Sancho and Rubio (1984, 1985)).
As shown by the Eqgs. (4) and (5) the contacts induce
modification of the molecular region Green’s function
via self-energy terms. Such self-energy terms will only
depend on the surface Green’s function of the contact
region. This follows from the nearest-neighbor inter-
action we have between the molecular region and the
contacts (see Eq. (4)).

By using the defined Green function we can calculate
the transmission coefficient between the ¢ contact and
the 8 contact (Datta 1995)

Top = TG TG ] )
where
L, =i[3 - %]] ®)

From the knowledge of the transmission cocfficient the
coherent contribution to the current can be easily calcu-
lated via scattering theory. However, the advantage of
Green function method consist in the possibility to ex-
tend the approach to treat non-coherent transport. This
is accounted introducing the non-equilibrium Green
functions (Datta 1995). Here we will not consider non-
coherent transport (see Di Carlo et al. (in press) for ex-
plicit expression of non-equilibrium Green functions
applied to DFTB).

Inorderto calculate the current flowing in the organic
structure we should applied an external bias. This can
be introduced in an approximate form which has been
discussed by Datta and coworker (1997) or, as we did,
fully accounted in the Hamiltonian:

: 4
Hi' = Hij+ 5 (Vi + VS, )

3. Applications

In the following we will present some applications of
the theory we have discussed in the last section.

As a first example we show the calculation of the
current in a nanotube-based Field Effect Transistor
(FET). The structure of the simulated devices is shown
in the inset of Fig. 1 where we use a fluorinated nan-
otube (Seifert, Kohler and Frauenheim 2000) to con-
nect the source and drain contacts. As in conventional
FET the current is modulated by the gate electrode.
Similar devices, with carbon nanotubes, has been inves-
tigated experimentally by several authors (Tans er «l.
1997, Bockrath er al. 1997, Tans, Verschueren and
Dekker 1998, Martal et al. 1998). The calculated drain-
source current for two drain bias as a function of the
gate bias is shown in Fig. 1. For a given drain bias
the device presents two well distinct regions, with the
current saturating for negative gate bias and being re-
duced for positive gate bias. Fora V5 = 2 V the current
is essentially negligible and we can consider that the
“channel” of the FET is pinched-off. By reducing the
drain bias the current also diminishes. Indeed, we ob-
serve an almost linear dependence of the Ips in the
saturation region as function of V5. We should point
out that the results shown are in good agreement with
those reported in the literature (Martel et al. 1998).

As a second example of calculation we show the cal-
culated current along a DNA fragment. The structure is
reported in Fig. 2. Here we consider a fragment of DNA
with a single Guanine. A sulphur atom has been added
at the beginning and at the end of the fragment in order
to bound the gold contacts (Tian er al. 1998, Pantelides,
Di Ventra and Lang 2001). In this calculation we did not
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Figure 1. Calculated drain current calculation as a function of the
gate bias for two drain bias in the FCN-FET. Insct: Schematic draw-
ing of a fluorinated carbon nanotube based field effect transistor
(FCN-FET).
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Figure 2. Calculated current in a DNA fragment. The DNA frag-
ment structure is shown in the inset.

account for the gold atoms which are treated within an
s-band approximation (Tian et al. 1998, Pantelides, Di
Ventra and Lang 2001). The calculated current (Fig. 2)
shows a well pronounced peak around 3 V which marks
a resonant tunneling through the molecular orbitals.

In the TB picture the total energy can be written as
the sum of the band structure energy and the repulsive
energy U (Menon and Allen 1986, Sankey and Allen
1986, Tomanek and Schluter 1987, Majewski and Vogl
1989)

E=) me+) URn) (10)
k >
where ;. is the occupancy of the electronic state labeled
by k and R is the separation of ions [/ and !'. With
this expression of the total energy and by using the
Helmann-Feyman theorem one can calculate the force
acting on the the j-th ion
dU
= ‘Ifk> — Db

T 4RO

From the knowledge of forces, Molecular Dynamic
(MD) simulations may be easily performed by
using special integration algorithms (like the Verlet
algorithm) (Turchi, Gonis and Colombo 1998, 2000).
Beside typical applications of molecular dynamic
simulations (Turchi, Gonis and Colombo 1998, 2000),
MD can be coupled with current calculations. Kubo-
Greenwood equation has been recently used (Kaschner
et al. 1996, Seifert et al. 1998) to evaluate electric
conductivity over MD trajectory in liquid NaSn alloys.
This allows to evaluate the thermal average of the
conductivity as a function of the lattice temperature.
We also have applied this method to evaluate ther-
mal averaged currents in carbon nanotubes (CNT).
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However in the following we will present the simula-
tions of a time dependent current response of a (5,5)
CNT which reacts with a C¢H4 molecule (benzyne).
This kind of interaction has been investigated by means
of classical MD simulations by J. Han and coworkers
(1997). In our simulation we have used the DFTB with
a minimal basis. Current flowing in the CNT has been
obtained by applying the Green Function technique
in order to ensure proper boundary conditions (see
Di Carlo et al. 2002). The nanotube is biased with
a linear potential drop of V = 100 meV along the
tube direction. In these simulations the left and right
contacts of the nanotube (two unit cells of the nanotube
on each side) are kept fixed (carbons do not move)
while the middle part of the CNT (the one which reacts
with the CsH4 molecule) is free to move. The benzyne
molecule moves towards the CNT with an initial
velocity of 0.6 A/ps as shown in the inset of Fig. 3.
During the MD evolution the current is calculated
each 0.9675 fs. In order to have an idea about the size
of the system, here we consider about 130 atoms with
508 orbitals all together. The calculation is performed
with a standard workstation and 1 ps of simulation are
obtained in few hours. Figure 3 shows the calculated
current as a function of time. As soon as the molecule
reaches the nanotube a strong reduction of the current
flowing along the CNT occurs. After molecular rear-
rangement, which includes also a rotation of the C¢Hy
molecule, the system reaches its stationary condition
after 0.2 ps. In Fig. 3 we also show the calculated
current flowing in the CNT without the benzyne for
a temperature of 300 K. Comparing the calculated cur-
rent with and without the benzyne molecule we can see

CNT without C,H,

121 Al=20%

0.0 0.2 0.4 0.6 0.8 1.0
Time [ps]

Figure 3. Calculated current flow in the biased (V = 100 meV)

CNT + CgHy molecule as a function of time. The upper curve rep-

resents the room temperature current in the biased CNT without the
C¢H4 molecule.
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a strong reduction of the current flowing in the CNT
when benzyne is attached to the CNT. In this case we
can say that the benzyne on a CNT behaves as a defect
thatincreases the resistance of the CNT (there is a varia-
tion of 20% in the resistance). Such effect is much more
pronounced in the initial stage of the reaction where a
local strong distortion of the CNT is also observed.
Moreover, the structures of the current as a function
of time also reflect the relaxation process that the ab-
sorbed molecule is undertaking. This simulation shows
a possible application of CNT as gas sensor which is
obtained by monitoring the current flowing in the CNT.

In conclusion we have shown that density functional
tight binding methods can be efficiently coupled to
Green’s function techniques to account for current flow
in organic nanostructures. We have shown typical ap-
plication to organic and biological structures and in
particular we have discussed the gate action in a nan-
otube based FET.
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Abstract. Microscopic laser simulation for multi-quantum-well devices must include conventional carrier trans-
port, properties of carriers bound in the quantum wells, and the photon modes in the optical cavity. Physical models
unique to the laser simulation problem include capture of carriers into the quantum wells and stimulated emission,
both fundamentally requiring quantum mechanical calculations. The implementation of a semiclassical carrier cap-
ture model into a fully self-consistent laser simulator is discussed. The impact of the capture process is illustrated

for a two-quantum-well laser.

Keywords: semiconductor laser simulation, quantum-well laser, carrier capture

1. Introduction

The substantial challenges in design and manufacture
of laser diodes for telecommunications applications
motivate continued research to better understand the
fundamentals of laser diode operation. Microscopic
laser simulation wherein one attempts to integrate all
of the relevant physical models into a self-consistent
treatment of the laser diode operation has been actively
pursued by a several research groups in recent years (Li
et al. 1992, Tessler and Fisenstein 1993, Grupen and
Hess 1998, Alam et al. 2000, Witzigmann, Witzig and
Fichtner 2000, Piprek, Abraham and Bowers 2000).
The case of laser devices with quantum well regions in
the active layer presents special challenges for sim-
ulation. Not only are the length scales short (order
10 A), but one must integrate fundamentally quantum

*To whom correspondence should be addressed.

mechanical processes (carrier capture into the quan-
tum wells and stimulated emission) into the simulation
that is otherwise based on a semiclassical formulation.
Nonetheless, it was recognized early in the develop-
ment of quantum well lasers that the time scale for
carrier capture into the quantum well could be signifi-
cant to the device performance. Rate equation analysis
suggested that the modulation response of the device
could be severely impaired (Nagarajan et al. 1992).
In this paper, we briefly review the essential features
of our LASER simulator (Alam et al. 2000). The sim-
ulator has been extensively applied to study practical
multi-quantum-well (MQW) laser performance. The
models in the simulator have been verified by compari-
son to extensive data (DC terminal characteristics, opti-
cal characteristics and AC characteristics) as a function
of internal parameters (doping in the active region) and
temperature (Hybertsen et al. 1999, Witzigmann et al.
unpublished). We then describe in more detail the
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implementation of a semiclassical carrier capture
model, including some of the numerical difficulties in-
volved. The physical impact of the capture model is
illustrated for a two-quantum-well laser example.

2. Overview of LASER

The bulk carriers are treated with a conventional drift-
diffusion formulation. In the regions with quantum
wells, there are additional bound carrier populations in-
troduced (electrons and holes). The bulk carriers move
over a continuation of the barrier band edge, but in ad-
dition experience a generation-recombination process
that couples the bulk carriers to the bound carrier pop-
ulations. This model is described in detail below. The
properties of the bound carriers are calculated quan-
tum mechanically using an eight band & - p model. The
electrostatic potential in the region of the quantum well
is included selfconsistently: the potential is included in
the Hamiltonian for the bound carriers and the bound
carrier distributions are included in the Poisson equa-
tion. The electronic states are used to determine the
2D quasi-Fermi levels for the bound populations and
to compute the optical gain and radiative recombina-
tion. Both bulk and bound carriers also undergo non-
radiative recombination. The transport simulation ac-
counts for processes in the cross-section of the laser
diode. In a typical semiconductor laser diode design,
only one or a few optical modes are guided so as to have
substantial optical gain. The distribution of the optical
modes is calculated by solution of the Helmholtz equa-
tion, accounting for the indices of refraction (carrier
density dependent) in the various regions of the device
cross-section. For the edge emitting laser diodes stud-
ied here, the resonant cavity is formed orthogonal to
this cross-section. The optical modes formed by this
cavity are treated as discrete resonances with an asso-
ciated cavity loss. The population of these modes is
calculated from rate equations that include the stimu-
lated emission from the quantum well regions. More
details may be found in Alam et al. (2000).

The physical description of the laser has been re-
duced to a set of coupled integro-differential equations
that must be solved selfconsistently. The equations are
solved iteratively. The eigenvalue equations (Hemholtz
equation for the optical mode and Schroedinger equa-
tion for each quantum well) are solved first to give
input to the physical models. Then a Newton update
step is performed on the drift-diffusion equations and
the rate equations for the quantum we!l populations

and the photon modes. The solution variables 1 =
(n3p. pap, V, map, pap. S) (bulk electron density, bulk
hole density, electrostatic potential, bound electron
density for each well, bound hole density for each well
and photon number for each mode) are organized so
that the necessary Jacobian can be factored in block
form:

, A 2
cw=[a 4] 0

Here the A block is the Jacobian of the drift-diffusion
equations with the usual sparse data structure. The Aj;
block spans the rate equations for the bound carriers
and the photon modes. This block and the coupling
terms (A and A»|) are dense. However, since the size
of the dense block is relatively small, the Jacobian can
be efficiently managed. The pole in the photon rate
equation can pose special difficulties for an iterative
solution method. These problems are overcome by in-
troducing a slack variable for each photon mode and
augmenting the equation set. Further details are given
in Alam et al. (1997, 2000). The implementation of the
capture model is described below.

Most of the parameters that enter the physical mod-
els are taken from the literature (band masses, mobil-
ities, recombination coefficients, etc.) However, a few
key parameters are either not known with sufficient ac-
curacy from existing independent experiments or are
unique to our formulation of the model. These param-
eters are fixed by reference to selected device mea-
surements as follows. The coefficient for free-carrier
absorption in the quantum wells (dominated by interva-
lence band absorption) is determined from direct mea-
surements of cavity loss versus current below thresh-
old. The Auger recombination coefficients are fixed by
the threshold current density of wide area devices. The
temperature dependence of the Auger recombination
is determined by a single activation energy. With this
choice, the temperature dependence of the threshold
current density is accurately simulated. A gain com-
pression coefficient is included to account for carrier
heating and spectral hole burning in the bound carrier
populations, processes that are not explicitly included
in the simulator. The magnitude is fixed by the scale of
the damping of the modulation response of the laser. Fi-
nally, the scattering time parameter (7 in Eq. (3) below)
for the carrier capture model must be chosen. It is hard
to find a direct, easily interpreted measurement to fix
this rate. However, various device characteristics can
be used to constrain the values (Hybertsen et al. 2000).




We have shown that having fixed these parameters
for a particular 1.3 pm MQW laser design, the simu-
lator accurately predicts the performance of a whole
family of these devices in which the doping in the
active layer and the temperature were systematically
varied (Hybertsen et al. 1999, Witzigmann et al. un-
published).

3. Carrier Capture Model

A key issue in formulating the capture of carriers into
quantum wells is the coherence length. It is common
to treat the bulk carriers as coherent over a long range.
This can lead to unphysical dependence of the results
on boundary conditions far from the quantum well.
There has only been limited work to self consistently
include the dephasing intrinsic to the scattering pro-
cess by which a carrier is captured (Register and Hess
1997). In a forward biased laser, there is the further
complication of a high carrier density in the region of
the quantum well. In the context of device simulation,
where a semiclassical formulation is already used for
the bulk carriers, it is natural to assume sufficiently
rapid scattering so that the coherence length is short,
even compared to the quantum well dimension.

In the laser, both carrier-phonon and carrier-carrier
scattering play a role in the carrier capture. In the Mini-
Lase simulator (Grupen and Hess 1998), matrix ele-
ments for both processes are estimated and the net scat-
tering into the bound population is resolved into energy
bins. Furthermore, scattering between different energy
bins is also considered. This has allowed the simulator
to resolve the delicate interplay between carrier heating
(cooling) and spectral hole burning (Grupen and Hess
1998).

We have adopted a more phenomenological ap-
proach. The function S(E;, E3) describes the proba-
bility of scattering from the bulk state at energy E3 to
the bound state at energy E». Then, including the den-
sities of states and the Fermi functions, the net capture
rate can be written as

C =f dE3/ dE»8:(E2)g3(E3)S(En, E3)
E Ey
x f3(E3)(1 — f2(E2)). (2)

In general, there are both elastic and inelastic processes
contributing to the capture process. The expression can
be simplified by restricting S to describe elastic scat-
tering. An energy dependence in the scattering rate can
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be included to account for reflection at the well and
phase-space reduction (Baraff 1997, 1998):

g2(E3)g3(E3)S(E3) o EL 12, 3)

Here B = 1 accounts for both. Finally, the matrix ele-
ment is parameterized by a single time constant leading
to:

C = (F32(mp) — F32(m2p))/7 €]

where MDE3D) = (F2D(3D) - Eb)/kT and the Fermi
function of order 3/2 enters for 8 = 1. To this point,
we have not considered the coherence volume. In prac-
tice, we assume the overall dephasing time in the region
near the quantum well to be sufficiently short, that we
can interpret Eq. (4) to apply locally (Baraff 1997).
In this case, the quasi-Fermi level Fap and the barrier
band edge Ey, become a function of position, as they
normally are considered in the drift-diffusion formula-
tion of transport. This situation is illustrated in Fig. 1,
showing the local effect of the electrostatic potential
and a non-uniform quasi-Fermi level for the bulk car-
riers (F3p). In this case, it is also consistent to return
to Eq. (3) and interpret the density of states factors as
local. The bound carriers are extended according to the
subband wavefunctions:

g2(E2, y) « [p(3)*0(E2 — Eap). &)

The position dependence from Eq. (5) flows through to
Eq. (4) contributing a locally position dependent pref-
actor. The final result is intuitively reasonable: the bulk
carriers experience a local generation-recombination

A
e, ..l/.\‘\.
______ S
IR
EZD

Figure 1. Schematic diagram illustrating the band diagram near a
quantum well, the bound level and the associated quasi-Fermi levels.
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process that depends on the quasi-Fermi level separa-
tion relative to the bound carriers and the probability
density for the bound carriers at that point.

Implementation of Eq. (4) presents some compli-
cations. The capture process C(V, Fap, Fap) must be
recast in terms of solution variables for the Newton up-
date scheme described in Section 2: V, n3p and nap.
When this is done, one sees that F2p depends on the
electrostatic potential V on the entire set of grid points
spanning the region that encompasses the quantum
well. Therefore, when evaluating Eq. (4) on a partic-
ular node, it will depend on the electrostatic potential
V on many neighboring nodes (Fig. 1). This degrce of
non-locality goes well beyond that normally required in
a drift-diffusion formulation. The sparse structure for
the drift-diffusion part of the Jacobian (A},) in Eq. (1)
would be significantly altered. In order to avoid the
extra nonlocality in the capture model, we introduce
auxiliary solution variables F»p for electrons and holes
in each well region. With this augmented set of vari-
ables, we restore the sparse data structure for the bulk
solution variables (A ;) at the cost of a negligible in-
crease in the dense matrix size (A;).

4. Two-Quantum-Well Example

We illustrate the impact of the carrier capture model
using a simplified example with two quantum wells in
the active region. The quantum wells are typical of a
1.3 um InP based laser. The active layer includes sep-
arate confinement layers (1000 A each) of the same
composition as the barrier material. To achieve thresh-
old at reasonable carrier density levels, we choose a
small mirror loss (10 cm™') and neglect frec carrier
absorption.

We start by considering the regime of slow carrier
capture, choosing the scattering time parameter in the
capture model (z) to be 10 ps. Figure 2 shows the band
diagram in the active region at a current substantially
above threshold. In this example, the active layer is un-
doped. Due to the relatively slow capture coefficicnt,
the quasi-Fermi level separation is forced to be larger
to support the current flow into the quantum wells re-
quired for the stimulated emission. With a slow cap-
ture rate, a substantial fraction of the carriers pass over
the well. The bound carriers are evenly divided be-
tween the wells and the gain contributed is about the
same from each well. Furthermore, the carriers flow
past the wells and fill the separate confinement lay-
ers. The shallow electron wells also contribute to the
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Figure 2. Band diagram and bulk carrier densities in the active
region of a two-quantum-well laser. The scattering time parameter
in the capture model (7) was chosen to be 10 ps.

large bulk carrier population. Note that the bound elec-
tron quasi-Fermi levels are near the tops of the wells.
This carrier spill out contributes to the local electro-
static potential and attracts extra bulk electrons to the
regions over the wells (bottom of Fig. 2). The bulk car-
rier population rises with current, so there is a substan-
tial capacitance associated to this. This capacitance can
be largely eliminated by doping the separate confine-
ment layers. Overall, with a slow capture process, the
transport in the active region can be viewed as a large
bulk population above the wells that feed the bound
carrier populations approximately equally through the
capture process.

A different qualitative picture emerges for the fast
capture limit. We choose the scattering time parameter
in the capture model (7) to be 0.1 ps. In this simulation,
the separate confinement layers are doped. Figure 3
shows the quantum well region for the same bias as
in Fig. 2. The 2D quasi-Fermi levels are pinned very
close to the 3D quasi-Fermi level. In the hole case, the
3D quasi-Fermi level crosses the 2D quasi-Fermi level
for the left quantum well. Physically, there is capture
on the left side of the well and reemission on the right
side. This is intuitively reasonable. With fast capture,
the hole transport in particular will be sequential. As a
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Figure 3. Zoom in on the band diagram and bulk carrier densities
near the wells for a two-quantum-well laser. The scattering time
parameter in the capture model () was chosen to be 0.1 ps. Doping
was extended through the active to within 3 nm of the edge of the
well regions as is apparent from the rise in the free carrier densities
at edges of the region shown.

consequence, the bound carrier population is larger in
the left quantum well and most of the gain comes from
the left well (80%). The local electrostatic potential and
bulk carrier densities also reflect the larger bound hole
population in the left well.

The different regimes of carrier capture illustrated
here yield quite different modulation response. Figure 4
shows a comparison of the small signal response for
identical current bias conditions. Both devices have
doped separate confinement layers to minimize any
impact from the bulk carrier accumulation described
in Fig. 2. In the slow capture case, the capture process
is the gating process in the modulation response. This
leads to the heavy low frequency roll-off that largely
suppresses the resonance. This is most apparent in the
phase of the response that shows a large linear compo-
nent and almost no phase shift at the resonance (near
10 GHz). In the fast capture case, the amplitude mod-
ulation shows the classic resonance. The impact of the
transport can only be qualitatively discerned from the
phase that shows a linear component. The phase shift
at resonance (also near 10 GHz) is substantially less
than 180 degrees.
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Figure4. Modulation response (amplitude and phase) simulated for
scattering time parameter (7) in the capture model of 10 ps (dashed
lines) and 0.1 ps (solid lines).

5. Conclusions

We have discussed the implementation of a semiclas-
sical carrier capture model into a full microscopic
laser simulator. A tutorial example illustrates different
regimes of laser operation depending on the time scale
for the capture process. In practice, we have found a
scattering time parameter (t) intermediate to those dis-
cussed here (1 ps) to be appropriate to the description
of InGaAsP based MQW devices (Alam ez al. 2000,
Hybertsen et al. 1999, 2000, Witzigman et al. unpub-
lished). The tutorial example suggests that the extended
set of rate equations commonly employed to include the
carrier capture process phenomenologically (Nagara-
jan et al. 1992, Esquivias et al. 1999) may not be the
best choice for a compact model of MQW laser mod-
ulation. A microscopic laser simulator, such as the one
described here, can be used as a tool to investigate com-
pact models that are more representative of the dynamic
response of telecommunications wavelength lasers.
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Abstract. Our numerical simulations of vertical cavity surface emitting lasers with Minilase demonstrate that a
diffusion capacitance is induced by the minority carriers accumulated in the separate confinement regions. This
diffusion capacitance is shown to be responsible for the over-damping of the modulation response and the reduction
of the modulation bandwidth. It is also demonstrated that this diffusion capacitance is significantly suppressed by

grading the separate confinement hetero-junctions (SCHs) or reducing the thickness of the SCHs.
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1. Introduction

Vertical cavity surface emitting lasers (VCSELSs) have
emerged recently as a promising light source for appli-
cations in optical communications. As the high-speed
performance becomes one of VCSELs’ key issues,
numerical simulations of their modulation responses
have become indispensable for both theoretical un-
derstanding and device design optimization. Although
rate equation models are numerically tractable, a phe-
nomenological nonlinear gain suppression factor has to
be introduced to account for the damping in the actual
response curves., Our comprehensive laser diode sim-
ulator, Minilase, has adopted a different approach and
can simulate nonlinear gain and modulation response
of laser diodes from very basic principles (Grupen and
Hess 1998). Recently, Minilase has been extended to
simulate the fully coupled electrical and optical sys-
tems in VCSELs (Oyafuso ef al. 2000).

In this paper, we focus on the effect of the minor-
ity carriers on the modulation response of VCSELs.
Some simulation works related to this effect have pre-
viously been done for edge-emitting laser diodes based
on simple rate equation models (Nagarajan et al. 1992,
Rideout et al. 1991). In Nagarajan et al. (1992), the
carrier escape time 7, and capture time t; have been
introduced in a phenomenological way. As presented
in Nagarajan et al. (1992), the analytical solution to
these rate equations gives a reduced differential gain
by a factor of x = 1+ 1,/7., resulting in the reduction
of the relaxation frequency for the same power level. It
is shown in Rideout ez al. (1991) that the finite carrier
capture rate from the barrier to the quantum well can
induce a well-barrier hole burning effect and result in
the roll-off of the response curves. However, these rate
equation models are over-simplified since only one type
of carrier is assumed and the minority carriers are not
separated from the majority carriers. Furthermore, the
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dependencies of 1, on the device structure and other
gain suppression mechanisms, such as spatial hole
burning (SHB) effects in VCSELSs, are not considered.
In Minilase, the escape of minority carriers from the
quantum well (QW) is treated as thermionic emission
(Grupen and Hess 1998) and its dependence on the
device structure and SHB effect are self-consistently
included. The carrier flux of the thermionic emission
from the QW to the barrier is expressed as (Hess
1988)

Fo—E, — AF
vah = A*T?' u u
O G

Fh - Eh
—exp(—_kBT )] nH

where AFE is the band-edge discontinuity at the
well/barrier interface, and A* = m*k% /(27127‘13) is the
Richardson constant. Our Minilase simulations with
various VCSEL structures demonstrate that a diffusion
capacitance is induced by the accumulation of wasted
minority carriers in the SCHs. This diffusion capaci-
tance is shown to be responsible for the reductions of
both the modulation bandwidth and the height of the
relaxation peak. Further simulations with Minilase also
indicate that this damping effect is greatly dependent
on the grading and the thickness of the SCHs.

2. Simulation Results

We base Minilase simulation on a double oxide-
confined 1-A VCSEL structure, which experimentally
showed a bandwidth greater than 16 GHz (Lear et al.
1996). Two optical solvers have been developed, one
based on a Green’s function method (Klein er al. 1998),
and the other on a scalar effective index method. In
order to obtain the optical intensity pattern, the las-
ing frequency, and the optical loss, the entire device
structure including the two distributed Bragg reflector
(DBR) stacks is considered in our optical solvers. For
the electronic part, since our major interest is the intrin-
sic dynamics of the laser diodes, we only simulate the
cavity between the top and the bottom oxide layers, the
schematic cross-section of which is shown in Fig. 1.
The VCSEL structure has a single 80 A Ing>GaggAs
QW layer and operates at a wavelength of 980 nm.
The oxide apertures are composed of Al sGay 4As and
the radius is 1.8 um. For comparison purposes, an ar-
tificial 2-A cavity VCSEL is also simulated, the SCH

0.45 ASontast

0.40 "’A'o.sGao. ‘As

0.35

0.30 SCH ( AlmGao.QAB )
= 0.25
2
N 020

0.15 SCH( NOJGaD.BAs )
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0 p:Contact

0 05 10 15 X
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Figure 1. Schematic cross-section of a double oxide-confined.
1-A cavity VCSEL structure, which is simulated with the electronic
solver of Minilase.

thickness of which is approximately twice that of the
1-A cavity structure. For both cavities, either ungraded
SCHs of homogeneous Alg | Gag9As or SCHs linearly
graded from Al ;Gag9As to AlysGag 4As are used. To
focus on the effects due to the electrical transport, we
assume that the optical confinement factor, the optical
transverse mode pattern within the QW and the optical
loss remain unchanged for all these structures.

Figure 2 shows the simulated minority electron flux
contours for the un-graded, 2-A cavity VCSEL at a

Z (um)

OpCotact 4 6 8 10 12 14 18
R? (um?)

Figure 2. Contour plot of the simulated minority electron flux in
the p-side separate confinement region for an un-graded. 2-A cavity
VCSEL operating at 2 x I,. Note that we use the radius square as the
x-axis to correctly account for the cylindrical geometry of VCSELSs.



current bias twice the threshold current. It is worth not-
ing that the square of the radius has to be used as the
x-axis to correctly account for the cylindrical geometry
of VCSELSs while plotting flux contours. In this figure,
we clearly observe the minority electron current leak-
age from the QW into the p-side SCH region. It can also
be seen that only a fraction of the minority electrons
reaches the p-contact and the rest flow back to the QW
and are reclaimed there.! In the latter case, a portion of
them are attracted to the central region due to the spa-
tial hole burning effect while the remaining flow to the
outer region after encountering the oxide layers. Fur-
ther simulations show that the density of the minority
current is significantly reduced by grading the SCHs for
the 2-A cavity VCSEL. This complicated behavior of
the minority carriers cannot be modeled by simple rate
equations. Under direct modulation, the accumulation
and depletion of these carriers in the SCHs can induce
a diffusion capacitance and this effective shunt capac-
itance can significantly dampen the dynamic response
of VCSELs.

In Minilase, small signal modulation responses are
obtained from time-dependent simulations. Two sets
of such simulated modulation responses for 2-A cav-
ity VCSELSs with un-graded and graded SCHs, respec-
tively, are plotted in Fig. 3. At each of the 3 simu-
lated bias points, the response curve for the graded
structure (solid line) is significantly improved in both
the modulation bandwidth and the relaxation strength,
compared with that for the un-graded structure (dashed

Modulation Response (dB)

Frequency (GHz)

Figure 3. Simulated modulation responses for 2-A cavity VCSEL
structures at current biases 1.5 x Iy, 3 x Iy, and 6 x I, respectively.
Solid lines: 2-A cavity VCSEL with linearly graded SCHs. Dashed
lines: 2-2 cavity VCSEL with un-graded SCHs.
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line). For example, an increase of ~3 GHz in the -3dB
bandwidth can be seen for the structure with graded
SCHs at 6 x Iyy,. We have also simulated the response
curves for the un-graded, 2-A cavity device with the
minority current artificially suppressed. In such cases,
an artificial Richardson constant A* = o A*, instead
of its realistic value A*, is used in Eq. (1) to regulate
the amount of carrier leakage from the QW into the
SCHs. For ¢ < 1, the minority current escaping from
the QW is greatly reduced. Modulation responses for

Modulation Response {(dB}
A

0 2 4 6 8 10 12 14 16 18
Frequency (GHz)

Figure4. Simulated modulationresponses foraun-graded, 2-A cav-
ity VCSEL structure operating at 3 x Iy, with artificially suppressed
minority current. In these simulations, the Richardson constant A* is
multiplied by a pre-factor, &, in the computation for the thermionic
emission of the minority carriers.

=== Ungraded, 2-A cavity
4t — Ungraded, 1-A cavity
----- Graded, 1-A cavity

Modulation Response (dB})

0 2 4 6 8 10 12 14 16 18
Frequency (GHz)

Figure 5. Simulated modulation responses at 3 x Iy, for 2-A cav-
ity with un-graded SCHs, 1-A cavity with un-graded SCHs and 1-A
cavity with graded SCHs, respectively.
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a =1, 1073, 1073 at the current bias 3 x Iy, are plotted
in Fig. 4, respectively. As ¢ decreases, improvements
in the modulation responses similar to those achicved
by grading the SCHs can be seen in Fig. 4. This strongly
suggests that the diffusion capacitance induced by the
minority carriers is responsible for over-damping of the
modulation responses of the un-graded, 2-A cavity VC-
SEL. However, for the practically always used 1-X cav-
ity structure, the modulation response shows much re-
duced damping effects even with the un-graded SCHs,
which is plotted as the solid line in Fig. 5. By comparing
it to the response curve of the graded structure (dotted
line in Fig. 5), we can also sec that grading the SCHs
of the 1-A cavity does not yield further improvements
on the dynamic response. This result is quite different
from what has been shown for the 2-A cavity in Fig. 3,
where significant improvements to the responses are
observed by grading the SCHs. It is hence indicated
from these observations that the diffusion capacitance
is much suppressed by shorter SCHs.

3. Conclusion

In conclusion, our Minilase simulations with the dou-
ble oxide-confined VCSELs have revealed the com-
plicated dynamic behaviors of minority carriers. Our
simulations of the modulation responses indicate that
a diffusion capacitance is responsible for a reduction
of the modulation bandwidth. It is also shown that this
diffusion capacitance is greatly dependent on the struc-
ture of the VCSELSs and can be suppressed by careful
device design. Our simulations demonstrate that, by
grading the SCHs and reducing the thickness of the
SCHs, the over-damping of the dynamic responses as-
sociated with the diffusion capacitance can be greatly
reduced.
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Note

1. In the simulations presented in this paper. we assume that the
spontancous emission is the dominant recombination mechanism
for the carriers in the SCHs and the corresponding carrier lifetime
is ~nscc. Under this assumption. the fraction of the minority
carriers that recombine in the SCHs is not significant. In a real
device. however, the dark recombination of the minority carriers.
particularly near the oxide interfaces, can be large.
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Abstract. Hot electron distributions within the active region of quantum well lasers lead to gain suppression,
reduced quantum efficiency, and increased diffusion capacitance, greater low-frequency roll-off and high-frequency
chirp. Recently, “tunnel injection lasers” have been developed to minimize electron heating within the active
quantum well region by direct injection of cool electrons from the separate confinement region into the lasing
subband(s) through a tunneling barrier. Tunnel injection lasers, however, also present a rich physics of transport
and scattering, and a correspondingly rich set of challenges to simulation and device optimization. For example,
a Golden-Rule-based analysis of the carrier injection into the active region of the ideal tunnel injection laser
would suggest approximately uniform injection of electrons among the nominally degenerate ground quantum
well states from the separate confinement region states. However, such an analysis ignores (via a random-phase
approximation among the final states) the basic real-space transport requirement that injected carriers still must
pass through the wells sequentially, coherently or otherwise, with an associated attenuation of the injected current
into each subsequent well due to electron-hole recombination in the prior well. Transport among the wells then
can be either thermionic, or, of theoretically increasing importance for low temperature carriers, via tunneling.
Coherent resonant tunncling between wells, however, is sensitive to the potential drops between wells that split
the energies of the lasing subbands and (further) localizes the electron states to individual wells. In this work
such transport issues are elucidated using Schrodinger Equation Monte Carlo (SEMC) based quantum transport
simulation.

Keywords: quantum transport, tunnel injection lasers, phonon scattering

capacitance, greater low-frequency roll-off and high-
frequency chirp (Bhattacharya 1998, Grupen and Hess

1. Introduction

In conventional quantum well lasers, in principle, the
time required for captured electrons to reach low en-
ergy states of the lasing subband via dissipative phonon
interactions can be comparable to or larger than the life-
time of the carriers within the lasing subband prior to
recombination, resulting in a hot electron distribution
within the quantum wells (Bhattacharya 1998). Hot
electron distribution, in turn, lead to gain suppression,
reduced quantum efficiency, and increased diffusion

1997, 1998). Recently, “tunnel injection lasers” have
been developed to minimize electron heating within
the active quantum well region by direct injection of
cool electrons from the separate confinement region
into the lasing subband(s) through a tunneling barrier.

Tunnel injection lasers, however, also present a
rich physics of transport and scattering, and a
correspondingly rich set of challenges to simulation
and device optimization. The quantum well region is
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designed such that the lasing subbands of the quan-
tum wells are nominally degenerate and, thus, delocal-
ized among the wells. A Golden-Rule-based analysis
of the carrier injection into the active region, which by
design is phonon assisted, would suggest an approxi-
mately uniform injection of electrons into any number
of quantum wells. However, such an analysis overlooks
(in part, via a random-phase approximation among the
final states) the basic real-space transport requirement
that injected carriers still must pass through the wells
sequentially, coherently or otherwise, with an associ-
ated attenuation of the injected current into each sub-
sequent well due to electron-hole recombination in the
prior well. The required transport among the wells then
can be either thermionic, or, of theoretically increas-
ing importance for low temperature carriers, phonon-
assisted or coherent tunneling. Coherent resonant tun-
neling between wells, however, is sensitive to even
small potential drops that split the energies of the lasing
subbands and localizes the electron states to individual
wells.

In this work these issues arc addressed using
Schrodinger Equation Monte Carlo (SEMC) based
quantum transport simulation (Register 1998). SEMC
provides a qualitatively and quantitatively accurate,
non-perturbative, current conserving treatment of
coherent transport and incoherent/phonon-mediated
transport due to real scattering processes, including the
dominant process of long-range polar-optical phonon
scattering, and already has been used to study the ef-
fects of phase-coherence and phase-breaking on carrier
capture by quantum wells (Register and Hess 1997).

2. Schridinger Equation Monte Carlo

The SEMC method is described in detail in Register
(1998); a brief summary is provided here. Phase break-
ing and energy dissipation within this Schrodinger
Equation-based method are modeled via the exchange
of probability among oscillator degrees of freedom
within a many-body electron-phonon system just as
in the true carrier-phonon scattering. For phonon scat-
tering, a set of Schrodinger Equations is defined for
the charge carrier corresponding to an “initial” state
and many (e.g., 100 s or 1000 s of) “final” states sep-
arated from the initial state by the emission or absorp-
tion of one phonon. Coupling potentials between the
initial and final states are provided by Monte Carlo
sampling of the (spatial correlation functions of the)
true carrier-phonon interactions. A probability source
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Figure 1. Carricr distribution (probability density) after the first
scattcring event as a function of position and well-normal component
of energy for. in this and all following figures. a thermal distribution
of electrons incident from the left, with the conduction band edge
shown for reference.

to the initial state is provided by an open boundary in
the carrier coordinates or coupling to a prior phonon
state; probability sinks are provided by open bound-
aries in the carrier coordinates of both the initial and
final states and/or, as required for bound final states in
this work, complex “self-energy” potentials in the final
states. This system, as depicted in Fig. 1(a) is solved
self-consistently to find the many-body carrier-phonon
wave-function from which any physical observable
(transmission, reflection and capture probabilities,
self-energies/scattering rates, currents in real-space
or “phonon-space,” etc.) can be obtained. Probability,
energy and even phase information are inherently con-
served with respect to full-many body system, but with
respect to the carrier alone, the interaction is inelastic
and phase breaking.

This procedure precisely emulates scattering, both
real and virtual, in the true carrier-phonon system to
first-order, and to higher orders within the accuracy
of the estimated final-state self-energies. Scattering is
neither local in position nor time. Indeed, the calcula-
tions of this work are time-independent (propagating)
energy eigenstate calculations in the coupled carrier-
phonon system. “Initial” and “final” only indicates the
direction of probability current flow.

This basic procedure can be repeated sequentially to
trace carriers through an unlimited number of scatter-
ing “events.” The old initial state becomes the source,
a new intermediate state is selected by Monte Carlo
sampling from among the old final states according to
the probability flow to/through the final states, and a
new set of final states is generated each with its own
complex self-energy potentials.
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Table 1. Well/barrier width w, conduction band edge E.., effective mass in units of m,, and nonparabolicity
y for model tunnel injection laser systems with (A) high and (B) low interwell potential barriers.

Sep. conf.  Injection barrier ~ Leading well  Interwell barrier ~ Trailing well ~ Sep. conf.

(A) High interwell potential barriers

w NA 3 7 7 7 NA

E. 0 1000 —117 100 —100 100

m* 0.67 0.14 047 071 047 071

v 0.61 0.25 1.02 0.57 1.02 0.57
(B) Low interwell potential barriers

w NA 3 7 7 7 NA

E. 0 1000 —101 0 —87 100

m* 067 0.14 .047 067 047 071

y 0.61 0.25 1.02 0.61 1.02 0.57

3. Model Tunnel Injection Laser Structures

The design objective of the tunnel injection laser is
to deliver, in particular, “cool” electrons uniformly
among multiple quantum wells for recombination with
holes. The goal of this work is to study the essen-
tial physics of this process within a quantum trans-
port formalism, and compare the results with the ex-
pectations from simpler approaches. To this end, the
quantum well/barrier structure to be simulated has
been simplified by reducing the number of wells to
one leading well and one following well, between
which disparities in the carrier densities and capture
rates and the reasons for those disparities may be
more readily identified. Two structures are consid-
ered, modeled after those discussed in Bhattacharya
(1998), as defined in Tables 1(A) and (B), respec-
tively. Both of these structures are designed to have
nominally degenerate ground state energies in the two
wells 39 meV below the conduction band edge of
the electron injection side of the separate confine-
ment region. The only significant difference between
the two structures is the height of the barrier be-
tween the two wells; one equal to the height of the
band edge on the hole injection side of the sepa-
rate confinement region, the other equal to the height
of the band edge on the electron injection side of
the separate confinement region. Polar optical phonon
scattering due to GaAs bulk modes was considered
within the active region in this work. Consideration
of the full spectrum of interface and confined phonon
modes (Yu et al. 1997) is planned and ultimately
necessary.

4. Simulation Results and Discussion

As noted above, a Golden Rule-based analysis would
suggest uniform injection of electrons into the ground
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Figure 2. (a) The current flow, which is localized primarily to
the leading well, from the initial/incident electron state to the fi-
nal/captured electrons states (in “phonon-space”) as a function of
the position and well-normal component of energy of the captured
electrons. (b) The subsequent resonant real-space tunneling current
from the first well to the second.
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states of the two wells from low-energy incident elec-
trons. However, as shown in Fig. 1, there is a de-
cided segregation of the charge after the initial capture/
scattering event toward the leading well, and a sig-
nificant fraction of the charge captured in the second
well enters hot from higher energy incident electrons
into the excited state of that well. Those electrons
that are found in the ground state of the second well
at low energies after one scattering event get there
by tunneling from the first well after the scattering
event, as shown in Fig. 2. Over time, the interwell
tunneling will reduce but not eliminate this segrega-
tion, as shown in Fig. 3(a). However, if a small addi-
tional voltage bias is applied, 26 mV across the active
region for this work, the resonant tunneling process
is greatly attenuated resulting in further segregation
of the carriers toward the leading well, as shown in
Fig. 3(b).

Reducing the barrier height for the second structure
eliminates much of this problem, however, by allowing
penetration of the incident carrier wave-functions all
of the way across the active region, leading to a nearly
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Figure 3. The cumulative proability densities within the wells

through 10 scattering events as a function of position and well-normal
component of energy (a) at flatband and (b) under additional bias.
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Figure 4. Carrier distribution (probability density) after the first
scattering event as a function of position and well-normal component
of energy (a) at flat-band., and (b) under additional bias (26 mV across
active region).

uniform distribution of electrons between the two wells
after the initial capture process (and subsequently) at
flat band, as shown in Fig. 4(b), or under additional
bias, as shown in Fig. 4(b). We note that in these simu-
lations, incident, electrons enter the low barrier system
with somewhat more energy than they enter the high
barrier system, as seen in Fig. 5. However this result is
a likely artifact of the scale of the system; for larger,
more realistic numbers of wells, lower energy quasi-
confined states should exist within the active region of
the low barrier system to tunnel into.

In one regard, both systems performed well (at least
for a two well system) but particularly the low barrier
system. As also seen in Fig. 5, the fraction of carriers
that leak beyond the well—resulting in diffusion ca-
pacitance and dark current—is quite low because of
the offset between the conduction band-edge in the
separate confinement region on the electron injection
side and that on the hole injection side. Similarly, the
tunnel barrier to electron injection should minimize
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Figure5. Real-space current flow into and, to asmall extent, beyond
the active region as a function postion and well-normal component
of energy.

hole transport beyond the active region that can be
more significant than for electron transport as a re-
sult of thermionic emission between wells. Further, the
tunneling barrier may serve to allow hot electrons in-
jected from the cladding layer more time to cool within
the separate confinement region before entering the ac-
tive region. The cost of the barrier, however, is greatly
reduced electron capture efficiency.

5. Conclusion

A preliminary study of transport in tunnel injection
lasers has bee performed. It has been demonstrated that
tunnel injection lasers can offer advantages over more
conventional lasers by, as intended, lowering the carrier
injection energy and by, in addition, reducing leakage
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currents. However, it has also been demonstrated that
a Golden-Rule analysis of capture can be misleading,
and that interwell transport may be quite sensitive the
voltage drops between wells. In order to make direct
comparisions with experiments, comprehensive mod-
eling should address these effects—although not nec-
essarily requiring as rigorous a transport approach once
the essential physics has been identified—and others.
For example, although designed with electron transport
in mind, these systems also offer advantages for hole
transport as suggested above. In addition, the richer
energy spectrum of the full set of phonon modes (Yu
et al. 1997) as compared to that of a single mode used
in this preliminary work, may effect and perhaps en-
hance carrier capture and interwell transport (Yu et al.
1997).
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Abstract. We present a tight-binding analysis of the polarization dependence of GaAs §-strained semi-
conductors optical amplifiers. We explain how thin strained GaAs layers embedded in a lattice-matched
InGaAsP/InGaAs quantum well can be used to achieve polarization insensitive optical amplification. We
describe also the interaction between pulse propagation and gain compression within a pump-probe ex-
citation in polarization insensitive MQW-SOA. Another important non-linear effect studied is Four Wave
Mixing (FWM) on the pulse propagation in the active region of SOAs. Our model successfully predicts
operation of optical data sampling using FWM interaction between a signal bit stream and an optical

clock.

Keywords:
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1. Introduction

In this paper, first we study with the tight-binding
method the optical amplification/absorption of a é-
strained semiconductor amplifier, which has been
shown to be a very promising structure for optical
comunication systems operating at 1.55 um (Seiferth
et al. 1997).

We then present the model of gain compression
mechanisms in a polarization insensitive MQW-SOA,
and we compare our results to existing experimen-
tal data. The description of pulse propagation al-
low us to determine the light-carrier interaction
consistently along the direction of the propagation
axis. This is an important feature to model the
non-linear operation of Traveling Wave Amplifiers
(TWA).

In order to describe also the FWM non-
linearity in SOAs, we discuss the theoretical
model for the propagation of short optical pulses
in the presence of FWM interaction. The sim-
ulation results for format conversion in a mul-
tiplexer scheme for OTDM systems are also
shown.

semiconductor optical amplifier, tight binding, polarization independence, cross gain modulation,

2. The Tight-Binding Method Applied
to Polarization Independent Semiconductor
Optical Amplifiers

Optical properties can be easily calculated within
the tight-binding scheme without introducing new fit-
ting parameters (Di Carlo er al. 1996). If we con-
sider a linear polarization of the light along the
i-th axis, the absorption coefficient can be written
as

2

a(w) = [f(E) — f(EN]
newsS E;k”
8w+ E — E")

2

6]

Z.Ii(a, m)

o,m

<E, k” E/, k”>

where n is the refractive index and ¢ the speed of
light. Here, S is the transverse area of the primi-
tive cell, £ and E’ are the initial and final electron
energies, respectively, 7w is the photon energy and
J; the current operator (Graf and Vogl 1995). The
basis set for the evaluation of the current operator is




130 Reale

given by the system wave functions |E, k;). Strain is
included in the tight-binding model by scaling the hop-
ping matrix elements (Harrison 1980).

The numerical implementation of the TB approach
is of crucial importance. By itself, the method is
computationally quite heavy since the diagonaliza-
tion of very large matrices is needed. In order to
speed up the calculations, we have introduced a hybrid
method to diagonalize the tight-binding Hamiltonian
which uses a standard (LAPACK (Anderson 1992))
routine to calculate eigenvalues and an inverse it-
eration scheme (Press er al. 1986) to calculate
eigenvectors.

The reference structure for our study consists of
153 A wide (52 monolayers) Ing 533Gag 467AS quantum
well surrounded by Ing 74Gag 26 Asp.56Po.44 barriers, lat-
tice matched to an InP substrate. We investigate the
optical matrix elements when 3 monolayers (ML) of
InGaAs in the middle of the well are replaced by tensile
strained GaAs.

When §-strain is present the first light-hole level lifts
up in energy, as discussed in the previous section, while
the first heavy-hole level shifts down, leading to a band
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Figure 1. Squared optical matrix element as a function of the
inplane k vector along [110} and [100] dircctions for a MQW-
SOA with §-strain. The contribution of each individual transition is
distinguished.

degeneration at k; = 0. The character of these states at
zone center can be deduced by looking at the squared
optical matrix elements (Fig. 1). We notice that the first
valence band has a light hole character (first LH level),
while the second valence band has a heavy-hole charac-
ter (first HH level). Very interesting is the third valence
band (second HH band), where the transition to C1
presents at Ky = 0 a TE contribution. This transition.
which cannot be accounted in the k - p-EFA model,
follows from band mixing at k; = 0. The same mixing
effect is responsible for the TM polarized V2 — C1
transition at zone center.

3. Model of Carrier Dynamics during
Pulse Propagation

In the description of carrier dynamics and propagation
effects in MQW-SOA our approach explicitly includes
the main transport mechanisms across the active re-
gion: exchange of carriers between the different QWs,
exchange between QW and Separate Confincment
Heterolayers (SCH) surrounding the QWs, and carrier
injection from the SCH. We point out that the dynamics
of carriers and the interaction with light are described
in a coarse time-space grid.

The propagation of light pulses through an optically
active medium as a function of time ¢ and of the position
z along the active region confinement guide is described
by a set of coupled partial differential equations.

ds 1§ 1
— =g(N)§ - —— + _ﬁRs/i @3
dz s Tp Vg

N, 1

_ar, = Tinj i R(N;) — Ry &)

In Eq. (2) z is the propagation direction, § = S(t. z)
the total photon concentration, N; = N;(t, z) the car-
rier density in the i-th well, v, the group velocity,
&(N) the gain-carrier density relationship, 7, pho-
ton lifetime, 8 the coupling factor of the sponta-
neous emission R,,(N;) in the i-th well with the main
propagating mode. In Eq. (3) 7;,; is the injection effi-
ciency, / the injected current, ¢ the electron charge, L
the thickness of the particular layer considered, R(N;)
the recombination term accounting for trap-related,
spontancous and Auger recombinations (including
also transport processes such tunneling or thermionic
emission) and R,, accounts explicitly for stimulated
recombinations.
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Figure 2. Pump amplification along the SOA waveguide for a
current bias of 150 mA.

The gain versus carrier density relation is given by

N
Golnl — }); N >N,
gNy=1""° (m) = @)
—o N < Nu;

The parameters concerning the present propagation
scheme are indicated elsewhere (Reale, Di Carlo and
Lugli 2001). Figure 2 describes the propagation of a
gaussian pulse (FWHM = 8 ps) injected into the de-
vice. The grey scale intensity reproduces the light in-
tensity inside the semiconductor slab, the lighter grey
scale corresponding to the higher intensity. The time
and spatial coordinates are given respectively by the
vertical and horizontal axis.

The modulation of the carrier density is described in
Fig. 3. The time scale now is much longer than the one
in Fig. 2, as the density modifications induced by the
pump pulses (whose duration is less than 10 ps) are rec-
ognizable only at nanosecond delay times. The reason
of such different behavior is that carrier depletion takes
place (almost instantaneously) by stimulated recom-
bination, while the recovery of stationary conditions
is limited by the slower non radiative recombination
mechanisms.

The process of carrier recombination described by
Fig. 3 results in a negative spike in the probe output as
observed in the experiment of Reale et al. (1999) and as
illustrated in the simulation result of Fig. 4. The shape
of this “dark pulse” at the output is asymmetric, due
to the fact that the falling portion slope reproduces the
fast stimulated recombination process induced by the
pump pulse, while the rising part is limited by the non
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Figure 3. Carrier density along the SOA waveguide for a current
bias of 150 mA.
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Figure 4. Probe amplification along the SOA waveguide for a
current bias of 150 mA.

radiative recombination time controlling the recovery
to the stationary level of the carrier population.

4. Theoretical Model of the Four Wave
Mixing Interaction

Modeling the FWM process requires the knowledge
of the microscopic phenomena leading to the system
non linear response (Yariv 1997). In SOAs we are con-
cerned primarily with gain dynamics resulting from
interband and intraband processes (Guekos 1998).
Equations (2) and (3) describe the equilibrium carrier
dynamics in the presence of a propagating electromag-
netic field. In order to include CH and SHB effects, one
has to model the variation Ang,, = # — Apgmi, Al =
R Fermi — NFermi,eq i the local carrier density due to these
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non equilibrium processes. Here n is the local carrier
density, 1150 is the local carrier density evaluated with
the heated Fermi distribution, 7.y g is the local car-
rier density in equilibrium with the lattice evaluated
with the thermalized Fermi distribution.

If the pulses propagating in the amplifier are longer
than the characteristic times of SHB and CH, one can
assume that Angy, and An,y, are in quasi-equilibrium
with the instantaneous field value. Under this assump-
tion one has

v

A”shb = "_geshbgs (5)
an
Vg

A"('h = _—erhgs- (6)
an

where €, is the gain compression factor due to SHB,
€.» the gain compression factor due to CH, and ay/v,
is the gain cross section.

The explicit contribution of the refractive index mod-
ulation on the phase changes along the waveguide can
be described in terms of variations of the field wavevec-
tor k = 21/ as follows (Guekos 1998)

3 L
— =~=Tay
3z 2 N

ag 1 g
8 AN = 2Tor 25 An,
aN rergy B ()

where AN represents the variation of the carrier density
from the stationary value in absence of optical input and
the so called alpha factors (Guekos 1998).

A proper filtering of the spectrum of the total electric
field E(t, z) calculated at the output facet (z = L) per-
mits the extraction of the generated conjugated signal
E.(t). To perform this operation, we calculate the
Fourier transform of E(r, L) and model the Optical
Band-Pass Filter (OBPF) with a raised cosine func-
tion of spectral width Awggpr. The filter output can
then be transformed backward in order to obtain the
time domain representation of the conjugated signal.

One of the potential applications of FWM in ultrafast
optical network is related to the fact that FWM acts
as a logical AND operation between pump and signal
fields (Kamatani and Kawanishi 1996, Nesset et al.
1994). Thus, it can then be used as a pulse reshaping
and format converter tool for optical systems operating
up to tens of Gbit/s. In particular, it might be possible to
operate a format conversion between long NRZ pulses
to short duration RZ pulses. We considered 400 ps long
NRZ gaussian pulses at 2.5 Gbit/s, having an average
power for the on state of —10 dBm and an extinction
ratio between the on and the off state of 10dB. The local
clock RZ source is a gaussian pulse with a duration of
25 ps and a pulse energy of 10 fJ. The RZ pulse train
is synchronized with with the maximum of the NRZ
pulses to maximize the FWM interaction.

Figure 5 depicts the intensity of the total electric
field at the input of the SOA (lower trace) and at the
output (upper trace) as a function of time. The NRZ
bit sequence is 10010 and the beating pattern observed
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Figure 5. Total input and output intensity in FWM interaction between NRZ and RZ pulse train.
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Figure 6. Conjugate signal showing the sampled bit sequence of the input NRZ pulses.

when both NRZ and RZ signal are present is due to the
presence of the beating factor e/4% in the total photon
density S(¢, z). From input to output it can also be noted
how the NRZ pulses get distorted due to gain saturation
in the SOA.

It can be observed that the conjugated spectra can
be filtered out once a proper filtering is performed
around the central angular frequency w, = w, — AQ.
The backward transformation of the conjugate spec-
tra shown in Fig. 6 clearly indicates the logical AND
operation associated to FWM. The clock pulses are
sampling the logical level of the NRZ pulses. The ex-
tinction ratio of the conjugated signal is less than 10
dB. However the present work demonstrates the possi-
bility to investigate the conditions for which such ex-
tinction ratio can be raised to higher values This is of
fundamental importance to investigate the practical the
feasibility of pulse reshaping—format conversion for
multiplexing in OTDM systems (Gosset and Hua Duan
2001, Jiang et al. 1999).

5. Conclusions

The influence of a delta-strain on the modal absorption/
gain characteristic of a semiconductor optical amplifier
have been studied by means of a tight-binding calcu-
lation. We have presented a model for studying gain

compression and propagation dynamics in Traveling
Wave Multiple Quantum Well SOAs. We have pre-
sented a theoretical study of FWM phenomena in
Semiconductor Optical Amplifiers. Our results demon-
strate that FWM can be usefully used as a pulse re-
shaping and format converter tool. This can be of
fundamental importance when raising the speed of
optical systems up to tens of Gbit/s.
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Abstract. We present an new hybrid Diffusion Quantum Monte-Carlo (DQMC)/Local Spin Density Approxima-
tion (LSDA) method, to compute the electronic structure of vertical quantum dots (VQD). The exact many-body
electronic configuration is computed with a realistic confining potential. Our model confirms the atomic-like model
of 2D shell structures obeying Hund’s rule already predicted by LSDA.

Keywords: quantum dots, Diffusion Quantum Monte-Carlo, LSDA, Hund’s rule

1. Introduction

Spin effects, and their possible manipulation by elec-
tric gating in quantum dots have received significant
attention because of the new physics associated with
few spin systems and their potential applications in
quantum information processing. Various models have
been used to approximate the many-body Schrodinger
equation: exact diagonalization (ED) (Ezaki, Mori and
Hamaguchi 1997, Imamura et al. 1995), quantum
Monte-Carlo (QMC) (Bolton 1994, Pederiva, Umrigar
and Lipparini 2000), density functional theory (DFT)
(Macucci, Hess and Iafrate 1993, Stopa 1996, Lee
et al. 1998, Matagne et al. 2000) and Hartree-Fock
(HF) (Yannouleas and Landman 1999). These differ-
ent models, however, have predicted contradictory phe-
nomenaranging from Wigner localization (Yannouleas

and Landman 1999), spin density waves (Yannouleas
and Landman 1999) and atomic-like properties such
as shell filling with Hund’s rule (Ezaki, Mori and
Hamaguchi 1997, Stopa 1996, Lee ef al. 1998, Matagne
et al. 2000).

In this paper we present a hybrid Local Density Ap-
proximation (LSDA)/Diffusion Quantum Monte Carlo
(DQMC) method for simulating the electronic configu-
rations of realistic vertical quantum dots (Tarucha et al.
1996). This approach has the unique advantage of com-
bining the flexibility of the LSDA for modeling the
device features of the quantum dot with the accuracy
of the DQMC for computing the ground state of the
many-body system. The method computes the three-
dimensional (3D) self-consistent confining potential
from Poisson and Kohn-Sham equations with the re-
alistic device structure comprising hetero-barriers and
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doping regions with boundary conditions on the elec-
tric potential deduced from the external bias applied
to the gate. The exact many-body electronic configura-
tions at each gate voltage are then simulated by using
DQMC with the realistic 3D potential. We show that
the relative error between the total energy computed
by LSDA and QDMC never exceeds 7%. Moreover,
LSDA and DQMC are in excellent agreement for the
spin configuration that leads to the lowest energy, for
any number, N, of electrons between 2 and 16, and
confirm the atomic-like model of 2D shell structures,
obeying Hund’s rule for open shells.

2. Structure Description and Device Operation

Figure 1(a) shows a schematic diagram of aCVQD sim-
ilar to the device investigated by Tarucha et al. (1996).
The quantum dots reside in devices fabricated from
a double barrier heterostructure (DBH) consisting of
an undoped 12 nm IngysGapgsAs well and undoped
9 nm and 7.5 nm Alj1,Gag73As barriers (Fig. 1(a)).
The source and drain leads on both sides of the DBH
are made of n7GaAs. The diameter, d =2R of the
measured mesas is 0.5 gm, but the effective dot radius
is 50 nm.

3. Approximations for the Many-Body Problem

In order to obtain the electronic and spin properties
of the structure described above, we are concerned
with solving the non-relativistic, time independent,
many-body Schrodinger equation under the Born-
Oppenheimer and effective mass approximations,

L. N o2
— AV V..(r; -
2»‘1*; ! +; m’(r')+i Z .|r.-—rj|:|
= = NERET]
x W(R) = E¥(R), N

where N is the number of electrons, m* is the electron
effective mass, R = (ry, ..., ry) and V(r;) is the exter-
nal potential energy operator for the ith electron. Ap-
proximations for simplifying Eq. (1) occur at three lev-
els: (i) the confining potential V,(r); (ii) the problem
dimensionality; (iii) the many-body electron-electron
interaction.

3.1. The Electron Confining Potential
and Dimensionality

Many authors (Ezaki, Mori and Hamaguchi 1997,
Bolton 1994, Pederiva, Umrigar and Lipparini 2000,
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Figure 1. (a) Schematic diagram of a cylindrical vertical quantum
dot tunncling heterostructure showing the different semiconductor
layers. (b) Cylindrical charge model for the CVQD structure with
boundary conditions.

Lee et al. 1998, Yannouleas and Landman 1999) use
the parabolic approximation for V,,, in the 2DEG (v—
y) plane: V ,(r) = (l/2)w2r2. However, by solving
Poisson equation on the cylindrical domain shown on
Fig. 1(b)), we have shown (Matagne and Leburton sub-
mitted) that the confining potential in the x—y plane V.,
is not purely parabolic and that higher order terms lift
all the accidental degeneracies that would appear in the
eigenlevel spectrum with the parabolic approximation.
In addition, we have also shown that, as Vi is swept,
i.e., as the number of electrons in the dot increases,
the quadratic term in the confining potential which
determines the oscillator frequency decreases. More-
over, Rontani ez al. (1999) have shown that, by solving
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the problem in the x—y plane only, and neglecting the
vertical direction, the carrier localization is overesti-
mated and often lead to an inadequate description of
the Coulomb interaction between electrons. Thus, in
order to compute the confining potential accurately, a
3D Poisson equation has to be solved with realistic
device structure and appropriate boundary conditions
deduced from the applied gate bias.

3.2. The Electron-Electron Interaction

Many-body methods, such as ED and QMC, com-
pute the electron-electron interaction exactly. In par-
ticular, the many-body wave functions explicitly incor-
porate electronic correlation. Unfortunately, the phase
space grows exponentially with the number of elec-
trons, which restricts the non-stochastic many-body
technique (ED) to a small number of electrons (N =12
(Imamura et al. 1995)). QMC, however, scales the ex-
ponential complexity down to N3 while DFT methods,
with their shortcoming, are computationally less ex-
pensive and therefore more suitable to be coupled self-
consistently to Poisson equation. To the best of the au-
thor’s knowledge, the many-body methods are always
used with an ideal parabolic confining potential. In the
next section, we present a method that combines the
advantages of LSDA and DQMC.

4. The Hybrid LSDA/DQMC Method
(LSDA/DQMC)

The flowchart of the LSDA/DQMC Method can be
stated as follow:

(a) Solve Kohn-Sham Equations,

th 1V
[_7 (% >_q(¢exr+¢ion+¢H +¢oﬁ)

+ uii“[n]] |61V) = Ei|6!)

where ¢(r) = @ur + Pion + P is the electrostatic
potential which consists of three contributions:
¢. is the potential due to external applied bias,
®;,n 18 the potential resulting from ionized donors
and ¢y is the Hartree potential accounting for re-
pulsive electron-electron interactions. ¢,z is the
conduction band offset between different materi-
als (Matagne and Leburton submitted).
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(b) Compute the electron density

Ny
n(r) = nt@+nt@) =" [ )P

i=l1
Ny

+ Y P
i=1

where N4+(N,) is the number of spin up (down)
electrons.
(c) Solve Poisson Equation

V(er)Ve(r)) = —p(r)

where e(r) is the position dependent permittivity
and p(r) is the total charge density which is given
by p(r) = (N (r) — n(r)), where n(r), N (r) are
the electron and ionized donors densities respec-
tively, at the position r.

(d) Compute the exchange correlation potential (Wang
and Chou 1993)

) d(nexc[n])
xc ant®

(e) Go back to (a) until convergence is achieved.

Equations (a) and (c) are discretized by the finite
element method of which the detailed formulation has
been published elsewhere (Matagne et al. 2000).

Now, a first guest Wy for the many-body wave
function W is constructed as a linear combination of
Slater determinants of the single-particle wave func-
tions v; and the external potential energy part of
the many-body hamiltonian takes the realistic form
Ve = —q(@ion+ Pext + $op) Which is extracted from ¢
by Green’s function. The many-body problem can then
be solved by DQMC method (Wilkens 2001).

5. Results

Figure 2 shows the various energy contributions to the
electronic system in the dot computed with LSDA and
LSDA/DQMC. (KE), {PE;,) and (PE,,) are the quan-
tum mechanical average of the kinetic energy, inter-
nal potential energy and external potential energy, re-
spectively. The internal potential energy includes the
energy contributions due to electron-electron interac-
tion while the external potential energy include the en-
ergy contribution due to the interaction between the
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Figure 2. Comparison between the total energy (E), the kinetic
encrgy (KE). the total potential encrgy (PE), the internal potential
encrgy (PE;,} (Hartrce + exchange) and the external potential cn-
ergy (PE.y) between LSDA (black) and DQMC (white) as a func-
tion of the number of electrons. Insct: relative error [(DOMC —
LSDA)Y/DQMC)| between LSDA and DQMC.

electrons and the external potential V. Of course,
(PE) = (PE;) + (PE.y) denotes the total potential en-
ergy and (E) =(KE) + (PE) is the total energy. The
agreement is remarkable since the relative LSDA error
with respect to LSDA/DQMC (inset) never exceeds
7% and converges to 2% when the number of electrons
becomes large.

Moreover, we have computed all the electronic con-
figurations for N =2 to 16. In each case, LSDA and
LSDA/DQMC agree on the ground state configura-
tion. In particular, for N =4, the total spin S=1, in
agreement with all the previous publications except the
DQMC model with parabolic confining potential by
Pederiva, Umrigar and Lipparini (2000). For N =9,
we find a ground state with § = 3/2. However, we
have shown (Matagne and Leburton submitted) that
the spin sequence of the third shell depends on the
splitting between its two degenerate d-states and its
s-state. For N = 13, 14, 15and 16, S = 1/2, |,
1/2 and 0, respectively which confirms that the fourth
shell has split into two sub-shells and the the filling
of the first sub-shell occurs in a way similar to the
filling of the second shell. Thus, the the filling of
each sub-shell occurs in accordance to Hund’s first
rule.

Finally, Fig. 3 shows the electron density for
N =6 and N =12 computed with LSDA. It is seen
the electrons are delocalized which is confirmed by
LSDA/DQMC. We disagree here with Yannouleas
who, for the same densities, observes Wigner crystal-
lization and spin density waves with a 2D HF model
(Yannouleas and Landman 1999). We believe that this
is due to the electron localization over-estimation, typ-
ical to the 2D models.

| | . 3
i 1000

(a)

1000

1000 -1000 y(A
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Figure 3.  Electron densities for N = 6 (a) and N = [2(b).

6. Conclusion

We have presented a new hybrid LSDA/DQMC model
that includes the realistic 3D electron confining poten-
tial in the exact many-body calculation of electronic
and spin configurations of VQDs. We have shown that,
for QDs with high confinement, LSDA approximation
is in excellent agreement with LSDA/DQMC. In addi-
tion, LSDA/DQMC confirms the atomic-like model of
2D shell structures obeying Hund’s rule already pre-
dicted by LSDA.
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Abstract. We use the Effective Bond Orbital Model (EBOM) method to examine the spin splitting due to the
Rashba effect in AlSb/InAs/GaSb asymmetric heterostructures. We have explored different thicknesses of the
constituent materials and we have found for the resulting two-dimensional electron gas (2DEG) in the optimized
structure a theoretical value of the Rashba constant ag = 51 x 1071° eV.cm. This is, to our knowledge, the largest
predicted value for this parameter. We provide an intuitive explanation for the behavior of the spins in the 2DEG.
Finally, we study the effect of wide layers on the Rashba coefficient.

Keywords: two-dimensional electron gas, 2DEG, optimization, asymmetric quantum well, Rashba, EBOM

In recent years, interest in developing spin-sensitive
devices (spintronics) (Wolf 2000, Gawel 2000, Das
Sarma et al. 2000, Heinrich 2000) has fueled renewed
investigations into spin phenomena in semiconductors.
The aim is to control not only the spatial degrees of free-
dom of the electron, but also the spin degree of free-
dom. Useful spintronic devices can be devised if such
control is achieved. A number of such devices have al-
ready been proposed (Datta and Das 1990, Fiederling
et al. 1999, Morinaga and Shiiki 1999). Yet the search
for phenomena which can lead to spin based devices
is widespread (Schmidt et al. 2000, Malajovich ef al.
2000, Awschalom and Kikkawa 1999).

We believe that the nearly lattice matched system co-
mprised of InAs, GaSb and AISb (McGill and Collins
1993, Miles er al. 1993) shows particular promise
for spintronics. Studies of asymmetric quantum wells
have been previously carried out both theoretically and

experimentally in other materials (Bychkov and
Rashba 1984, Stein, Von Klitzing and Weimann 1983,
Malcher, Lommer and Rossler 1986, Luo et al. 1988).

One of the phenomena that we expect to be of im-
portance in the InAs/GaSb/AISb heterojunction sys-
tem is the Rashba effect (Bychkov and Rashba 1984).
The precise contributions to the magnitude of the ef-
fect are a subject of some very recent studies (Silva,
LaRocca and Bassani 1994, 1997). Previously, a num-
ber of studies have examined InAs quantum wells con-
fined by InGaAs layers (Brosig et al. 1999, Matsuyama
et al. 2000, Grundler 2000, Winkler 2000). In this study,
we focus on the effects of the InAs/GaSb unique band
offsets.

In this paper, we first perform a series of band struc-
ture calculations with the Effective Bond Orbital Model
(EBOM) method (Chang 1988, Einevoll and Chang
1989), which takes the electron spin into account, for
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Figure 1. Plot (a) shows the calculated band structure of a 16 ML (monolayers) AISb/6 ML InAs/6 ML GaSb superlattice near the I' point for
light holes, heavy holes and conduction electrons. Note the splitting in the states of the 2DEG, corresponding to the conduction band. The solid
line in plot (b) shows the spatial arrangement of the band edges. while the dashed line corresponds to the wavefunction of a confined state. Plot
(c) shows the splitting in the conduction band as a function of the electron wavevector along [100].

several A1Sb/InAs/GaSb/AISb quantum wells grownin
the [001] direction. Later, we provide an intuitive phys-
ical picture of the processes inside the quantum well
leading to the spin splitting. Finally, we find an opti-
mized AISb/InAs/GaSb structure yielding the largest
Rashba coefficient and discuss a situation where it can
be greatly diminished.

The EBOM method is a reformulation of Kane’s
eight-band k - p theory (Kane 1956) in the tight-binding
framework. The EBOM technique incorporates realis-
tic valence band structure. Hence, it is ideal for the
calculation of the band structure of the two-dimen-

sional electron gas (2DEG), taking into account the
strong coupling between the InAs conduction band and
the GaSb valence band states (see plot b) in Fig. 1. It
provides an accurate description of the band structure
near the zone center for the conduction, heavy hole,
light hole and split-off bands, including the spin-orbit
splitting.

We use the standard approach of using a superlattice
to find the band structure of the well, and we find that
the superlattice cells are effectively decoupled when
the AISb thickness is of 8 monolayers (ML) or more,
with a monolayer having a thickness of 3.048 A.
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When the inversion symmetry of a quantum well
is broken, say by the introduction of a different layer
at one of the well/barrier interfaces, a splitting in the
energy levels in the conduction band appears (Bychkov
and Rashba 1984). This splitting is linear in the electron
momentum k close to the Brillouin zone center.

Bychkov and Rashba derived the following Hamil-
tonian to describe this splitting in a two-band model
(Bychkov and Rashba 1984)

Hso = ag(o x k) -2 (H

where oy is the Rashba coefficient (dependent on the
details of the heterostructure), o are the Pauli spin ma-
trices, k is the crystal momentum of the electron in the
2DEG and % is a unit vector parallel to the growth di-
rection. When applied to quantum wells, the EBOM
Hamiltonian yields the same results as Eq. (1) without
any modification.

There are of course other symmetry breaking mech-
anisms for a well (Luo et al. 1988, Nitta et al. 1997) that
will not be dealt with in this article. Our treatment does
not account for the intrinsic inversion asymmetry exis-
tent in bulk zincblendes and the so called &> splitting
originating from it (Dresselhaus 1955), either. This ef-
fect could lead to some corrections to our calculations,
but we have found them to be on the order of a 20% at
most (Cartoixa, Ting and McGill, unpublished).

We show in Fig. 1(a) the band structure of a 16ML
(monolayers) AISb/6ML InAs/6ML GaSb superlattice.
We see that the two conduction subband energy levels
are split. The hole states are also split, but their analysis
in terms of spin angular momentum is much more com-
plicated than in the electron case. The only point in k
space where the degeneracy remains is the I" point. As
can be deduced from Eq. (1), the band structure of the
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2DEQG possesses cylindrical symmetry to first order. As
we can see in Fig. 1(c), the splitting of the conduction
subbands is linear close to I', and from Eq. (1) it can
be found to be

AR = 2(¥Rk (2)

where k is the magnitude of the electron wavevector.
Figure 1(b) shows a plot of the band alignments of the
composing materials and the probability distribution of
an electron in the 2DEG.

The appearance of this splitting due to the lack of
inversion symmetry can be intuitively understood in
similar terms as the spin-orbit interaction. We choose
our coordinate system such that the z axis points along
the growth direction and the 2DEG lies on the x—y
plane. When the inversion symmetry is broken, there
exists the possibility that a net electric field appears
pointing in the z direction. In our case, the source of
the net electric field would be the different band offsets
in the AlSb/InAs and the InAs/GaSb confining inter-
faces. When the electrons move in the 2DEG plane,
they will see in their comoving reference frame how
a part of the original electric field has transformed
into a magnetic field (Cohen-Tannoudji, Diu and Lalo&
1977) due to the same relativistic effect leading to the
spin-orbit interaction. One can see that this “effective”
magnetic field (Johnson 1998) will be perpendicular to
both the net electric field and the velocity—therefore,
momentum—of the traveling electron. Finally, the
electron spin couples to the in-plane magnetic field
existing in its local frame in a Zeeman-like manner,
giving rise to the split energy levels and a peculiar spin
configuration in k space. As seen in Fig. 2, the spins
corresponding to a specific conduction subband will
point in-plane either clockwise or counterclockwise in
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Figure 2. Calculated expectation value of the spin for states of a 2DEG lying on circles of constant & for the two conduction spin split subbands.
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a circle of constant & magnitude in k space, while the
spins of the other subband point in the opposite way.

This spatial orientation of the spins in the conduction
band could in principle be employed, with the help of
a bias in the well plane, to partially magnetize the elec-
trons in the well and generate a current in the 2DEG
with a slight degree of spin polarization (Cartoixa et al.
2001). These effects will require a large Rashba coef-
ficient if they are ever to be practically useful.

We have systematically explored structures with dif-
ferent layer thicknesses with the purpose of looking for
the configuration optimizing the Rashba coefficient and
delineate the role of each of the composing layers. The
Rashba coefficient is calculated from the splitting at
0.2% of the zone edge along the [100] direction and
then applying Eq. (2).

Figure 3 shows the Rashba coefficient as a function
of the AISb and GaSb thicknesses while keeping the
InAs thickness fixed to 9 ML. We see that the Rashba
coefficient is independent of the AlSb and GaSb thick-
nesses in a wide range. It only changes its value when
the AISb layer is very thin—the quantum well approx-
imation ceases to be valid—or when the GaSb layer
is less than 8 ML, In this case, a thinner GaSb layer
reduces the amount of asymmetry in the quantum well
and, therefore, reduces the Rashba coefficient. This be-
havior can be understood looking at the wavefunction
in Fig. 1(b). We see the tail of the wavefunction vanish-
ing into the AISb on one side and into the GaSb on the
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Figure 3. The Rashba coefficient as a function of AlSb and GaSb

thicknesses for InAs thickness fixed to 9 ML. The numbers in the plot
are contour lines of the Rashba cocfficient in units of 100 ¢V.cm.
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Figure 4. The Rashba coefticient as a function of InAs and GaSb
thicknesses for AISb thickness fixed to 16 ML.

other. Once the point where the tail of the wavefunc-
tion vanishes inside one layer has been reached; it is
of little consequence that more monolayers of material
are added, since that would affect a region where the
electron is barely present. This explains the indepen-
dence respect the AISb and GaSb thicknesses for most
of the range.

Figure 4 shows the Rashba coefficient as a function
of the InAs and GaSb thicknesses while keeping the
AlSb thickness fixed to 16 ML. We see that, in order
to achieve a high Rashba coefficient, we need that the
GaSb thickness be bigger than approximately 8 ML and
the InAs layer be between 5 and 15 ML. We have seen
that the AISb thickness is of little importance as long as
it is thick enough; therefore, these design rules apply
for quantum wells with AISb barriers thicker than 15 A.

Another interesting feature in Fig. 4 is the region of
thick GaSb and InAs where the Rashba coefficient is
appreciably diminished—the dark region. This sudden
reduction is due to the anticrossing of the InAs electron
states with the GaSb hole states.

Figure 5 shows an example of such anticrossing. It
displays the band structure of a 24 ML GaSb/24 ML
InAs quantum well. In bulk, the InAs conduction band
electron states lie below the GaSb valence band hole
states (Yu, McCaldin and McGill 1992). For a thin
quantum well, the InAs electron states are pushed up
in energy, while the GaSb hole states are pushed down;
thus making the well behave as if it were made of a di-
rect bandgap material. However, for the case shown in
Fig. 5, the GaSb and InAs layers are not thin enough for
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Figure 5. Band structure of a 12 ML AlSb/24 ML InAs/24 ML
GaSb/12 ML AlSb quantum well, showing the anticrossing of the
conduction and valence bands. The inset shows the splitting in the
conduction band.

the valence and the conduction bands to be separated,
and the anticrossing takes place.

We see in the inset in Fig. 5 that the amount of split-
ting only recovers its linear k dependence once the elec-
tron states don’t couple with the hole states. In this sit-
uation, the Rashba coefficient defined as one half of the
slope of the splitting at the " point loses much of its
meaning, and it is more appropriate instead to look at
the amount of splitting. We see, for example, that the
splitting atk = (0.03, 0, 0) A-lisreduced to about one
third of the value for thin wells [cf. plot ¢ in Fig. 1].

It is important to note that an eight band method is
needed to fully consider the interplay of the conduc-
tion and valence bands leading to the reduction of the
Rashba coefficient. Had we used a two band method,
we would not have been able to detect this reduction.

In conclusion, we have shown that the AlSb/GaSb/
InAs system shows promise to be the material system of
choice to obtain large Rashba effect splittings. We have
seen that the Rashba coefficient is critically dependent
on the InAs thickness, while it shows almost no depen-
dence on the AISb and GaSb thicknesses once these
are above some threshold value. We have determined
the optimal thickness of the InAs layer. We have finally
shown that, in order to achieve a large coefficient, it is
important to design the sample in such a way that there

is no anticrossing between the electron states and the
GaSb hole states.
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Abstract. The Rashba effect resonant tunneling diode is a candidate for achieving spin polarizing under zero mag-
netic field using only conventional non-magnetic III-V semiconductor heterostructures. We point out the challenges
involved based on simple arguments, and offer strategies for overcoming these difficulties. We present modeling
results that demonstrate the benefits of the InAs/GaSb/AlSb-based asymmetric resonant interband tunneling diode

(a-RITD) for spin filtering applications.

Keywords: resonant tunneling, interband tunneling, Rashba effect, spin filter

1. Introduction

Recent theoretical studies suggest the possibility of
polarizing electron spins by resonant tunneling (de
Andrada e Silva and La Rocca 1999), and obtain-
ing spin-polarized current in resonant tunneling het-
erostructures at zero magnetic field (Voskoboynikov
et al. 2000) using conventional non-magnetic semicon-
ductor heterostructures. A typical resonant tunneling
spin-filtering device structure consists of double barri-
ers surrounding an asymmetric quantum well, where
quantized states are spin-split by the Rashba effect
(Bychkov and Rashba 1984). In this work we report
our theoretical analysis of spin polarization effects in
InAs/GaSb/AlSb resonant tunneling structures. Het-
erostructures of InAs/GaSb/AlSb are strong candidates
for pronounced Rashba spin splitting because of the
large spin-orbit interaction in InAs and GaSb, and

the availability of both InAs and GaSb for the con-
struction of highly asymmetric quantum wells. The
non-common anion InAs/GaSb and InAs/AlSb het-
erointerfaces also present opportunities for engineering
interface potentials for optimizing Rashba spin split-
ting. Indeed, our calculations show that it is possi-
ble to obtain rather large Rashba spin splitting in
AlSb/InAs/GaSb superlattices even in the absence of a
transverse electric field (Cartoixa, Ting and McGill in
press, 2002).

The InAs/GaSb/AISb material system allows for a
variety (type-I, type-II staggered, and type-II broken-
gap) of band alignments. In addition to conventional
intraband resonant tunneling structures, the availabil-
ity of the type-II broken-gap band offset also allows us
to fabricate resonant interband tunnel diodes (RITDs),
where the quasibound states have opposite k-parallel
dispersions to those in the electrodes. In the following
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sections we will discuss spin-dependent tunneling in
both the intraband and the interband resonant tunnel-
ing structures. In particular, we will highlight salient
features of the RITD for applications to spin filtering.

2. Rashba Effect Resonant Tunneling Spin Filter

Spin splitting can result from the lifting of Kramers
degeneracy through the removal inversion symmetry.
Bulk zinc-blende or wurzite compound semiconduc-
tors exhibit microscopic inversion asymmetry in their
lattice structures. Dresselhaus (1955) has shown that
this bulk inversion asymmetry (BIA) leads to a spin-
orbitinduced splitting whose magnitude is proportional
to k3 for small k, where k is the electron wave number,
The Dresselhaus mechanism can also lead to an addi-
tional splitting linear in & in 2D systems (Eppenga and
Schuurmans 1988). Rashba showed that in heterostruc-
tures, structural inversion asymmetry (SIA) from inter-
face fields can lead to a spin splitting which is also lin-
ear in k (Bychkov and Rashba 1984). It is believed that
in InAs/GaSb and InAs/A1Sb systems, spin splitting is
primarily due to the Rashba rather than the Dresselhaus
effect (Luo er al. 1990, Chen ef al. 1993). Therefore
in this work we include only effects due to SIA; the
treatment of BIA will be reported elsewhere (Cartoixa,
Ting and McGill unpublished). Figure 1 shows the band
structure of an InAs/GaSb/AISb superlattice structure
with composite InAs/GaSb wells calculated using the
effective bond orbital model (Chang 1988). The struc-
tural inversion asymmetry induces spin splitting in both
conduction and valence subband states (localized, re-
spectively in InAs and GaSb layers). Spin splitting in
the lowest conduction subband exceeds 20 meV for
in-plane wave vector kj; = 0.05(2m /a); splitting for all
subbands vanish at the zone center.

The Rashba effect may be exploited in conjunction
with resonant tunneling for spin filtering using, for ex-
ample, a double barrier heterostructure (DBH) contain-
ing an asymmetric quantum well. In our case, we use
an asymmetric composite InAs/GaSb well, surrounded
by AISb barriers and InAs electrodes. When designed
with appropriate layer thicknesses, this device can be
made to operate either, under low bias, in the resonant
interband tunneling (Soderstrom, Chow and McGill
1989) regime where electrons traverse valence subband
states in GaSb, or, under moderate bias, in the intraband
resonant tunneling regime where electrons traverse
conduction subband states in InAs. The quasibound
states in this structure are spin-split due to the Rashba
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Figure 1. Band structure of a superlattice, where each period con-
tains 8 ML (monolayers) of InAs, 18 ML of GaSb. and 12 ML
of AlSb. The unstrained band edges of E'* = 0 and EGSP =
0.204 ¢V are used. The substrate lattice constant is taken to be that
of GaSh. The lowest conduction band of InAs., strained to the GaSb
lattice constant in the in-planc directions, is also shown for reference.

effect. Large spin splitting is desirable for spin filtering
applications. Near the zone center Rashba spin split-
ting is linear in k, and is given by AE = 2a|k|, where
o is known as the Rashba coefficient. We compute o
associated with the lowest conduction subband for our
resonant tunneling structure, and show in Fig. 2 how it
can be modified by an applied E field. For comparison,
we also show the results for a symmetric structure that
shows no spin splitting under zero bias. Evidently, the
applied E field alters the degree of inversion asymme-
try and hence the Rashba spin splitting.

The spin of a resonantly transmitted electron is
aligned with that of the quasibound state traversed (de
Andrada e Silva and La Rocca 1999). Figure 3 shows
the spin-dependent transmission coefficient spectra
calculated using the multiband quantum transmitting
boundary method (MQTBM) (Ting, Yu and McGill
1992) for the asymmetric DBH described above. Inci-
dent electrons with +z and —z polarizations are used
to probe quasibound states with k;; along the x direc-
tion, which have 4y and —y spin polarizations (see
discussions below). Note that for encrgies above or be-
low the resonances, the transmitted electron retains the
spin direction of the incident electron. For energies in
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Figure 2. Dependence of Rashba coefficients on applied electric
field for a symmetric and an asymmetric resonant tunneling structure.
Band diagrams are shown as insets.

between the resonances, spins are flipped during the
tunneling process. On resonance, however, transmit-
ted states are spin polarized by the quasibound states,
independent of the incident spin direction. Since only
on-resonance transmission probabilities are significant,
the spin polarization of transmitted current is primarily
determined by quasibound state properties, which we
examine below.

3. Challenges and Strategies for Designing
a Rashba Effect Spin Filter

To demonstrate the challenges involved in designing
a resonant tunneling spin filter based on the Rashba
effect, we examine the spin directions of the quasi-
bound states. In general, spin-orbit interaction is given
by Hyo = [h/2mc)le - VV x p=(g/2)upo - Bar.
Spins of quantum well quasibound states align with the
effective magnetic field Begy, and from the form of Beg
we readily conclude: (1) B L V'V . Since we consider
only SIA, spatial variations of V are along the growth
direction, implying that spins are in the plane of the
quantum well. (2) Beg_Lp, or, since k|| is a good quan-
tum number, B¢y LK. Hence spins are perpendicular
to k. (3) |Best| o [K;]. Thus spin splitting vanishes at
the zone center.
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Figure 3. Spin-dependent transmission coefficient spectra of a
double barrier structure with an asymmetric composite InAs-GaSb
well, AISb barriers, and InAs electrodes. A bias of 0.5 V is ap-
plied over the active region. Resonant tunneling through conduction
band quasibound states are examined. The in-plane wave vector is
k| = (0.03, 0, 0)(27 /a). Spin directions are defined with respect to
the growth direction, taken as the z-axis. Top and bottom panels show
results for incident electrons with +z and —z spin polarizations, re-
spectively. Transmission probabilities into states with both +z and
—z polarizations are shown in each panel as solid and dashed lines,
respectively. Overlay arrows are used to indicate the spin directions
of the transmitted states.

The analysis above reveals the difficulties involved
in using the quasibound states in resonant tunneling
structures for spin alignment. First, at any given k|, the
two spin-split states have opposite spins. While this is
exactly the property we wish to exploit for spin filter-
ing, we also need to ensure that we could resolve the
spin split states so we can preferentially select one of
the spin polarizations. The strategy for achieving this
is to maximize spin splitting, and use resonant tunnel-
ing to resolve the states. There is theoretical evidence
that large Rashba coefficient may be obtained in the
InAs/GaSb/AlISb systems (Cartoixa, Ting and McGill
in press) Next, the +k;; and —k|, states within a given
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spin-split subband have opposite spins. In a typical res-
onant tunneling diode, incident electrons comc from a
reservoir in thermal equilibrium, occupying +k; and
~k|| states with equal probability. Thus the ensemble
of transmitted electrons yields no net spin polarization.
To address this issue, Voskoboynikov et al. (2000) pro-
posed the application of a small lateral (perpendicular
to the growth direction) E-field in the source region of
the resonant tunneling diode to shift the incident elec-
tron distribution towards, say, the positive &, side in
k-space. The resonantly transmitted currents originat-
ing from this non-equilibrium distribution would then
show spin polarization. Finally, since spin splitting is
linear in & near (and vanishes at) the zone center, re-
solving the spin-split states there is not feasible. In the
next section we discuss how the interband tunneling
mechanism might be used to address this issue.

4. Asymmetric Resonant Interband
Tunneling Diodes

The resonant interband tunneling condition
(Soderstrom, Chow and McGilt 1989) is illustrated
in Fig. 1. It shows that a number of valence subband
states in the asymmetric quantum well are above the
InAs conduction band edge. Thus in our double barricr
structure, conduction band electrons can tunnel from
one InAs electrodes to the other through valence
subband states under low bias. Figure 4 shows trans-
mission coefficient spectra in interband as well as in-
traband regimes. For this calculation, we intentionally
align the incident electron spins according to the spin
directions of the resonances. Thus each of the incident
spin polarization only couples to one of the spin-split
resonances. The top panel shows that in the intraband
tunneling case the resonant transmission probability
through the two spin-split lowest conduction subband
states (cb1) are approximately equal. On the other hand,
in the interband tunneling case shown on the bottom
panel, transmission probability through the highest
heavy hole (hh1) states is much higher for the +y
than the —y spin polarization. The transmission peak
strength (T« AE, peak height times peak width) of
the 4y channel is approximately 17 times larger than
that of the —y channel.

Figure 5 summarizes spin-dependent resonant inter-
band tunneling properties of our structurc. We focus on
the i1 result since we intend to use it for spin filtering;
the /i1 states can be pushed away from A1l states by
changing layer widths and composition of the well, and
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Figure 4. Transmission cocfficient spectra for an InAs/GaSb/AlISb
double barrier structure with an asymmetric quantum well. The top
and bottom pancls respectively show results for intraband and inter-
band tunneling regimes. reached under different biasing conditions.
The in-planc wave vector is k= (0.03.0.0)(2n/a). The dashed
and solid lines represent results for incident electron with 4+ and
—y spin polarizations, respectively.

also lowered by biasing. The A1 states have a number
of attractive features for spin filtering application. The
hh1 energies decrease with increasing k), allowing the
selection of states with k;; away from the zone center
by setting the Fermi level in the incoming electrode
to be below the energy of the zone center A/l states.
Also, il peak strengths are exceedingly weak near
the zone center due to inadequate hole mixing (Ting,
Yu and McGill 1992). This also allows us to filter out
zone-center states. Finally, the pronounced difference
in the strengths of the two 2/l spin channels can be
exploited for spin filtering.

5. Summary and Discussions

We discuss the basic principles of the Rashba effect
resonant tunneling spin filter. We point out the chal-
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lenges based on quite general arguments, and offer
strategies for overcoming these difficulties. In particu-
lar, we present modeling results, which demonstrate the
advantages of using the InAs/GaSb/AlISb-based asym-
metric resonant interband tunneling diode (a-RITD).
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The a-RITD can effectively exclude tunneling through
states near k; = 0 where Rashba spin spitting vanishes,
and spin selectivity is difficult. Away from the zone cen-
ter, a-RITD can provide strong spin selectivity. When
coupled with an emitter capable of k-space selectivity,
which is achallenge in itself, the a-RITD should be able
to achieve spin filtering in semiconductors under zero
magnetic field using only conventional non-magnetic
III-V semiconductor heterostructures.
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Abstract. In this paper, we summarize our recent efforts to analyze transmission probabilities of extremely thin
Si0, gate oxides using microscopic models of Si[100]-SiO,-Si[100] heterojunctions. We predict energy-dependent
tunneling masses and their influence on transmission coefficients, discuss tunneling probabilities and analyze effects
arising from the violation of parallel momentum conservation. As an application of the present method, gate currents
in short bulk MOSFETs are calculated, including elastic defect-assisted contributions.

1. Introduction

Tunneling currents through a few atomic layers
(=1 nm) thin gate oxides represent one of the ma-
jor factors that may soon limit the gigascale integra-
tion of ultrasmall metal-oxide-semiconductor field ef-
fect transistors (MOSFETSs) (ITRS 1999). It is obvious
~ that for such thin layers the microscopic structure of
the oxide and its interface with Si influences tunneling
currents drastically. Accordingly, simple and widely
used models for calculating oxide transmission prob-
abilities such as the Wentzel-Kramers-Brillouin ap-
proach (Duke 1969) or the effective-mass based mul-
tiple scattering theory (Ando and Itoh 1987) become
more and more questionable as the oxides are scaled
down.

To overcome fundamental limitations, we have cal-
culated transmission probabilities and gate leakage
currents for microscopic oxide models that were con-
structed using first-principles density-functional meth-
ods. Transmission coefficients were subsequently cal-
culated using a tight-binding formalism and combined
with Monte Carlo device simulation data. Among other

issues, such an approach allows one to estimate the in-
fluence of bond distortions, interface structure, and res-
onant tunneling through defects on the transmission, to
predict the intrinsic decay properties of the states within
the oxide band gap, to assess the degree to which a
bulk band structure picture can help in understanding
tunneling through very thin oxides, to investigate ef-
fects due to violation of K conservation in transmission
and reflection, and to assess the validity of effective-
mass based approaches. In this paper, we will briefly
discuss some of the most important results, referring
the interested reader to a more extended discussion
in Stddele, Tuttle and Hess (2001) and Stidele et al.
(to appear).

2. Microscopic Calculation of Oxide
Transmission Coefficients

In this section, we briefly summarize the com-
putational procedure that we have utilized to ob-
tain tunneling probabilities. Our strategy consists of
two steps: construction of the microscopic models




154 Stidele

and calculation of the corresponding transmission
coefficients.

The microscopic supercell models of Si[100]-SiO;-
Si[100] heterojunctions we have used were constructed
by sandwiching unit cells of the tridymite or S-quartz
polytype of SiO, between two Sif100] surfaces. Sub-
sequently, both the coordinates of the atoms and the
supercell lengths perpendicular to the interface were
relaxed using gradient-corrected (GGA) local-density
calculations (Dreizler and Gross 1990). In the follow-
ing, these supercells will be also referred to as # x n
to indicate that the lateral dimension is some multiple
of the periodicity of the silicon surface (which corre-
sponds toa 1 x 1 cell). Figure 1 shows a ball-and-stick
skeleton of the tridymite-based cell as an example.

Reflection and transmission coefficients of the super-
cells described above were calculated using a transfer-
matrix type scheme embedded in a tight-binding frame-
work (Stidele, Tuttle and Hess 2001, Strahberger 1999,
Strahberger and Vogl 1999). We solve the Schridinger
equation with open boundary conditions for the whole
junction at a fixed energy E (measured relative to the Si
conduction band minimum on the channel side of the
oxide) and in-plane momentum k™" (that is a good
quantum number due to the lateral periodicity) in a
‘layer-orbital basis’ comprised of the following states:

l knyuRnyn

et R |o
NH)UI
/
FooR

10' kllyn) —

sR,ﬁx”)- (l)

UYL ¢,mw*r‘ﬁ AN i h.uu\

-
=
(AL
Son
s
3
&)
Y]
<
=

e,

Figure 1. Model of a S§i[100)/S102/Si[ 100] tridymite heterojunc-
tion with an ultrathin (1.3 nm) gate oxide region. The darker (lighter)
balls denote O (Si) atoms.

Here, all the orbitals in a layer (=any collection of
atoms in the cell) are lumped into the index o, R{™"
designates an in-plane Bravais lattice vector of the
n x n structure, |o, R'"'x") is a particular localized or-
bital, and N*" the number of unit cells per layer. A
state propagating towards the oxide from the chan-
nel side of the junction, characterized by E, k™" and
its wavevector component £}, normal to th inter-
face, is scattered into sets of reflected and transmitted
states (characterized by wavevector components k’lf‘f’j ).
From the scattering wavefunctions, transmission am-
plitudes 7 (kl", ko ) and dimensionless transmis-
sion coefficients

T[(E) = A / kllan(E kll)'n (2)
i

] nxn
- / K
kj
nul

x ZZ | (kL — k""')[ )

A

arc obtained. Here, Ay~ is the area of the planar Bril-
louin zone of the junction, and v, and vi"; denote
the components of the group velocities of the inci-
dent and transmitted Si bulk states (with wavevector
componems k' . and k"’ normal to the interfaces). An
sp? TB basis w1th second-nearest neighbor interactions
for both silicon (Grosso and Piermarocchi 1995) and
the oxide (Stidele, Tuttle and Hess 2001) was used.
The Si TB conduction band structures agree fairly well
with experiment for energies up to 3 eV (Grosso and
Piermarocchi 1995). The oxide parameters were cho-
sen to yield a band gap of 8.95 eV and to reproduce the
GGA effective masses of the lowest SiO> conduction
band in the [100] direction (0.42 m and 0.6 m for the
tridymite and 8-quartz structures, respectively).

3. Results and Discussion
3.1.  Energy-Dependent Oxide Tunneling Masses

The present microscopic models allow one to pre-
dict the intrinsic decay properties of the wavefunc-
tions in SiO,. In most practical calculations, the decay
constants are fixed implicitly by choosing an (possi-
bly energy-dependent) effective mass at the energeti-
cally nearest band extremum. In particular, Franz-type
(Franz 1956, Khairurrijal et al. 1999, Av-Ron et al.
1981, Brar, Wilk and Seabaugh 1996, Maserjian 1974,




Maserjian and Zaman 1982, Krieger and Swanson
1981) or k - p-type (Zhakarova, Ryshii and Pesotzkii
1994) dispersions have been used previously with
considerable success but little justification. We have
analyzed the complex bands of the present oxide mod-
els and find that (i) only one single complex band is
relevant for electron tunneling, (ii) several different
bands are involved in hole tunneling, and (iii) all com-
plex oxide bands are highly nonparabolic. For elec-
trons, the nonparabolicity can be cast into an energy-
dependent tunneling mass via the equation 3k (¢) =
+/2m;(e)e. Here, 3k is the smallest imaginary part of
the complex k vectors in the oxide gap, € := Ecpo— E
measures the energy from the conduction band min-
imum of SiO, toward the valence region. For holes,
a tunneling mass can be derived analogously. Elec-
tron and hole masses determined from the S-quartz
and tridymite models are shown in Fig. 2. It is appar-
ent that the parabolic approximation (m /M pangedge = 1)
fails completely for both electrons and holes. Further-
more, we note that the electron masses for both struc-
tural models almost coincide when normalized by the
mass at the bottom of the lowest conduction band. The
energy dependence of the electron mass shown in Fig. 2
might therefore be a more general feature of electron
tunneling in Si0;. At the top of the valence band, the
hole masses are very large (=3 my for the tridymite
and =16 my for the f-quartz model). However, this is
largely canceled by the strong nonparabolicity of the
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Figure 2. Effective energy-dependent tunneling masses in the SiO;
band gap for electrons and holes, given in units of the mass at the
nearest band edge (valence band top (VBT) for holes, conduction
band minimum (CBM) for electrons). Solid and dashed lines refer
to the tridymite and B-quartz models, respectively. The inset shows
the energy dependence of the smallest imaginary part of the complex
wavevectors for both models.
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complex hole bands which leads for both models to
an Sk on the order of ~0.5 A~! a few eV above the
valence band maximum for both models (see inset of
Fig. 2).

3.2.  Energy Dependence of Transmission

The energy dependence of the integrated transmis-
sion T;(E) (this quantity is relevant for the calculation
of currents) is shown in Fig. 3, which also includes
effective-mass based results! with a parabolic and the
energy-dependent electron mass from Fig. 2. Due to av-
eraging effects, the integrated tight-binding transmis-
sion is much smoother than the individual coefficients
T(E, ky), which can change abruptly by 1-2 orders of
magnitude when new bands of different symmetry ap-
pear (not shown). The parabolic effective-mass approx-
imation overestimates T;(F) for oxides thicknesses 7,
smaller than &1 nm, by up to two orders of magnitude.
As 1, increases, the tight-binding transmission 7;(E)
is underestimated at low energies and overestimated at
higher energies. The higher slope of the transmission
obtained in the parabolic effective-mass approxima-
tion is consistent with the findings for the tunneling
masses: as E increases, the overestimate of m, and of
Ik, by the effective-mass calculation decreases, lead-
ing to a relative increase of the effective-mass trans-
mission. Using the correct tight-binding dispersion of

10| = tight-binding
-- - - effective mass with m(E)

— parabolic effective mass

28
0.0 0.5 1.0 1.5 2.0 2.5 3.0
energy [eV]

Figure 3. Tight-binding transmission coefficients versus energy,
T;(E), of tridymite-type oxide models with thicknesses of 0.73,
1.28,1.83,2.38,2.93,3.48,4.03, and 4.58 nm (thick solid lines). Also
shown are effective-mass data obtained using an energy-independent
tunneling mass (thin solid lines) and the energy-dependent tunneling
mass given in Fig. 2 (thin dashed lines). Zero oxide bias has been
assumed.
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the imaginary bands (dashed lines in Fig. 2) in an
effective-mass calculation leads to qualitatively cor-
rect slopes for 7;( F); however, the absolute values are
typically overestimated by one to two orders of magni-
tude, almost independent ¢, and of E. For the 8-quartz
model, we have obtained quantitatively very similar
results.

A possible reason for much of this discrepancy may
be that the 1D effective-mass based transmission calcu-
lation underestimates the 3D band structure mismatch
of Si and SiO; and therefore the reflection from the
Si/Si0; interface; due to the weak sensitivity to barrier
thickness, only a small part of this effect stems from
the Si0, regions. In addition, differences of 1-2 orders
of magnitude are also observed for the transmission
coefficients of electrons with energies sufficiently high
that almost no tunnel barrier exists (compare Fig. 3 at
E =3eV).

These findings have an important implication: in a
model for gate leakage currents based on effective-
mass calculations, a fitting-parameter adjustment has
to compensate for the overestimated transmission coef-
ficients. If a Franz-type tunneling mass (which is close
to the mass obtained from the present tight-binding cal-
culations) were employed, such an adjustment would
be an overestimate of #,, (by about 0.3 nm) or of the
carrier density at the Si/SiO; interface. In the case of a
parabolic, energy-independent mass, the picture would
be more complicated: for very thin oxides, the dif-
ference between the effective-mass and tight-binding
transmission coefficients is positive and changes sign
as the thickness increases. Therefore, the slope of a
curve that shows the measured ¢, versus the fitted 7,,, is
expected to be greater than one (we assume implicitly
that the measured thickness is close to the thickness
of our models). An indication of this is found when
comparing effective-mass results with XPS thickness
measurements (see Fukuda et al. (1998)).

3.3.  Violation of Parallel Momentum Conservation
in Transmission and Reflection

For the tridymite model, we have investigated coupling
effects between states having the same k| *" but differ-
ent bulk k. Interestingly, our main conclusions turn
out to be virtually independent of the choice of kj™",
the energy, or the applied bias voltage. Therefore, we
illustrate the main effects for the case of the tridymite
model at £ =1.5eV and a kj™" vector that allows for

the coupling of 10 states with (generally different) bulk
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Figure 4. Relative probabilitics that a Si bulk Bloch state with
E=15eV,k™? ~ (0.2;0)nm™" and (a) small bulk ky or (b) large
bulk ky leaves a 1.3 nm thin tridymite oxide in one of 10 possible
states with the same kﬁ"z but different bulk ky (at zero applied bias).

k. Figure 4(a) and (b) shows as a function of tridymite
oxide thickness, the probabilities that a Bloch elec-
tron which hits the Si/SiO; interface is scattered by the
oxide into all 10 possible individual outgoing states.
Three issues are important to note here: (i) after a tun-
neling distance of 25 nm, the probability distributions
are identical, independent of the nature (small or large
bulk k) of the incoming state, indicating that the oxide
has lost all information on the incoming state, (ii) af-
ter a few nm tunneling distance, most of the tunneling
electrons leave the oxide in states with small ky: the
oxide acts as a funnel in momentum space, (iii) only
for 1, greater than a certain critical value (about 3 nm
for the tridymite oxide), the relative probabilities do not
change anymore, i.e., all incident states see the same
effective oxide barrier. Below this critical thickness,
the barrier is thickness-dependent because of quantum
mechanical intereference effects. This is a possible ex-
planation of the observed independence of oxide barrier
heights on Si substrate orientation for oxides thicker
than 5 nm (Weinberg 1982).




In the present formalism, k conservation is not only
violated in transmission but also in reflection. In the
present full-band framework, an incoming state i char-
acterized by (E, k|™", k') is not exclusively scattered
into a state with (E, k", —k! ) by specular reflection.
Instead, reflection occurs in a set of p states {j} with
the same (E, kﬁ *") but various k| . We introduce R;; as
the probability for such an individual scattering event
i — j. We have analyzed the R;; for the interface be-
tween Si and the 2 x 2 tridymite oxide and various
energies and parallel wavevectors, and tried to corre-
late them with the corresponding components of the
group velocities parallel and normal to the interface.
Our main findings are (i) the R;;, relevant for specular
reflection, vary strongly between typically 1073 and 1
for the individual scattering events, (ii) averaged over
a large set of scattering events, the R; and the other
R;; (i # j) are equally probable (R;; ~ 1/p), which
indicates that the scattering is (on the average) com-
pletely diffusive, and (iii) the results do not show an
obvious dependence on energy. Since the present ox-
ide models have perfectly flat interfaces, these effects
are not related to any kind of interface roughness scat-
tering but are rather pure band structure effects, caused
by the mismatch of the two band structures on both
sides of the interface, the anisotropy of the electronic
structure of Si (compare Ham and Mattis (1960) and
Price (1960)), and by the multiband nature of the Si
band structure. This is important for transport along
the Si/SiO, interface where interface scattering is a
critical issue. We anticipate similar results for larger
models that resemble the real amorphous oxide more
closely. Also, parallel momentum breaking effects are
expected to influence Fowler-Nordheim and thermal
injection of electrons into SiO;.

3.4. Direct Gate Currents in Sub-100 nm MOSFETS

As an application of the present scheme, we have cal-
culated gate tunneling currents in prototypical MOS-
FET’s (Antonianidis et al. 1999) with 50 and 90
nm gate lengths under realistic operating conditions
by combining the tight-binding transmission coeffi-
cients with electron densities and data from full-band
Monte Carlo transport simulations (Duncan, Ravaioli
and Jakumeit 1998). For the present work, we have
only considered distribution functions obtained from
a transistor simulation in the saturation regime, with
VGate—Source = Vprain—Source = 1.2 V and 2.0 V for the
50 nm and 90 nm device, respectively. Tunneling
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current densities j(x) as a function of the coordinate x
along the gate oxide have been obtained as

v (k) f(k, x)T (K, x)

j)=—en(x) Y WS
k’ )

k,v; >0

“4)

Here, n(x) is the electron density at the Si-SiO; inter-
face, f(k, x) are the corresponding electron distribu-
tion functions, and T'(k, x) = T(E, ky, x) = T;(E, x).
The sum in Eq. (4) includes only incident Si bulk states
whose components of the group velocity normal to the
interface, v, (k), are directed towards the oxide.

We find that for oxides with thicknesses smaller than
~4 nm, gate leakage currents are dominated by tunnel-
ing of cold electrons in the source and drain contacts.
As a consequence, the tunneling current densities (in-
tegrated over the entire gate length) decrease upon ap-
plying a drain-source voltage Vpg, i.e., increasing the
energy of the electrons near drain (see Fig. 5). This can
be understood by considering the factors that influence
a gate tunneling current in a MOSFET: (i) the den-
sity n(x), which is highest in the contacts and lowest
in the channel, (ii) Vpg and Vg, which influence the
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Figure 5. Drain-source voltage (Vps) dependence of the average
gate current densities in the 90 nm transistor considered in this paper.
Data for various gate oxide thicknesses are shown; the gate-source
voltage was chosen to be 2.0 V.
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potential drop across the oxide, (iii) the shape of the
distribution function f(E, x), and (iv) the energy de-
pendence of T;(E), which trivially favors tunneling of
hot electrons (see Fig. 3). Reducing t,,, reduces the en-
ergy dependence of T;(E) exponentially, whereas the
influence of factors (i)—(iii) is only moderately altered.
However, for an extremely thin oxide, the energy de-
pendence of 7;(FE) is only weak and counterbalanced
mainly by factors (i) and (ii). Consequently, below a
critical oxide thickness, the contribution to the tunnel-
ing current of the ‘many’ cold electrons in the contacs
becomes larger than the contribution of the ‘few’ hot
electrons. The critical value lies at =4 nm as can be
seen from Fig. 5 for the 4.6 nm oxide: at Vs greater
than =1 V, the current increases again after its initial
decrease, unlike in the cases with thinner oxides.

3.5.  Influence of Elastic Defect-Assisted Tunneling
on Gate Currents in Sub-100 nm-MOSFETS

It is interesting to see if the picture developed in the
previous subsection still remains true when oxide de-
fects are present. It is straightforward to create such
defects (neutral oxygen vacancies, for example) in the
present microscopic formalism by simply removing O
atoms from the lattice. The Si atoms adjacent to the
defect relax towards each other and form a bond whose
antibonding level is believed to be energetically in a
region relevant for electron tunneling (Pacchioni and
Ierand 1997, 1998, Blochl and Stathis 1999). Since the
exact position of this level is unknown and in a real ox-
ide distributed over several tenths of an eV (Pacchioni
and lerand 1997, 1998), we have treated it as a param-
eter (called E,,. hereafter, measured from the bottom
of the conduction bands in the Si channel). We observe
marked peaks in the oxide transmission 7;(E) that can
have a profound effect on gate currents, provided that
the defects are located close to the center of the oxide
and that E .. >= 0. The full-width half-maximum val-
ues of the resonances range, for instance, foran 1.3 nm
oxide from4x 10~ eVto5x 1072 eV as E, . is varied
from O to 2 eV. For a 2.9 nm oxide, we obtain respective
values between 9 x 107% eV and 1 x 107 eV.
Subsequently, the elastic> gate leakage currents
were recalculated including the O vacancies. The cur-
rents j(x;n,,-)atan arbitrary vacancy density n .. (dif-
ferent from the reference density ng in the tight-binding
calculations) were obtained using the interpolation for-
mula j(,\'; "\'a(') = j(-\‘; 0) + [](‘a ”()) - _/(-Xv 0)]”\'(!('/”0-
Interestingly, we find that for all possible combinations

log(defect density [cm™])

Figure 6. Dcpendence of the ratio of total (=dircct and defect-
assisted) and dircct tunneling current density in the source regions
of (a) an 50 nm and (b) an 90 nm MOSFET as function of the
arca density of the defects. Solid lines: homogeneous distribution
of the defect energies in the interval 0 eV < E < 2.5 eV; other lines:
Gaussian distributions centered at various encrgics £ = Ep (ineV)
with widths o = 0.3 eV. E is measured from the conduction band
minimum in Si in all cases.

of E,. and n,,., the gate currents are still dominated
by cold electrons originating in the contact regions. In
Fig. 6(a) and (b), we show the ratio of total (direct
and defect-assisted) and direct gate current densities
from the source contact for the 50 nm transistor with
a 1.3 nm oxide and the 90 nm transistor with a 2.9 nm
oxide for homogeneous as well as a various Gaussian
distributions of E,,. in energy space. It can be seen that
the magnitude of the defect-induced current increase is
very sensitive to the density and the energy distribution
of the defects. For 11,4 > 10'2 em~2, the enhancement
can be as high as 2-3 orders of magnitude. Also, the
resonant effects are somewhat less pronounced for the
thinner oxide. This trend is in qualitative agreement
with experimental results on virgin oxides (which are
expected to be related to elastic tunneling channels
(Ghetti et al. 2000) from Ghetti et al. (2000). Given
these observations, it appears to be possible that cur-
rent enhancement effects of the same magnitude also
occur for tunneling currents in one-dimensional MOS




structures and that averaging effects may hide possible
sizeable elastic defect-assisted contributions.

We regard this work as the first steps toward the full
understanding of oxide tunneling from a microscopic
point of view.
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Notes

1. In the EM calculations, the effective masses derived from the
tight-binding calculations have been consistently used.

2. We do not consider inelastic defect-assisted tunneling here since
this would be beyond the scope of this paper. For very thin oxides,
inelastic tunneling is expected to be of lesser importance since the
dwell time of the electron on the defect is too short to induce the
concomitant structural relaxation.
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Abstract. We present a method which extends the range of applicability of the domain decomposition approach to
tunneling transport. Thereby we gain the ability to simulate-e.g. structures with geometrically confined semiconduc-
tor quantum dots surrounded by very thin layers of dielectric or quantum dots that are defined through a combination
of electrostatic forces and geometric confinement. Recently, experimental data of single electron devices on the
10 nm length-scale have become available, but due to the smallness of the devices detailed information on their
geometry is hard to come by. Thus the simulations presented in this paper are intended as proof of principle rather
than quantitative results for a real device. For predictive simulations more detailed knowledge of the experimental

geometry is required.

Keywords: quantum dot, tunneling, domain decomposition, 3D, SOI, single electron transistor

1. Introduction

In the ongoing quest for ever smaller device dimen-
sions and higher integration densities single electron
devices might be able to play an important role. In
this work we focus on silicon on insulator (SOI) single
electron devices with direct tunneling as the dominant
charge transport mechanism. The simulation geometry
of an SOI single electron transistor (SET) is depicted
in Fig. 1. It is derived from an experimental structure
manufactured at the University of Tiibingen (Augke
et al. 2000). The diameter of the spherical quantum dot
is 20 nm. The tunneling barriers reside in the constric-
tions in the silicon on either side of the central sphere.

2. Simulation Strategy

The quantum-mechanical charge density inside the de-
vice is computed by self-consistent solution of the
Schrédinger—Poisson equations in effective mass ap-
proximation. In order to reduce the computational ef-
fort, the simulation volume is decomposed into do-
mains of different dimensionality: source and drain
contact regions are treated as two-dimensional electron
gas; inside the quantum wires Schrédinger’s equation is

adiabatically decomposed into a 1D array of 2D equa-
tions. Only inside the quantum dot the solution of the
full 3D eigenvalue problem is necessary.

From the self-consistent single-particle wave-
functions in the diverse regions we then may obtain tun-
neling rates by Bardeen’s transfer Hamiltonian method
(cf. e.g. Payne (1986)). Subsequently we compute the
linear response conductance of the device according to
the approach by Beenakker (1991).

3. Adaptation of the Simulation Environment

The SIMNAD simulation environment (Scholze,
Schenk and Fichtner 2000), developed at ETH, was
originally designed for self-consistent conductance
simulations of III-V single electron devices. In these
devices quantum wires and dots were defined electro-
statically by depletion of a 2DEG underneath metal
electrodes. In contrast, SOI devices possess a fully
three-dimensional geometry; electron localization is
due to a combination of electrostatic forces and the ge-
ometrical confinement by the surrounding oxide. Also,
in silicon we have to deal with a six-valley band struc-
ture with non-spherical iso-energy surfaces, whereas
previously only spherical single-valley band structures
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Figure 1. Simulation geometry of an SOI single electron transistor
(oxide and substrate Si removed).

had to be considered. These differences necessitate sev-
eral extensions to the simulation model.

3.1. Treatment of the Non-Spherical Six-Valley
Band Structure of Silicon

In the effective mass approximation the six valleys of
the silicon band-structure give rise to a Hamiltonian
H.o operating on a Hilbert space of six component
wave-functions. By neglecting inter-valley coupling,
however, the full multi-valley Hamiltonian H,, may
be decomposed into an (outer) direct sum of single-
valley Hamiltonians

Ho~ @ He. 1)
o€ {x,y,z}
ie{+, -}

He, = —EV ([L]V> —eVilpl., (@)
2 m?*

u

where [#] denotes the reciprocal effective mass tensor
in a coordinate frame such that the main axis associated
with its greatest mass component is along the a-axis,
and V,[p] is the self-consistent potential brought about
by p, the sum of the electron densities in all valleys.
Thus the task of solving the 6-component Schrédinger
equation is reduced to that of solving three scalar equa-
tions (H,. =H,.).

3.2. Handling of Moving Tunneling Barriers

In the SOI single electron transistor (SET) of Fig. 1 the
definition of the quantum dot is due to a combination

of geometry and electrostatic effects. The variation of
the transverse quantum kinetic energy along the trans-
port direction is of the same order of magnitude as the
depth of the electrostatic potential well inside the quan-
tum dot region: depending on the gate voltage. a point
may be found on either side of the tunncling barrier
(cf. Fig. 2). Therefore, the simple strategy of defining
a fixed Schrédinger box with Dirichlet boundary con-
dition for the computation of the quantum dot levels
breaks down: if the box is chosen too small. artificial
boundary conditions will disturb the solution: if it is
chosen too large, the Schrédinger solver will find so-
lutions which are localized on the wrong side of the
barrier (“spurious states”).

This may be remedied by modifying the Hamil-
tonian for the 3D Schrodinger box in the spirit of

increasing gate potential
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2
-
o
Q
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o
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Figure 2. Quantum corrected conduction band encrgy and 3D
eigen—encrgies at different gate voltages.




Bardeen’s transfer Hamiltonian method: In 1D the
transfer Hamiltonians 7/, to either side of the bar-
rier may be constructed by finding the position X, of
the maximum of the barrier potential. The potential for
"Hy,; then is the unmodified potential V (x) left/right of
Xmax and V (xay) on the other side.

For higher dimensions this approach may be gen-
eralized by introducing the escape energy e..: let xg
be a point which is known to reside in the active dot
volume (e.g. the minimum of the central potential well
in the Schrédinger box). The escape energy then is
the minimum energy at which there exists a classical
trajectory from xj to infinity (i.e. to the boundary of
the 3D Schrédinger domain, provided that it is chosen
sufficiently large). Points x that may be reached clas-
sically from x¢ at energies smaller than e are said
to be “inside” the active quantum dot volume 244. By
leaving the potential inside €4, unchanged and lifting
it to at least €5, outside we may then construct a new
Hamiltonian H,, (cf. Fig. 3).

This construction is often successful in eliminating
the spurious states. But in some situations it is too
crude: it is blind to pure geometrical confinement. This
shortcoming may be overcome by means of a quantum-
corrected effective potential

Vix):= V) + max €qrans(X, D), (3)

where the transverse kinetic energy €yans(x, D) is de-
fined as the expectation value of the kinetic energy
operator for the lowest 2D state in a plane through x
at normals to ©. The maximum is taken such that in-
side a constriction the dominant direction is selected.
This new potential V then is used to construct a modi-
fied escape energy €.« and active dot volume Qo a8
above.

The improved quantum dot transfer Hamiltonian
Haor then is defined as

- n? 1
Hdot = —-EV[——] v

m*
{V(x):x € Quo or V(x) > Eeqe

. . C))
€esc — €yrans(X) 1 otherwise

The same method may also be used for quantum
dots that are separated from neighboring semiconduc-
tor regions by a very thin layer of dielectric: here the
Schrodinger box must extend some distance into the
semiconductor on the other side of the dielectric such
that the wave-function can recover from the Dirichlet
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(b)

Figure 3. Example potential (a) unmodified (b) modified.

condition imposed on the box boundary; this will again
bring about spurious states, that can be eliminated by
the above method.

4. Results

With the modified transfer Hamiltonian Hgo the oc-
currence of spurious wave-functions could indeed be
suppressed: all bound states are localized within the
active dot volume, and there is almost no deformation
due to the modified potential (cf. Fig. 4); the eigenen-
ergies of the allowable single particle eigenstates were
changed by less than 10 peV (the numerical precision
of the simulator).

The effective mass anisotropy has a pronounced
effect on the shape of the wave-functions: depending
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Figure 4. One-dimensional cuts through the cigenstates of (a) the
original Hamiltonian H: (b) the improved transfer Hamiltonian Hyy,
[note the suppression of the spurious states by Hya 1.

on the orientation of the reciprocal effective mass ten-
sor their spread along the transport direction varies so
strongly that the tunneling rates of corresponding states
in different valleys diverge by up to 8 orders of magni-
tude (cf. Fig. 5). The strong suppression of tunneling
for n, = 2 states relative e.g. to n. =2 states (where
applicable the wave-functions are labelled by particle-
in-a-box quantum numbers 7.1 n.) results from the
symmetry of the structure in y-direction (the maximum
of the channel wave-function coincides with a node
of the dot wave-function) as opposed to the off-center
position of the channel in z-direction: the quantum
wire enters the quantum dot in the cylindrical bottom
section, but is centered along the y-axis (cf. Fig. 1). The
straight lines joining series of states (e.g. 111-211-311-
411-511 for the m},, =m? orientation) correspond
to an exponential increase of I with single particle
energy.

The onset of conduction was found near a gate volt-
age of —2.5 V. Given that the simulation was modeled
on a low resolution micrograph of the experimental
structure together with the text description in Augke
et al. (2000) this is in reasonable agreement with the ex-
periment (experiment: first peak near —2.9 V). We find

* = *
8 | oom ma = M

* = *

o O m¥*, =m*
1 3 ¥ ok
o m max =m <

Tunneling rate T [s™]

0.03 0.04 0.05 0.06 0.07

Energy [eV]

Figure 5. Sourcc-dot tunneling rates of the single particle wave-
functions (particle-in-a-box quantum numbers s 111 shown where
appropriatc).

a spacing of the conductance peaks of about 100 mV,
which also is not too far off from the experimental data.

5. Conclusions

In this paper we have been mostly concerned with
technical difficulties that arise in the self-consistent
quantum-mechanical simulation of SOI single elec-
tron devices. Now that they are overcome more de-
taited information on the device geometry is necessary
in order to give true predictive power to our simula-
tor. Only then will it be possible to decide the crucial
question of whether a proposed device operates ac-
cording to controllable conditions such as geometrical
structure, or whether it depends on uncontrollable con-
ditions such as an opportune configuration of individual
dopant atoms, thus making reproducible production of
such devices infeasible.

Acknowledgment

This work was funded by the European Union under
contract number IST-1999-10828 (NANOTCAD).

References

Augke R., Eberhardt C.. Single F., Prins EE.. Wharam D.A.. and
Kern D.P. 2000. Appl. Phys. Lett. 76(15): 2065.

Beenakker C.W.J. 1991, Phys. Rev. B 44: 1646.

Payne M.C. 1986. The Institute of Physics. pp. 1145-1154.

Scholze A., Schenk A.. and Fichtner W. 2000. IEEE Trans. Elec.
Dev. 47(10): 1811,



Journal of Computational Electronics 1: 165-169, 2002

hd
58 o -
© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A 3-D Atomistic Study of Archetypal Double Gate MOSFET Structures

ANDREW R. BROWN, JEREMY R. WATLING AND ASEN ASENOV
Device Modelling Group, Department of Electronics and Electrical Engineering, University of Glasgow,
Glasgow G12 8LT, Scotland, UK

A.Brown@clec.gla.ac.uk

Abstract.

The double gate MOSFET architecture has been proposed as a possible solution to allow the scaling of

MOSFET: to the sub-30 nm regime, particularly due to its inherent resistance to short-channel effects. The use of
lightly doped, or even undoped, channels means that such devices should be inherently resistant to random dopant
induced fluctuations which will be one of the major obstacles to MOSFET scaling towards the end of the Si Roadmap.
Random dopants within the channel are not, however, the only source of intrinsic fluctuations within MOSFETs at
this scale. In this paper we investigate the impact of discrete dopants in the source and drain, individual charges
within the active region and line edge roughness on the intrinsic parameter fluctuations in double gate MOSFETs.

Keywords:

1. Introduction

According to the updated 1999 edition of the Inter-
national Roadmap for Semiconductors the MOSFET
will reach 20 nm channel lengths by 2016. At the same
time, theoretical studies indicate that the field effect ac-
tion can be maintained to channel lengths below 10 nm
where direct source-to-drain tunnelling may take over
the gate control (Naveh and Likharev 2000). Properly
scaled MOSFETs with 20 nm channel length and con-
ventional architecture have already been demonstrated
by leading semiconductor manufacturers (Chau 2001).
It is, however, common wisdom that the scaling of the
field effect transistor below this milestone requires in-
tolerably thin gate oxide and unacceptably high chan-
nel doping, and therefore advocates a departure from
the conventional MOSFET concepts. One of the most
promising new device structures, scalable to dimen-
sions below 10 nm, is the double gate MOSFET stud-
ied extensively in the last couple of years (Naveh and
Likharev 2000, Chang et al. 2000, Ren et al. 2000).
Theoretically the double-gate devices do not require
channel doping to operate and therefore are considered
to be inherently resistant to random dopant induced pa-
rameter fluctuations (Chang et al. 2000), which reach

double gate MOSFET, atomistic, fluctuations, simulation, line edge roughness

an unacceptable level in their conventional counterparts
(Asenov et al. 2001).

In this paper for the first time we carefully examine,
using 3D atomistic simulations (Asenov et al. 1999),
the resistance of sub 30 nm double-gate MOSFETs to
intrinsic parameter fluctuations introduced by the dis-
creteness of charge and atomicity of matter. We con-
sider (i) the discrete dopants in the source and drain re-
gions; (ii) individual charges in the active region of the
device, associated with the background doping, fixed
interface charge and trapped electrons; and (iii) the
line edge roughness (LER) of the gate edge. Due to
strong confinement effects in the thin silicon body of
the double-gate MOSFETs the quantum mechanical
(QM) effects dramatically affect the device electrostat-
ics and are taken into account in our simulations using
the well established density gradient (DG) formalism
(Asenov et al. 2001, Rafferty et al. 1998).

We investigate double-gate MOSFETs as illustrated
schematically in Fig. 1 with channel lengths ranging
from 30 to 10 nm, and channel thickness between 5
and 1.5 nm (Ren et al. 2000). The importance of the
quantum mechanical effects in such devices becomes
apparent from Fig. 2. With the scaling of the chan-
nel length from 30 to 10 nm, and the corresponding
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Figure 1. Schematic illustration of a double-gate MOSFET.
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Figure 2. 1 —V¢; current characteristics for 10 and 30 nm channel
length double-gate MOSFET, obtain from our classical and quantum
simulations.

reduction in the silicon body thickness, the quantum
mechanical threshold voltage shift increases from ap-
proximately 10 to 300 mV. Compared to the classical
electron distribution, which demonstrates accumula-
tion at both top and bottom interfaces, the quantum
mechanical charge distribution peaks in the middle of
the channel.

2. Intrinsic Parameter Fluctuations
2.1, SourcelDrain Doping

While there may be no dopants within the channel
region, Figs. 3 and 4 illustrate the impact of the un-
avoidable discrete dopants in the source/drain region
on the potential and the electron distribution in a
30 x 30 x 5 nm double-gate MOSFET. As shown in
Table 1 the corresponding effective channel length
fluctuations introduce threshold voltage fluctuations
which increase from 0.66 mV to 1.07 mV as the de-
vice is scaled from 30 to 10 nm. These threshold volt-
age fluctuations are very small, as expected for the

Figure 3. Electrostatic potential in a 30 x 30 x 5 nm double-gate
atomistic MOSFET at threshold.

Figure 4. Electron equiconcentration surface in a 30 x 30 x 5 nm
double-gate atomistic MOSFET with location of dopants shown.

double-gate structure. The on-state current, however,
does exhibit significant fluctuations, particularly for the
shorter channel length device.

2.2.  Fixed Charges in the Channel Region

Even with low doping levels for the channel region
there is a possibility of at least one impurity (acceptor
in the case of the n-channel MOSFET considered here)
being present at a random location within the channel.
Also, if an electron becomes trapped in an interface
state or lattice defect it will also introduce a fixed neg-
ative charge to the channel region (Rals e al. 1984),
These potential sources of additional charge will have
an electrostatic effect on the channel potential. intro-
ducing a localised barrier to current flow, and also a
shift in the threshold voltage (Asenov et af. 2000).

Table 1. Intrinsic parameter fluctuations in 10 nm and 30 nm
double-gate MOSFETSs due to atomistic doping in the source and
drain. The threshold voltage is approximately 200 mV.

Threshold voltage  Off-current  On-current

Channel dimensions fluctuations fluctuations  Auctuations
(LxWxT) aVy (mV) olp (%) alp ()
10 x 30 x 1.5 nm 1.07 9.56 7.13

30 x 30 x 5nm 0.66 3.28 1.93




0
-5 4
&
0l
Q
—
8 151 |
)
-20
25,
Q.
%, . 30
6/ 1 5 20
% 0 5 10 .
7 Distance along channe

Figure 5. Percentage change in current when a charge is present at
a particular location within the channel in a 30 x 30 x 5 nm device.

The change in the drain current at threshold as a func-
tion of the position of a single negative charge in the
device (either acceptor or trapped electron) is mapped
for 30 x 30 x 5 nm and 10 x 10 x 1.5 nm double-gate
MOSFETs in Figs. 5 and 6 respectively. This is for a
vertical cross section running through the middle of the
channel from source to drain. Due to the quantum dis-
tribution, resulting in the majority of current flowing
in the plane through the middle of the device, a charge
trapped in the centre of the channel produces the largest
effect. The maximum reduction in the current increases
from 24% in the 30 x 30 nm device to a staggering 65%
in the 10 x 10 nm one, where the range of influence
of the additional charge extends through much of the

Alp [ Ip [%)

10

4 6
2
Distance along channel [nm]

Figure 6. Percentage change in current when a charge is present at
a particular location within the channel in a 10 x 10 x 1.5 nm device.
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Figure7. The reduction in current that is observed when a negative
charge is present in the middle of the device, where the greatest
influence occurs. The effect is most dramatic in the subthreshold
region and reduces when above threshold.

device. This is further demonstrated by the fact that
in the 10 x 10 nm device, where the thickness of the
silicon is only 1.5 nm, the change in current has little
dependence on the vertical position of the additional
charge.

The relative reduction in the current as a function
of the current itself is plotted in Fig. 7, for the ‘worst
possible case’ scenario where the additional charge is
in the centre of the channel. It is clear that the largest
effectis in the subthreshold regime where the density of
mobile charge in the channel is low. Above threshold,
at higher drain currents in Fig.7, the electrons in the
channel screen the additional fixed charge, reducing
its impact on the current flow, but not eliminating it
completely.

2.3. Line Edge Roughness

Line edge roughness (LER), resulting from inherent
tolerances in material specifications and in tool per-
formance used in lithography processes is not a new
phenomenon. Yet, the imperfections caused by LER
effects have caused little worry for production lines
over the years, since the critical dimensions of devices
were more than an order of magnitude larger than the
roughness. However, as the aggressive scaling of Si-
MOSFETs continues to the sub-100 nm regime, LER
does not diminish but constitutes a significant fraction
of the gate length. At the dimensions being considered
here for double-gate MOSFETs LER is of the same
order of magnitude as the channel length, making it
one of the prime problems for ULSI, where millions of
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Figure 8. Potential distribution in a 30 x 30 x 5 nm device illustrat-
ing the effect of line edge roughness (LER) on the source and drain
junctions. A = 3nmand A = 10 nm.

devices are required to operate in very strict margins
on a single chip.

Since the formation of LER is a stochastic event, a
proper description and analysis of this phenomenon re-
quires a strictly statistical approach. Realistic ‘rough’
lines produced by a lithography process can be sta-
tistically described by their RMS amplitude, A, and
correlation length, A, which indicate the vertical and
lateral extent of the roughness respectively.

An autocorrelation function for the random line is
assumed, e.g. Gaussian or exponential. The power
spectrum of this function, obtained by Fourier trans-
form, is used for the amplitudes in a complex array. The
phases are chosen randomly, which results in the ran-
dom nature of the generated line which is obtained by
inverse Fourier transform of the complex array (Kaya
et al. 2001).

In our simulations we assume that the LER inherent
in the fabrication process results in the p-n junctions in
the MOSFET exhibiting the same rms amplitude and
correlation length. We assume a Gaussian autocorrela-
tion function for the line generation. The potential in a
double gate MOSFET with LER is illustrated in Fig. 8.

Our analysis of published LER data from advanced
lithography processes in various labs (Kaya et al. 2001)
found that the value of LER (which is defined as being
3A)is5to6nm (i.e. A & 2 nm) and, rather worryingly,
is not reducing for shorter channel length technologies.

The standard deviation in threshold voltage, o V7,
as a results of the LER induced fluctuations are shown
in Fig. 9, showing the dependence on rms amplitude,
A. As one would expect, the fluctuations increase as
A increases. It is clear that for the 10 nm device the
fluctuations are massive, and with A = 3 nm the stan-
dard deviation in threshold voltage is of the same order
of magnitude as the threshold voltage itself. Figure 10

150 T T T T
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Figure 9. Standard deviation in threshold voltage. oV, duc to
fluctuations in line edge roughness of rms amplitude A. with
A =20 nm. Results for nominal channel lengths of 30 nm and
10 nm arc shown. Device width is 30 nm in both cases.
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Figure 10. Standard deviation in threshold voltage. o Vr. due to
fluctuations in line edge roughness of correlation length, A, with
A = 2 nm. Results for nominal channel lengths of 30 nm and 10 nm
arc shown. Device width is 30 nm in both cases.

shows the correlation length dependence of the fluctu-
ations. The fluctuations increase with increasing corre-
lation length, saturating when A is similar to the width
of the device.

3. Conclusions

Double gate MOSFETs are a promising architecture
for the scaling of devices to sub-20 nm dimensions.
The undoped nature of the channel means that they are
less susceptible to intrinsic parameter fluctuations due
to the random number and location of dopants in the
channel region, which will be a major problem with
conventional MOSFET architectures.



However, we have shown that double gate
MOSFETs are susceptible to other intrinsic sources of
fluctuations. Random telegraph noise due to the trap-
ping and de-trapping of electrons in lattice defects may
result in large current fluctuations, which will be dif-
ferent for each device within an integrated circuit. The
presence of even a single dopant within the channel
will produce the same effect.

Line edge roughness inherent to current fabrication
processes will be reflected in roughness of the p-n junc-
tions of the device. As such, each device will have a
different effective channel length and thus a different
threshold voltage. If the present apparent limit of LER
of approximately 5 nm is not reduced substantially then
this will cause serious problems for devices with 10 nm
channel lengths.
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3-D Parallel Monte Carlo Simulation of Sub-0.1 Micron MOSFETSs
on a Cluster Based Supercomputer
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Abstract.

A full band, three-dimensional, Monte Carlo simulator for deep sub-micron Si MOSFET like devices has

been developed, with the goal to obtain optimal performance on a parallel system built from a cluster of commodity
computers. A short-range carrier-carrier and carrier-ion model] has been implemented within this framework, using
Particle-Particle Particle-Mesh (P3M) algorithm. Test simulations include the 90 nm “well-tempered MOSFET”
for which measurements are available. Simulation benchmarks have identified several factors limiting the overall
performance of the code and suggestions for improvements in these areas are made.

Keywords:

1. Introduction

The recent improvements in the performance of com-
modity computer hardware, along with the constant
cost reduction, have created very favorable conditions
for building cluster-based distributed parallel machines
(Chien et al. 1999) reaching now performance levels
of supercomputers designed just a few years ago. As
a result, computer clusters have become very attrac-
tive for large-scale 3-D device simulation. Also, as the
gate length of integrated MOSFETs is being scaled
towards sub-0.1 wm dimensions, 3-D simulation is be-
coming necessary to understand the effects of geome-
try, and to properly model carrier-carrier interaction
and granular doping effects (Mizuno, Okamura and
Toriumi 1994, Wong and Taur 1993, Asenov 1998).
There are areas of significant potential for improve-
ment in functional density, by exploring 3-D geometry,
where the functionality of the device can be enhanced
by the availability of an additional degree of freedom
(Lorenzini, Vissarion and Rudan 1999, Tanaka and
Sawada 1996). Therefore, a 3-D Monte Carlo simulator
capable of proper carrier-carrier and carrier-impurity
interaction modeling would present a very valuable

*To whom correspondence should be addressed.

Monte Carlo methods, MOSFET, parallelization

capability to investigate performance of ultra-scaled
Si-MOSFETs and other devices based on the MOS
system.

Cluster based parallel computers have been demon-
strated to achieve performance levels, once thought to
be only achievable by using specially designed hard-
ware and highly customized software. Monte Carlo
methods in general lend themselves to parallel im-
plementation due to relatively loose coupling between
state variables associated with individual particles. The
cluster environment has some unique characteristics,
which had to be taken into account during the develop-
ment of our 3-D simulator. Most important among these
is the relatively high messaging latencies, stemming
from the distributed nature of the computer. Task as-
signment to nodes must be made with sufficient care, so
that the overhead due to communication among nodes
does not jeopardize the overall performance of the sim-
ulator. The proper partitioning of tasks and the simula-
tion domain decomposition over the cluster nodes has
a significant impact on performance.

An important consideration during the development
of the program has been to retain as much platform in-
dependence as possible, to ease future utilization of the
codes in new computer architectures, without requiring
a major redesign of the code. For this reason, standard
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FORTRAN and C languages have been used for coding.
The communication and process initialization tasks are
implemented using the MPI library (Gropp, Lusk and
Skjellum 1994). This library offers a platform inde-
pendent, communication interface. It is possible to ap-
proach optimal performance levels, with minimal or
no changes to the simulator code, using an MPI li-
brary specifically written for a specific computer sys-
tem. The simulator has been developed originally on a
cluster of the National Center for Supercomputing Ap-
plications (NCSA), consisting of 96 double-processor
INTEL Pentium III, working under the Windows NT
operating system. During the later part of this work, an-
other NCSA cluster has become available with the most
advanced Inte! processors and working under the Linux
operating system. On both clusters, the processor nodes
are connected with a high performance “Myrinet” net-
work. This network has a peak bandwidth greater than
1 Gb/s and a low latency.

The main focus of this work has been the develop-
ment of tools enabling simulation of small Si devices
with the detailed physical models of full band Monte
Carlo methods, in a high performance but affordable
computational system, suitable for rapid turn-around
simulation times in a modern fast-paced research and
development environment. To achieve this goal, several
different approaches to optimize parallelization have
been investigated, including space domain decomposi-
tion, parallelization of Poisson’s equation solver, at the
level of matrix operations, and parallel implementation
of bipolar simulation.

Reference test simulations for deep-scaled devices
include the 90 nm and 25 nm gate length “well-
tempered MOSFETs” (WTM) and a 25 nm MOSFET
device with abrupt S-D doping profiles. The 90 nm
structure has also been used to characterize the per-
formance of the code since this structure is a better
representative of the structures of interest in the imme-
diate future. The MOSFET with abrupt doping profiles
has been used for studying effects of grid size on the
accuracy and performance of the program.

2. Parallel Monte Carlo

The 3-D device structure is decomposed into space sub-
domains which are assigned to separate processors. In
atypical MOSFET structure, it is efficient to “slice” the
device with planes perpendicular to the interface, from
source to drain, to minimize particle transfer from one
domain to the other during the simulation (Kepkep and

Ravaioli 2001). As the Monte Carlo transport portion
of the code is optimized, the solution of Poisson equa-
tion becomes increasingly the performance bottleneck.
In our original implementation, Poisson equation was
solved with a scalar conjugate gradients approach, on
a single processor to which the charge information had
to be sent. Due to the large number of Poisson solu-
tions necessary, the time step being typically a fraction
of femtosecond, we examined the possible option for
parallelization of the solver. While a domain decompo-
sition is also possible for Poisson equation, we decided
to rather parallelize the actual matrix operation pro-
cedures required by the conjugate gradient iterations,
resulting in a modest need for algorithm modification.
Finally, holes are simulated as well in the device sub-
strate, running a separate executable, so that electrons
and holes are always simulated in a parallel fashion on
separate processors.

Charge-charge interaction was implemented, fol-
lowing the approach developed for an earlier scalar
version of the Monte Carlo simulator (Wordelman
2000). Both carrier-carrier and carrier-ion interaction
can be evaluated, using the Particle-Particle-Particle-
Mesh (P*M) method (Hockney and Eastwood 1981).
We performed a number of tests to assess the paral-
lelization performance. The particle-particle interac-
tion obviously introduces additional data exchanges
among nodes, reducing the overall performance of the
code. In order for all possible short-range pairs to
be detected, all particles residing within the selected
“short-range” action distance “a” of the domain bound-
aries must be exchanged. The distance “a” is chosen
such that it spans at least two grid lines in any direc-
tion as in Wordelman (2000). If the slice thickness in
the domain decomposition is set to four meshes, in-
formation on all the particles in the domain must be
reported to the neighboring nodes on either side of
the slice, as all particles are within the short-range
interaction radius from the domain interfaces. As a
result the runtime performance of the code suffered
significantly, with 2 to 3 times increase in execution
cost.

3. Simulation Results

Because of space limitations, we will only focus here on
results for the largest of the WTM reference structures,
with 90 nm channel length. This is also a good test to
challenge the capabilities of the 3-D simulator, due to
the size of the grid. The 2-D doping concentration was




imported from a file supplied as a part of the bench-
mark specifications, and it was kept constant in the
third dimension, therefore creating a 3D sample of the
device. This particular structure has a super steep ret-
rograde channel doping as well as source and drain
halo doping. The poly-Si gate is 300 nm thick and a
gate oxide thickness of 4.5 nm. The active source and
drain doping concentration is 7 x 10!° cm™3. A sketch
of the device structure is shown in Fig. 1. The sub-
strate doping is specified to be 3.9 x 10> cm~>. The
device has been simulated at Vg, = Vg4, = 2.0 V. This
particular simulation was run on a cluster of 16 pro-
cessors, with a discretization of 151 x 140 x 64 grid
points along x (channel direction), y (depth into sub-
strate) and z (width), respectively. Slicing for domain
decomposition is performed along the z-direction by
assigning four grid points to each node.

A simulation time step of 0.1 fs was used, and a to-
tal of 120,000 time steps were simulated, with the first
50,000 time steps discarded as transient. The exact sim-
ulation time is not easy to estimate exactly in terms of
CPU usage, but for this case the over wall clock time
was about 8 hours. A range of results for carrier dis-
tribution, carrier velocity and potential profiles were
compared with the results from the 2-D code and were
found to be in agreement as expected, thus validating
the proper implementation of the code. We just focus
here on an aspect of the testing for the charge-charge in-
teraction parallel implementation. The P3M technique
was applied only to the evaluation of carrier-carrier in-
teraction, since continuous doping profiles were speci-
fied. Figure 2 shows a comparison between the carriers
distributions obtained for simulations with and without
short-range interaction, near the channel/drain transi-
tion. The solution of Poisson equation is performed
on a very fine non-uniform rectangular grid, in order
to resolve sufficiently well the detail of carrier dy-
namics near the interface, where fields change rapidly
and to faithfully describe the gradients of the specified

Tpoly..—.3.00n Spacer
Saljcide +
é n Tox=4.5nm
40 nm )
- N

Channel doping

Figure 1. Schematic view of the 90 nm well-tempered MOSFET.
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Figure 2. Carrier energy distribution example, obtained with and
without detailed short-range charge-charge interaction for the 90 nm
device.

doping profiles. Under these circumstances, we detect
only a slight deformation of the energy carrier distri-
bution when the PM short-range interaction is added,
resulting in some depression of the distribution that
create a very slightly enhanced tail at high energies. In
3-D Monte Carlo simulation, the solution of Poisson
equation becomes a computational bottleneck, since
it ends up requiring a sizable portion of the overall
computational time. Depending on the simulation con-
ditions, Poisson equation may end up accounting for
more than 50% of the computational cost. Even at the
high carrier concentrations achieved near the channel,
only few carriers may reside in one given mesh and
Poisson equation is able to capture nearly exactly the
complete carrier Coulomb interaction. From such tests
one can derive guidelines on when to apply the explicit
but expensive evaluation of the short-range forces. For
practical 3-D meshes, this may not be necessary, and
the complete short-range evaluation should be reserved
to treat cases where granular doping is specified. For
ultra-small devices, smooth doping profiles may sim-
ply be unrealistic. With a distribution of actual ions, it
is then possible to relax the restrictions on mesh spac-
ing and use the coupling between Poisson equation and
short-range force evaluation in an optimal way to re-
duce the overall cost of force evaluation. Inclusion of
quantum correction would also lead to much softer car-
rier density profiles near the interface, further relaxing
mesh requirements. We are now working on the 3-D
implementation of quantum corrections based on a di-
rect application of Schrodinger equation, demonstrated
in 2-D codes.
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Abstract. Linear and nonlinear transport of holes in orthorhombically strained Si to be used in vertical p-
MOSFETs is theoretically analyzed. Strong mobility enhancements compared to unstrained Si by up to a factor
of three is found at a Ge content of 40% in the SiGe pillar. The anisotropy in the three Cartesian directions is
rather small and the saturation velocity remains unchanged. The enhanced material properties make orthorhombi-
cally strained Si attractive for device applications, although the improvements are not as strong as for biaxial tensile

strain.
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1. Introduction

The traditional way of achieving continued perfor-
mance enhancement of silicon microelectronic devices
has consisted for the last decades in downscaling the
lateral dimensions of planar MOSFETSs (metal-oxide-
semiconductor field-effect transistors). However, this
strategy is becoming increasingly difficult due to phys-
ical and technological problems such as the limited
resolution of lithography. Therefore, also alternative
approaches to improve device performance are cur-
rently being explored. Promising examples are vertical
MOSFETs, where shorter channel lengths can be ob-
tained by epitaxy, and planar heterostructure devices
using biaxially strained Si with enhanced mobilities.
In the case of p-MOSFETs, successful realizations of
these two concepts can be found in Moers ez al. (1999),
Yang et al. (1999), Nayak et al. (1993), Rim et al.
(1995) and Sugii, Yamaguchi and Nakagawa (2001),
respectively. Recently, Liu et al. (1999) have reported
the fabrication of a vertical n-MOSFET based on or-
thorhombically strained Si thus combining both meth-
ods, and improved electron drift velocities have been
confirmed for this material by Monte Carlo simulation
(Wang et al. 2000). It is the aim of this paper to ad-
dress the corresponding situation in the complementary
p-MOSFET structure with respect to the basic trans-

port properties, i.e. to compute the mobilities and drift
velocities of holes in orthorhombically strained Si.

2. Model and Verification

The band structure is calculated by the non-local empir-
ical pseudopotential method including spin-orbit inter-
action and the band energies are stored on an equidis-
tant mesh in k-space with a spacing of 1/96 x 27 /q;
where the a; denote the lattice constants in the three
Cartesian directions. The scattering model comprises
scattering of holes by optical phonons and by inelastic
acoustic phonons (Bufler, Schenk and Fichtner 2001)
allowing a numerical computation of the Ohmic drift
mobility via the microscopic relaxation time. The re-
sulting lattice-temperature dependence of the hole mo-
bility in unstrained Si is compared in Fig. 1 with ex-
perimental mobility data (Green 1990, Ottaviani et al.
1975). Note, however, that the electric fields applied in
the time-of-flight experiments (Ottaviani et al. 1975)
were too large for the Ohmic regime at low lattice tem-
peratures. Hence, these experiments lead to an underes-
timation of the Ohmic drift mobility as has already been
reported previously (Bufler and Meinerzhagen 1998).
We have therefore also performed Monte Carlo sim-
ulations at exactly the same field strengths as applied
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Figure 1. Lattice-temperature dependence of the theorctical hole
drift mobility in unstrained Si compared to corresponding experi-
mental data.

in the experiments. The results in Fig. 1 show good
agreement between theory and experiments.

3. Orthorhombically Strained Si

As is illustrated in the schematic structure of a verti-
cal MOSFET in Fig. 2, an orthorhombically strained Si
layer can be obtained in the following way. First, a SiGe
pillar is grown pseudomorphically on an unstrained Si
substrate where the two in-plane lattice constants of
SiGe, a, and a,, adopt the smaller bulk value of Si.
This biaxial compressive strain leads in turn to a larger
out-of-plane lattice constant a. in the SiGe layer. In
a second step, a Si layer is grown on the sidewall of
the strained SiGe layer and on top of the unstrained

growth direction
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Figure 2. Schematic structure of the vertical MOSFET. The lattice
constants a, and a, of the compressively strained SiGe piflar assume
the value of the unstrained Si substrate which leads to an increase in
a.. ay and a. of the orthorhombically strained Si layer (=channel)
coincide with the corresponding values in the Si substrate and the
SiGe pillar. respectively. yielding a reduction of a,.

— unstrained Si
strained Si
(orthorhombic strain
_ with Ge fraction x=0.3)

Energy (eV)

.

0.05
Wave vector (2r/a))
Figure 3. Valence-band encrgics along the &- (channel) direction in

unstrained Si and in orthorhombically strained Si (with a Ge fraction
of v = 0.3 in the SiGe pillar).

Si substrate. As a consequence, the z-component of
the lattice constant in the Si layer assumes the value of
the corresponding component in the SiGe layer and the
y-component equals the lattice constant of the Si sub-
strate. This finally yields a smaller lattice constant in
x-direction and the resulting orthorhombically strained
Si layer forms the channel of the MOSFET. The strain-
effect on the valence-band structure is displayed in
Fig. 3 showing the three valence bands along the k.
direction, i.e. the channel! direction. The degeneracy
between the heavy-hole and the light-hole band at the
I"-point is lifted with the light-hole band being situated
at the valence-band edge. The phonon scattering is as
usually assumed to be unaffected by strain.

4. Results

The band splitting at the valence-band edge leads to a
reduction of the density of states and therefore of the
scattering rate. Hence, the strain enhances the mobil-
ity. This can be seen in Fig. 4 where the three diag-
onal components of the Ohmic drift mobility tensor
are shown as a function of the Ge-content in the SiGe
pillar. The anisotropy is relatively small, although the
mobility in the growth direction is at higher Ge contents
larger than the other components. As a general result, a
strong mobility enhancement relative to unstrained Si
is found, ranging from a factor of two at a Ge content
of 20% up to a factor of about three at a Ge content
of 40%. However, the increase in mobility above a Ge
content of 20% is much weaker than in the case of bi-
axially strained Si where e.g. a value of roughly 2000
cm?/(Vs) is reached at a Ge content of 30% (Bufler and
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Figure 4. Diagonal components of the Ohmic drift mobility tensor
for holes in orthorhombically strained Si at 300 K as a function of
the Ge content in the SiGe pillar.
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Figure 5. Velocity-field characteristics of holes in orthorhombi-
cally strained Si (with a Ge fraction of x = 0.3 in the SiGe pillar)
at 300 K with the electric field oriented in x, y and z direction,
respectively.
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Figure 6. Velocity-field characteristics of holes in orthorhombi-

cally strained Si at 300 K with the electric field oriented in z (channel)
direction for different Ge contents of the SiGe pillar.

Meinerzhagen 1998, Fischer and Hofmann 1999) as
opposed to a value below 1500 cm?/(Vs) in orthorhom-
bically strained Si. Finally, the full-band Monte Carlo
results for the velocity-field characteristics of holes in
orthorhombically strained Si are presented in Figs. 5
and 6. In Fig.5, the anisotropy of the drift velocity is
illustrated for a Ge content of 30% and is found to be
rather weak. Figure 6 reports the drift velocity in chan-
nel direction for several Ge contents of the SiGe pillar.
The characteristics mainly reflect the tendency of the
Ohmic drift mobility in Fig. 4, while the saturation drift
velocities remain almost unchanged.

5. Conclusion

Linear and nonlinear transport of holes in orthorhom-
bically strained Si has been theoretically investigated.
Strong mobility improvements by factors between two
and three relative to unstrained Si have been found for
typical strain levels. From the point of view of basic
transport properties this makes the material attractive
for application in vertical p-MOSFETs, although the
enhancement is not as strong as for biaxial strain.
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Abstract. The band structure of strained-silicon germanium (Si;.—,Ge,) is calculated as a preliminary step in
developing a full band Monte Carlo (FBMC) simulator. The band structure for the alloy is calculated using the
empirical pseudopotential method (EPM) within the virtual crystal approximation (VCA). Spin-orbit interaction is
included into the calculation via the Lowdin quasi-degenerate perturbation theory, which significantly reduces the
computation time. Furthermore, strain is included by utilizing basic elastic theory. Ultimately, the band structure
for strained Si;_,Ge, is calculated at various germanium concentrations.

Keywords: strained-silicon germanium, band structure calculation, empirical pseudopotential method, virtual
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1. Introduction

Current market forces demand that the semiconductor
industry produce faster integrated circuits (ICs) with
high functionality at a low cost. One way of achieving
this trend is to scale the device geometry. The industry
is quickly reaching the physical limitations of small de-
vices, however. In metal-oxide semiconductor (MOS)
transistors, for example, thin oxides give way to high
gate leakage currents. Increased short-channel effects
(SCE) also impede performance improvements. One
solution that replaces device scaling is the introduction
of new materials.

For this purpose, strained-silicon or strained-silicon
germanium (Si;_,Ge, ) material systems have received
much attention as possible candidates for improving
performance of existing Si technology (Iyer et al. 1989,
Harame er al. 1995a, b, Cressler 1995). This trend has
been made possible via recent innovations in molecular
beam epitaxy (MBE) growth techniques that allow for
relatively easy growth of Si;_,Ge, on Si;_,Ge, sub-
strates. Furthermore, Si;_,Ge, can be integrated into

existing Si technology without the need for significant
factory retooling.

For strained-Si;_,Ge, material systems, the full
band structure is required in order to capture the band
splitting and warping, especially near the valence
band maximum at the zone center (I'). To this end, the
full band structure of strained-silicon germanium is
calculated using the EPM with spin-orbit interaction
included.

2. Empirical Pseundopotential Method

The pseudopotential method is based on the Phillips-
Kleinman cancellation theorem (Phillips and Kleinman
1959), which provides justification why the electronic
structure can be described using a nearly-free electron
model and weak potentials. For this purpose, the pseu-
dopotential Hamiltonian can be written as

H = —(h*/2m)V? + Vp(r), )]

where Vp(r) is the smoothly-varying pseudopotential
(Cohen and Bergstresser 1966). Because the crystal
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potential is periodic, the pseudopotential is also a
periodic function and can be expanded into a Fourier
series over the reciprocal lattice to obtain

Vo)=Y SGIV (G, (2)
G

where S(G) is the structure factor and V/(G) is
the pseudopotential form factor, which is defined
as twice the inverse Fourier transform of the atom
potential. For diamond-lattice materials, the struc-
ture factor is defined as S(G)= cos(G - 7), where
T =a(1/8, 1/8, 1/8)isthe atomic basis vector defincd
in terms of the lattice constant @ when the coordinate
origin is taken to be halfway between the basis atoms.

Because the pseudopotential in a crystal lattice is
periodic, it follows that the pseudo-wave function cor-
responding to (1) is also periodic and can be expressed
as a Bloch function, which consists of a plane-wave
part and a cell periodic part. The cell periodic part, in
turn, can be expanded into a Fourier series over the re-
ciprocal lattice. By substituting the expanded pseudo-
wave function and the pseudopotential defined by (2)
into the Schrédinger wave equation, the Hamiltonian
matrix results and is defined as

o

h* ) L
Hljz E]k+Gl|9 1=y
Ver(1Gi — Gilyeos[(G; — Gy) - 7], i # ]

3

where G is a reciprocal lattice vector and k is a wave
vector lying within the first Brillouin zone. The so-
lution to the energy eigenvalues and corresponding
eigenvectors can then be found by diagonalizing the
Hamiltonian matrix. For this work, 137 plane waves,
each corresponding to reciprocal lattice vectors up to
and including the 10th-nearest neighbor from the ori-
gin, were used to expand the pseudopotential. The pub-
licly available eigenvalue solver LAPACK was used to
diagonalize the Hamiltonian matrix.

3. Spin-Orbit Interaction

To develop a more refined picture of the energy bands,
the spin-orbit interaction must be included into the
pseudopotential calculation. In the context of electronic
structure theory, the spin-orbit interaction serves to
split degenerate energy levels. This influence is most
pronounced for the valence band maxima near the
Brillouin zone center.

For an electron orbiting a nucleus, which produces
a spherically symmetric potential V, the spin-orbit in-
teraction is calculated using Einstein’s special theory
of relativity to obtain

h 19V
Heo= ——|-Z L0, 4
07 a2 [)‘ Br] 7 @

where 7 is the reduced Planck constant, m is the elec-
tron’s rest mass, ¢ is the speed of light, L is the elec-
tron’s orbital angular momentum and & is the Pauli spin
tensor.

It may be tempting to add the H,, term from (4) di-
rectly to (1) and obtain the solution by diagonalizing the
total Hamiltonian. This would not be the correct way to
proceed, however, given that the pseudo-wave function
corresponding to (1) is a spinless quantity. When spin
is included into the problem, the crystal wave function
becomes a (2 x 1)-spinor. By using shorthand subscript
notation for spin, the spin Hamiltonian is given by

0 P
Hm'k’a’:mkn = E,,,ksm’n’:nm + (“pm’k'n’ | HSO |\pmka)~ (5)

where m’ is the row index and m is the column index
and ¢ = %1 is the Pauli spin index corresponding ei-
ther to the spin up or spin down state. In this way, the
spin Hamiltonian can be constructed using the spin-
less eigenvalues as the diagonal elements and includ-
ing the spin-orbit interaction as a perturbation. It has
been shown (Saravia and Brust 1968), however, that
for states containing /-symmetry already included in
the core states (2p core states for Si and 3 p core states
for Ge), the perturbation in (5) can be written as a dou-
ble summation over the reciprocal lattice vectors

(\ym’k’n' | HS‘Olwmkn)
=—ikp Y @(Gam(G)S(G; — Gy)
Gi.G;
X Fp(k+Gl)Fp(k +GJ)
x [e(k+Gek +G))]- 0450 (6)

where S(G) is the structure factor, A , is a free parameter
used to adjust the energy splitting, F, is a function
associated with p-core states, e(k) is a unit vector in the
k direction and & is related to the Pauli spin matrices.

Including the spin-orbit interaction serves to double
the size of the Hamiltonian matrix. In addition, each
spin-orbit matrix element is calculated as the double
summation over the reciprocal lattice vectors G; and
G, as seen in (6). As a result, the Hamiltonian is




computationally expensive to claculate, especially
since there are 137 reciprocal lattice vectors employed
in the EPM. To minimize the computational cost,
Lowdin’s quasi-degenerate perturbation theory is
applied.

Loéwdin’s perturbation technique serves to reduce the
size of the eigenvalue problem by “concentrating” the
information in the initial Hamiltonian matrix to obtain
a smaller matrix (Lowdin 1951). Léwdin uses the vari-
ational principle to arrive at a perturbation formula,
which gives the influence of the higher-lying (class B)
states on the lower-lying (class A) states. The class B
states are eliminated through a process of iteration to
obtain

A
Z(Umn - E(Smn)cn =0, (7)
n

where

/

mn — Hmn _ria___ot_
+ Z e

Hﬂn
+ZZ<E HoE-myt ®

The first term H,,, in (8) is a matrix element, which
corresponds to an A-class state, in the initial matrix.
The subsequent terms correspond to the influence of
the B-class states, which are treated as a perturbation
here, on the A-class states. For this work, the first two
terms in (8) are included in the calculation of U,,,.

The benefits of using the quasi-degenerate perturba-
tion theory are: (a) one does not need to solve an eigen-
value problem of size 2N when spin is included into the
problem and (b) degenerate and non-degenerate states
are treated on an equal footing, which means that there
is no need to first lift the degeneracy before applying
the perturbative approach. Within this scheme, the de-
generacy of the states is lifted via the introduction of
the effective matrix element U,,,,.

Since (8) is calculated through a process of iteration,
the value F is introduced into the expression. For this
work, E is estimated to be the average energy of the
class-A states. Furthermore, 60 class-A states are used
to achieve an eigenvalue convergence within 5 meV for
states near the valence band maxima. For the case that
the problem is solved exactly, each k-point requires ap-
proximately 10.5 sec of central processing unit (CPU)
time on a 500 MHz Pentium III microprocessor. Us-
ing the Lowdin perturbation technique with 60 class-A
states only 1 sec of CPU time is required to solve for
the energy spectrum at each k-point.
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Finally, the spin-orbit parameter A, in (6) that pro-
duces the appropriate spin-orbit splitting, i.e. 44 meV
for Si and 300 meV for Ge, is determined by linear in-
terpolation. The value for Si is AS’ =0. 00156 eV-cm’,
and the value for Ge is AGC =0. 01 12 eV-cm®.

4. Silicon Germanium Alloy

The elemental semiconductors silicon (Si) and germa-
nium (Ge) are isoelectronic. As a result, their chemical
and electronic properties are similar. Si and Ge are the
only group-1V elements that are completely miscible. It
is thus possible to form a solid solution of one element
in the other to obtain a silicon germanium (Si;_,Ge, )
alloy. The material properties vary gradually over the
entire range. The lattice constant, for example, varies
nearly linearly over the range of x. This fact is quanti-
fied by Vegard’s rule (Vegard 1921) which states that
the the bulk lattice constant is given by

aS=% (x) = a%(1 — x) + a%x. ©

Like its constituent elements, the bulk silicon germa-
nium alloy crystallizes in a diamond lattice, which is
characterized by face-centered cubic (FCC) symmetry.
From the definition of alloy, Ge atoms substitute for Si
atoms randomly throughout the crystal, in proportion
to the Ge concentration, x.

Because the material properties vary gradually over
the range of Ge concentrations, it is possible to ap-
ply the virtual crystal approximation (VCA) to include
alloy information. A silicon germanium alloy can be
approximated as a FCC lattice of “hybrid” atoms. It
then follows from the VCA that all the alloy parame-
ters in the EPM can be interpolated with respect to the
Ge concentration, x.

5. Strained-Silicon Germanium Alloy

To obtain a strained-silicon germanium alloy, Si;_, Ge;
is pseudomorphically grown on top of a Si;_;Ge,, sub-
strate. The in-plane lattice constant of the growth layer
conforms to the substrate, making the in-plane lattice
constant different that its bulk value. From elastic the-
ory it follows that the growth layer experiences biaxial
strain in the direction of the growth plane. The in-plane
strain condition can be expressed as

Si-yGey _ ,SiixCer
a i

8// = 811 +Ge, ’ (10)

a,
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which is a relative change in lattice constants due to
the stress.

Elastic theory predicts that the growth layer will re-
spond in the direction normal to the growth interface
plane in order to minimize its elastic energy (Rieger and
Vogl 1993). To satisfy minimum energy, the transverse
strain g is given by

eL =222, (11
11
where ¢ and ¢ are the elastic constants of Si;_,Ge,,
also calculated within the VCA. It then follows that the
strain of the Sij_,Ge, growth layer is given by the
following second-rank tensor

&y 0 0
e=|0 ¢ 0], (12)
0 0 €4

for which the elements are defined by (10) and (11).
The vanishing off-diagonal elements in (12) indicate
that there is no shear strain in the system. The sys-
tem undergoes a deformation along the principle axes
only.

The key elements used in the implementation of the
EPM are the reciprocal lattice vectors. To include strain
into the EPM, it is necessary to apply strain to the recip-
rocal lattice vectors. To do this, strain is first applied to
the primitive lattice vectors of the direct space to obtain
the strained lattice vector

a, = (1 + ©a,. (13)

where T is the unit tensor and a,, is an unstrained lattice
vector. The atomic basis vector, T, is also transformed
under (13). Once the strained direct lattice vectors are
calculated, the strained reciprocal lattice vectors G, are
calculated as

G — 2 ay x a,

o

> (14)
a) - (a) x a})

The pseudopotential is then expanded over the strained
reciprocal lattice vectors to include strain into the EPM.

6. Results

The band structure is calculated for strained-
SijGe, (x =40%) on a Si substrate (Fig. 1). The
pseudopotential form factors for Si and Ge are taken
from Chelikowsky and Cohen (1974) and Saravia and
Brust (1968), respectively. A key feature in the band
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Figure 1. Band structure of strained-Siy_,Ge, . x = 40%.
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Figure 2. Zoom-in of valence band maximum in Fig. 1.

structure is the splitting of the heavy hole (HH) and
light hole (LH) bands at the valence band maximum,
which is located at the I" point (Fig. 1). At x = 40%,
the splitting is calculated to be approximately 80 meV.
Furthermore, strain also serves to warp the valence
bands near the [-point. In addition, the spin splitting
is enhanced with strain. The value indicated in Fig. 2
is approximately 400 meV, which is larger than that of
purc Ge (Ago = 300 meV).

7. Conclusion

In summary, the band structure for strained-Si,_,Ge,
was calculated using the empirical pseudopotential




f

method within the virtual crystal approximation. Alloy
information is included into the calculation via the
Lowdin quasi-degenerate perturbation theory, and
strain is included via elastic theory. Strain serves to
split the degeneracy of the HH and LH bands at the
I'-point. Furthermore, band warping results from the
strain. Finally, applying the Lowdin quasi-degenerate
perturbation theory serves to reduce the computation
time by a factor of 10.
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A Computational Exploration of Lateral Channel Engineering to Enhance
MOSFET Performance

JING GUO, ZHIBIN REN AND MARK LUNDSTROM
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract. Techniques to engineer a MOSFET’s channel in the lateral direction have been proposed to enhance
the device performance. In this paper, we present a thorough simulation study to evaluate the feasibility of such
lateral engineering techniques. Each of three types of transport equations, the ballistic Boltzmann, drift-diffusion
and non-equilibrium Green’s function with scattering, is solved self-consistently with 2-D Poisson equation to
simulate device performance under both the ballistic and dissipative transport conditions. The results indicate that
even if highly idealized device structures are assumed, only limited improvements over the conventional MOSFETs
can be achieved by the channel engineering techniques. These results don’t conflict with reports of large on-current
improvements using the lateral channel engineering, because those comparisons with the conventional MOSFETSs

were done without specifying a common off-current.

Keywords: lateral channel engineering, hetero-material gate MOSFETS, ballistic transport, Green’s function

1. Introduction

The success of the microelectronics industry has kept
the channel length of MOSFETs scaling down by a
factor of 70% about every three years over the past
decades. ITRS target for the on-current remains the
same while that for the off-current doubles from gen-
eration to generation (SIA, 1999), which suggests
that as the device scales down, the on-current to off-
current ratio, I,/ I, decreases. Since larger o /Iog
can provide faster speed and lower leakage, designing
MOSFETs with enhanced I/l is of wide interest.
Techniques to engineering the channel in the lateral di-
rection to improve MOSFET performance have been
proposed. The main consideration of such designs is to
produce a desired profile along the channel direction
as shown in Fig. 1, compared with that of the conven-
tional MOSFETs. The modified profile can generate
a larger electric field at the beginning of the channel
and results in a larger carrier injection velocity, which
is supposed to increase /,,. The potential profile can
be generated by either using a gate with dual wor-
functions, which is referred as the hetero-material gate
MOSFET (HMGFET) (Long and Chin 1997, Zhou and

Long 1998, Zhou 2000), or doping the source end of
the channel more heavily than the rest, which is re-
ferred as the asymmetric channel doping MOSFETs
(ACDFETs) (Odanaka and Hiroki 1997, Shin and Lee
1999). Another lateral channel engineered device, the
straddle gate MOSFET (Tiwari, Welser and Solomon
1998), which uses two side gate beside the inner gate
with a different work function, is based on the con-
sideration to electrically reduce the effective channel
length from the off-state to the on-state. In this paper,
we compare lateral-channel engineered MOSFETs and
conventional MOSFETs with the same off-current and
geometric specifications under both the ballistic and
dissipative transport conditions. The results indicate
that even if highly idealized device parameters are as-
sumed, only limited improvements can be achieved.

2. Approach

The 2-D transport equation in the MOSFET channel
region is solved by splitting it into two 1-D problems.
In the direction normal to the channel, the Schrodinger
equation is solved to yield subband profile and vertical
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Figure 1. The conventional (solid line) and desired (dashed linc)
potential profile along the lateral dircction of the channel. Also shown
is the schematic structure of HMGFETs which can generate the de-
sired potential profile if the source gate workfunction ¢ is lager than
the drain gate workfunction ¢;.

electron concentration. In the lateral direction, three
types of transport equations, the Boltzmann equation
in the ballistic limit, drift-diffusion equation and Non-
Equilibrium Green’s Function (NEGF) with scattering
are solved to yield electron density in the lateral di-
rection and the source-drain current on the basis of
the subband profiles. A 2D Poisson equation is solved
self-consistently with each of the transport equations.
Details of calculation scheme can be found in Taur and
Ning (1998).

The ballistic limit is calculated semiclassically by
solving Boltzmann equation. For each spatial point, the
occupation of a state in k-space is determined by the
Fermi-Dirac function with the source or drain Fermi
level, depending on which contact the electrons fill
such state come from. For example, at the barrier top,
the positive half of k-space is filled by electrons from
the source while the negative half by electrons from the
drain.

In our Green’s function method, we treat scattering
using a simple Buttiker-probe model. Scattering cen-
ters are viewed as reservoirs similar to the source and
drain. However, they differ from the source and drain
reservoirs as they can only change the energy of carriers
and not the total number of carriers in the system. This
model has been demonstrated to capture the essential
physics of scattering (Taur and Ning 1998).

3. Results and Discussions

The characteristics of a conventional double-gate
MOSFET at 30-nm channel length, as shown in
Fig. 2(a), are calculated as the comparison baseline to

Source gate

Drain gate

L1 L2
(b)

Figure 2. (a) A conventional symmetric double-gate MOSFET
with 30-nm intrinsic channel. An ultrathin body and oxide ty; = 2 nm.
t,v = 1 nm and a middle gap gate workfunction ¢; = 4.3V arc as-
sumed. The top and bottom gates have equal lengths with the channel.
(b) HMGFET with the same geometric dimensions. The total gate
length is the sum of the source gate length Ly and the drain gate
length Lo.

evaluate the performance of HMGFETs. An ultrathin
silicon body and gate oxide are assumed in order to sup-
press 2-D short channel effects. While 2 nm Si body
thickness and 1 nm gate oxide thickness can hardly
be achieved with current fabrication technologies and
may cause problems such as the gate leakage, the pur-
pose of exploiting such parameters is to evaluate the
maximum achievable improvement of HMGFETs un-
der highly idealized conditions. Our comparisons be-
tween HMGFETs and the conventional MOSFET are
done by specifying the common geometric parameters
and off-current. For HMGFETs as shown in Fig. 2(b),
the off-current is kept the same with that of the con-
ventional MOSFET by choosing an appropriate source
gate workfunction, ¢;, and assuming the drain gate
workfunction, ¢» = 4.05 V. The characteristics are
then simulated and compared with the corresponding
ones of the conventional MOSFET.

To determine the source gate length L, the first sub-
band profiles of HMGFETs with different L, values at
on-state are simulated as shown in Fig. 3. HMGFETs
with short source gate length generate preferable po-
tential profile in the consideration of maximizing the
electric field near the subband barrier top. Increasing
the source gate length results in the decrease of the elec-
tric field near the source, which makes the subband
profile approach that of the conventional MOSFET.
When the source gate length is longer than one half of
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Figure 3. The potential profile along channel at the on-state for
HMGFETS with different L;. ¢1 = 4.4V and ¢, = 4.05 V are kept
constant.
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Figure 4. The Ips vs. Vgs characteristics at Vp = 0.6V calcu-
lated by the ballistic transport model. Solid line: the conventional
MOSFET shown in Fig. 2. Dash line: L; = 5nm HMGFET with
¢1 = 4.46V. Dot line: L; = 10nm HMGFET with ¢; = 4.33V.
Dash-dot line: L = 15nm HMGFET with ¢; =4.31V.

the total gate length, the subband profile near the bar-
rier top is almost the same as that of the conventional
MOSFET. HMGFETs with three different source gate
lengths L; =5 nm, 10 nm and 15 nm are studied
in the subsequent ballistic and dissipative transport
calculations.

Figure 4(a) shows Ips-Vgs characteristics of
HMGFETs, compared with that of the conventional
MOSFET. The L;=5nm HMGFET has a larger
subthreshold swing and worse short-channel immu-
nity. Increasing the source gate length to 10 and
15 nm improves the subthreshold characteristics, which
are mainly dominated by the device electrostatics.
The degraded electrostatic properties associated with
HMGFETs can be understood by qualitatively analyz-
ing 2-D Poisson equation in the channel region. The
slope of subband profile of HMGFETs increases from
zero at the barrier top to a large value in order to in-
crease carrier injection velocity, indicating a rapidly
spatial change of electric field at the position. The
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Table 1. On-current evaluation of three HMGFETS using different
transport models, where the units of /,; are #A/um and Increase in-
dicates the percentage increase of /o, over the conventional MOSFET
with the same transport model.

Ballistic DD NEGF

Increase Increase Increase
Ion %) In (%) Ion (%)

Conventional 2340 - 810 - 1378 -

Ly =5 nmHMG 1439 38 605 —-25 1248 -10
Ly =10 nm 2060 —12 829 +2 1615 417
Ly =15 nm 2262 -3 882 410 1643 420

rapidly varying field results in the large absolute value
of the second derivative of the potential along the chan-
nel, which may invalidate the gradual channel approx-
imation and lead to more severe 2-D short channel
effects (Ren 2001). Such short channel effects cause
less effective gate modulation on the barrier top of
HMGFETs, especially for those HMGFETS with short
source gate length. Thus the barrier top of HMGFETs
cannot be pushed down so much as that of the conven-
tional MOSFET from the off-state to the on-state. The
higher subband barrier tops result in the reduction of
the ballistic on-current as indicated in Table 1.

In the presence of scattering, the characteristics of
HMGFETs and the conventional MOSFET are first cal-
culated using the drift-diffusion model. From the de-
sign consideration of the lateral channel engineering, it
might be expected that the largest /,, improvement can
be achieved by L; = 5 nm HMGFET because it max-
imize the electric field near the barrier top. However,
the results indicate an opposite situation as shown in
Table 1. Althoughthe L; = 5nm HMGFET do achieve
the largest carrier injection velocity Vi,; as shown in
Fig. 5(a), the injection carrier density reduction, which
is shown in Fig. 5(b) is more dominant and causes the
overall decrease of the on-current. Such reduction can
be explained on the basis of simple gate control elec-
trostatics, which express the injection carrier density as
Qinj = Cop(Vg — V), where Cy is the effective gate
capacitance, V; is the gate voltage and V7 is the thresh-
old voltage. The worse subthreshold characteristics of
L; = 5 nm HMGFET requires a larger V7 to yield the
specified off-current, thus causing the decrease of Q
at on-state when the same C.p is assumed. Increasing
the source gate length can lead to larger Q,;, however,
at the same time, it decreases Vj,; as shown in Fig. 5.
This trade-off relation between Q;,j and V;,; makes it
hard to achieve large on-current improvement. In the
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Figure 5. (a) The velocity distribution and (b) the electron density
along the lateral direction at on-state calculated using drift-diffusion
model for MOSFETs with the same symbols as Fig. 4.

best case when L =15 nm, a maximum improvement
of about 10% is obtained, which is shown in Table 1.
Drift-diffusion treatment misses transport mecha-
nisms such as quantum tunneling and velocity over-
shoot, which can be important for small dimensions.
To include physics beyond DD model, the NEGF ap-
proach with scattering was employed to recalculate the
device characteristics at the on-state. A typical veloc-
ity distribution curve of HMGFET as shown in Fig. 6

x 10

v (cmis)

x (nm)

Figure 6. The velocity distribution at on-state calculated using
NEGF. For MOSFETs with the same symbols as Fig. 4.

displays two overshoot peaks, one at the boundary be-
tween the source and drain gate, the other near the drain
end. These two peaks are related to the rapidly spa-
tially increase of electric field at these two regions.
The left velocity overshoot peak can yield larger im-
provement of carrier injection velocity than the drift-
diffusion model results, thus corresponding to larger
on-current improvement as shown in Table 1. About
20% improvement was attained in the best case.

Since asymmetric channel doping is essentially
based on the same design consideration as HMGFETs,
similar observations apply to such device. The present
study uses double-gate structure with extremely thin
gate oxide and Si body thickness to suppress the short
channel effects. If more realistic parameters are used
and non-ideal conditions, such as parasitic resistance,
included, the improvement achievable by using lateral
channel engineering would become even smaller.

It is also worth pointing out that our results don't
contradict most of the reported large improvements of
on-current achieved by lateral channel engincering be-
cause these comparisons were done without specifying
a common off-current. Comparing on-currents without
considering the off-state or by specifying a common
threshold voltage can leave the worse subthreshold per-
formance of the lateral channel engineered MOSFETs
out and lead to larger improvements. One exception
reporting better subthreshold performance by exploit-
ing hetero-material gate structure needs further study
(Long and Chin 1997).

4. Conclusions

Each of three types of transport equations is solved
self-consistently with 2-D Poisson equation to com-
pare the performance of conventional MOSFETs and
HMGFETs under both the ballistic and dissipative
transport conditions. The ballistic results indicate that
HMGFETs have larger subthreshold swing and thresh-
old voltage than the conventional MOSFETs due to the
short channel effects, leading to smaller on-current. Af-
ter including scattering, we showed that the higher car-
rier injection velocity of HMGFETs due to larger elec-
tric field near the barrier top doesn’t necessarily lead to
larger on-current. For many cases, the lateral field gra-
dient degrades shot channel performance, so for a spec-
ified off-current, the threshold voltage is higher, which
makes the on-current smaller. When highly idealized
device parameters are used, a maximum improvement
of 10-20% can be achieved. Such observations can also
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be extended to ACDFETS, which is essentially based
on the similar design consideration as HMGFETs.

Acknowledgment

This work was supported by Semiconductor Research
Corporation under the contract number 99-NJ-724.

References

Long W. and Chin K.K. 1997. IEDM Tech Digest. IEEE, Washington
DC, p. 549.

Odanaka S. and Hiroki A. 1997. IEEE Trans Electron Devices 44:
595.

Ren, Z. 2001. Ph.D. Thesis. Purdue University, West Lafayette, IN,
USA. Unpublished.

Semiconductor Industry Association (SIA). 1999. International
Technology Roadmap for Semiconductors.

Shin H. and Lee S. 1999. IEEE Trans. Electron Devices 46: 820.

Taur Y. and Ning T.H. 1998. Fundamentals of Modern VLSI Devices.
Cambridge University Press, Cambridge, UK, p. 144.

Tiwari S. Welser J.J. and Solomon PM. 1998. IEDM Tech Digest.
IEEE, San Francisco, p. 737.

Zhou X. 2000. IEEE Trans. Electron Devices 47: 113.

Zhou X. and Long W. 1998. IEEE Trans. Electron Devices 45:
2546.




A4
5

Journal of Computational Electronics 1: 191-194, 2002

(© 2002 Kiuwer Academic Publishers. Manufactured in The Netherlands.

Monte Carlo Simulations of Hole Dynamics in Si/SiGe Quantum
Cascade Structures

Z.IKONIC, P. HARRISON AND R.W. KELSALL
Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering,
University of Leeds, Leeds LS2 9JT, UK

r.w.kelsall@leeds.ac.uk

Abstract. We report the first detailed ensemble Monte Carlo simulation of hole dynamics in cascaded p-Si/SiGe
quantum wells. The hole subband structure is calculated using the 6 x 6 k - p model. The simulation accounts for the
in-plane k-space anisotropy of both the hole subband structure and the scattering rates. The scattering mechanisms
included are the alloy disorder, acoustic and optical phonon scattering. Results are presented for prototype Si/SiGe

cascade structures.

1. Introduction

There has recently been an increased interest in in-
tersubband transitions in p-type strained-layer SiGe
based quantum wells, due to their possible use in inter-
subband quantum cascade lasers operating in the mid-
to far-infrared wavelength range (Soref, Friedman and
Sun 1998, Friedman et al. 1998). This is largely re-
lated to the fact that hole intersubband transitions are
optically active for both the perpendicular and the in-
plane polarization of light, hence enabling the real-
ization of surface emitting intersubband lasers. These
points, together with the comparatively small cost of
SiGe, as compared to III-V based structures, and the
possibility of monolithic integration of electronic and
optoelectronic components based on this system are
strong incentives for the development of a SiGe cascade
laser.

Understanding the carrier dynamics in cascade lasers
is an important issue for the design of these structures.
The gain depends sensitively on the scattering rates
between different subbands and also between different
in-plane momentum states within a subband (carrier
heating/cooling effects). In lasers based on conduction
band intersubband transitions the gain may be reason-
ably accurately estimated within the self-consistent rate
equation model (Donovan, Harrison and Kelsall 2001).

Inlasers based upon transitions among the valence band
states, however, there is an added complexity in that the
hole scattering rates and the optical transition matrix el-
ements are anisotropic and strongly dependent on the
in-plane momentum of hole states. This situation re-
quires a more detailed approach, such as that provided
by the Monte Carlo (MC) method. Here we describe
the implementation of the MC method for calculating
holes dynamics in cascaded SiGe structures.

2. Calculation Details

The MC method has a long history of successful ap-
plications in modelling carrier dynamics in semicon-
ductors (Jacoboni and Reggiani 1983), and has been
used in calculations of properties such as electron and
hole mobility at high and low fields and impact ion-
ization in both bulk semiconductors and in 2- and 3-
terminal devices. The method has also been used to
study carrier relaxation processes in low-dimensional
structures (quantum wells) (Diir, Goodnick and Lugli
1996). Quite recently, MC simulation of lasers based on
electronic (conduction band) intersubband transitions
has been performed, and a great deal of insight in the
electron dynamics in both optically pumped (Kelsall,
Kinsler and Harrison 2000) and electrically pumped
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(quantum cascade) (Iotti and Rossi 2001a, b) devices
was gained. MC studies of hole dynamics in quan-
tum wells (in-plane mobility) have also been reported
(Kelsall et al. 1992). This problem is generally simi-
lar, though somewhat more complex, than the electron
case. This is because of the presence of different types
of holes (heavy, light, and split-off), which gives rise
to mixing of these bulk states in the quantized states
of the system, and in turn results in prominent in-
plane anisotropy and nonparabolicity of hole subbands.
Futhermore, all the scattering processes, and the optical
transitions between the quantized states, exhibit both
anisotropy and in-plane momentum dependence.

The MC calculation developed in this work uses hole
bandstructure data precalculated using the 6 x 6k - p
scheme (Foreman 1993, Ikonié, Harrison and Kelsall
in press). The energies and wavefunctions of the sub-
bands of interest are tabulated at a number of in-plane
k states in the irreducible wedge of the 2D Brillouin
zone (for the usual, [001] grown structures this is 1/8 of
the full 2D Brillouin zone), and, due to the symmetry
this is sufficient to account for the full anisotropy of
the band structure, which has been found previously
(Ikoni¢, Harrison and Kelsall in press) to be important
in the scattering rate calculation. This data is then used
by the MC code to find the microscopic (differential)
scattering rates between all pairs of states, including
both intrasubband and intersubband transitions. This
is accomplished using a cellular scheme, in which the
2D Brillouin zone is subdivided into a grid of phase
space cells, and the scattering rate from each cell into
any other cell is calculated. The results are stored in a
look-up table, to be used in the main part of the MC
code. The scattering processes currently included are
alloy disorder, acoustic phonon, and optical phonon
scattering (the latter includes Ge-Ge, Ge-Si, and Si-Si
modes). In the case of acoustic phonon scattering, the
linear dispersion of phonons is included, because it was
found to have a significant effect on the scattering life-
times (Ikoni¢, Harrison and Kelsall in press). Each type
of scattering process has a separate entry in the look-up
table.

The MC code works with a constant timestep
{Goodnick and Lugli 1988, Fischetti and Laux 1988),
which is determined initially by inspection of the look-
up table. This is less common than the standard ap-
proach, where the time elapsed between scatterings
is generated randomly. The main advantage of this
approach is that the hole ensemble always stays
synchronised in time, which simplifies the simulation

of the Pauli exclusion effect, and also of carricr-carrier
scattering, although this is achieved at the cost of an
increased number of self-scatterings. When tracking
the hole dynamics, interpolation is used to construct a
sub-table of scattering rates from the particular hole
state (with the actual value of K) into other states
(cells). After assembling its entries, multiplied by the
timestep, into a table of accumulated scattering prob-
abilities, a random number is generated and ranked in
this table, wherefrom it is decided whether the partic-
ular event is a real scattering or a self-scattering. If
it is a real scattering, the ranking simultancously de-
cides not only the cell that the final state belongs to.
but also the type of scattering that occured. Further-
more, the angular dependence of the scattering prob-
ability, which is a separate phase in the conventional
approach, is implicitly contained in the look-up table.
At that stage the Pauli exclusion based acceptance or
rejection of this event is applied, in the manner de-
scribed in Lugli and Ferry (1985). If accepted. the pre-
cise k of the fina! state is found by generating k values
at random within the final cell, and testing for encrgy
conservation until this is satisfied and a state is finally
accepted.

Additional considerations are necessary when MC
simulation of a quantum cascade structure is required.
Our approach involves applying periodic boundary
conditions, which impose the condition that the particle
distribution in each period of the structure is identical
in the steady state. In the prototype p-SiGe cascades
we have considered, each period comprises a single
SiGe quantum well. In MC simulations of such struc-
tures we assume that only transitions between neigh-
bouring wells are important (“pearest neighbour inter-
action”) (Iotti and Rossi 2001b). This is justifiable in
p-SiGe cascades because the hole wavefunctions are
each strongly localized within a single well. To be able
to track the hole dynamics in a cascade structure it is
sufficient to calculate a table of microscopic scatter-
ing rates for a structure comprising just two coupled
wells in the presence of a uniform electric field, since
this table will contain the rates for all interwell (both
“upstream” and “downstream” nearest neighbour) tran-
sitions in a periodic cascade structure, as well as all
intrawell transitions. In the actual MC simulation a
section of the cascade with three wells is consid-
ered, in which the initial hole state can only be one
of the central well states, while the final state of a
scattering process can be in any of the three wells.
The transition probabilities are read from the two-well




scattering rate table, and when the final state in the
three-well system is chosen it is mapped back into
the central well (this is the implementation of the pe-
riodic boundary condition). Interwell scatterings are
current-carrying, in either the upstream or downstream
directions.

3. Numerical Results and Discussion

A set of MC simulations has been performed for sev-
eral p-SiGe cascade structures. For the band structure
calculation, the material parameters for Si and Ge were
take from Kahan, Chi and Friedman (1994), and the va-
lence band edge discontinuity from Van de Walle and
Martin (1986). The phonon and alloy scattering param-
eters have been taken from Crow and Abram (2000) and
Kearney and Horrell (1998).

The first structure considered was a coupled well
system with 20 monolayer (55 10\) Geg 4Sip ¢ wells and
20 monolayer Si barriers, grown on a Geg2Sipg vir-
tual substrate, biased at 85 kV/cm, as shown in Fig. 1.
The HH2-LH1 and LH1-HH1 spacings are 34 meV
and 52 meV respectively. Figure 2 shows the result
of a transient MC simulation for this structure, fol-
lowing the population of states after pulsed injection
into the HH2 subband of the left well. For the equi-
librium initial hole population (within the left HH2
subband) we find a generally good agreement between
the relaxation times extracted from MC simulation and
those evaluated in the conventional manner. A peri-
odic MC simulation of the cascade structure was also
performed, and indicated that this structure, at a lat-
tice temperature of T = 20 K, is on the verge of
achieving population inversion between the HH2 and
LHI states, but has a drawback in that the majority

initial injeck (L)
TN\ (R)
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Figure 1. Schematic diagram of a coupled quantum well structure
used in MC simulations.
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Figure 2. Time dependent populations in the structure from Fig. 1,
following pulse injection into the HH2(L) subband.

of holes in: the stationary state reside idle in the HH1
state.

The next set of cascade structures considered has 16
monolayer Ge 3Sip 7 wells and thin Si barriers (4, 6, or
8 monolayers), grown on a Geg 2Sip g virtual substrate.
The wells have just two subbands, the ground HH1 and
the excited LH1, which are reasonably low in energy
(accessible to holes under <100 kV/cm bias). The bias
field is large enough that the HH1 state in the preceed-
ing well is above the LH1 state in the next well. The
spacing between these two states depends on the bias,
while the intra-well LH1-HH1 spacing is essentially
fixed by the structural parameters to =30 meV, and is
almost independent of bias. It may be interesting as
a possible laser structure where the lasing transition
would be the inter-well HH1(L) — LHI1(R), while the
intra-well LHI(R) — HH1(R) is the relaxation transi-
tion, emptying the lower laser state (cf. Fig. 1 for nota-
tion). This is because the optical matrix element at the
zone center, for the in-plane polarized light, is smaller
for the intra- than for the inter-well transition. Results
of the periodic MC simulation are shown in Tables 1
and 2. Concerning the total occupancy of subbands, the
agreement between the MC and rate equations results is
reasonable for wider barriers, but significant discrepan-
cies appear for thin barriers/high field structures. These
occur because of carrier heating to well above the lattice
temperature, which translates into changes of carrier
dynamics. On the other hand, the current calculated
from the rate equations model is always significantly
lower than the MC result, because heated carriers carry
disproportionally large fraction of the total current.
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Table 1.

Steady state periodic Monte Carlo (superscript *‘MC') and rate equation (superscript ‘7’) results for

subband populations in a SiGe cascade structure: 16 ml Gep 3Sig 7 wells/8 ml Si barriers, at T = 77 K, under
different bias fields E. Carricr density was 10" ¢cm™2 per well. Also given are the transition encrgy £, and the

2

optical transition matrix element p;,,

/2myg for the in-planc polarization.

E&viem) afif ol IMC(Ajem?y ol oni, 1T (AJem?)  En(meV)  pl,/2mg (meV)
60 7% 29% 245 T1% 299 133 13 1.03

80 89% 1% 257 92% 8% 68 25 1.05

100 90% 10% 406 949 6% 105 39 1.20

Table 2. Same as Table 1, but for 16 ml Geg1Sip7 wells/(4-8) ml Si barriers. under bias fields adjusted to

maintain E;, = 25 meV transition encrgy.

wg; (ml)  E (kV/em) n’,‘,’,(;, nﬁ’,ﬂ IMC (Alem?) N i 1T (Afem?) p?,,,, /2mg (meV)
4 94 76% 24% 880 85% 15% 208 3.80
6 84 83% 17% 460 88% 12% 114 2.10
8 80 89% 1% 257 92% 8% 68 1.05

4. Conclusion

Detailed ensemble MC simulations of hole dynamics
in cascaded Si/SiGe quantum wells were performed,
with the in-plane k-space anisotropy of both the hole
subband structure and the scattering rates taken into
account. The results indicate the value of the MC sim-
ulation method for reliable calculations of carrier dy-
namics in quantum cascade structures.
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Calculation of Direct Tunneling Current through Ultra-Thin Gate Oxides
Using Complex Band Models For SiO,
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Abstract. We report the calculation of gate leakage currents through the ultra-thin gate oxides (2.6-3.4 nm)
in MOSFETs. We simulate J-V characteristics for the direct tunneling of valence electrons and inversion layer
holes, which are measured using a charge separation technique. A two-band model is employed to express the
complex band structure of the gate oxide, and its validity is discussed by calculating the complex band structure of
B-cristobalite based on the second nearest neighbor sp*s* tight-binding scheme.

Keywords: gate leakage current, direct tunneling, MOSFET, two-band model, complex band structure, tight-

binding scheme

1. Introduction

Understanding the mechanism of gate leakage current
due to direct tunneling (DT) is essential for modeling
the operation of Si-MOSFETs with gate oxide thick-
nesses below 3 nm. It has been reported that DT current
through the ultra-thin oxide layer consists of various
components: DT of conduction band electrons in the
electrode, DT of valence electrons, DT of holes in the
inversion layer, etc. Many parameter sets (the tunneling
effective mass and the barrier height energy) have been
determined to model each DT component (Lee and Hu
2001).

The goal of this study is the unified understand-
ing of various DT currents. We report in the present
paper the calculation of J-V characteristics for DT
currents carried by valence electrons and inversion
layer holes, which is measured by a charge separa-
tion technique. We use a two-band model (Kane 1966)
to describe the complex band structure in the whole
range of SiO; band gap. In addition, we calculate the

complex band structure of SiO, based on the tight-
binding model (Schulman and Chang 1983, Ting, Yu
and McGill 1992, Boykin 1996, Stidele, Tuttle and
Hess 2001) and discuss the accuracy of the empirical
DT current calculations.

2. Physical Models and Numerical Techniques
2.1. Tunneling Current Model

We considered one-dimensional p™*-Si(100)/SiO,/n-
Si(100) sandwiches. The self-consistent calculation of
Poisson and Schrodinger equations was performed to
evaluate the band bending in both substrate and gate
depletion layers. The tunneling current was obtained
by applying the Tsu-Esaki’s formula (Tsu and Esaki
1974) to the cases analyzed in this study. The tunnel-
ing from the bound states in the inversion layer was
calculated with the method reported by Rana, Tiwari
and Buchanan (1996) and Ghetti ez al. (1999).
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Figure 1. Complex band structure for the gate oxide based on a

two-band model (m}, = 0.6mq and E, = 9eV).

For conduction electrons in silicon a many valley
ellipsoidal parabolic band (m}, = 0.916mq, m}, =
0.19m) was assumed. The silicon valence band was
expressed by introducing the effective mass perpen-
dicular to Si/SiO, interface, m?", and the density-of-
state mass, m7;, for the parallel direction to the interface
(Takagi, Takayanagi and Toriumi 1999). The numerical
values used were '} . = 0.29mq, m = 0.433my,
m? = 0.20mq, n}; = 0.169my. In order to calcu-
late the transmission probability the information about
E-k relationship in SiO, band gap, i.e. the complex
band structure, is necessary. In this study, we used a
two-band model (Kane 1966):

2m*,
k= X(E — EcXNE — Ey), I
\/thg( cX v) (N

where m;, is the effective mass, E¢ and Ey are the en-
ergies at the bottom of the conduction band and the top
of the valence band, respectively, and E, is the band
gap energy. As shown in Fig. 1, the wave number
corresponding to the energy E in the gap region is an
imaginary number, which describes the decay of wave
function in the barrier.

2.2, Complex Band Calculation Using
Tight-Binding Scheme

In order to verify the validity of the two-band model
for the complex band structure of Si0O,, we carried out

Table 1. Empirical tight-binding parameters for the
sp*s* model in ¢V. The notation is that of LaFemina and
Duke (1991) and Végl. Hjalmarson and Dow (1983).

E,[Si] 14.260
E,[Si] 18.360
E[Si] 39.458
E([O] —16.360
E,10] ~1.770
E.[O] 20.270
Vis018i = O] —1.500
Vise [0 = O] 0.250
Vipa1Si — O] 3.046
Vipa [O = Si] —13.760
Vipo [0 = O] -0.075
Vppal8i — O} 5.710
VippalO — O] 1.290
Ve pa [8i— O] 1.016
Vs pa [0 — Si] —1.560
Ve po [0 = O] 0.080
Viosea[Si — O] —6.700
Vies0a [0 = O] 0.000

the tight-binding calculation. Although the gate oxide
in MOSFETs is an amorphous Si0O,, we assumed a
B-cristobalite structure (Gnani et al. 2000) for simplic-
ity of computation. We modified the second nearest
neighbor sp* model for the bulk B-cristobalite reported
in LaFemina and Duke (1991); we add an excited s
state to the basis (Vogl, Hjalmarson and Dow 1983)
and readjusted the parameters to reproduce effective
mass of 0.5my in [100] direction at the bottom of the
conduction band (Gnani et al. 2000). The resulting ef-
fective mass at the top of the valence band is 2. 1m1¢. The
tight-binding parameters are given in Table 1. With this
parameter set, we calculate the complex band structure
of SiO, by using the technique reported in Schulman
and Chang (1983), Ting. Yu and McGill (1992) and
Boykin (1996).

3. Experimental

The samples used were p*-polysilicon-gate MOSFETs
fabricated on (100) oriented n-Si substrates. The ox-
ide thicknesses were 2.6, 3.0, and 3.4 nm, which were
measured by ellipsometric technique. The doping con-
centrations in the gate and the substrate were 6.5 x
10" em~* and 4.5 x 10" cm™3, respectively. Figure 2




Figure 2. Experimental arrangement for charge separation mea-
surement,

shows the experimental setup for the charge separation
technique. Two gate current components can be sepa-
rately measured; the hole tunneling current from the in-
version layer is detected at the source/drain electrodes,
and the valence electrons injected from the gate into
the substrate are collected at the substrate electrode.

4. Results and Discussions

Figure 3 shows theresults of measured and calculated
DT currents as a function of the gate voltage. Here
the oxide thickness was used as a fitting parameter
because there exists uncertainty in the data of ellip-
sometric measurement (Ghetti ef al. 1999). The oxide

Experiment 4 @ B :Electron tunneling
A O O :Holetunneling

: Electron tunneling
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Figure3. Measured (symbols) and calculated (lines) tunneling cur-
rents through the gate oxide layer in p* poly pMOSFETs as a function
of the gate voltage. The oxide thicknesses (in parenthesis the cor-
responding value from ellipsometric measurements) are 2.57 (2.6),
3.00(3.0), and 3.35 (3.4) nm.
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thicknesses needed to fit experiments are within 5% of
the ellipsometric measurements. For both two DT com-
ponents due to the valence electrons and the inversion
layer holes, we obtained fairly good agreements with
the experimental data by using the two-band model
with m}, = 0.6my.

Figures 4-6 show the complex band struc-
tures obtained by the tight-binding scheme for the
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Figure 4. Complex band structure of SiO, along [100] direction
obtained by the tight-binding scheme.

15
10
3, 5
>
(o))
)
c OF
L
M &
-10 ;
1 0.5 0 0.5 1
Imky Re k.

Figure 5. Complex band structure of SiO; along [110] direction
obtained by the tight-binding scheme.
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Fignre 6. Complex band structure of Si0> along [111] direction
obtained by the tight-binding scheme.

B-cristobalite along [100], [110], and [111] directions,
respectively. Because we have insufficient knowledge
about the atomic structure of the gate oxide, we com-
pared three cases to investigate how the atomic con-
figuration affects the results qualitatively. The similar
shapes are observed regardless of the wave propa-
gation directions; the semicircular loop connects the
conduction and valence bands in the gap region. This
property is also found in Stadele’s tight-binding cal-
culation (Stiddele, Tuttle and Hess 2001), in which
SiO> models based on tridymite and S-quartz were
used. As shown in Fig. 1, the two-band model ex-
presses this semicircular curve. On the other hand, in
the tight-binding results, many other bands with larger
Imk are observed. The complex bands in the gap re-
gion with Rek # 0 also have large imaginary parts:
Imk > 1 x 10" m~!. Their contributions to the tun-
neling currents are considered to be small, because the
larger imaginary & corresponds to the faster decaying
wave in the barrier. Moreover, several complex bands
are found in the lower half region of the band gap.
Probably, their effects are averaged and effectively ex-
pressed by a single curve of the two-band model after
the fitting procedure of m . The wave vector in Fig. |
shows the maximum toward the midgap and is sym-
metrical with respect to the midgap. For the analysis
of the tunneling in metal-narrow-gap-semiconductor-
metal tunnel junctions, the importance of an asym-
metric dispersion was pointed out (Hatta, Nagao and

Mukaa 1996); they used modified two-band model. in
which the different conduction- and valence-band edge
effective masses are taken into account. In Figs. 4-
6 the complex bands for SiO, do not show strong
asymmictricity despite the large difference between the
conduction- and valence-band edge effective masses.
However, the asymmetry would change the currents
exponentially, and hence we expect that the asymmet-
ric two-band model improves our tunneling calcula-
tion; there exists some discrepancies between calcu-
lated and measured results in Fig. 3. Furthermore, in
the aggressively scaled MOSFETSs the carriers tunnel
through the wide range of the SiO, gap region, and DT
of hot carriers as well as cold carriers are important to
analyze the device reliability (Deguchi er al. 2000). In
particular, the hot holes pass through the bottom of the
gap region, where the complex band structure is very
complicated. For more accurate DT simulation appli-
cable to a variety of situations, it is important to take
account the realistic complex band structures.

5. Conclusion

In summary, we have presented the simulation of the
tunneling current through the ultra-thin gate oxides
(2.6-3.4 nm). By using the two-band model for the
complex band structure of SiO-, good agreements were
obtained between calculated and experimental tunnel-
ing currents measured by the charge separation tech-
nique. It has been also demonstrated that the two-band
mode! reflects the essential characteristics of the real-
istic complex band structure obtained from the tight-
binding calculation.
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Abstract. As semiconductor devices are scaled down to nanometer scale dimensions, quantum mechanical ef-
fects can become important. For many device simulations at normal temperatures, an efficient quantum correction
approach within a semi-classical framework is expected to be a practical way applicable to multi-dimensional
simulation of ultrasmall integrated devices. In this paper, we present a comparative study on the three quantum
correction methods proposed to operate within the Monte Carlo framework, which are based on Wigner transport
equation, path integrals, and Schrodinger equation. Quantitative comparisons for the strengths and weaknesses of

these methods are discussed by applying them to size quantization and tunneling effects.

Keywords: ultrasmall MOSFET, Monte Carlo methods, nanotechnology, quantum correction, Schrodinger

equation, quantum effects

1. Introduction

As semiconductor devices are scaled down to nanome-
ter scale dimensions, quantum mechanical effects can
become significant, and a full quantum transport model
is necessary if coherent effects dominate device be-
havior. However, for many practical devices, an ef-
ficient alternative is to include quantum corrections
within a semi-classical framework. If a physically-
based model such as Monte Carlo is used, it is eas-
ier to include important transport physics than in most
available quantum transport approaches. For example,
in MOSFETS scaled below 100 nm, bandstructure and
scattering mechanisms must still be modeled to a cer-
tain degree of sophistication, while coherence effects
should only play a secondary role because the potential
profiles along the transport path are typically smooth,

minimizing quantum mechanical reflections. Instead
of coherent transport, the major quantum effects to be
concerned about in this case are size quantization and
tunneling. Size quantization can be captured with quan-
tum corrections because in the direction perpendicu-
lar to the transport, the device is essentially in quasi-
equilibrium conditions, and the major issue is to adjust
the statistical occupation probabilities. Tunneling oc-
curs in the direction of transport, but for sufficiently
wide or high single barriers, the quantum region of
action can be assumed to be strongly localized in the
neighborhood of the barrier itself.

Quantum corrections can be incorporated into a
semi-classical Monte Carlo simulator by introducing a
quantum potential term which is superimposed onto the
classical electrostatic potential seen by the simulated
particles. The essence of the technique is illustrated
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Figure 1. Tlustration of how quantum effects are treated by adding
a “‘quantum potential™ to the electrostatic potential.

pictorially for a single tunneling barrier in Fig. 1. Rais-
ing a particle’s potential energy in a quantum well, or
lowering it at the top of a barrier can modify the semi-
classical transport, thus reproducing to first-order the
average effects of quantization and tunneling on the
carrier distribution.

Several quantum correction approaches are possible.
These procedures in general entail the self-consistent
calculation of a correction potential which is added
to the semi-classical solution. Approximate quantum
models are used to obtain the corrected potential from
the semi-classical potential itself, to steer the trans-
port toward a situation that mimics as much as possible
the quantum behavior. The methods proposed to oper-
ate within the Monte Carlo framework include meth-
ods based on Wigner equation (Tsuchiya and Miyoshi
1999), path integrals (Ferry 2000), and Schrodinger
equation (Winstead and Ravaioli 2001). The goal of
this paper is to review comparatively these thrce main
approaches, underscoring the strengths and weak-
nesses of each of them. Quantitative comparisons are
presented to help in understanding for which applica-
tions one method might be more efficient or appropriate
over the others.

2. Description of Quantum Corrections
2.1. Wigner-Based Correction

The Wigner-based quantum correction can be derived
starting from a suitable form of the Wigner transport

equation (Wigner 1932)

af 1 o~ (=D
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Here, £ is the crystal momentum, V is the classical po-
tential and the term on the right-hand side represents the
effects of collisions. The non-local quantum mechani-
cal effects are represented in the fourth term on the left-
hand side of (1). In the Timit of slow spatial variations.
the non-local terms disappear and we recover the stan-
dard Boltzmann Transport equation (BTE). The sim-
plest approach to quantum correction is to start by using
only the lowest order term with @ = 1 in the summation.
Following this approximation, one obtains an equation
that closely resembles the structure of the BTE, with
onc additional term providing a quantum correction.
This quantum corrected BTE takes the form

af 1 (3
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where the term V. contains the quantum potential. V.
depends on the distribution function, which in turn can
be resolved numerically by Monte Carlo simulation, for
equilibrium or non-equilibrium cases. We take here a
simpler approach, which assumes a drifted maxwellian
distribution function with parabolic dispersion relation.
It allows us to represent V,. with an analytical form.
Limiting the derivation to one dimension for clarity,
V. becomes (Tsuchiya and Ravaioli 2001)

ksT . - 87 In(n)
Vak,n) =V + —24—[y°(k -k’ - W=7
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where n is the carrier concentration. In (3), the cor-
rected potential, V,., depends on both the location and
the momentum of the individual particles. A simplified
version of V. can also be derived by assuming in (3) a
thermal equilibrium average energy as (Tsuchiya and
Miyoshi 1999, Tsuchiya and Ravaioli 2001)

m? 8% In(n)
12m*  0x2

Vo) =V — 4

This simplified, momentum-independent formula-
tion has somc advantage over the more complex




momentum-dependent version (3) because in addition
to use in Monte Carlo, it can be applied for quantum cor-
rections in lower levels of the transport simulation hier-
archy such as hydrodynamic (Zhou and Ferry 1993) or
drift-diffusion (Ancona and Iafrate 1989). We have to
add that for a multi-dimensional problem the Wigner-
based correction should be represented in terms of a
quantun force correction, not a quantum potential cor-
rection (Tsuchiya and Ravaioli 2001).

2.2.  Effective Potential Correction

The effective potential approach to quantum correction
was developed by Feynman and Hibbs (1965). To de-
rive the effective potential, a variational method can be
used to calculate to contribution to the path integral of
a particle’s quantum fluctuations around its classical
path. Using a trial potential to first order in the aver-
age point on each path, the effective classical potential
becomes

V() fl /w V(xpe 5 d
x) = xo)e =% dxp,
4 27ra —00 0 0
2 )
) h

= 12m kT

Equation (5) represents a smearing of the electrostatic
potential on a length scale of the parameter, a, which
can also be interpreted as the effective quantum me-
chanical “size” of the particle (Ferry 2000).

Feynman later improved this simple correction using
a second-order trial potential (Feynman and Kleinert
1986) which yields the following effective potential,
W,

Wi(xo) = _min ){Wl(xo,a%xo), Qxo)l,  (6)
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Ve in (6) corresponds to W, in (6) with the special
non-optimal choice of Q = 0. A typical solution of W,
for MOS quantization effects is indicated in Fig. 2. For
this application, the benefits of using the W, effective
potential relative to the simpler V7 with a allowed to
vary as a tuning parameter appear to be marginal. For
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Figure 2. Typical behavior of the quantum potential for an MOS
capacitor using several different quantum correction approaches.

practical application, the primary focus in this work
will be on the V4 version of the correction.

2.3. Schrodinger-Based Correction

In the Schrodinger-based approach for quantum correc-
tion, the Schrdinger equation is solved periodically in
a simulation using the self-consistent electrostatic po-
tential as input. In contrast to the Wigner-based and ef-
fective potential corrections, the quantum potential in
this method is calculated from the exact energy levels
and wavefunctions corresponding to the electrostatic
potential solution. The first step in the procedure is to
calculate the overall shape of the quantum density by
filling the energy levels according to an equilibrium
Maxwell-Boltzmann distribution. This quantum den-
sity shape is mapped to a quantum potential through

Vienr(2) = —kT IOg(nq(Z)) - Vp(Z) +W N

Here, V., is the quantum correction, z is the direction
normal to the interface, n, is quantum density from
the Schrodinger equation or equivalently the converged
Monte Carlo concentration, V, is the potential from
the Poisson solution, and Vj is an arbitrary reference
potential determined by the knowledge that the correc-
tion should go to zero away from the quantum region,
where the behavior is semi-classical. Only the shape
of the quantum density is used, therefore, one does
not need to invoke the exact Fermi level in the cal-
culation. In this way the correction can be adapted to
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treat nonequilibrium device simulation (Winstead and
Ravaioli 2001).

The quantum-corrected potentials, V., Vg, or Vs,
differ in their method of calculation and their under-
lying assumptions. However, they are all incorporated
into a Monte Carlo simulation in a similar way. As a
Monte Carlo simulation evolves in time, the correc-
tions are recalculated along with the Poisson equation
to maintain self-consistency. The quantum-corrected
potential is then used instead of the electrostatic po-
tential to calculate the forces on the Monte Carlo parti-
cles. Other than this modification of the classical forces
applied to the particles, the quantum-corrected Monte
Carlo simulation can be carried out in the same manner
as the uncorrected case.

3. Quantization Effects

To study quantization effects, the models described
in the preceding section were implemented in the 2-D
full-band Monte Carlo simulator, MOCA (Duncan,
Ravaioli and Jakumeit 1998). Because of its techno-
logical importance as a building block for devices, the
MOS capacitor was used as a prototype structure for
this comparative study. For verification, the quantum
mechanical charge density and potential were also
calculated using self-consistent Schrodinger/Poisson
simulation.

Figure 2 illustrates the typical behavior of the quan-
tum potential for the different methods. Here, the
“ideal” quantum potential is the correction which
would exactly reproduce the quantum density from the
Schrédinger-Poisson solution. The results indicate that
the Schrodinger-based correction provides the most ac-
curate model, which closely matches the ideal value
with no fitting parameters. This is expected because
the approaches makes use of a complete solution of
the Schrodinger equation instead of an approximate
quantumn solution. In addition, since there are no fitting
parameters, the accuracy of the method is not sensitive
to variations in the physical parameters of the MOS
capacitor. Figures 3 and 4 compare the detailed solu-
tions for concentration obtained from a full quantum
calculation and from a Schridinger-corrected Monte
Carlo simulation, over a wide range of gate biases
and for substrate dopings of Ny =2 x 10" cm™3 and
Np =2x10"7cm™>.

The Wigner-based quantum potential is also found
to be accurate for quantization effects in the MOS ca-
pacitor, if a fitting parameter is used for the density at
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o Wigner-based MC
Tw =30A
N, =2x10" cm™
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Figure 3.  Electron concentration distributions in an inverted MOS

capacitor from two different quantum-corrected Monte Carlo and

self-consistent Schrédinger-Poisson methods over a range of gate
bias.
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Figure 4. Electron concentration distributions in an accumulated
MOS capacitor from two different quantum-corrected Monte Carlo
and self-consistent Schrodinger-Poisson methods over a range of
gate bias.

the interface. Results obtained using the Wigner cor-
rection method are also shown in Figs. 3 and 4. The fit-
ting parameter used here is an empirical charge layer of
1 x 10" cm~* which is included in the oxide region for
the calculation of the correction at the interface point.
Beside this necessary adjustment at the interface, the
quantum correction (4) is applied with no additional
fitting parameters. This scheme allows for the proper
adjustment of the interface density for a wide range of
biases and doping while giving a reasonably accurate
quantum density elsewhere.




For the Feynman effective potential given by (6),
the “size” parameter, a was treated as an empirical fit-
ting parameter, as suggested by Ferry (2000). The best
fit value for the size parameter in the MOS structures
studied here was found to be a = 4.5 A. The effective
potential method is accurate in reproducing integrated
quantities. Figure 5 shows the total sheet charge for
a Monte Carlo simulation of the MOS capacitor with
the effective potential correction, and Fig. 6 shows, for
the same simulation, the average displacement of the
carriers from the Si/SiO; interface, which is indicative
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Figure 5. Sheet charge density in a MOS capacitor as a function of
gate bias calculated with effective potential corrected Monte Carlo
and self-consistent Schrodinger-Poisson methods.
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Figure 6. Location of charge centroid in a MOS capacitor as a
function of gate bias calculated with effective potential corrected
Monte Carlo and self-consistent Schrdinger-Poisson methods.
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Figure 7. Electron concentration distributions in an inverted MOS
capacitor calculated with effective potential Monte Carlo and self-
consistent Schrodinger-Poisson methods.

of the quantum repulsion. However, if the detailed spa-
tial behavior of the effective potential correction is ana-
lyzed, one can see significant deviations from the quan-
tum solution. Figure 7 shows the detailed concentration
under the gate of the MOS capacitor. Typically, the cor-
rection is very large at the interface, leading to a layer
of width ~a next to the oxide interface, where the con-
centration is significantly lower than that is expected
by the quantum solution. Compensating for that, the
correction becomes smaller than the expected one at
the deeper location inside the substrate, leading to typ-
ically a larger peak concentration than the quantum
solution.

It can be shown theoretically that the momentum-
independent Wigner-based method (4) is an approxi-
mation to the effective potential (Ferry 2000). How-
ever, the simulation results presented here indicate that
the momentum-independent Wigner-based correction
gives a solution which is substantially closer to the de-
tailed quantum behavior. This is due to the fact that the
Wigner correction is local, while the effective poten-
tial correction is non-local. Neither correction is strictly
valid at a heterojunction. However, a single parameter
can be used to fit the singularity at the interface for
the Wigner correction, since it is local. The silicon re-
gion in which the transport actually occurs has a more
slowly-varying potential than in the neighborhood of
the interface, and thus no fitting is necessary. The appli-
cation of a non-local effective potential act differently
in the overall correction schemes. The adjustment of a
fitting parameter to accommodate the strong influence
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of the interface on the overall solution requircs a com-
pensation in the silicon region where the solution has
to deviate to maintain the averages.

In addition to accuracy, another important consider-
ation in practical Monte Carlo device simulation is the
execution time. For all three methods, the CPU time
required to calculate the corrections is negligible rela-
tive to the overall Monte Carlo simulation time. How-
ever, there is an important difference, in the fact that
the Schrodinger-based correction and the effective po-
tential correction are calculated using the electrostatic
potential as input, while the Wigner-based correction is
calculated from concentration. The noise in the Monte
Carlo concentration estimator is always higher than for
the potential, and a Wigner-corrected Monte Carlo sim-
ulation can take significantly longer time to converge
than an uncorrected semi-classical Monte Carlo sim-
ulation. In contrast, adding the Schrédinger-based or
the effective potential correction to the Monte Carlo
procedure does not increase total cpu time in a very
significant way. A self-consistent simulation with the
full-band MOCA code using 30000 particles and a
non-uniform grid of 300 x 200 nodes for the Poisson
equation requires approximately 80 MB of RAM. On a
standard 800 Mhz Intel processor, approximately 1000
iterations per hour are executed, where one iteration
normally corresponds to a time step of 1 fs or less.

4. Tunneling Effects

For the purpose of studying quantum corrections in
the context of tunneling, the Wigner-based correction
and the effective potential were implemented intoa 1D
GaAs/AlGaAs Monte Carlo simulator. For this case,
the Schrédinger correction was not applied, since it
is best suited for capturing quantum confinement ef-
fects. The tunneling test structure consists of a 4-nm
wide GaAs/AlGaAs single barrier with a conduction
band discontinuity of 0.22 eV and a temperature of
300 K.

As shown previously, the effective potential correc-
tion encounters difficulties in the neighborhood of the
abrupt transition between oxide and silicon in the MOS
system, since there is very large energy jump of about
3.1 eV and the underlying assumptions behind the the-
ory tend to break down. The problem should not be
as severe in the presence of smaller barriers, as is the
case for the GaAs/AlGaAs system and the effective
potential should be a very good candidate for practical
inclusion of tunneling effects.

In applying the Wigner-based correction to MOS
quantization, the difficulties near the large barrier were
overcome by tuning the correction at the interface point.
However, for tunneling it is necessary to model trans-
port on both sides of the interface, and this scheme.
that is based on assuming a concentration layer, cannot
be used. Instead, for tunneling simulations we apply
the theoretical value of the Wigner correction. In or-
der to increase the accuracy, here we implement the
momentum-dependent method (3) in addition to the
momentum-independent method (4) used in the quan-
tization simulations.

For the tunneling simulation the bias was varied
from 0 to 0.3 V, and the GaAs effective mass of
m* = 0.067mg was used in all three corrections. From
(6), this corresponds to a value of 1.9 nm for a in
the effective potential. To benchmark the results, the
quantum tunneling current was also calculated using a
transfer matrix method (Brennan and Summers 1987).
Figure 8 plots the resulting current from the transfer
matrix and Monte Carlo methods. All of the quantum
corrected results improve significantly upon the clas-
sical simulation. The momentum-dependent Wigner
correction and the effective potential are the more ac-
curate methods. However the details of their results
differ, which is expected because each method stems
from a different set of assumptions. The momentum-
independent Wigner method is less accurate, which
is consistent with the fact that it can be considered
an approximation to either the momentum-dependent
method or to the effective potential. These same trends
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Figure 8. Tunncling current in a 4-nm GaAs-AlGaAs tunneling
barricr over a range of bias calculated with three quantum-corrected
Monte Carlo and transfer matrix methods.




also hold for other small tunneling barriers, such as
possible source-drain tunneling in highly scaled MOS-
FETs. If an improved accuracy is desired, the a pa-
rameter in the effective potential, or equivalently, the
m* parameter in the Wigner-based corrections can be
adjusted for a best fit. However, in such a case, recali-
bration of the fitting parameters may be required when
different barriers are considered.

5. Conclusions

Three methods for introducing quantum corrections in
semi-classical Monte Carlo simulation have been stud-
ied and compared. For the size-quantization case in
the MOS system, the Schrodinger-based correction has
some intrinsic advantage, since this method does not
require fitting parameters, it is accurate, and it adds
only negligible CPU time to a Monte Carlo simula-
tion. In contrast, while the Wigner-based method can
be tuned to be as accurate, it is in general slower and
it requires a fitting parameter. The effective potential
method reproduces reasonably well integrated quanti-
ties related to size quantization, but it is spatially in-
accurate even if the fitting parameter is optimized. For
the tunneling case, the Schrddinger-based correction
is not appropriate. Instead, the momentum-dependent
Wigner correction or effective potential methods can
be used with similar accuracy. In this case, the ef-
fective potential should have a computational advan-
tage, since the Wigner correction is more affected
by noise. On the other hand, the Wigner formulation
can still be useful for detailed physical investiga-
tions, since it can be extended to include momentum-
dependent distributions. One could introduce an ana-
lytical distribution function or even a numerical one
evaluated directly with the semi-classical Monte Carlo
procedure.
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Monte Carlo Based Calculation of the Electron Dynamics
in a Two-Dimensional GaN/AlIGaN Heterostructure
in the Presence of Strain Polarization Fields

TSUNG-HSING YU AND KEVIN E. BRENNAN
School of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA 30332-0250, USA

Abstract. We report on the workings of a Monte Carlo based simulator useful for studying electron transport
in two-dimensional systems. The simulator utilizes a self-consistent solution of the Schroedinger and Poisson
equations to obtain the allowed two-dimensional energy levels, band bending and electronic wavefunctions. Defect
scattering through interface roughness and ionized impurities along with lattice scattering arising from polar optical,
deformation potential and piezoelectric interactions are included in the model. The two-dimensional scattering rates
are calculated using the numerically determined wavefunctions. The final state following polar optical scattering
is determined numerically based on the two-dimensional physics of the process. The model further includes the
effects of strain induced polarization fields present in GaN/AlGaN heterostructures. Transfer into the AlGaN layer
and its effects are also considered. Calculations are presented for the steady-state velocity showing the importance
of the new two-dimensional final state selection technique. Additionally, calculations are presented that show the

importance of the strain polarization fields.

Keywords: heterostructures, two-dimensional transport, Monte Carlo

1. Introduction

Transport within a two-dimensional system is well
known to be substantially different from that in a
three-dimensional system (Yokoyama and Hess 1986,
Kawamura and Das Sarma 1992). The electronic struc-
ture along with the scattering rates are quite different
between two and three dimensional systems (Ridley
1997) and as a result the electron dynamics are differ-
ent. In strained semiconductor systems, such as GaN-
Al;_,Ga,N, the strain produces polarization fields that
alter the band bending, electronic structure and scatter-
ing rates. Though there has been some attempt to model
this effect in the Il-nitrides, most of the studies have
been made only for the zero field mobility (Hsu and
Walukiewicz 2001a, Yu and Brennan 2001b). The field-
dependent drift velocity and concomitant mobility are
of greater interest in simulating HFET devices. To the
authors’ knowledge, there has been only one work that
has examined the field dependence of the drift velocity

and mobility in AlGaN/GaN heterojunctions (Li, Joshi
and Fazi 2000). However, in the work by Li, Joshi
and Fazi (2000) the electronic structure in the two-
dimensional system was approximated using a simple
triangular well approximation, the scattering rates were
calculated using approximate forms for the wave func-
tions and only two subbands were included in the anal-
ysis. In the present work, we describe a fully numeri-
cal approach in which the subbands and corresponding
scattering rates are determined self-consistently from
the solution of the Poisson and Schroedinger equations.
Our model includes multiple subbands with the number
depending upon the band bending, both spontaneous
and piezoelectrically induced polarization effects, and
the possibility of real space transfer into the AlGaN.
Additionally, we present a technique for determining
the final state following a two-dimensional polar opti-
cal phonon scattering event.

It is the purpose of this paper to outline the compu-
tational details of the workings of our fully numerical
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two-dimensional simulator. During the course of this
work we have developed a new numerical technique
for the final state selection following two-dimensional
polar optical phonon scattering.

2. Model Description

The two-dimensional transport is solved using the en-
semble Monte Carlo technique with a parabolic band
approximation. The subband energies and electronic
wavefunctions are determined numerically from a self-
consistent solution of the Schroedinger-Poisson equa-
tion. The scattering rates are then determined numer-
ically by computing the appropriate matrix elements
using the numerical wavefunctions. The scattering
mechanisms included in the analysis are polar opti-
cal and acoustic phonon, piezoelectric, remote ionized
impurity and interface roughness scattering. The cal-
culations presented here are all made at 300 K where
polar optical phonon scattering dominates. Therefore,
it is highly important to properly treat the effects of
polar optical scattering in the simulation.

During the course of the Monte Carlo simulation the
final state selection following polar optical scattering is
determined using a new technique that fully embraces
the physics of two-dimensional transport. The polar op-
tical phonon scattering angle in two-dimensional elec-
tron gases can be calculated by the formula derived
from the summation probability of scattering between 0
and 6, assuming 6 is the same for positive and negative,

f” Hunlq)dg
{

) 4 )

V= YT(:/T/T
0 q

where H,,,(¢) is the subband coupling coefficient and
¢ is the phonon wavevector component parallel to the
layer plane. These quantities are defined in Yokoyama
and Hess 1986. For a given angle & we can calcu-
late the corresponding probability y between 0 and 1
from the above formula. To implement this scheme
within the Monte Carlo simulation, we have to reverse
the calculation sequences. Therefore, we utilize a
piecewise linear approximation to fit the curve and
hence with a random number y we can find its cor-
responding scattering angle 6. Since the polar optical
phonon scattering is strongly dependent on the elec-
tron energy, in principle we should calculate the ran-
dom number vs. polar angle for each energy value to
obtain the precise polar angles. However, the compu-
tational demands of such an approach are presently

overwhelming. Alternatively, we calculate the random
number vs. polar angle for ten energy values to build
a look-up table. For each value of the carrier energy.
the polar angle is estimated using the curve with the
nearest value of the carrier energy.

The importance of this new technique is illustrated
by Fig. 1. Figure 1 shows a comparison between
the two-dimensional (2D) and three-dimensional (3D)
bulk polar optical phonon emission and absorption
scattering angles calculated for a carrier with a total
energy of 400 meV relative to the conduction band
minimum. In the 3D model, the final state of the car-
rier is found using the analytical model provided by
Tomizawa (1993). For a given random number, the 2D
emission angle is larger than the corresponding angle
calculated using the 3D approximation. As a result. a
significant difference in the calculated final statc and
consequently carrier velocity can occur between the 2D
and 3D models as will be shown below. Therefore. it is
important to incorporate the correct 2D polar angle cal-
culation to accurately determine the 2D final state se-
lection in the Monte Carlo simulation. Usage of the 3D
formulation to find the final state after a 2D polar opti-
cal scattering is thus inadequate.

Given that the scattering rates and energy levels are
distinctly different between the 2D and 3D systems.
it is necessary to define when the carrier is in either
system. Physically, as the energy increases within the
2D system the subbands become increasingly closer
together ultimately producing a quasi-continuum 3D
system. In our calculation, we determine sufficient en-
ergy bands until the energy separation between suc-
cessive higher energy subbands in the quantum well
is less than the thermal energy. The maximum energy
subband is then defined as the threshold energy separat-
ing the 2D and 3D systems. A carrier with energy above
the threshold is treated as belonging to the 3D system.
The transition between the 2D system and the bulk GaN
and AlGaN is accomplished through both carrier drift
and polar optical phonon scattering (Brennan and Park
1989, Park and Brennan 1989). Once the energy of the
carrier within the 2D system approaches the threshold
energy, the electron can acquire sufficient energy from
the applied electric field or via the polar optical phonon
absorption to enter the 3D states. Similarly, the electron
can transfer to the 2D system from the bulk by polar
optical phonon emission or drifting downwards during
the drift motion.

Once the electrons are heated up to the three-
dimensional states in GaN, they can acquire sufficient
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energy from the applied electric field along the
heterojunction to populate higher valleys or transfer to
the adjacent AlGaN layer. Real space transfer between
these two materials occurs only when the incident and
transmitted wavevectors of the carrier satisfy the phase
matching condition (Gaylord and Brennan 1989) at the
heterointerface, otherwise the carriers will be reflected.
Moreover, the transverse field due to the band bending
in the heterostructure is included in our calculation
and the carrier drift motion along the transverse
direction is required to satisfy energy and momentum
conservation.

3. Simulation Results

The device structure and material parameters for bulk
GaN used in the simulation are listed in Table II of
Yu and Brennan (2001b) and Table I of Farahmand
et al. (2001) respectively. The effective masses and in-
tervalley energy separation for the Al,Ga;.,N ternary
compounds are extracted from a pseudopotential band
structure calculation (Goano et al. 2000a, 2000b) by
using a linear interpolation. The interface roughness
parameters are adopted to be the same as in Yu and
Brennan (2001b) to maintain a best fit to the experi-
mental data for the zero-field mobility.

Figure 2 shows the steady state electron velocity ver-
sus the applied electric field along the channel direction
for different Al mole fractions. To check the validity
of our model, we have compared our theoretical cal-
culations to the simulation results given in Li, Joshi
and Fazi (2000). For the 15% Al composition at room
temperature, our simulation results are in good qualita-
tive agreement with Li’s calculation (Li, Joshi and Fazi
2000) over the electric field range from 10 to 50k V/cm.
As shown in an earlier calculation (Yu and Brennan
2001b), the Al compositions can be used to control the
magnitude of polarization field in the heterointerface.
Owing to an increase of the Al mole fraction, the magni-
tude of the polarization field and the conduction band
offset will increase simultaneously. The former will
induce a significantly larger sheet charge density and
the latter will enhance the confinement of carriers in the
well. Therefore, the strong band bending caused by the
larger sheet charge density will push the 2D electrons
closer to the heterojunction interface. As a result, the
effects of interface roughness scattering are enhanced
leading to degradation in the electron velocity as the Al
composition increases as can be seen from inspection
of Fig. 2.

Comparison is made between the 2D and 3D polar
optical phonon scattering angle models for the elec-
tron velocity in the Alg,Gag gN/GaN heterostructures.
The calculated results for this comparison are shown
in Fig. 3. Since the 2D polar angle is quite sensitive
to the electron energy, a carrier with a higher energy
will be scattered by a smaller angle and vice versa. On
the other hand, the polar angles calculated using the
3D formulation stay within a narrow range for differ-
ent electron energy. For example, as the electron total
energy increases from 0.4 eV to 0.8 eV relative to the
conduction band minimum, the 2D emission polar an-
gle for the first intrasubband scattering decreases from
0.25 7 t0 0.05 7. The deviation of 2D angles is 0.2 &
compared to 0.05 7 in 3D case. Because the 3D polar
angles on average are less than the 2D angles, the elec-
tron velocity is overestimated by using 3D final state
selection for polar optical phonon scattering as shown
in Fig. 3. As can be seen from the figure there is a sig-
nificant difference in the calculated velocity between
the two models. In addition, we plot the electron veloc-
ity for bulk GaN in Fig. 3. Due to the spatial separation
between the doped donors and the free carriers in mod-
ulation doped heterostructures, the 2D electron velocity
is significantly larger than that of the bulk as expected.

The influence of polarization effects on the elec-
tron velocity in an Aly;GaggN/GaN heterostructure
is shown in Fig. 4. Three cases are examined in
Fig. 4. These are without polarization, spontaneous po-
larization only, and the strained case including both
spontaneous and piezoelectric polarization. The polar-
ization field in the strained case is larger than that for the
other two cases. Inspection of Fig. 4 shows that as the
polarization field increases the electron drift velocity
decreases. The polarization field induces a larger sheet
charge density in the quantum well and also causes a
strong band bending in the conduction band profile.
Therefore the transverse electric field due to the con-
duction band bending will dramatically increase. As a
result, the electrons in the channel are pushed closer to
the heterointerface resulting in an increase in the inter-
face roughness scattering. Consequently, the electron
velocity decreases as the polarization field increases.

4. Conclusions

In this paper, we have presented calculations of the elec-
tron drift velocity in Al,Ga;_.N/GaN heterostructure
devices in the presence of spontaneous and piezoelec-
tric polarization fields. The calculations are made using
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a comprehensive 2D ensemble Monte Carlo simulator.
Fully numerical 2D scattering rates are incorporated
into the Monte Carlo codes, based on the self-consistent
solution of the Schroedinger and Poisson equations.
We have introduced a new approach to finding the final
state following a 2D polar optical scattering event. It
is found that the usage of this new final state selection
for polar optical phonon scattering is critical to prop-
erly determine the electron velocity in the 2D system.
Based on this scheme our model provides an accurate
description of electron velocity in HFET structures.
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Parallel Approaches for Particle-Based Simulation of Charge Transport
in Semiconductors

M. SARANITT*AND J. TANG
Electrical and Computer Engineering Department, lllinois Institute of Technology, Chicago, IL, USA

saraniti@iit.edu

S. GOODNICK AND S. WIGGER
Electrical Engineering Department, Arizona State University, Tempe, AZ, USA

Abstract. The aim of this contribution is to discuss possible algorithmic choices and hardware configurations for
the implementation of efficient particle-based simulation programs. By using a population decomposition scheme,
we modified the scalar version of the algorithm in order to improve the efficiency of our hybrid particle-based
simulation engine. Using a Beowulf-class computer cluster, we measured parallel speed-up with different algorithmic
configurations, and related it to the inter-process communication hardware.
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1. Introduction

Since the early theoretical work on the Ensemble Monte
Carlo (EMC) method applied to semiconductor sim-
ulation (Canali et al. 1975, Jacoboni and Reggiani
1983), and several subsequent reference books address-
ing both the physics and the numerical aspects of the
EMC method (Hockney and Eastwood 1988, Jacoboni
and Lugli 1989), the basic algorithmic approaches have
been modified to exploit the continuous improvements
of both hardware and software tools. In particular, the
introduction of the full-band representation of the elec-
tronic structure (Fischetti and Laux 1988) and of the
phonon dispersions, as well as the availability of fast
Poisson solvers (Saraniti et al. 1996), extended the use
of the particle-based code from a purely academic en-
vironment to the industrial laboratories. The extreme
accuracy and numerical stability of particle-based sim-
ulation algorithms promoted the development of com-
mercial versions of the research programs. However,
the intrinsic complexity of the algorithms influences

*To whom correspondence should be addressed.

the performance of the simulators, which require im-
practically long simulation times. Several algorithmic
improvements have been steadily suggested within the
last decade to optimize the use of the impressively im-
proving computing hardware.

Algorithms have been first modified to take advan-
tage of vector processing (Ravaioli 1991), and, more
recently, the availability of large amounts of directly
addressable random access memory (RAM) allowed
the achievement of impressive speed-up by storing the
complete transition table for all states in momentum
space. This latter algorithmic development generated
the “Cellular Monte Carlo”! (CMC) code, which is
physically equivalent but up to 50 times faster than the
traditional EMC (Saraniti and Goodnick 2000).

Furthermore, the partially local nature of some of
the charge carrier interactions encouraged researchers
in designing parallel variants of the basic algorithms.
This development has been made possible by the avail-
ability of arelatively new class of parallel platforms: the
computer cluster, based on standard networked work-
stations and on efficient and reliable inter-process com-
munication software (Carns et al. 1999).
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In this paper, we will discuss the algorithmic ap-
proaches used to improve the efficiency of the particle-
based algorithms running on such workstation clusters.

2. Hardware and Software Configuration

Any algorithmic configuration must be chosen by care-
fully considering the nature of the computing equip-
ment used to run the parallel code. The computer used
in this work is a Beowulf-class cluster of dual-processor
nodes, each one equipped with 850 MHz processors
and 2 Gbytes of RAM. The communication backbone
is based on 100 Mbit Ethernet links, connected to a net-
work switch. Clearly, the weak point of this hardware
configuration is the communication channel, while the
computing power of each individual processor is ade-
quate. The choice of such a “slow” communication link
was suggested by the availability of similar equipment
in the academic world.

Inter-process communications is supplied by the
Argonne National Laboratory implementation of the
Message Passing Interface specifications (MPI) (Carns
et al. 1999). Being based on the “message passing”
paradigm, MPI seemed the most appropriate choice in
terms of flexibility and reliability. A simple set of low-
level binary communication functions was built on the
top of MPI and configured, as usual, in an independent
software layer. Besides the features present in the MPI
implementation, no check on communication integrity
has been implemented in the software layer. Since the
processors in the cluster use the same internal number
representation, no format conversion was necessary.
Also, no real-time data compression techniques have
been used in the MPI driver, assuming that the result-
ing compression ratio would be very low because of
the type-less, binary nature of the transmitted data.

3. Algorithmic Structure

The typical algorithmic structure of a particle-based
simulation program for device simulation is shown in
Fig. 1. From an algorithmic viewpoint, the sequential
nature of the scheme is evident (Hockney and Eastwood
1988, Jacoboni and Lugli 1989). In fact, the require-
ment of self-consistence between carrier dynamics and
electric field implies (1) the need of a synchronous car-
rier ensemble (Fischetti and Laux 1988), and (2) some
sort of efficient approach to the solution of Poisson’s
equation. This work is mostly concerned about the first
requirement, while the problem of how to distribute

Start

[ Initialize Data |

_’l Compute scattering J

[ Compute free flight J

L Compute averages l

Timestep = 1 fs

] Solve Poisson's EquationJ

End of
simulation
time 2

Yes
| Collect data J

Figure 1. Flowchart of a typical particle-based simulation
algorithm.

the computational load due to the Poisson solver will
be only briefly discussed.

The approach chosen in this research is to find a de-
composition of the carrier population that allows for
satisfactory speed-up, while keeping the components
of the system synchronous. In particular, information
about the total charge distribution has been made avail-
able to an individual process at the end of any iteration,
ready for the Poisson solver. This strategy only requires
the modification of the few algorithmic modules that
are used to update the dynamics of the carriers during
the simulation, and are depicted in bold in the flowchart
of Fig. 1.

The approach chosen in order to share the compu-
tational load is the so-called population decomposi-
tion method, and it is performed by splitting the car-
rier population and by assigning a portion of it to each
concurrent process. Keeping in mind the need of a syn-
chronous ensemble, we tested the performance of the
two different algorithmic configurations.

The first algorithm, shown in Fig. 2, has been de-
signed to minimize the inter-process communication
flow. The basic idea is that, while the free-flight al-
gorithm changes the status of all carriers at any it-
eration, only a small portion of them are subject to
scattering. Basing on this observation, the algorithm in
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Figure 2. Flowchart of the parallel procedure with scattering
sharing.

Fig. 2 shares only the scattering computation between
processes, while devoting one processor (the so called
“master” processor) to data collection and to the free-
flight calculations. While relatively unbalanced, this
algorithm is based on the fact that the larger computa-
tional burden of an EMC code is due to the scattering
computation (Saraniti and Goodnick 2000). Unfortu-
nately, the very short communication time typical of
this algorithm does not generate the expected speed-up.
Simulationresults are shown in Fig. 3, where saturation
of the speed-up is noticeable, and the overall perfor-
mance improvement is definitely unsatisfactory. Even
if it minimizes communication, the algorithm in Fig. 2
generates a load unbalance responsible for the perfor-
mance degradation. Improved parallel speed-up can be
achieved by including the free-flight computation in
the shared part of the algorithm, as shown in Fig. 4.

15t

speed-up

1 2 3 4 5 6 7
processors

Figure 3. Paralle! performance of the algorithm in Fig. 2.

Finalize averages

Figure 4. Flowchart of the parallel procedure with scattering and
free-flight sharing.

In this case, both the free-flight calculations and
some of the averaging are tasks performed by the
“slave” processes, while the “master” process takes
care of collecting data and distributing the carrier popu-
lation. This choice leaves the master node mostly inac-
tive during the simulation, leaving CPU resources free
for the inclusion of a Poisson solver. In fact, preliminary
estimates show that, for a typical situation, the time to
solve Poisson’s equation in two dimensions is compa-
rable to the time required by the slave “processes” to
process scattering and free-flight. The parallel perfor-
mance of the algorithm of Fig. 4 is depicted in Fig. 5.

The speed-up for seven slave processes is still
sub-linear, but a remarkable improvement has been
achieved with the new algorithm. Also, simulation

processors

Figure 5. Parallel performance of the algorithm in Fig. 4.
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data clearly shows that the computational load between
slave processes is well balanced, and that the perfor-
mance can be significantly improved only by minimiz-
ing the communication time. This can be obtained by
using a faster local area network. Commercially avail-
able LAN’s can achieve inter-process transfer rates up
to 20 times faster than the Ethernet link used in the
shown simulations.

4. Result Validation

Results obtained with the parallel procedures described
above were validated with experimental results, and
with scalar runs. In particular, both steady-state and
transient response of electrons in Gallium Arsenide
(GaAs) were simulated, and the main quantities
compared with experiment. The speed-up evaluations
shown in Figs. 3 and 5 were obtained with an EMC
simulation of an ensemble of 5000 electrons in GaAs
with an external field of 5 x 10¢ V/m.

5. Conclusions

We have performed evaluations of parallel performance
of particle-based algorithms on a computer cluster us-
ing the message-passing paradigm for inter-process
communication. Both load-balancing and communica-
tion time play a crucial role in the parallel performance
of the code. Simulation results clearly show the possi-
bility of achieving a more than satisfactory spced-up,
especially if high performance communication hard-
ware is used.
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Note

1. The approach was initially called “cellular automaton”. and
evolved in an algorithmic structure that shares few, if any, of
the basic aspects of the homonym method used in computational
hydrodynamics. For this reason the “Cellular Monte Carlo™ de-
nomination was recently introduced.
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Abstract.

A full-band Monte Carlo simulation of two-dimensional electron gas is performed to study effects of

the non-parabolicity of the energy band structure on the phonon-limited electron mobility in SOI MOSFETs with

a thin Si-layer.

Keywords:

1. Introduction

The full-band Monte Carlo technique is a powerful
tool for simulating carrier motion in bulk materials. It
has been reported that a full-band Monte Carlo model
for bulk silicon gives a good quantitative agreement
with the temperature, electric field, and crystal direc-
tion dependences of experimental electron and hole
drift-velocities (Fisher and Hofmann 2000). In metal-
oxide-semiconductor (MOS) structures, however, the
electron motion in the direction perpendicular to the
surface is quantized by the strong electric field ap-
plied across the interface, and this two-dimensional
quantization can strongly affect the carrier transport
properties. It has been shown that, for example, silicon-
on-insulator metal-oxide-semiconductor field effect
transistors (SOl MOSFETSs) with thinner Si-layer than
the inversion layer of the bulk MOSFETs can provide
higher electron mobility than the bulk Si-MOSFETs
because of the significant modulation of the subband
structure due to the quantization effects (Takagi, Koga
and Toriumi 1998). It is, therefore, desirable to de-
velop a Monte Carlo code capable of simulating the
transport properties of two-dimensional electron gas
(2DEG) with full-band modeling. In the present study,
we have performed a full-band Monte Carlo simulation
of 2DEG and studied effects of the non-parabolicity of

*To whom correspondence should be addressed.
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the energy band structure on the transport properties in
SOI MOSFETs with a thin Si-layer.

2. Self-Consistent Calculation

The two-dimensional electronic states in SOI
MOSFETs were calculated by a self-consistent method
using an empirical pseudo-potential approximation
(Takeda, Mori and Hamaguchi 2001). For the pseudo-
potential Vp(R) of bulk silicon, the Schrédinger equa-
tion for SO MOSFETs with a confining potential U (z)
along the z-direction, the direction perpendicular to the
surface, may be written as

2
I—zh—mv2 + Vp(R) + U(z)]\IJ(R) = EW(R). (1)

By expanding the wave function W(R) with the
bulk wave functions of ¥t(R)=eXRyZ (R)=¢*R
> ¢ F(G) 'R, we have

S @)
n G kg
X fo (&, 8 Urlk: — K, + 8. — g1
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n G’

where ck, j are the expansion coefficients (W(R) =
ZK,,CKIIJK(R)) E"(K) the energy band of bulk
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silicon, n the band index, K the three-dimensional wave
vector, and

L

Uiar =1 [ U@era o)
L Jo

with L being the thickness of the system. In the follow-

ing calculation, we assume that U (z) is slowly varying

and Up(k: — k. + g: — gl = 0.

To obtain the confining potential U(z), we solved
the Poisson equation within the Hartree approximation,
which requires electron charge distribution along the z
direction, p.(z). We evaluated p.(z) using the Fermi-
Dirac distribution function and state densities calcu-
lated with discretizing the (k,, k,)-space into rectangle
meshes (Takeda, Mori and Hamaguchi 2001).

For studying effects of the non-parabolicity, we also
performed self-consistent calculation using the effec-

tive mass approximation with a simple parabolic energy
band.

3. Scattering Rates

For a Monte Carlo simulation, we calculated the elec-
tron scattering rates. In the present study, we in-
clude intra-valley scatterings via acoustic phonons and
inter-valley scatterings via acoustic or optical phonons
with arbitrarily defining the boundary of the valleys
(Fischetti and Laux 1988). The scattering rates are eval-
uated at each mesh point in the discritized (k,, k,)-
space, which is used for evaluating the state densities
in the self-consistent calculation.

The intra-valley scattering rate via acoustic phonons
from k (=(k,, k,)) in subband u is given by

1 kgT
T hpw? ZZGA 1 (E"(K))

y / AK — K, @) F @) dg., ()

where ¢ is the z-component of the three-dimensional
phonon wave vector Q, p the density of silicon, vy
the sound velocity, E/*(k) the energy eigenvalue of
Eq.(2)and Gi,“ .,‘_‘_(E"(k)) the state densities. In Eq. (4),
both the absorption and the emission processes are in-
cluded within the equipartition approximation. We take
into account longitudinal acoustic (LA) and transverse
acoustic (TA) phonons. The anisotropic deformation
potential A(k) for each phonon mode is given by the

following equations

ALa(Bg) = €4 + E, cos’(Bp), (5)
Ata(Bg) = E, cos*(Bp) sin(Bp). (6)

where E, =9.0eV, 2, =—11.7¢V and fl; is the angle
between phonon wave vector Q and the longitudinal
axis of each valley (Fischetti and Laux 1993). The form
factor F, ,(¢:) is defined by the following equation:

}-/1.\1([/:):/w:(Z)eiq:.:\y”(Z)dZ. (7)

The inter-valley phonon scattering rate is given by

dq-\F,.o(g:)?
.mc,<k> 2p W e

X Z Non;'k:(E“(k) + hwp)
K, ‘

+ (Mo + l)Gl“{;‘k;(E”(k) —hwp)], (8)

with Ny = ("/%sT — 1)~! being the phonon popula-
tion number. We include g-processes via TA, LA, and
longitudinal optical (LO) phonons, and f-processes
via TA, LA, and transverse optical (TO) phonons.
The values of the deformation potential A and the
phonon energy hap of each phonon mode are listed in
Table 1.

Figure 1 shows the total scattering rates of the low-
est subband in the 2-fold valleys as a function of the
electron energy in a SOI MOSFET with the Si-layer
thickness of Lg; = 5.43nm at T = 300K for the volt-
age difference between the Si-layer of AVs; = 0.1V.
The closed circles represent the total scattering rate cal-
culated with the pseudo-potential model, and the solid

Table 1. Parameters used in the present calculation (Fischetti and
Laux 1993).

Deformation potential  Phonon energy

(10" eV/m) (meV)
TA-phonons (g-process) 0.5 12
LA-phonons (g-process) 0.8 18.5
LO-phonons (g-process) 11.0 61.2
TA-phonons ( f-process) 03 19.0
LA-phonons ( f-process) 2.0 474
TO-phonons ( f-process) 2.0 59.0
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Figure 1. Total scattering rates of the lowest subband in the 2-fold
valleys calculated with the pseudo-potential (closed circles) and the
parabolic (solid lines) models.

line is that for the parabolic model. For higher elec-
tron energy than =~0.15eV, we see that the difference
between the two models gradually increases as the elec-
tron energy increases.

4. Monte Carlo Simulation

Using the scattering rates calculated in the previous
section, we performed a single-electron Monte Carlo
simulation. Figure 2 shows Lg;-dependence of the low-
field mobilities of SOI MOSFETs with the electron
sheet density of Ny =4.0 x 10'2cm~? at T = 300K for
the voltage difference between the Si-layer of AVg; =
(Lsi/5.43nm) x 0.1V (i.e. F** = 0.18 MV/cm). The
parallel electric field is applied along the x-direction
(F| =(F, 0)) with F, ~ 1kV/cm. Lg;i-dependence of

Ng= 4.0x10" cm™?]
. T=300K
2 1500+

g
L
2
%

= 1000~ 1

e pseudo—potential |

I o parabolic |

o 10 20 30

Lg; (nm)

Figure 2. Calculated low-field phonon-limited mobility as a func-
tion of the Si-layer thickness. The results of the pseudo-potential
model are plotted as the closed circles and those of the parabolic
model are plotted as the open circles.
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Figure 3. The occupancy of the 2-fold and the 4-fold valleys as
a function of the Si-layer thickness. The closed and open circles
represent the results of the pseudo-potential and the parabolic models,
respectively.

occupancy of the 2-fold and the 4-fold valleys is also
plotted in Fig. 3.

For Lg; = 10nm, the occupancy of the 2-fold val-
leys of the pseudo-potential model is larger than that
of the parabolic model because of the larger state densi-
ties of the pseudo-potential model, which is originated
in the non-parabolicity of the conduction band struc-
ture. Although the scattering rates are higher in the
pseudo-potential model (see Fig. 1), the low-field mo-
bilities do not differ so much between the two models
for Lg; & 10nm. This is because the larger occupancy
of the 2-fold valleys, where the electron mobility is
higher than that in the 4-fold valleys, partially compen-
sates the higher scattering rate in the pseudo-potential
model.

For Lg; <10 nm, the subband spacing increases as
Lg; decreases both in the two models, resulting in an
increase in the occupancy of the 2-fold valleys (see
Fig. 3). The difference of the occupancy between the
two models then practically vanishes for Lg; < 5nm.
This leads to a large difference in the low-field mobility
between the two models for Lg; <5nm as shown in
Fig. 2. In the limit of the vanishing Ls;, the scattering
rates diverge and the difference in the electron mobility
disappears as Lg; — 0.

5. Summary

We solved the Schrodinger and the Poisson equa-
tions self-consistently within the empirical pseudo-
potential and the Hartree approximations to obtain the
two-dimensional electronic states in SOI MOSFETs.
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We then carried out the Monte Carlo simulation us-
ing the scattering rates evaluated with the electronic
states obtained by the self-consistent calculation. We
find that the non-parabolicity of the conduction band
structure significantly influences the phonon-limited
electron mobility for Lg; & 5nm.
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Band-to-Band Tunneling by Monte Carlo Simulation for Prediction
of MOSFET Gate-Induced Drain Leakage Current
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Abstract. Gate induced drain leakage (GIDL) current caused by band-to-band tunneling is studied by Monte
Carlo simulation with ballistic least-action trajectory integration. Together with weak inversion and early sub-
threshold simulation by drift-diffusion formalism, the entire range of the OFF-state drain current can be predicted
for technology evaluation. The methodology is demonstrated by a case study for source/drain asymmetry super-halo

design.

Keywords: MOSFET, leakage current, band-to-band tunneling, Monte Carlo simulation, source-drain asymmetry

1. Introduction

Aggressive scaling of CMOS technology below 0.1 um
gate pitch has stringent requirements on standby power
consumption and parametric yield. MOSFET OFF-
state drain current, mainly affected by the subthresh-
old slope and the drain junction tunneling leakage (by
doping or by gate-induced accumulation), is a key de-
vice parameter in early technology evaluation. Due
to thin-oxide direct tunneling leakage and gate ca-
pacitive loading, oxide scaling cannot be as aggres-
sive below 0.1 um technology (Hu 1996). To control
the short-channel effects (SCE) for higher paramet-
ric yield, substrate solutions such as the super-halo
doping and SOI structures become strong candidates
in device design (Taur and Nowak 1997, Wann et al.
1996, Fossum, Kim and Chong 1999). Accurate pre-
diction of the OFF-state drain current for these struc-
tures requires detailed multi-dimensional distributive
treatment of potential profiles and tunneling probabil-
ities, where simplified analytical formations (Fossum,
Kim and Chong 1999, Jomaah, Ghibaudo and Balestra
1996) are not sufficiently predictive. We propose a hy-
brid simulation method that can take the distributive
effects rigorously for leakage prediction. The part of
gate bias sweep containing flat band and weak inversion
is treated by the drift-diffusion formalism, since nei-
ther quantum (no channel confinement potential) nor
nonequilibrium (low drain current) effect is critical.

The part of gate sweep driving the channel to deep ac-
cumulation where we anticipate a significant band-to-
band tunneling is modeled by Monte Carlo simulation
(Laux and Fischetti 2000), where the detailed momen-
tum information is available for “steepest-decent” bal-
listic trajectory path integration (Tanaka, Sasaki and
Yamamoto 1994). As an illustrative example, the pro-
posed method is applied to study the leakage currents
in source/drain asymmetric super-halo structures (Kan,
Teong and Wong 2001), where the effect of band-to-
band tunneling is essential to design the super-halo
doping profile.

2. Indirect Band-to-Band Tunneling Model

The model used for the Monte Carlo simulation
(Laux and Fischetti 2000) is based on the indirect
band-to-band tunneling current density expressions de-
rived by Tanaka (1994), with improvement to include
non-constant electric fields and least-action trajectory
search (Fischetti 2000). The approach in deriving these
expressions is to start from the Wannier equation in 1-D

(D).
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where U(x) is the potential energy and ¥, (r, t) is the
electron wave function in the » band. This is just a re-
statement of the time-dependent Schrédinger equation
with the coupling terms W,,- between various bands
n and n’ explicitly included. The operator form of the
wave vector k is used in the energy term E, (k) and
determines the order of the differential equation.

This equation is first solved in real-space in the
absence of the driving force for tunneling (the non-
diagonal interband coupling term) for a two-band
model and the wave functions for the conduction and
valence bands are obtained. For indirect bandgap ma-
terials like silicon, the coupling term in (1) is due to
the phonons since a large crystal momentum change
is required for the tunneling transition. Time depen-
dent perturbation theory in the form of the Fermi-
Golden rule is used to calculate the transition prob-
ability between the states. This 1-D model has been
implemented in a trajectory based quasi 2-D model
in Laux and Fischetti (2000), through a search for lo-
cal electric fields large enough to cause a generation
event (Fischetti 2000). The generation rates are sepa-
rately calculated for the conduction band valleys and
the valence bands to generate the carriers at the cor-
rect regions of the k-space. Notice that in a partial-
differential-equation (PDE) based device simulator, the
band-to-band tunneling can only be estimated by per-
turbed equilibrium distribution, which may introduce
significant errors for indirect tunneling in the highly
nonequilibrium situation, such as the drain depletion
region in consideration of GIDL in the next section.

3. Case Study on Source/Drain Asymmetrical
Super-Halo Design

One of the possible ways to create sub-50 nm bulk
CMOS devices is through the use of super-halo dop-
ing (Taur and Nowak 1997). Since the channel dop-
ing mainly originates from tilted implantation through
self-aligned source/drain extension, an additional mask
can create selective source or drain doping. This S§/D
asymmetry has been proposed to be used to improve
circuit performance (Kan, Ieong and Wong 2001, Buti
et al. 1991, Kumagai et al. 1994, Hikori, Odanaka and
Hori 1995, Ohzone et al. 1997) based reduced par-
asitics or difference in threshold voltage in forward
(V) and backward (V) situations, which is created
by the different DIBL (drain induced barricr lowering)
effects on source/drain reversal. DIBL is more effective
when the source end potential has a smaller curva-

ture (net charge density or looser potential boundary
conditions). For a subthreshold slope of 80-100 mV,
the current ratio between reasonable |V,,r — Vyz| can
be as large as 500-5000 times (depending on the
noise margin given for above-threshold). However, the
heavy super-halo implant can enlarge band-to-band
tunneling, which is especially important in the GIDL
case. Doping implantation needs to be optimized to
adjust the channel implant profiles to minimize the
band-to-band tunneling while maintaining tight control
on SCE.

The device geometry used here is similar to Yang
et al. (1999) with super-halo doping design follows the
proposal in Taur and Nowak (1997). The device ge-
ometry and net doping profiles are shown in Fig. 1.
The Poisson equation dictates that net charge is the
potential curvature. At subthreshold V¢ and high sat-
uration Vpg, clearly no channel carriers are significant
and the only net charge is from the doping. i.e., only
high doping regions can possibly have high potential
curvature. For the source-side super halo, the source
barrier can be maintained from this curvature, while
the drain-side super-halo has a much lower source bar-
rier with a built-in field toward the drain. This is the
main physical reason for the difference between V¢
and V. Drift-diffusion simulation is used to demon-
strate the super-halo doping effect on the threshold volt-
age and SCE behavior in Fig. 2. Four structures are
compared, super-halo at both source and drain sides,
at only source or drain side, and no super-halo where
punchthrough can be observed.

Net Doping (cm™)
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Esrr— T
Y i
g 18
]
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-0 . A
] 16 Vertical source doping
Sl ... 10
0.0 0.1 0.0 0.05 0.1
Distance (um) Position (um)

Figure 1. 2D Net doping profile in the super-halo MOSFET is
shown at left. 1D cross section for the net doping profiles at right.
Solid line: cut line at the Si/Si0; interface; dash line: parallel profile
at 20 nm below the Si/SiO interface; diamonds: vertical profile in
the source region.
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Figure2. Shortchannel effects (SCE) in the super-halo bulk CMOS
devices. Calculations are based on 2D drift-diffusion simulation.
One-sided super-halo design can achieve acceptable SCE behavior
below 70 nm drawn gate length.
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Figure 3. Monte Carlo simulation of electrons under above-
threshold gate bias and high drain bias in drain-halo configuration.
The bias condition is posed such that the drain halo region is strong
enough to cause potential isolation in the substrate, but the drain-
induced-barrier lowering is significant at the interface.

Figure 3 shows the electrons and their energy in the
Monte Carlo simulation, while Fig. 4 is the generation
rate estimated from the band-to-band tunneling calcu-
lated in the Monte Carlo simulation. Figure 5 demon-
strates determination of the achievable lowest leakage
current using the hybrid method. When the gate is swept
to deep subthreshold region, the tunneling leakage cur-
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Figure4. Generation rate from band-to-band tunneling is obtained
from Monte Carlo simulation corresponding to the same device in
Fig. 3. Vgs is in deep subthreshold and Vpg is high. The generation
rate is highest in the drain junction close to the interface, but is
nonuniform.
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Figure 5. Extrapolation for achievable lowest leakage from com-
bined drift-diffusion and Monte Carlo analyses. Drain super halo
design will not only have stronger DIBL, but also larger band-to-
band tunneling due to the potential distribution.

rent is large enough that the statistical fluctuation in
Monte Carlo is tolerable in the log-scale plot. No-
tice that the actual experimental measurement may not
be able to use this strategy to delineate the tunneling
leakage easily due to the limited oxide breakdown
field by Vgp. Drift-diffusion formalism is also inaccu-
rate due to the lack of k-space information and effec-
tive cross section estimation. These points are used to
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extrapolate on the drift-diffusion subthreshold (remem-
ber that DD is accurate in the shallow subthreshold
region) to obtain the theoretically lowest /oy of the
MOSFET under study. The drain-side halo has higher
band-to-band tunneling as expected, but the lowest
lorr is still in the acceptable range 4 x 107'0 A/um
for the doping design in hand. The proposed hybrid
method is shown to be effective for technology evalua-
tion on substrate solutions in the early phase of process
development.
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Abstract. We study theoretically the electron energy states for three-dimensional (3D) nano-scopic semiconductor
quantum rings. In this study, the mode! formulation includes: (i) the effective one-band Hamiltonian approximation,
(ii) the position and energy dependent quasi-particle effective mass approximation, (iii) the finite hard wall confine-
ment potential, and (iv) the Ben Daniel-Duke boundary conditions. To calculate the energy levels, the 3D model is
solved by nonlinear iterative algorithm to obtain self-consistent solutions. The model and solution method provide
a novel way to calculate the energy levels of nano-scopic semiconductor quantum ring and are useful to clarify the
principal dependencies of quantum ring energy states on material band parameter, ring size and shape. We find the
energy levels strongly depend on the radial cross section shapes of quantum rings. The dependence of energy states
on shapes of 3D quantum ring reveals a significant difference from results derived on basis of 2D approaches.

Keywords: nano-scopic, semiconductor quantum rings, InAs/GaAs, energy states, computer simulation

(Bimberg et al. 2000, Emperador et al. 2000, Li et al.
2001a, b, Bastard 1988, Bruno-Alfonso and Latgé

1. Introduction

Recent progresses in the fabrication of semicon-
ductor nanostructures make it possible to fabricate
nano-scopic quantum rings with various geometries

*To whom correspondence should be addressed.
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2000, Lorke et al. 2000, Tsai et al. 1998). Although
micro-scopic and meso-scopic metallic semiconductor
quantum rings have been of a considerable attention in
recent years, the development in fabrication of semi-
conductor nano-scopic rings significantly bridges the
gap between quantum dots and meso-scopic quantum
ring structures. Most theoretical quantum ring models
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assume only electrons moving in a 2D plane confined
by a parabolic potential (Emperador et al. 2000, Li et al.
2001a).

These models, however, do not consider some im-
portant phenomena, such as (i) effect of the inner or
outer radius of the ring, (ii) the finite hard wall confine-
ment potential, and (iii) effect of non-parabolic band
approximation for electron effective mass. Therefore,
for a more comprehensive study a complete theoretical
model for electron energy states in realistic 3D nano-
scopic semiconductor quantum rings simulation should
be taken into consideration. In addition, in this case the
nonlinear eigenvalue problem cannot be solved exactly
and a numerical simulation technique is required.

In this paper, the model is formulated and solved
numerically based on the effective three-dimensional
one band Hamiltonian, the energy (non-parabolic),
the position and energy dependent quasi-particle ef-
fective mass approximation (Li er al. 2001b), and
the Ben Daniel-Duke boundary conditions. We devel-
oped a nonlinear iterative method to solve the energy
dependent Schridinger equation and obtain the self-
consistent results. A shifted and balanced QR algo-
rithm as well as inverse iteration method is applied to
compute the electron energy states and the correspond-
ing wave functions. With the developed quantum ring
simulator, a realistic (ring with ellipsoidal shape cross
section) 3D model for InAs/GaAs quantum rings with
the finite hard wall confinement potential simulation is
simulated successfully. Quantum rings with rectangu-
lar and ellipsoid shape cross sections (see Fig. 1) are
simulated and compared to show the significant varia-
tion in energy levels. Section 2 presents the 3D quan-
tum ring model and computation algorithms. Section 3
demonstrates and discusses the simulation results.
Section 4 draws the conclusions.

Qunatum ring with Qunatum ring with
ellipsoidal shape 10 nm  rectangular shape
Cross section

cross section
R, :
R, E 10 nm
A

10 nm

»

y

Figure 1. Schematic diagram of cross section view for 3D semi-
conductor quantum rings.

2. A Quantum Ring Model and Computational
Algorithms

We consider electrons confined in quantum ring and
use one-band effective Hamiltonian H (Bastard 1988)

h? 1
H =_Lv,(

where m(E, r) is the electron effective mass that de-
pends on energy and position

R N 2
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and V(r)=E.(r) is the confinement potential of
quantum rings. The E.(r), E.(r), A(r), and P are
the position dependent electron band edge, band gap,
spin-orbit splitting in the valance band, and momen-
tum matrix element, respectively (Bastard 1988). We
solve the quantum ring problem with cylindrical coor-
dinate (R, ¢, z). The quantum ring system is cylindrical
symmetry so that the wave function can be written as:
o) = (R, z)explilp), where I =0, 1, £2, .. is
the electron orbital quantum number and the model is
written as

n (9 AL R
2m,~(E)(3R2 + RAOR + 922 RZ) (R, 2)

+Vi(R, 2)®i(R, z) = E®i(R, 2) (3)

where V;—1(R,z)=0 is inside the ring and V;_,
(R, z)=V) is outside the ring. The boundary condi-
tions are
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where z = f;(R, z) is a contour generator of the cross
section of quantum rings structure in (R, z) plane. The
3D structures are generated by the rotation of this con-
tour around the z-axis.

The electron effective mass is a spatial and energy
dependent function, therefore the derived Schrodinger
equation is a nonlinear equation in energy. To ob-
tain a “self-consistent” solution to the model, we pro-
pose here a nonlinear iterative algorithm as shown in
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Figure 2. The proposed computational algorithm for semiconduc-
tor quantum ring simulation.

Fig. 2. This feedback iteration scheme consists of (i)
setting an initial energy Ej, (ii) computing effective
mass m, (iii) solving the Schrédinger equation with
its boundary conditions for energy E, and (iv) return-
ing to step (ii). The iteration loop terminates when a
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specified stopping criterion is reached. To solve the
Schrédinger equation in step (iii), the Schrédinger
equation is discretized with nonuniform mesh cen-
tral difference method, and the corresponding matrix
eigenvalue problem is solved with the balanced and
shifted QR method, and the inverse iteration method.
The dominant method for solving matrix eigenvalue
problem in semiconductor nanostructure simulation is
the QR algorithm (Watkins 2000, Li et al. 2001c¢). In
our simulation experience, convergence (the maximum
norm error in energy <1078 eV) is reached by taking
only 9-10 iterations.

3. Calculation Results and Discussions

We focus here the discussions on our simulation results
for InAs/GaAs quantum rings with the material param-
eters. For InAs, the energy gap E1, is 042 eV, Ay is
0.38 eV, and m(0) = 0.024m,. For GaAs we choose:
Eyy =1.52¢eV, Ay = 0.34 eV, and m»(0) = 0.067my.
The band offset parameter is taken as Vy = 0.77 eV.
The Fig. 3(a) shows the dependence of electron ground
state energy on the inner radius (Rp) of InAs/GaAs
quantum ring. In this example, we calculated 3D rect-
angular and ellipsoidal radial cross sections for quan-
tum rings where the height zp = 4 nm and outer radial
width R; = 10 nm, respectively. The Fig. 3(a) suggests
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Figure 3. (a) The dependence of electron ground state energy on the inner radius Ry of InAs/GaAs nano-scopic quantum ring. (b) Electron

ground energy states of ring with different physical models.
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Figure 4. Plots of the localized wave functions transition with various Ry, where the ring height and outer radius are the same with Fig. 3(a).

that the quantum ring with rectangular shape cross sec-
tion view (Bruno-Alfonso and Latgé 2000) has a good
approximation only when the inner radius is small.

Furthermore, to clarify the model effects for elec-
tron ground state energy levels, we also compare 2D
simplified (adiabatic) model (Emperador ¢t al. 2000,
Li et al. 2001a) and 3D models with rectangular and
ellipsoidal radial cross sections. Figure 3(b) shows the
dependence of electron ground state energy on Ry for
ultra thin InAs/GaAs quantum ring. In this simulation,
the 2D model and 3D rectangular and ellipsoidal radial
cross sections for rings of height H =2 nm and radial
width (radius difference) AR = 20 nm are computed.
We find a large discrepancy among these results and
also verify that results for different radial cross shapes
(we calculated the rectangular shape (Bruno-Alfonso
and Latgé 2000) and ellipsoidal shape as a more
realistic (Lorke et al. 2000)) are different greatly. In
addition, Fig. 4, shows the transition of the localized
wave functions versus Ry.

4. Conclusions

In conclusions, we have studied the electron energy
states of realistic 3D nano-scopic semiconductor quan-
tum rings. We treated the problem with the effective
one-band Hamiltonian approximation, the position and

energy dependent quasi-particle effective mass approx-
imation, the finite hard wall confinement potential, and
the Ben Daniel-Duke boundary conditions simultane-
ously. The 3D model was solved with the nonlinear
iterative algorithm to obtain final self-consistent solu-
tions. This study has presented an alternative to com-
pute the encrgy levels of nano-scopic semiconductor
quantum ring and clarified the principal dependencies
of energy states on material band parameter and ring
size for various ring shapes. We found that the energy
levels strongly depend on the radial cross shapes of
InAs/GaAs quantum rings. The dependence of energy
states on shapes for 3D nano-scopic quantum ring in-
dicated a significant difference among those reported
results derived with simplified 2D approaches.
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Abstract. Inthis paper, we present the workings of a fully numerical Monte Carlo simulator that can be employed to
study transport in materials with noncubic symmetry. All of the principal ingredients of the Monte Carlo model, i.e.,
the energy band structure, phonon scattering rates, and impact ionization transition rate are used in numerical form.
Various considerations such as k-space mesh size, numerical integration convergence, etc. that impact numerical
accuracy will be discussed. The workings of the simulator are illustrated using example calculations of the bulk
transport properties of GaAs and GaN. The simulation of bulk GaAs in particular challenges the numerics since the
low electron effective mass within the gamma valley requires a high degree of numerical refinement to correctly
capture the dynamics in this region. We calculate the steady-state drift velocity, impact ionization coefficients, valley

occupations, and average carrier energy in bulk GaAs and GaN.

Keywords: Monte Carlo, phonon scattering

1. Introduction

In this paper we outline the ingredients of a fully nu-
merical Monte Carlo simulator for the analysis of bulk
transport properties in wide band-gap semiconductors.
The methods discussed are easily adapted to a fully nu-
merical Monte Carlo device simulator as well. The key
numerical ingredients to the simulator are the electronic
bandstructure and numerically calculated phonon scat-
tering rates (including acoustic, polar optical, nonpolar
optical, and impact ionization transition rates.)

The use of a numerical electronic bandstructure
and a quadratic interpolation scheme has been used

successfully and is discussed in detail in Fischetti and
Laux (1988) and Fischetti (1991), so it will not be ad-
dressed here.

Commonly, however, one of many possible tech-
niques is used to account for and describe carrier scat-
tering within a material, and some of those techniques
include analytical scattering expressions for the acous-
tic, polar and nonpolar optical scattering rates, a total
scattering rate, valley assignments and valley-specific
scattering, etc.

The problem with these techniques is that they
all make, in some way, an approximation and/or as-
sumption based on known behavior(s) of a particular
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material. With the emergence of certain semiconduc-
tor compounds with few known physical propertics,
these generalizations are no longer necessarily valid.
Therefore, to remove assumptions that may produce
acceptable results in one material, but which may be
completely or partially wrong in a material with un-
known and perhaps more complicated transport prop-
erties (e.g. SiC-4H and the elaborate band-crossings),
an approach that is more general and comprehensive is
needed.

Another aspect of Monte Carlo semiconductor simu-
lation that is critical in ascertaining the correct transport
properties is the final state selection after a scattering
event.

In this paper, we discuss a technique intended to
more accurately capture the most complete descrip-
tion of carrier scattering within the Brillouin Zone for
any semiconductor compound. The final state selection
mechanism will also be discussed.

2. Calculation of Scattering Rates

A common method for determing the magnitude of
a particular scattering mechanism is to formulate the
rate using an energy-dependent expression. Typically,
one assumes an analytical expression for the band
structure and computes the scattering rates accordingly
(Jacoboni and Lugli 1989). While good results have
been obtained from these analytical, energy-dependent
expressions for well studied materials (Canali et al.
1975, Shichijo and Hess 1981) several assumptions
have been made in their realizations that may not apply
to some of the emerging materials.

The numerical scattering rates are calculated acco-
rding to the following equations for polar optical,
nonpolar optical, and acoustic phonon scatterings
respectively:
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The term of +fiw denotes absorption and emission,
respectively.

The term /(k, k') is the squared overlap integral of
the Bloch functions of the initial and final states. The fi-
nal states are chosen from all possible final states in the
Brillouin Zone which satisfy the energy conservation
requirement. We have selected the polar and nonpo-
lar phonon energies to be constant. For the acoustic
phonon scattering rate, w is calculated as:

qa
w(q) = Wmax, | | — cOs T

where

4v,

Wmax =
for ¢ < 1.0, otherwise,

(q) = Wmax

In the calculation of the scattering rates, there are
two important figures of merit that do not appear in
the equations. These are the energy delta used in the
conservation of energy (the energy range over which
the delta function is satisfied) and the resolution of the
integration grid within the Brillouin Zone (BZ).

Figure 1 illustrates both the importance of the en-
ergy delta as well as the resolution of the integration
grid. This figure shows the polar optical scattering rate
at I’ (k = 0,0,0) in GaAs. For coarse integration grids,
it is obvious that the rate is strongly dependent on the
energy delta. It is clear that since the inclusion of the
energy delta arises from numerical considerations and
is not a physical parameter, the rate should be inde-
pendent of this parameter. The dependence is removed
when the integration resolution gets finer than Ak =
0.0025 as can be seen from Fig. 1.

Although the dependence on the energy delta is re-
moved at this point, it can be seen that another impor-
tant factor in the calculation of the rate is the actual
grid resolution as well. Convergence to the value ob-
tained with the analytical expression for £ = 0 eV, the
I" point in GaAs, is approached as the grid resolution
approaches zero.

Figure 2 illustrates the importance of the integration
grid resolution. In this figure, the rate is calculated for a
collection of query points inside the irreducible wedge
(IW). Inspection of Fig. 2 shows that the rate converges
for all energy points as the grid resolution becomes
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Figure 1. Polar optical phonon absorption at I' in GaAs. The scattering rate is plotted versus the energy delta for various integration mesh
resolutions.
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Figure 2. Polar optical phonon absorption for 261 points near I" in GaAs. The scattering rate is plotted versus the energy of the point.
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sufficiently fine. In practice, a grid resolution of 0.0005
is satisfactory, while grid resolutions finer than 0.0005
are computationally impractical.

3. Computational Requirements

It has been noted above that a grid resolution of 0.0005
is sufficient for the calculation of the scattering rates.
And while a finer grid would be desirable, it becomes
considerably burdensome with respect to the computa-
tional power needed; indeed even calculating the rates
with a 0.0005 integration grid is intensive and time
consuming.

At a grid spacing of 0.00035, there are 668,919,001
points in the IW of a zincblende (ZB) BZ. Our work
with GaAs involves 4 conduction bands, so there are
therefore effectively over 2.6 billion gridpoints. This
exceeds our memory capacity, so the entire grid cannot
be generated completely and stored. A scheme is thus
needed to integrate over the entire IW. The scheme we
employ is to perform the integration in multiple passes.
Approximately 60 million points from the wedge are
generated in a single pass.

With the parameters described above, there are
roughly 45 passes needed to cover the entirc IW. There
are several possible techniques that can bc used to
spread the work over multiple processors. The first pos-
sible technique that can be used is to spread the query
points over different machines. This technique has sev-
eral flaws. First, every processor will generate the entire
IW for a set number of query points. This redundancy of
wedge generation amounts to a large waste of comput-
ing power. Second, care is needed in judiciously divid-
ing the query points with respect to their encrgy values.
Specifically, if one machine is tasked with calculating
the rate for predominantly low energy points, that ma-
chine will be generating marginally useful pieces of
the IW much of the time, while another machine may
be making a large number of calculations much of the
time.

A more useful technique is to task different proces-
sors to generate only specific pieces of the wedge and
calculate the rate for all of the query points in that
region. At the end of the calculation a technique for re-
assembling the different pieces of the total rate across
several parts of the IW for a particular point is needed,
but it is a trivial exercise. Here, the redundancy is that
all of the processors have duplicate copies of the query
points, but since the number of query points (~20,000)

is far less than the number of points in the IW, the
degree of redundancy is less.

Regardless of the technique used in splitting the in-
tegration into smatler pieccs, a very useful implemen-
tation of QuickSort is made in an attempt to reduce the
time spent on any given query point. Presume a picce
of the IW is generated of size N points. This database
of N points consists of the coordinate of the point in
the integration grid and its energy. After the points are
generated, they are sorted on energy. Then. for a given
query point, energy conservation need only be checked
for the upper and lower limits of the energy delta being
used, with the result being that all points between the
upper and lower bounds satisfying encrgy.

Currently, most of the calculations are being done on
Compaq XP1000 workstations with 500 MHz single
Alpha processors with either 1GB or 2GB of RAM.
This has been sufficient in generating a limited amount
of output; a single pass for the nolar optical scattering
rate for ~30,000 query points requires approximately
20 hours. In order to generate scattering rates for a
sufficient number of materials to perform Monte Carlo
bulk and device simulations will necessitate porting
the calculations to a larger computational system. This
process is currently being implemented.

4, Conclusion

In order to characterize semiconductor materials of un-
known properties with a reasonable expectation of ac-
curacy it is necessary to have high confidence in the
input ingredients, those being the electronic bandstruc-
ture and the scattering rates. The results of the bulk
simulations will be presented in later work.
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Abstract.

In this paper, we present a comparison of the RF breakdown behaviors of representative wurtzite and

zincblende phase GaN MESFET structures based on a theoretical analysis. The calculations are made using a full
band ensemble, Monte Carlo simulation that includes a numerical formulation of the impact ionization transition
rate. Calculations of the RF breakdown voltages are presented for submicron MESFET devices made from either
wurtzite or zincblende phase GaN. The devices are otherwise identical. It is found that the RF-breakdown voltage
of the devices increases with increasing frequency of the applied large signal RF excitation.

Keywords:

1. Introduction

The wide band gap semiconductors offer much promise
in future high power, high frequency device applica-
tions (Eastman 1999, Shur 1998, Trew 1998). Ow-
ing to their wide energy band gaps, these materials
are less susceptible to high field induced breakdown
than conventional silicon or GaAs based devices. Cou-
pled with a higher saturation drift velocity, the high
breakdown field strengths of the wide band gap semi-
conductors offer a significant expansion of the power-
frequency coverage range over existing technologies.
The higher power density levels that these materials
can deliver also provide opportunity for significant
miniaturization.

We have examined the device potential of the III-'

nitride materials using an extension of the materials the-
ory based modeling method (Brennan et al. 2000a, b,c,
Shichijo and Hess 1981, Kolnik ef al. 1997, Oguzman
et al. 1997, Bellotti et al. 1999a, b, 2000, Farahmand
et al. 2001b, Verghese er al. 2001, Farahmand ‘and
Brennan 1999, 2000) based on a self-consistent, full
band Monte Carlo simulation. The device structures
investigated were submicron gate length MESFETS.

Monte Carlo, breakdown, MESFET, high frequency

Both the DC breakdown and frequency performance
of these devices were examined.

The materials theory based modeling method has
been useful in examining how the transport and de-
vice potential of the two polytypes of GaN compare.
It has been found that owing to the difference in the
band structures that the bulk and device performance of
wurtzite and zincblende GaN are substantially different
(Oguzman et al. 1997, Farahmand and Brennan 2000).
Specifically, the DC breakdown voltages of wurtzite
and zincblende phase GaN MESFETs have been pre-
dicted to be substantially different (Farahmand and
Brennan 2000). Knowledge of the breakdown prop-
erties of a device is critical in evaluating the maximum
output power for a class A amplifier. A class A amplifier
has a maximum output power given as,

(VBR - anee)2

Prax =
ma; 8RL

ey

where Vpg is the breakdown voltage, Vi,.. the knee
voltage defined as the voltage at which the transistor
current saturates and R; is the load resistance.
Obviously the larger the difference in the knee and
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breakdown voltages, the greater the maximum output
power the device can deliver. The knee voltage is a
function of the mobility. A higher mobility results in
a smaller value of V... The breakdown voltage is a
strong function of the energy gap. Wider band gap ma-
terials have higher breakdown voltages. Though the en-
ergy band gaps of the wurtzite and zincblende phases
of GaN are close in magnitude, the breakdown elec-
tric field strengths are significantly different. The dif-
ference in the breakdown electric field strengths is at-
tributable to the different properties of the wurtzite and
zincblende band structures that results in different car-
rier temperatures within the two materials.

The breakdown voltage has also been experimen-
tally found to depend upon RF conditions. It has been
observed that under large-signal high-frequency con-
ditions, devices can be driven beyond their DC break-
down limits (Heo et al. 2000, Tkachenko, Wei and
Hwang 1996). The breakdown voltage under RF con-
ditions is higher than under DC conditions thus im-
plying that the maximum output power can be greater
under RF excitation. Recently, we have examined the
RF dependence of the breakdown voltage of zincblende
phase GaN MESFETs (Farahmand et al. 2001a). It was
found that the breakdown voltage under RF drive is fre-
quency dependent however no comparison of the RF
breakdown behavior of the different polytypes of GaN
was presented. It is the purpose of this paper to present
calculated results for both DC and RF breakdown in
MESFETs using both the wurtzite and zincblende poly-
types of GaN. It is expected that the physical implica-
tions derived from the calculations presented herein
can impact circuit level designs of high power, high
frequency amplifiers relevant to future wireless com-
munications networks.

2. Model Description

The calculations are made using a two-dimensional real
space self-consistent, full band ensemble Monte Carlo
simulation. The full details of the approach have been
presented elsewhere (Farahmand and Brennan 1999)
and will not be repeated here. The geometry and doping
concentrations of the simulated MESFET device are
the same as those reported in Farahmand and Brennan
(1999). The small dimensions of the device have been
chosen to manage the computational demands of the
simulator. Owing to the large number of simulated par-
ticles and the relatively long simulation times needed
to ensure numerical accuracy, a larger device than that

chosen here is presently unrealistic. The donor doping
level of 3x 10! cm~? is typical for GaN devices. All the
simulations are performed assuming a constant ambi-
ent temperature of 300 K. The dopants are all assumed
to be fully ionized and with no doping compensation
present.

The device is modeled with two surface depletion re-
gions formed between the source and gate and the drain
and gate. It is assumed that the surface states act to de-
plete out the underlying semiconductor layer resulting
in a carrier concentration of 10'* cm~3. For simplicity,
the depleted region is assumed to be rectangular with
a depth equal to half the GaN active layer thickness
and a length equal to the source-gate and drain-gate
separations.

Aside from the obvious differences in the band struc-
tures and the associated phonon and impact ionization
rates, the MESFET simulations for the wurtzite and
zincblende phases are essentially identical. Treatment
of band crossing and mixing points for the wurtzite
phase device is performed following the approach out-
lined in (Farahmand and Brennan 2000).

The breakdown characteristics of the wurtzite and
zincblende phase GaN MESFETs are compared under
RF operation. A large signal RF bias is applied be-
tween the drain and source simulating on-state break-
down. Though in most common source configurations
the RF signal is applied to the gate, this situation is
more difficult and computationally expensive to simu-
late using Monte Carlo. The RF breakdown results we
present are nevertheless useful in examining the effect
on the breakdown voltage of RF excitation since the
frequency dependence of the carrier heating is some-
what independent of the bias condition. The waveform
applied to the drain contact is assumed to be sinusoidal
varying between high and low voltages, Vj; and V,,,
respectively with angular frequency, @. The drain cur-
rent is again calculated under two conditions, with and
without impact ionization, in order to determine the
breakdown conditions.

The RF breakdown voltage for both the wurtzite
and zincblende MESFET structures is determined as
follows. In an earlier investigation (Farahmand et al.
2001a) we found that for the zincblende phase GaN
MESFET that the device is in the breakdown condi-
tion defined above (3% difference in the drain current
calculated with and without impact ionization present)
under a large signal RF voltage described by,

Va(t) = 17.5 + 12.5 cos(wt) 2)




with a frequency of 80 GHz. The voltage swings be-
tween Vy; = 30 Vand V), = 5V at a frequency of
80 GHz; the value of V; is greater than the DC break-
down voltage of the zincblende phase device, 24 V. The
frequency of the RF signal is then increased until the de-
vice no longer exhibits breakdown. The corresponding
frequency is termed the onset breakdown frequency. A
similar procedure is used for the wurtzite phase device
and the frequency at which the onset of breakdown
occurs is compared.

3. RF Breakdown in GaN MESFETs

The RF breakdown dependency is studied by apply-
ing a DC bias on the gate, Vg, of —0.1 V with an RF
voltage, V4, described by Eq. (3) applied to the drain
with the source grounded. The breakdown behavior
is an obvious function of the bias conditions and has
been found to also depend upon the frequency of the
RF excitation (Farahmand et al. 2001a). The earlier
calculations made on the zincblende phase MESFET
are used as a starting point in these investigations. In
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Farahmand ez al. (2001a) the bias conditions for the
zincblende phase MESFET are adjusted such that the
device is in breakdown as defined above at a RF fre-
quency of 80 GHz with the applied RF voltage swing
given by Eq. (2). In the calculations presented here, we
are mainly interested in determining at what RF fre-
quency the device is no longer in breakdown for a given
excitation. Owing to the inherent uncertainty of the
Monte Carlo generated drain currents, it is best to select
a baseline bias condition such that the calculated drain
currents with and without impact ionization are signif-
icantly different. To this end, we have chosen to use
as a starting point a RF frequency of 20 GHz with the
applied voltage specified by Eq. (2) for the zincblende
device. The applied RF bias in the zincblende device is
such that V;;; = 30 V and V;, = 5 V. The resulting cal-
culated drain current is shown in Fig. 1. The solid lines
in the figure show the calculated drain current with im-
pact ionization present and the dashed lines show the
drain current in the absence of impact ionization. In-
spection of Fig. 1(a) shows that at the RF frequency of
20 GHz, the device is well beyond breakdown; the drain
currents with and without impact ionization differ by
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Figure 1. Calculated electron drain current as a function of time with (solid line) and without (dashed line) impact ionization for the zincblende
phase GaN MESFET at an RF excitation frequency of (a) 20 GHz and (b) 100 GHz.
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about ~8.5%, significantly larger than the 3% amount
referred to above used to define the breakdown condi-
tion. As the frequency is increased the device ultimately
is no longer in breakdown. The actual frequency at
which the breakdown disappears, defined as the condi-
tion where the calculated drain currents with and with-
out impact ionization become the same, is difficult to
accurately assess due to the inherent uncertainty in the
Monte Carlo calculated currents. Nevertheless, the on-
set frequency for breakdown lies somewhere in the fre-
quency range between 95-100 GHz for the given bias
conditions for the zincblende GaN MESFET. For pur-
poses of illustration, we present the calculated results
for a frequency of 100 GHz in Fig. 1(b).

It is interesting to compare the breakdown behavior
of the wurtzite and zincblende GaN MESFETs under
RF drive. The DC breakdown voltages are different
between the wurtzite and zincblende phase devices.
The applied gate-source voltage is —0.1 V, the same as
for the zincblende phase MESFET. Consequently, the
RF voltage applied to the drain must necessarily swing
through a higher voltage for the wurtzite phase device

1200

WZ 20GHz

than the zincblende phase device at an RF frequency
of 20 GHz. To achieve the same relationship of the
calculated drain currents as in the zincblende device,
the necessary bias applied to the drain of the wurtzite
device is,
Vais(t) = 31 + 26 cos(wt) (3)
The resulting calculated drain currents with and with-
out impact ionization for the wurtzite phase device are
shown in Fig. 2(a) at a RF frequency of 20 GHz. Com-
parison of Figs. 2(a) and 1(a) show that the ZB and
WZ phase devices operate at about the same break-
down point under these conditions. As the frequency
is increased breakdown within the wurtzite device also
disappears. In this case, the frequency range at which
the device is no longer in breakdown is calculated to
be 55-60 GHz. For illustration purposes, the calculated
drain currents for an RF excitation frequency of 60 GHz
are illustrated in Fig. 2(b).
Interestingly, the frequency at which the device no
longer exhibits breakdown is lower for the wurtzite
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Figure 2. Calculated electron drain current as a function of time with (solid line) and without (dashed line) impact ionization for the wurtzite
phase GaN MESFET at an RF excitation frequency of (a) 20 GHz and (b) 60 GHz.




phase device than the zincblende phase device. A pos-
sible explanation of this observation is given as fol-
lows. In our earlier investigation of RF breakdown
(Farahmand et al. 2001a) it was suggested that as the RF
frequency of the excitation increases, that the electrons
can no longer fully respond to the changing electric
field. As a result, their energy and consequently their
ionization coefficient approach an intermediate value
between the two extremes produced by the high and low
field components of the RF signal. Thus at some fre-
quency the carriers experience an average field strength
that, depending upon the RF signal magnitude, is be-
low that needed for breakdown. Here we have further
determined that there is a difference in the frequency
for which the device is no longer in breakdown for WZ
and ZB phase GaN devices. It is found that the fre-
quency is lower in the WZ phase device than the ZB
device when the device leaves breakdown. We specu-
late that the physical explanation of this effect is that
the electrons in WZ GaN cannot follow the signal as
rapidly as electrons in ZB GaN. We believe that this is
again due to the difference in the density of states be-
tween the two phases resulting in a somewhat greater
electron inertia in WZ than in ZB. It should be noted
that a definitive explanation is presently lacking pend-
ing further investigations of the breakdown behavior
of devices made using other materials systems. Such a
study will be reported in a future work.

4. Conclusion

In this paper, we have presented ensemble, full band,
self-consistent Monte Carlo calculations of the RF
breakdown behavior of otherwise identical zincblende
and wurtzite phase GaN MESFETs.

Investigation of the RF breakdown behavior of
wurtzite and zincblende phase GaN MESFETSs shows
that the breakdown voltage in both materials is highly
sensitive to the RF excitation frequency. As the fre-
quency increases, the RF breakdown voltage increases.
As the RF frequency increases, the electrons can no
longer fully respond to the changing electric field. As a
result, the electron energy and consequently the impact
ionization coefficient are lowered thereby increasing
the breakdown voltage of the device. It is further found
that a higher frequency change is required in the ZB
phase than the WZ phase to eliminate breakdown in
the corresponding MESFET structures.
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Quantum Mechanical Model of Electronic Stopping Power
for Ions in a Free Electron Gas
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Abstract. The electronic stopping power of a free electron gas on a moving charged particle (ion) in a solid
is analyzed in the coordinate system moving with the charged particle. By quantum mechanically treating the
momentum transfer between the charged particle and the electron gas, explicit analytic expressions for electronic
stopping have been derived for ions of all energies in the nonrelativistic regime. The explicit result reduces to

well-known results at both high and low ion energies.

Keywords:

Introduction

The interaction between an ion and an electron gas has
been of interest for decades for modeling ion implanta-
tion. Comprehensive reviews can be found in Sigmund
(1998) and Ziegler, Bieresack and Littmark (1985). For
the electronic stopping power of a charged particle
in a solid, previous physical pictures based on linear
response theory approached the problem by attempt-
ing to expand the ion’s electric field into a number
of E(k, w), and integrating the effect of each E(k, w),
where E (k, w) is the Fourier component of the varying
electric field in space and time. Based on this picture,
the stopping power of matter for a charged moving
particle is, in general, expressed as an integral over k
and « (Lindhard 1954, Lindhard and Wihther 1964).
The integral is well known as the dielectric expression.
Later, another study within the dielectric scheme ob-
tained the charge state of swift ions in a solid (Brandt
and Kitagawa 1982). In the high-energy regime all the
way to relativistic, the Bethe-Bloch (Bethe 1930, 1932,
Bloch 1933) formula prevails. The difference between
the Bethe-Bloch and linear dielectric approach is that

*Present address: Advanced Micro Devices, Sunnyvale, CA 94086,
USA.
Present address: IBM, East Fishkill, NY, USA.

ion implant model, electronic stopping power

linear dielectric theory considers the electronic stop-
ping as a mean energy loss to the electron gas over all
electron transitions, while Bethe-Bloch formula treats
electronic stopping in terms of momentum transfer. In
this paper, we consider electronic stopping as mean mo-
menturm transfer to the electron gas at all energies, and
treat the momentum transfer quantum mechanically.
The subtle conceptual distinction leads to an explicit
solution of the electronic stopping power for particles
with screened Coulomb potentials.

Description of the Physical Picture

First, we propose a physical picture of electronic stop-
ping power for a moving ion by a free electron gas.
The picture is based on quantum mechanics and the
concept of momentum transfer. In the laboratory frame
of reference, the ion is moving while the electrons in
the solid occupy a Fermi sphere centered at the ori-
gin. However, in the coordinate system moving with
the ion, the ion becomes stationary, and the electrons
in the solid occupy a shifted Fermi sphere in recipro-
cal space. The ion scatters electrons to empty states in
the displaced Fermi sea, that have the same energy as
the original electrons in the moving coordinates. Since
each scattering changes the electron’s momentum, the
momentum change acts like a force on each electron.
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Figure 1. Inthe k-space of the coordinate system moving with the
ion. the ion is stationary, and the electrons occupy a displaced Fermi
sphere. The electron Fermi sphere’s radius is k.

Due to momentum conservation, an equal amount of
force is exerted on the ion. The summation of these
forces amounts to the total electronic stopping force on
a charged particle. Using well-known results of Fermi
golden rule, explicit analytic results have been obtained
for all ion speeds in the nonrelativistic regime.

Figure 1 shows the distribution of occupied electron
states in k-space of the coordinate system moving with
the particle. As shown in the figure, the Fermi sphere is
displaced from its origin. In different moving coordi-
nates, the electron distribution is a different displaced
Fermi sphere. Although this is not an equilibrium state
in the moving frame, it is maintained as long as there
exist no external perturbations. When a stationary ion
is present, the particle serves as a constant perturbation.
This perturbation will scatter the electrons to states at
the same energy because of the asymmetric distribution
of the electron gas in the k-space. The charged particle
scatters the electrons in the Fermi sphere to all other
states that have the same energy range as the displaced
Fermi sphere. The final states region is a larger sphere
excluding the displaced Fermi sphere. When the ion’s
energy is zero, the two spheres overlap with each other
so there will be no stopping force. Viewing this picture
back in the lab frame, the ion scatters the electron to
empty states distributed in the forward direction of the
ion.

Each time an electron is scattered from a state k to a
new state k', amomentum transfer of p’'— p = h(k'—k)
occurs to the electron. On average, the electron mo-
mentum transfer times the transition rate of all states
amounts to a force on the electron. The charged particle
experiences the same amount of force by the electron

in the opposite direction. The contribution due to scat-
tering from all occupied states to all allowed states ac-
counts for the total electronic stopping power of the
charged particle.

Analytical Solution

In the ion’s coordinate system, consider a single free
electron with a wave function |{) = % Its average
momentum is p(t) = (Y ()| pl¥ ()

In the presence of an ion as a perturbation. the mo-
mentum changes with time. This, in effect. can be
viewed as a force exerted on the electron:

dp (1) _ i
dr~ dr

(Y OIP1Y @) (h

If one considers the ion as a perturbation, the perturbed
wave function can be written as follows:

WE) = 1= la®PR + Y ce®lpn)
K K

(2

It should be noted although many perturbation treat-
ments approximate the square root term as unity (Schiff
1968), it is important not make that approximation here.
Then,

p(0) = OO = (1= Y laF ) el pl)
+ ) e Wel plye)
-

=p+ Y lee®PBk —hk)
T
Therefore

d d 2 X .
Epm:;amf(r)l (k' —hk) ?3)

The physical mcaning of this equation is clear: the mo-
mentum change of the electron gas is the transition rate
times the momentum difference between original and
new states.

Quantum mechanically (Schiff 1968),

d 21
—|e () = wy = —{Hw P8(Ex — Ex) (4
dt h

where Hy,- is the matrix element of the Hamiltonian.




Also one can let
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Thus

d 1% o
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For a screened Coulomb potential with screening wave
number A

Ze?
V)= - exp(—Ar) (7N

which can represent many types of ions and charged
particles. Then (Schiff 1968),

Ho — 1 Am Z e? ®)
kk % 52 + (E _ i{-/)2
Plugging Eq. (8) into Eq. (6) and integrating, one ob-
tains:

d ) =8 Y m (1 | 4k 4+ 22
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ar? V2 \4k2 A2
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This equation represents the stopping power of a sin-
gle electron on a moving ion with screened Coulomb
potential. The direction of the force is in the electron’s
direction of momentum in the ion’s frame, directly op-
posite to the ion’s motion.

In order to calculate the stopping force of the en-
tire ensemble of electrons, one should calculate the
momentum transfer rate due to scattering from all oc-
cupied states to all allowed empty states. The single
electron stopping force Eq. (9) assumes all other states
are allowed. However, for an electron gas, electrons
will not be scattered to those states already occupied
in the Fermi sphere. Therefore, for each electron, one
should exclude the stopping power contributions due
to the scattering to occupied states. Nevertheless, the
above expression for the single electron stopping force
Eq. (9) will be used for the following reasons.

As shown in Fig. 2, the contribution due to scattering
from state k to k', and the contribution due to scattering
from state k' to k both need be excluded from the total
force. The contribution of dk®> — dk” is: (k' — k)wy,
while the contribution of dk'3 — dk® is (k — k' )wx.

o

Electronic Stopping Power for Ions 243

Figure2. Forthe scattering between dk> and dk’> within the sphere,
the contribution due to dk* — dk' cancels with the contribution due
todk”® — di>. Therefore, the results will not be affected by including
these two contributions. This substantially facilitates the calculation
of the total stopping power.

Since wyy = wy, the two contributions cancel each
other. Therefore, the total force can be considered to be
simply Eq. (9) integrated over the entire Fermi sphere.

The integration is performed separately for two
cases, the case of v;,, < vr, for which the £ = 0 origin
is in the shifted Fermi-sphere; and the case of v;,, > vF,
for which the center is outside the shifted Fermi-sphere.
Vr is the Fermi velocity of the electron gas.

For the case of v;,, > v, the integration is performed
over the entire Fermi sphere.

Vv
Fon = Fl=gz [ Fdi®
kefermi sphere 7 kefermi sphere
14 /‘ 3
=8 F(k)— dk (10)
83 kefermi sphere |k|

where g = 2 is the spin degeneracy of electron.
The integration yields for the stopping power:

dE @Y Ze? m , 1
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Figure 3. Plot of electronic stopping power over the whole energy
range for an ion with A = 2.0 x 10% cm™! in three different solids
with different k..

where kg is the average displacement, hky = m,vj.,,
and kr is Fermi wave vector, 87”1\} = ny, where ng is
the electron density. )

For v;,, < vr, the integration yields:
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dx
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The above results should be compared with the dielec-
tric expression of Lindhard (1954) and Lindhard and
Wihther (1964) and the result of Brandt and Kitagawa
(1982). In order to facilitate the comparison with these
previous results, Egs. (11) and (12) can be named scat-
tering expressions. A plot of the electronic stopping
power over the whole range is shown in Fig. 3.

Discussion

Ziegler, Bieresack and Littmark (1985) has considered
the stopping power of heavy ions separately in the “low

velocity” (vy < vr) and “high velocity” (vp > 3 X vF)
regimes. The Fermi velocity has been first been used
as a separation point by Brandt and Kitagawa (1982).
As shown above, this study supports the fact that the
Fermi velocity plays an important role in the separation
of low and high energies. However, the Fermi velocity
in this calculation appears more naturally depending
on whether the shifted Fermi sphere includes the ori-
gin, while other theories attribute the distinction to the
difference in the charged state of the ion (Brandt and
Kitagawa 1982).

For a low velocity (v < vr) heavy ion, the Taylor
expansion of the electronic stopping power near ko = 0
yields:

dE_ 427, (- 42 + @3 +2)m(1+51))
dc — 3w " (4k2 +22)

x ko + O (k3) (13)

whichmeans F(v) « kg o v forlow ion velocities. It is
also seen that the k("; term in Eq. (13) is zero. This means
the F'(v) o< v property is maintained for a rather large
range of ion velocities below vg. This is supported
by many experimental studies and empirical models
(Ziegler, Bieresack and Littmark 1985).

For vj,, € vr, Bonderup (Xia and Tan 1986) ob-
tained a result identical to Eq. (13) also by considering
the electron transition at the Fermi surface in the frame
moving with the ion. The displaced Fermi sphere was
considered as causing a “net current” to the ion, and the
current was calculated by considering the Boltzmann
relaxation time of the electron gas.

With increasing energy, the stopping power increases
until a maximum is attained. After that, the stopping
power decreases due to the decreased scattering rate.
At high energies, the electron’s Fermi sphere moves
further away from the origin. It looks as if the whole
Fermi sphere acts as a single entity consisting of the
entire ensemble of electrons. Therefore, if we do not
consider relativistic velocities, the electronic stopping
power can be simplified as:

dE 1 (4nZe®¥m
Z = FetectronN = n()ﬁ_]-—}l’z(z”)
1 4k + 22 1
x 1 —1In _
a2\ (@2 32
~ n o [4k?
= ”()(26‘2)2E In(v) (14)

which reduces to the non-relativistic version of Bethe-
Bloch formula (Bethe 1930, 1932, Bloch 1933). A
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Figure 4. Comparison of the new mode! with a number of experimental data and empirical models Paul, http://www.exphys.uni-linz.
ac.at/stopping/ for He+ implant into Si. The thin lines and discrete characters are various empirical models and experimental data (Paul

op cit). The thick line is the new model results.

precise relativistic calculation needs to consider the dis-
tortion of the Fermi sphere due to the Lorentz transfor-
mation. It is concluded that the reduction of electronic
stopping power at high energies is due to the reduced
scattering rate at high energies.

Figure 4 compares the new model with previous ex-
perimental data and empirical models. As shown in the
figure, the model performs well over a whole range of
energy.

Conclusions

In conclusion, the paper provides a new perspective
based purely on quantum mechanics to consider elec-
tronic stopping of a charged particle in a solid. In pre-
vious theories, different stopping mechanisms are pro-
posed and work in different energy ranges. The present
paper attempts to attribute electronic stopping to a sin-
gle mechanism that works for all non-relativistic ener-
gies. Scattering-induced momentum transfer between
the ion and the electron gas should be considered as the
primary part of the electronic stopping power.

The paper gives a theoretical calculation of elec-
tronic stopping power for all energies of a screened
charged particle. The explicit result reduces to well

known results at both high and low ion energies. It is
concluded that this quantum mechanical model will be
sufficient to predict most of the electronic stopping be-
havior in the non-relativistic regime.
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An Analytical 1-D Model for Ion Implantation of Any Species
into Single-Crystal Silicon Based on Legendre Polynomials
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Abstract. A computationally-efficient 1-D analytical model for ion implantation of any species into single crystal
silicon is presented. By interpolating between a few species, the model can predict as-implanted profiles for all
the other species. The model uses Legendre polynomials as basis functions. The results of the model are in good
agreement with UT-MARLOWE, which is a physically-based and experimentally verified Monte Carlo simulator.

Introduction

As the device geometries shrink to the deep-submicron
regime, ion implantation continues to be an impor-
tant part of the fabrication process. Accurate and
computationally-efficient ion implantation models that
properly account for various implant parameters are
therefore needed for both CMOS design and modeling
of processes such as annealing. Further, more and more
new species are being implanted into Si. It is therefore
necessary to develop a model, which accurately models
ion implantation for any arbitrary species into Si.

We previously developed a physically-based “Uni-
versal” model for this purpose, using the Monte
Carlo approach, for our ion implant simulator UT-
MARLOWE (Tasch, Yang and Morris 1995, Morris
et al. 1996). This model has been verified extensively
by comparing the resulting profiles with Secondary
Ton Mass Spectrometry (SIMS) profiles (Chen 2001).
However the Monte Carlo approach requires rather
long computational time since it computes the trajec-
tory of each simulated ion after every collision.

Further, if one wants to reduce the statistical noise
inherent in the Monte-Carlo process, one may have
to simulate the implantation of a very large number
of ions. Analytical models, on the other hand, require
much less computation time and resources. We recently
developed an analytical model for ion implantation that
uses Legendre polynomials as its basis (Balamurugan
et al. 1998). This model uses parameterized functions
to mode! the as-implanted profile and hence is much

more computationally efficient than the Monte Carlo
based UT-MARLOWE.

Any new species can be simulated using this model
by generating a set of parameters that characterize the
dependence of the implant profile for this species on
various implant parameters, such as energy, dose, tilt
and rotation angles and the thickness of the screen ox-
ide, nitride or silicide layer. However, generating tables
for every species that is to be simulated is time taking
and cumbersome. A model that could predict the as im-
planted profile for a new species by taking advantage
of the existing tables for other species and using some
kind of interpolation would therefore be very useful. A
1-D analytical model using this approach is presented
in this paper.

Analytical Model

The model uses Legendre polynomials as a fitting func-
tion for the impurity profiles. The Legendre polyno-
mials have an advantage over the widely used dual-
Pearson model since, unlike the latter, these form a
completely orthonormal basis and hence the parame-
ter extraction procedure is not dependent on the ini-
tial guess. The parameter extraction procedure is thus
greatly simplified.

The impurity profiles are modeled as a linear com-
bination of the first 14 Legendre polynomials.

13
C) =) aLi(?) 0]
0
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and
Z’ = b]Z + bz (2)

where C(z) is the impurity concentration at depth z,
L;(z") is the Legendre polynomial of degree i, b,
and b, are the constants that map z from the interval
[Zmins Zmax] to [—1, 1] and Zy,in and Zyy are the depths
between which the impurity concentration lies within
the range of interest.

Since the Legendre polynomials are orthonormal in
the interval [—1,1], the 16 fitting coefficients describing
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Figure 1. A comparison of the analytical model results with UT-
MARLOWE profiles for on-axis low dose Ar implants at three dif-
ferent energies. The interpolation for Ar was carricd out between
Pand As.
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Figure 2. A comparison of the analytical model results with UT-
MARLOWE profiles for off-axis low dosc Ar implants at three dif-
ferent energies. The interpolation for Ar was carried out between
P and As.
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The fitting coefficients were pre-computed for a small
set of implant parameters from the as-implanted im-
purity profiles generated using UI-MARLOWE using
Egs. (1)-(3). In order to simulate implants for any
other set of implant conditions, the coefficients were
calculated by interpolating over the various parameters.
It was found empirically by trial and error that a square
root interpolation of the form, y=y;+(y2—y1)

%, gave sufficiently accurate results while in-

terpolating over energies, tilt angle, rotation angle and
oxide, nitride or silicide layer thickness. While inter-
polating between two doses, the log of the dose is used
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Figure 5. A comparison of the analytical model results with UT-
MARLOWE profiles for on-axis high dose Mn implant shows that
the simple square root interpolation does not work at high doses. The
interpolation for Mn was carried out between P and As.
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Figure 6. A comparison of UT-MARLOWE profiles for P Mn and
As atadose of 5 ¢ 15 cm~2 shows that the Mn profile is much closer
to As as compared to P.
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for interpolation and the resulting profile is re-scaled
to ensure the correct dose.

In order to extend this approach to model implants
of any arbitrary species, two nearest species in terms of
atomic mass, one on the left and another on the right of
the implanted species, in the periodic table, for which
the look-up tables already exist are used. The Legendre
coefficients for these two species are computed for the
given set of implant parameters using the approach out-
lined above. The Legendre coefficients for the desired
species are then calculated by interpolating between
the coefficients of these two species. For implant doses
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Figure 7. A comparison of the analytical model results with UT-
MARLOWE profiles for on-axis high dose Mn implants with the
modified interpolation scheme. The results show a good agreement
between UT-MARLOWE and the analytical model.
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Figure 8. A comparison of UT-'MARLOWE profiles with the ana-
Iytical model predictions for on-axis Mg implants with the modified
interpolation scheme. The interpolation for Mg was between B and P.
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Figure 9. A comparison of UT-MARLOWE profiles with the an-
alytical model predictions for high dose off-axis F implants. The
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Figure 10. A comparison of UT-MARLOWE profiles with the an-
alytical model predictions for high dosc on-axis Ar implants. The
interpolation for Ar was between P and As.

less than about 5 x 10'* cm™2, it was found that the
square root interpolation gave the best results. To ver-
ify the model, it was compared with UT-MARLOWE.
Figures 1-4 show some typical results.

For higher doses, as Fig. 5 shows, the square root
interpolation is not so accurate. UT-MARLOWE sim-
ulations indicate that the damage buildup increases
super-linearly with the atomic mass. As a result, the
profile of an intermediate species tends to lean more to-
wards the profile of its heavier neighbor. For instance,

Fig. 6 shows a comparison of P, Mn and As profiles,
for ion implantation under identical conditions. The
Mn profile is extremely close to the As profile.

To account for this, an interpolation function as
shown in Eq. (6) was used.

f) = fx)
) — v Hy - V) —_— 6
y=y+n "')f(xz)— IS (6

where f(z) = «F, z is the atomic number and « is a
number between 0 and 1.

If the implant species lies between B and P, « is
calculated as

o =1—0.1log(dose/5 x 107y em™? (7)

For a spccies between P and As, ¢« = 0.8 was
found to give the best fit over a large range of im-
plant parameters. Figures 7-10 show some typical
results.

Conclusion

We have presented an analytical model, which can pre-
dict as-implanted profiles for any arbitrary species into
crystalline Si. The model has been verified by compar-
ing it extensively with UT-MARLOWE profiles. The
comparisons show that the analytical model results are
in good agreement with UT-MARLOWE.

This work was supported in part by the Semiconduc-
tor Research Corporation.
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On the Electron Transient Response in a 50 nm MOSFET by Ensemble
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Abstract. The inclusion of a smoothed potential algorithm within the Ensemble Monte Carlo method (EMC) to
account for quantization effects in the inversion layer of a silicon n-MOSFET has been discussed by several authors.
Most of the data reported deal with steady state terminal current, transconductance, and capacitance. Within this
approach, the electric field acting on each particle is computed from the smoothed potential, which introduces a
potential barrier underneath the gate region that pushes the carriers away from the interface, thus accounting for
space quantization effects. However, in the EMC method, the electric field at the interface is also used to compute the
displacement charge/current during the transient regime. In the implementation of the smoothed potential algorithm,
care must be taken when computing this component of the total gate charge. We distinguish between two differently
computed electric fields, one from the smoothed potential used for the charge transport and the other one computed
from the real potential, as obtained from the solution of Poisson’s equation, and used for the displacement charge.
We propose this procedure in order to properly include space quantization effects, and at the same time avoid the
inaccuracy introduced by the smoothed potential in the displacement charge.

Keywords: Monte Carlo, MOSFET, smoothed potential, transient, simulation

Introduction and understanding of advanced features. The Ensemble
Monte Carlo (EMC) method is believed to be the most

State-of-the-art semiconductor technology has already accurate approach to simulate carrier transport in the

reached dimensions down to the 0.07 pm gate length.
Several off-the-shelf chips are manufactured using a
0.13 um CMOS process. MOSFETSs with gate lengths
of order 20 nm have been fabricated in laboratories
around the world (Chau et al. 2000, Ono et al. 1995).
Therefore, device simulators must account for, and
predict, phenomena that often require the inclusion

*To whom correspondence should be addressed.

deep sub-micron regime, where non-stationary trans-
port and high electric fields dominate the device prop-
erties. Several semiconductor device simulators have
been developed that couple the EMC method for the
treatment of carrier transport to the self-consistent so-
lution of Poisson’s equation (Hockney and Eastwood
1988, Ravaioli and Ferry 1986, Ravaioli et al. 2000).
In some treatments, the Schrodinger equation has been
added to the Poisson’s equation for a 2D quantum
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mechanical treatment of the electron energy level quan-
tization in the confined silicon inversion layer (Fischetti
and Laux 1993, Vasileska and Ferry 1997, Vasileska
et al. 1995, Jallepalli et al. 1997).

Even within this approach, there are some limita-
tions. In fact, the EMC method is a semi-classical ap-
proach where scattering mechanisms are treated in a
quantum mechanical framework and the transport dur-
ing the free flights between two scattering events is
treated from a classical point of view. In a semicon-
ductor device, the electric field acting on the charged
particles is obtained by solving the Poisson equation
inside the device. In this framework, the wave-like na-
ture of the carriers is neglected. There have been sev-
eral studies showing that with channel lengths in the
0.1 um range and below, source-to-drain and gate tun-
neling, and correlation effects are an important part
of the transport process (Ferry 2000a). The confining
electrostatic potential in the 2D silicon inversion chan-
nel is now competing with the lateral source-to-drain
potential barrier where tunneling of the wave-packet
associated with the carriers interferes with the drift mo-
tion from the source to the drain of a MOSFET. None
of these effects are treated by most of the EMC simula-
tors. Ferry, Akis and Vasileska (2000) have shown that
the introduction of a smoothed, or effective, potential
in the EMC method can account for these quantum-
mechanical features. For instance, the smoothed poten-
tial accounts for a proper spatial distribution of elec-
trons in the inversion layer by pushing the carriers away
from the Si/SiO; interface (Vasileska, Schroder and
Ferry 1997). In the past, there have been several stud-
ies to investigate similar effects in MESFETSs by use
of the hydrodynamic model (Ancona et al. 2000, Zhou
and Ferry 1993, 1992a, b, c, Ferry and Zhou 1993).

Previously, we have developed an approach using the
smoothed potential algorithm that, without the need to
solve Schrodinger equation, can correctly reproduce
the main properties of the electron transport in the sili-
con inversion layer (Formicone et al. 2002). However,
in the implementation of the smoothed potentia! algo-
rithm, care must be taken when computing the gate
charge. Our goal here is to extend the work done in
Formicone et al. (2002) and study how the smoothed
potential affects the computation of the gate charge
in the silicon inversion channel of a MOSFET. Be-
fore discussing our results, we will briefly review the
EMC model for electron transport in the silicon in-
version layer, and the implementation of the smoothed
algorithm.

Self-Consistent EMC Model with the Smoothed
Potential Algorithm

The Ensemble Monte Carlo model is based on the usual
Si band structure for three-dimensional electrons in a
set of six nonparabolic A valleys (Ferry 2000b). For
the silicon inversion layer in the case of a MOSFET,
we add surface roughness and impurity scattering for
each valley (Formicone et al. 2002). Two high-energy
phonon scattering are considered via the usual zero-
order process, and two low-energy phonon scattering
are treated via a first order process (Ferry 2000b).

Impurity scattering is treated within the Born ap-
proximation, with a dynamic screening model valid for
degenerate and non-degenerate semiconductors. The
dynamic screening is introduced through the dielectric
function, given by Ferry (2000b):

2
£(q, 0) = e(0>[1 + ‘;—QF(E, u)]-

Here, gp = /ne?/eskpT is the inverse of the Debye-
Hiickel screening length and ¢ is the scattered wave
vector. The function F(£, ) is defined as Ferry

(2000b):
S Fi(p) /

with = Ep /kgT, £2 =h*q?/8mkpT and x* =h*k?/
2mkpT = E;/kgT. F) is the Fermi integral of order
‘ . This function can be numerically evaluated and tab-
u]ated for different values of the reduced Fermi level
(. In the limit of the Debye screening model, which is
valid for lightly doped samples and small ¢, the screen-
ing function F is equal to 1. We use the above formu-
las for numerically computing the impurity scattering
rates, as given by:

X +E xdx
1+ e’

F, w)=

NinpZ2*2m*)3 (1 + 20 E)VE (1 F «Ep)
47 1t €2
! d(cos8)
5.
-1[2k2(1 = cos 0) + g3 F (£(cos 0), u)]

l-‘imp(k) =

The term £ depends on the angle 6 since g% = 2k%(1 —
cos 8) (Formicone et al. 2002).

In modeling the Si inversion layer, the 2D nature
of the carrier transport is modeled through a hybrid
approach where we use our 3D EMC model described




above. To this we add the quasi-2D surface roughness
as another scattering process. The surface roughness
scattering rate I'sg is given by Formicone et al. (2002)
and Ferry (2000b):

am*A’L%e? g (KPL?
ra) = s () e
S

Here, I, is the modified Bessel function of order 0, &
is the magnitude of the in-plane component of the total
electron wave vector. Ez is the effective normal elec-
tric field computed as Ey = e(Ngepr +0.50:,) /€5, A
is the average displacement of the interface, and L is
the correlation length of the roughness parallel to the
interface. We use A = 0.3 nm and L = 2 nm, in
close agreement with experiments. The scattering pro-
cess is assumed to be purely isotropic in the plane,
with angles selected randomly between 0 and 2m.
A specular reflection is used for the component of
the electron wave vector normal to the surface, thus
we are not accounting for DC leakage gate current.
Since the normal electric field is position-dependent,
in the implementation of the surface roughness scatter-
ing we adopt a rejection technique.

The basic steps involved in a self-consistent EMC de-
vice simulator consist of the assignment of the charge
to the mesh, the solution of Poisson’s equation to com-
pute the potential and electric field on the mesh, and
the interpolation of the force acting on each parti-
cle (Hockney and Eastwood 1988, Jacoboni and Lugli
1989). Our approach adds another step with the compu-
tation of a smoothed potential, from which the electric
field is derived.

The smoothed potential is obtained from weighting
the starting potential with a gaussian function (Ferry
2000a, Ferry, Akis and Vasileska 2000), which in two
dimensions reads as:

Vemoothed(W) = / Viu+t) G(t,ay, ay) dt

G is a gaussian distribution function. From a physical
standpoint, it is related to the wave-packet distribution
function. The standard deviations in the x and y direc-
tions have a different physical meaning (Ferry 2000a).
In the source-to-drain (x) direction, the spreading of
the wave-packet function is related to the De Broglie
wavelength of the electron. For degenerate semicon-
ductors, the De Broglie wavelength is replaced by the
Fermi wavelength, thus introducing a substrate doping
concentration in the lateral spreading of the electron
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wave-packet. In the normal (y) direction, the electron
wave distribution depends on the vertical confinement,
which depends on the normal electric field. For inho-
mogeneous situations, like in a semiconductor device,
an average value can be used (Ferry 2000a). We use
0.5 nm for the value of a,, and 1 nm for g,. t and u
are two vectors in the x-y plane. At self-consistency,
the steady-state current is calculated through the net
number of particles crossing one contact per unit time.
In fact, the charge flowing through each terminal is
recorded at each time step. The charge entering or
exiting a contact region consists of both the number of
particles that traverse the boundary of the device and
the displacement charge arising from the component
of the electric field normal to the boundary. Plotted
versus time, the slope of the Q-t curve gives, after
the initial transient, the current flowing through each
terminal. By performing several computer runs, we
construct the current-voltage characteristics of the
device under test (DUT).

We simulate a MOSFET with a 50 nm gate-length.
Details about the simulated structure can be found in
Formicone et al. (2002).

Results and Discussions

The smoothed potential algorithm computes the elec-
tric field from an ‘artificial’ electric field distribution
inside the transistor. This ‘artificial’ electric field is re-
sponsible for the ‘correct’ spatial carrier distribution
in the silicon inversion layer, however it would gener-
ate incorrect displacement current at the gate contact.
Figures 1 and 2 show our results for the terminal charge
in a 50 nm n-MOSFET, computed with and without
smoothing of the potential. The data refer to two dif-
ferent bias configurations. The substrate charge is not
affected. Minor differences are observed in the source
and drain contacts. However, the gate charge shows
extremely different results. The same observations can
be drawn from analyzing Figs. 3 and 4, where we plot
the currents extracted from the previous two figures.
In order to explain these differences, we have to look
at Fig. 5. The potential and effective potential vertical
profiles are shown at mid-gate length. Notice the differ-
ent slope of the potential at the interface, responsible
for the different electric field values computed.
Measuring the current by fitting a straight line, to the
data after the first 0.5 ps transient, is a very ‘clean’ pro-
cedure, without noise in the data. In Figs. 3 and 4 the
data look very noisy, especially as we approach steady
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Figure 1. Electrode charge versus time at Vg, =1V and Vy, =
1 V with and without the smoothing of the potential. Solid lines are
for data without smoothing: dashed lines include the smoothing of
the potential.
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Figure 2. Electrode charge versus time at Vg, = 1 Vand Vy, =
0.5 V with and without the smoothing of the potential. Solid lines
are for data without smoothing: dashed lines include the smoothing
of the potential.

state. These two curves have been obtained by smooth-
ing the original data set with a 50-point average. Notice
that, when the transistor is operated near threshold, it
actually undergoes current excursions twice as larger
as when the device is in transconductance saturation.
Also, the transistor is showing two different transient
regimes, regardless of its bias conditions. One regime
lasts less than 0.1 ps. This is the time during which the
drain contact region is building up a depletion region in
response to the external voltage excitation. The second
transient regime is observed from 0.1 ps to about (.5 ps.
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Figure 3. Electrode current versus time at Vg, = 1 Vand \’g\ =1V
with and without the smoothing of the potential. Solid lines arc for
data without smoothing: dashed lines include the smoothing of the
potential.
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Figure 4. Electrode current versus time at Vg, = 1 Vand Vy, =
0.5 V with and without the smoothing of the potential. Solid lines
are for data without smoothing: dashed lines include the smoothing
of the potential.

This is the time it takes to build up enough charge in the
channel to achieve inversion. This is the device tran-
sient response that reflects the carrier transient dynamic
behavior in response to the externally applied voltages.

Based on the above observations, we make a dis-
tinction between the particle and displacement electric
fields, and use them appropriately in order to get cor-
rect results. As a matter of fact, it would be extremely
inconsistent to use the terminal charges if charge con-
servation is not guaranteed. EMC is a device simulation
technique especially suitable for transient simulations.
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Figure 5. Vertical profile of the electrostatic potential with and
without smoothing, for Vg = 1V, at Vg = 1 Vand Vg = 0.5 V.
The profile is taken at half the gate length. Notice the 3 nm gate oxide
at the left of the vertical line in the plot.

At the same time, the transient response of a transistor
is strongly dependent on the intrinsic device capaci-
tances. If used with lumped elements (Contrata ef al.
2001), for mixed-mode type of simulations, charge
conservation is a very important property that must be
ensured, and this is accomplished by computing dis-
placement terminal charges from the intrinsic, i.e. not
smoothed, potential.

In summary, our analysis has shown that all the ad-
vantages that the smoothed potential algorithm brings
to semiconductor device simulation can be retained
when properly computing the displacement charge.
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Quantum Corrections in the Monte Carlo Simulations of Scaled PHEMTSs
with Multiple Delta Doping
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Abstract. The effective potential approach which can represent quantum mechanical (QM) confinement at a
heterointerface has been incorporated into our Monte Carlo device simulator MC/H2F. The simulator is used to
investigate the impact of the quantum corrections on the performance of single and double §-doped pseudomorphic
high electron mobility transistors scaled to decanano dimensions. The QM confinement in the device channel results
in reduction of the drive current and the device transconductance. Its influence increases with the device scaling
from 120 to 30 nm gate length and also with increasing the carrier sheet density in the double §-doped structures.

Keywords: MC device simulations, effective potential, PHEMT, scaling

1. Introduction

The performance of pseudomorphic high electron mo-
bility transistors (PHEMTSs) improves as these devices
are scaled to deep decanano dimensions (Kalna et al.
2000). The scaling has to be done in both lateral and ver-
tical directions of the PHEMTs to achieve anincrease in
the device transconductance and in RF figures of merit
(Kalna et al. 2000). However, the carrier density in
the device channel decreases with the reduction of the
gate-to-channel separation. This decrease can be com-
pensated with the introduction of a second delta doping
layer into the vertical device structure (Hur ez al. 1996).
The second delta doping can be placed either below or
above the channel, near the gate. The doping level and
location of the second delta doping have to be carefully
chosen to provide the desired improvements in device
performance.

The reduction of the gate-to-channel separation and
rapid variations of the electric field in the scaled de-
vices also enhances the impact of quantum mechanical
(QM) confinement effects on the device performance.
Therefore, we would like to investigate how the QM
confinement effects affect the PHEMT performance
(Kalna et al. 2000) when the device is scaled in re-
spect to gate lengths of 120, 90, 70, and 50 and 30 nm.

Particularly, we compare the influence of the QM con-
finement effects on the performance of single and dou-
ble doped structures. In the second case we consider
possible placements of the second delta doped layer
above or below the channel. We have carried out the
simulations in which we have implemented quantum
corrections using the effective potential (EP) formal-
ism (Ferry 2000a).

The presence of an additional delta doping layer can
increase the carrier sheet density in the channel up to
6 x 10'2 cm~2. Several authors claim that at such high
carrier densities the effect of degeneracy (Fermi exclu-
sion principle) has to be included in scattering events
which can account, to some extent, for the transport
enhancement in quantum wells (Mateos et al. 2000).
Therefore, we have also included the degeneracy in
the MC module of the device simulator in order to
faithfully investigate its possible influence on electron
transport in the scaled PHEMTs.

2. Effective Potential in Device Simulations
The MC/H2F simulator uses a finite element approach

to couple the Poisson equation to particle motion in
a complicated PHEMT geometry, which involves the
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T-shape gate and the recess regions. The MC module of
MC/H2F includes electron interactions with polar op-
tical phonons, inter- and intra-valley non-polar optical
phonons, and acoustic phonons. Scattering with ion-
ized and neutral impurities is also considered. More-
over, the alloy scattering and the effect of strain (K&pf,
Kosina and Selberherr 1997) on the bandgaps, the ef-
fective masses, and the polar optical phonon energies
and potentials are taken into account in the InGaAs
channel. All scattering rates, and their final states, are
calculated within a form factor (overlap integral) given
by F(E,EY=[(1+aE)] +a'E"Y+ 1/3aEa’E"]/
(14 2aE)/(142¢'E") (Kane 1957). In this formula,
an electron with an initial energy E scatters into
the state with a final energy E’. o and o' are non-
parabolicity parameters for the electron in initial and
final valleys, respectively. The implementation of the
above form factor into the actual analytical non-
parabolic band structure allows us to extend the va-
lidity of the MC/H2F electron transport model up to
400 kV/cm. Further, the MC device simulator has been
calibrated against a real 120 nm gate length PHEMT
fabricated at our department. Simulated data which
have been already remapped to include external resis-
tances are in excellent agreement with experimental
measurements (Kalna er al. 2000).

The QM confinement effects which appear at the
AlGaAs/InGaAs heterointerface of PHEMTs may be
introduced at low cost in MC simulations using the
EP approach (Ferry et al. 2000a). The EP smooths the
classical potential and accounts for quantum confine-
ment effects like displacement of the mobile charge
centroid away from the heterojunction interface be-
tween the channel and the supply layer. The EP ap-
proach has been adapted for the MC/H2F as follows.
During each time step, required by self-consistent MC
simulations (Hockney and Eastwood 1988), a classical
potential P, obtained by solving the Poisson equa-
tion, is smoothed by Gaussian distribution G(x) to get
an EP, P, as (Ferry et al. 2000a)

Pur = ] dr Pans(r + 1) G(E), (1)
Gx) = : e (-i> 2)
T vz P\ T2a2)

where a is the standard deviation that may be approx-
imated by a = fi//12mkpT (Ferry 2000b). However,
the standard deviation of the Gaussian (2) is adjusted
to match a difference between the classical Poisson
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Figure 1. Carrier sheet density as a function of the gate bias for
the 120 nm single doped PHEMT which is used to calibrate the
standard deviation in Egs. (1) and (2). The shift between the 1D
classical solution obtained from Poisson’s equation only and the 1D
self-consistent solution from coupled Poisson-Schrédinger equation
is reflected in the 2D models.

solution and the self-consistent Poisson-Schrodinger
solution considering a 1D model of the PHEMT struc-
ture. Figure 1 illustrates this procedure for the 120
nm gate length single doped PHEMT. A variation be-
tween the carrier sheet density obtained using the 2D
EP with a standard deviation a.y = a/2 and the car-
rier sheet density obtained using the 2D classical po-
tential is much closer to a variation between the 1D
classical and 1D self-consistent solutions. Therefore,
the standard deviation a., has been applied in Eq. (2)
for the PHEMTs. Py is then used in the propaga-
tion routine of the MC module at each time step. A
smoothing of P, by the Gaussian (2) is performed
only for the electron transport in the T" valley. We as-
sume that the electron transport in higher conduction
valleys, L and X, is not affected by a carrier confine-
ment at the AlIGaAs/InGaAs heterointerface (Park and
Brennan 1990) because these valley are energetically
much higher than the I" valley band offset. Moreover,
most of the carriers which travel through the InGaAs
channel are in the I valley anyway.

3. Impact on PHEMT Performance

The investigated PHEMT has a T-shaped gate and an
InGaAs channel with the indium content of (0.2. The
active doping concentration of the original delta doped
layer is assumed to be 3.5 x 10'2cm™. The conduc-
tion band profile of the 120 nm double doped PHEMT
when a second delta doping layer is placed below the
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Figure 2. Conduction band profile and carrier density as functions of the depth in the 120 nm double doped PHEMT with the second delta
doped layer (a) below the channel or (b) above the original doping. The classical profile is shown by the dashed line and the smoothed EP profile

by the full line.

channel can be seen on Fig. 2(a) together with the pro-
file smoothed by using the EP. Figure 2(b) shows the
conduction band profile if an additional delta doping
layer is placed above the original doping, near to the
gate, in order to screen high electric fields (due to the
gate fringing effect) and to maintain a better control of
the device channel. The smoothed EP profile is shown
as well. The increase in carrier densities for both ad-
ditional delta doping placements is also apparent from
Fig. 2. The placement of the second delta doping be-
low the channe! results in substantial increase of the
device current and in broadening of the transconduc-
tance peak which will result in a dramatic improvement
in the device linearity. Placing the second delta doping
above the channel does not improve the device linear-
ity too much but can remarkably increase the device
transconductance.

We have monitored an average carrier velocity along
the InGaAs channel when a MC simulation includes or
excludes the EP. Figure 3 shows that the average carrier
velocity in both single doped 120 and 70 nm gate length
PHEMTSs is slightly larger when the EP corrections are
applied. The effect of the quantum confinement is more
pronounced around the peaks of the velocities.

The quantum confinement has a detrimental effect
on both single and double doped PHEMTSs because it
shifts the channel charge centroid away from the gate.

8l & EXC INC 4
— — —— 120 nm gate
====.-—-— 70 nm gate

[1

1

!

Velocity [x1 0’ cm/s]

0 1 "
-400 -200 0 200 400
Distance [nm]

Figure3. Average carrier velocity along the InGaAs channel for the
120 and 70 nm single doped PHEMT at gate and drain voltages of
0.0 V and 1.5 V, respectively. The EP is excluded (EXC) or included
(INC) in simulations.

The result is that the drive current and the transconduc-
tance of the devices decrease as shown in Figs. 4-6. As
the devices are scaled from 120 nm gate length to 70
and 50 nm gate lengths the impact of the QM confine-
ment increases (Fig. 4) because of a large relative in-
crease in the gate to channel separation. The placement
of the additional delta doped layer above the original
doping in the PHEMT structure can increase the device



260 Kalna

121 Exc INC 1

g --®-- 0120 nm gate

< --&-- O 70 nm gate

oy --®-- -0 50 nm gate

€ 8r s . ;’5
o R
g o8

[ By it

c al ‘D,,».D%A;- 1
-é "Uf' /A‘/l;o

o AR

o
o 0
a’ K o)
Mk A oL
oot oo Hotoks '66 . .
-1.0 -0.5 0.0 0.5
Gate Voltage [V]

Figure 4. 1p-V; characteristics (symbols) and transconductances
(lines) for intrinsic devices with the single delta doping layer at a
drain bias of 1.5 V. Quantum corrections using the EP approach arc
excluded (open symbols) or included (full symbols) in simulations.
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Figure 5. 1p-V¢ characteristics (symbols) and transconductances
(lines) for intrinsic double delta doped devices atadrain bias of 1.5 V.
The second delta doping layer is placed below the channel. Again,
quantum corrections are excluded (open symbols) or included (full
symbols) in simulations.

transconductance by approximately 50% in the 120 nm
PHEMT and up to nearly 80% in the 70 nm PHEMT
as shown in Figs. 5 and 6. Below 50 nm gate lengths
the increase in the intrinsic transconductance is less
pronounced due to the small relative distance between
the additional and the original delta doping layers. Fig-
ure 6 also shows that the EP reduction in the drive
current is more pronounced in the double doped struc-
tures compared to the single doped ones. This is par-
ticularly evident for the 30 nm double doped PHEMT
with the second delta doping near the gate which has
its transconductance reduced by 15%.
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Gate length [nm]

Figure 6. Maximum of transconductance versus the gate length of
investigated PHEMTS. A smoothing by the EP is excluded (EXC) or
included (INC).

4, Conclusions

Extensive MC device simulations of single and double
doped PHEMTS scaled into decanano dimensions have
been carried out to study a possible improvement in the
device linearity and/or transconductance. The QM con-
finement effects are included in simulations using the
EP approach (Ferry 2000a). The standard deviation of
Gaussian used to smooth the classical potential in EP
simulations was calibrated against the self-consistent
Poisson-Schrodinger solution. When the EP is used to
calculate electric fields in the devices the drive cur-
rent and the transconductance degrade reflecting the
fact that the QM confinement shifts the channel charge
centroid away from the gate. This causes the loss of
gate control over the device channel. The QM confine-
ment effects become more pronounced with the device
scaling from the 120 to 30 nm gate length and also
with increasing of the device sheet density in the dou-
ble doped structures.

We have also incorporated degeneracy into the MC
module of MC/H2F using an approach suggested in
(Fischetti and Laux 1988). Nevertheless, we do not ob-
served any noticeable influence of degeneracy (Mateos
et al. 2000) on the scaled PHEMTs whether single or
double doped.
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Thermally Self-Consistent Monte Carlo Device Simulations
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Abstract. We present details of a Monte Carlo simulation code which is coupled to a Heat Diffusion Equa-
tion (HDE) solver. Through an iterative procedure, which bypasses the differences in electronic and thermal
timescales, this coupled code is capable of producing steady-state thermally self-consistent device characteris-
tics. Electronically-generated thermal flux is calculated by monitoring the net rate of phonon emission, which may
be resolved both spatially and by phonon type. The thermal solution is extracted through use of a novel analytical
thermal resistance matrix technique which avoids calculation of temperatures beyond the electronically important
device region while including the large-scale boundary conditions. On application to a GaAs MESFET the expected
‘thermal droop’ behaviour is obtained in the I-V characteristics and we find a linear relationship between peak
lattice temperature and applied source-drain bias. At moderate biases the contribution of intervalley phonons to the
thermal power output surpasses that of optical phonons.

Keywords: electrothermal, Monte Carlo, MESFET, III-V, hot phonons

1. Introduction

The Monte Carlo technique has been extensively ap-
plied to the modelling of electronic transport in semi-
conductor devices, yet with the exception of a few
results for silicon devices (Yoder and Fichtner 1998,
Tarnay et al. 1997), Monte Carlo device models have
been applied universally under an isothermal approxi-
mation. Other electronic models have previously been
extended to include thermal self-consistency (Yoder
and Fichtner 1998, Johnson, Snowden and Pollard
1997, Houng et al. 2000) and have shown this to be
important in reproducing I-V characteristics of group
III-V FETs (Atherton, Snowden and Richardson 1993).
Group III-V GaAs-based devices are known to be gen-
erally more thermally active than their silicon-based
counterparts, due to among other factors a 3x lower
thermal conductivity and a strong polar channel for
phonon emission absent in group IV materials.

In this paper we present details of a self-consistent
electrothermal Monte Carlo simulator including, as far
as we are aware, the first such modelling of a III-V
FET. In the next section we first discuss computational
details involved with the construction of the simulator

code. We then examine results from the application of
the code to a GaAs MESFET, including thermally self-
consistent I-V characteristics.

2. Computational Details

The electronic Monte Carlo model forming the core
of this prototype simulator includes standard 3-valley
nonparabolic models of the electronic bandstructure of
the IIT-V materials which comprise the device. Elec-
tronic scattering associated with ionised impurities and
all appropriate phonon interactions are included, with
long-range Coulombic interactions accounted for by
self-consistent solution of the two-dimensional Poisson
equation.

2.1. Scale Issues

Monte Carlo simulations involve a direct temporal evo-
lution of a representative ensemble of particles, typi-
cally for total simulation times of the order of tens of
picoseconds over an active device cross-sectional area
of the order of square microns. On the contrary, thermal
diffusion occurs on much larger space- and time-scales,
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of the order of nanoseconds to microseconds over thou-
sands of square microns. To obtain a combined elec-
trothermal transient solution would therefore require
simultaneous simulation of the electronic and thermal
components over the longer thermal timescale. While
this presents no problem in obtaining a thermal so-
lution, a corresponding electronic solution using the
Monte Carlo method would be computationally infea-
sible due to the long simulation times which would be
required. For this reason we solve only for steady-state
solutions, using an iterative method where the elec-
tronic and thermal components are solved alternately
until convergence is achieved. Convergence is deter-
mined by analysis of source-drain currents, but typi-
cally ~10-20 electrothermal iterations are performed
to ensure correctness.

The coupling between the two solvers occurs via
the spatially-resolved mean rate of emitted thermal
flux generated by the Monte Carlo algorithm and the
temperature distribution subsequently generated by the
thermal solver (and fed back into the next Monte Carlo
evolution). While the minimum area over which the
distribution of emitted thermal flux and temperature is
required is simply the active region of the device mod-
elled by the Monte Carlo solver, the thermal boundary
conditions of the full device die must be included.

2.2. Thermal Solver

A typical choice of thermal solver might involve spatial
discretisation of the Heat Diffusion Equation (HDE)
using the finite difference or finite element methods.
The problem with applying these methods here arises
in the need to discretise, and solve for temperatures
over, the entire thermal domain when the area of inter-
est is far smaller. In order to account for the large-scale
thermal boundary conditions but avoid solving for the
temperature distribution anywhere but over the mini-
mal active device region a novel analytical thermal re-
sistance matrix technique (Batty ef al. 2001) has been
used. Thermal nonlinearity due to the temperature de-
pendence of the thermal conductivity is included via
appropriate application of the Kirchhoff transforma-
tion (Bonani and Ghione 1995). The thermal domain
is currently assumed to be a simple cuboid with adi-
abatic top and side surfaces and a fixed-temperature
heat-sink at the base. However this is not a intrinsic
limitation of the technique and more complex domains
can be constructed to more accurately match recessed
device structures.

2.3.  Electronic Model Modifications

In more macroscopic models of electronic transport the
distribution of emitted thermal flux may be extracted
via calculation of the dot-product of the electric field
and current density or even more simply using 14 V.
The Monte Carlo solver may also calculate the thermal
flux using this method, but in addition is able to obtain a
more dynamic estimate by monitoring the net emission
rate of phonons over the duration of the simulation.

Since the temperature distribution in all but the
first Monte Carlo simulation is non-uniform, electron-
phonon scattering rates for a variety of temperature
points are required. Various schemes may be applied
to deal with this, including complete tabulation of all
possible rates at the start of each simulation or tabula-
tion over a range of temperatures with suitable interpo-
lation. Here we have chosen to use the rejection tech-
nique as discussed in previous Monte Carlo simulations
of nonequilibrium phonons (Rieger et al. 1989), where
the pre-tabulated rates are calculated with a maximal
expected phonon occupation Ny,c. When an electron
is selected to scatter via a phonon process whose rate
is calculated using this maximal value, the probability
that the process will be accepted as a real scattering
event in the simulation is given by

N,.
PI'('(II = —,i"+—ﬁ (l)
Nuax + ﬁ

where 8 is unity for emission processes and zero for
absorption processes. While we include the variation
of all electron-phonon scattering processes with tem-
perature, we currently neglect the net rate of intravalley
acoustic phonon emission since we are concerned with
300 K operation where this contribution is very small.

3. Results

The simulation code described above has been applied
to a 0.2 um gate GaAs MESFET, considered con-
tained within a 500 x 500 x 125 pum die. The structure
is shown in Fig. 1.

Figure 2 shows the spatial distribution of (isother-
mal) net phonon emission at source-drain biases of 1 V
and 5 V. A sharp peak in the emission occurs near the
corresponding high peak in the electric field profile at
the edge of the drain contact. These peaks occur down-
stream (from the perspective of the electrons) of the
peak in the electric field, as also seen by Moglestue,
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Figure 1. Structure of simulated GaAs MESFET.
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Figure 2. Spatial distribution of net phonon emission at Vg 0of 1 V
(above) and 5 V (below).

Buot and Anderson (1995), occurring just within the
gate end of the drain. A low-emission ridge is also
visible below the depletion region at 1 V; this is also
present at 5 V but is not resolved by the contours.

The change with bias of the relative contribution to
the total (isothermal) thermal flux by different phonon
types is shown in Fig. 3; we are not aware of an anal-
ysis of heat generation in this way in previous work.
Categorisation of phonon types is according to their
reciprocal-space location: I phonons (small-g intraval-
ley processes), L phonons (I'-L and L-X intervalley
transitions) and X phonons (I'-X, L-L and X-X in-
tervalley transitions). By moderate source-drain biases
just beyond approximately 2 V the emission by (opti-
cal intravalley) I' phonons is matched by the sum of
the (intervalley) L and X phonon emission. Further-
more beyond just after 4 V the I phonon emission is
overtaken by the X phonon emission.

On inclusion of thermal self-consistency, source-
drain currents show the characteristic ‘thermal droop’

0.5 T T T T T T
[ | — T Phonons (Intravalley) L
04 - L Phonons (Intervalley T-L L-X) s
" | -- X Phonons (Intervalley I'-X L-L X-X)
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Figure 3. Change with bias of total net phonon emission associated
with I", L and X phonons.
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Figure 4. MESFET I-V characteristics, with and without thermal
self-consistency.

behaviour. Figure 4 shows the extent of this shift at
0V (applied) gate bias: at high source-drain biases the
slowly increasing isothermal current becomes almost
flat, with a slight decrease towards 5 V.

In contrast with the almost constant drain current
in the saturation region, the peak temperature present
increases in a strongly linear fashion at a rate of
~13.5 K/V,, over the same range (Fig. 5). Yoder and
Fichtner (1998) obtain a similar quasi-linear increase
in Si MOSFETs for lower biases, which becomes su-
perlinear at higher biases (~4 V). However their more
strongly peaked spatial temperature distribution sug-
gests a far smaller thermal (die) size was used, which
might explain this difference.
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Figure 5. Variation of peak temperature within the MESFET with
applied source-drain bias.

4. Conclusion

We have presented details of a Monte Carlo simu-
lation code which is capable of determining steady-
state thermally self-consistent device characteristics.
Results from the application of this code to a 0.2 um
gate GaAs MESFET with a 500 x 500 x 125 um die
are shown. The electronically-generated thermal flux is
calculated by counting the net rate of phonon emission.
We examine its spatial distribution and the contribu-
tion of different phonon types at different source-drain

biases. Thermally self-consistent simulation gives the
expected ‘thermal droop’ effect on the 1-V behaviour
and a linear rise in the peak lattice temperature with
source-drain bias.
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3D Monte Carlo Modeling of Thin SOI MOSFETs Including the Effective
Potential and Random Dopant Distribution™
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Abstract. We use the effective potential to include quantum mechanical effects in thin SOI MOSFETs simulated
with 3D Monte Carlo. We explore the role of discrete dopant distributions on the threshold voltage of the device
within the framework of the effective potential by examining the current-voltage behavior as well as the electron
distributions within the device. We find that simulations with the effective potential produce a similar shift in current
as classical simulations when the dopants are considered to have a random discrete distribution instead of a uniform

distribution.

Keywords: effective potential, SO MOSFET, Monte Carlo

1. Introduction

As modem devices continue to scale to smaller sizes,
it has become imperative to include quantum mechan-
ical effects when modeling device behavior. Such ef-
fects can in theory be treated by a self-consistent solu-
tion of the Schrédinger equation, but this approach has
proved difficult to implement in an ensemble Monte
Carlo simulation. We have recently proposed the use
of the effective potential to treat the quantum mechani-
cal effects of charge set-back from the oxide interface,
and the increased ground-state energy of electrons in
the inversion layer (Ferry 2000). Furthermore, the im-
portance of including discrete random dopant distribu-
tions has been shown for many types of devices (Zhou
and Ferry 1995, Gross, Vasileska and Ferry 2000). In
this work, we extend the effective potential method to
model ultrasmall, SOI MOSFETs with random doping
distributions.

*Work supported by the Semiconductor Research Corporation.
1To whom correspondence should be addressed.

2. Effective Potential in Device Simulation

The effective potential concept uses the fact that as
the electron moves, the edge of the wave packet en-
counters variations in the potential profile before the
center of the wave packet. Mathematically, this effect
at a point (x;, y;, z;) can be treated as the convolution
of the potential with a Gaussian wave packet to obtain
the effective potential at this point as follows:

Vi = f / / V(x, 3, G (x—x1, y=y;, —z) dx dy dz

where G is a Gaussian function with a given standard
deviation in each of the three coordinate directions.
The spread of the wave packet can be determined by
the thermal de Broglie wavelength for the lateral di-
rections (Ferry et al. 2002, Ferry 2001). In the trans-
verse direction (normal to the gate) it can be calculated
based on the confining conditions (Ferry 2000, Ferry
et al. 2002). In this work we use a value of 0.64 nm
in the transverse direction, and 2.2 nm in the lateral
directions.

We include the effective potential to treat the quan-
tum effects in the SOl MOSFET structure depicted in
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Figure 1. SOl MOSFET device structure used for all simulations.

Fig. 1. The SOI film thickness considered in this work
was 5 nm, achannel length of 40 nm, and a device width
of 0.48 um was used to increase the number of elec-
trons for the ensemble averages. The source and drain
doping was at 2 x 10' cm™? and the channel doping
and distribution varied for different simulations. The
buried oxide thickness was 30 nm and the gate oxide
thickness was 2 nm. The general procedure was to solve
the Poisson equation first, then do the convolution with
the Gaussian function in order to obtain the effective
potential. It is the effective potential that is then used
to calculate the electric fields that drift the electrons in
the Monte Carlo transport kernel.

An example of an effective potential profile is
shown in Fig. 2 for a device with channel doping of
5 x 10" cm™3 and applied gate and drain voltages of
0.6 V. The effective potential steeply increases at the
oxide interfaces as a result of the convolution with
the Gaussian function representing the electron wave

Potential (V)

Depth (nm) 2 o 1%0

Figure 2.  Effective potential profile for the SOI MOSFET device.

packet. As a result of this potential increase, the elec-
trons experience a strong electric field, which repels
them from the interface. Therefore, the electrons are
set-back from the gate oxide interface, resulting in a
decrease in both gate capacitance and inversion charge
density. Because of this decreased inversion charge
density, a higher gate voltage is required to obtain the
same inversion charge that would be present without
the effective potential, which was described in Ramey
and (Ferry 2001).

3. Random Doping Distribution Results

Previous simulations using the effective potential have
focused on doping distributions that are uniformly dis-
tributed throughout the device regions. It is of interest
therefore to determine how the effective potential sim-
ulations respond to a random discrete dopant distribu-
tion. A discrete distribution tends to create spikes in the
potential profile, which behave like coulomb scattering
centers. The effective potential, however, smoothes the
potential profile, and thus alters the simulated interac-
tion between the electron and the dopant ion and could
therefore negate the effect of the discrete dopant ion.
To examine this effect, simulations were performed
on devices with 5 nm silicon film thickness and vari-
ous doping levels. Figure 3 illustrates the effect of the
random dopant distribution for various doping levels in
the channel. At the doping level of 5 x 10'7 cm™3 there
is virtually no difference in the Ip-Vg curves simu-
lated with discrete and uniform doping distributions.
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Figure 3. Ip-Vg curves for three different doping levels. The
dashed lines with open symbols are for uniform doping, the solid
lines for random doping distribution results averaged from several
devices. All simulations were performed with the effective potential
and Vp =0.1V,




This can be easily understood simply by the number
of dopant atoms in the channel of such a small device.
At this doping level, there are only about 48 atoms in
the channel, so there aren’t enough to significantly af-
fect the current. Simulations performed on devices at
even lower channel doping reveal similar behavior. At
higher doping levels, there is a noticeable shift in the
Ip-Vg curves, with the discrete doping resulting in less
current. As a result, the threshold voltage shifts about
25 mV higher for the simulations using discrete doping
distributions.

The curves generated for the discrete doping devices
are an average from several devices with different ran-
dom doping distributions. There are certain configu-
rations of dopant ions that can actually lead to lower
threshold voltage than the uniform distribution. For ex-
ample, if the dopants are located very close to the gate
interface, their effect on the local electric field is es-
sentially eliminated by the strong electric field formed
by the effective potential profile at the interface. Con-
versely, if the dopants are situated far away from the
interface, the inversion layer forms near the interface
where there is a lower dopant density, and thus the
threshold voltage is also reduced.

One possible explanation for this behavior would
be that the electron density in the channel for the
simulations with the random doping is lower than for
simulations with uniform doping. However, Fig. 4 in-
dicates that there are roughly equal amounts of carriers
in the channel for each type of simulation. The plot
does show slightly more variation in the sheet density
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Figure 4. Sheet density in channel for the device with Ny =
5 x 10" cm™> with random doping (solid-line) and uniform dop-
ing (dashed line). Vg = 0.5V, Vp = 0.1 V.
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for the random doping distribution, which is expected
since there are regions of the channel with less dopant
than in the uniform situation.

The situation can be explored qualitatively by exam-
ining the actual distribution of electrons in the channel.
Figure 5 illustrates this distribution for simulations with
discrete and uniform dopant distributions. The electron
distribution in the channel for the uniform dopant dis-
tribution (top) is much smoother and more uniform than
for the case of the discrete dopant distribution (bottom).
Further, for the discrete dopant distribution simulation
there are regions of very low electron density (at po-
sitions of about 62 and 78 nm) that effectively pinch
off the channel. The pinched off regions correspond to
high dopant concentration, and the region from 62 to
78 nm corresponds to a region of lower dopant con-
centration. As a result, a quantum dot effectively forms
between 62 and 78 nm, since the discrete dopants form
barriers that isolate a potential well. Such behavior is
to be expected with random distributions, and has been
discussed elsewhere (Ferry and Barker 1998).

The constriction indicated in the bottom panel of
Fig. 5 gives a clear demonstration of the effect of the
discrete dopant distribution. As a result of such con-
strictions and the random fluctuations in the potential
profile, one would expect the velocity of the electrons

Depth (nm)

Depth (nm)

3.5

50 60 70 80 90
Length (nm)

Figure5. Electron distribution in channel for the device with Ny =
5 x 10" ¢em~3 and Vg = 0.5 V. The top shows the uniform dopant
distribution case, and the bottom the random distribution simulation.
Darker regions indicate higher electron density.
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Figure 6. Lateral velocity of electrons in channel for Ny =5 x
10%em=3%, Vg = 0.5V, and Vp = 0.1 V. The random doping
simulation is the solid-linc and the uniform doping dashed linc.

from source to drain to be lower as they scatter off
the potential variations. This is indeed what happens,
and is apparent from the large shift in the lateral ve-
locity indicated in Fig. 6. Here, the lateral velocity is
seen to be both significantly lower for the random dis-
tribution than the uniform distribution as well as have
larger variation along the length of the channel. The
larger variation of the velocity along the channel for
the discrete distribution is due to the fact that the elec-
tron density varies from the random doping, as was
indicated in Fig. 5. Therefore, the discrete doping is
seen to cause a lower lateral velocity, which accounts
for the lower current observed for the random doping
simulations depicted in Fig. 3.

It is also interesting to compare the results of simu-
lations with and without the effective potential for de-
vices with discrete and uniform dopant distributions. To
examine this, /p-Vp curves were generated at a channel
doping level of 2 x 10'® cm™3, which was seen previ-
ously to provide enough dopants to cause a measurable
shift in the threshold voltage when the doping was dis-
cretely distributed. Figure 7 shows the results of these
simulations, and as would be expected from the /Ip-Vg
behavior, the discrete doping results in a lower drain
current than uniform doping when simulated with the
effective potential. For simulations without the effec-
tive potential, there is a similar shift in the saturation
current for the results with discrete and uniform doping.
(Note: the simulations using random, discrete dopant
distributions performed with and without the effective
potential used the same discrete dopant distribution.)
This indicates that the use of the effective potential
does not significantly alter the interaction between the
electrons and the ionized dopant atoms.
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Figure 7. Ip-Vp curves for Na = 2 x 10¥ em Y and Vg = 0.4 V.
The solid lines arc for simulations with the effective potential, the
dashed lines for simulations without the effective potential. The sim-
ulations with random doping are indicated by curves with triangles,
and uniform doping by curves with circles.

As also can be seen in the figure, the simulations
without the effective potential result in higher satura-
tion current than simulations with the effective poten-
tial. This is due to the fact that the effective potential
causes a charge set-back and elevates the ground state
energy, which results in lower channel density. This
is consistent with results explored in more detail pre-
viously for simulations with and without the effective
potential using uniform doping distributions (Ramey
and Ferry 2002). As clearly can be seen in Fig. 7, the
use of the effective potential significantly affects the
saturation current obtained, as does the use of a ran-
dom doping distribution.

4. Conclusions

These simulations demonstrate the importance of in-
cluding discrete random dopant distributions in ultra-
small SOl MOSFET simulation. The use of random
dopants tends to shift the calculated threshold voltage
approximately 25 mV higher for these devices at heavy
channel dopings, but has very little effect at lighter dop-
ing levels. The shift is due to a reduced carrier veloc-
ity in the channel that arises from scattering from the
isolated dopant atoms. As a result, regions of high and
low electron density develop, and structures resembling
open quantum dots are observed.

The use of the effective potential in these types of
simulations was a potential concern since the effective
potential smoothes variations in the potential formed
by the discrete dopant atoms. However, a similar shift
in saturation current is obtained between simulations
with discrete and uniform distributions, regardless of




whether the effective potential is employed. There-
fore, the use of the effective potential approach is
justified for simulations of discrete random doping
distributions.
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Low-Field Mobility and Quantum Effects in Asymmetric Silicon-Based
Field-Effect Devices
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Abstract. Though asymmetric MOSFET structures are being designed in response to small-geometry effects, the
performance estimates of such devices often rely on the conventional device description, and neglect to properly
account for the interplay between quantum effects and the effects of asymmetry. In this paper, we investigate the
low-field transport in a highly asymmetric MOSFET structure, characterized by a p*-implant at the source end,
by using a Monte Carlo—Poisson simulation with the quantum effects incorporated through an effective potential.
We observe that highly-pronounced asymmetry leads to ballistic transport features, which become suppressed by
the inclusion of quantum effects. We prove that mobility degradation is an essentially non-equilibrium signature of
quantum mechanics, independent of the well-established equilibrium signatures (charge set-back and gap widening).
Consequently, in order to properly estimate the device performance, it becomes important to account for the channel

mobility degradation due to quantum effects.

Keywords: low-field transport, electron mobility, Monte Carlo simulation, asymmetric structures

1. Introduction

Asymmetrically doped metal-oxide-semiconductor
field-effect transistors (MOSFETSs) have recently re-
ceived much attention due to the current quest to opti-
mize the transistor performance simultaneously with its
continuing shrinking, and overcome the inevitable ac-
companying increase in the severity of small-geometry
effects. Representative asymmetric structures, which
show improved performance with respect to some of
the detrimental small-geometry effects, include the
lightly-doped drain (LDD) devices, gate overlapped
LDD structures (GOLD), halo source GOLD drain
(HS-GOLD) (Buti et al. 1991), graded-channel
MOSEFETs (GCMOS) (Ma et al. 1997), and focused-
ion-beam MOSFETs (FIBMOS) (Shen et al. 1998,
Kang and Schroder 2000, Kang et al. in press).
However, very often the performance of these de-
vices is predicted according to models that hold for
conventional MOSFETs, which are inadequate for
several reasons. First, unlike conventional MOSFETs,

these devices are small and are therefore expected to
experience quantum transport under bias. Secondly,
the optimized doping profiles of such devices produce
highly inhomogeneous electric fields, which may
lead to non-stationary transport features, like velocity
overshoot, even under steady-state conditions. The
interplay between the small and the asymmetric has not
been fully understood yet, but it certainly holds promise
for some new and exciting transport phenomena.

In this paper, we present the results of a Monte Carlo
particle-based simulation of low-field transport in an
asymmetric MOSFET structure, with quantum effects
included through an effective potential (Ferry 2000).
The asymmetric structure simulated is characterized
by a highly-doped (1.6 x 10'® cm~3), narrow (70 nm)
pT-implant, located near the source end of the 250 nm
channel of a conventional MOSFET, with substrate
doping equal to 10! cm™ (Fig. 1) .

Such a structure could, for instance, be realized by
using focused ion beam implantation (FIBMOS) (Shen
et al. 1998, Kang and Schroder 2000, Kang et al. in




274 Knezevic

Figure 1. Schematic representation of the simulated asymmetric
MOSFET structure.

press). There are several reasons for choosing such a
structure: it is fairly easy to simulate, due to the sim-
ple geometry; the asymmetry effects should be observ-
able because of the very abrupt changes in the doping
profile, and the highly-doped implant region promises
quantum effects even if the device as a whole is large.

The quantum effects in this study have been ac-
counted for by including an effective potential (Ferry
2000) in the classical particle simulator. This has
proven quite successful in treating the one-particle
quantum effects in inversion layers (Ferry et al. 2000,
Knezevic er al. 2002, Ramey and Ferry 2002). First,
we will present the transfer characteristics of the de-
vice with and without the effective potential, and point
out the main features that quantization introduces at
the macro level of device analysis. We will then briefly
review the microscopic quantum transport effects that
have been known to contribute to the output trends ob-
tained (Ferry et al. 2000, Knezevic er al. 2002, Ramey
and Ferry 2002), and then focus on what has not re-
ceived sufficient attention so far, and that is the be-
havior of low-field mobility when quantum effects are
included in a highly asymmetric structure. The depen-
dence of low-field mobility on the lateral electric field
will be analyzed, with respect to both the introduction
of asymmetry and quantum effects.

2. Macroscopic Signatures of Quantum Effects

The transfer characteristic of the simulated device
structure with and without the inclusion of quantum
effects, for the drain voltage Vp = 0.4V, is shown in
Fig. 2. 1tis clear that the threshold voltage, Vi, is higher
with the inclusion of the effective potential. Also, the
device transconductance, g, = dIp/d Vg, in the linear
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Figure 2. Transfer characteristic of the simulated asymmetric de-
vice structure, for drain bias Vp = 0.4 V, with and without the inclu-
sion of quantum cffects through V.

region is clearly lower if the effective potential, Ve, is
included.

It has been shown (Ferry et al. 2000, Knezevic et al.
2002, Ramey and Ferry 2002) that the inclusion of
quantum effects in the microscopic description of the
inversion layer of a metal-oxide-semiconductor device
leads to two major features: reduced sheet density of
channel carriers and charge set-back from the semi-
conductor/oxide interface. The reduced sheet density
leads to an increase in the threshold voltage and a
decrease in the drive current. On the other hand. the
charge set-back leads to an effective increase in the ox-
ide thickness, thereby degrading the device transcon-
ductance. Even though these two microscopic features
undoubtedly have a very important impact on the trans-
fer characteristics presented in Fig. 2, that may not be
the entire story. Namely, there is very little change in
the sheet density and the charge set-back between the
equilibrium conditions and the non-zero drain bias sit-
uation, which means that these are virtually equilib-
rium quantum-mechanical effects. However, if the de-
vice is on and a bias is applied between the source and
the drain, especially with an asymmetric doping pro-
file such as that of the simulated device, some purely
non-equilibrium features emerge.

3. Low-Field Mobility and the Interplay
of Quantum Mechanics and Asymmetry

According to Fig. 2, the bias condition Vg = 1.2 V with
Verr is almost equivalent to Vg = 1.0 V without Vg
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the current is similar, and Vg-Vy, is virtually the same. 450 T v veiov ]

Similarity is also noted between Vg = 1.0 V with Vg 400k — With vz v2=1.2v a) |
- . . . ———-NoV__.. V =09V

and Vs = 0.9 V without V. According to Fig. 3(a), a0l - NOV:. v§=1.ov |

8

which presents the profile of the effective perpendicu-
lar field in the channel for the above bias conditions, we
indeed note that the equilibrium part of the quantum-
mechanical influence, as described in the previous para-
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asymmetry, the velocity overshoot is evident when the
electrons just exit the implant and are subject to large
negative electric fields. The inclusion of Vg suppresses
the overshoot. Also, at about 200-250 nm, we note that
the lateral field is very low or even zero, whereas the
velocity is finite, which signalizes that non-local effects
are important (velocity is not correlated with the field at
the given point), and transport can hardly be regarded
as diffusive.
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The profiles E, ¢(x), E y err(x), pt(x) obtained this way
for a given Vp, Vi, actually represent a parametric
equation of a curve on the surface u(Ex cf, Ey efr)-
Even if we had infinitely many different bias condi-
tions Vp, Vi, we could never completely reconstruct
the entire surface. However, we note that between
130 nm and 300 nm the perpendicular field is fairly
monotonic, and if we restrict ourselves to the areas
where the lateral field is monotonic as well, we are
guaranteed that the curve (E, (), Ey (), p(x))on
the (E, ofr, Ey cfr) surface gives single-valued projec-
tionsonto E . o = const. or E g = const. planes. After
plotting (E err(x), Ey er(x), u(x)) for regions between
130 nm and 300 nm with monotonic E ¢(x), we find
that the curve shows virtually no dependence on the per-
pendicular field within a given range of lateral fields.
This is not surprising, as our simulation does not in-
clude surface roughness scattering, but only acoustic
and intervalley phonon scattering. Therefore, we may
conclude that

IL(E.\'.efﬁ E_\xcff) ~ li(E.\:cff(‘\')) ~ (#(E‘\'.cff)) averaged over*
all Ey o ina
given range

(3

Figure 4 shows the low-field mobility as a func-
tion of the lateral field, for several values of the av-
erage perpendicular field as a parameter. As the lateral
field approaches zero, the mobility increases, both with
and without Vg, which signalizes ballistic transport
(in other words, non-locality; the retardation effects
become important). However, the quantum mechani-
cal behavior suppresses the ballistic feature. Even at
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Figure 4. Variation of low-ficld mobility with the lateral effective
field, with and without V.. for several perpendicular electric fields.

somewhat higher fields, the decrease in mobility due
to the inclusion of Vi is significant, which indicates
that it is important to include the influence of quantum
mechanical effects on mobility in order to have a real-
istic physical picture of device operation.

4, Conclusions

In this paper we have investigated the influence of
quantum-mechanical effects on low-field transport in a
highly asymmetric MOSFET structure (Fig. 1). By ana-
lyzing the behavior with and without Vg, we identified
pairs of gate biases, such that one voltage in the pair cor-
responds to V. included and the other to Vg excluded,
and both lead to equivalent inversion conditions. Com-
paring between the two biases in the pair enables us to
set aside the essentially equilibrium quantum mechan-
ical effects, and just observe the non-equilibrium role
of quantization in the simulated structure.

There are several important conclusions to be drawn.
First, pronounced asymmetry leads to ballistic trans-
port features. This feature is suppressed if the quantum-
mechanical effects are included. Highly asymmetric
devices therefore show signatures of ballistic trans-
port, as seen also in the behavior of low field mobil-
ity. Even though quantum effects do lower the mobil-
ity, there is a definite tendency of mobility increase as
the lateral field decreases, both with and without the
effective potential. Altogether, asymmetry may lead
to faster devices, but whether transport is truly bal-
listic or still diffusive needs to be carefully assessed
by including quantum-mechanical effects into mobility
modeling.
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Quantum Potential Corrections for Spatially Dependent Effective Masses
with Application to Charge Confinement at Heterostructure Interfaces
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Abstract. The effect of a spatially varying effective mass as encountered in heterostructure devices is shown to
lead to classical and quantum corrections to the description of transport. The quantum potential corrections for pure
states and the corrections to Quantum Monte Carlo for mixed states are derived using the Wigner formalism. The
application to SiGe graded structures is shown to lead to additional corrections, which are of the same order as the

conventional density gradient corrections.

Keywords: Density gradient, Wigner function, semiconductor devices

1. Introduction

With the advent of decanano scale semiconductor
devices it has become important to include quan-
tum corrections to conventional device modelling in
a pragmatic fashion. The density gradient or quantum
potential (Bohm 1952a, b) has been deployed within
hydrodynamic and drift-diffusion modelling. More re-
cently, expansions (Ancona and Iafrate 1989, Tsuchiya
and Miyoshi 2000, Tsuchiya, Fischer and Hess 2000)
of the non-local Wigner equation of motion to second
order in Planck’s constant have led to so-called Quan-
tum Monte Carlo models. However, to date, none of
these formalisms have been consistent with the pres-
ence of a heterojunction with a spatially dependent ef-
fective mass. In the present paper we show that addi-
tional quantum corrections are required to incorporate
situations where the effective mass varies with position
as it does for transport in heterostructures and in par-
ticular for transport in devices based upon Si;_,Ge,
heterostructure devices. For a purely classical model
the simple Hamiltonian H = p?/2m(r) + V (r) gener-
ates an effective force due to a varying mass given by
Fyr = (p*/2)Vm~'(r) = (p*/2m(r))V In m(r). For a
mass discontinuity at an interface in an idealised het-
erostructure the classical effective force due to the mass

change is impulsive:

p2 1 1
F,p= ___2_ — - — (X — Xinterface) (1)
n, mi

2. Pure State Quantum Potential Corrections

In the case of a pure state, W(x,f) = (x | ¥(t)) =
R(x, 1) exp[;—;S(x, 1)], written here in polar form, a
quantum potential Vo may be obtained directly from
the effective mass Schrodinger’s equation using the
construction

v, — RetW I0HoRp)(x | )
- l(x | W)[2

— Ho(x, VS) (2)

where Hj is the effective mass Hamiltonian.

If we consider a minimal hermitian Hamiltonian,
taking into account a position-dependent effective mass
tensor in the form of the BenDaniel-Duke Hamiltonian
(BenDaniel and Duke 1966):

1
H=Hy+V({F) Hy= Pmp 3




280 Watling

the time-dependent Schrédinger equation may be writ-
ten as:

v n 1
i ey (_v\p) VY @)
ot 2 m*

This leads to a new quantum potential, Vgerer,, Of the
form:

—1* VY|

R Vm* V||
2m* ||

2 m* ||

VQh:’Ir‘rn = (5 )

where the carrier density, n, may be interpreted as
n o |W|2. Thus, the quantum potential in the presence
of a heterointerface includes an additional term that is
dependent on the gradient of the effective mass. The
importance of this new, previously neglected, term can
clearly be seen in Figs. 1 and 2 where we display the
wavefunctions and corresponding contributions to the
quantum potential for a 7.5 nm Si/Sij 5Gey 5/Si quan-
turn well with graded interfaces.
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Figure 1. First four eigenfunctions for a 75 A Si/Sig.sGeg 5/Si
quantum well. with “soft” interfaces.
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Figure 2. The total quantum force arising from the first eigenstate
shown in Fig. 1.

3. Mixed State Quantum Monte Carlo
Corrections

The simple pure state quantum potential is less help-
ful for modelling quantum corrections in a self-
consistent time-dependent potential V (r). Thus for de-
vice modelling one is more generally interested in
mived state quantum transport formalisms typified by
the Wigner or density matrix equations of motion. The
first study of space-dependent effective mass correc-
tions to the Wigner equation were derived by Barker,
Lowe and Murray (1984) using the Ben Daniel-Duke
Hamiltonian to give an exact result which showed that
the Wigner equation of motion comprises driving terms
which are integrals over phase of the non-local ef-
fective force and derivatives of the Wigner function
f(r, p, t) weighted by Siand Ci function kernels. How-
ever this study (Bohm 1952a, b) did not examine the
local approximations to order %, which have recently
come in vogue for quantum Monte Carlo (Tsuchiya and
Miyoshi 2000, Tsuchiya, Fischer and Hess 2000).
The exact Wigner equation may be derived as the
Wigner transform of the density matrix equation using
the basic theorem: the product AB of two operators
A, B with corresponding Wigner Transforms A(r, p),
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B(r,p) is

ih

Cr,p) = exp[7 (Vi .-vi-vp. V;f)]

x A(r, p)B(r, p) (6)
Using (6) the Wigner transform of the variable mass
Hamiltonian is:
p? n®_, 1

2m(r) 8 v m(r) M

Ho(r, p) =

The Wigner transform of the density matrix equation of
motion then gives the corresponding Wigner equation
for varying effective mass as:

of 2 . [n
E—%sm[z(vﬁc'VrH—Vrf'V;{):IH(r’p)
x fr,p,t)=0 ®

H(r, p) = Ho(r,p) + V(r)

Expanding the expression (8) to O (#*) we obtain the
generalised Wigner equation in the density-gradient
approximation:

af L P af  avV af p*om~' daf
ot  mdx, Ox,dp, 2 0x, dp, 24
3’V 3Bf "2

X +
0x,0x,0x, 3p,0p,0p, 8
?*m~!  af # { am~! f

" Oxedx,dx, dp, 4

0x, 0x,0x,0p,

a2m—1 33f }
Pe 0x,0x, 0p, 0p,0x,
2 a3m—1 83
4P / ©)

6 3x,0x,0x, 0p,0p,0p, -
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The first three terms of (9) are identical to the driv-
ing terms of a constant-mass Boltzmann equation. The
fourth term is the classical correction due to the varying
effective mass. The fifth term is the well-known quan-
tum correction due to the potential V. The remaining
terms are the quantum corrections due to the varying
effective mass. The non-locality of the exact Wigner
equation is here reflected in the presence of the higher
derivatives of the Wigner distribution.

Following the approach of Tsuchiya and Miyoshi
(2000) and Tsuchiya, Fischer and Hess (2000) we can
easily recover the second order local quantum approx-
imation to the effective force produced by the variable
mass. The approach eliminates the higher deriva-
tives of f by the ansatz: f = exp[—B(p — pqa)>/2m —
BV (r) — Bu] to obtain the local quantum kinetic equa-
tion which underpins Quantum Monte Carlo simula-
tion but with corrections due to the variable effective
mass:

af

9 |, pudf o
apu

=0 (10
ot m 0xy, (10)

+ (Fu + Fo, + Fom,,)

where the classical force F includes the varying mass
contribution Feg, the quantum force F derives from
the potential V as

1L

2 N2 3
FQMZ_ﬁf_{E;_ﬂ(p pd)] PV

24m m 0x,0x,0X,

and finally the varying mass contributes a quantum
force correction, which we only display for the slowly
varying mass approximation that neglects terms of or-
der (Vm~1)? and retains only the lowest derivatives of
the reciprocal effective

—2\ [am™! a2V av\?
Fomy = | — -
o ( 7 ){ o, ﬂ[ 8x3+’3<axx) ]

(12)

The total correction to the constant mass driving force
due to varying mass is thus:

1 om
Fmasxp,z EE
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By inspection it is seen that the scale of the quantum
potential determines the quantum correction to the
classical force:

1 Vo

AF/F| =~ —
IAF/F] 2 p*/2m

(14)

To estimate the size of the effect we represent the clas-
sical correction in terms of an effective potential Vs
for kinetic energy of the order of kg7, we have in di-
mensionless form:

ﬁvnmxx = ~Inm* (]5)

4. Applications

In heterostructures such as Si;_.Ge., we often en-
counter a linearly graded change in concentration ¢
overadistance L : ¢ = c¢*x/d, where ¢* is the final con-
centration. The density of states effective mass ratios
for heavy holes in Si,_.Ge,. and Si;_.Ge, on Si are
given respectively by:

m* = 0.94 — 1.44¢ + 1.146¢%;

(16)
m}y = 0.927 — 2.266¢ + 1.827¢?

The above masses where obtained by fitting to the den-
sity of states masses from a 6-band k- p calculated

over the range ¢ =0 to ¢ =0.4. In Fig. 3 we plot the
results of our calculations for BVmass, for the situation
described above.

5. Conclusions

We have demonstrated the quantum Monte Carlo force
corrections required for the slowly varying mass ap-
proximation. The results indicate that the corrections
are of the same order as the conventional quantum po-
tential corrections in silicon-germanium systems with
lincar grading.
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Comparison of Three Quantum Correction Models for the Charge Density
in MOS Inversion Layers
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Abstract. In order to obtain high density integration for MOS devices, it is necessary to reduce the gate oxide
thickness and increase the substrate doping concentration. This results in a narrow and deep potential well in
which electrons are confined at the semiconductor-insulator interface and it becomes necessary to take quantum
mechanical (QM) effects into consideration. In this study, we compare three well established quantum correction
models, i.e., the Hansch model (Hinsch W. et al. 1989. Solid State Electronics 32(10): 839-849), the modified local
density approximation (MLDA) model (Paasch G. and Ubensee H. 1982. Phys. Stat. Sol. (b) 113: 165-178), and
the density-gradient (D-G) model (Ancona M.G. and Tiersten H.F. 1987. Physical Review B 35(15): 7959-7965;
Ancona M.G. 1997. JTCAD 97-100) in terms of accuracy for predicting the inversion layer charge distribution.

Keywords: quantum mechanical effect, charge distribution, modified local density approximation, density-

gradient theory

1. Introduction

When the quantum effect becomes noticeable in the
deep-submicron MOSFETs, the Schrédinger-Poisson
(S-P) equation is the most accurate way to handle the
problem of the inversion-layer charge density, but it is
not suitable for engineering applications especially for
the two- and three-dimensional cases. Thus it is im-
portant to find a method which can produce a result
similar to the quantum mechanically calculated one
but requires only about the same computation cost as
that of the classical calculation. In this work, different
methods of quantum correction to the inversion layer
charge density calculation have been studied. Calcula-
tions are carried out for 1-D Polycrystalline-Insulator-
Semiconductor MOS structure with (100) oriented p-
type silicon as substrate. No penetration of the wave
function into the oxide is assumed. The carrier concen-
tration for poly gate is 5 x 10! cm™3, the oxide thick-
ness f,, is 3 nm and different doping profiles are used for

*Present address: IBM, SRDC, 2070 Rte. 52, Hopewell Junction,
NY 12533, USA.

the silicon layer. The Fermi-Dirac distribution and the
standard effective-mass approximation in a parabolic
band are assumed. The parameter m; appearing in the
models has been determined by calibrating with the
Schrédinger-Possion (S-P) solutions.

2. Physical Fundamentals for Three Quantum
Correction Models

Hinsch et al. (1989) gave the expression of the electron
concentration with the QM correction as

nom(x) = Ne exp(_%ﬁi>

X2
x|1—exp _A_z ,
th

2o\
= =——1, 1
th <2m;§kBT) 0y

where A, is the thermal wavelength, 2, is the effective
electron mass (m* = my x 9.11 x 10731 kg), m; is an
adjustable parameter, x represents the distance from
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the Si/SiO; interface, N, is the conduction band
effective density-of-states and ¢y is the Fermi level.
This model gives an explicit expression for ngy and
therefore it is easy to be included in Poisson’s equation
by simply using ngy instead of classical n.

Paasch and Ubensee (1982) first proposed the
MLDA model and extended this method to the case
where the potential has a large and abrupt change at a
certain plane. When the QM correction is incorporated,
the electron density near the Si/SiO; interface can be
approximated by leong, Logan and Slinkman (1998)

) d§ S
noy(x) = N, /(; TF i
x {1 - Zj0(2.\'\/.§_/kf,)/6},
i=1
k= LD, @

where jj is the zeroth-order spherical Bessel function
and A, is as defined in the Hiansch model.

The D-G model advanced by Ancona and his
coworkers is an approximate approach to the QM cor-
rection of the macroscopic electron transport equation.
In this approach, an extra term is introduced in the car-
rier flux by making the equation of state for the electron
gas density-gradient dependent (Ancona and Tiersten
1987, Ancona 1997), i.e.,

2

.-IA,, = —qnpu, V¥ +qD,Vn — qnu,,V<2b,,M)
i

3

where b, = h? /(12gn1}) is the (linear) density-gradient
coefficient. In this study, b, is treated as a fitting pa-
rameter. The D-G theory-based equation in 1-D under
the non-tunneling condition is given by

dz)

2, =5

+[¥—¢r—TWMly=0, y=+n, 4

where T(y) = I/,(yz/NC) for the Fermi-Dirac statis-
tics; T(y) = In(y?/N¢) for the Boltzmann statistics.
We apply a mixed discretization scheme (Wang 2001)
as following. For any node j <i, f,; is discretized
linearly; and for the nodes j > i, the non-linear dis-
cretization scheme (Ancona and Biegel 2000) is ap-
plied. The node i designates the approximate position
of the boundary layer. Assuming the Boltzmann statis-
tics is valid and that [; — ¢; — 21In(y;)] is a constant

within the integration interval, we have

y=y- 21’%/1, h=x-x;.;, xX€ [.\','_l,.\',']
1
y= )',-(Xif—l) 0#;—!, h=x_x;, x € v xigr]
i)
%)
and
1 i+ Yi = Yi-1
fui= [I ; P( s )()’I+I —yi) - _1*2—[
lip1hi Vi h;

+ i —dr — T ()]

% 1 h, i
[4y,+4y, |+y,———+' 2Q<y+'>], (6)
h; ¥i

where

1

P(z) = v/zB(In(z)), Q(z) = 2BAnLZ)’

B = exp(z) — 1

It is also found that the electron concentration in the
boundary layer (<5 A) under the inversion condition is
proportional to the square of the distance to the Si/SiO»
interface, i.e., n o« x> (Wang 2001). Based on this fact,
we implemented this mixed discretization scheme in
which the linear scheme is used in the boundary layer
and the nonlinear scheme is used in the rest of the
silicon region.

3. Simulation Results

The poly-oxide-silicon MOS system is solved by 1-D
S-P equation and other three theoretical quantum cor-
rection models described in the previous section. The
solution obtained by the eight-subband S-P approxima-
tion is considered as the “exact” solution and used as a
reference for comparison. The comparison criterion is
based on the average displacement (the first moment)
of charge distribution away from the oxide-silicon in-
terface. Three types of MOS structures, which differ
by their doping profiles in the silicon layer, are consid-
ered. The first structure has a uniform doping profile
N, =1 x 10"7 cm™3. For the second one, we assume
a low-high (retrograde) step doping profile, with sur-
face doping N, = 1 x 10'7 cm™ and abruptly rising to
Ny =1 x 10" cm=2 at a 10 nm depth from the inter-
face. The last one assumes a Gaussian doping profile
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Figure 1. The optimum parameter m; for the different struc-
tures based on different models. (a) Constant doping profile with
No=1x10" cm™3. (b) Low-high (retrograde) doping profile, with
Ne=1x 10'7 cm™? near interface and abruptly rising to Ny =
1x 10" cm™3 at x=10 nm. (¢) Gaussian doping profile with
Nay=2x10"em™3,D; =2x10'2em=2,and R, = AR, = 10 nm.
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Figure 2. 'The optimum parameter m;. for the different structures
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model.
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Figure 3. error =|X — ¥;..p|/%—p vs. gate voltage by using the
fixed optimum ;. obtained at Vy =2V and Ny = § x 10'7 em™?
for different doping distributions in Si layer. (a) Constant doping
profile with N, =1 x 107 em™*, (b) Low-high (retrograde) dop-
ing profile, with N, = 1 x 10'7 cm™* ncar interface and abruptly
rising to Ny = 1 x 10'% ecm™ at x =10 nm. (¢) Gaussian dop-
ing profile with N,, =2 x 10'7 em™*, D; =2 x 10'? em~2, and
R,=AR,=10nm.

with a standard ion-implantation process given by

NG = No + D, exp[_ (x — R,,)z] o
- - an {___MRP 2AR;‘: M

in which N,, =2 x 107 em™3, D; =2 x 10 cm ™2,
and R, = AR, = 10 nm.

Using m; as an adjustable parameter to best fit the
“exact” solution, for the non-tunneling boundary con-
dition at the interface, we have found that m; for the
D-G model is least sensitive to the substrate doping con-
centrations and applied gate voltages, followed next by
the MLDA model. The Hénsch model is the worst. as
shown in Figs. 1(a—) and 2(a—c). If we choose the op-
timum parameter m; at a uniform doping profile with
N, =5 x 10" cm™3, V, = 2V as a reference and ap-
ply the same m;. to other doping profiles, it can be seen
that D-G method introduces the smallest error among
the three models, as shown in Fig. 3(a—c). However, the
Hiinsch model is simple and easy to implement, which
can be used to calculate the initial guess for the other
models. In terms of numerical computation, the MLDA
model involves an extra integration but does not pose
any convergence problem. Although the D-G model
produces the solution closest to that of Schrédinger’s
equation, special care is needed for the discretization
scheme in order to be compatible with the boundary
conditions (Wang 2001, Tang, Wang and Li 2001).

4. Conclusions

The Hinsch model and the MLDA approximation give
an explicit expression for ngy which can predict the
S-P solution by adjusting the parameter n. But this
parameter my, is sensitive to the substrate dopings and
applied voltages, especially for the Hinsch model. The
D-G method does not give an explicit expression for
ngm. Instead, an additional perturbation term, which
is often referred as ‘quantum diffusion’, is introduced
in the continuity equation. Since a higher-order PDE
with a singular perturbation term is involved, a special
numerical treatment is needed for discretization. Erro-
neous results may be caused from using the non-linear
fitting scheme with incompatible boundary conditions
(Tang, Wang and Li 2001). There may be still room for
improvement in the numerical solution scheme for the
solution of D-G equations in multi-dimensions.
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Can the Density Gradient Approach Describe the Source-Drain Tunnelling
in Decanano Double-Gate MOSFETs?

J.R. WATLING, A.R. BROWN AND A. ASENOV
Device Modelling Group, Department of Electronics and Electrical Engineering, University of Glasgow,
Glasgow G12 8LT, Scotland, UK
J.Watling@elec.gla.ac.uk

Abstract. As MOSFETs are scaled into the deep sub-micron (decanano) regime, quantum mechanical confinement
and tunnelling start to dramatically affect their characteristics. It has already been demonstrated that the density
gradient approach can be successfully calibrated in respect of vertical quantum confinement at the Si/SiO; interface
and can reproduce accurately the quanturn mechanical threshold voltage shift. In this paper we investigate the extent
to which the density gradient approach can reproduce direct source-drain tunnelling in short double gate MOSFET

devices.
Keywords:

1. Introduction

As MOSFETs are scaled into the deep sub-micron
regime, quantum mechanical (QM) confinement and
tunnelling start to dramatically affect their character-
istics. However, at present, complete quantum sim-
ulations involving, for example, Wigner or Green’s
functions are expensive and therefore not suitable for
inclusion within CAD simulation tools. The common
practice is therefore to introduce economical first-order
quantum corrections into conventional drift-diffusion
simulators. This can be accomplished using the well-
established density gradient (DG) formalism (Ancona
and Iafrate 1989).

In this paper we use a double gate MOSFET with
simple architecture and gate lengths in the range 30
to 6 nm as vehicle for this study. The paper in-
vestigates the extent to which the DG approach can
reproduce the phenomena of source-drain (S-D) tun-
nelling in extremely short devices. Experimental evi-
dence for S-D tunnelling has been observed (Kawaura
et al. 2000) and manifests itself as a degradation of
the subthreshold current slope and anomalous tem-
perature dependence. Properly scaled conventional
MOSFETs with 20 nm channel lengths have al-
ready been demonstrated by leading semiconductor

simulation, density gradient, tunnelling, double gate MOSFET

manufacturers (Chau 2001). It is, however, common
wisdom that the scaling of the field effect transistor
below this milestone requires intolerably thin gate ox-
ides and unacceptably high channel doping, there-
fore advocating a departure from the conventional
MOSFET concept. One of the most promising new de-
vice structures, scalable to dimensions of 10 nm and be-
low is the double or wrap around gate MOSFET. Thus
it is likely that in these structures direct S-D tunnelling
may become significant. Additionally in a double gate
structure the current is essentially one-dimensional,
making theoretical study and calibration easier than
in a conventional MOSFET device structure.

The next section describes the double gate MOSFET
structure considered in this work. Section 3, describes
the now well-established DG formalism, and to what
extent this approach may include tunnelling. Our re-
sults and evidence for source-drain tunnelling are pre-
sented in Section 4, while Section 5 presents our
conclusion and discussions.

2. Double-Gate Structure
Here we have studied an archetypal double gate

MOSFET structure, similar in design to that by
Ren et al. (2000). We have investigated a family of
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Figure 1. Schematic representation of the double-gate MOSFET
structurc considered in this work.

double-gate MOSFETs illustrated schematically in
Fig. 1, with channel lengths, L ., ranging from 30 nm
down to 6 nm, with a width, W, of 30 nm. The
channel thickness, T.q, and oxide thickness, ¢, are
both fixed at 1.5 nm. The source and drain junctions
are 10 nm and doped at 1 x 10°° cm~ the channel is
lightly doped at 1 x 10'® cm~3,

It is this lightly doped channel, that makes the dou-
ble gate structure resilient to random dopant fluctua-
tions, which we have studied in another paper (Brown,
Watling and Asenov to be published).

3. Density-Gradient Formalism

The density gradient method may be derived from
the one particle Wigner function (Carruthers and
Zachariasen 1983):

-~

A
V-V fk, T 1) — ;V(r)sin[ : : "]
T

afk.r,t)
or coll

afk,r, 1)
ot

><f(k.l‘,1)=( (M

Quantum effects are included through the inherently
non-local driving potential in the third term on the
left-hand side. Expanding to first order in %, so that
only the first non-local quantum term is considered,
has been shown to be sufficiently accurate to model
non-equilibrium quantum transport and also for the
inclusion of tunnelling phenomena in particle based
Monte Carlo simulators (Tsuchiya and Miyoshi 2000,
Tsuchiya, Fischer and Hess 2000). The additional, non-
classical, quantum correction term may be viewed as a
modification to the classical potential and acts like an
additional quantum force term in the particle simula-
tions, similar in spirit to the Bohm interpretation. In the

case of a tunnelling barrier, the additional term acts to
raise the classical conduction band potential profile to
the left of the barrier and lower the classical potential
barrier, for carriers flowing from left to right.

The density gradient approximation maybe derived
in a manner similar to that for deriving the drift dif-
fusion approximation for the Boltzmann Transport
Equation (Snowden 1989). The classical electronic
equation of state is thus modified so that it includes
an additional term that is dependent on the gradient of
the carrier density:

v2Jn kgT n
2b,—— = ¢, — ——In{ — 2
=g -y () @
where
" 12gmr”

It remains unclear however, if the approximations re-
quired in deriving the DG approach remove the ability
to be able to model tunnelling phenomena, there stilis
remains controversy over whether the DG and other
similar approaches such as effective potential (Ferry,
Akis and Vasileska 2000) can model tunnelling. How-
ever, it is clear that the DG formalism will be unable to
cope with cases where tunnelling is dependent on the
coherent phase behaviour of electrons, as in the case
of resonant tunnelling. We may therefore consider that
DG, if it can account for tunnelling, does so in what
may be termed the scattering-dominated limit {Ancona
2001). Here, we have perform a series of numerical
experiments to see if DG can, at least qualitatively, ac-
count for the impact of source-drain tunnelling on the
subthreshold /p-V characteristics of very short dou-
ble gate MOSFETs.

4. Results

It has already been demonstrated (Asenov et al. 2001,
Watling et al. 2001) that the DG approach can be suc-
cessfully calibrated in respect of vertical quantum con-
finement at the Si/SiO, interface and can reproduce
accurately the QM threshold voltage shift by adjusting
the effective mass in the vertical direction. An effec-
tive mass of 0.19m1, is found to give the best agreement.
Here we investigate through a variety of numerical ex-
periments the extent to which the DG approach repro-
duces at least qualitatively the impact of source-drain




tunnelling on the /p-Vy characteristics and the sub-
threshold slope in short devices and possibly calibrated
by means of the lateral effective mass.

The short channel lengths and channel thickness
means that quantum effects become significant, thus
making the use of classical simulations untrustworthy.
It is therefore mandatory to include quantum correc-
tions, such as through the DG formalism. The signif-
icance of the quantum effects can clearly be seen in
Figs. 2 and 3.

Figures 2 and 3, show the corresponding classical
and quantum charge density profiles respectively, in
the direction normal to the gate, it can be seen that
the quantum distribution tends to zero at the Si/SiO,
interface while the classical distribution peaks at the
Si/Si0, interface.
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Figure 2. Classical electron concentration profile through the cen-
tre of a 30 x 30 x 1.5 nm double-gate MOSFET.
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Figure 3. Quantum (density gradient) electron concentration pro-
file through the centre of a 30 x 30 x 1.5 nm double-gate MOSFET.
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10°F

Figure 4. Ip-V¢ characteristics for a double gate structure, with
gate lengths ranging from 30 nm down to 6 nm, obtained from our
classical and density gradient simulations. Vp = 0.01 V and V is
applied to both top and bottom gate contacts.

The quantum confinement effects in the DG case
leads to a large quantum mechanically threshold volt-
age shift, (~0.3 V for the 10 nm channel device), shown
in Fig. 4.

Using a constant value (0.19m) for the effective
mass in all directions, we observe that the subthresh-
old slope in the DG simulations degrades significantly
as the channel length is decreased, while in the classi-
cal simulations the subthreshold slope remains nearly
constant with channel length. For a channel length of
30 nm the classical and DG subthreshold slopes are
almost identical. However, as the gate length is shrunk
down to 10 nm and below the subthreshold slope degra-
dation in the DG simulations becomes significant as has
been observed by other researchers (Lundstrom 2001).
All of these observations provide an indication that S-D
tunnelling, is included to some extent in the DG simu-
lations.

Further evidence can be gain by looking at the tem-
perature dependence of the subthreshold slope. Clas-
sical MOSFET theory dictates that the classical sub-
threshold slope S is given by Taur and Ning (1998):

d(log o 1) ) - kgT cd,,,>
§= (=) ~232 (1 3
( dv, q + Cox )

Thus the classical subthreshold slope depends lin-
early on temperature, as we would expect as the clas-
sical subthreshold current is essentially thermionic in
nature, so it has an approximately exponential depen-
dence. However, any current due to tunnelling will have
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Figure 5. Ip-V¢ characteristics for a 30 nm channel length double
gate structure from classical and density gradicnt simulations, for a
range of temperatures. Vp = 0.01 V and V{; is applied to both top
and bottom gate contacts.
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Figure 6. 1p-V¢; characteristics for an 8 nm channel length double
gate structure from classical and density gradient simulations, for a
range of temperatures. Vp = 0.01 V and V; is applied to both top
and bottom gate contacts.

a much weaker dependence on temperature (Kawaura
et al. 2000). Figures 5 and 6, show the temperature
dependence of the subthreshold slope in both classical
and DG simulations, for channel lengths of 30 nm and
8 nm respectively.

We observe here that the temperature dependence of
the subthreshold slope is similar for both the classical
and DG simulations in the 30 nm gate length device,
in agreement with Eq. (3). The shift in the /,-Vj; is
the QM threshold voltage shift caused by quantization
in the vertical direction, as illustrated in Figs. 3 and
4. However, for an 8 nm gate length device, there is a

w' 1 .
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Figure 7. 1~V characteristics for and 8 nm channe! length dou-
ble gate structure obtained from our density gradient simulations, at
300 K for different lateral effective mass. Vp = 0.01 V and Vi; is
applicd to both top and bottom gate contacts.

noticeable degradation of the subthreshold slope in the
DG simulations as compared with the classical sim-
ulations, indicating the existence of a second current
transport mechanism in subthreshold region in addi-
tion to the classical over-barrier (thermionic) current.
This is further supported by the observation that in the
DG simulations the subthreshold slope is nearly inde-
pendent of temperature. These observations are again
consistent with the possibility of a source-drain tun-
nelling current, which is less sensitive to temperature
than a thermionic emission current.

All the results presented so far have been of a qual-
itative nature, as we have assumed the same effective
mass in the lateral direction, as in the vertical direc-
tion. However, the lateral effective mass would need
to be calibrated in respect of source-drain tunnelling,
in order to be able to perform quantitative simula-
tions. We have therefore performed simulations, where
we have varied the lateral effective mass, shown in
Fig. 7.

We observe that the increase of the lateral effective
mass results in an increase in the subthreshold slope as
expected since the equation of state in the DG formal-
ism (Eq. (2)) becomes more classical-like in the lateral
direction. There is also a slight shift in the threshold
voltage caused by a mixing affect of the effective mass
in the vertical and lateral directions.

5. Conclusion

We have performed a variety of numerical experiments
to investigate whether the density gradient approach



can model source-drain tunnelling in double gate
MOSFETs in respect of the subthreshold current
characteristics in decanano scale MOSFETs. A vari-
ety of double gate MOSFETs, with channel lengths
ranging from 30 nm to 6 nm have been studied. We
observe that as the channel length is reduced, there is a
corresponding reduction in the subthreshold slope, in
line with the available experimental evidence (Kawaura
et al. 2000). The temperature dependence of the sub-
threshold slope has also been studied, it is observed
that temperature dependence of the 30 nm MOSFET is
in agreement with standard MOSFET theory, while the
subthreshold slope for the 8 nm device is nearly inde-
pendent of temperature, presumably due to the larger
source-drain tunnelling in the smaller device, which is
less temperature sensitive than the classical thermioni-
cally dominated subthreshold current. All of these facts
are in agreement with experimental observations of
direct-source drain tunnelling.

While it remains an open question whether den-
sity gradient can describe quantitatively the tunnelling
phenomena, the series of computational experiments
performed here provide evidence that, at least qualita-
tively, this approach can reproduce the important as-
pects of the Ip-V characteristics that are consistent
with the presence of source-drain tunnelling.

Calibration of the vertical and lateral effective mass,
with respect to both the quantum mechanical thresh-
old voltage shift and source-drain tunnelling, may
make it possible to perform quantitative quantum sim-
ulations, using density gradient. However, this may
be difficult as there is clearly some mixing between
the lateral and vertical masses, as revealed in our
simulations.
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Abstract. We present here a particle description model for quantum tunneling effects. A quantum force has been
formulated based on a truncation to first order of the expansion form of the Wigner transport equation, and has been
incorporated into the semiclassical Monte Carlo simulation. The combined Monte Carlo/quantum force approach

was applied to simulations for resonant-tunneling effects.

Keywords: quantum force correction, Monte Carlo simulation, Wigner transport equation, tunneling

1. Introduction

In usuval quantum approaches, the physical state of
an individual system is specified by a wave func-
tion obtained from the solution of Schrédinger equa-
tion. For practical device simulations at normal tem-
peratures, the use of a full quantum wave theory is
still problematic because of the difficulty in includ-
ing realistic scattering models. In alternative, a parti-
cle description of quantum theory is possible, in terms
of a quantum potential/force correction (Bohm 1952,
Tsuchiya and Ravaioli 2001). In this case, the no-
tion of a well-defined particle trajectory is retained,
while the quantum force correction modifies the po-
tential energy profile to account for quantum effects. A
particle-based approach coupled with quantum force
correction is very attractive for practical simulation
of nanoscale semiconductor devices (Tsuchiya and
Ravaioli 2001). We present here a quantum correction
approach derived from a simplification of the Wigner
transport equation where the dynamics of particles can
be treated as in semiclassical Monte Carlo (MC) simu-
lation with a nonlocal quantum force. The model is

*To whom correspondence should be addressed.

applied to MC particle simulation of resonant-
tunneling effects.

2. Quantum-Corrected Monte Carlo

The transport equation for the Wigner distribution func-
tion is given in the form of a modified Boltzmann trans-
port equation (BTE) as Wigner (1932)

af 1 oo (_I)OH—I
TR AR Mo
% (Vr . vk)2a+lUf — (%) (1)
at ) .

where U denotes the spatially varying potential energy.
Note that Vi operates only on f and V, operates only
on the potential U. An essence of the Wigner formalism
is the presence of quantum corrections through the in-
herently nonlocal driving potential, in the expansion of
the fourth term on the left-hand side of Eq. (1). Here, we
indicate with Q; the lowest-order quantum correction
term obtained by considering only & = 1 in the expan-
sion of Eq. (1). The lowest-order term gives a major
contribution in the quantum mechanical corrections.
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For a three-dimensional problem, Q) is written, as
1 6U3f+8U8f AU f
241 3 9k} 8/‘1 9z Ak}

U ¥f %au 63f+
Tax2dy ak2ak, T ax20z dk2dk.
(2)

0, =

Supposing that the system is relatively close to
equilibrium, we introduce for simplicity a displaced
Maxwell-Boltzmann distribution in Eq. (2), as f =
exp{—BlEx_i + U(r) — E;1}, where E is the Fermi
energy, 8 =1/kpT, E,_j the carrier’s energy and k the
average momentum of the displaced distribution func-
tion. By using the above distribution function with the
effective mass approximated carrier’s energy, we can
obtain relations, as Tsuchiya and Ravaioli (2001)

%} B ﬁh =yl —k)f )
%% = [y2tk = k)2 = 3y %f_ )

and
PU _ 18 () o

3x3 B ax3

where n is the carrier density and y, = gh?/m . Equa-
tions (4) and (5) are obtained by using Eq. (3). Sim-
ilarly, we can express the other terms of Eq. (2), and
then obtain a quantum-corrected BTE, as Tsuchiya and
Ravaioli (2001)

Z—f+v V. f+ ( V.U +F) .-V f= <2’:)

M

Quantum effects are incorporated in terms of quantum
mechanical driving forces F¢ = (F2, F2, F£), as

o_ 2 -1 : 2

2472 i
+ 3()/). AI\_\, - y).) W

+3(y2 AA2~y) ]ln(n)} (8)
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,
+ 3(V:Akf V\) éT
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+3(y2 Ak — v2) 5,—] 1n(n)] ©
3 (-1 2
82

+3(r2AR2 - y,) ~] ln(n)} (10)

where y; = Bh2/m; and Ak; = ki — k; (i = x, ¥, 2).
k; is again the average momentum of the distribution
function depending on the position.

The momentum components, k., k,, and k. are ex-
plicitly included in Eqs. (8)-(10). An additional ap-
proximation can be made by assuming a thermal equi-
librium energy for the momentum terms as h2(k; —
ki)?/2m; =~ kpT/2 = 1/2B. Then, we obtain the re-
lation of Ak? ~ 1/y;, and the corresponding quantum
forces are simply represented by

2 w2 8%In(n)
FQ = —{ —————~ 11
8 ox ( 12m, 0x2 > (n
0 B2 3% In(n)
Fe= —( 12
Y8y ( 12m,  dy? ) 12
3/ h 8%Inn)
Fe = — 13
9z <l2m 0:2 ) (13)

This formulation differs from the results in Egs. (8)-
(10) in the fact that it gives a force which depends only
on the position but not on the momentum of particles.
The simplified quantum forces given by Egs. (11)-(13)
could be useful, for instance, for simulation of size-
quantization in the channel of ultra-small MOSFETs.
Based upon Eq. (7), the velocity and the force for
particles during free flights are given, respectively, as

dr _ dk

1
— =, v,U + F@ 14
7 \J i ( + F*) (14)

The velocity equation is the same as used in the standard
MC technique, but the force equation is modified so that
the particles evolve under the influence of the classical
driving force —V, U, plus the quantum force F€. Qual-
itatively, the effect of the quantum force correction is to
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Figure 1. Qualitative effects of quantum force correction for sin-
gle barrier structure. The solid line and the dashed line denote the
classical potential and quantum-corrected potential, respectively.

smooth out sharp changes in the potential as shown in
Fig. 1, where the solid line and the dashed line denote
the classical potential and quantum-corrected potential,
respectively. Consequently, the tunneling and quantum
confinement effects can be incorporated in semiclassi-
cal carrier transport models. Note that we do not solve
the Schrodinger equation and do not introduce a wave
packet representation in quantum structures (Baba,
Al-Mudares and Barker 1989, Oriols et al. 1998). A
full particle description of quantum processes could be
attempted in practical simulations.

3. Resonant-Tunneling Simulation

We present here the results of computational exper-
iments for resonant-tunneling particles. We consider
a double-barrier structure consisting of GaAs and
AlGaAs, where quantum interference effects can be
carefully identified. In the calculations, we used

82 In(n)

J0f -1 _
F¢ = —{——[y,?(kx — ko)~ 3yx]—a—xz—

¥ ax | 248 } (15)
which corresponds to a one-dimensional version of
Eq. (8)—(10). The barrier height and width are 0.22 eV
and 2.5 nm, respectively, and the quantum well width
is 4.5 nm. We simulate the electron transport in the I'
valley at room temperature (300 K). The doping den-
sity in the GaAs electrodes is taken to be 10'8 cm~=3, As
scattering processes we consider LO phonons, acous-
tic phonons, and ionized impurity scatterings. Figure 2
shows a snapshot of the computed electron distribu-
tions in space and energy at zero bias voltage, where
(a) corresponds to the classical MC simulation and (b)
to the quantum-corrected MC simulation. For refer-
ence, the conduction band profiles are also plotted with
solid lines. Note that the vertical axis denotes the total

Energy (eV)

=0V classical
0 10 20 30 40 50 60
- Distance (nm)
@

0.4 e

-0.1

Energy (eV)

(=}

V=0V quantum

0107656564656 "60
Distance (nm)
(b)

Figure 2. Electron distributions in space and energy of double-
barrier resonant-tunneling structure at zero bias voltage. (a) Corre-
sponds to the classical MC simulation without quantum force and (b)
to the quantum-corrected MC simulation with quantum force. The
conduction band profiles are also plotted with solid lines, and the ver-
tical axis denotes the total electron energy including the contribution
of quantum force (quantum potential).

electron energy, including the contribution of quantum
force (15). In Fig. 2(b), the quantum tunneling parti-
cles are found inside the potential barriers, in addition
to the thermally excited ones. This is because the poten-
tial barrier is effectively lowered due to the quantum
force correction as explained in Fig. 1. We can also
observe the formation of quantized subbands in the
central quantum well. The quantum force correction
prevents the electrons from occupying energy states
below a certain level, as imposed by the formation of
quantized subbands in the well. We estimated from the
particle distribution in Fig. 2(b) the electron’s energy
distribution function confined in the quantum well to
compare with a tunneling probability. Figure 3 shows
the estimated distribution function of electrons in the
quantum well, corresponding to Fig. 2(b). The dashed
line indicates the corresponding tunneling probability
as a function of energy calculated by using a trans-
fer matrix solver of the Schrédinger equation. For the
transfer matrix calculation, we used the potential distri-
bution data obtained from the MC simulation. The peak
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Figure 3. Distribution function of clectrons in quantum well. The
dashed line indicates corresponding tunneling probability calculated
by using a transfer matrix solver of Schrédinger equation.

energy corresponds to the quantized energy level in the
well and the shape of the function denotes the resonant
energy broadening. We can see that both methods pre-
dict the identical quantized energy of 85 meV. For the
resonant energy broadening, the MC simulation gives
slightly broader result, especially in the lower energy
region. This should be due to the phonon emission scat-
tering of electrons, which is effectively included in the
quantum-corrected MC results. Since the system is at
the thermal equilibrium for Figs. 2 and 3, the quantum-
corrected MC and transfer matrix results are in good
agreement, although the MC results fluctuate some-
what in the higher energy region due to the discreteness
of the particle energy distribution.

Next, we present a nonequilibrium simulation with
applied external bias. Figure 4 shows the computed
electron distribution in space and energy at a bias volt-
age of .13 V. The particle distribution confined in the
quantum well is found to shift toward the lower energy
side than that in Fig. 2(b), due to the influence of bias

0.4
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Energy (eV)
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_02 N L 1 1 " i
0 10 20 30 40 50 60
Distance (nm)

S

Figure 4. Elcctron distribution in space and energy at 0.13 V sim-
ulated by using the quantum-corrected MC method. The conduction
band profile is also plotted with solid line. and the vertical axis de-
notes the total electron energy including the contribution of quantum
force (quantum potential).
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Figure 5. Simulated current-voltage characteristics. (a) Corre-
sponds to the MC simulation results and (b) to the full Wigner func-
tion method without scattering. The solid line and the dotted line in
(a) correspond to the quantum-corrected MC and the classical MC re-
sults, respectively. For comparison. we plotted with the dashed line
the result calculated by using the simplified quantum force model

(an.

voltage. This corresponds to the downward shift of tun-
neling probability spectrum when the bias is applied.
Since the current flows largely in the case of Fig. 4,
the confined particle concentration becomes fewer than
that at thermal equilibrium (Fig. 2(b)).

Figure 5 shows the simulated current-voltage char-
acteristics, where (a) indicates the results from the
MC simulations and (b) from the full Wigner func-
tion method without scattering. The solid line and the
dotted line in Fig. 5(a) correspond to the quantum-
corrected MC and the classical MC results, respec-
tively. For comparison, we plotted with the dashed line
the result calculated by using the simplified quantum
force model (11). The quantum-corrected MC model
(the solid line) indicates a step-like nonlinear behav-
ior around V =0.13 V. The similar behavior is weakly
visible also in the simplified model (the dashed line).
For the present device structure, the current peak is ex-
pected to appear at 0.13 V from the ballistic simulation
result as shown in Fig. 5(b). The nonlinear curve in
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Fig. 5(a) results from the double barrier structure. The
quantum-corrected semiclassical simulation should be
capturing the limit of sequential tunneling, in the pres-
ence of strong scattering. This points to need for more
simulations at lower temperatures, where phonon scat-
tering decreases, to characterize completely the be-
havior of the present model when transport transfers
from sequential to resonant tunneling. Further model
development may be needed in conjunction with care-
ful comparisons with ballistic quantum results as in
Fig. 5(b).

4. Conclusion

We have presented a particle description model for
quantum tunneling effects based upon the Wigner’s
transport formalism, where the dynamics of particles
can be treated as in semiclassical Monte Carlo sim-
ulation with a quantum force correction. The model
was applied to the simulation of particle transport in
double barrier structures where resonant tunneling is
present. The simulations show the presence of confined

particles inside the quantum well and a nonlinear /-V
characteristics at 300 K was obtained under strong scat-
tering conditions. Further investigations at low tem-
peratures will be required to understand how resonant-
tunneling phenomena may be accounted for completely
in particle simulations.
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