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AFIT/GAP/ENP/03-06 

Abstract 

Phase conjugation properties of stimulated Brillouin scattering (SBS) in a short 

multimode fiber have been investigated with an eye towards its application for a multi-

channel double pass master oscillator power amplifier (MOPA) system.  In particular, 

properties of the SBS beam to compensate for the axial and transverse phase distortion 

between individual channels in a multi-channel amplifier system were studied.  Two 

optical paths were created by covering half of the laser beam with a microscope slide, and 

also by spatially splitting the wavefronts with a 4 prism set-up.  The Stokes beams that 

traversed the same optical paths as the pump beams were shown to compensate the phase 

distortion introduced by the different optical paths. 
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PHASING A DUAL OPTICAL PATH SYSTEM USING AN OPTICAL FIBER AS 

A PHASE CONJUGATE MIRROR 

 

1 Introduction 

1.1. Motivation 

Laser devices have become common in our society, and are used in many 

different applications.  Examples range from the medical field where lasers are used to 

correct vision, the scientific research area where the OMEGA laser system is used to 

cause thermonuclear fusion, to the average household where lasers read compact discs to 

play music.1  Even with the advances that have already been made in the laser field, there 

is still much more to be gained.  The department of defense recognizes this, and has 

deemed laser systems to be critical to the modern military.2  

A particular area of interest is high energy lasers.  One approach to achieving high 

energy lasers is to use amplifiers to increase the energy.  To increase the energy beyond 

the maximum level achieved with one amplifier, multiple amplifiers can be used in 

parallel.  Unfortunately, splitting the beam into multiple paths comes with a price.  When 

the beam is split and travels along separate optical paths, a phase delay known as a piston 

error is introduced between the beams.  Therefore, upon recombination of the beams, the 

wavefronts are no longer phased.  In order to correct for the piston errors that arise, a 

double-pass MOPA system which utilizes a phase conjugate mirror can be used instead 

of the single-pass MOPA system. 
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In a multi-channel double pass MOPA, the beams traveling separate paths are 

reflected and passed back through the amplifiers where they are finally recombined.  If a 

conventional mirror is used to reflect the beams, the piston errors become greater due to 

the beams traveling the separate paths twice.  On the other hand, if a phase conjugate 

mirror is used, the piston errors introduced from the first pass through the separate paths 

are eliminated when the beams travel back along their same paths.  An effective way to 

create a phase conjugate mirror which will eliminate the piston errors is through 

stimulated Brillouin scattering (SBS).3  In addition to eliminating the piston errors, SBS 

phase conjugation also provides a way to compensate for aberrations in the optical 

system.4 

The advantage of phasing the output beams lies in the intensity of the far-field 

beam spot.  Due to diffraction, the far-field spot size of a beam is inversely proportional 

to the spot size of the output beam.  Therefore, a smaller output beam will have a larger 

far-field spot. In an N-channel MOPA system that has not been phased, the output 

consists of N independent output beams.  The far-field patterns of each beam overlap, 

yielding N times the intensity of a single beam.  When the N beams are phased, the 

output beam is a single larger beam, which leads to a smaller far-field spot.  The far-field 

intensity in this case is N2 times the intensity of a single beam.  

Experiments have been done to test the phasing ability of SBS phase conjugation 

in systems where the beam is forced to travel multiple paths.  This would be similar to a 

MOPA system without the amplifiers.  In 1988, Moyer and others demonstrated the 

phasing ability of SBS phase conjugation in a system where the beam traveled two 

separate paths.  The beams were focused into a methanol SBS cell in order to produce the 

SBS.3  A drawback when using SBS cells as a phase conjugate mirror is the small 
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tolerance for misalignment within the cell.  In order to obtain phase conjugation for both 

beams, they must to be focused into a common focal volume, which is a very difficult 

task.  Sternklar and others showed that when the plane of the beam paths is in the 

horizontal direction, slight vertical misalignment diminished the SBS output 

significantly.5  

Another medium in which SBS can occur is optical fibers.  An interesting 

property of fibers is that the length of the fiber has a bearing on the characteristics of the 

SBS. In long multimode optical fibers, SBS generates a Stokes beam that propagates in 

the fiber LP01 mode, making it good for beam cleanup.  An AFIT group showed that an 

aberrated pump beam coupled into a long multimode optical fiber generated a Gaussian-

like Stokes beam.6  On the other hand, in short fibers the SBS produces a Stokes beam 

that is the phase conjugate of the input, or pump beam.7  It is this property that is useful 

for the MOPA system, and the motivation for this project.  

1.2. Overview 

The goal of this project was to investigate the phasing properties of the SBS from 

a short multimode optical fiber when the fiber was used as a phase conjugate mirror for a 

system in which the pump beam has been split into multiple paths and is recombined.  

Specifically, this investigation was oriented towards demonstrating the ability of SBS 

phase conjugation from the fiber to eliminate the piston errors introduced when one beam 

is split and forced to travel separate optical paths.  

The first part of the investigation was to simply achieve phase conjugation using 

the optical fiber.  Phase conjugation was determined by how well the fiber could correct 

for phase distortions introduced by placing an aberrating medium in the beam path.  This 
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investigation was accomplished using two different aberrating mediums, a stretched piece 

of plastic and a -50 cm focal length lens.  The investigation process is as follows.  A laser 

beam was passed through the aberrating medium and then, either retro-reflected using a 

high reflector or coupled into an optical fiber to generate a backward traveling Stokes 

wave through SBS.  The backward traveling beam, either a reflection or Stokes beam, 

passed back through the aberrator and the profile was recorded using a frame grabber.  

The beam profiles with the aberration medium in the beam path were compared with 

reference profiles which were created by removing the aberrating medium from the 

system.  Since there was only a short amount of time to complete the project, a more 

rigorous analysis of the phase conjugate beam was not carried out.  

Next, the first experiment to test the phasing ability of the SBS beam was carried 

out.  Instead of using the aberrating medium as was done to test for phase conjugation, a 

microscope slide was placed over half of the beam creating two separate optical paths, 

one for each half of the pump beam wavefront.  A lateral shearing interferometer was 

used to create an interferogram from the output beam that was recorded by the camera.  

The continuity or discontinuity of the interference fringes within the interferogram served 

as a test for phasing. 

The final phasing experiment utilized a setup that more closely resembles that of a 

MOPA system.  The beam wavefront was split into two different optical paths using 

prisms that guided the split beams in paths that were spatially apart from each other.  An 

attempt to diagnose the output with the lateral shearing interferometer was made, but the 

results were not as clear as would be desired.  Therefore, a different approach was used to 

determine the phasing ability of the fiber for this system.  The lateral shearing 

interferometer was removed from the setup, and the output beam was viewed with the 
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CCD camera.  The beam profile was checked for the formation of interference fringes at 

the camera.  In a system where the beam wavefront is split and travels separate paths, 

phase errors arise between the beams.  If the phase errors are not compensated, the beam 

will not be phased when the paths are recombined, and interference fringes will be visible 

at that point.  On the other hand, if the phase errors are compensated, the recombined 

beams will be phased, and no interference fringes will be observed.  It was also necessary 

to demonstrate that the Stokes beams exiting the fiber were coherent, since if the Stokes 

beams were not coherent, no interference fringes would be observed at the camera.  

Therefore, in order to determine if the absence of interference fringes at the camera was 

due to phasing of the beams or lack of coherence between the beams, the Stokes beams 

were checked for coherence.  This was done by using the lateral shearing interferometer 

to overlap the separate beams immediately after they exited the fiber.  Interference 

fringes at this point demonstrated the beams were coherent. 

Chapter 2 discusses the theory of phase conjugation, stimulated Brillouin 

scattering, and how these could be useful to a MOPA system.  The ability of a short fiber 

to produce a phase conjugated beam is examined in Chapter 3.  Chapter 4 describes the 

experimental work and results obtained when the microscope slide was used to create 

separate optical paths.  The experimental work and results when the prisms were used to 

create the optical paths is discussed in Chapter 5.  Chapter 6 examines the pulse width 

and energy response of the SBS beam.  Chapter 7 discusses the accidental damage that 

was done to the lens and the polarization of the SBS beam.  Final conclusions are made in 

Chapter 8. 
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2 Theory 

2.1. Phase Conjugation 

Optical phase conjugation is a process in which the spatial portion of the phase 

factor of an arbitrary beam of light is exactly reversed.8   Figure 2.1 demonstrates the 

difference in propagation vectors between a phase conjugate reflector and a conventional 

mirror.  A conventional mirror reverses only the normal component of the propagation 

vector upon reflection, while leaving the tangential components unchanged.  This allows 

the reflected beam to be directed arbitrarily by simply adjusting the orientation of the 

mirror.  A phase conjugate mirror, on the other hand, reverses each component of the 

propagation vector.  This causes the light to be reflected exactly back upon itself, 

independent of the phase conjugate mirror’s orientation. 

zkykxkk

zkykxkk

zyxout

zyxin

ˆˆˆ

ˆˆˆ

−+=

++= inout kk −=

x̂

ŷ

ẑ
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Figure 2.1 Propagation vector reflections. 

(a) The reflection from a conventional mirror reverses only the normal component of the propagation, 
leaving the tangential components unchanged. (b) The reflection from a phase conjugate mirror reverses 
each component of the propagation vector. 
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This phenomenon can be seen by considering the propagation of a 

monochromatic wave along the positive z-direction.  The wave can be represented by 

( ) ( ) ..)(
2
1, ccertrE zkti

pp
p += −ωε rrrr

   (2.1) 

where 

  ( )rp
rr

ε  = slowly varying, complex amplitude of the field 

  ω = angular frequency of the monochromatic wave 

  t = time 

  kp = ωc/n, wavevector magnitude (c = speed of light, n = refractive index) 

  c.c. = complex conjugate. 

The slowly varying, complex amplitude contains not only spatial information of the field, 

but it can also contain information about the polarization of the field.9  The phase 

conjugate wave corresponding to the monochromatic plane wave is simply the complex 

conjugate of equation (2.1), which is given by 

  ( ) ( ) ( ) ..
2
1, ccertrE zkti

cc
p += +ωε rrrr

   (2.2) 

where 

  , complex conjugate of the slowly varying, complex amplitude. *
pc εε
rr

=

The relationship between the two waves given by equations (2.1) and (2.2) is 

  .     (2.3) ( ) ( trEtrE pc −= ,, rrrr
)

From this relation, it is seen that the phase conjugate wave propagates as if the input 

wave were time reversed.  In other words, the light retraces the exact path it followed to 

reach the phase conjugation mirror.  Therefore, the effect of a phase conjugate mirror is 
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to not only reverse the propagation, but to also invert the wavefronts of the incident wave 

with respect to the direction of propagation.9  This means that in terms of the coordinate 

system, the phase conjugated wavefront has the same shape as the incident wavefront, 

since the direction of propagation reverses at the phase conjugate mirror. 

 These properties lead to many interesting applications.  One such application is 

phase distortion correction.   illustrates a plane wave passing through a phase-

distorting medium followed by a reflection from either a conventional mirror or phase 

conjugating mirror.  

Figure 2.2

Figure 2.2 Phase distortion correction. 

Conventional mirror Phase-conjugate mirror 

Glass Glass 

(a) (b)  

(a) The reflection from a conventional mirror causes the wave plane to be reversed, so that upon passing 
through a phase distorting medium again, the phase delay is doubled. (b) The reflection from a phase-
conjugate mirror does not reverse the wave plane. Therefore, a second pass through the phase distorting 
medium corrects the phase delay.  
 

The incident wave passes through the phase distortion medium, in this case glass, and 

experiences a phase delay.  The reflection from a conventional mirror experiences a wave 

plane reversal in the coordinate system, so that when the light passes through the glass a 

second time, the phase delay is doubled.  On the other hand, the reflection from the 

phase-conjugate mirror only experiences a propagation reversal, leaving the shape 

unchanged in the coordinate system.  Therefore, when the light passes back through the 
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glass, the phase delay is compensated for and the wavefront has the same shape as the 

incident wavefront.10  

It also follows from the characteristics of a phase-conjugated wave that a phase 

conjugate mirror can be used to restore aberrated wavefronts to their initial states.  

 shows an incident plane wave passing through a linear aberrator resulting in distorted 

equiphase surfaces.  The linear aberrator is a linear, lossless, inhomogeneous spatially 

dependent phase aberrating medium.  After the reflection from the phase conjugate 

mirror, the distorted wave passes back through the aberrator and the initial planar 

equiphase surfaces are recovered.9  

Figure 

2.3

Figure 2.3 Wavefront restoration.  

1 4 2 3

Linear aberrator Phase conjugate mirror 
 

A monochromatic plane wave (1) passes through a linear aberrator and becomes distorted (2). The distorted 
wavefront is phase conjugated (3) by the phase conjugate mirror, and passes back through the linear 
aberrator. The wave emerges from the aberrating medium with the same wavefront as the incident wave 
(4). 
 

2.2. Stimulated Brillouin Scattering 

In optical media there is generally always a spontaneous acoustic wave field 

which is created by the thermal elastic motion of the particles making up the medium.  If 

the thermal acoustic field is thought of as the superposition of monochromatic plane 

acoustic waves, then each of the acoustic waves can produce a periodic spatial and 
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temporal modulation of the density within the medium.  This in turn creates an index 

grating within the medium.11   For example, Figure 2.4 shows the displacement of 

molecules within the medium in one dimension along with the index variation that is 

created by the motion of the particles.  When light is incident upon the medium, Brillouin 

scattering, which results from the interaction between the incident optical wave and the 

elastic acoustic waves in the optical medium, can occur.11  

High 
density 

Low 
density 

High 
density 

Displacement 
z 

Refractive index 

z 

 

Figure 2.4 Density and index variations within an optical medium. 

The symmetric stretch vibration in one dimension produces regions of high and low densities. The regions 
of high density correspond to regions of high refractive indices, while the regions of low density 
correspond to regions of low refractive indices. 

 

Now, the acoustic wavefronts are moving within the optical medium, which 

causes the index grating to move.  The incident light that is scattered off of the moving 

index grating will therefore experience a frequency shift.  For example, let the acoustic 

wave be of frequency ωa and the incident light be of frequency ωL.  Also, let the acoustic 

wavefronts be moving away from the incident light wave.  The scattered light will then 

be shifted downward in frequency to what is known as the Stokes frequency, which is 
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simply ωs = ωL - ωa.  The down shift in frequency is due to the Doppler shift associated 

with a grating moving with the acoustic velocity va.12  This process is depicted in 

, and is a classical picture of spontaneous Brillouin scattering of light.  In an ordinary 

medium, the thermal elastic field is very weak, and therefore the observation of Brillouin 

scattering from a conventional light source is difficult.11  

Figure 

2.5

Figure 2.5 Brillouin scattering. 

ωL 

ωa, va 

ωs 

 

An incoming wave with frequency, ωL, is incident on a grating moving with acoustic velocity, νa, and 
frequency, ωa. The result is a Stokes wave with frequency, ωs, such that ωs = ωL - ωa. 
 
 

By using a laser as the incident light source, it is possible that the interaction 

between the incident optical wave and the elastic acoustic wave can lead to stimulated 

Brillouin scattering (SBS).  For this to occur, the interference of the laser field and the 

Stokes field must contain a frequency component equal to the acoustic field, ωa, within 

the medium.  This begins a cyclic process in which the interference term of the laser and 

Stokes fields acts as a source that increases the amplitude of the acoustic field.  This in 

turn increases the beating of the acoustic field and the laser field, which increases the 

Stokes field and therefore the beating of the laser and Stokes fields.  The process 

continues to cycle through, and under the proper circumstances, leads to exponential 

growth of the amplitude of the Stokes wave.13  
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There are two physical mechanisms that cause the interference of the laser and 

Stokes waves to drive the acoustic wave.  One of these mechanisms is optical absorption. 

This happens when the heat created by absorption in regions of high optical intensity 

causes the material to expand in those regions.  SBS due to absorption is not commonly 

used since it only occurs in lossy material.13  Therefore, optical absorption will not be 

discussed here.  The other mechanism, known as electrostriction, is the tendency of 

materials to become more dense in regions of high optical intensity.13   

As mentioned previously, the spontaneous Brillouin scattered light using a 

conventional light source is very weak.  But, by using a laser of sufficient intensity as the 

incident light source, the spontaneously scattered light can become rather intense.  Once 

this occurs, the incident and scattered light fields are able to beat together.  It is at this 

point that electrostriction plays a role, and gives rise to density and pressure variations.  

The refractive index variations that follow from the density variations scatter the incident 

laser field such that the scattered light is at the Stokes frequency.  This light is then able 

to add constructively with the Stokes radiation that initially gave rise to the acoustic 

disturbance.  The acoustic and Stokes waves continue to reinforce each others growth, so 

that each can grow to large amplitudes.13  

Since both the optical field and the acoustical field can be quantized, SBS can be 

described using a quantum theoretical model.  When described in this manner, the 

Brillouin scattering process can be thought of as a parametric interaction between an 

input photon, a scattered photon, and a phonon within the medium.11  The input photon 

acts as a pump photon, and will therefore be referred to as a pump photon.  During the 

process the pump photon is annihilated, while simultaneously a scattered photon and 
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induced phonon are created.  The process must conserve both momentum and energy. 

Therefore, the following equations must be true. 

asp ννν +=       (2.4) 

asp kkk +=       (2.5) 

where νp, νs, and νa are the frequencies of the pump photon, scattered photon, and 

induced phonon, and kp, ks, and ka are the wave vectors of the three quantities 

respectively.11   

 In the case of SBS, the acoustic phonon frequency is much smaller than the 

Stokes frequency.  Therefore the acoustic phonon frequency can be neglected.  This leads 

to the relationship given by 

  sp νν ≅ .      (2.6) 

This in turn, implies 

  ps kk ≅ ,      (2.7) 

which leads to  

  pa kk 2≅ .      (2.8) 

This can relationship can be seen in Figure 2.6. 

sk pk

ak
 

Figure 2.6 SBS momentum vector diagram. 

The acoustic phonon and pump photon momentum vectors are in the same direction, while the Stokes and 
pump photon momentum vectors are approximately equal in magnitude. 
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Therefore the following relationship can be written. 

  

p

p

a

a

n
c
ωω

2
v

=       (2.9) 

where, 

  ωa = angular frequency of the acoustic phonon 

  va = velocity of sound in the medium 

  ωp = angular frequency of the pump photon 

  np = index of refraction of the medium at ωp 

  c = speed of light in a vacuum. 

Now using the relationship 

  πυω 2=       (2.10) 

where 

  ω = angular frequency 

  υ = frequency, 

Equation 2.10 can be rewritten as 

  
c
npp

a

a υυ 2
v

=       (2.11) 

where 

  υa = acoustic phonon frequency 

  υp = pump photon frequency.  

Finally, the acoustic phonon frequency is given to be 
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  p
pa

a c
n

υυ
v

2= .     (2.12) 

 

 A phenomenon critical to this project is the ability of SBS to generate a Stokes 

beam that is the phase conjugate of the pump beam.13  The Stokes beam does not have an 

absolute temporal reference though, and therefore the absolute phase factor is random.15  

This causes beams conjugated by SBS in separate interaction volumes to have a random 

phase difference. Therefore, it is necessary to overlap the beams in a common interaction 

volume to avoid the introduction of a random phase error between the beams.   

In Moyer’s investigation, SBS from a methanol cell was shown to have the ability 

to remove the piston errors caused by two beams traveling separate optical paths.3  

However, there are limitations on how much the path length can differ.  First, the total 

path length difference must be a small fraction of the coherence length of the beams.  The 

second limitation relates the SBS frequency shift to the total path length difference.3, 14  

For a given pump frequency and nonlinear medium, Equation 2.4 and Equation 2.5 

determine the SBS frequency shift, which is simply the induced phonon frequency.  The 

relationship between the total path length difference and the SBS frequency shift is then 

given by3, 15  

  LB ∆∆=δ          (2.13) 

where 

  =δ  residual piston error due to path length difference 

   total path difference between the beams in [cm], =∆L

and 
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c

a
B

υ∆
=∆ , the SBS shift in [cm-1]  (2.14) 

where 

  ∆υa = SBS frequency shift in [Hz]. 

For example, if a fiber is used with a pump beam at 1.06 µm, and not more than 0.1 wave 

phase difference is desired, ∆υa = 16 GHz. This in turn corresponds to a maximum path 

length difference of 0.19 cm. 

Stimulated Brillouin scattering in multi mode optical fibers has two important 

properties, one of which is essential to this project, that need to be mentioned.  The first 

property is the ability of SBS to excite an LP01 fiber mode even when an aberrated pump 

beam is used. This occurs only when the fiber is sufficiently long.6  It is believed that this 

phenomenon occurs because the fundamental fiber mode experiences a higher gain 

relative to the higher-order modes when a multimode pump is used.6  The application of 

this property lies in cleaning up aberrated beams.  This project did not investigate beam 

clean up in this manner, and therefore further discussion of exciting an LP01 fiber mode is 

not included in this paper.  For more information on this topic see the reference from 

Rodgers.6  

The property that is of interest to this project is the ability of SBS in multimode 

fibers to produce the phase conjugate wave of the incident beam.  While phase 

conjugation from SBS does not occur in fibers only, the project here used a multi mode 

optical fiber to produce SBS.  It is important to use a short fiber to observe phase 

conjugation from the SBS, and the maximum length of the fiber is given by different 

estimates from different authors.  One of the expressions for the maximum length is 

given by7 
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where 

 L = maximum allowable length 

 r0 = allowable non-phase-conjugate fraction 

 c = speed of light  

 NA = numerical aperture of the fiber 

and 

 vn4

pλ
πω =∆        (2.16) 

where 

 n = refractive index of the fiber core 

 v = velocity of sound in the medium 

 λp = pump wavelength. 

For example, the frequency shift, ∆υ, of SBS in a fiber is approximately 16 GHz, which 

corresponds to an angular frequency shift of ∆ω = 1011.  Using this value for ∆ω and if   

r0 = 0.1 and NA = 0.2, then the fiber should be no longer than 1.4 m.  On the other hand, 

another author gives the maximum fiber length as7, 16  

  2)(
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NA
McL

ω∆
≤      (2.17) 

where 

  M = coefficient dependent on pump power mode distribution. 

The coefficient, M, has an order of magnitude of approximately 10, which would give an 

allowable fiber length of more than 10 times the amount of Equation 2.15 for the given 
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example.  Therefore, the equations should be taken as a reference which gives an 

approximate order of magnitude.7 

  

2.3. Applications to MOPA systems 

 

The conceptual design of a phase conjugate double-pass MOPA is shown in 

.   Figure 2.7

Figure 2.7 Basic block diagram of a MOPA system. 

 

 

A laser source produces a linearly polarized input beam for the system.  The beam travels 

through a polarizing beam splitter, which is necessary in order to pick off the output 

beam.  Next, the beam passes through a Faraday rotator, which rotates the polarization 

orientation of the beam by 450.  The beam is then split into multiple paths, and each beam 

is amplified in an amplifier.  The beams from the amplifiers are combined and focused 

Faraday 
rotator PBS 

Laser source Beam splitter / 
combiner 

Amplifiers 

Output 

Phase conjugate 
mirror 
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into a multimode fiber, which serves as a phase conjugate mirror.  The reflection from the 

phase conjugate mirror passes back through the amplifiers, where more amplification 

takes place, and into the Faraday rotator.  The Faraday rotator rotates the polarization of 

the beam by another 450, such that the polarization is rotated 900 from the input beam.  

Now when the beam hits the polarizing beam splitter, it is reflected instead of transmitted 

due to the polarization rotation. 

In general, when a beam is split into multiple paths and recombined, a phase delay 

(piston error) is introduced between the beams.3  This is the reason for the phase 

conjugate mirror instead of a conventional mirror in the block diagram.  As discussed in 

the phase conjugation section of this chapter, a phase conjugate mirror has the ability to 

eliminate the piston error that is introduced from the multiple paths. 

Stimulated Brillouin scattering is a way to achieve phase conjugation, and one 

way to generate SBS is through the use of a short multi mode optical fiber.  By coupling 

the beams from the multiple paths into the fiber, SBS occurs which produces phase 

conjugate beams.  The beams must be coupled into a single fiber in order to avoid 

introducing a random absolute phase error between the beams.  These beams travel back 

through the separate paths and the piston errors are eliminated due to the properties of 

phase conjugation. 
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3 Beam Phase Restoration through Phase Conjugation 

The first step in this investigation was to show that the SBS from a short fiber is 

the phase conjugate of the incident light.  Due to time constraints, rigorous analysis of the 

SBS for phase conjugation was not performed.  Instead, the beam profiles of the SBS and 

retro-reflected beams were compared with and without a distortion medium present in the 

beam path.  This chapter first discusses the procedures in which the phase conjugation 

tests were conducted, and then discusses the results of the tests.  

3.1. Experimental Procedure 

The experimental set-up to show that the SBS from a short fiber is the phase 

conjugate of the incident beam is shown in Figure 3.1. 

Beam minimizer 
Faraday 
rotator 

λ/2 600 µm core 
fiber 

PBS H.R. 
Nd:YAG  
Laser Head 

l1 l2 Focusing lens 
f = 10 cm 

Distortion 
medium f = 30 cm f = -10 cm 

Spatial filter 

H.R. PBS 
Camera λ/2 

 

Figure 3.1 Phase conjugation test set-up. 

An injection seeded, Q-switched single-mode Nd:YAG laser was used to produce 

periodic 15 ns wide pulses at 30 Hz.  The light was linearly polarized at the output of the 
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laser.  Following the laser, the beam entered a telescope consisting of two lenses, with the 

first lens having a focal length of 30 cm, and the second lens having a focal length of -10 

cm.  The telescope was used to reduce the beam size to match the aperture diameter of 

the Faraday rotator which formed a limiting factor for the diameter of the beam.  The 

beam emerging from the minimizing system had a diameter of approximately 4 mm.  

Next, the beam passed through a half wave plate and polarizing beam splitter 

which, together, controlled the amount of light passed to the rest of the system.  The 

beam then entered a Faraday rotator, which rotates linearly polarized light by 45 degrees.  

The direction of rotation is always the same regardless of which way the light travels 

through the Faraday rotator.  Following the Faraday rotator, the beam passed through an 

aberration medium.  Two different aberration media were used in this test.  The first one 

was a tightly stretched piece of plastic, and the second was a -50 cm focal length lens.  In 

order to take reference beam profiles to compare with the distorted beam profiles, the 

distortion medium was removed.  

Following the aberrator, the beam was either retro-reflected by a high reflector or 

coupled into the 3.5 meter long 600 µm core diameter fiber with a numerical aperture of 

0.37.  For the case when the fiber was used, a lens with a focal length of 10 cm was used 

to couple the beam into the fiber.  The return beam, whether it be the retro-reflection 

from the high reflector or SBS from the fiber, passes back through the distortion medium 

and the Faraday rotator.  At this point the polarization of the light has been rotated 900 

from the original polarization.  Therefore, it is now reflected at the polarizing beam 

splitter, instead of being transmitted.  
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The polarizing beam splitter was designed to be used in one direction.  As a result 

of using the return reflection from the polarizing beam splitter, three beam spots were 

observed instead of one.  A possible source of the extra spots is reflections from the back 

surface of the polarizing beam splitter.  In order to remove the extra spots, an adjustable 

aperture was placed in the beam path to act as a spatial filter which passed only the 

central spot.  

Next, the beam was reflected off of a high reflector, and passed through a half 

wave plate and polarizing beam splitter.  Again, the half wave and polarizing beam 

splitter were used to control the amount of light passed to the rest of the set-up.  This was 

necessary because of the sensitivity of the CCD camera.  Finally, the beam was captured 

using a CCD camera. Beamcode, which is a frame grabber, was used to record the 

images. 

3.2. Results 

Figure 3.2 shows the reference beam profiles using the high reflector as a retro-

reflecting mirror and using the fiber to produce SBS viewed by the CCD camera without 

any distortion medium in the beam path. 
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(a) (b)
 

Figure 3.2 Beam profile references. 

(a) The beam profile viewed by the camera without any distortion medium in the beam path using the high 
reflector as a retro-reflecting mirror. (b) The beam profile viewed by the camera without any distortion 
medium in the beam path using the fiber to produce SBS.  
 

In comparison, Figure 3.3 shows the beam profiles when a stretched piece of plastic, used 

as a distortion medium, was placed in the beam path as shown in Figure 3.1.  

(a) (b)  

Figure 3.3 Beam profiles with a stretched piece of plastic in the beam path. 

(a) The beam profile viewed by the camera using the high reflector as a retro-reflecting mirror with a 
stretched piece of plastic acting as the distortion medium in the beam path. (b) The beam profile viewed by 
the camera using the fiber to produce SBS with a stretched piece of plastic acting as the distortion medium 
in the beam path. 
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Comparison of Figure 3.2 (a) and Figure 3.3 (a) shows the distortion that is created by the 

plastic.  The high reflector is a conventional mirror and does not posses any phase 

conjugation properties.  Therefore, the distortion that is introduced on the first pass 

through the plastic is not corrected during the second pass through the plastic.  Instead, 

the distortion is increased during the second pass.  On the other hand, when the fiber is 

used instead of the high reflector, most of the distortion caused by the plastic is corrected 

during the second pass through the plastic.  This can be seen by comparing the beam 

profiles of Figure 3.2 (b) and Figure 3.3 (b).  

 When the beam passes through the plastic, some of the light is lost due to 

scattering.  This light never enters the fiber, and therefore does not pass back through the 

plastic.  This explains the slight differences in beam profiles for the fiber with and 

without the plastic in the beam.   

The same test was also conducted using a -50 cm focal length lens as the 

aberrator.   demonstrates the results were similar to those obtained when the 

stretched plastic was used as the aberrator.  The beam profiles without any distortion 

media present are shown in Figure 3.4 (a) and (b), while the beam profiles with the -50 

cm focal length lens in the beam path are shown in Figure 3.4 (c) and (d).  Comparisons 

of the corresponding beam profiles with and without the aberrator clearly demonstrate 

phase conjugation for the case when the fiber is used.  The beam profile comparisons 

were enough to demonstrate phase conjugation for this project.  The ability of the SBS 

generated Stokes beam to correct for the distortion introduced into the system is a good 

indicator of phase conjugation.   

Figure 3.4
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(a) (b) 

(c) (d) 

 

Figure 3.4 Beam profile comparison with a -50 cm focal length lens aberrator 

(a) The beam profile without any distortion media in the beam path using the high reflector as a retro-
reflecting mirror. (b) The beam profile without any media in the beam path using the fiber to produce SBS. 
(c) The beam profile using the high reflector with a -50 cm focal length lens as the distortion medium in the 
beam path. (d) The beam profile using the fiber with a -50 cm focal length lens as the distortion medium in 
the beam path. 
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4 Wavefront Splitting Using a Microscope Slide 

In order to demonstrate the phasing property of the phase conjugate Stokes beam, 

the pump beam wavefront was split into two halves, and one half was made to traverse a 

microscope.  The splitting was accomplished by covering half of the beam with a 

microscope slide.  The two halves were both focused into a single 600 µm core diameter 

fiber. In this way, each half traversed separate paths on their way to the fiber.  After being 

coupled into the fiber, the generated Stokes beam passed back through the microscope 

slide where it was checked to see if phasing of the separate beam paths had occurred.  

This chapter first discusses the experimental procedures in which this test was carried 

out, and then delves into the results that were obtained from the experiment.  

4.1. Experimental Procedure 

Figure 4.1 shows the experimental set-up to demonstrate phasing of a beam 

whose wavefronts are split by a microscope slide.  The set-up is the same as the set-up 

shown in Figure 3.1, with two differences.  The first difference is the replacement of the 

distortion medium with a microscope slide.  The slide was mounted on a translational 

stage that allowed the slide to be positioned over half of the beam.  In this way, the two 

optical paths were created.  One path was through the microscope slide, while the other 

path was through the air.  While this set-up would not allow the placement of amplifiers 

in the different optical paths, it was a good initial test to see if phasing of the separate 

beams would occur when using the fiber to get SBS. 
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Beam minimizer 
Faraday 
rotator 

λ/2 600 µm core 
fiber 

PBS H.R. 
Nd:YAG  
Laser Head 

l1 l2 Focusing lens 
f = 10 cm f = 30 cm f = -10 cm 

Microscope 
slide Spatial filter LSI  

H.R. PBS 
λ/2 

Camera  

Figure 4.1 Experimental set-up when splitting the wavefronts with a microscope slide. 

 

 The other difference is the use of a lateral shearing interferometer (LSI) before the 

camera.  For information on the construction and operating theory of the LSI see 

Appendix A.  Figure 4.2 shows three regions of interference in the reflection from the 

LSI.  The fringe region on the left is the interference of beam 2 with its laterally displaced 

self, the fringe region in the middle is the interference of beam 1 with beam 2, and the 

fringe region on the left is the interference of beam 1 with itself.  Continuity of the 

fringes across the three regions indicates compensation of the relative piston error 

between the beams.3 

The interferogram created by the LSI reflection is then recorded by the camera.  

Once the interferograms are recorded, they can be investigated to determine if phasing of 

the two beams took place. 
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Lateral Shear Plates

Beam 1

Beam 2

Self-interference of Beam 1 

Self-interference of Beam 2 Mutual-interference of Beams 1 & 2 
 

Figure 4.2 Lateral shearing interferometer schematic. 

 

 Determining the boundary between the two beams proved to be difficult, so a thin 

strip of paper, approximately 1 mm wide, was placed over the edge of the microscope 

slide.  This allowed there to be a greater separation of the two beams since the light 

incident on the paper was not transmitted.   shows the beam incident on the 

slide and paper strip, and also, the resulting beam profile after passing the slide.  

Figure 4.3

Figure 4.3 Beam profile using a microscope slide to split the beam. 

Microscope slide 
Beam

Paper strip

(a) (b)
 

(a) Microscope slide covering half of the beam. The strip of paper allowed a greater distinction between the 
two separate optical paths. (b) Resulting beam profile when the 1 mm wide strip of paper was attached to 
the microscope slide.  
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4.2. Results 

The main diagnostic tool for this test was the LSI.  Figure 4.4 shows a comparison 

of the fringe patterns created by the LSI when the high reflector was used to retro-reflect 

the beam, and when the fiber was used to create SBS. 

Region boundaries 

(a) (b)
 

Figure 4.4 Fringe regions from the LSI when a slide splits the beam. 

Figure 4.4

Figure 

4.4

(a) The fringe pattern from the LSI when the high reflector retro-reflected the beam. The discontinuity of 
the fringes at the boundaries indicates that conjugation of the relative piston errors between the two beams 
did not occur. (b) The fringe pattern from the LSI when the fiber caused SBS. The continuity of the fringes 
at the boundaries indicates conjugation of the relative piston errors between the two beams did occur. 
 

The fringe pattern in  (a) shows the three regions of interference when the high 

reflector is used to retro-reflect the beam.  As shown in the figure, the fringes are not 

continuous across the boundaries.  This indicates that compensation of the relative piston 

error between the beams traveling different optical paths does not occur.  On the other 

hand, the fringes in Figure 4.4 (b) are continuous across the boundary regions, and 

therefore indicate compensation of the relative piston errors.  The fringe pattern in 

 (b) is for the case when the fiber is used instead of the high reflector. 

 By adjusting the LSI, the number of fringes could be controlled.  Figure 4.5 

shows another set of fringe patterns resulting from splitting the beam wavefronts with the 
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microscope slide.  The fringes in this instance are wider, and the continuity or 

discontinuity, depending on whether the fiber or high reflector was used, at the 

boundaries is easily observed.  Again, it is shown that conjugation of the relative piston 

error occurs for the case when the fiber is used, and does not occur when the high 

reflector is used.  

Region boundaries 

(a) (b) 
 

Figure 4.5 Wide fringe patterns from the LSI when the beam is split by the slide. 

(a) The fringe pattern when the high reflector is used. As in Figure 4.4 (a), there is discontinuity across the 
boundary regions. (b) The fringe pattern when the fiber is used. As is Figure 4.4 (b), there is continuity 
across the boundary regions. 
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5 Wavefront Splitting Using Four Prisms 

After creating two optical paths by simply covering half of the beam with a 

microscope slide, the separate optical paths were created using 4 prisms to split the beam 

into separate paths, as shown in Figure 5.1. 

Incident beam 

 

Figure 5.1 Wavefront splitting using 4 prisms. 

Half of the beam is incident on the edge of the first prism causing the two halves of the beam to travel 
separate paths. After each half of the beam traverses through two prisms the beam is recombined. 
 

Splitting the beam in this manner is more meaningful than splitting the beam by simply 

covering half of the beam with a slide, since an actual MOPA system would require the 

spatial separation this configuration gives in order to place amplifiers in each leg.  

 During the course of this test, some interesting obstacles were encountered.  The 

first of these was damaging the first lens in the beam minimizer lens combination.  This 

is only noted in this chapter by a few changes in the experimental set-up.  A discussion of 

this problem and the possible cause of this problem is carried out in Chapter 7.  Another 

difficulty arose while trying to get well defined fringe patterns using the LSI.  Due to 

some ambiguity, another test was also done to verify that phasing of the two optical paths 

was achieved. 
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 Except for a few changes to the set-up that are described in the experimental 

procedures section of this chapter, the test to demonstrate phasing of the two beams using 

the LSI was carried out in the same manner as it was in Chapter 4.  The results of that 

experiment were not as conclusive as those in Chapter 4, so as previously mentioned, 

another test was carried out. 

 To demonstrate the phasing property of the Stokes beams, the LSI was removed 

and replaced by a camera.  The separate paths taken by the beams introduce a relative 

phase difference between the beams.  If phasing does not occur, then the two beams will 

be out of phase at the camera, and interference fringes should be visible.  On the other 

hand, if phasing does occur, then the beams should be in phase, and hence, no 

interference fringes should be visible.  The absence of fringes by itself is not enough to 

demonstrate phasing though.  The beams must also be shown to be spatially coherent, 

because incoherent beams would not produce interference fringes either.  Therefore, the 

Stokes beam was picked off immediately upon passing back through the fiber coupling 

lens using the reflections off a pair of microscope slides.  This reflection was then 

checked to see if the two beams were coherent, by looking for interference fringes.  At 

this point, the two beams should not be completely phased since they have not returned 

through the prisms.  By overlapping the reflections of beam 1 and beam 2, coherence can 

be checked by the presence or absence of interference fringes. 
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5.1. Experimental Procedure 

Since two separate tests were completed to determine the phasing property of the 

Stokes beam when the prisms were used to split the beam wavefronts, the experimental 

procedure section of this chapter is divided into two sections.  

5.1.1. Phasing Test using the LSI 

Figure 5.2

Figure 5.2 Experimental set-up when splitting the wavefronts with prisms. 

 shows the set-up to test for phasing of the beams traveling different 

paths through the prisms using the LSI method. 
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Instead of passing through a beam minimizing system (as was done previously), the 

diameter of the beam was controlled by two adjustable apertures acting as spatial filters.  

The first aperture had a diameter of 7 mm and was located immediately after the laser.  

The second aperture, which had a diameter of 4 mm, was located in between the first 

polarizing beam splitter and the Faraday rotator.  

 Following the Faraday rotator, the beam passed through a half wave plate.  This 

was added because some light was being transmitted back through the polarizing beam 

splitter, instead of being reflected, and is what caused the lens to be cracked in the beam 

minimizing system.  When the adjustable apertures were put in instead of the lenses, the 

laser began popping on the first aperture.  By placing the half wave plate after the 

Faraday rotator, the popping could be eliminated. Chapter 7 discusses this problem in 

more detail.  

 Next, the beam was spilt into two separate paths using the prism combination 

shown in Figure 5.1.  Following this the beam was reflected at a 900 angle off a high 

reflector, where it was either retro-reflected using another high reflector, or coupled into 

the fiber to produce SBS.  A 10 cm focal length lens was used to couple the beams into 

the fiber.  The reason for the 900 reflection was to extend the distance from the prisms to 

the fiber in order to reduce the entrance angle of the beams.  The beams are slightly apart 

from each other when leaving the prisms, and therefore are coupled into the fiber at a 

slight angle.  To ensure both beams are coupled into the fiber, the entrance angle must be 

made smaller than the numerical aperture of the fiber (0.37).  Figure 5.3 demonstrates 

this.  
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Beam 1 Beam 2 

x

(a) (b)
 

Figure 5.3 Beam entrance angles into the fiber. 

In both (a) and (b), the beams are separated by the same distance, x. The entrance angle, α, in (a) is larger 
than the entrance angle, β, in (b), since the distance from the beam spots to the fiber is smaller in (a) than in 
(b). 
 

For the case when the high reflector is used, the beam is retro-reflected back 

through the system until it reaches the polarizing beam splitter.  At this point, the beam is 

reflected and passed through the same optical elements to reach the camera as in 

.  When the fiber is used instead of the high reflector, the return beam is the Stokes 

beam instead of a retro-reflection.  

Figure 

4.1

5.1.2. Phasing Test without using the LSI 

Since there was difficulty achieving usable LSI fringe data, another test was done 

to determine if phasing of the two beams took place.  For the first part of the test, the set-

up was the same as in Figure 5.2 with one exception.  The LSI was taken out of the set-

up, and the CCD camera was positioned so that it followed directly after the polarizing 

beam splitter.  At this point the beams were checked to see if interference fringes were 
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formed as a result of phase differences between the two beams.  The presence of 

interference fringes indicates a phase difference between the beams as a result of 

traveling different paths through the prisms.  On the other hand, the absence of fringes 

does not by itself prove that the beams are phased.  It must be shown that the SBS is 

coherent after leaving the fiber.   shows the scheme that accomplished this.  Figure 5.4

Figure 5.4 Set-up to determine if the SBS beams are coherent. 

Figure 5.4

 

 

Camera 

 

The set-up to test if the SBS beams are coherent is similar to that in .  In 

this case, the LSI is positioned between the prisms and the high reflector as shown in 

, and is used to overlap beam 1 and beam 2.  A small amount of the SBS 

returning from the fiber is reflected off of each lateral shearing plate, and passed through 

Figure 5.2
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a half wave plate and polarizing beam splitter.  As before, the half wave plate and 

polarizing beam splitter are used to control the amount of light passed to the camera.  The 

reflections from the shearing plates are overlapped as shown in Figure 5.5.  By adjusting 

the lateral shearing plates, the reflections off each one can be oriented such that the beam 

from one path through the prisms overlaps the beam from the other path through the 

prisms.  An indication of coherence is the formation of interference fringes.  

 

Reflection from first 
lateral shearing plate 

Beam 1 Beam 2

Beam 2Beam 1

Reflection from second 
lateral shearing plate 

 

Figure 5.5 Overlapping beam 1 and beam 2 to check for coherence. 

By adjusting each lateral shearing plate, beam 2 from the first lateral shearing plate can be overlapped with 
beam 1 from the second lateral shearing plate. 
 

 

5.2. Results 

As in the experimental procedures section, this section is divided into two parts 

corresponding to the two different tests done. 
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5.2.1. Phasing Test using the LSI 

As stated previously, using the LSI proved to be difficult in this test. The 

boundary regions were very difficult to determine.  One of the possible reasons for this is 

the optics used for the lateral shearing plates.  As explained in Appendix A, the lateral 

shearing plates were constructed from microscope slides.  This allowed some reflection 

from the back surfaces of the slides which can interfere with the front surface reflections.  

Also, the microscope slides can add distortion since the surfaces are not as flat as would 

be desired. For more discussion on the LSI, see Appendix A.  

Figure 5.6

Figure 5.6 Fringes from the LSI with the four prism set-up, using the fiber. 

 shows a fringe pattern from the LSI when the fiber is used to get SBS. 

Both (a) and (b) are the same fringe pattern, with (b) having black lines drawn in where 

the boundaries are located.  

 
(b)(a) 

(a) The fringe pattern from the LSI when the beam is split into different optical paths using the four prisms. 
The fiber was used in this case to cause SBS. (b) The same fringe pattern as (a) with black lines drawn in 
over the boundary regions. 
 

It is possible to determine where the boundaries are located by adjusting the location of 

the reflections from the different lateral shearing plates so that the two reflections are 

separated from each other.  Then, as the reflections are brought together, the boundaries 
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can be identified.  The figure also shows some distortion in the lower right corner of the 

pattern.  This is a result of the poor quality of the microscope slides. 

Figure 5.7

Figure 5.7 Fringes from the LSI with the four prism set-up, using the high reflector. 

 shows a fringe pattern for the case when the high reflector was used.  

Again, both (a) and (b) are the same fringe pattern with (b) having black lines drawn in 

over the boundaries.  Comparing the fringe pattern in Figure 5.7 with the fringe pattern in 

, it is seen that the continuity across the fringe boundaries in Figure 5.6 is 

broken in Figure 5.7.  This indicates that the SBS beams from the fiber are phase, 

whereas the reflections from the mirror are not. 

Figure 5.6

(a) (b) 

 

(a) The fringe pattern from the LSI when the beam is split into different optical paths using the four prisms. 
The high reflector was used in this case as a retro-reflector. (b) The same fringe pattern as (a) with black 
lines drawn in over the boundary regions. 
 

When the high reflector was used, it was possible to adjust the separation of the 

two separate beam paths at the LSI by slight adjustments to the prisms and the high 

reflector.  Figure 5.8 demonstrates this.  The figure shows a screen immediately after the 

return reflection from the polarizing beam splitter.  Adjustment of prisms 1 and 2 control 

the location of beam 2, while prisms 3 and 4 control the location of beam 1.  As beam 1 

and beam 2 are brought close together, interference fringes form due to the phase 
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difference of the two different beams.  This proved to be a problem when the LSI was 

used (the screen was removed) because in order to get the three interference regions from 

the LSI, the beams needed to be brought close together, which in turn caused 

interferences fringes to form before the LSI.  These interference fringes made it difficult 

to distinguish the interference fringes formed by the LSI.  Therefore, it was difficult to 

get meaningful interferograms from the LSI.  This problem did not arise when the fiber 

was used instead of the high reflector since the SBS from the fiber was phase conjugated, 

and adjustments of the prisms do not affect the location of the spots, as long as the beams 

are still coupled into the fiber.  

Adjustable 
aperture 

Beam 1  Beam 2  
λ/2PBS 

Beam 1  3 
1

Faraday 
rotator 4 

H.R. 2 Beam 2  Beam spots on the screen  Screen 
 

Figure 5.8 Beam positioning using the prisms. 

By adjusting prisms 1 and 2, the position of beam 2 on the screen can be controlled. Likewise, the position 
of beam 1 is controlled by prisms 3 and 4. When beams 1 and 2 are positioned too closely, interference 
fringes appear due to the phase difference of the beams. 
 

5.2.2. Phasing Test without the LSI 

Since the interferograms from the LSI were somewhat ambiguous, additional tests 

were conducted to determine if phasing of the two beams occurred.  As mentioned in the 

experimental procedures section of this chapter, the LSI was replaced with the camera in 

 and the beams were checked to see if they formed interference fringes Figure 5.2
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together.  Figure 5.9 shows a comparison of the beam spots at the camera when the beam 

is retro-reflected from the high reflector and when the fiber is used to produce SBS.  In 

(a), the pattern resulting from the retro-reflection is seen.  When the beam spots are 

brought together, as demonstrated by , interference fringes are formed.  This 

demonstrates the phase difference between the two beams.  In comparison, (b) shows the 

spot pattern resulting from the SBS.  Here there are no interference fringes.  This by itself 

is not enough to show that the beams have been phased.  It must also be shown that the 

two beams are spatially coherent.  If the beams are not coherent, then fringes would not 

be expected to be formed.   

Figure 5.8

(a) (b)

 

Figure 5.9 Beam spot pictures to check for interference fringes. 

(a) The beam spot picture taken of the return beam for the case when the high reflector is used.  The 
presence of the interference fringes indicates that the two beams are not in phase. (b) The beam spot picture 
of the return SBS beam for the case when the fiber is used. The absence of fringes is the first step in 
concluding that phasing of the two beams has taken place. It must also be shown that the two beams are 
coherent. 
 

To this end, the final part of this test was to show that the two beams from the 

SBS leaving the fiber were coherent.  Using the set-up shown in Figure 5.4, and the 

method depicted in , interference fringes were recorded at the camera.  Figure 5.5 Figure 

5.10 shows the interference pattern observed.  The presence of these interference fringes 

demonstrates that the Stokes beams exiting the fiber were coherent.  
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Figure 5.10 Interference fringes from coherence test. 

 

Since it was shown that the Stokes beams leaving the fiber were coherent by the 

resence of interference fringes when they overlapped each other, the absence of fringes 

at the o  

 

p

utput now indicates the two beams were phased.  Therefore, the phasing ability of

the fiber in this set-up, where the beam wavefronts were spatially split by the prisms, was

been demonstrated. 
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6 Characterization of SBS within the Fiber 

This chapter discusses the temporal characteristics and energy of the Stokes beam.  

The SBS pulse width measurements were made simultaneously with pulse width 

measurements of the incident laser beam.  In order to take these measurements, beam 

blocks were placed around the first polarizing beam splitter in Figure 5.2, such that they 

blocked the initial reflection of the laser beam and the reflection of the SBS beam.  FND-

100 detectors connected to a Lecroy 9450A, 300 MHz, digital oscilloscope were then 

used to record the pulse shape from the reflections off of the beam blocks.  Figure 6.1 

shows the placement of the beam blocks and detectors.  Note that this does not include 

the entire set-up.  Refer to Figure 5.2 for the set-up following the polarizing beam splitter. 

Beam 
block FND-100 

λ/2 
Adjustable 
aperture Partial laser 

reflection Nd:YAG  
Laser Head PBS

SBS reflection

Beam 
block 

FND-100 

 

Figure 6.1 Set-up to measure the pulse width of both beams.  

The set-up following the polarizing beam splitter, denoted by the double arrow, is identical to that of Figure 
5.2. 
 

Figure 6.2 shows a comparison of both the pulse width of the laser and of the 

SBS.  The average pulse width of the laser pulse was 15.3 ns, with a standard deviation of 
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0.6 ns.  In comparison, the average pulse width of the SBS pulse was 5.4 ns, with a 

standard deviation of 0.7 ns. 

 

Figure 6.2 Pulse width comparisons. 

The wider pulse corresponds to the laser pulse, while the narrow pulse corresponds to the SBS pulse. 
 

Figure 6.3 shows the set-up to measure the energy response of the SBS.  As in 

previous set-ups, the adjustable apertures control the beam diameter, the first half wave 

plate and polarizing beam splitter control the amount of light passed to the rest of the 

system, and the Faraday rotator rotates the beam by 450 each time the light passes 

through it.  Also, as mentioned in Chapter 5, the half wave plate after the Faraday rotator 

is included to prevent the laser from popping on the first spatial filter.  See Chapter 7 for 

a discussion about this phenomenon.  Following the half wave plate, the beam is coupled 

into the fiber by a 10 cm focal length lens.  The 3.8 cm focal length lens following the 

fiber is used to focus the beam exiting the fiber, in order to take energy readings.  This 

was necessary due to the large divergence angle of the exiting beam.   
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Figure 6.3 Set-up to measure the energy response of the SBS. 

An energy meter was placed at positions 1-3. At position 1, the laser input energy was measured.  The 
pump energy was measured at position2, and the SBS energy was measured at position 3. 
 

Energy measurements were taken at three different locations in the set-up.  The 

energy measurements taken at position 1 describe the energy of the laser prior to being 

coupled into the fiber.  Measurements at position 2 describe the amount of the pump 

beam transmitted through the fiber.  And finally, position 3 allowed energy measurement 

of the SBS to be taken.  All the energy readings were taken as functions of the orientation 

of the first half wave plate.  Figure 6.4 shows all three of the energies as the half wave 

plate is rotated to allow more light to be introduced to the fiber.  This allows all three 

energies to be viewed against a common axis.  The graph shows the pump depletion in 

comparison to the input energy as the threshold for SBS is reached and the SBS grows.  

 plots the pump and SBS energies versus the input energy.  Graphing the 

quantities in this manner gives insight into the distribution of the input beam between the 

pump and Stokes beam.  It is seen that as the Stokes beam starts to grow, the transmitted 

pump beam energy starts to level off.  In both Figure 6.4 and Figure 6.5, the pump energy 

is the pump energy transmitted through the fiber and recorded at position 2.  

Figure 6.5

Focusing lens 
f = 10 cm 

Adjustable 
aperture 

Lens Adjustable 
aperture λ/2 f = 3.8 cm 

PBSNd:YAG  
1 2Laser Head 

Faraday 
rotator λ/2 

600 µm core 
fiber 

3 
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Figure 6.4 Input energy, transmitted pump energy, and SBS energy responses. 

 

 

Figure 6.5 Transmitted pump and SBS energy versus the input energy.  
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Beam coupling efficiency was determined by using the following relationship for 

the input energies below the SBS threshold. 

i21o ETTE cη=       (6.1) 

where 

  Eo = energy exiting the fiber and recorded at position 2 

  Ei = energy input into the fiber recorded at position 1 

  T1,2 = transmission at the corresponding fiber face 

  ηc = beam coupling efficiency. 

The values of T1 and T2 were 0.965, which corresponds to a Fresnel reflection of 3.5% at 

the entrance and exit fiber faces.  Using Equation 6.1, the beam coupling efficiency is 

then 

  
i21

0

ETT
E

=cη .       (6.2) 

This method assumes a negligible attenuation within the fiber. In this manner, the 

coupling efficiency was found to be 82% with a standard deviation of 5%.  The input 

energy level when SBS appeared was 4.5 mJ.  Using a coupling efficiency of 82%, this 

translates to an SBS threshold of approximately 3.7 mJ.  

 The SBS slope efficiency was determined by calculating the slope of the SBS 

energy plotted against the input energy which is shown in Figure 6.5. The slope was 

found to be 0.37 which yields an SBS slope efficiency of 37%. 

One of the difficulties in measuring the energy responses was to couple the beam 

into the fiber without damaging the fiber face.  The fiber face has a low damage 

threshold, and is easily burned.  Each time the fiber is damaged it must be re-cleaved and 
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polished to be used again.  The response for higher input energy proved to be difficult to 

achieve, due to the low damage threshold of the fiber.  This was the limiting factor for the 

graphs in Figure 6.4 and Figure 6.5. 
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7 Polarization Considerations 

In Chapter 5, it was noted that the first lens in the beam minimizing system was 

damaged.  Because of this, the beam minimizing system was removed from the set-up 

and replaced by a pair of adjustable apertures acting as spatial filters.  This chapter details 

the experimental work and discovery of the damage to the beam minimizing lens.  It was 

found that the Stokes beam was not completely linearly polarized like the pump beam 

was, and some of the beam was being transmitted back through the polarizing beam 

splitter into the laser.  While a complete understanding of why the lens became cracked 

was not achieved, information about the Stokes beam polarization was investigated.  The 

second half of this chapter discusses the results of the SBS generated Stokes beam 

polarization tests. The chapter ends with a brief discussion of how the prisms used in 

Chapter 5 to split the beam wavefronts may have generated elliptically polarized light. 

7.1. Lens Damage Discovery 

The lens became damaged during the four prism beam splitting test.  While trying 

to get phasing of the two beams using the SBS from the fiber, the first lens in the beam 

minimizing system cracked.  In order to avoid damaging more lenses, the beam 

minimizing lenses were replaced with spatial filters (see ).  At this point the 

half wave plate directly after the Faraday rotator was not part of the set-up.  When the test 

began again, the laser began popping on the front side of the first aperture. In this case, 

the front side of the aperture is defined as the side facing the laser.  It was found that the 

popping could be controlled by the first half wave plate.  To determine if the popping had 

anything to do with the SBS, a beam block was placed immediately in front of the fiber.  

Figure 5.2
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With the beam block in place, no popping occurred regardless of the orientation of the 

half wave plate.  

In an effort to stop the popping, another half-wave plate was added to the system 

and placed immediately after the Faraday rotator.  By adjusting the orientation of this half 

wave plate, the popping could be halted.  The four prism tests were then completed using 

this set-up.  

7.2. SBS Polarization Investigation 

In trying to determine the cause of the damage to the lens, two questions needed 

to be investigated.  The first is the determination of the polarization state of the SBS. It is 

this topic that consumes the rest of this chapter.  The other question, which was not 

investigated, is how the beam was focused at the lens.  At this point, it appears that the 

focusing could have been caused by the SBS reentering the laser and having some 

interaction there.  This was not investigated, though, due to lack of time. 

The first step in this investigation was to determine the polarization state of the 

beam prior to entering the fiber, and the polarization state of the returning SBS.  

 shows the set-ups for both of these tests.  In each case, the half wave plate and 

polarizing beam splitter are used to control the amount of light passed to the system, the 

adjustable apertures are used to spatially limit the beam diameter, and the first Glan 

polarizer is used to ensure the light passed to the Faraday rotator is linearly polarized.  

After passing through the Faraday rotator in (a), the beam passes another Glan polarizer 

and is terminated at an energy head.  By adjusting the second polarizer and taking energy 

readings, the polarization of the incident beam can be determined. 

Figure 

7.1
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In (b), the beam passes through the Faraday rotator and a microscope slide at near 

normal incidence, where it is then coupled into the fiber using a 10 cm focal length lens.  

When the SBS passes back through the microscope slide, a small portion is reflected 

through a Glan polarizer and terminated at the energy head.  Positioning the microscope 

slide at near normal incidence ensures the polarization state is not affected by the 

reflection.  As in (a), the polarization can be determined by adjusting the second Glan 

polarizer and taking energy readings. 

 

Figure 7.1 Polarization test set-ups. 

(a) The set-up to determine the polarization of the beam before it enters the fiber. (b) The set-up to 
determine the polarization of the SBS. 
 

Figure 7.2 shows the energy readings for the incident beam, while Figure 7.3 

shows the energy readings for the SBS beam.  Each beam has a minimum located at 450, 

but they do not both go to zero at this minimum.  The beam that does go to zero is the 

incident beam.  This indicates the beam is linearly polarized and oriented 450 from the 
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vertical.  In comparison, the SBS beam does not go to zero at the 450 minimum.  This is 

caused by one of two possibilities.  Either the beam is mostly linearly polarized at 450 to 

the vertical with some random polarization, or the beam is slightly elliptical with its 

major axis oriented at 450 to the vertical axis.  

 

Figure 7.2 Incident beam polarization test. 

The energy in arbitrary units recorded as the polarizer in front of the energy head is rotated. 
 

 

Figure 7.3 SBS beam polarization test. 

The energy in arbitrary units recorded as the polarizer in front of the energy head is rotated. 
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In order to determine whether the polarization of the SBS beam was slightly 

elliptical or slightly random, a quarter wave plate was placed before the second Glan 

polarizer.  The fast axis of the quarter wave plate was aligned with the major axis of the 

beam polarization.  If the beam polarization is elliptical, aligning the quarter wave plate 

in this manner would cause the beam to become linearly polarized, and the minimums of 

the energy readings as the Glan polarizer is rotated would go to zero.  On the other hand, 

if the beam is slightly random, aligning the quarter wave plate in this fashion would have 

no effect on the energy readings.  Figure 7.4 shows the energy readings as the polarizer 

was rotated.  

 

Figure 7.4 Random or elliptical SBS beam polarization test. 

 

 As seen in the figure, the minimums do not go to zero.  This indicates the beam is 

linearly polarized with some random polarization.  Unfortunately, during the course of 
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this particular test the laser began to exhibit trouble injection-locking, and there was not 

enough time to fix the problem before the allotted time for this project ran out.  It would 

have been desirable to repeat this particular aspect of the polarization examination, but 

the problem with the laser prevented it.  Therefore, the initial results indicate that the SBS 

generated Stokes beam is mostly linearly polarized with the same orientation as the pump 

beam, but has a small amount of random polarization.  

 The remainder of this chapter discusses a possibility of how the prisms that were 

used to create the separate optical paths in Chapter 5 could have effected the polarization 

of the beams. In , after the beam exits the Faraday rotator in the forward 

direction, the beam is linearly polarized with its axis 450 from both the vertical and 

horizontal axis. Without the half wave plate between the Faraday rotator and the first 

prism, the beam is incident on the prisms with both s- and p-polarization components. 

The total internal reflection that takes place within the prisms introduces a relative phase 

delay between the s and p components, and therefore the polarization becomes elliptical. 

Unless the SBS produces an exact phase conjugate of an elliptically polarized pump 

beam, the Stokes beam retracing the pump beam paths would not restore the linear 

polarization state of the pump beam. Hence, a finite fraction of the Stokes beam will be 

transmitted through the polarizing beam splitter into the laser system.  

Figure 5.2

 By placing a half-wave plate before the prisms, the pump beam polarization could 

be rotated such that it is entirely s- or p-polarized. This would ensure linear light is 

coupled into the fiber. This is a possible explanation of why the half wave plate 

controlled the amount of popping that occurred on the first aperture used to minimize the 
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beam diameter. This idea was not investigated due to time constraints and laser 

difficulties, but is suggested for further work in this area. 
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8 Conclusion 

The goal of this research was to determine the phasing properties of a short 

multimode optical fiber as a phase conjugate mirror in a system that handles multiple 

beams along separate optical paths.  Two different situations were investigated in this 

project.  The first was the case when separate optical paths were created by covering half 

of the laser beam with a microscope slide.  The interferograms created by using a lateral 

shearing interferometer at the output beam demonstrated that the beams traveling the two 

optical paths were phased at the output of the system.  The second was the case when 

separate optical paths were created using four prisms.  A lateral shearing interferometer 

along with a CCD camera was used as the main diagnostic instrument for determining the 

phasing between the beams.  In both cases investigated here, it was found that the fiber 

phase conjugator successfully phased the output beams.   

The research described in this thesis provides a useful step forward to achieving 

an operational multi-channel double-pass MOPA system which utilizes an optical fiber as 

a phase conjugate mirror.  Multi-channel MOPA systems are desirable in laser beam 

power scaling thanks to the use of multiple amplifiers instead of a single amplifier. 

Previous research has shown that the piston errors can be reduced though SBS 

utilizing a bulk SBS medium as a phase conjugate mirror.  Unfortunately, the systems are 

very sensitive to misalignment, and require the separate beams to be overlapped in a 

common focal volume within the medium.3,5  As long as the beams are overlapped in a 

common focal volume, each beam will have the same absolute phase.  On the other hand, 

if the beams are focused in different focal volumes, they will have a random absolute 

phase difference relative to each other, and therefore no phasing will occur.  The 
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advantage of using optical fibers as the phase conjugate mirror is that the misalignment 

problems of the SBS cell are largely eliminated.  The fiber confines the beams to its core, 

which ensures the beams overlap over a long interaction length.  This in turn means the 

Stokes beams that are produced have the same phase. Present research clearly 

demonstrated that a short multimode optical fiber used as a phase conjugate mirror can 

phase the beams that traveled through two separate optical paths. 

In this research, a Q-switched laser with a pulse width of approximately 15 ns was 

used as the pump beam.  This led to one of the difficulties encountered during the 

investigations.  Since the Q-switched pulses are so short, they lead to pump pulses with 

very high peak power.  This in turn makes coupling the pump beam into the fiber without 

damaging the fiber face difficult.  In fact, the damage threshold of the fiber was the 

limiting factor for the amount of energy that could be coupled into the fiber.  

In a practical application of this research, a continuous wave (cw) pump or a non 

Q-switched pulsed pump could be used to couple more energy into the fiber.  The peak 

power of such a pump beam would be much less than for the Q-switched pump, and 

therefore would allow more energy to be coupled into the fiber before the damage 

threshold of the fiber was reached.  In addition to the energy benefits, a longer pulse or a 

cw pulse would be expected to produce a much higher overall SBS efficiency.  

When perfected, it is possible that this technology could produce a high power 

output laser beam using a much lower power laser source. For example, it could be 

possible to achieve a 1 kilowatt class cw laser using a 100 watt class laser in a MOPA 

configuration with 10 to 15 channels.  This would make many low power laser systems 

possible candidate lasers for applications such as electronic countermeasures.  
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There are many areas in which to extend the investigations done in this project.  

First, more optical paths should be incorporated into the system, allowing the fiber to be 

tested for phasing of more than two beams traveling separate optical paths.  Also, the 

phasing properties of the fiber should be investigated when real optical amplifiers are 

placed within the separate optical paths.  Another area of interest is the polarization 

properties of both the prisms and the SBS on the beam.  In particular, the polarization 

state of the Stokes beams need to be re-examined and the mechanisms responsible for the 

lens damage needs to be identified and measures taken to prevent the damage.  Finally, 

quantified measurements need to be performed to identify the phasing efficiency of the 

beams.  
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 Appendix A: Lateral Shearing Interferometer 

 Figure A.1 shows the schematic for the lateral shearing interferometer (LSI).  

Lateral Shear Plates 

Beam 1

Beam 2

Input Beams

Reflecting surface 2 

Reflecting surface 1 
Self-interference 
of Beam 1 

Self-interference 
of Beam 2 Mutual-interference 

of Beams 1 & 2 

 

Figure A.1 Lateral shearing interferometer. 

 

The purpose of the LSI is to create an interferogram using the reflections from the front 

surface of each plate to determine the phase relationship between the two beams.  In this 

project the LSI was constructed of two uncoated microscope slides.  Each slide was held 

by a prism mount attached to a one dimensional translation stage.  This allowed for 

independent tilt, rotation, and translation of each slide.  Ideally, optical wedges are the 

best choice for the lateral shear plates, since the reflections from the back surfaces of the 
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plates will not be reflected in the same direction as the front surface reflections.  Optical 

wedges were not available in a suitable time frame for this project, so the microscope 

slides were used instead.  

As stated previously, the operating principle of the LSI is based on the 

interference patterns generated by the overlap of the reflections from the front surface of 

each lateral shear plate.  The beams from each of the separate optical paths are incident 

on the lateral shear plates, where each is reflected as shown in Figure A1.  The reflection 

of beam 1 from the surface of the second plate overlaps the reflections of both beam 1 

and beam 2 from the first plate.  At the same time, the reflection of beam 2 from the 

second plate overlaps the reflection of beam 2 from the front plate.  This creates three 

regions of interference fringes.  On one side is the self interference of beam 1 with itself, 

while on the other side is the self interference of beam 2 with itself.  In between these 

regions is a region of mutual interference of beam 1 and beam 2.  If the fringes are 

continuous across the three regions, then there is conjugation (phasing) of the relative 

piston error between the two beams. 
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