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Overview

The control and coordination of multi-agent systems is a major scientific and
technological challenge. When facing large-scale multi-agent settings where the agents
are to act in flexible, hostile and distributed environments-such as those faced in military
domains-the design of effective techniques for dealing with control, coordination,
competition, and adaptation becomes a task of great importance. In recent years there has
been growing interest in the application of methods and approaches from economics, for
example the application of classic solutions from the theory of economic mechanism
design to task allocation in non-cooperative dynamic environments. However, traditional
economic methods lack many ingredients that are essential to make them applicable to
large-scale computational multi-agent systems. In our work we tackle some of these basic
issues. In particular, we address the allocation of complementary and substitutable tasks
to self-interested agents, adaptation in hostile environments, coordination for the
assignment of a task among self-interested bidders, computationally- motivated
representations of economic interactions, and the updating of agents' beliefs after
receiving new information. Our objective is therefore to introduce economic methods into
the context of control and coordination of multi-agent systems, while generalizing and
extending these methods to become efficient and effective. An important part of our
approach is the identification and management of the deep computational problems
which frequently arise in the control and coordination of large- scale multi-agent systems.
We also present new theories which are essential for any flexible and dynamic practical
multi-agent system.

Our work in the COABS project may be seen as addressing five classes of problems:

1. Combinatorial Auctions

One primary economic mechanism upon which we chose to focus is the combinatorial
auction. Combinatorial auctions involve the sale of multiple goods in a single auction, in
cases where bidders' valuations may exhibit both complementarities (i.e., a bidder's
willingness to pay for a bundle may exceed the sum of that bidder's valuation for each
individual item in the bundle) and substitutability’s (e.g., a bidder may be willing to win
only one of a set of bundles). To allow bidders to express complementarities in their
valuations, combinatorial auctions allow bidders to request "all-or-nothing" bundles of
goods; bidders may also bid on subsets of these bundles if they are interested. To allow
bidders to express substitutability’s in their valuations, combinatorial auctions allow
bidders to designate a set of bids as mutually exclusive-i.e., to indicate that only one of
these bids is allowed to win, even if the seller would otherwise prefer to select more than
one of these bids. Combinatorial auctions can lead to increased social welfare and/or
seller revenue, but they come at a computational cost. Determining the set of winning
bids in a combinatorial auction is an NP-hard computational problem. Nevertheless, we
developed techniques to solve problems of interesting size by using a variety of different
optimization techniques; we also investigated the design of test data for benchmarking
such optimization algorithms. Our other research on combinatorial auctions included I
investigating bidder strategies when goods are allocated through sequential, single-good
auctions, and an alternative mechanism that maintains incentive compatibility even
though goods are not always allocated to the bidders willing to pay the most for them.
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All of these papers, and the papers in the following sections, may be found in the
appendix:

Sequential Auctions for the Allocation of Resources with Complementarities (C.
Boutilier, M. Goldszmidt and B. Sabata): presented at IICAI-99.

Taming the Computational Complexity of Combinatorial Auctions: Optimal and
Approximate Approaches (Fujishima, Leyton-Brown, Shoham): presented at IJCAI- 99.
Uncentive Compatibility in Rapid, Approximately Efficient Combinatorial Auctions (D
Lehmann, L. O'Callahan, and Y. Shoham): presented at the First ACM Conference on
Electronic Commerce (EC'99)

An  Algorithm for Multi-Unit Combinatorial Auctions (K. Leyton-Brown, M.
Tennenholtz, Y. Shoham): presented at Games-2000, AAAI-2000 and the International
Symposium for Mathematical Programming (ISMP-2000).

Towards a Universal Test Suite for Combinatorial Auctions (Leyton-Brown, Pearson,
Shoham): EC-O0.

2. Adaptation in Multi-Agent Settings

Studying adaptation in multi agent settings was an important component of our research
agenda. Indeed, the simultaneous adaptation of multiple agents has profound impact on
the design of robust command and control methods. The phenomenon of adaptation in
multi-agent systems is considerably different from adaptation in the single-agent case.
This is true because the fact that multiple agents simultaneously adapt to each other
implies that even simple adaptation rules can lead to complex behaviors. In order to
tackle this issue we addressed the problem of reinforcement learning in various classes of
stochastic games. Stochastic games extend upon and incorporate features of repeated
games and Markov Decision Processes (MDPs), and are a very general model of multi-
agent interaction. Our work on this topic had two main threads. First, we studied
algorithms that could learn bidding policies in complex auction settings, and investigated
the behavior of these algorithms. Second, we developed a reinforcement learning
algorithm for stochastic games that finds near-optimal policies in polynomial time, and
which also introduces a new approach for dealing with the exploration vs. exploitation
tradeoff.

Continuous Value Function Approximation for Sequential Bidding Policies (C. Boutilier,
M. Goldszmidt and B. Sabata): presented at the Fifteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-99).

Conditional, Hierarchical Multi-Agent Preferences (?): presented at the Seventh .
Conference on Theoretical Aspects of Rationality and Knowledge (TARK VII). 1
Sequential Optimality and Coordination in Multi-agent Systems (C. Boutilier): .
presented at ?

R -max: A near optimal polynomial time reinforcement learning algorithm, (Ronen
Brafman and Moshe Tennenholtz): presented at UCAT'OL.

3. Mechanism Design

One of the principal techniques for the control of multi-agent systems is the deployment
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of an economic mechanism which will influence agents' behavior by giving them
incentives for taking desirable actions. This mechanism design approach underlies a
number of the research projects we undertook as part of our participation in the COABS
project; because they are all so diverse we survey. them individually here.

Ascending bid auctions-such as the familiar English-style auction of Sotheby and eBay-
suffer the problem of being unpredictably long. This is unacceptable in mission critical,
urgent applications, of the sort encountered in the military. The alternative-- running a
quick, one-shot sealed-bid auction-has the advantage of being fast, but unfortunately it
does not posses the nice optimization properties of ascending-bid auctions in the presence
of so-called common values. We were able to devise a novel auction mechanism, which
combines the merits of both.

Finding ways of designing smart agents to assist bidders in auctions is fundamental to
introducing agents' coordination to the context of economic mechanisms design. Our
research emphasized protocols for coordinating groups of bidders through the paradigm
of "bidding clubs"-groups of bidders who share information before participating in an
auction, in such a way that all the members of a bidding club benefit. In our first paper on
this topic we developed basic bidding club protocols for five fundamental auction
settings; in our second paper we conducted a more rigorous and general theoretical
analysis of bidding clubs in first-price auctions.

"Rational computation" presents a new model of computation based upon principles of
rationality, which, we argue, are appropriate in a non-cooperative computing
environment such as the Internet. In this work we developed a theory which looks at
markets as computing devices and attempts to quantify their computing power.

Although VCG mechanisms have many appealing properties, their essential intractability
prevents them from being used for complex problems like combinatorial auctions. We
introduced a general way to overcome this intractability and proved its properties.

As we consider the use of auctions for resource allocation we must take into account the
possibility-and in some cases virtual certainty-that agents will hide their true identities, so
that it becomes impossible not only to know who is behind a given bid but even whether
two different bids were submitted by the same bidder. This has profound effect on the
outcome of the auction, as the bidders learn to manipulate the auction by I using this
anonymity feature. We were able to characterize the equilibria of some auctions in such
settings, which provides the first step towards designing auctions that can withstand
anonymity.

Speeding Up Ascending-Bid Auctions (Y. Fujisima, D. McAdams, and Y. Shoham):
presented at IJCAI-99.

Bidding Clubs: Institutionalized Collusion in Auctions (K. Leyton-Brown, M.
Tennenholtz, and Y. Shoham): presented at Games-2000, EC-OO, Brown University.
.Rational computation (M. Tennenholtz, and Y. Shoham): published in All.

Bidding Clubs for First-Price Auctions (Leyton-Brown, Shoham and Tennenholtz):
submitted to GEB.

Mechanism Design With Incomplete Languages (Ronen): presented at EC-OI.
Anonymous bidding in auctions (Yossi Feinberg and Moshe Tennenholtz): submitted to
GEB.
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4. Representation

Bayesian networks-graphical representations of probability distributions that explicitly
describe independences inherent in these distributions-revolutionized the field of
probabilistic inference. By capturing the underlying structure of distributions, they
allowed for algorithms that made inference tractable in practice. We have studied the
possibility of finding structured representations for games which give similar tractability
benefits. We began by studying possible ways of graphically representing utilities. The
idea is that such representations capture structure inherent in the utility functions in the
same way that Bayesian networks capture independences in probability distributions.
Next, we introduced Game networks (G nets), a novel representation for multi-agent
decision problems. Compared to other game-theoretic representations, such as strategic or
extensive forms, G nets are more structured and more compact; more fundamentally, G
nets constitute a computationally advantageous framework for strategic inference, as both
probability and utility independencies are captured in the structure of the network and can
be exploited in order to simplify the inference process. An important aspect of multi-
agent reasoning is the identification of some or all of the strategic equilibria in a game;
we presented original convergence methods for strategic equilibrium which can take
advantage of strategic separabilities in the G net structure in order to simplify the
computations. We introduced Multi-Agent Influence Diagrams (MAIDs), which
generalize the familiar Bayesian Network generalization of (single-agent) influence
diagrams to the multi-agent case. Finally, we developed a novel approach to computing
all equilibria of a multi agent game, based on homotopy methods and closely related to
simulated annealing used in Al

Expected Utility Networks (P. La Mura and Y. Shoham): presented at UAI'99.

Game Networks (P. La Mura): presented at the Sixteenth Conference on Uncertainty in
Artificial Intelligence (UAI'OO).

Probabilistic Models for Agents' Beliefs and Decisions (B. Milch and D. Koller): I

presented at UAI'QQ.
Simulated Annealing of Game Equilibria: A Simple Adaptive Procedure Leading to ~

Nash Equilibrium (P. La Mura and M. Pearson): presented?

5. Belief Revision and Belief Fusion

Often we want to combine the expertise of multiple experts in hopes of coming up with
information that improves on all their individual beliefs. We studied the problem of
automating this process. We considered different common representations, both
qualitative and quantitative, of sources' beliefs and studied how information about the
sources' expertise can be used to combine their beliefs in rigorous, justified ways. Our
initial focus in solving this problem was on the situation where agents' belief states are
represented as qualitative binary relations over possible worlds. Such representations are
common in the belief revision community to represent not only agents' beliefs, but their
counterfactual beliefs as well, i.e., not only what they believe at the moment, but what
they would believe if the situation were somewhat different.

We introduced a novel belief fusion operator that aggregates the beliefs of two agents,
each informed by a subset of sources (strictly) ranked by reliability. In the process we
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defined pedigreed belief states, which enrich standard belief states with the source of
each piece of information. We noted that the fusion operator satisfies the invariants of
idempotence, associativity, and commutativity. As a result, it can be iterated without
difficulty. We also defined belief diffusion;, whereas fusion generally produces a belief
state with more information than is possessed by either of its two arguments, diffusion
produces a state with less information.

We considered the problem of representing collective beliefs and aggregating these
beliefs when there may be conflicting sources of equal rank. We described a way to
construct the belief state of an agent informed by a set of sources of varying degrees of
reliability, giving a simple set-theory-based operator for combining the information of
multiple agents. We also described a computationally effective way of computing the
resulting belief state.

Ensemble learning algorithms combine the results of several classifiers to yield an
aggregate classification. We presented a normative evaluation of combination methods,
applying and extending existing axiomatizations from Social Choice theory and
Statistics. For the case of multiple classes, we showed that several seemingly innocuous
and desirable properties are mutually satisfied only by a dictatorship. A weaker set of
properties admit only the weighted average combination rule. We exemplified these
theoretical results with experiments on stock market data, demonstrating how ensembles
of classifiers can exhibit canonical voting paradoxes.

Finally, we shifted our attention to the problem of aggregating beliefs when they are
represented as probabilistic distributions. We proposed a framework, in which we
assumed that nature generates samples from a 'true' distribution and different experts I
form their beliefs based on the subsets of the data they have a chance to observe. We
showed that the well-known aggregation operator LinOP is ideally suited for use in our ~
framework, and proposed a LinOP-based learning algorithm, inspired by the techniques
developed for Bayesian learning, which aggregates the experts' distributions represented
as Bayesian networks.

From Belief Revision to Belief Fusion (P. Maynard-Reid II and Y. Shoham): presented at
the Third Conference on Logic and the Foundations of Game and Decision Theory
(LOFT3).

Belief Fusion: Aggregating Pedigreed Belief States (P. Maynard-Reid II and Y. Shoham):
published in the Journal of Logic, Language, and Information.

Representing and Aggregating Conflicting Beliefs (p. Maynard-Reid II and D. Lehmann):
presented at the Seventh International Conference on Knowledge Representation and
Reasoning (KR '00).

A Normative Examination of Ensemble Learning Algorithms (D. Pennock, P. Maynard-
Reid 1, C. L. Giles, and E. Horvitz): presented at the Seventeenth International
Conference on Machine Learning (ICML '00).

Aggregating Learned Probabilistic Beliefs (P. Maynard-Reid Il and U. Chajewska): presented at
UAI'OL.
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APPENDIX A

Taming the Computational Complexity of Combinatorial Auctions:
Optimal and Approximate Approaches

Yuzo Fujishima, Kevin Leyton-Brown and Y oav Shoham
Computer Science Department, Stanford University, Stanford CA, 94305

fujisima@ccs.mt.nec.co.jp (visiting from NEC Corporation)
kevinlb@cs.stanford.edu
shoham@cs.stanford.edu

Abstract

In combinatorial auctions, multiple goods are sold
simultaneousy and bidders may bid for arbitrary
combinations of goods. Determining the outcome
of such an auction isan optimization problem that
is NP-complete in the general case. We propose
two methods of overcoming this apparent intrac-
tability. Thefirst method, which is guaranteed to
be optimal, reduces running time by structuring
the search space so that a modified depth-first
search usually avoids even considering alloca-
tions that contain conflicting bids. Caching and
pruning are also used to speed searching. Our
second method is a heuristic, market-based ap-
proach. It setsup avirtua multi-round auction in
which avirtual agent represents each origina bid
bundle and places bids, according to a fixed
strategy, for each good in that bundle. We show
through experiments on synthetic data that (a) our
first method finds optimal all ocations quickly and
offers good anytime performance, and (b) in
many cases our second method, despite lacking
guarantees regarding optimality or running time,
quickly reaches solutionsthat are nearly optimal .

1 Combinatorial Auctions

Auction theory has received increasing attention from
computer scientists in recent years.® One reason is the
explosion of internet-based auctions. The use of auctions
in business-to-business trades is also increasing rapidly
[Cortese and Stepanek, 1998]. Within Al thereis growing
interest in using auction mechanisms to solve distributed
resource allocation problems. For example, auctions and
other market mechanisms are used in network bandwidth
allocation, distributed configuration design, factory
scheduling, and operating system memory allocation

! This material is based upon work supported by DARPA un-
der the COABS program, contract #~30602-98-C-0214, and by
a Stanford Graduate Fellowship.

[Clearwater, 1996]. Market-oriented programming has
been particularly influential [Wellman, 1993; Mullen and
Wellman, 1996].

The value of a good to a potential buyer can depend on
what other goods s’he wins. We say that there exists
complementarity between goods g and h to bidder b if
up({9,h})> u({ g})+up({ h}), where uy(G) isthe utility to b
of acquiring the set of goods G. If goods g and h were
auctioned separately, it is likely that neither of the typi-
cally desired properties for auctions—efficiency and
revenue maximization—would hold. One way to ac-
commodate complementarity in auctions is to allow bids
for combinations of goods as well as individual goods.
Generally, auctionsin which multiple goods are auctioned
simultaneously and bidders place as many bids as they
want for different bundles of goods are called combina
torial auctions’.

It is also common for bidders to desire a second good
less if they have already won a first. We say that there
exists substitutability between goods g and h to bidder b
when uy({g,h}) <u,({g})+u,({h}). A common example of
substitutability is for a bidder to be indifferent between
several goods but not to want morethan one. In order to be
useful, a combinatorial auction mechanism should provide
some way for bidders to indicate that goods are substi-
tutable.

Combinatorial auctions are applicable to many
real-world situations. In an auction for the right to use
railroad segments a bidder desires a bundle of segments
that connect two particular points; at the same time, there
may be alternate paths between these points and the bidder
needs only one [Brewer and Plott, 1996]. Similarly, in the
FCC spectrum auction bidders may desire licenses for
multiple geographical regions at the same frequency band
while being indifferent to which particular band they re-
ceive [Milgrom, 1998]. The same situation also occurs in
military operations when multiple units each have several
alternate plans and each plan may require a different
bundle of resources.

2 Auctions in which combinatorial bidding is allowed are al-
ternately called combinatorial and combinational.



While economics and game theory provide many in-
sights into the potential use of such auctions, they have
little to say about computational considerations. In this
paper we address the computational complexity of com-
binatorial auctions.

2 The Complexity Problem

There has been much work in economics and game theory
on designing combinatorial auctions. The
Clarke-Groves-Vickrey mechanism (also known as the
Generalized Vickrey Auction, or GVA) has been particu-
larly influential [Mas-Colell et al., 1995; Varian, 1995]. It
is beyond the scope of this paper to review such mecha
nisms, but they share a central problem: given a collection
of bids on bundles, finding a set of non-conflicting bids
that maximizes revenue. (A more precise definition is
given in Section 3.) This problem is easily shown to be
NP-complete® [Rothkopf et al., 1995].

Several methods have been conceived to cope with the
computational complexity of combinatoria auctions, most
aiming to easethedifficulty of finding optimal allocations.
They can be classified into three categories based on the
strategies they use.

One dtrategy is to restrict the degree of freedom of
bidding to simplify thetask of finding optimal allocations.
Rothkopf et al. show that an optimal allocation can be
found in polynomial timeif (1) each bid contains no more
than two goods; (2) for any two bids, either they are dis-
joint or oneisasubset of the other; or (3) each bid contains
only consecutive goods given a one-dimensional ordering
of goods [Rothkopf et al., 1995].

Another strategy is to shift the burden of finding an
optimal allocation to bidders. [Banks et al., 1989] and
[Bykowsky et al., 1995] have reported a mechanism called
AUSM in which non-winning bids are pooled in a stand-by
gueue. Bidders can combine their bids with other bids
currently in the queue to form new allocations. A new
allocation is adopted if it generates more revenue than the
previously best allocation.

A third strategy is to attempt to find an optimal alloca-
tion but to be satisfied with a sub-optimal allocation when

the expenditure of further resources becomes unacceptabl e.

In other words, the optimality of the allocation is
traded-off with the resources required, especially time.

In this paper we present two algorithms. The first is an
anytime algorithm that attempts to exploit a problem’s
particular bid structure to reduce the size of the search. It
also reduces search time by caching partial results and by
pruning the search tree. The second algorithm uses a
market-based approach to determine an acceptable allo-
cation, although it isnot guaranteed to find an optimal one.
We then show results of experiments with synthetic data
suggesting that these methods, though not provided with
formal guarantees, appear to have surprisingly good per-

3 The GVA hastheadditiona shortcoming of requiring bidders
to submit an unreasonably large number of bids, but we do not
address this issue here.

formance. Additionally, the market-based approach ap-
pears to produce allocations that are always optimal or
nearly optimal.*

3 Precise Problem Statement

In this paper we propose two methods for finding desirable
allocations based on bids submitted. We start by formally
defining the opti mization problem. Denote the set of goods
by G and the set of non-negative real numbersby R*. A bid
b=(py,Gp) is an element of S= R'x(2°-{@}). Let B be a
subset of S. A set FcB is said to be feasible if Vb,czbe F
GpoNG=J. Denote the set of all feasible allocations for B
by @(B). Further, let G(B)=U,.sG, be the set of goods
contained in the bids of B.

[Problem] Find an allocation We @(B) such that
VFe @(B) Ype rPp<XhewPb. Such an allocation is said to be
optimal or revenue maximizing.

What kind of value interrelation between goods can be
represented by the bids defined above? Clearly, comple-
mentary values are easily accommodated. Suppose a bid-
der bids $20 for each of {g} and {h}, and $50 for { g,h}. In
this case any revenue-maximizing a gorithm will correctly
select the {g,h} bid instead of {g} and {h}.

This bid format is also sufficient for representing sub-
stitutability through an encoding trick. Suppose a bidder is
willing to pay $20 for { g} and $30 for { h} but only $40 for
{g,h}. In this case, bids cannot be submitted as before
since the revenue-maximizing algorithm would select the
pair {g} and {h} over {g,h}, charging the bidder $50 in-
stead of $40 for g and h. However, this problem can be
solved by the introduction of ‘dummy goods —uvirtual
goods that enforce an exclusive-or relationship. (Each
dummy good must appear only in a single bidder’s bids.)
In our example, the bidder could submit the following
bids: ($20, {g,d}), ($30, { h,d}), and ($40, {g,h}) where d
isanew, unique dummy good. The first two bids are now
mutually exclusive and so will never be all ocated together.
Thistechnique can lead to a combinatorial explosioninthe
number of bids if many goods are substitutable, but in
many interesting cases this does not arise.

4 CASS Algorithm

When the number of goods and bids is small enough, an
exhaustive search can be used to determine the optimal
allocation. We propose an agorithm, Combinatorial
Auction Structured Search (CASS), presented as a naive
brute-force approach followed by four improvements.
CASS considers fewer partial allocations than the
brute-force method because it structures the search space
to avoid considering allocations containing conflicting
bids. It also caches the results of partial searches and
prunes the search tree. Finaly, it may be used as an any-

4 We do not analyze the impact of the approximation on the
equilibrium strategiesin auction mechanismssuch asGVA; we
will address thisissue in a future paper.



timealgorithm, asit tendsto find good all ocations quickly.

4.1 Brute-Force Algorithm

Suppose there are |G| goods 1, 2, ..., |G|, and |B| bids 1, 2,
..., |B|. First, bids that will never be part of an optimal
allocation areremoved. That is, if for bid b=(p,,Gy) there
existsabid b=(p;,G)) such that p, >p, and G,cGy, then b, is
removed because it can always be replaced by by, in-
creasing revenue. Then for each good g, if there isno bid
b=(x,{g}) adummy bid b=(0,{ g}) is added.

Our brute-force algorithm examines al feasible alloca-
tions through a depth-first search. Let x bethefirst bid and
y be the last bid. Our implementation follows:

1. If x does not conflict with the current all ocation, add
X to the current allocation

Increment x

If more bids can be added to the allocation, go to 2.
Update best revenue and allocation observed so far.
If y is contained in the current allocation, remove it,
set x=y+1 and repeat from 2.

6. Decrementy.

7. Ifyisnot thefirst bid, go to 5.

arLODN

4.2 Improvement #1: Bins

A great deal of unnecessary computation is avoided in the
brute-force algorithm by checking whether bids conflict with
the current alocation before they are added. However, work
is gtill required to determine that a combination isinfeasible
and to move on to the next bid. It would be desirable to
structure the search space to reduce the number of infeasible
allocations that are considered in thefirst place.

We can reduce the number of infeasible allocations con-
sidered by sorting bids into bins, D;, containing all bids b
wheregood i € G, and for all j such that je[1, i-1], ] ¢ Gp.
Rather than always trying to add each bid to our alocation,
we add at most one bid from every bin since adl bids in a
given bin are mutually exclusive.

In fact, we can often skip binsentirely. While considering
bin D;, if we observe that good j>i is aready part of the al-
location then we do not need to consider any of thebidsin D;.
In general, instead of considering each bin in turn, skip to Dy
where kg G(F) and Vi<k, ie G(F).

4.3 Improvement #2: Caching

Let F; bethe partial allocation under consideration when D; is
reached during asearch. Define G c G(F;) whereVj e G(F),
j>i & j € G. Note that there are many different partial al-
locations Fi;, Fip, €tc., that share the same C;, and that if
Ci1=GCi, then the search trees for Fi; and Fi; are identical
beyond D;. It istherefore possible to cache partial searches
based on C. However, caching al possible values of G
would require a cache of size 2°H™ which would quickly
become infeasible. Therefore, we only cache when C in-
cludes no morethan k goods, wherek isathreshold defined at

runtime for each bin. D; requires a cache of size i['GH]'
i

=0

4.4 |mprovement #3: Pruning #1

Performance can be improved by backtracking whenever a
given search path is provably unable to lead to a new best
alocation. We can prune whenever C (F;;) < C (F;») and
p(F2) + p(cache (Fi1)) < bestAllocation. In this case, the sum
of the revenue from the cached path beyond Fi; and the
revenue leading up to Fi, is less than the revenue from the
best alocation seen so far. Since Fi; alocates a superset of
the goods allocated in Fi; (thus overestimating revenue), a

better allocation would not be found by expanding Fi,.

4.5 Improvement #4: Pruning #2

We can also backtrack when it is provably impossible to

add any bids to the current allocation to generate more

revenue than the current best alocation. Before

starting the search we calculate an overestimate of the

revenue that can be achieved with each good, o(g) =

L?a)é p(b)/ |G, |. o(g) is the largest average price per bid
ge

of bids containing good g. We backtrack at any point
during the search with allocation F if p(F) + > o(g) <
geF
p(best_allocation). This technique is most effective when
good allocations are found quickly. Finding good alloca-
tions quickly is also useful if a solution isrequired before
the algorithm has completed (i.e., if CASS is used as an
anytime algorithm). We have found that good all ocations
are found early in the search when the bidsin each bin are
ordered in descending order of average price per good.
Similarly, the pruning technique is most effective when
the unallocated goods are those with the lowest o(g) val-
ues. To achieve this, we reorder bins so that for any two
binsi and j, o(gi) > o(g)) < i <.

5 VSA Algorithm

Our second algorithm is called Virtual Simultaneous
Auction (VSA). This market-based method was inspired
by market-oriented programming [Wellman, 1993; Mullen
and Wellman, 1996] and the simultaneous ascending auc-
tion [Milgrom, 1998]. VSA generates a virtual simulta-
neous auction from the bids submitted in areal combina-
torial auction, then simulates the virtual auction to find a
good allocation of goodsin the real auction.

5.1 Algorithm

First, avirtual simultaneous auction is generated based on
the bids submitted in a real combinatorial auction. For
each bid b=(p,,Gp) a virtual bidder vy, is created. The vir-
tual bidders competein avirtual simultaneous auction that
has multiple rounds. Each virtual bidder v, triesto win all
the goods in Gy, for the price p, on an all-or-nothing basis.
The virtual auction starts with no goods allocated and the



prices of all goods set to zero. The simultaneous auction is
repeated round by round until either an optimal allocation
isfound or a pre-set time deadline isreached. In the latter
case the current best allocation is adopted as the final
result.

Each round of V SA hasthree phases: the virtual auction
phase, the refinement phase and the update phase. In the
virtual auction phase each virtual bidder bids for the goods
they want. Each individual good is allocated to the highest
bidder. If a bidder succeeds in winning all desired goods,
that bidder becomes a temporary winner. Otherwise the
bidder becomes atemporary loser and returns all allocated
goods to the auctioneer. In the refinement phase each of
the losers is examined in a random order to see whether
making that agent a temporary winner (and consequently
making a different winner into a loser) would increase
global revenue. If so, the list of winners is updated. Fi-
nally in the update phase the current highest price of each
good is changed to reflect the price that its current winner
bid. The current highest price for unallocated goods is
reset to zero.

Virtual bidders in VSA follow a simple strategy. If a
bidder wasthetemporary winner in the previousround, the
bidder does not bid in the current round. Otherwise, agents
cal culate the sum of the current highest prices of the goods
required. If the sum exceeds an agent’s budget, the agent
does not bid because the agent will not be able to acquire
all the goods simultaneoudly. If the sum is less than the
budget, the agent bids such that the surplus (budget - sum)
is equally divided among the goods.

5.2 Properties

In certain circumstances, VSA will find an optimal allo-
cation. Additionally, it is sometimes possible to detect if
an optimal allocation has been found, allowing the virtual
auction to end before the deadline.

[Theorem] If no virtual bidder bidsin around in the vir-
tual auction, the current set of winnersis optimal.

[Proof] Assume that no agents bid in a given round. De-
fine the function that calculates the revenue of an alloca-
tion F by r(F)=X<rpy and let O denote the optimal set of
winners. Split the current set of winners W into two parts
0O; and W, such that O;=0OnW and W,=Wn—0;. Also split
O into O; and O, such that O, is defined as before and O, =
O N —0;. Further, split G into G; and G, such that
G1=Upe01Gp and G,=GN—G;. By the assumption, for each
currently losing bidder, the sum of the current highest
prices of the goods needed exceeds the bidder’s budget.
This is especially true for bidders in O,, i.e, VbeO,
Pr<Xge abg Where hy isthe current highest price of good g.
It follows that r(Oy) = Zhe 02Pb < Xbe 0229 cblg < 2ge 2Ny =
ZbewzZgecbllg = ZpewzPp = r(W,). (Remember that the
minimum price of agood that is not allocated to any agent
is zero and agents always bid their entire budgets.) The
inequality means that W is optimal because r(O) =
r(O1)+r(0z) < r(O1)+r(W2) = r(W).

However, thereisno guarantee that auctionswill always

finish, even if an optimal allocation is found.

[Theorem] There exists a set of bids B such that at least
onevirtual bidder always bidsin every round of the virtual
auction no matter what bidding strategy is used.

[Proof] Suppose B={a,b,c} where a={p,, {1,2}}, b={pe,
{2,3}}, and c={p., {3, 1}}. Suppose further that p,< p, +
Pes Po< Pct Pas @Nd pe< pa+ po. Because the real bids are
mutually exclusive, at most onevirtual bidder becomesthe
temporary winner. If noneiswinning, h;=h,=h;=0and all
the bidders bid in the current round. Assume here that
bidder a is currently winning. Then h;+h,=p, and h;=0.
Assumethat neither b nor ¢ bidsin the current round. Then
for each of b and c, the sum of the prices of goods needed
must be larger than or equa to the budget, i.e,
h2+h3:h22pb and h3+h1:h12pc. This means that Pa =
h;+hy>py+p. and contradicts p,<pp+p.. This argument
doesn't depend on the bidding strategy aslong as an agent
bids if and only if their budget exceeds the sum of the
minimum prices of the goods needed.

It is this property that makes the refinement phase of
VSA important. Consider the case B=B;uUB,uU... where
Vi,j G(Bi)NG(B;)=4, |Bi|=3 and each B; satisfies the con-
dition from the proof above. If we omit the refinement
phase then the winner in each subset changes every round
except the case where there is no winner. Therefore, an
optimal global allocation is examined only when in every
subset the optimal winner is temporarily winning. Such
synchronization is unlikely to occur unless the number of
subsets is very small. The refinement phase causes the
optimal winnersto become thetemporary winnersin every
round, leading to an optimal allocation even though it is
not detected as optimal. (In some cases where i,
G(B)NG(Bj)=J or [Bi| > 3 an optimal allocation may be
impossible to achieve regardless of the time limit.)

6 Experimental Evaluation

As we have not yet determined each algorithm’s formal
complexity characteristics we conducted empirical tests.
We evaluated (1) how running time varies with the number
of bids, and (2) how percentage optimality of the best
allocation varies with time, given a particular bid distri-
bution and a fixed number of bids and goods.

6.1 Assumptions and Parameters

The space of thisproblem islarge. Roughly speaking it has
three degrees of freedom: the number of goods, the num-
ber of bids and the distribution of bids. Most problematic
among these is the distribution. Precisely because of the
computational complexity of combinatorial auctionsthere
is little or no real data available. In the absence of such
datawetested our algorithms against bids drawn randomly
from specific distributions.

Throughout the experiments we used the following
two distribution functions to determine how often a
bid for n goods appears. The first is binomial,
fo(N)=p"(1-p) " "N!/(n!(N-n)!), p=0.2, in which the prob-



ability of each good being included in a given bid is in-
dependent of which other goods are included. The second
distribution is of exponential form, f,(n)=Ce™®, p=5,
representing the case where a bid for n+1 goods appears
e? times | ess often than a bid for n goods. The prices of
bids for n goods is uniformly distributed between
[n(1-d), n(1+d)], d=0.5.

We do not present any experiments varying the number
of goods in this paper because of space constraints. We
found that for both CASS and V SA running timeincreased
exponentially with the number of goods.

We ran our experiments on a 450MHz Pentium 11 with
256MB of RAM, running Windows NT 4.0. 30 MB of
RAM was used for the CASS cache. All algorithms were
implemented in C++.

6.2 Results

To answer question (1) we measured the running time of
CASS, VSA and the brute-force algorithm. Since VSA is
not guaranteed to reach the optimal revenue, it was passed
this value—calculated by CASS—and stopped when it
found an allocation with revenue of at least 95% of opti-
mal. All the results reported here are averages over 10
different runs. Figure 1 shows running time as a function
of the number of bids with a binomial distribution, with
the number of goods fixed at 30. Figure 2 shows the same
thing for an exponential distribution, without the
brute-force algorithm. To answer question (2), we
measured the optimality of the output of both VSA and
CASS as a function of time. Figure 3 shows both ago-
rithms’ performance with 15000 bids for 150 goods with a
binomial distribution and Figure 4 shows 4500 bids for 45
goods with an exponential distribution.

6.3 Discussion

CASS demonstrates excellent performance both in finding
optimal allocations and as an anytime algorithm. In Fig-
ures 1 and 2 CASSremainsroughly an order of magnitude
faster than VSA as the number of bids increases. Both
curves appear to grow sub-linearly on the logarithmic
graph, suggesting polynomial-time performance. As the
size of the problem isincreased (Figures 3 and 4) CASS
still performs better than VSA for the binomial distribu-
tion, but initially offers worse anytime performance for the
exponential distribution. These results—and other ex-
periments we have conducted—suggest that VSA is most
likely to outperform CASS when the number of goods is
relatively large compared to average bid length. (Notethat
VSA runs to a time limit, so the point at which VSA’s
curve ends is not meaningful.)

CASS's effectiveness is strongly influenced by the
distribution of bids, particularly as the number of goods
increases. If bids contain a large number of goods on
average, improvement #1 will have a substantial effect
because more bins will be skipped between every pair of
bins that are considered, eiminating the need to indi-
vidually examine all the bidsin those bins. However, our
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caching scheme favors distributions with small bids be-
cause they increase the likelihood that partial allocations
will be cacheable. The pruning technique described in 4.4
reduces the number of nodes that are cached, lowering



memory consumption and making CASS feasible for lar-
ger problems. Our second pruning technique often im-
proves performance by two orders of magnitude, though it
is most effective when the variance of average price per
bid is relatively small. This technique also reduces the
optimal cache size, further reducing memory consumption.
Asaresult of pruning, with pruning theamount of memory
available for caching does not seem to be alimiting factor
in CASS's performance.

VSA isinteresting for two reasons. Firstly, it appearsto
offer good anytime performance in cases with small bids
and many goods. Secondly, it provides a case study in the
power of market-based optimization. Further work is
needed to reach firm conclusions, but it appears that as a
centralized optimization method V SA is overshadowed by
other techniques. However, other attractions of mar-
ket-based optimization—in particular its inherent distrib-
uted nature and robustness to change in problem specifi-
cation—may make V SA attractive for some domains.

7 Related and Ongoing Work

As far aswe are aware, the work most directly relevant to
the ideas presented here is a paper by Sandholm [1999]
that appears in these proceedings. Sandholm’s Bidtree
algorithm appears to be closely related to CASS, but im-
portant differences hold. In particular, Bidtree performsa
secondary depth-first search to identify non-conflicting
bids, whereas CASS's structured approach allows it to
avoid considering most conflicting bids. Bidtree also
performs no pruning analogous to our Improvement #3
and no caching. On the other hand, Bidtree uses an IDA*
search drategy rather than CASS's branch-and-bound
approach, and does more preprocessing. We intend to
continue studying the differences between these ago-
rithms, including differences in experimental settings.

Our problem can of course be abstracted away from the
auction motivation and viewed as a straightforward com-
binatorial optimization. This suggests a wealth of litera-
turethat could be applied. Weare currently implementing
some of these techniques and comparing them to our
present results. We are especially interested in compari-
sons with mixed-integer programming and greedy meth-
ods. In particular, we have been investigating a new al-
gorithm® that orders bidsin descending order according to
average price per good, and does a depth-first search with
extensive pruning. This algorithm appears to offer per-
formance similar to CASS, and weintend toreport on it in
a follow-up paper.

8 Conclusion

We have proposed two novel algorithms to mitigate the

computational complexity of combinatorial auctions.
CASS determines optimal allocations very quickly, and

also provides good anytime performance. Inthe future we

® This ongoing work is joined by Liadan O Callaghan and
Daniel Lehmann.

11

intend to pursue a formal analysis of CASS's computa-
tional complexity, and to test both CASS and VSA with
data collected from real bidders.

VSA can determine near-optimal allocations even in
cases with hundreds of goods and tens of thousands of bids.
Since it has been infeasible to run CASS on much larger
problems we do not yet know how close VSA comes to
optimality in these cases. Aninvestigation of VSA’slimits
remains an area for future work.
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APPENDIX B

An Algorithm for Multi-Unit Combinatorial Auctions

Kevin Leyton-Brown and Yoav Shoham and Moshe Tennenholtz
ComputerScienceDepartment
StanfordUniversity, Stanford,CA 94305

Abstract

We presentanovel algorithmfor computingthe optimalwin-
ning bidsin a combinatorialauction(CA), thatis, anauction
in which biddersbid for bundlesof goods. All previously
publishedalgorithmsarelimited to single-unitCAs, already
a hard computationaproblem. In contrastherewe address
themoregeneraproblemin which eachgoodmayhave mul-
tiple units, and eachbid specifiesan unrestrictechumberof
units desiredfrom eachgood. We prove the correctnesof
our branch-and-boundlgorithm, which incorporatesa spe-
cializeddynamicprogrammingprocedure.We thenprovide
very encouragingnitial experimentalresultsfrom animple-
mentedversionof thealgorithm?

Intr oduction

Auctions are the most widely studied mechanismin the
mechanismdesignliteraturein economicsand game the-
ory (Fudenbey & Tirole 1991). This is due to the fact
that auctionsare basic protocols, serving as the building

blocks of more elaboratedmechanisms. Given the wide
popularity of auctionson the Internetand the emegence
of electroniccommerce whereauctionssene asthe most
populargame-theoretiecnechanismefficient auctiondesign
has becomea subjectof considerablémportancefor re-
searcherin multi-agentsystemge.g. (Wellmanetal. 1998;
Monderer& Tennenholt2000)). Of particularinterestare
multi-objectauctionsvherethebidsnamebundlesof goods,
called combinatorialauctions(CA). For example,imagine
anauctionof usedelectronicequipmentA biddermaywish
to bid z for a particularTV andy for a particularVCR, but
z # x + y for thepair. In this exampleall thegoodsat auc-
tion are different, so we call the auctiona single-unitCA.

In contrastconsideranelectronicamanugcturerauctioning
100identical TVs and 100 identical VCRs. A retailerwho
wantsto buy 70 TVs and30 VCRswould beindifferentbe-
tweenall bundleshaving 70 TVs and30 VCRs. Ratherthan

Copyright (© 2002, American Associationfor Artificial Intelli-

gence(www.aaai.og). All rightsresened.
1This work was partly supportedby DARPA grant number
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having to bid on eachof the (1) - (‘') distinct bundles,

shewould preferto placethe singlebid (price, {70 TVs, 30
VCRs}). We call anauctionthatallows sucha bid a multi-
unit CA.

In a combinatorialauction,a selleris facedwith a setof
price offers for variousbundlesof goods,andhis aim is to
allocatethegoodsin awaythatmaximizeshisrevenue.This
optimizationproblemis intractablein thegenerakasegven
when eachgood hasonly a single unit (Rothkopf, Pelec,
& Harstad1998). Given this computationabbstacle two
parallel lines of researchhave evolved. The first exposes
tractablesub-case®f the combinatorialauctionsproblem.
Most of this work hasconcentratedn identifying bidding
restrictionghatentailtractableoptimization;see(Rothlkopf,
Pelec, & Harstad1998; Nisan 1999; Tennenholtz2000;
Vries & Vohra2000). Also, the caseof infinitely divisible
goodsmay betractablysolved by linearprogrammingech-
nigues. The otherline of researchaddressegeneralcom-
binatorial auctions. Although this is a classof intractable
problems,in practiceit is possibleto addressnterestingly-
large datasetswith heuristic methods. It is desirableto
do so becausemary economicsituationsare bestmodeled
by a generalCA, andbidders’ stratgic behaior is highly
sensitve both to changesin the auction mechanismand
to approximationof the optimal allocation (Nisan & Ro-
nen 2000). Previous researchon the optimizationof gen-
eral CA problemshasfocusedexclusively on the simpler
single-unitCA (Fujishima,Leyton-Bravn, & Shohani999;
Sandholml999;LehmannQ’Callaghan& Shohan1999)).
The generalmulti-unit problem has not previously been
studied,nor have ary heuristicsfor its solutionbeenintro-
duced.

In this paperwe presenta novel algorithm, termedCA-
MUS (CombinatorialAuction Multi-Unit Search)to com-
putethewinnersin a generalmulti-unit combinatorialauc-
tion. A generalizationand extensionof our CASS algo-
rithm for winner determinationin single-unit CA's (Fu-
jishima, Leyton-Browvn, & Shoham1999), CAMUS intro-
ducesanovel branch-and-bountéchniquehatmakesuseof
several additionalprocedures A crucial componenbf ary



suchtechniqueis a function for computingupperbounds
on the optimal outcome. We presentsuchan upperbound
function,tailoredspecificallyto themulti-unit combinatorial
auctionsproblem. We prove thatthis function givesan up-
perboundontheoptimalrevenue which enablesisto shav
that CAMUS is guaranteedo find optimal allocations.We
also introduce dynamic programmingtechniguesto more
efficiently handlemulti-unit single-goodbids. In addition,
we presentechniquedor pre-processingnd caching,and
heuristicsfor determiningsearchorderings further capital-
izing on the inherentstructureof multi-unit combinatorial
auctions.

In the next sectionwe formally definethe generalmulti-
unit combinatorialauction problem. In Section3 we de-
scribe CAMUS. In Section4 we dealin somemore detail
with someof CAMUS's techniques.Due to lack of space,
we cannofpresentll theCAMUS procedure detail; how-
ever, this sectionwill clarify its mostfundamentacompo-
nents. In Section5 we presentour experimentalsetupand
someexperimentakesults.

Problem Definition

We now definethe computationaproblemassociatedvith
multi-unit combinatoriakuctions.

Let G = {g1,92,-..,9m} beasetof goods. Let ¢(j)
denotethe number of available units of good j. Con-
sider a setof bids B = {b1,...,b,}. Bid b; is a pair
(p(bi),e(b;)) wherep(b;) is the price offer of bid b;, and
e(bi) = (e(bi)1,e(bi)2,- ... e(bi)m) Wheree(b;); is the
numberof requestedinits of good in b;. If thereis no bid
requestingt units of good: andO units of all goodsj # i
(for somel < i < m andsomel < k < ¢(#)) then,w.l.o.g,
we augmentB with a bid of price 0 for thatbundle. An al-
locationm C B is asubsebf the bidswhereXyce(b); <
q(j) @ < j < m). A partial allocationmp,,+iq: IS anal-
locationwhere for somej, Yyer,,, ..., €(0); < (7). Afull
allocationis anallocationthatis notpartial. Let IT denotethe
setof all allocations. The multi-unit combinatorialauction
problemis the computatiorof anoptimalallocation,thatis,
argmaz cnXpe-p(b). In short,we aresearchingor a sub-
setof the bidsthatwill maximizethe sellers revenuewhile
allocatingeachavailableunit at mostonce.

Notethatthe definition of the optimalallocationassumes
that bids are additive—thatan auctionparticipantwho sub-
mits multiple bids may be allocatedary numberof these
bids for a price that equalsthe sum of eachallocatedbid’s
price offer. In somecaseshowever, a participantmay wish
to submittwo or morebids but requirethatat mostonewill
be allocated.We permitsuchadditionalconstraintghrough
the useof dummygoods introducedalreadyin (Fujishima,
Leyton-Bravn, & Shohan1999). Dummygoodsarenormal
single-unitgoodswhichdonotcorrespondo actualgoodsin
the auction,but sene to enforcemutual exclusionbetween
bids. For example,if bids b; and b, referringto bundles
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e(by) ande(by) areintendedto be mutually exclusive, we
addadummygoodd to eachbid: e(b;) becomes(b;) U d,
ande(b;) becomes:(b2) U d. Sincethe goodd canbe al-
locatedonly once,at mostone of thesebidswill bein ary
allocation.(More generallyit is possibleto introducen-unit
dummygoodsto enforcethe conditionthatno morethann
of a setof bids maybe allocated.)While dummygoodsin-
creasethe expressve power of the bidding language their
usehasno impacton the optimizationalgorithm. Hence,in
theremaindeiof this paperwe do not discriminatebetween
dummygoodsandreal goods,andwe assumehat all bids
areadditive.

In the sequelwe will alsomake useof the following no-
tation. Givenan allocationm anda goodi, we will denote
thetotalnumberof unitsallocatedn =, andthetotalnumber
of unitsof good: allocatedn =, by units(w) andunits; ()
respectiely. In additionunits(total) will denotethe total
numberof unitsover all goods.

Algorithm Definition
Branch-and-Bound Search

Given a setof bids, CAMUS systematicalljcompareghe
revenuefrom all full allocationsin orderto determinethe
optimal allocation. This comparisonis implementedas a
depth-firstsearchwe build up a partialallocationonebid at
atime. Oncewe have constructed full allocationwe back-
track,removing the mostrecentlyaddedbid from the partial
allocationandaddinga new bid instead.Sometimesve can
safelyprunethe searchree,backtrackingoeforeafull allo-
cationhasbeenconstructedEverytime abid is addedo the
currentallocation,CAMUS computesinestimateof therev-
enuethatwill be generatedby the unallocatedyoodswhich
remain.Providedthatthis estimatefunctiono() alwayspro-
videsan upperboundon the actualrevenue,we canprune
wheneer p(m) + o(w) < p(mpest), Wherer is the current
allocation,p(m) = Xpe-p(b) andm.s; is thebestallocation
obsenedsofar.

Bins

Binsarepartitionedsetsof bids. Considersomeorderingof

thegoods.Thereis onebin for eachgood,andeachbid be-

longsto thebin correspondingo its lowest-ordegood. Dur-

ing the searchwe startin the first bin and consideradding
eachbid in turn. After addinga bid to our partial alloca-
tion we move to the bin correspondindo the lowest-order
goodwith ary unallocatedunits. For example,if the first

bid we selectrequestall unitsof goodsl, 2 and4, we next

proceedto bin 3. Besidesmakingit easyto avoid consid-
erationof conflicting bids, bins are powerful becausehey

allow the pruningfunctionto considercontext without sig-

nificantcomputationatost. If bidsin bin; arecurrentlybe-

ing consideredhenthe pruningfunctionmustonly take into

accountbids from bin; ... bin,,. Becausehe partitioning



of bidsinto bins doesnot changeduringthe searchwe may
computethe pruninginformationfor eachbin in a prepro-
cessingstep.

Subbins

In the multi-unit setting,we will often needto selectmore
than one bid from a given bin. This leadsto the idea of

subbins A subbinis asubsebf thebidsin abin thatis con-
structedduringthesearch Sincesubbinsarecreatedlynam-
ically they cannotprovide precomputeaontetual informa-
tion; rather they facilitatethe efficient selectionof multiple

bidsfrom agivenbin. Everytime we addabid to our partial

allocationwe createa new subbincontainingthe next setof

bidsto consider If the searchmovesto a new bin, the new

subbinis generatedrom the new bin by removing all bids
thatconflictwith the currentpartial allocation.|f thesearch
remainsin the samebin, the new subbinis createdrom the
currentsubbinby removing conflicting bids asabove, and
additionally:if bid,, bids, ..., bid; is theorderedsetof ele-
mentsin the currentsubbinandbid; is the bid thatwasjust

chosenthenweremove all bidy, k < j. In thiswaywe con-
siderall combinationsof non-conflictingbids in eachbin,

ratherthanall permutations.

Dominated Bids

Some bids may be removed from considerationin a

polynomial-timepreprocessingtep. For eachpair of bids

(b1,b2) wherebothnamethe samegoodsbut p(by) > p(bs)

ande(by); < e(by); for every goodj, we may remove b,

from thelist of bidsto be considerediuringthesearchasb,

is never preferableo b; (hencewe saythatb, dominates,).

However, it is possiblethat an optimal allocationcontains
bothb; and b,. For this reasonwe storebs in a secondary
datastructureassociatedvith b, and consideraddingit to

anallocationonly afteraddingb; .

Dynamic Programming

Singletonbids (thatis, bids that nameunits from only one
good) desere specialattention. Thesebids will generally
be amongthe mostcomputationallyexpensve to consider
the numberof nodesto searchafteraddinga very shortbid

is nearly the sameas the numberof nodesto searchafter
skipping the bid, becausea short bid allocatesfew units
andhenceconflictswith few otherbids. Unfortunately we
expectthat singletonbids will be quite commonin a vari-

ety of real-world multi-unit CA's. CAMUS simplifiesthe
problem of singletonbids by applying a polynomial-time
dynamic programmingtechniqueas a preprocessingtep.
We constructa vector singleton, for eachgood g, where
eachelementof the vectoris a setof singletonbids nam-
ing only good g. singletony(j) evaluatesto the revenue-
maximizingsetof singletonbidstotaling j units of goodg.

This freesus from having to considersingletonbids indi-

vidually; instead,we consideronly elementsof the single-
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ton vector and treat theseelementsas atomic bids during

the search. Also, thereis never a needto add more than

oneelementfrom eachsingletonvector To seewhy, imag-

ine that we add both singletony(j) and singletony(k) to

our partial allocation. Thesetwo elementsmay have bids

in common,and additionally there may be singletonbids

with morethanmaz(j, k) elementghatwould not conflict

with our partial allocationbut that we have not considered.
Clearly, we would be betteroff addingthe single element
singletong(j + k).

Caching

Considera partial allocation; thatis reachedduring the
searchphase.|f the searchproceeddeyond m; theno(m)
wasnot sufficiently smallto allow usto backtrack.Laterin
thesearchwe mayreachanallocationm, which, by combin-
ing differentbids, cavers exactly the samenumberof units
of thesamegoodsasw;. CAMUS incorporatesamechanism
for cachingthe resultsof the searchbeyond 7, to generate
a betterestimatefor the revenuegiven 75 thanis given by
o(m2). (Sincemr; andmy do notdiffer in the units of goods
thatremain,o(m;) = o(ms).) Considemll theallocationsex-
tendingrm; uponconsideratiorof which thealgorithmback-
tracked, denotedsy, s2,...,sy. Whenwe backtrackd at
eachs; we did sobecause(s;) + o(si) < p(Tpest), aSEX-
plainedabore. It follows that max;(p(s;) + o(s;)) is an
overestimatef therevenueattainablebeyondr, andthatit
is asmalleroverestimatehano(m ) (if it werenot, wewould
have backtracled at 7r; instead). Sincein generalp(ry) #
p(m2), we cachethevaluemaz;(p(s;) + o(s;)) — p(m ) and
backtrackwhenp(ma) + cache(ms) < p(mpest). Our cache
is implementedasa hashtable,sincecachingis only bene-
ficial to theoverall searchf lookuptime is inconsequential.
A consequencef this choiceof datastructureis thatcache
datamaysometimedpeoverwritten;we overwriteanold en-
try in the cachewhen the searchassociatedvith the new
entry examinedmore nodes. Even whenwe do overwrite
useful datathe error is not catastrophichowever: in the
worst casewe mustsimply searcha subtreethat we might
otherwisehave pruned.

Heuristics

Two orderingheuristicsareusedto improve CAMUS's per
formance. First, we must determinean ordering of the
goodsithatis, whichgoodcorrespondso thefirst bin, which
correspondso the secondegtc. For eachgood: we compute
score; = %‘w wherenumbids; is the numberof
bidsthatrequesigood: andavgunits; is the averagenum-
ber of total units (i.e., not just units of good ) requested
by thesebids. We designatethe lowest-ordergood asthe
goodwith thelowestscore thenwe recalculatehe scorefor
the remaininggoodsand repeat. The intuition behindthis
heuristicis asfollows:



e We want to minimize the numberof bids in low-order
bins, to minimize early branchingandthusto make each
individual prunemoreeffective.

¢ We wantto minimizethe numberof unitsof goodscorre-
spondingto low-orderbins, sothatwe will morequickly
move beyondthefirst few bins. As aresult,the pruning
functionwill beableto take into accounimorecontetual
information.

o We wantto maximizethetotal numberof unitsrequested
by bids in low-order bins. Taking thesebids moves us
morequickly towardsthe leavesof the searchiree,again
providing the pruningfunction with more contectual in-
formation.

Our seconcheuristicdetermineghe orderingof bidswithin
bins. Given current partial allocation =, we sort bids
in a given bin in descendingorder of score(b;), where

score(b;) = 28 + o( Ub). Theintuition behindthis
heuristicis thatthe laverageprice perunit of bid; is amea-
sureof how promisingthebid is, while the pruningoveresti-
matefor o(m Ubid;) is anestimateof how promisingtheun-
allocatedunitsare,giventhe partialallocation. This heuris-
tic helpsCAMUS to find goodallocationsquickly, improv-
ing arytime performanceandalsoincreasingr.,;, making
pruning more effective. Becausehe pruning overestimate
depend®nr, this orderingis performeddynamicallyrather
thanasapre-processingtep.

CAMUS Outline

Basedon the above, it is now possibleto give anoutline of
the CAMUS algorithm:

e Process dom nated bids.

e Determ ne an ordering on the goods,
according to the good-ordering heuristic.

e Using the dynam ¢ progranm ng technique,
determine the optinal conbination of
singleton bids totaling 1...q(5) for each
good j.

e Partition all non-singleton bids into
bins, according to the good ordering.

e Preconpute pruning information for each
bi n.
e Set i=1 and 7 ={}.
e Recursive entry point:
—For j =1 ...nunber of bids in the
current subbin of bin,.
* m=mU bid;.
x | 'f (p(r) + cache(w) < p(mpest)) backt rack.
« | f (p(r) + o(m) < p(mpest)) backt rack.

* |'f (units(mr) = wunits(total)) record 7 if it
is the best; backtrack.
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+ Set ¢ to the index of the | owest-order
good in w where wunits;(m) < q(i). (4 may or
may not change)

+ Construct a new subbin based on the
previ ous subbin of bin; (which is bin,
itself if i changed above):

- I'nclude all bidy fromcurrent subbin,
where k> j.

- Include all dom nated bids associ ated
W th bid;.

- I nclude singleton;(q(i) — units;(m)).

- Sort the subbin according to the
subbi n-ordering heuristic.

- Recurse to the recursive entry point,
above, and search this new subbin.

* = — bid;.

— End For

e Return the optimal allocation: mpest.

CAMUS procedures: a closerlook

In this sectionwe examinetwo of CAMUS’s fundamentaproce-
duresmore formally. Additional detailswill be presentedn our
full paper

Pruning

In this subsectionwe explain the implementationof CAMUS'’s
pruning function and demonstratehat it is guaranteeahot to un-
derestimatehe revenueattainablegiven a partial allocation. Con-
sidera pointin the searchwherewe have constructedsomepartial
allocationw. The taskof our pruning function is to give an up-
per boundon the optimal revenueattainablefrom the unallocated
items,usingthe remainingbids (i.e., the bidsthatmay be encoun-
tered during the remainderof the search). Hence,in the sequel
whenwe referto goods thenumberof unitsof agoodandbids,we
referto whatremainsat our pointin the search.

First, we provide an intuitive overview. For every (remaining)
goodj we will calculatea valuewv(j). Simplifying slightly, this
valueis thelargestaverageprice perunit of all the (remaining)bids
requestinginitsof good; thatdo not conflictwith 7, multiplied by
thenumberof (remaining)unitsof 5. Thesumof v(j) valuesfor all
goodsis anupperboundon optimal revenuebecausét relaxesthe
constrainthatthebidsin the optimalallocationmay not conflict.

More formally, let G = {g1, g2, . - -, gm } beasetof goods.Let
¢ (j) denotethe numberof available units of goodj. Considera
setof bids B = {b1,...,bn}. Bid b; is associatedvith a pair
(p(bs), e(b;)) wherep(b;) is the price offer of bid b;, ande(b;) =
(e(bi)1, e(bi)2, - - ., e(bi)m) Wheree(b;); is therequestesiumber
of unitsof goody; in b;. For eachbid b;, let a(b;) = %
betheaveragepriceperunit of bid b;. Noticethattheaverageprice
per unit may changedramaticallyfrom bid to bid, andit is a non-
trivial notion; our techniquewill work for ary arbitrary average
priceperunit. Let L(j) beasortedist of thebidsthatreferto non-
zerounitsof goodj; thelist is sortedin amonotonicallydecreasing
manneraccordingto the a;’s. Let |L(j)| denotethe numberof
elementsn L(j), andlet L(j)x denotethe k-th elemenif L(j).

v(j) is determinedy thefollowing algorithm:



Letv(5):=0;

Letm(j):=0;

Fori:=1to|L(j)| do

if m(j) < ¢'(j) then

{let d := min(e(L(5):);,q(G) — m(5));m(G) = m(j) +
d;v(j) = v(j) + a(L(5):) - d}

Theorem1 LetB° = {b9,03,...,b%} bethebidsin an optimal
allocation. Then,R° = Xpepop(b) < Z1<;<mv(j).

Sketch of proof: Consider the bid 4° € B°.  Then,
p(bo) = Elgjgma(bo) . e(bo)j. Hence,R" = ZbeBop(b) =
YrenoXi<j<ma(b) - e(b);. By changingthe orderof summation
we getthat R° = X1<;<mXseoa(b) - e(b);. Noticethat, given
a particular j, the contritution of bid b to Zycgoa(b) - e(b); is
a(b) - e(b);. Recallnow thatv(j) hasbeenconstructedrom the
setof all bidsthatreferto good; by choosingthe maximalavail-
ableunits of good j from the bidsin L(j), wherethesebids are
sortedaccordingto the averageprice per unit of good. Hence,we
getv(j) > Zpepoa(b)-e(b);. Giventhattheabose holdsfor every
goody, thisimpliesthat: < j<mv(j) > Zsepop(b), asrequested.

The above theoremis the centraltool for proving the following
theorem:

Theorem2 CAMUSis complete:it is guaranteedo find the opti-
mal allocationin a multi-unit combinatorialauctionproblem.

Pre-Processingof Singletons

In this subsectiorwe explain the constructionof the singleton,
vectordescribedabore, anddemonstratéhat singletong(j) is the
revenue-maximizingetof singletonbidsfor goodg thatrequest
total notexceedingj units.

Let b1, b2, ...,b; bebidsfor a single good g, wherethe total
numberof avallableunlts of goodyg is q. Let p(b;) ande(b;) be
the price offer andthe quantityrequestedy b;, respectiely. Our
aimis to computethe optimal selectionof b;’s in orderto allocate
k unitsof goodg, for 1 < k < ¢. Considera two dimensional
grid of size[1...1] x [1...q] wherethe (i, j)-th entry denotedby
U (i, 7), is the optimal allocationof j units consideringonly bids
b1,ba, ..., b;. Thevalueof U (i, j), denotedby V (3, j), is thesum
of the price offers of the bidsin U (7, j). U(1,7) will beb; if b;
requestso morethan; units,andotherwisewill betheemptyset.
Now we candefinel (3, j) recursvely:

1. e(bs) >5:U@G,7)=U(i—1,j5);

2. e(bs) = j: if p(b;) > V(i —1,7) thenU(i,5) = b;. Else
U(i,j) =U(@E —1,7).

3. e(by) <7 ifV(i—1,75) > pb)+V(i—1,5 —e(b;)) then
U(i,j) =U(i—1,5). ElseU(i,5) =b; UU (i — 1, j — e(by)).

This dynamic programmingprocedureis polynomial, and yields

the desiredresult; the optimal allocationof & units is given by
U(l, k). Setsingletong(k) =U(l,k),1 < k < q.

Experimental results

Unfortunately no real-world dataexists to describehow bidders
will behae in generalmulti-unit combinatoriakauctions precisely
becausehe determinatiorof winnersin suchauctionswasprevi-

ouslyunfeasible We have thereforetestedCAMUS on setsof bids
dravn from a randomdistribution. We createdbids as follows,
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varyingthe parameter&umgoods andnums;qds, andfixing the pa-
rametersinitSmaz = 5, AVGPriceprase = H0, aVgPriceyar = 25,
probr = 0.8, proba = 0.65, priceyqr = 0.5:

1. Setthenumberof unitsthatexist for eachgood:

(a) For eachgood i, randomly chooseunits; from the range
[1...unitSmaz]-

unitsmax

nu’”goodsz_7 1 J

(b) If S;units; # (the expectationon
¥,units;) thengoto (a) ThIS ensureshateachtrial involves
the sametotal numberof units.

2. Set an average price for each good: awvgprice; is dravn
uniformly randomly from the range [avgpricepase —
avgpPricevar - - . AVGPTiCehase + AVGPTiCEvar].

3. Selectthe numberof goodsin the bid. This numberis dravn
from a decaydistribution:

(@) Randomlychoosea goodthathasnot alreadybeenaddecto
this bid
(b) With probability prob. , if moregoodsremainthengoto (a)

4. Selectthe numberof units of eachgood, accordingto another
decaydistribution:

(@) Add aunit
(b) With probability prob., if moreunitsremainthengoto (a)

5. Seta price for this bid: price = rand(l1 — priceyer, 1 +
Priceyar) - Licvia(avgprice; - units;)

This distribution hasthe following characteristicshat we con-
siderto bereasonableBids will tendto request smallnumberof
goods,independentf the total numberof goods.Suchdatacases
are computationallyharderthandrawing a numberof goodsuni-
formly from arange,or thanscalingthe averagenumberof goods
perbid to the maximumnumberof goods.Lik ewise,bidswill tend
to namea smallnumberof units pergood. Pricestendto increase
linearly in the numberof units, for a fixed setof goods. This is
a hardercasefor our pruningtechnique muchharderthan draw-
ing pricesuniformly from arange.In fact,it maybereasonabléor
pricesto besuperlineain thenumberof units,asthemotivationfor
holdinga CA in thefirst placemaybethatbiddersareexpectedio
valuebundlesmorethanindividual goods.However, thiswould be
aneasiercasefor our pruningalgorithm,sowe testedon thelinear
caseinstead. The constructionof realistic, hard datadistributions
remainsatopic for furtherresearch.

Our experimentaldatawas collectedon a Pentiumlll-733 run-
ning Windows 2000, with 25 MB allocatedfor CAMUS'’s cache.
Our figure Numberof Bids vs Time shavs CAMUS's performance
on the distribution describedabore, with eachline representing
runswith adifferentnumberof goods.Notethat,for example,CA-
MUS solved problemswith 35 objects(14 goods)and2500bidsin
abouttwo minutes,and problemswith 25 objects(10 goods)and
1500bids in abouta second.Becausehe linesin this graphare
sub-lineamnthelogarithmicscale CAMUS's performancés sub-
exponentialin the numberof bids, thoughit remainsexponential
in the numberof goods. Our figure Percentagge Optimality shavs
CAMUS’s arytime performanceEachline onthegraphshavs the
timetakento find solutionswith revenuethatis somepercentagef
theoptimal,calculatedafterthealgorithmterminated Notethatthe
timetakento findtheoptimalsolutionis lessthanthetime takenfor
thealgorithmto finish, proving thatthis solutionis optimal. These



arytime resultsare very encouraging—not¢hat CAMUS finds a
99% optimal solutionan orderof magnitudemore quickly thanit
takes for the algorithmto run to completion. This suggestghat
CAMUS could be usefulon muchlarger problemsthanwe have
shawn hereif anoptimalsolutionwerenotrequired.

Conclusions

In this paperwe introducedCAMUS, a novel algorithmfor deter
miningtheoptimalsetof winningbidsin generamulti-unit combi-
natorialauctions.Thealgorithmhasbeentestenavarietyof data
distributionsandhasbeenfoundto solve problemsof considerable
scalein anefficientmanner CAMUS extendsour CASSalgorithm
for single-unitcombinatorialauctions,and enablesa wide exten-
sion of the classof combinatorialauctionsthat can be efficiently
implementedIn our currentresearctwe arestudyingthe addition
of randomnoiseinto our good and bin orderingheuristics,com-
binedwith periodicrestartandthedeletionof previously-searched
bids, to improve performanceon hard caseswhile still retaining
completeness.
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ABSTRACT

General combinatorial auctions—auctions in which bidders
place unrestricted bids for bundles of goods—are the sub-
ject of increasing study. Much of this work has focused on
algorithms for finding an optimal or approximately optimal
set of winning bids. Comparatively little attention has been
paid to methodical evaluation and comparison of these al-
gorithms. In particular, there has not been a systematic
discussion of appropriate data sets that can serve as uni-
versally accepted and well motivated benchmarks. In this
paper we present a suite of distribution families for generat-
ing realistic, economically motivated combinatorial bids in
five broad real-world domains. We hope that this work will
yield many comments, criticisms and extensions, bringing
the community closer to a universal combinatorial auction
test suite.!

1. INTRODUCTION
1.1 Combinatorial Auctions

Auctions are a popular way to allocate goods when the
amount that bidders are willing to pay is either unknown or
unpredictably changeable over time. The rise of electronic
commerce has facilitated the use of increasingly complex
auction mechanisms, making it possible for auctions to be
applied to domains for which the more familiar mechanisms
are inadequate. One such example is provided by combina-
torial auctions (CA’s), multi-object auctions in which bids
name bundles of goods. These auctions are attractive be-
cause they allow bidders to express complementarity and
substitutability relationships in their valuations for sets of
goods. Because CA’s allow bids for arbitrary bundles of
goods, an agent may offer a different price for some bundle
of goods than he offers for the sum of his bids for its disjoint
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subsets; in the extreme case he may bid for a bundle with
the guarantee that he will not receive any of its subsets. An
example of complementarity is an auction of used electronic
equipment, in which a bidder values a particular TV at
and a particular VCR at y but values the pair at z > x + y.
An agent with substitutable valuations for two copies of the
same book might value either single copy at x, but value
the bundle at z < 2z. In the special case where z = x (the
agent values a second book at 0, having already bought a
first) the agent may submit the set of bids {bid; XOR bids}.
By default, we assume that any satisfiable sets of bids that
are not explicitly XOR’ed is a candidate for allocation. We
call an auction in which all goods are distinguishable from
each other a single-unit CA. In contrast, in a multi-unit CA
some of the goods are indistinguishable (e.g., many iden-
tical TVs and VCRs) and bidders request some number of
goods from each indistinguishable set. This paper is primar-
ily concerned with single-unit CA’s, since most research to
date has been focused on this problem. However, when ap-
propriate we will discuss ways that our distributions could
be generalized to apply to multi-unit CA’s.

1.2 The Computational Combinatorial Auc-
tion Problem

In a combinatorial auction, a seller is faced with a set
of price offers for various bundles of goods, and his aim is
to allocate the goods in a way that maximizes his revenue.
(For an overview of this problem, see [8].) This optimization
problem is intractable in the general case, even when each
good has only a single unit. Because of the intractability of
general CA’s, much research has focused on subcases of the
CA problem that are tractable; see [22] and more recently
[25]. However, these subcases are very restrictive and there-
fore are not applicable to many CA domains. Other research
attempts to define mechanisms within which general CA’s
will be tractable (achieved by various trade-offs including
bid withdrawal penalties, activity rules and possible ineffi-
ciency). Milgrom [15] defines the Simultaneous Ascending
Auction mechanism which has been very influential, partic-
ularly in the recent FCC spectrum auctions. However, this
approach has drawbacks, discussed for example in [6]. In
the general case there is no substitute for a completely un-
restricted CA. Consequently, many researchers have recently
begun to propose algorithms for determining the winners of
a general CA, with encouraging results. This wave of re-
search has given rise to a new problem, however. In order
to test (and thus to improve) such algorithms, it has been



necessary to use some sort of test suite. Since general CA’s
have never been widely held, there is no data recording the
bidding behavior of real bidders upon which such a test suite
may be built. In the absence of such natural data, we are
left only with the option of generating artificial data that
is representative of the sort of scenarios one is likely to en-
counter. The goal of this paper is to facilitate the creation
of such a test suite.

2. PAST WORK ON TESTING CA
ALGORITHMS

2.1 Experimentswith Human Subjects

One approach to experimental work on combinatorial auc-
tions uses human subjects. These experiments assign valu-
ation functions to subjects, then have them participate in
auctions using various mechanisms [3, 12, 7]. Such tests can
be useful for understanding how real people bid under differ-
ent auction mechanisms; however, they are less suitable for
evaluating the mechanisms’ computational characteristics.
In particular, this sort of test is only as good as the sub-
jects’ valuation functions, which in the above papers were
hand-crafted. As a result, this technique does not easily
permit arbitrary scaling of the problem size, a feature that
is important for characterizing an algorithm’s performance.
In addition, this method relies on relatively naive subjects
to behave rationally given their valuation functions, which
may be unreasonable when subjects are faced with complex
and unfamiliar mechanisms.

2.2 Particular Problems

A parallel line of research has examined particular prob-
lems to which CA’s seem well suited. For example, re-
searchers have considered auctions for the right to use rail-
road tracks [5], real estate [19], pollution rights [13], airport
time slot allocation [21] and distributed scheduling of ma-
chine time [26]. Most of these papers do not suggest holding
an unrestricted general CA, presumably because of the com-
putational obstacles. Instead, they tend to discuss alterna-
tive mechanisms that are tailored to the particular problem.
None of them proposes a method of generating test data,
nor does any of them describe how the problem’s difficulty
scales with the number of bids and goods. However, they
still remain useful to researchers interested in general CA’s
because they give specific descriptions of problem domains
to which CA’s may be applied.

2.3 Artificial Distributions

Recently, a number of researchers have proposed algo-
rithms for determining the winners of general CA’s. In
the absence of test suites, some suggested novel bid gen-
eration techniques, parameterized by number of bids and
goods [24, 10, 4, 8]. (Other researchers have used one or
more of these distributions, e.g., [17], while still others have
refrained from testing their algorithms altogether, e.g., [16,
14].) Parameterization represents a step forward, making it
possible to describe performance with respect to the prob-
lem size. However, there are several ways in which each of
these bid generation techniques falls short of realism, con-
cerning the selection of which goods and how many goods to
request in a bundle, what price to offer for the bundle, and
which bids to combine in an XOR’ed set. More fundamen-
tally, however, all of these approaches suffer from failing to
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model bidders explicitly, and from attempting to represent
an economic situation with an non-economic model.

2.3.1 Which goods

First, each of the distributions for generating test data
discussed above has the property that all bundles of the
same size are equally likely to be requested. This assumption
is clearly violated in almost any real-world auction: most of
the time, certain goods will be more likely to appear together
than others. (Continuing our electronics example, TVs and
VCRs will be requested together more often than TVs and
printers.)

2.3.2  Number of goods

Likewise, each of the distributions for generating test data
determines the number of goods in a bundle completely in-
dependently from determining which goods appear in the
bundle. While this assumption appears more reasonable it
will still be violated in many domains, where the expected
length of a bundle will be related to which goods it contains.
(For example, people buying computers will tend to make
long combinatorial bids, requesting monitors, printers, etc.,
while people buying refrigerators will tend to make short
bids.)

2.3.3 Price

Next, there are problems with the pricing® schemes used
by all four techniques. Pricing is especially crucial: if prices
are not chosen carefully then an otherwise hard distribution
can become computationally easy.

In Sandholm [24] prices are drawn randomly from either
[0, 1] or from [0, g], where g is the number of goods requested.
The first method is clearly unreasonable (and computation-
ally trivial) since price is unrelated to the number of goods
in a bid—note that a bid for many goods and for a small
subset of the same bid will have exactly the same price on
expectation. The second is better, but has the disadvan-
tage that average and range are parameterized by the same
variable.

In Boutilier et al.[4] prices of bids are distributed normally
with mean 16 and standard deviation 3, giving rise to the
same problem as the [0, 1] case above.

In Fujishima et al.[10] prices are drawn from [g(1—d), g(1+
d)], d = 0.5. While this scheme avoids the problems de-
scribed above, prices are simply additive in g and are unre-
lated to which goods are requested in a bundle, both unre-
alistic assumptions in some domains.

More fundamentally, Andersson et al.[l] note a critical
pricing problem that arises in several of the schemes dis-
cussed above. As the number of bids to be generated be-
comes large, a given short bid will be drawn much more
frequently than a given long bid. Since the highest-priced
bid for a bundle dominates all other bids for the same bun-
dle, short bids end up being much more competitive. In-
deed, it is pointed out that for extremely large numbers
of bids a good approximation to the optimal solution is
simply to take the best singleton bid for each good. One
solution to this problem is to guarantee that a bid will

2Most of the existing literature on artificial distributions
in combinatorial auctions refers to the monetary amount
associated with a bundle as a “price”. In Section 3 we will
advocate the use of different terminology, but in this section
we use the existing term for clarity.



be placed for each bundle at most once (for example, this
approach is taken by Sandholm[24]). However, this solu-
tion has the drawback that it is unrealistic: different real
bidders are likely to place bids on some of the same bun-
dles.

Another solution to this problem is to make bundle prices
superadditive in the number of goods they request—an as-
sumption that may also be reasonable in many CA domains.
A similar approach is taken by deVries and Vohra [8], who
make the price for a bid a quadratic function of the prices
of bids for subsets. For some domains this pricing scheme
may result in too large an increase in price as a function
of bundle length. The distributions presented in this pa-
per will include a pricing scheme that may be configured
to be superadditive or subadditive in bundle length, where
appropriate, parameterized to control how rapidly the price
offered increases or decreases as a function of bundle length.

2.3.4 XORbids

Finally, while most of the bid-generation techniques dis-
cussed above permit bidders to submit sets of bids XOR’ed
together, they have no way of generating meaningful sets of
such bids. As a consequence the computational impact of
XOR’ed bids has been very difficult to characterize.

3. GENERATING REALISTIC BIDS

While the lack of standardized, realistic test cases does
not make it impossible to evaluate or compare algorithms,
it does make it difficult to know what magnitude of real-
world problems each algorithm is capable of solving, or what
features of real-world problems each algorithm is capable of
exploiting. This second ambiguity is particularly troubling:
it is likely that algorithms would be designed differently if
they took the features of more realistic® bidding into ac-
count.

3.1 Prices, priceoffersand valuations

The term “price” has traditionally been used by researchers
constructing artificial distributions to describe the amount
offered for a bundle. However, this term really refers to the
amount a bidder is made to pay for a bundle, which is of
course mechanism-specific and is often not the same as the
amount offered. Indeed, it is impossible to model bidders’
price offers at all without committing to a particular auction
mechanism. In the distributions described in this paper, we
will assume a sealed-bid incentive-compatible mechanism,
where the price offered for a bundle is equal to the bid-
der’s valuation. Hence, in the rest of this paper, we will use
the terms price offer and wvaluation interchangeably. Re-
searchers wanting to model bidding behavior in other mech-
anisms could transform the valuation generated by our dis-
tributions according to bidders’ equilibrium strategies in the
new mechanism.

3.2 TheCATSsuite

3Previous work characterizes hard cases for weighted set
packing—equivalent to the combinatorial auction problem.
Real-world bidding is likely to exhibit various regularities,
however, as discussed throughout this paper. A data set de-
signed to include the same regularities may be more useful
for predicting the performance of an algorithm in a real-
world auction.
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In this paper we present CATS (Combinatorial Auction
Test Suite), a suite of distributions for modeling realistic
bidding behavior. This suite is grounded in previous re-
search on specific applications of combinatorial auctions, as
described in section 2.1 above. At the same time, all of
our distributions are parameterized by number of goods and
bids, facilitating the study of algorithm performance. This
suite represents a move beyond current work on modeling
bidding in combinatorial auctions because we provide an
economic motivation for both the contents and the valuation
of a bundle, deriving them from basic bidder preferences. In
particular, in each of our distributions:

e Certain goods are more likely to appear together than
others.

e The number of goods appearing in the bundle is often
related to which goods appear in the bundle.

e Valuations are related to which goods appear in the
bundle. Where appropriate, valuations can be config-
ured to be subadditive, additive or superadditive in
the number of goods requested.

e Sets of XOR’ed bids are constructed in meaningful
ways, on a per-bidder basis.

We do not intend for this paper to stand as an isolated
statement on bidding in combinatorial auctions, but rather
as the beginning of a dialogue. We hope to receive many
suggestions and criticisms from members of the CA com-
munity, enabling us both to update the distributions pro-
posed here and to include distributions modeling new do-
mains. In particular, our distributions include many param-
eters, for which we suggest default values. Although these
values have evolved somewhat during our development of
the test suite, it has not yet been possible to understand
the role each parameter plays in the difficulty or realism
of the resulting distribution, and our choice may be seen
as highly subjective. We hope and expect to receive criti-
cisms about these parameter values; for this reason we in-
clude a CATS version number with the defaults to differ-
entiate them from future defaults. The suite also contains
a legacy section including all bid generation techniques de-
scribed above, so that new algorithms may easily be com-
pared to previously-published results. More information on
our test suite, including executable versions of our distri-
butions for Solaris, Linux and Windows may be found at
http://robotics.stanford.edu/CATS .

In section 4, below, we present distributions based on five
real-world situations. For most of our distributions, the
mechanism for generating bids requires first building a graph
representing adjacency relationships between goods. Later,
the mechanism uses the graph, generated in an economically-
motivated way, to derive complementarity properties be-
tween goods and substitutability properties for bids. Of the
five real-world situations we model, the first three concern
complementarity based on adjacency in (physical or con-
ceptual) space, while the final two concern complementarity
based on correlation in time. Our first example (4.1) mod-
els shipping, rail and bandwidth auctions. Goods are repre-
sented as edges in a nearly planar graph, with agents submit-
ting an XOR’ed set of bids for paths connecting two nodes.
Our second example (4.2) models an auction of real estate,
or more generally of any goods over which two-dimensional



adjacency is the basis of complementarity. Again the rela-
tionship between goods is represented by a graph, in this
case strictly planar. In (4.3) we relax the planarity assump-
tion from the previous example in order to model arbitrary
complementarities between discrete goods such as electron-
ics parts or collectables. Our fourth example (4.4) concerns
the matching of time-slots for a fixed number of different
goods; this case applies to airline take-off and landing rights
auctions. In (4.5) we discuss the generation of bids for a
distributed job-shop scheduling domain, and also its appli-
cation to power generation auctions. Finally, in (4.6), we
provide a legacy suite of bid generation techniques, includ-
ing all those discussed in (2.3) above.

In the description of the distributions that follow, let
rand(a,b) represent a real number drawn uniformly from
[a,b]. Let rand_int(a,b) represent a random integer drawn
uniformly from the same interval. With respect to a given
graph, let e(z,y) represent the proposition that an edge ex-
ists between nodes x and y. Denote the number of goods in
a bundle B as |B|. The statement a good g is in a bundle
B means that g € B. All of the distributions presented here
are parameterized by the number of goods (num_goods) and
number of bids (num_bids).

4. CATSIN DETAIL
4.1 Pathsin Space

There are many real-world problems involving bidding on
paths in space. Generally, this class may be characterized as
the problem of purchasing a connection between two points.
Examples include truck routes [23], natural gas pipeline net-
works [20], network bandwidth allocation, and the right to
use railway tracks [5].* In particular, spatial path problems
consist of a set of points and accessibility relations between
them. Although the distribution we propose may be config-
ured to model bidding in any of the above domains, we will
use the railway domain as our motivating example since it
is both intuitive and well-understood.

More formally, we will represent this railroad auction by
a graph in which each node represents a location on a plane,
and an edge represents a connection between locations. The
goods at auction are therefore the edges of the graph, and
bids request a set of edges that form a path between two
nodes. We assume that no bidder will desire more than one
path connecting the same two nodes, although the bidder
may value each path differently.

4.1.1 Building the Graph

The first step in modeling bidding behavior for this prob-
lem is determining the graph of spatial and connective re-
lationships between cities. One approach would be to use
an actual railroad map, which has the advantage that the
resulting graph would be unarguably realistic. However,

4Electric power distribution is a frequently discussed real
world problem which seems superficially similar to the prob-
lems discussed here. However, many of the complementari-
ties in this domain arise from physical laws governing power
flow in a network. Consideration of these laws becomes very
complex in networks of interesting size. Also, because these
laws are taken into account during the construction of power
networks, the networks themselves are difficult to model us-
ing randomly generated graphs. For these reasons, we do
not attempt to model this domain.
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Figure 1: Sample Railroad Graph

it would be difficult to find a set of real-world maps that
could be said to exhibit a similar sort of connectivity and
would encompass substantial variation in the number of
cities. Since scalability of input data is of great importance
to the testing of new CA algorithms, we have chosen to
propose generating such graphs randomly. Our technique
for generating graphs has various parameters that may be
adjusted as necessary; in our opinion it produces realistic
graphs with the recommended settings. Figure 1 shows a
representative example of a graph generated using our tech-
nique.

We begin with num_cities nodes randomly placed on a
plane. We add edges to this graph, G, starting by connecting
each node to a fixed number of its nearest neighbors. Next,
we iteratively consider random pairs of nodes and examine
the shortest path connecting them, if any. To compare, we
also compute various alternative paths that would require
one or more edges to be added to the graph, given a penalty
proportional to distance for adding new edges. (We do this
by considering a complete graph C, an augmentation of G
with new edges weighted to reflect the distance penalty.) If
the shortest path involves new edges—despite the penalty—
then the new edges (without penalty) are added to G, and
replace the existing edges in C'. This process models our sim-
plifying assumption that there will exist uniform demand for
shipping between any pair of cities, though of course it does
not mimic the way new links would actually be added to
a rail network. Our technique produces slightly non-planar
graphs—graphs on a plane in which edges occasionally cross
at points other than nodes. We consider this to be reason-
able, as the same phenomenon may be observed in real-world
rail lines, highways, network wiring, etc. Determining the
“reasonableness” of a graph is of course a subjective task
unless more quantitative metrics are used to assess quality;
we see the identification and application of such metrics (for
this and other distributions) as an important topic for future
work.

4.1.2 Generating Bids

Given a map of cities and the connectivity between them,
there is the orthogonal problem of modeling bidding itself.
‘We propose a method which generates a set of substitutable
bids from a hypothetical agent’s point of view. We start
with the value to an agent for shipping from one city to
another and with a shipping cost which we make equal to the
Euclidean distance between the cities. We then place XOR
bids on all paths on which the agent would make a profit



Let num_cities = f(num-_goods)
Randomly place nodes (cities) on a unit box
Connect each node to its initial_connections
nearest neighbors
For i =1 to num_building_paths:
C=aG
For every pair of nodes mj,n2 € G where
—e(ni,n2):

Add an edge to C of length
building_penalty -
Euclidean_distance(ni, na)

Choose two nodes at random, and find the
shortest path between them in C

If shortest path uses edges that do not
exist in G:

For every such pair of nodes
ni,ng € G add an edge to G with
length FEuclidean_distance(ni,ns)

End If
End For
If total number of edges in G # num-_goods,
restart

Figure 2: Graph-Building Technique

While num_generated_bids < num_bids:

Randomly choose two nodes, ni and n2

d = rand(1, shipping_cost_factor)

cost = Euclidean_distance(cityi, citys)

value = d - Fuclidean_distance(cityi, cityz)

Make XOR bids of value — cost on every path
from city; to citys with cost < value

If there are more than max_bid_set_size such
paths, bid on the max_bid_set_size paths
that maximize value — cost.

End While

Figure 3: Bid-Generation Technique

(i.e., those paths where utility — cost > 0). The path’s value
is random, in (parameterized) proportion to the Euclidean
distance between the chosen cities. Since the shipping cost
is the Euclidean distance between two cities, we use this as
the lower bound for value as well, since only bidders with
such valuations would actually place bids.

Note that this distribution, and indeed all others pre-

sented in this paper, may generate slightly more than num_bids

bids. In our experience CA optimization algorithms tend not
to be highly sensitive in the number of bids, so we judged it
more important to build economically sensible sets of sub-
stitutable bids. When generating a precise number of bids s
important, an appropriate number of bids may be removed
after all bids have been generated so that the total will be
met exactly.

Note that 1 is used as a lower bound for d because any bid-
der with d < 1 would find no profitable paths and therefore
would not bid.

This is CATS 1.0 problem 1. CATS default param-

eters:  initial_connections = 2, building_penalty =
1.7, num_building_paths = num_cities® /4,
shipping_cost_factor = 1.5, max_bid_set_size = 5,

and f(num_goods) = 0.529689 x NUMGOODS + 3.4329.

4.1.3 Multi-Unit Extensions. Bandwidth Allocation,
Commodity Flow

This model may also be used to generate realistic data
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Place nodes at integer vertices (4,j) in a
plane, where 1 <4,j < [/(num-goods)]
For each node n:
If n is on the edge of the map
Connect n to as many hv-neighbors as
possible
Else
If rand(0,1) < three_prob
Connect n to a random set of
three of its four hv-neighbors
Else
Connect n to all four of its
hv-neighbors
While rand(0,1) < additional_neighbor:

Connect g to one of its
d-neighbors, provided that the
new diagonal edge will not
cross another diagonal edge

End While
End For

Figure 4: Graph-Building Technique

for multi-unit CA problems such as network bandwidth al-
location and general commodity flow. The graph may be
created as above, but with a number of units (capacity)
assigned to each edge. Likewise, the bidding technique re-
mains unchanged except for the assignment of a number of
units to each bid.

4.2 Proximity in Space

There is a second broad class of real-world problems in
which complementarity arises from adjacency in two-dimen-
sional space. An intuitive example is the sale of adjacent
pieces of real estate [19]. Another example is drilling rights,
where it is much cheaper for an (e.g.) oil company to drill
in adjacent lots than in lots that are far from each other. In
this section, we first propose a graph-generation mechanism
that builds a model of adjacency between goods, and then
describe a technique for generating realistic bids on these
goods. Note that in this section nodes of the graph represent
the goods at auction, while edges represent the adjacency
relationship.

4.2.1 Building the Graph

There are a number of ways we could build an adjacency
graph. The simplest would be to place all the goods (loca-
tions, nodes) in a grid, and connect each to its four neigh-
bors. We propose a slightly more complex method in order
to permit a variable number of neighbors per node (equiva-
lent to non-rectangular pieces of real estate). As above we
place all goods on a grid, but with some probability we omit
a connection between goods that would otherwise represent
vertical or horizontal adjacency, and with some probabil-
ity we introduce a connection representing diagonal adja-
cency. (We call horizontally- or vertically-adjacent nodes
hv-neighbors and diagonally-adjacent nodes d-neighbors.)

Figure 5 shows a sample real estate graph, generated by
the technique described in Figure 4. Nodes of the graph are
shown with asterisks, while edges are represented by solid
lines. The dashed lines show one set of property boundaries
that would be represented by this graph. Note that one
node falls inside each piece of property, and that two pieces
of property border each other iff their nodes share an edge.



“Doundaries”

Figure 5: Sample Real Estate Graph

4.2.2 Generating Bids

To model realistic bidding behavior, we generate a set of
common values for each good, and private values for each
good for each bidder. The common value represents the
appraised or expected resale value of each individual good.
The private value represents how much one particular bidder
values that good, as an offset to the common value (e.g., a
private value of 0 for a good represents agreement with the
common value). These private valuations describe a bidder’s
preferences, and so they are used to determine both a value
for a given bid and the likelihood that a bidder will request
a bundle that includes that good. There are two additional
components to each bidder’s preferences: a minimum total
common value, and a budget. The former reflects the idea
that a bidder may only wish to acquire goods of a certain
recognized value. The latter reflects the fact that a bidder
may not be able to afford every bundle that is of interest to
him.

To generate bids, we first add a random good, weighted
by a bidder’s preferences, to the bidder’s bid. Next, we
determine whether another good should be added by draw-
ing a value uniformly from [0,1], and adding another good
if this value is smaller than a threshold. This is equiva-
lent to drawing the number of goods in a bid from a de-
cay distribution.’® We must now decide which good to
add. First we allow a small chance that a new good will
be added uniformly at random from the set of goods, with-
out the requirement that it be adjacent to a good in the
current bundle B . (This permits bundles requesting un-
connected regions of the graph: for example, a hotel com-
pany may only wish to build in a city if it can acquire
land for two hotels on opposite sides of the city.) Oth-
erwise, we select a good from the set of nodes bordering
the goods in B. The probability that some adjacent good

®We use Sandholm’s [24] term “decay” here, though the
distribution goes by various names—for a description of the
distribution please see Section 4.6.1.

SThere are two reasons we use a decay distribution here.
First, we expect that most bids will request small bundles;
a uniform distribution, on the other hand, would be ex-
pected to have the same number of bids for bundles of each
cardinality. Also, bids for large bundles will often be com-
putationally easier for CA algorithms than bids for small
bundles, because choosing the former more highly restricts
the future search. Second, we require a distribution where
the expected bundle size is unaffected by changes in the total
number of goods. Some other distributions, such as uniform
and binomial, do not have this property.
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Routine Add_Good_to_Bundle(bundle B)
If rand(0,1) < jump_prob:
Add a good g ¢ b to B, chosen
uniformly at random
Else:
Compute s = Zng,yeB,e(z,y) pn(z) [pn()
is defined below]
Choose a random node z ¢ B from the
distribution ) pn(2)
yEBe(z,y) s
Add z to B
End If
End Routine

Figure 6: Add_Good_to_Bundle for Spatial Proxim-
ity

n1 will be added depends on how many edges mi shares
with the current bundle, and on the bidder’s relative pri-
vate valuations for n1 and no. For example, if nodes n1 and
ng are each connected to B by one edge, and the private
valuation for n; is twice that for ne then the probability
of adding ni to B, p(ni), is 2p(n2). Further, if n; has 3
edges to nodes in B while ng is connected to B by only
1 edge, and the goods have equivalent private values, then
p(n1) = 3p(n2). Once we have determined all the goods
in a bundle we set the price offered for the bundle, which
depends on the sum of common and private valuations for
the goods in the bundle, and also includes a function that is
superadditive (with our parameter settings) in the number
of goods.” Finally, we generate additional bids that are sub-
stitutable for the original bid, with the constraint that each
bid in the set requests at least one good from the original
bid.

This is CATS 1.0 problem 2. CATS default param-
eters: three_prob = 1.0, additional_neighbor = 0.2,
max_good_value = 100, max_substitutable bids = 5,
additional_location = 0.9, jump_prob = 0.05, additivity =
0.2, deviation = 0.5, budget_factor = 1.5, resale_factor =
0.5, and S(n) = n*+ed4ity  Note that additivity = 0 gives
additive bids, and additivity < 0 gives sub-additive bids.

4.2.3 Spectrum Auctions

A related problem is the auction of radio spectrum, in
which a government sells the right to use specific segments
of spectrum in different geographical areas|[18, 2].8 It is pos-
sible to approximate bidding behavior in spectrum auctions
by making the assumption that all complementarity arises
from spatial proximity.® In this case, our spatial proximity
model can also be used to generate realistic bidding distri-
butions for spectrum auctions. The main difference between
this problem and the real estate problem is that in a spec-
trum auction each good may have multiple units (frequency
bands) for sale. It is insufficient to model this as a multi-
unit CA problem, however, if bidders have the constraint

"Recall the discussion in Section 2.3.3 motivating the use
of superadditive valuations.

8Spectrum auctions have not historically been formulated
as general CA’s, but the possibility of doing so is now being
explored.

9This assumption would be violated, for example, if some
bidders wanted to secure some spectrum in all metropolitan
areas. Clearly the problem of realistic test data for spectrum
auctions remains an area for future work.



For all g,c(g) = rand(l, maz_good_value)
While num_generated_bids < num_bids:

For each good, reset
p(g) = rand(—deviation -
max_good_value, deviation + maz_good_value)
p(g)+deviation-max_good-value

pn(g) - 2-deviation-max_good_-value
Normalize pn(g) so that ngn(g) =1
B ={}

Choose a node g at random, weighted by
pn(), and add it to B

While rand(0,1) < additional_location

Add_Good_to_Bundle(B)

value(B) = 3 ¢ g(c(z) + p(z)) + S(IB)

If value(B) <0 on B, restart bundle
generation for this bidder

Bid value(B) on B

budget = budget_factor - value(B)

min_resalevalue = resale_factor - 3 g c(x)

Construct substitutable bids. For each
good ¢g; € B:

Initialize a new bundle, B; = {g¢;}

While |B;| < |B|:
Add_Good_to_Bundle(B;)

Compute c¢; = clx

End For P ZxEBl ( )

Make XOR bids on all B; where
0 < value(B) < budget and
c; > min_resale_value.

If there are more than
max_substitutable_bids such bundles, bid
on the max_substitutable_bids bundles
having the largest value

End While

Figure 7: Bid-Generation Technique

that they want the same frequency in each region.'® In-

stead, the problem can be modeled with multiple distinct
goods per node in the graph, and bids constructed so that
all nodes added to a bundle belong to the same ‘frequency’.
With this method, it is also easy to incorporate other pref-
erences, such as preferences for different types of goods. For
instance, if two different types of frequency bands are being
sold, one 5 megahertz wide and one 2.5 megahertz wide, an
agent only wanting 5 megahertz bands could make substi-
tutable bids for each such band in the set of regions desired
(generating the bids so that the agent will acquire the same
frequency in all the regions).

The scheme for generating price offers used in our real
estate example may be inappropriate for the spectrum auc-
tion domain. Research indicates that while price offers will
still tend to be superadditive, this superadditivity may be
quadratic in the population of the region rather than ex-
ponential in the number of regions [2]. CATS includes a
quadratic pricing option that may be used with this prob-
lem, in which the common value term above is used as a
measure of population. Please see the CATS documenta-
tion for more details.

1076 see why this cannot be modeled as a multi-unit CA,
consider an auction for three regions with two units each,
and three bidders each wanting one unit of two goods. In
the optimal allocation, b1 gets 1 unit of g1 and 1 unit of g2,
b2 gets 1 unit of g2 and 1 unit of g3, and bs gets 1 unit of g3
and 1 unit of g;. In this example there is no way of assigning
frequencies to the units so that each bidder gets the same
frequency in both regions.
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Build a fully-connected graph with one node for
each good

Label each edge from m1 to n2 with a weight
d(n1,n2) = rand(0,1)

Figure 8: Graph-Building Technique

Routine Add_Good_to_Bundle(bundle B)
Compute s =3, 4, cpd(®,y) pn(z)
Choose a random node z ¢ B from the

distribution Y, d(z,y) - %(z)
Add = to B
End Routine

yeEB

Figure 9: Routine Add_Good_to_Bundle for Arbi-
trary Relationships

4.3 Arbitrary Relationships

Sometimes complementarities between goods will not be
as universal as geographical adjacency, but some kind of reg-
ularity in the complementarity relationships between goods
will still exist. Consider an auction of different, indivisi-
ble goods, e.g. for semiconductor parts or collectables, or
for distinct multi-unit goods such as the right to emit some
quantity of two different pollutants produced by the same
industrial process. In this section we discuss a general way
of modeling such arbitrary relationships.

4.3.1 Building the Graph

We express the likelihood that a particular pair of goods
will appear together in a bundle as being proportional to the
weight of the appropriate edge of a fully-connected graph.
That is, the weight of an edge between n; and ng is propor-
tional to the probability that, having only n; in our bundle,
we will add na2. Weights are only proportional to probabili-
ties because we must normalize the sum of all weights from
a given good to 1 in order to calculate a probability.

4.3.2 Generating Bids

Our technique for modeling bidding is a generalization of
the technique presented in the previous section. We choose
a first good and then proceed to add goods one by one, with
the probability of each new good being added depending
on the current bundle. Note that, since in this section the
graph is fully-connected, there is no need for the ‘jumping’
mechanism described above. The likelihood of adding a new
good g to bundle B is proportional to }° 5 d(z,y) - pi(z).
The first term d(x, y) represents the likelihood (independent
of a particular bidder) that goods x and y will appear in
a bundle together; the second, p;(z), represents bidder i’s
private valuation of the good x. We implement this new
mechanism by changing the routine Add_Good_to_Bundle().
We are thus able to use the same techniques for assigning a
value to a bundle, as well as for determining other bundles
with which it is substitutable.

This is CATS 1.0 problem 3. CATS default param-
eters: max_good_value = 100, additional_good = 0.9,
max_substitutable_bids = 5, additivity = 0.2, deviation =
0.5, budget_factor = 1.5, resale_factor = 0.5, and S(n) =

n1+additi'uity .

4.3.3 Multi-Unit Pollution Rights Auctions: Future
Work



Bidding in pollution-rights auctions[18, 13] may be mod-
eled through a multi-unit generalization of the technique
presented in this section. In such auctions, the government
sells companies the right to generate specific amounts of
some pollutant. In the United States, though these auc-
tions are widely used, sulfur-dioxide is the only chemical
for which they are the primary method of control. Cur-
rent US pollution-rights auctions may therefore be modeled
as single good multi-unit auctions. If the government were
to conduct pollution rights auctions for multiple pollutants
in the future, however, bidding would be best-represented
as a multi-unit ‘Arbitrary Complementarity’ problem. The
problem belongs to this class because some sets of pollutants
are more likely to be produced than others, yet the relation-
ship between pollutants can not be modeled through any
notion of adjacency. Should such auctions become viable in
the future, we hope that a pollution-rights distribution will
be added to CATS .

4.4 Temporal Matching

We now consider real-world domains in which complemen-
tarity arises from a temporal relationship between goods. In
this section we discuss matching problems, in which corre-
sponding time slices must be secured on multiple resources.
The general form of temporal matching includes m sets of
resources, in which each bidder wants 1 time slice from
each of 7 < m sets subject to certain constraints on how
the times may relate to one another (e.g., the time in set
2 must be at least two units later than the time in set
3). Here we concern ourselves with the problem in which
j = 2, and model the problem of airport take-off and land-
ing rights. Rassenti et al. [21] made the first study of auc-
tions in this domain. The problem has been the topic for
much other work; in particular [11] includes detailed exper-
iments and an excellent characterization of bidder behav-
ior.

The airport take-off and landing problem arises because
certain high-traffic airports require airlines to purchase the
right to take off or land during a given time slice. However,
if an airline buys the right for a plane to take off at one
airport then it must also purchase the right for the plane
to land at its destination an appropriate amount of time
later. Thus, complementarity exists between certain pairs
of goods, where goods are the right to use the runway at a
particular airport at a particular time. Substitutable bids
are different departure/arrival packages; therefore bids will
only be substitutable within certain limits.

4.4.1 Building the Graph

Departing from our graph-based approach above, we ground

this example in the real map of high-traffic US airports for
which the Federal Aviation Administration auctions take-off
and landing rights, described in [11]. These are the four bus-
iest airports in the United States: La Guardia International,
Ronald Reagan Washington National, John F. Kennedy In-
ternational, and O’Hare International. This map is shown
below.

We chose not to use a random graph in this example be-
cause the number of bids and goods is dependent on the
number of bidders and time slices at the given airports; it
is not necessary to modify the number of airports in or-
der to vary the problem size. Thus, num_cities = 4 and
num_times = |num_goods/num_cities].
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Figure 10: Map of Airport Locations

4.4.2 Generating Bids

Our bidding mechanism presumes that airlines have a
certain tolerance for when a plane can take off and land
(early_takeof f_deviation, late_takeof f _deviation,
early_land_deviation, late_land_deviation), as related to
their most preferred take-off and landing times (start_time,
start_time + min_flight_length). We generate bids for all
bundles that fit these criteria. The value of a bundle is de-
rived from a particular agent’s utility function. We define a
utility wma, for an agent, which corresponds to the utility
the agent receives for flying from city, to citys if it receives
the ideal takeoff and landing times. This utility depends on
a common value for a time slot at the given airport, and
deviates by a random amount. Next we construct a util-
ity function which reduces umaq» according to how late the
plane will arrive, and how much the flight time deviates from
optimal.

This is CATS 1.0 problem 4. CATS default parameters:
max_airport value = 5, longest_flight_length = 10,
deviation = 0.5, early_takeof f_deviation = 1,
late_takeof f_deviation = 2, early_land_deviation =
1, late_land_deviation = 2, delay_coeff = 0.9, and
amount_late_coef f = 0.75.

45 Temporal Scheduling

Wellman et al. [26] proposed distributed job-shop schedul-
ing with one resource as a CA problem. We provide a dis-
tribution that mirrors this problem. While there exist many
algorithms for solving job-shop scheduling problems, the dis-
tributed formulation of this problem places it in an economic
context. In the problem formulation from Wellman et al., a
factory conducts an auction for time-slices on some resource.
Each bidder has a job requiring some amount of machine
time, and a deadline by which the job must be completed.
Some jobs may have additional, later deadlines which are
less desirable to the bidder and so for which the bidder is
willing to pay less.

45.1 Generating Bids

In the CA formulation of this problem, each good repre-
sents a specific time-slice. Two bids are substitutable if they
constitute different possible schedules for the same job. We
determine the number of deadlines for a given job according
to a decay distribution, and then generate a set of substi-
tutable bids satisfying the deadline constraints. Specifically,
let the set of deadlines of a particular job be di < --- < dn
and the value of a job completed by di be v1, superadditive
in the job length. We define the value of a job completed by
deadline d; as v; = vy - %, reflecting the intuition that the



Set the average valuation for each city’s
airport: cost(city) = rand(0, max_airport_value)

Let max_l = length of longest distance between
any two cities

While num_generated_bids < num_bids:

Randomly select city; and cityz where
e(cityy, cityz)
l = distance(cityy, citys)
min_flight_length =
round(longest_flight_length - ﬁ)
start_time =
rand_int(1, num_times — min_flight_length)
dev = rand(1 — deviation, 1 + deviation)
Make substitutable (XOR) bids. For
takeof f =
max (1, start_time — early_takeof f _deviation)
to min(num_times, start_time +
late_takeof f _deviation):
For land = takeof f + min_flight_length
to
min(start_time + min_flight_length +
late_land_deviation, num_times):

amount_late =
min(land — (start_time +
min_flight_length),0)

delay =
land—takeof f —min_flight_length

Bid dev - (cost(cityy) + cost(cityz)) -
delay_coef fielay .
amount_late_coef fomount-late fqr
takeoff at time takeoff at
city; and landing at time land
at citys

End For
End For
End While

Figure 11: Bid-Generation Technique

decrease in value for a later deadline is proportional to its
‘lateness’.

Note that, like Wellman et al., we assume that all jobs
are eligible to be started in the first time-slot. Our for-
mulation of the problem differs in only one respect—we
consider only allocations in which jobs receive continuous
blocks of time. However, this constraint is not restrictive
because for any arbitrary allocation of time slots to jobs
there exists a new allocation in which each job receives a
continuous block of time and no job finishes later than in
the original allocation. (This may be achieved by num-
bering the winning bids in increasing order of scheduled
end time, and then allocating continuous time-blocks to
jobs in this order. Clearly no job will be rescheduled to
finish later than its original scheduled time.) Note also
that this problem cannot be translated to a trivial one-good
multi-unit CA problem because jobs have different dead-
lines.

This is CATS 1.0 problem 5. CATS default parame-
ters: deviation = 0.5, prob_additional_deadline = 0.9,
additivity = 0.2, and mazx_length = 10. Note that we pro-
pose a constant maximum job length, because the length
of time a job requires should not depend on the amount of
time the auctioneer makes available.

4572 MuIE-UnitPower Generation Auctions; Future
Wbr
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While num_generated_bids < num_bids:

I = rand_-int(1, maz_length)

di1 = rand_int(l, num_goods)

dev = rand(1 — deviation, 1 + deviation)
cur_mazx_deadline = 0

new_-d = di

To generate substitutable (XOR) bids. Do:

Make bids with price offered
= devy - [t Fedditivity . g, /new_d for all
blocks [start,end] where start > 1,
end < new-d, end > cur_mazx_deadline,
end — start =1

cur_max_deadline = new_d

new-d = rand_int(cur_mazx_deadline +
1, num_goods)

While rand(0,1) < prob_additional_deadline
End While

Figure 12: Bid-Generation Technique

The problem of scheduling power generation is superfi-
cially similar to the job-shop scheduling problem described
above. In these auctions, electrical power generation com-
panies bid to produce a certain quantity of power for each
hour of the day. This new problem differs from job-shop
scheduling primarily because different kinds of power plants
will exhibit very different utility functions, considering dif-
ferent sorts of goods to be complementary. For example,
some plants will want to produce for long blocks of time
(because they have startup and shutdown costs), others will
prefer certain times of day due to labor costs, and still oth-
ers will have neither restriction [9]. Due to the domain-
specific complexity of bidder utilities, the construction of
a distribution for this problem remains an area for future
work.

4.6 Legacy Distributions

To aid researchers designing new CA algorithms by facil-
itating comparison with previous work, CATS includes the
ability to generate bids according to all previous published
test distributions of which we are aware, that are able to
scale with the number of goods and bids. Each of these
distributions may be seen as an answer to three questions:
what number of goods to request in a bundle, which goods
to request, and the price offered for a bundle. We begin by
describing different techniques for answering each of these
three questions, and then show how they have been com-
bined in previously published work.

4.6.1 Number of Goods

Uniform: Uniformly distributed on [1, num_goods]
Normal: Normally distributed with © = u_goods and o =
o_goods

Constant: Fixed at constant_goods

Decay: Starting with 1, repeatedly increment the size of
the bundle until rand(0, 1) exceeds «

Binomial: Request n goods with probability

pn(l _ p)num_goods—n (num,goods)

Exponential: Request n goods with probability C exp ™1

4.6.2 Which Goods

Random: Draw n random goods from the set of all goods,



without replacement!!

4.6.3 Price Offer

Fixed Random: Uniform on [low_fized, hi_fized].
Linear Random: Uniform on [low_linearly-n, hi_linearly-
n]

Normal: Draw from a normal distribution with u = u_price
and o = o_price

Quadratic’?: For each good k and each bidder ¢ set the
value vj, = rand(0,1). Then i’s price offer for a set of goods

. 1 1 7
Sis Y peg Uk + Zk,q Vg Vg

4.7 Previously Published Distributions

The following is a list of the distributions used in all pub-
lished tests of which we are aware. In each case we describe
first the method used to choose the number of goods, fol-
lowed by the method used to choose the price offer. In all
cases the ‘random’ technique was used to determine which
goods should be requested in a bundle. Each case is labeled
with its corresponding CATS legacy suite number; very sim-
ilar distributions are given similar numbers and identical
distributions are given the same number.

[L1] Sandholm: Uniform, fixed random with low_fized = 0,
hi_fized =1

[L1a] Andersson et al.: Uniform, fixed random with
low_fizxed = 0, hi_fired = 1000
[L2] Sandholm: Uniform,
low_ linearly = 0, hi_linearly = 1
[L2a] Andersson et al.: Uniform, linearly random with
low_linearly = 500, hi_linearly = 1500

[L3] Sandholm: Constant with constant_goods = 3, fixed
random with low_fized = 0, hi_fixed = 1

[L3] deVries and Vohra: Constant with constant_goods = 3,
fixed random with low_fized = 0, hi_fized = 1

[L4] Sandholm: Decay with oo = 0.55, linearly random with
low_linearly = 0, hi_linearly =1

[L4] deVries and Vohra: Decay with o = 0.55, linearly
random with low_linearly = 0, hi_linearly =1

[L4a] Andersson et al.: Decay with a = 0.55, linearly
random with low_linearly = 1, hi_linearly = 1000

[L5] Boutilier et al.: Normal with u_goods = 4 and
o-goods = 1, normal with u_price = 16 and o_price = 3
[L6] Fujishima et al.: Exponential with ¢ = 5, linearly
random with low_linearly = 0.5, hi_linearly = 1.5

[L6a] Andersson et al.: Exponential with ¢ = 5, linearly
random with low_linearly = 500, hi_linearly = 1500

[L7] Fujishima et al.: Binomial with p = 0.2, linearly
random with low_linearly = 0.5, hi_linearly = 1.5

[L7a] Andersson et al.: Binomial with p = 0.2, linearly
random with low_linearly = 500, hi_linearly = 1500

[L8] deVries and Vohra: Constant with constant_goods = 3,
quadratic

Parkes [17] used many of the test sets described above
(particularly those described by Sandholm and Boutilier et

linearly random with

11 Although in principle the problem of which goods to re-
quest could be answered in many ways, all legacy distribu-
tions of which we are aware use this technique.

12DeVries and Vohra [8] briefly describe a more general ver-
sion of this price offer scheme, but do not describe how to set
all the parameters (e.g., defining which goods are comple-
mentary); hence we do not include it here. Quadratic price
offefs}may be particularly applicable to spectrum auctions;
see [2].
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al.), but tested with fixed numbers of goods and bids rather
than scaling these parameters.

5. CONCLUSION

In this paper we introduced CATS , a test suite for combi-
natorial auction optimization algorithms. The distributions
in CATS represent a step beyond current CA testing tech-
niques because they are economically motivated and model
real-world problems. It is our hope that, with the help of
others in the CA community, CATS will evolve into a univer-
sal test suite that will facilitate the development and evalu-
ation of new CA optimization algorithms.
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Abstract

R-MAX is an extremely simple model-based reinforcement learning algorithm which
can attain near-optimal average reward in polynomial time. In R-MAX, the agent always
maintains a complete, but possibly inaccurate model of its environment and acts based
on the optimal policy derived from this model. The model is initialized in an optimistic
fashion: all actions in all states return the maximal possible reward (hence the name).
During execution, it is updated based on the agent’s observations. R-MAX improves upon
several previous algorithms: (1) It is simpler and more general than Kearns and Singh’s 3
algorithm, covering zero-sum stochastic games. (2) It has a built-in mechanism for resolving
the exploration vs. exploitation dilemma. (3) It formally justifies the “optimism under
uncertainty” bias used in many RL algorithms. (4) Tt is simpler, more general, and more
efficient than Brafman and Tennenholtz’s LSG algorithm for learning in single controller
stochastic games. (5) It generalizes the algorithm by Monderer and Tennenholtz for learning
in repeated games. (6) It is the only algorithm for learning in repeated games, to date,
which is provably efficient, considerably improving and simplifying previous algorithms by
Banos and by Megiddo.

1. Introduction

Reinforcement learning has attracted the attention of researchers in Al and related fields
for quite some time. Many reinforcement learning algorithms exist and for some of them
convergence rates are known. However, Kearns and Singh’s £ algorithm (Kearns & Singh,
1998) was the first provably near-optimal polynomial time algorithm for learning in Markov
decision processes (MDPs). E® was extended later to handle single controller stochastic
games (SCSGs) (Brafman & Tennenholtz, 2000) as well as structured MDPs (Kearns &
Koller, 1999). In E? the agent learns by updating a model of its environment using statistics
it collects. This learning process continues as long as it can be done relatively efficiently.
Once this is no longer the case, the agent uses its learned model to compute an optimal

*, This paper appeared as Technical Report 01-2001, Department of Computer Science, Ben-Gurion Uni-
versity. The second author permanent address is: Faculty of Industrial Engineering and Management,
Technion—Israel Institute of Technology, Haifa 32000, Israel. The second author gratefully acknowledges
the support of DARPA grant F30602-98-C-0214-P00005.
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policy and follows it. The success of this approach rests on two important properties: the
agent can determine online whether an efficient learning policy exists, and if such a policy
does not exist, it is guaranteed that the optimal policy with respect to the learned model
will be approximately optimal with respect to the real world.

The difficulty in generalizing E° to adverserial contexts, i.e., to different classes of games,
stems from the adversary’s ability to influence the probability of reaching different states.
In a game, the agent does not control its adversary’s choices, nor can it predict them with
any accuracy. Therefore, it has difficulty predicting the outcome of its actions and whether
or not they will lead to new information. Consequently, it is unlikely that an agent can
explicitly choose between an exploration and an exploitation policy. For this reason, the
only extension of E? to adverserial contexts used the restricted SCSG model in which the
adversary influences the reward of a game only, and not its dynamics.

To overcome this problem, we suggest a different approach in which the agent never
attempts to learn explicitly. Our agent always attempts to optimize its behavior, albeit
with respect to a fictitious model in which optimal behavior often leads to learning. This
model assumes that the reward the agent obtains in any situation it is not too familiar
with, is the maximal possible reward — R,,,.. The optimal policy with respect to the
agent’s fictitious model has a very interesting and useful property with respect to the real
model: it is always either optimal or it leads to efficient learning. The agent does not know
whether it is optimizing or learning efficiently, but it always does one or the other. Thus, the
agent will always either exploit or explore efficiently, without knowing ahead of time which
of the two will occur. Since there is only a polynomial number of parameters to learn, as
long as learning is done efficiently we can ensure that the agent spends a polynomial number
of steps exploring, and the rest of the time will be spent exploiting. Thus, the resulting
algorithm may be said to use an implicit explore or exploit approach, as opposed to Kearns
and Singh’s explicit explore or exploit approach.

This learning algorithm, which we call R-MAX, is very simple to understand and to
implement. The algorithm converges in polynomial-time to a near-optimal solution. More-
over, R-MAX is described in the context of zero-sum stochastic game, a model that is more
general than Markov Decision Processes. As a consequence, R-MAX is more general and
more efficient than a number of previous results. It generalizes the results of Kearns and
Singh (1998) to adverserial contexts and to situations where the agent considers a stochas-
tic model of the environment inappropriate, opting for a non-deterministic model instead.
R-MAX can handle more classes of stochastic games than the LSG algorithm (Brafman &
Tennenholtz, 2000). In addition, it attains a higher expected average reward than LSG.
R-MAX also improves upon previous algorithms for learning in repeated games (Aumann
& Maschler, 1995), such as Megiddo’s (Megiddo, 1980) and Banos (Banos, 1968). It is the
only polynomial time algorithm for this class of games that we know of, and it is much sim-
pler, too. Finally, R-MAX generalizes the results of Monderer and Tennenholtz (Monderer
& Tennenholtz, 1997) to handle the general probabilistic maximin (safety level) decision
criterion.

The approach taken by R-MAX is not new. It has been referred to as the optimism in the
face of uncertainty heuristic, and was considered an ad-hoc, though useful, approach (e.g.,
see Section 2.2.1in (Kaelbling, Littman, & Moore, 1996), where it appears under the heading
“Ad-Hoc Techniques” and Section 2.7 in (Sutton & Barto, 1998) where this approach is
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called optimistic initial values and is referred to as a “simple trick that can be quite effective
on stationary problems”). This optimistic bias has been used in a number of well-known
reinforcement learning algorithms, e.g. Kaelbling’s interval exploration method (Kaelbling,
1993), the exploration bonus in Dyna (Sutton, 1990), the curiosity-driven exploration of
(Schmidhuber, 1991), and the exploration mechanism in prioritized sweeping (Moore &
Atkenson, 1993). More recently, Tadepalli and Ok (Tadepalli & Ok, 1998) presented a
reinforcement learning algorithm that works in the context of the undiscounted average-
reward model used in this paper. In particular, one variant of their algorithm, called AH-
learning, is very similar to R-MAX. However, as we noted above, none of this work provides
theoretical justification for this very natural bias. Thus, an additional contribution of this
paper is a formal justification for the optimism under uncertainty bias.

The paper is organized as follows: in Section 2 we define the learning problem more
precisely and the relevant parameters. In Section 3 we describe the R-MAX algorithm. In
Section 4 we prove that it yields near-optimal reward in polynomial time. We conclude in
Section 5.

2. Preliminaries

We present R-MAX in the context of a model that is called a stochastic game. This model
is more general than a Markov decision process because it does not necessarily assume that
the environment acts stochastically (although it can). In what follows we define the basic
model, describe the set of assumptions under which our algorithm operates, and define the
parameters influencing its running time.

2.1 Stochastic Games

A game is a model of multi-agent interaction. In a game, we have a set of players, each
of whom chooses some action to perform from a given set of actions. As a result of the
players’ combined choices, some outcome is obtained which is described numerically in the
form of a payoff vector, i.e., a vector of values, one for each of the players. We concentrate
on two-player, fixed-sum games (i.e., games in which the sum of values in the payoff vector
is constant). We refer to the player under our control as the agent, whereas the other player
will be called the adversary.

A common description of a game is as a matrix. This is called a game in strategic form.
The rows of the matrix correspond to the agent’s actions and the columns correspond to
the adversary’s actions. The entry in row ¢ and column j in the game matrix contains the
rewards obtained by the agent and the adversary if the agent plays his ¥ action and the
adversary plays his j** action. We make the simplifying assumption that the size of the
action set of both the agent and the adversary is identical. However, an extension to sets
of different sizes is trivial.

In a stochastic game (SG) the players play a (possibly infinite) sequence of standard
games from some given set of games. After playing each game, the players receive the
appropriate payoff, as dictated by that game’s matrix, and move to a new game. The
identity of this new game depends, stochastically, on the previous game and on the players’
actions in that previous game. Formally:
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Definition 1 A fixed-sum, two player, stochastic-game [SG] M on states S = {1,..., N},
and actions A = {ay,...,ar}, consists of:

e Stage Games: each state s € S is associated with a two-player, fixed-sum game in
strategic form, where the action set of each player is A. We use R* to denote the
reward matriz associated with stage-game 1.

e Probabilistic Transition Function: Py (s,t,a,d’) is the probability of a transition
from state s to state t given that the first player (the agent) plays a and the second
player (the adversary) plays a'.

An SG is similar to an MDP. In both models, actions lead to transitions between states
of the world. The main difference is that in an MDP the transition depends on the action
of a single agent whereas in an SG the transition depends on a joint-action of the agent and
the adversary. In addition, in an SG, the reward obtained by the agent for performing an
action depends on its action and the action of the adversary. To model this, we associate a
game with every state. Therefore, we shall use the terms state and game interchangeably.

Stochastic games are useful not only in multi-agent contexts. They can be used in-
stead of MDPs when we do not wish to model the environment (or certain aspects of it)
stochastically. In that case, we can view the environment as an agent that can choose
among different alternatives, without assuming that its choice is based on some probability
distribution. This leads to behavior maximizing the worst-case scenario. In addition, the
adversaries that the agent meets in each of the stage-games could be different entities.

R-Max is formulated as an algorithm for learning in Stochastic Games. However, it is
immediately applicable to fixed-sum repeated games and to MDPs because both of these
models are degenerate forms of SGs. A repeated game is an SG with a single state and an
MDP is an SG in which the adversary has a single action at each state.

For ease of exposition we normalize both players’ payoffs in each stage game to be non-
negative reals between 0 and some constant R, ... We also take the number of actions to
be constant. The set of possible histories of length ¢ is (S x A%)! x S, and the set of possible
histories, H, is the union of the sets of possible histories for all ¢t > 0, where the set of
possible histories of length 0is S.

Given an SG, a policy for the agent is a mapping from H to the set of possible probability
distributions over A. Hence, a policy determines the probability of choosing each particular
action for each possible history.

We define the value of a policy using the average expected reward criterion as follows:
Given an SG M and a natural number T, we denote the expected T-step undiscounted
average reward of a policy # when the adversary follows a policy p, and where both 7 and
p are executed starting from a state s € S, by Ups(s, 7, p,T") (we omit subscripts denoting
the SG when this causes no confusion). Let Un(s,7,T) = min, ;s o poticy Unr (s, 7, p, T)
denote the value that a policy m can guarantee in T steps starting from s. We define
Uni(s,7) = liminfr_eo Upn(s, 7, T). Finally, we define Ups(7) = minges Uns(s, 7)1

1. We discuss this choice below.
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2.2 Assumptions, Complexity and Optimality

We make two central assumptions: First, we assume that the agent always recognizes
the identity of the state (or stage-game) it reached (but not its associated payoffs and
transition probabilities) and that after playing a game, it knows what actions were taken
by its adversary and what payoffs were obtained. Second, we assume that the maximal
possible reward R,,q, is known ahead of time. This latter assumption can be removed.?

Next, we wish to discuss the central parameter in the analysis of the complexity of R-
MAX — the mizing time, first identified by Kearns and Singh (1998). Kearns and Singh argue
that it is unreasonable to refer to the efficiency of learning algorithms without referring to
the efficiency of convergence to a desired value. They defined the e-return mizing time of
a policy 7 to be the smallest value of T after which 7 guarantees an expected payoff of at
least U(m) — ¢. In our case, we have to take into account the existence of an adversary.
Therefore, we adjust this definition slightly as follows: a policy 7 belongs to the set Il(e, T')
of policies whose e-return mixing time is at most 7', if for any starting state s and for any
adversary behavior p, we have that U(s, 7, p,T) > U(r) — e.

That is, if a policy pi € IlI(¢,T) then no matter what the initial state is and what the
adversary does, the policy 7 will yield in any ¢ > T steps an expected average reward
that is € close to its value. The e-return mixing time of a policy =« is the smallest T for
which pi € Il(e,T). Notice that this means that an agent with perfect information about
the nature of the games and the transition function will require at least T steps, on the
average, to obtain an optimal value using an optimal policy # whose e-return mixing time
is T'. Clearly, one cannot expect an agent lacking this information to perform better.

We denote by Opt(ll(e,T)) the optimal expected T-step undiscounted average return
from among the policies in Il(¢,7"). When looking for an optimal policy (with respect to
policies that mix at time 7', for a given ¢ > 0), we will be interested in approaching this
value in time polynomial in 7', in 1/¢, in 1/6 (where € and ¢ are the desired error bounds),
and in the size of the description of the game.

The reader may have noticed that we defined Ups(7) as minges Ups(s, 7). It may appear
that this choice makes the learning task too easy. For instance, one may ask why shouldn’t
we try to attain the maximal value over all possible states, or at least the value of our initial
state? We claim that the above is the only reasonable choice, and that it leads to results
that are as strong as previous algorithms.

To understand this point, consider the following situation: we start learning at some
state s in which the optimal action is a. If we do not execute the action « in s, we reach
some state s’ that has a very low value. A learning algorithm without any prior knowledge
cannot be expected to immediately guess that a should be done in s. In fact, without such
prior knowledge, it cannot conclude that a is a good action unless it tries the other actions
in s and compares their outcome to that of a. Thus, one can expect an agent to learn a
near-optimal policy only if the agent can visit state s sufliciently many times to learn about
the consequences of different options in s. In a finite SG, there will be some set of states
that we can sample sufficiently many times, and it is for such states that we can learn to
behave.

2. We would need to run the algorithm repeatedly for increasing values of Ryq.. The resulting algorithm
remains polynomials in the relevant parameters.
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In fact, it probably makes sense to restrict our attention to a subset of the states such
that from each state in this set it is not too hard to get to any other state. In the context of
MDPs, Kearns and Singh refer to this as the ergodicity assumption. In the context of SGs,
Hoffman and Karp (1966) refer to this as the irreducibility assumption. An SG is said to be
irreducible if the Markov-chain obtained by fixing any two (pure) stationary strategies for
each of the players is irreducible (i.e., each state is reachable from each other state). In the
special case of an MDP, irreducibility is precisely the ergodicity property used by Kearns
and Singh in their analysis of E3.

Irreducible SGs have a number of nice properties, as shown by (Hoffman & Karp, 1966).
First, the maximal long-term average reward is independent of the starting state, implying
that max,; minses Upn(s,7) = max, maxses Ups(s, 7). Second, this optimal value can be
obtained by a stationary policy (i.e., one that depends on the current stage-game only).
Thus, although we are not restricting ourselves to irreducible games, we believe that our
results are primarily interesting in this class of games.

3. The R-MAX algorithm

Recall that we consider a stochastic game M consisting of a set S = {Gy,...,Gn} of stage-
games in each of which both the agent and the adversary have a set A = {ay,...,a;} of
possible actions. We associate a reward matrix R? with each game, and use Rin,l to denote a
pair consisting of the reward obtained by the agent and the adversary after playing actions
a,, and a; in game G, respectively. In addition, we have a probabilistic transition function,
Par, such that Pa(s,t,a,a’) is the probability of making a transition from G to Gy given
that the agent played a and the adversary played «’. It is convenient to think of Pas (4, -, a, a’)
as a function associated with the entry (a,a’) in the stage-game G;. This way, all model
parameters, both rewards and transitions, are associated with joint actions of a particular
game. Let € > 0. For ease of exposition, we assume throughout most of the analysis that
the e-return mixing time of the optimal policy, T, is known. Later, we show how this
assumption can be relaxed.
The R-MAX algorithm is defined as follows:

Initialize: Construct the following model M’ consisting of N+1 stage-games, {Go, Gy, ...,GN},
and k actions, {ay,...,a;}. Here, Gy, ..., Gy correspond to the real games, {ay, ..., ax}
correspond to the real actions, and Gy is an additional fictitious game. Initialize all
game matrices to have (R4, 0) in all entries.® Initialize Pys(G, Go, a,a’) = 1 for all
i=0,...,N and for all actions a,a’.

In addition, maintain the following information for each entry in each game G4, ..., Gn:
(1) a boolean value known/unknown, initialized to unknown; (2) the states reached
by playing the joint action corresponding to this entry (and how many times); (3) the
reward obtained (by both players) when playing the joint action corresponding to this
entry. Items 2 and 3 are initially empty.

Repeat:

3. The value 0 given to the adversary does not play an important role here.

34



Compute and Act: Compute an optimal T-step policy for the current state, and
execute it for T-steps or until a new entry becomes known.

Observe and update: Following each joint action do as follows: Let a be the action
you performed in G; and let ¢’ be the adversary’s action.

e If the joint aqction (a,a’) is performed for the first time in G;, update the
reward associated with (a,a’) in G, as observed.

e Update the set of states reached by playing (a,a’) in G;.

e If at this point your record of states reached from this entry contains
K = max(([ L ma)3], [—6ln3(ﬁﬂ) + 1 elements, mark this entry as
known, and update the transition probabilities for this entry according to
the observed frequencies.

As can be seen, R-MAX is quite simple. It starts with an initial estimate for the model
parameters that assumes all states and all joint actions yield maximal reward and lead
with probability 1 to the fictitious stage-game (Gy. Based on the current model, an optimal
policy is computed and followed. Following each joint action the agent arrives at a new
stage-game, and this transition is recorded in the appropriate place. Once we have enough
information about where some joint action leads to from some stage-game, we update the
entries associated with this stage-game and this joint action in our model. After each model
update, we recompute an optimal policy and repeat the above steps.

4. Optimality and Convergence

In this section we provide the tools that ultimately lead to the proof of the following theorem:

Theorem 1 Let M be an SG with N states and k actions. Let 0 < § < 1, and ¢ > 0 be
constants. Denote the policies for M whose e-return mizing time is T by (e, T), and
denote the optimal expected return achievable by such policies by Opt(la(e,T)). Then,
with probability of no less than 1 — § the R-MaAX algorithm will attain an expected return of
Optar(I(e,T)) — 2¢ within a number of steps polynomial in N, k, T, %, and %

In the main lemma required for proving this theorem we show the following: if the agent
follows a policy that is optimal with respect to the model it maintains for T steps, it will
either attain near-optimal average reward, as desired, or it will update its statistics for
one of the unknown slots with sufficiently high probability. This can be called the implicit
explore or exploit property of R-Max: The agent does not know ahead of time whether it is
exploring or exploiting — this depends in a large part on the adversary’s behavior which it
cannot control or predict. However, it knows that it does one or the other, no matter what
the adversary does. Using this result we can proceed as follows: As we will show, the number
of samples required to mark a slot as known is polynomial in the problem parameters, and
so is the total number of entries. Therefore, the number of T-step iterations in which non-
optimal reward is obtained is bounded by some polynomial function of the input parameters,
say T'. This implies that by performing T-step iterations D = T'R,,,,,/6 times, we get that
the loss obtained by non-optimal execution (where exploration is performed), is bounded
by 8, for any 0 < 8 < 1.
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Before proving our main lemma we state and prove an extension of Kearns and Singh’s
Simulation Lemma (Kearns & Singh, 1998) to the context of SGs with a slightly improved
bound.

Definition 2 Let M and M be SGs over the same state and action spaces. We say that
M is an a-approzimation of M if for every state s we have:

1. If Py(s,t,a,a’) and Py(s,t,a,a’) are the probabilities of transition from state s to
state t given that the joint action carried out by the agent and the adversary is (a,d’),
in M and M respectively, then, Paj(s,t,a,a’)—a < Py(s,t,a,a’) < Py(s,t,a,d')+a

2. For every state s, the same stage-game is associated with s in M and in M.

Lemma 1 Let M and M be SGs over N states, where M is an NTR. -approximation of
M, then for every state s, agent policy w, and adversary policy p, we have that

|UM(57777P7T) - UM(Svﬂ—vva” <e

Proof: When we fix both players’ policies we get, both in MDPs and in general SGs, a
probability distribution over T-step paths in the state space. This is not a Markov process
because the player’s policies can be non-stationary. However, the transition probabilities at
each point depend on the current state and the actions taken and the probability of each
path is a product of the probability of each of the transitions. This is true whether the
policies are pure or mixed.

We need to prove that:

Zp: [ Pr(p)Uni(p) = Pr(p) Uyt (p)] < €

where p is a T-step path starting at s, Pras(p) (respectively, Pry;(p)) is its probability in the

random process induced by M (resp. by M), w, and p, and Ups(p), (Uy;(p)) is the average
payofl along this path. Because the average payoff is bound by R,,,. we have:

Zp: | Br(@)Uni(p) = Pr(p) Uy (p)] < Zp: | Bx(p) = Pr(p) | Bma.

To conclude our proof, it is sufficient to show that

Zp: [ Pr(p) = Pr(p)| < ¢/ Bina

Let h; define the following random processes: start at state s and follow policies p and
7; for the first ¢ steps, the transition probabilities are identical to the process defined above
on M, and for the rest of the steps its transition probabilities are identical to M. Clearly,
when we come to assess the probabilities of T-step path, we have that hg is identical to
the original process on M, whereas hr is identical to original process on M. The triangle
inequality implies that

T-1
Zp: | Pr(p) = Pr(p) = Zp: [ Pr(p) = Pr(p)] < Z::O Zp: |Pr(p) = Pr (p)]
8



If we show that for any 0 <7 < T we have that 3 | Pry, (p) — Pra,,, (p)| < €/T Ripaz, it will
follow that 3=, | Pras(p) — Pryz(p)| < €/ Rpaz, which is precisely what we need to show.

We are left with the burden of proving that >_ , | Pry, (p) =Prp,,, (p)| < €/T Rpyaz. We can
sum over all path p as follows: first we sum over the NV possible states that can be reached
in 7 steps. Then we sum over all possible path prefixes that reach each such state. Next,
we sum over all possible states reached after step ¢« + 1, and finally over all possible suffixes
that start from each such state. Now, we note that the probability of each particular path
p is the product of the probability of its particular prefix, the probability of a transition
from x; to x;4+1, and the probability of the suffix. We will use x; to denote the state reached
after ¢ steps, x;41 to denote the state reached after ¢+ 1 steps, pre(z;) to denote the i-step
prefixes reaching z;, and suf(z;) to denote the suffixes starting at z;. Thus,

2P = Prpl =32 30 30 3 IPr(pre(ws) Priai = wia) Pr(suf (i) -

Zi pre(z;) Titl suf(zit1)
(Pr (pre(ed)) Pr (o - zis1) Pr (suf(ais)
z-l-l 141 t+1

However, the prefix and suffix probabilities are identical in h; and h;1q. Thus, this sum is
equal to

XX X X Pr(pre(ed) Prsuf ()| Pria < wisn) = Pr (o )| =

h
Zi pre(z;) Tit+l suf(zit1) 1

Z Z Pr (pre(a Z Z fh’ll’(suf(ac2+1))| Pr(z; = 2i41) — Pr (2, = 2i41)] <

h
Zi pre(z;) Titl suf(@wit1) 1

Z Z Pr (pre(a Z Z P}L’r(suf(wi+1))e/NTRmax]
i pre(acl) Titl suf(wig1) ¢
This last expression is a product of two independent terms. The first term is the sum
over all possible i-step prefixes (i.e., overall all prefixes starting in the given z¢ and ending
in z;, for any z;). Hence, it is equal to 1. The second term is a sum over all suffixes starting
at 2441, for any value of x;49. For any given value of x;41 the probability of any suffix

starting at this value is 1. Summing over all possible values of 2,11, we get a value of N.
Thus,

S IPr(p) — Pr(p)| <1-¢/NTRyaw- N
- hs hig1

This concludes our proof. |

Next, we define the notion of an induced SG. The definition is similar to the definition
of an induced MDP given in (Kearns & Singh, 1998) except for the use of R-max. The
induced SG is the model used by the agent to determine its policy.

Definition 3 Let M be an SG. Let L be the set of entries (G, a,a’) marked unknown.
That is, if (Gi,a,a’) € L then the entry corresponding to the joint action (a,a’) in the
stage-game G; is marked as unknown. Define My, to be the following SG: My, is identical
to M, except that My, contains an additional state Gy. Transitions and rewards associated
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with all entries in My, which are not in L are identical to those in M. For any entry in L
or in Gg, the transitions are with probability 1 to Gy, and the reward is R, for the agent
and 0 for the adversary.

Given an SG M with a set L of unknown states, RMZ-max denotes the optimal policy
for the induced SG Myp. When My, is clear from the context we will simply use the term
R-mazx policy instead of RMz-max policy.

We now state and prove the implicit explore or exploit lemma:

Lemma 2 Let M be an SG, let L and My be as above. Let p be an arbitrary policy for
the adversary, let s be some state, and let 0 < oo < 1. Then either (1) |Opt(Ur(e,T)) —
VR—maz| < o, where VR_,,q. is the expected T-step average reward for the RMi_max policy
on M; or (2) An unknown entry will be played in the course of running R-max on M for
T steps with a probability of at least ==

Rmaa: :

In practice, we cannot determine p, the adversary’s policy, ahead of time. Thus, we
do not know whether R-max will attain near-optimal reward or whether it will reach an
unknown entry with sufficient probability. The crucial point is that it will do one or the
other, no matter what the adversary does.

Proof: First, notice that the value of R-MAX in My, will be no less than the value of
the optimal policy in M. This follows from the fact that the reward for the agent is at least
as large as in M, and that the R-max policy is optimal with respect to M.

In order to prove the claim, we will show that the difference between the reward obtained
by the agent in M and in Mj when R-MaX is played is smaller than the exploration
probability times R,,,,. This will imply that if the exploration probability is small, then
R-MAX will attain near-optimal payoff. Conversely, if near-optimal payoff is not attained,
the exploration probability will be sufficiently large.

For any policy, we may write:

Un(sym,p, T)= Z PrifplUnm(p) = Z PriflalUsm(q) + Z PrifrlUn(r)

where the sums are over, respectively, all T-paths p in M, all T-paths ¢ in M such that
every entry visited in ¢ is not in L, and all T-path r in M in which at least one entry visited
is in L. Hence:

|Uni (s, R-max, p, T')—Upr, (s, R-max, p, T')| = | Z Pr]\}}_max’p’s[p]UM(p)—Z Pr]\}};max’p’s[p]UML (p)|
P P

R_ 3PS R_ 3PS R_ 3PS R_ 3PS

= > Pryy g UM ()Y Proy P e U (r) =Y Prag T U, () +) Pryg 0 U, (1)
g r q r
R-max,p,s R-max,p,s
<) Pry [Unm(q) =D Pry, [)Unr, ()] +
q q

|57 prRemax s i () = 5T PrRARSS 0y ()
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The first difference:

|3 primases o, () - 30 PrRomaxesia, ()
q

q

must be 0. This follows from the fact that in M and in M7, the rewards obtained in a path
which do not visit an unknown entry are identical. The probability of each such path is
identical as well.

Hence, we have:

|Uns (s, R-max, p, T)—Upy, (s, R-max, p, T')| < | ZPr]\%_maX’p’s[r]UM(r)—Z Pr]\%;max’p’s[r]UML(rﬂ

< Z Pr}\f}—max,p,s[r]Rmm

This last inequality stems from the fact that the average reward in any path is no greater
than R, and no smaller than 0 and the fact that we can appropriately associate different
paths within these models with equal probabilities.

The last term is the probability of reaching an unknown entry multiplied by 4. If
this probability is less than #z*— then

max

|Uni (s, R-max, p, T') — Upr, (s, R-max, p,T)| < «

Denote by 7* an optimal T-step policy, and let Ups(s, 7, T) be its value. (Note that this
value is independent of the adversary strategy p, as #* guarantees at least this value for
every adversary behavior.) If Ups(s, R-max, p,T) > Ups(s,7,T) we are done. Suppose that
Unr(s,R-max, p,T) < Upn(s, 7, T). We know that Uy, (s, R-max, p, T) > Upr(s, 7, T') is no
lesser than the optimal T step average reward for M. Therefore, we have that

|UM(87 ﬂ—vT) - UM(87 R'maxvva)| = UM(87 ﬂ—vT) - UM(87 R'maxvva)

< Unmy (SvR'maxvva) - UM(SvR'maxvva) <a
i

We are now ready to prove Theorem 1. First, we wish to show that the expected average
reward is as stated. We must consider three models: M, the real model, M} the actual
model used, and M’ where M’ is an €¢/2NTR,,,-approximation of M such that the SG
induced by M’ and L is Mj. At each T-step iteration of our algorithm we can apply the
Implicit Explore or Exploit Lemma to M’ and M for the set L applicable at that stage.
Hence, at each step either the current R-max policy leads to an average reward that is
€/2 close to optimal with respect to the adversary’s behavior and the model M’ or it leads
to an efficient learning policy with respect to the same model. However, because M’ is
an ¢/2-approximation of M, the simulation lemma guarantees that the policy generated is
either € close to optimal or explores efficiently. We know that the number of T-step phases
in which we are exploring can be bounded polynomially. This follows from the fact that we
have a polynomial number of parameters to learn (in N and k) and that the probability
that we obtain a new, useful statistic is polynomial in ¢,T and N. Thus, if we choose a
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large enough (but still polynomial) number of T-step phases, we shall guarantee that our
average reward is as close to optimal as we wish.

The above analysis was done assuming we actually obtain the expected value of each
random variable. This cannot be guaranteed with probability 1. Yet, we can ensure that
the probability that the algorithm fails to attain the expected value of certain parameters
be small enough by sampling it a larger (though still polynomial) number of time. This is
based on the well-known Chernoff bound. Using this technique one can show that when the
variance of some random variable is bounded, we can ensure that we get near its average
with probability 1 — § by using a sufficiently large sample that is polynomial in 1/4.

In our algorithm, there are three reasons why the algorithm could fail to provided the
agent with near optimal return in polynomial time.

1. First, we have to guarantee that our estimates of the transition probabilities for every
slot are sufficiently accurate. Recall that to ensure a loss of no more than ¢/2 our

estimates must be within m of the real probabilities.

Consider a set of trials, where the joint action (a, a’) is performed in state s. Consider
the probability of moving from state s to state ¢ given the joint-action (a,a’) in a
given trial, and denote it by p. Notice that there are Nk? such probabilities (one
for each game and pair of agent-adversary actions). Therefore, we would like to
show that the probability of failure in estimating p is less than ﬁ Let X; be an
indicator random variable, that is 1 iff we moved to state ¢ when we were in state s
and selected an action @ in trial ¢. Let Z; = X; — p. Then F(Z;) =0, and |7;| < 1.
1

- —Kq13
Then, Chernoff bound implies that (for any K;) Prob(SE: 7; > Klg) < e~ This
1
" x, K8
implies that Prob(%}f’ —p> Kl_%) <e 5 Similarly, we can define Z! = p— X,

1

- —K{3
and get by Chernoff bound that Prob(Ef‘:llZf > Klg) < e~ 2 . This implies that
1
v x, .1 K 3 25 x, .1
Prob(gla— ’R}l > K17%) < e 2 . Hence, we get that Prob(] ’R}l —p|>Ki17®) <
—K; 3
2e” 2

W=

i .1 — I S
We now choose Ky such that K175 < m7 and 2¢ 2 < N

by taking Ky = max((4NTE¢”))37 —61713(#)) + L.

This is obtained

The above guarantees that if we sample each slot Ky times the probability that our
estimate of the transition probability will be outside our desired bound is less than %
Using the pigeon-hole principle we know that total number of visits to slots marked
unknown is NEk?K;. After at most this number of visits all slots will be marked

known.

o

2. The Implicit Exploit or Explore Lemma gives a probability of g2— of getting to
explore. We now wish to show that after K3 attempts to explore (i.e. when we do not
exploit), we obtain the K; required visits. Let X; be an indicator random variable
which is 1 if we reach to the exploration state (G in Lemma 2) when we do not exploit,

and 0 otherwise. Let Z; = X; — g=—, and let 7zl = 7.— — Xi, and apply Chernoff
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bound on the sum of Z;’s and Zls as before. We get that Prob(|Sh2 X, — %| >

1
1 —Ky3 1
K3) < 2e . We can now choose Ky such that KJ + K,

1
_ K53
23 < ﬁ to guarantee that we will have a failure probability of less than % due

> k2NK; and

(0]
Rma.r

to this reason.

3. When we perform a T-step iteration without learning our expected return is Opt (Il (7', €))—

€. However, the actual return may be lower. This point is handled by the fact that

after polynomially many local exploitations are carried out, Opt(Ily (7T, €)) — %e can

be obtained with a probability of failure of at most % This is obtained by standard
Chernoff bounds, and makes use of the fact that the standard deviation of the ex-
pected reward in a T-step policy is bounded because the maximal reward is bounded
by R,-. More specifically, consider z = M NT exploitation stages for some M > 0.
Denote the average return in an exploitation stage by u, and let X; denote the return
in the i-th exploitation stage (1 < ¢ < z). Let ¥; = %_T);i‘ Notice that |Y;| < 1,

1
and that E(Y;) = 0. Chernoff bound implies that: Prob(X7_,Y; > zg) < eF

This implies that the average return along z iterations is at most fmaz lower than
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1
i with probability of at least 75 By choosing M such that z > (QR%)S7 and
z > 6(171(%))_37 we get the desired result: with probability less than % the value
obtained will not be more than £ lower than the expected value.

By making the failure probability less than % for each of the above stages, we are able
to obtain a total failure probability of no more than §.

From the proof, we can also observe the bounds on running times required to obtain
this result. However, notice that in practice, the only bound that we need to consider when
implementing the algorithm is the sample size Kj;.

To remove the assumptions that the e-return mixing time is known, we proceed as in
(Kearns & Singh, 1998). From the proof of the algorithm we deduced some polynomial
P in the problem parameters such that if 7" is the mixing-time, then after P(7') steps we
are guaranteed, with probability 1 — 4, the desired return. We repeat the execution of the
algorithm for all values of T'=1,2,3,..., each time performing P(7") steps. Suppose that
Tp is the mixing time, then after .72, P(i) = O(P(Ty)?) steps, we will obtain the desired
return. |1

Notice that the R-max algorithm does not have a final halting time and will be applied
continuously as long as the agent is functioning in its environment. The only caveat is that
at some point our current mixing time candidate T will be exponential in the actual mixing
time Ty, at which point each step of the algorithm will require an exponential calculation.
However, this will occur only after an exponential number of steps. This is true for the £
algorithm too.

Another point worth noting is that the agent may never know the values of some of
the slots in the game because of the adversary’s choices. Consequently, if 7 is the optimal
policy given full information about the game, the agent may actually converge to a policy 7’
that differs from 7, but which yields the best return given the adversary’s actual behavior.
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This return will be no smaller than the return guaranteed by 7. The mixing time of 7" will,
in general, differ from the mixing time of #. However, we are guaranteed that if T is the
e-return mixing time of 7, and v is its value, after time polynomial in Tp, the agent’s actual
return will be at least v (subject to the deviations afforded by the theorem).

4.1 Repeated Games

A stochastic game in which the set of stage games contains a single game is called a repeated
game. This is an important model in game theory and a lot of work has been devoted to
the study of learning in repeated games (Fudenberg & Levine, 1993). There is large class of
learning problems associated with repeated games, and the problem as a whole is referred to
as repeated games with incomplete information (Aumann & Maschler, 1995). The particular
class of repeated games with incomplete information we are using (i.e., where the agent gets
to observe the adversary’s actions and the payoffs, and it knows the value of R,,,;) is known
as an Adaptive Competitive Decision Process and has been studied, e.g., by Banos (Banos,
1968) and Megiddo (Megiddo, 1980).

Because a repeated game contains a single stage game, there are no transition proba-
bilities to learn. However, there is still the task of learning to play optimally. In addition,
because there is only a single stage game, the mixing time of any policy is 1 — because
the agent’s expected reward after playing a single stage-game is identical to the policy’s ex-
pected reward. However, the time required to guarantee this expected reward could be much
larger. This stems from the fact that the optimal policy in a game is often mixed. That is,
the agent chooses probabilistically, and not deterministically, among different options.

In repeated games, the R-max algorithm is slightly modified, as we do not need to
maintain a fictitious state and we need not maintain statistics on the frequency of various
transitions. We describe the precise algorithm below:

Initialization Initialize the game model with payoffs of R,,,, for every joint action for the
agent and 0 for the adversary. Mark all joint actions as unknown.

Play Repeat the following process:

Policy Computation Compute an optimal policy for the game based on the current
model and play it.

Update If the joint action played is marked unknown, update the game matrix with
its observed payoffs and mark is known.

Given ¢ > 0, and 0 < & < 1, we need to show that after polynomially many iterations
M, where M is polynomial in the number of entries in the game, %, and %, we obtain a
payofl that is at most € lower than the expected payofl of the optimal strategy in this game,
with probability of a least 1 — 4.

First notice that the expected payoff at each stage, when we do not expose the value of
a new entry, is greater of equal to the expected payoff of the optimal strategy. By choosing
M = Q1 + Qa, where Qg = k*R,,0./M < €/2 we get that the loss due to learning of new
entries is bounded by £. Now, we need to guarantee that after (), executions (where ¢
is polynomial in the problem parameters) of a policy with expected payoff greater or equal
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to r (where r is the expected payoff of the optimal policy in the original game), our actual
payoff is at least r — ¢/2 with probability of at least 1 — 6. This follows from the arguments
presented in case 3 of the general proof for SGs.

5. Conclusion

We described R-max, a simple reinforcement learning algorithm that is guaranteed to lead to
polynomial time convergence to near-optimal average reward in zero-sum stochastic games.
In fact, R-max guarantees the safety level (probabilistic maximin) value for the agent in
general non-cooperative stochastic games.

R-max is an optimistic model-based algorithm that formally justifies the optimism in
the face of uncertainty bias. Its analysis is similar, in many respects, to Kearns and Singh’s
E? algorithm. However, unlike the £, the agent does not need to explicitly contemplate
whether to explore or to exploit. In fact, the agent may never learn an optimal policy
for the game,* or it may play an optimal policy without knowing that it is optimal. The
“clever” aspect of the agent’s policy is that it “offers” a catch to the adversary: if the
adversary plays well, and leads the agent to low payoffs, then the agent will, with sufficient
probability, learn something that will allow it to improve its policy. Eventually, without
too many “unpleasant” learning phases, the agent will have obtained enough information
to generate an optimal policy.

R-max can be applied to MDPs, repeated games, and SGs. In particular, all single-
controller stochastic game instances covered in (Brafman & Tennenholtz, 2000) fall into this
category, and R-max can be applied to them. However, R-max is much simpler conceptually
and easier to implement than the LSG algorithm described there. Moreover, it also attains
higher payoff: In LSG the agent must pay an additional multiplicative factor ¢ that does
not appear in R-max.

Two other SG learning algorithms appeared in the literature. Littman (Littman, 1994)
describes a variant of Q-learning, called minimax Q-learning, designed for 2-person zero-
sum stochastic games. That paper presents experimental results, asymptotic convergence
results are presented in (Littman & Szepesvri, 1996). Hu and Wellman (Hu & Wellman,
1998) consider a more general framework of multi-agent general-sum games. This framework
is more general than the framework treated in this paper which dealt with fixed-sum, two-
player games. Hu and Wellman based their algorithm on Q-learning as well. They prove
that their algorithm converges to the optimal value (defined, in their case, via the notion
of Nash equilibrium). However, convergence is in the limit, i.e., provided that every state
and every joint action has been visited infinitely often. Note that an adversary can prevent
a learning agent from learning certain aspects of the game indefinitely and that R-max’s
polynomial time convergence to optimal payofl is guaranteed even if certain states and joint
actions have never been encountered.

The class of repeated games is another sub-class of stochastic games for which R-max
is applicable. In repeated games, T = 1, there are no transition probabilities to learn, and
we need not use a fictitious stage-game. Therefore, a much simpler version of R-max can
be used. The resulting algorithm is much simpler and much more efficient than previous

4. In a game, an agent need not play optimally to obtain an optimal reward because it may obtain this
reward because of bad choices by the adversary.
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algorithms by Megiddo (Megiddo, 1980) and by Banos (Banos, 1968). Moreover, for these
algorithms, only convergence in the limit is proven. A more recent algorithm by Hart and
Mas-Colell(Hart & Mas-Colell, 2001) features an algorithm that is much simpler than the
algorithms by Banos and Megiddo. Moreover, this algorithm is Hannan-Consistent which
means that it not only guarantees the agent its safety level, but it also guarantees that
the agent will obtain the maximal average reward given the actual strategy used by the
adversary. Hence, if the adversary plays sub-optimally, the agent can get an average reward
that is higher than its safety-level. However, it is only known that this algorithm converges
almost-surely, and its convergence rate is unknown. An interesting open problem is whether
a polynomial time hannan-consistent near-optimal algorithm exists for repeated games and
for stochastic games.

Acknowledgments: We wish to thank Amos Beimel for his help in improving the error
bound in Lemma 1 and the anonymous referees for their useful comments. The first author
is partially supported by the Paul Ivanier Center for Robotics and Production Management.
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Bidding Clubs: Institutionalized Collusion in Auctions
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ABSTRACT

We introduce a class of mechanisms, called bidding clubs,
for agents to coordinate their bidding in auctions. In a bid-
ding club agents first conduct a “pre-auction” within the
club; depending on the outcome of the pre-auction some
subset of the members of the club bid in the primary auction
in a prescribed way; and, in some cases, certain monetary
transfers take place after the auction. Bidding clubs have
self-enforcing collusion properties in the context of second-
price auctions. We show that this is still true when multiple
auctions take place for substitutable goods, as well as for
complementary goods. We also present a bidding club pro-
tocol for first-price auctions. Finally, we show cases where
bidding clubs have self-enforcing cooperation protocols in
arbitrary mechanisms.!

1. INTRODUCTION

With the exploding popularity of auctions on the Inter-
net and elsewhere has come increased interest in systems to
assist (software or human) agents bidding in such auctions.
Most of these systems have to date done little more than ag-
gregate information from multiple auctions and present it to

the user in a convenient fashion (e.g., www.auctionwatch.com).

There is now beginning to emerge a second generation of sys-
tems which actually provide bidding advice and automation
services to bidders, going beyond the familiar proxy-bidding
feature prevalent in online auctions to the realm of bona-fide
decision support.

This paper looks even beyond such systems, which are
geared towards assisting a single bidder, and presents a class
of systems to assist a collection of bidders, “bidding clubs”.
The idea is similar to the idea behind “buyer clubs” on the
Internet (e.g., www.merkata.com and www.mobshop.com),
namely to aggregate the market power of individual bidders.
The new twist is that whereas in a buyer club there is a per-
fect alignment of the various buyers’ interests (since there
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F30602-98-C-0214-P00005.
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the more buyers join in a purchase the lower the price for ev-
eryone), in a bidding club there is a more complex strategic
relationship among them, and the bidding club rules must
be designed accordingly.

Here’s a simple example. Consider an auction with a sin-
gle seller, and six potential buyers. Assume that three of
the potential buyers — A, B and C, with corresponding (se-
cret) valuations v1 > v2 > v3 — attempt to coordinate their
bidding. Assume the auction is a first-price auction. Un-
der well known assumptions from the auction literature, it
would be the interest of each bidder to bid exactly 5/6 of his
true value in the auction. Thus A would end up with a sur-
plus of v1 /6 (if he wins the auction) or 0 (if he doesn’t), and
B and C with a surplus of 0. Is there some pre-agreement
A, B and C can make that will cause all of them to come
out of the auction at least as well off, and some of them
strictly better off? One could naively say that they would
each reveal their valuations to one another agreeing that
only the highest would go on to the auction; A would there-
fore be the one going on, and when he bids in the auction
he would bid lower than 5v1/6 (a bid of 3vi/4 will work,
given the above-mentioned assumptions), and thus increase
his expected surplus. The obvious flaw in this mechanism
is that A, B and C will have incentive to lie in this initial
phase; this could still be true if A were obliged to pay B
and C a certain amount if they sat it out and he won the
auction.

The above protocol is a simple instance of the class bidding
clubs. In general, given some primary mechanism (typically,
an auction), a bidding club protocol is as follows:

1. Some set of bidders are invited to join the bidding
club, and informed of its rules. The other bidders are
not made aware of the existence of the bidding club;
we assume here that they are not even aware of the
possibility of its existence.

2. The bidders have the freedom to join the club or not.
If they do it is assumed that they are guaranteed to
follow its rules.?

3. The bidding-club coordinator (or simply ‘coordinator’)
asks the members for certain private information, such
as their valuations for the good that is being sold. No-
tice that in general bidders may cheat about their val-
uations.

2In practice, we will design bidding clubs in such a way that
any agent who would want to participate in the main auction
will want to join the bidding club.



4. The coordinator determines, according to pre-specified
rules, how the members should behave in the primary
mechanism based on the information they all supply.

5. The coordinator may also determine (and enforce) ad-
ditional monetary transfers of the club members, based
on the results of the main mechanism.

6. The coordinator acts only as a representative of bid-
ders.

It may seem natural to ask why a coordinator should be
willing and/or able to function as a trusted third party,
without attention having been paid to its own incentives.
We believe that it is best not to see the coordinator as a
party (with interests of its own) at all; rather, we conceive
of a coordinator as a software agent which is able to act
only according to its (commonly-known) programming. It
is therefore possible for the coordinator to act reliably—
and for agents to be confident that the coordinator will act
reliably—even in cases where the coordinator stands to gain
nothing through its efforts. We do assume that coordina-
tors should not cost money to operate—all of our coordina-
tors are budget-balanced except for one that (unavoidably!)
makes money. Finally, we have often been asked about the
legal issues surrounding the use of bidding clubs. While this
is an interesting and pertinent question, it exceeds both our
expertise and the scope of this paper.

It turns out that, while the simple mechanism outlined
earlier fails, a more sophisticated one will ensure that B and
C do not participate in the primary auction, and that A
is therefore assured higher expected payoff in the auction.
More generally, the contributions of this paper are as follows:

1. We present a protocol for self-enforcing cooperation in
second-price auctions for substitute goods.

2. We present a protocol for self-enforcing cooperation in
second-price auctions for complementary goods.

3. We present a protocol for self-enforcing collusion in
first-price (as well as Dutch) auctions, in which only
some of the agents coordinate their activities, and which
does not make any use of monetary transfers.

4. We present a protocol for self-enforcing cooperation
in general auctions and economic mechanisms, when
the agents’ types (e.g. valuations for goods) are taken
from a finite set.

2. TECHNICAL BACKGROUND

The strategic interaction among self-interested agents is
a primary topic of study in microeconomics [4] and game
theory [1]. In particular, the design of protocols for strategic
interactions is the subject of the field termed mechanism
design [1]. The role of a mechanism (in particular, auction)
designer is to define a game whose equilibrium strategies
are desirable in some respect or another. Thus, the design
of a bidding club consists of taking a given mechanism — the
primary auction — and turning it into a more elaborate one,
namely one with an added first stage in which a subset of the
players play in some newly-designed game (as well as some
additional rules regarding behavior in the primary auction
and possible side payments after the auction).
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Research on strategic aspects of multi-agent activity in
Artificial Intelligence has grown rapidly in the recent years.
This work has concentrated on the design of protocols for
agents’ interaction [7, 3, 9], and shares much in common
with work on mechanism design in economics. Many princi-
ples and ideas grew up from the mechanism design literature,
and have been adapted to the AI context.

Although the study of deals among agents has received
much attention in the AI literature (see e.g. [7]), and al-
though the study and design of contracts is central to infor-
mation economics [4] (and received much attention in the
recent Al literature [8]), the literature on cooperation un-
der incomplete information in auctions and trades is quite
limited. In particular, the literature on collusion in auctions
is somewhat spotty. It is still too broad to give a complete
overview of it, and the bulk of it is informal. In the formal
literature on the topic, the results are quite specific, and
certainly do not apply in settings of parallel auctions (with
either substitutability or complementarity among goods),
first-price auctions without side-payments, and general mech-
anisms, which are the focus of our technical results. The
closest result from the literature of which we are aware is
by Graham and Marshall [2], who present a protocol for
self-enforcing collusion by a subset of the participants of a
(single-good) second-price auction. We discuss this result
below. Additional related study of collusion in auctions can
be found in [5].

3. AUCTION PRELIMINARIES

We now present some preliminaries of auction theory, as
well as a description of the classical auction model discussed
in the paper and our parallel auction model.

3.1 Singleauctions

An auction procedure for selling a single good to one of
n potential participants, N = {1,2,...,n} is characterized
by 4 parameters, M,g,c,d: M is the set of possible mes-
sages a participant may submit; g = (g1,92,..-,9n),9i :
M™ — [0,1], is an allocation function, where g; determines
the probability the winner of the auction will be agent i;
¢: M™ — R determines the payment by the winner of the
auction; d is a participation fee. It is assumed that agents
may decide not to participate in an auction.

In order to analyze auctions we have to discuss the infor-
mation available to the participants. We assume the inde-
pendent private values model, with no externalities. Each
agent i is assumed to have a valuation v; selected from the
interval of real numbers [0, 1] or from a finite domain, which
captures its maximal willingness to pay for the good. We
further assume that this valuation is selected from the uni-
form distribution on the interval [0, 1] or on a finite domain.
For ease of presentation we will assume the continuous case,
excluding the section on general mechanisms, where the as-
sumption that the set of possible valuations is finite is re-
quired for our result. If agent 7 obtains the good and is asked
to pay p, as well as a participation fee d, then its utility, wu;,
is given by v; — p — d; otherwise, if it is not assigned any
good then its utility is —d; if the agent does not participate
in the auction then its utility is 0.

The above defines a Bayesian game, where a strategy for
an agent is a decision about the message to be sent given its
valuation, and the payoffs are determined as above. The so-
lution of this game is given by computing a (Bayesian Nash)



equilibrium of it: a joint strategy of the agents such that it
is irrational for each agent to deviate from its strategy, given
that all of the other agents stick to their strategy. Given an
equilibrium strategy b = (b1,b2,...,bn), one can compute
L;(b), the expected utility of agent 4 in equilibrium of the
corresponding game. In a case where there is more than
one equilibrium L;(b) is taken as the lowest expected util-
ity over all the equilibria. Further discussion of equilibrium
uniqueness is omitted from this paper.

One of the best-known auction mechanisms is the second-
price auction. In such an auction, each participant submits
a bid in a sealed envelope. The agent with the highest bid
wins the good and pays the amount of the second-highest
bid, and all other participants pay nothing. In a case of a tie,
the winner of the auction is selected randomly, with uniform
probability. If there is no participation fee then participation
in second-price auctions is always rational. Truth revealing,
i.e. bi(v;) = vi, is an equilibrium of the second-price auc-
tion (in fact, it is an equilibrium in dominant strategies).
Another popular auction is the first-price auction. These
auctions are conducted similarly to second-price auctions,
except that the winner pays the amount of his own bid. The
equilibrium analysis of first-price auctions is quite standard.
For example, if valuations are selected according to the uni-
form distribution on [0, 1] and there is no participation fee,

then the strategy of agent ¢ in equilibrium is b;(v;) = "T_lvi.

3.2 Paralle auctions

More generally, several auctions may be conducted in par-
allel. We first consider the case of two parallel auctions of
similar goods. A parallel auction is given in this case by
a pair A = (A1, A2), where A; = (N, g,¢,d), (i = 1,2) as
before.

One such problem is a parallel auction for substitute goods,
in which the set of possible buyers N is shared among A; and
Aa, and each agent’s valuation for the pair of goods {g1, g2}
equals its valuation for g; which equals its valuation for gs.
Agent i’s strategy consists of two parts:

1. It selects at most one of the auctions, in which it will
participate.

2. It submits a bid in the selected auction.

Parallel auctions for substitute goods define a Bayesian
game in a natural way. For example, if the auctions are
second-price auctions, then an appropriate equilibrium of
the corresponding parallel auction is as follows: each agent
randomly selects one of the auctions, and sends his actual
valuation as his bid there.

Another type of parallel auction is the parallel auction for
complementary goods. Here we have two similar auctions,
e.g. second-price auctions, for two different goods g1 and
g2. The set of agents N = N; U Na U N, consists of three
parts:

e N, are agents that are interested only in g1
e N, are agents that are interested only in g
e N, are agents that have valuation 0 for ¢g; and for g2,

but their valuation for the pair {gi,g2} is uniformly
distributed on the interval [0, 2].
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For ease of exposition we will assume that we can distin-
guish whether an agent is from group Ni, N2, or Np, and
that the agents in N, have extremely high negative utility
for losses. This second assumption means that an agent will
never submit bids in both auctions; notice that we assumed
that an agent who is interested in obtaining a pair of goods
has a valuation of 0 for getting only one of them, and there-
fore by bidding in two auctions the agent may end up getting
and paying for only one good. Hence, we will assume that
the strategies available to the agents are as in the case of
substitute goods.

We will rely on the notion of surplus in our evaluation of
coordinators for parallel auctions. The surplus of an allo-
cation is defined as the sum of agents’ valuations for that
allocation. For example, in a parallel auction for substitute
goods the surplus of an allocation that assigns good g1 in
auction 1 to agent 4, and assigns good g2 in auction 2 to
agent j, is v1(g1) + v2(g2) (i.e., the sum of these agents’
valuations for the goods they are assigned).

4. COORDINATORSAND BIDDING
CLUBS

Let G C N, where 1 < |G| < n. W.lo.g let the ele-
ments of G be {1,2,...,|G|}. Given an auction A, denote
by ®;(A)(1 < i < n) the set of strategies available to agent
1€ N.

Given a set of coordinator messages, M., which we take
w.l.o.g to be Ry, a (bidding club) coordinator is a pair of
functions C(A, G) = (T1(A,G),T2(A, Q)), where T1(A,G) :
M — ®,(A)1¢ and To(A, G) = (£5,85, ..., ti)), t : MIT'x
M™ — R. Namely, a coordinator is a mechanism that asks
the agents in G for some information and decides on the
way they will behave in A; this is determined by the func-
tion T1(A, G). In addition, following the decision made by
T1(A, G), and given the messages sent in the main auction A
by members of N \ G, an additional payment ¢{ may be im-
posed on agent i. The payment can be negative, positive, or
zero. M. contains the null message e that tells the coordina-
tor that the corresponding agent is not willing to participate
in the coordination activity. This agent will be free to partic-
ipate in the auction by itself, and will not be asked to make
any payments to the coordinator. A key assumption is that
participants in N \ G are unaware of even the possibility of
the existence of a coordinator, and that they act according
to an equilibrium of A. We denote the game obtained by
concatenating C(A, G) and A, by C(A,G). For every agent
i, let L;(A) be the agent’s expected utility in an equilibrium
of A, and let L;(C(A,G)) be the agent’s expected utility in
an equilibrium of C(4,G).

DEFINITION 1. Given an auction A, and a G C N as be-
fore, we will say that a participation-preserving coordinator
for G in A exists, if there exists C(A,G), such that every
agent i € G that would have had participated in A will also
participate in C(A,G) (in equilibrium of C(A,G)).

DEFINITION 2. We say that a utility-improving coordi-
nator exists if there exists a participation-preserving coordi-

nator, and L;(C(A,G)) > Li(A) (i.e. participation in the
bidding club is beneficial).
The existence of a utility-improving coordinator for an

auction setup implies a self-enforcing cooperative strategy
for a group of agents.



DEFINITION 3. We say that a surplus-improving coor-
dinator for G in A exists if there exists a C(A,G) that
is participation-preserving , and the expected surplus of the
members of G in C(A, G) is greater than their expected sur-
plus in A.

When dealing with parallel auctions in sections 5.2 and
5.3, we will be interested in surplus-improving coordina-
tors. Besides the observation that neither concept implies
the other, the discussion of the connection between utility-
improving and surplus-improving coordinators is left to the
full paper.

5. COORDINATION IN SECOND-PRICE
AUCTIONS

5.1 Second-price auctionsfor a single good

The case of collusion in second-price auctions is discussed
in [2]. The following theorem may be deduced from this
work; we present the result here for the sake of completeness.
Consider a second-price auction. In the case of a second-
price auction a group of buyers may wish to avoid paying a
participation fee, or alternatively bidders who will certainly
lose may want to receive advance notice. As it turns out,
such behavior can be obtained:

THEOREM 1. There exists a utility-improving coordinator
for second-price auctions.

Sketch of proof:

In the case of a second-price auction, no assumptions on
the distribution of the agents’ valuations need to be made.
We will assume that there is a participation fee d > 0, and
show a coordination protocol that enables the members of
the group G who do not have the highest valuation to avoid
paying d. We use the following protocol:

1. The agents in G are asked to submit their valuations
to the coordinator.

2. Let v; and vz denote the highest and second highest
valuations, announced by agents 1 and 2, respectively.?

3. Only agent 1 is represented in the main auction, and
his bid there will be v1.

4. If agent 1 wins the main auction, and is asked to pay
z, and z < v2, then agent 1 will pay va — z to the
coordinator.

We show that if the agents participate in the pre-auction
and reveal their true valuations there, then this cooperation
will be beneficial to them. The agent with the highest val-
uation cannot lose, because his behavior and expected gain
will be as in the case where there was no coordinator. The
other agents will gain due to the fact they won’t need to pay
the participation fee.

Consider now the agent ¢ € G with the highest valu-
ation, and assume that the other agents in G are truth-
revealing agents. Given that truth-revealing is an equilib-
rium of second-price auctions, agents in N \ G are taken to

3Note that, unlike in some of the coordination protocols
that follow, the coordinator behaves the same regardless of
whether some bidders decline to participate in the coordi-
nation.
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be truth-revealing as well. Given that if the agent ¢ wins
the main auction, then he pays exactly the highest valua-
tion in N — {i} (because he will pay the maximum of the
auction’s second-highest bid and v2). Standard second-price
auction analysis yields that it is irrational for i to deviate
from truth-revealing to the announcement of a higher valua-
tion. If agent ¢ was willing to participate in the main auction
then clearly he does not wish to lose the pre-auction and
therefore announcing a lower valuation than his actual one
is irrational too. Clearly, every agent j # 4,5 € G does not
have any incentive to cheat if the others are truth-revealing.
He can only lose if by cheating he will be chosen to partici-
pate in the main auction.

It is easy to see that our result holds for Japanese auctions
as well. In a Japanese auction an auctioneer starts with a
low asking price, and continuously increments this price as
long as are still multiple agents willing to pay the current
price. Once only a single agent remains, he will get the good
for the current asking price. The fact our result holds also
for Japanese auctions is immediately implied by the fact
that in both Japanese auctions and second-price auctions
the good is sold to the agent with the highest valuation, at
a price that equals the second-highest valuation.

5.2 Parallel auctionswith substitute goods

In this section we deal with parallel auctions of substitute
goods. Here the idea of the coordinator is to ensure that the
two agents with the highest valuations in the group G will
compete for different goods rather than among themselves.
This will enable to improve upon the surplus of the members
of G. We can show:

THEOREM 2. There exists a surplus-improving coordina-
tor for parallel second-price auctions of substitute goods.

Sketch of proof:

1. The agents in G are asked to submit their valuations
to the coordinator.

2. Let v1,v2, and vz denote the highest, the second high-
est, and the third highest valuations which have been
announced, respectively.*

3. Only the agents with the highest and second highest
valuations will participate in the main auction. The
agents will be randomly assigned to different auctions.

4. If an agent gets the object in auction A; for the price
y < vs, then he will pay vs — y to the coordinator.

It is clear that if all agents obey the coordinator’s pro-
tocol, and send their actual valuations to the coordinator,
then the agents will improve upon their surplus. In equilib-
rium agents will want to participate; for example, consider
agents 1 and 2, having the two highest bids submitted to the
coordinator. As a result of the coordination the first agent
will have a lower expected payment, since he will always pay
some amount less than vz, while the second agent will have
a greater chance of winning, since he will never be outbid
by agent 1.

4Once again, note that the coordinator behaves the same
regardless of whether some bidders decline to participate.



We now show that truth-revealing is an equilibrium. Con-
sider an agent i1, with the highest valuation in G, v1, and
assume that the rest of the agents are truth-revealing. If
agent 1 reports a valuation higher than v, and obtains as a
result of this a good he could not obtain otherwise, then it
must be the case that his payment is higher than his valua-
tion, which makes that deviation irrational. It is clear that
reporting on a valuation lower than v; does not help agent
1.

Consider an agent iz, with the second-highest valuation
in G, v2, and assume the other agents are truth-revealing.
If the agent reports a higher valuation than v; then he will
be the highest-ranking bidder in the pre-auction rather than
the second highest-ranking, but this will not benefit him as
the top two bidders are assigned to auctions randomly. The
rest of the analysis is the same as for ;.

Consider an agent i3, with the third-highest valuation in
G, v3, and assume the other agents are truth-revealing. If
the agent reports a valuation that causes it to gain the pre-
auction, then its payment will be at least v2 > v3, which
makes such deviation irrational. Similar analysis will hold
for agents with lower valuations.

5.3 Parallel auctionswith complementary goods

In this section we deal with parallel auctions for comple-
mentary goods. Our aim is to allow the participants in G to
obtain a higher surplus than what they could obtain with-
out the coordinator. We assume that in G we have at least
two representatives of N1, No and N,. We can show:

THEOREM 3. There exists a surplus-improving coordina-
tor for parallel second-price auctions of complementary goods.

Sketch of proof:
Let 0 < k << 1 be a commonly-known constant. We will
use the following coordinator®:

1. The coordinator asks the agents that are interested in
the single goods for their valuations

2. The coordinator selects two agents, s; and s2, who
reported the highest valuations for goods g1 and g2,
v1 and vy respectively.

3. If any agent from Ni |J N2 declined to participate, the
coordinator submits bids in the appropriate auctions
for all agents in N1 |J N2 who did elect to participate,
with a price offer equal to the agents’ stated valuations,
and the protocol is complete. Otherwise, if all agents
elected to participate, we proceed to step 4.

4. The coordinator announces v1 and vz to all of the par-
ticipants in G.

5. The coordinator asks the agents that are interested in
the pair of goods for their valuations.

6. The coordinator randomly selects an agent, s,, who
reported a valuation v, for the pair of goods, such
that v1 + v2 + 2k < vp (if such an agent exists).

5This requires a quite straightforward modification to the
definition of coordinators, which we skip. Namely, a coor-
dinator can run a multi-stage game instead of the function

Ti (A, G).

50

7. The coordinator bids v; in A;, and v2 in As.

8. If the coordinator wins both auctions, and an agent s,
exists, then s, will get the pair of goods and pay vsec, +
Useco, tO the coordinator, where vsec; is the second-
highest bid in A;. Agent s, will also pay agent i (i =
1,2) k + maz(0,v; — Vsec; )-

9. If the coordinator only wins auction 4, or if the coordi-
nator wins both auctions but there does not exist an
agent sp, then agent s; gets the good and pays vsec;
to the coordinator.

Consider an equilibrium of the corresponding C(4,G),
and an agent s; € N;NG (i = 1,2). It is clear that in equilib-
rium s; will participate in C(A, G) and that the submission
of a valuation which is at least as high as s;’s valuation by s}
dominates the submission of a lower valuation. This is due
to the fact that by submitting a valuation that is lower than
his actual valuation an agent can only lose, given that this is
a second-price auction. The agent cannot lose by participat-
ing in the pre-auction, since it is guaranteed to get at least
the difference between its stated valuation and the second-
highest bid, if its stated valuation is the highest. Moreover,
if agent s, wins the good then s} may also get a payment of
k > 0. For this reason, and also because vsc.; may be less
than the highest rejected bid from N; (|G, truth revelation
will not be in the best interest of agent s;. Instead, he will
submit a bid that exceeds his true valuation.

Given the above, an agent s,, who has interest in the pair
of goods will be willing to participate in the coordinator’s
protocol if vi 4+ v2 + 2k < wv,. Note that all agents are
aware of k before placing their bids. It is easy to check
that it is irrational for s, to send a message that could win
the pre-auction if its valuation is smaller than v1 + va +
2k, and likewise it is irrational for s, to falsely submit a
valuation smaller than vy + v2 + 2k. Otherwise the amount
submitted by s, is irrelevant, as the coordinator chooses
randomly between eligible agents in N,. Thus, expected
surplus is increased by this protocol.

6. COORDINATION IN FIRST-PRICE
AUCTIONS

THEOREM 4. There exists a utility-improving coordinator
for first-price auctions.

Sketch of proof:

Recall that we assume that the agents’ valuations are
drawn uniformly from the interval [0,1]. Our protocol can
be easily modified to deal with other distributions on the
agents’ types. Let m be the number of agents who will par-
ticipate in the main auction, who are not members of the
bidding club (and who are thus assumed not to be aware
even of the possibility of its existence). We use the following
protocol:

1. Invite the agents in G to submit their valuations to
the coordinator.

2. If any agent declines to participate, submit bids for all
agents that did elect to participate, with a price offer
of "T’lvi, and the protocol is complete. Otherwise, if
all agents elected to participate, we proceed to step 3.



3. Let the two agents with the highest reported valuations
be agents 1 and 2, with reported valuations v1 and wva
respectively.

4. If ”1—,: < va™ -« (v1 — v2), submit a bid only for agent 1,
with a price offer of va.

5. Otherwise, submit bids for all agents i € G, with price

offer ";1 Vi.

First, we show that if the agents reveal their true valu-
ations then beneficial cooperation ensues. It is clear that
the only agent who can gain is the agent with the highest
valuation, v1, while the other agents do not lose. Note that
v” s the expected utility of agent 1 at the equilibrium in
the original mechanism, while v2™ - (v1 — v2) is his expected
utility if he submits a bid of vz in a modified mechanism
with m + 1 participants. v benefits because the protocol is
tailored specifically to him: the coordinator offers agent 1
the choice of participating in the original mechanism at its
equilibrium, or of eliminating some bidders from the auction
and bidding vs. In every situation, the coordinator selects
the alternative that agent 1 would prefer, given his stated
valuation. (Note that there exists a set with non-zero mea-
sure of values of v1 and w2 satisfying the condition in step
3 of the protocol; the demonstration of this fact is left to
the full version of the paper.) At the same time, no bidder
suffers from being eliminated: each eliminated bidder is as-
sured that a bid will be placed in the main auction exceeding
his valuation.

Now we show that the protocol leads the agents to re-
veal their true valuations. As a result, participation will
be rational for all agents. To show that truth-revelation is
an equilibrium, assume that all but one of the agents sub-
mit their true valuations. Notice that since only agent 1
can profit from the bidding club, the only reason that any
agent other than agent 1 would lie is to become the agent
with the highest valuation. However, this agent would then
either be represented in the original mechanism above the
equilibrium, or be made to bid v1, more than his valuation.
Agent 1 has no reason to lie because the mechanism is tai-
lored exactly to him, as described above. [l

Note that, paradoxically, the bidding club can also benefit
bidders who don’t even know of its existence! This is due
to the fact that in equilibrium of first-price auctions, bids
are decreasing as a function of the number of participants,
and we assume that all agents are made aware of the num-
ber of bidders participating in the main auction.® Bidders
who are unaware of the bidding club will thus submit lower
bids if the bidding club eliminates bidders than if it does
not. We do not analyze the case where bidders who are un-
aware of the bidding club are aware of the total number of
bidders including those eliminated by the coordinator, since
this knowledge would lead them to knowledge of the bidding
club’s existence (when they observed that a smaller number
of bids were actually entered in the auction), violating a key
assumption of our model.

5We assume that the number of bidders participating in the
auction is determined according to the number of distinct
bidders wanting to submit bids. Thus if the coordinator
places only one bid in the main auction then bidders who are
unaware of the bidding club will also be unaware of bidders
who were eliminated in the bidding club’s pre-auction.
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It is easy to see that our result holds for Dutch auctions as
well. In a Dutch auction the auctioneer starts with a high
asking price, and then continuously decrements this price
until an agent claims the good for the current price. The
fact our result holds also for Dutch auctions is immediately
implied by the strategic equivalence between first-price auc-
tions and Dutch auctions.

7. BIDDING CLUBSFOR GENERAL
MECHANISMS

The first-price and the second price auctions are two rep-
resentative auctions, but many other auctions, as well as
other economic mechanisms (various types of trades, nego-
tiations, etc.), are also discussed in the literature. In this
section we show that utility-improving coordinators exist for
many other related contexts as well.

General mechanisms are usually analyzed using Bayesian
games. In a Bayesian game each agent has a set of possible
types, and an agent’s strategy is a decision of his action as a
function of his type. The actual type of the agent is known
to him, and is selected from a commonly known distribution
function. The payoff of each agent is a function of both the
joint strategy of the agents and the particular type of the
agent. In the context of auctions, the types of the agents
refer to their valuations. The definition and analysis of equi-
librium strategies for general mechanisms will therefore be
similar to what we described in Section 3 for the case of
auctions.

In order to prove results that are general and hold for any
mechanism, researchers have used the following observation,
which is a direct implication of the definition of an equilib-
rium of a Bayesian game. It turns out that it is enough
to consider only mechanisms such that in the equilibrium
of the corresponding Bayesian game the agents will reveal
their true types. According to this observation, termed the
revelation principle, it is natural to restrict our attention
to (main) mechanisms which make a decision based on true
information supplied by the agents.

This brings us to the following general problem. Assume
that the agents’ types are selected from a finite set, and that
the agents are about to participate in a given truth revealing
mechanism M. Assume that the equilibrium of the game as-
sociated with that mechanism leads to a non Pareto-optimal
outcome for at least one tuple of agent types (i.e. for this
tuple of types the agents would better perform a joint strat-
egy that is different from the equilibrium strategy). Can a
coordinator be used in order to make a cooperative (bene-
ficial and incentive compatible) deal among the agents? In
the sequel, we assume that the valuations of the agents are
taken from V = {wv1,...,vm} where v; < viy1 for every i.
We can show:

THEOREM 5. Consider a truth revealing mechanism with
unique strict Bayesian equilibrium, that leads to a non Pareto-
optimal outcome for at least one tuple of agent types. Then,
a utility-improving coordinator exists.

Basic idea behind proof: Each agent will be invited to
send his valuation to the coordinator. The coordinator will
calculate a tuple of other valuations that would benefit the
agents (assuming they reported their actual valuations), if
submitted to the main mechanism. Notice that while an



agent would lose in equilibrium by deviating from truth-
revelation in the original mechanism, sending true valuations
is not necessarily an equilibrium if the coordinator submits
the new tuple. However, we can show that there exists a
useful coordinator which also maintains incentive compati-
bility.

1. Invite the agents to submit their valuations to the co-
ordinator.

2. If any agent declines to participate, submit the de-
clared valuations of all participating agents to the main
mechanism.

3. Otherwise, submit the new tuple of valuations to the
main mechanism on behalf of all agents with proba-
bility p; with probability 1 — p submit the valuations
reported by the agents.

The probability p is determined as follows. Consider an
agent ¢, who made the announcement v;. First, we can com-
pute the maximum expected gain, g;, that ¢ could achieve by
submitting a valuation v, # v;. Second, we can compute i’s
smallest expected loss in the original mechanism, [;, if v; is a
false valuation. Notice that [; is positive, given the assump-
tion that truth-revelation is a strict Nash equilibrium. Let
g = maz;i(g;) and | = min;(l;). Then we can take p = ﬁ

The analysis of this protocol is straightforward. Agents
should want to participate, as their expected utility is in-
creased. Incentive compatibility is ensured because the most
an agent can gain by lying is p-g— (1—p)-l = #y— Hl=
0. On expectation agents will lose by lying, since g and [

are calculated globally, not individually for each agent. [

8. CONCLUSION

In this paper we have presented the notion of bidding clubs
and its use in obtaining self-enforcing cooperation in classi-
cal auction setups. We have presented protocols for parallel
second-price auctions for substitutable and complimentary
goods, for first-price auctions for single goods, and for gen-
eral mechanisms under various assumptions. Our work can
be considered as a first attempt to formalize “strategic buy-
ers’ clubs”, where participants may cheat about their valu-
ations and so the club’s protocol must be designed carefully
enough to account for this possibility. The study of bidding
clubs is complementary to the rich work on efficient market
design [4, 1, 6]. Bidding clubs take the agents’ perspective
in improving their situation in existing markets, rather than
taking a center’s perspective on optimal, revenue maximiz-
ing market design.
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We introduce a class of mechanisms, called bidding clubs, that allow agents
to coordinate their bidding in auctions. Bidding clubs invite a set of agents to
join, and each invited agent freely chooses whether to accept the invitation or
whether to participate independently in the auction. Agents who join a bidding
club first conduct a “pre-auction” within the club; depending on the outcome
of the pre-auction some subset of the members of the club bid in the primary
auction in a prescribed way. We model this setting as a Bayesian game, including
agents’ choices of whether or not to accept a bidding club’s invitation. After
describing this general setting, we examine the specific case of bidding clubs for
first-price auctions. We show the existence of a Bayes-Nash equilibrium where
agents choose to participate in bidding clubs when invited and truthfully declare
their valuations to the coordinator. Furthermore, we show that the existence of
bidding clubs benefits all agents (including both agent inside and outside of a
bidding club) in several different senses.!

1. INTRODUCTION

The advent of internet markets has spurred new interest in auctions.
Most work in both economics and computer science has concentrated on
the design of auction protocols from the seller’s perspective, and in par-
ticular on optimal (i.e., revenue maximizing) auction design. In this pa-
per we present a class of systems to assist sets of bidders, bidding clubs.
The idea is similar to the idea behind “buyer clubs” on the Internet (e.g.,
www.mobshop.com): to aggregate the market power of individual bidders.
Buyer clubs work when buyers’ interests are perfectly aligned; the more
buyers join in a purchase the lower the price for everyone. In auctions held
on the internet it is relatively easy for multiple agents to cooperate, hiding
behind a single auction participant. Intuitively, these bidders can gain by
causing others to lower their bids in the case of a first-price auction or by
possibly removing the second-highest bidder in the case of a second-price

IThis work was partly supported by DARPA grant number F30602-98-C-0214-
P00005.
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auction. However, the situation in auctions is not as simple as in buyer
clubs, because while bidders can gain by sharing information, the competi-
tive nature of auctions means that bidders’ interests are not aligned. Thus
there is a complex strategic relationship among bidders in a bidding club,
and bidding club rules must be designed accordingly.

1.1. Related Work

While there is relative scarcity of previous work on bidder-centric mech-
anisms, certainly our work has not been carried out in a vacuum. Below we
discuss the most relevant previous work and its relation to ours. This work
all comes under the umbrella of collusion in auctions, a negative term still
reflecting a seller-oriented perspective. We adopt a more neutral stance to-
wards such bidder activities and thus use the term bidding clubs rather than
the terms bidding rings and cartels that have been used in the past. How-
ever, the technical development is not impacted by such subtle differences
in moral attitude.

1.1.1. Collusion in Second-Price Auctions

One of the first formal papers to consider collusion in second-price auc-
tions was written by Graham and Marshall [Graham and Marshall, 1987].
This paper introduces a knockout procedure: agents announce their bids in
a pre-auction; only the highest bidder goes to the auction but this bidder
must pay a “ring center” the amount of his gain relative to the case where
there was no collusion. The ring center pays each agent in advance; the
amount of this payment is calculated so that the ring center will budget-
balance ez-ante, before knowing the agents’ valuations.

Graham and Marshall’s work has been extended to deal with varia-
tions in the knockout procedure, differential payments, and relations to
the Shapley value [Graham et al., 1990]. The case where only some of
the agents are part of the cartel is discussed by Mailath and Zemsky
[Mailath and Zemsky, 1991]. Ungern and Sternberg [von Ungern-Sternberg, 1988]
discuss collusion in second-price auctions where the designated winner of
a cartel is not the agent with the highest valuation. Finally, although this
fact is not presented in any existing work of which we are aware, it is also
easy to extend Graham and Marshall’s protocol to handle an environment
where multiple cartels may operate in the same auction alongside indepen-
dent bidders.

Overall, a much richer body of work deals with second-price auctions
than with first-price auctions. This is possibly explained by the fact that
since second-price auctions give rise to dominant strategies, it is possible
to study collusion in many settings related to these auctions without per-
forming strategic equilibrium analysis.
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1.1.2. Collusion in First-Price Auctions

The key exception to the scarcity of formal work on first-price auctions is
a very influential paper by McAfee and McMillan [McAfee and McMillan, 1992].
It is the closest in the literature to our work, and indeed we have borrowed
some modelling elements from it. Several sections of their paper, including
the discussion of enforcement and the argument for independent private
values as a model of agents’ valuations, are directly applicable to our pa-
per. However, the setting introduced in their work assumes that a fixed
number of agents participate in the auction and that all agents are part of
a single cartel that coordinates its behavior in the auction. The authors
show optimal collusion protocols for “weak” cartels (in which transfers be-
tween agents are not permitted: all bidders bid the reserve price, using the
auctioneer’s tie-breaking rule to randomly select a winner) and for “strong”
cartels (the cartel holds a pre-auction, the winner of which bids the reserve
price in the main auction while all other bidders sit out; the winner dis-
tributes some of his gains to other cartel members through side payments).
A small part of the paper deals with the case where in addition to the
single cartel there are also additional agents. However, results are shown
only for two cases: (1) when non-cartel members bid without taking the
existence of a cartel into account and (2) when each agent i has valuation
v; € {0,1}. The authors explain that they do not attempt to deal with
general strategic behavior in the case where the cartel consists of only a
subset of the agents; furthermore, they do not consider the case where mul-
tiple cartels can operate in the same auction. Finally, a brief presentation
of “cartel-formation games” is related to our discussion of agents’ decision
of whether or not to accept an invitation to join a bidding club.

1.1.8. Other Work on Collusion

Less formal discussion of collusion in auctions can be found in a wide
variety of papers. For example, a survey paper that discusses mechanisms
that are likely to facilitate collusion in auctions, as well as methods for the
detection of such schemes, can be found in [Hendricks and Porter, 1989]. A
discussion and comparison of the stability of rings associated with classical
auctions can be found in [Robinson, 1985]. That paper concentrates on the
case where the valuations of agents in the cartel are honestly reported.

Collusion is also discussed in other settings. For example, the literature
discusses collusion that aims to influence purchaser behavior in a repeated
procurement setting (see [Feinstein et al., 1985]), and in the context of gen-
eral Bertrand or Cournot competition (see [Cramton and Palfrey, 1990]).

We should also mention that in an earlier paper we have anticipated
some of the results reported here. Specifically, in [Leyton-Brown et al., 2000]
we considered bidding clubs under the assumptions that only a single bid-
ding club exists, and that bidders who were not invited to join the club are
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not aware of the possibility that a bidding club might exist. The current
paper is an extension and generalization of that earlier work.

1.2. Distinguishing Features of our Model

Our goal in this work is to study cooperation between self-interested bid-
ders in a rich model that captures many of the characteristics of auctions on
the internet. This leads to many differences between our model and mod-
els proposed in the work surveyed above (particularly [Graham et al., 1990]
and [McAfee and McMillan, 1992]). In particular, we argue that a model
of an internet auction setting that includes bidding clubs should include
the following features:

1. The number of bidders is stochastic.

2. There is no minimum number of bidders in a bidding club (i.e., bid-
ding clubs are not required to contain all bidders).?

3. There is no limit to the number of bidding clubs in a single auction.

4. Club members and independent bidders behave strategically, acting
according to correct beliefs about this complex environment.

The first feature above is crucial. In many real-world internet auctions,
bidders are not aware of the number of other agents in the economic en-
vironment. A bidding club that drops one or more interested bidders is
thus undetectable to other bidders in an internet auction. An economic
environment with a fixed number of bidders would not model this uncer-
tainty, as the number of interested bidders would be common knowledge
among all bidders regardless of the number of bids received in the auction.
For this reason, we consider economic environments where the number of
bidders is chosen at random. We make use of a model of auctions with
stochastic numbers of participants which is due to McAfee and McMillan
[McAfee and McMillan, 1987]; we also refer to equilibrium analysis of this
model by Harstad, Kagel and Levin [Harstad et al., 1990].

1.3. Bidding Clubs at a Glance

Roughly speaking, a scenario with bidding clubs has the following struc-
ture:

1. Given a primary auction;

2. Given a set of bidders in that auction, drawn randomly from a set of
potential bidders;

2For technical reasons we will have to assume that there is a finite mazimum number
of bidders in each bidding club; however, this maximum may be any integer greater than
or equal to two.
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3. Given a partition of bidders into disjoint clubs, each of which can be
the redundant singleton club;

4. Each bidder chooses whether to bid in the primary auction directly
or through his club (it is assumed that this choice is strictly enforce-
able). In the latter case, the bidder declares his valuation to the club
coordinator;

5. Based on the bidders’ choices and declarations each club bids in the
primary auction, as do both the bidders who elected not to join their
respective clubs and the singleton bidders.

6. Each (non-singleton) club bids according to pre-specified, commonly
known rules. These rules also specify internal allocations and possible
monetary transfers among club members upon the conclusion of the
primary auction.

To make bidding clubs a more realistic model of collusion in internet
auctions, we restrict bidding club protocols in the following ways:

1. Participation in bidding clubs requires an invitation, but bidders must
be free to decline this invitation without (direct) penalty. In this way
we include the choice to collude as one of agents’ strategic decisions,
rather than starting from the assumption that agents will collude.

2. Bidding club coordinators must make money on expectation, and
must never lose money. This ensures that third-parties have incen-
tive to run bidding club coordinators. Note that this requirement is
not satisfied by a [Graham et al., 1990]-type result, in which bidding
clubs (or, in their parlance, cartels) are budget balanced ex ante, but
may lose money in individual auctions.

3. The bidding club protocol must give rise to an equilibrium where
all invited agents choose to participate, even when the bidding club
operates in a single auction as opposed to a sequence of auctions.
This means that agents can not be induced to collude in a given
auction by the threat of being denied future opportunities to collude.

1.4. Overview

This paper consists of two parts. First, sections 2 through 4 present
relevant background that does not directly concern cooperation between
bidders. In section 2 we give a formal model of an auction with a stochastic
number of participants based on the model in [McAfee and McMillan, 1987].

We set up an economic environment in which a finite number of agents is
chosen at random from an infinite set of potential agents. We also give a
general model of auction mechanisms based on [Monderer and Tennenholtz, 2000],

57



and define symmetric Bayes-Nash equilibria for the resulting Bayesian
game. In section 3 we consider different variations on the first-price auc-
tion mechanism. We begin with classical first-price auctions, in which the
number of bidders is common knowledge, and then consider first-price auc-
tions in the economic environment from section 2, where the number of
bidders is drawn from a known distribution. Combining results from both
auction types, we present first-price auctions with participation revelation:
auctions in which the number of bidders is stochastic, but the auction-
eer announces the number of participants before taking bids. This is the
auction mechanism upon which we will base our bidding club protocol for
first-price auctions. Finally, section 4 makes use of the revelation princi-
ple to show a class of auction mechanisms in which bidders are subject
to different payment rules and may have different private information (in
addition to their valuations), yet all bid truthfully. We think that this re-
sult is interesting in its own right, and certainly it is applicable to settings
other than collusion; however, it is also necessary to the proof of the main
theorem in section 6.

The second part of our paper is concerned explicitly with bidding clubs,
using material from the first part to present a general model of bidding clubs
and then a bidding club protocol for first-price auctions. First, section 5
expands the economic environment from section 2 to include the following
novel features:

e A finite set of bidding clubs is selected from an infinite set of potential
bidding clubs.

e A finite set of agents is selected to participate in the auction, from
an infinite set of potential agents. Some agents are associated with
bidding clubs, and the whole procedure is carried out in such a way
that no agent can gain information about the total number of agents
in the economic environment from the fact of his own selection.

e The space of agent types is expanded to include both an agent’s
valuation, and the number of agents present in that agent’s bidding
club (equal to one if the agent does not belong to a bidding club).

We introduce notation to describe each agent’s beliefs about the num-
ber of agents in the economic environment, conditioned on that agent’s
private information. We also augment the auction mechanism from sec-
tion 2 to describe additional strategic choices available to agents invited
to bidding clubs. In section 6 we examine bidding club protocols for first-
price auctions. We begin with two assumptions on the distribution of agent
valuations: the first related to continuity of the distribution, and the sec-
ond to monotonicity of equilibrium bids. After a technical lemma relating
equilibrium bids in auctions with stochastic numbers of participants un-
der different distributions, we give a bidding club protocol for first-price
auctions with participation revelation. Our main technical results follow:
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o We show that it is an equilibrium for agents to accept invitations to
join bidding clubs when invited and to disclose their true valuations
to their bidding club’s coordinator. Under the same equilibrium,
singleton agents bid as they would in an auction with a stochastic
number of participants in an economic environment without bidding
clubs, in which the distribution over the number of participants is
the same as in the bidding clubs setting.

e In equilibrium each agent is better off as a result of his own club (that
is, his expected payoff is higher than would have been the case if his
club never existed, but other clubs—if any—still did exist).

e In equilibrium each club increases all non-members’ expected payoffs,
as compared to equilibrium in the case where all club members par-
ticipated in the auction as singleton bidders, but all other clubs—if
any—still existed.

e In equilibrium each agent’s expected payoff is identical to the case
in which no clubs exist; note that since clubs make money on ex-
pectation, if clubs are willing to make money (or break even) only
on expectation, they could distribute some of their ex ante expected
profits among the club members, ensuring that all bidders gain on
expectation.

Finally, sections 7 and 8 consist of discussion and conclusions. We
touch on questions of trustworthiness of coordinators, legality of bidding
clubs and steps an auctioneer could take to disrupt the operation of bidding
clubs in her auction.

2. AUCTION MODEL

In this section we provide a (non-controversial) auction model, meant
to capture an internet auction setting such as eBay. Of course, this model
is applicable to many other auctions as well. Auctions may be seen as
consisting of an economic environment plus an auction mechanism which
together define a Bayesian game. First, our economic environment consists
of a stochastic number of agents, each of which has private information
about the number of participants in the auction and knows the distribu-
tion from which others’ types are drawn. This section draws heavily on
work by McAfee and McMillan [McAfee and McMillan, 1987] on auctions
with a stochastic number of participants. Second, the game includes an
auction mechanism in which the agents participate; this section is based
on [Monderer and Tennenholtz, 2000]. After defining these elements, we
give a formal definition of the Bayesian game.
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2.1. The Economic Environment

An economic environment E consists of a finite set of agents who have
non-negative valuations for a good at auction, and a distinguished agent 0—
the seller or center. The set of agents is selected by an exogenous process,
and each agent is unaware of the total number of agents participating in
the economic environment. Following [McAfee and McMillan, 1987], let
the set of agents who may participate in the economic environment be
A = N. Let 84 represent the probability that a finite set A C A is the set
of agents. The probability that n agents® will participate in the auction
is ya(n) = ZA,|A|:n B4. All agents know the probability distribution 34.
Once an agent k is selected, he updates his probability of the number of
agents present as:

pk . ZA,|A|:n,k€A Ba (1)
" ZA,keA Ba

We deviate from the model in [McAfee and McMillan, 1987] by adding
the assumption that it is common knowledge that all bidders are equally
likely to be chosen. Hence pF is the same for all k; we will hereafter refer
only to p,,. Finally, we assume that 74(0) = v4(1) = 0; at least two agents
will participate in the auction.

Let 7 be the set of possible agent types. The type 7; € 7 of agent ¢
is the tuple (v;,s;) € V x S. v; denotes an agent’s valuation: his maximal
willingness to pay for the good offered by the center. We assume that v;
represents a purely private valuation for the good, and that v; is selected in-
dependently from the other v;’s of other agents from a known distribution,
F, having density function f. By s; we denote agent 4’s signal: his private
information about the number of agents in the auction. In this section we
will consider the simple case where S = {@}: it is common knowledge that
all agents receive the null signal, and hence gain no additional information
about the number of agents. Note, however, that the economic environ-
ment itself is always common knowledge, and so agents always have some
information about the number of agents even when they receive the null
signal. We will consider more complex signals in section 5. We will use the
notation p7¢ to denote the probability that agent ¢ assigns to there being
n agents in the auction, conditioned on his type 7;. Throughout the pa-
per we will use uppercase P to denote the whole probability distribution
as compared to the probability of a particular number of agents which we
have denoted by lowercase p; in this case we denote the whole distribution
conditioned on i’s type as P7.

The utility function of agent 4, u; : R — R is linear, normalized with
u;(0) = 0. The utility of agent ¢ (having valuation v;) when asked to pay

3When we say that n agents participate in the auction we do not count the distin-
guished agent 0, who is always present.
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t is v; — t if 4 is allocated a good, and it is 0 otherwise. Thus, we assume
that there are no externalities in agents’ valuations and that agents are
risk-neutral.

2.2. The Auction Mechanism

We denote the possible allocations of the good to the agents by II. An
auction mechanism is a tuple (M, g,t), where:

e M is the set of possible messages an agent may send.

o g: M"™ — A(Il) is an allocation function where A(II) is the tuple of
distribution functions over II (e.g., the allocation may include random
elements).

ot = (ty,to,...,ty), t; : M™ X II — R is the (monetary) transfer
function for agent .

Notice that n is a parameter. Technically, an auction mechanism defines
g and t for any number of participants, and can be therefore considered as
a set of tuples (one for each number of agents).

Given the above, the dynamics of an auction mechanism can be de-
scribed as follows:

e Each agent i sends a message u; to the center. We denote the set of
messages received by the center as p.

e The center conducts a lottery according to the distribution g(u), and
selects the allocation 7.

e Agent ¢ gets m;, and is required to transfer ¢;(u, 7) to the center.

e The utility of ¢ is v; — t;(u, 7) if he is assigned a good, and it is
—t;(u, ) otherwise.

2.3. The Bayesian Game

The auction mechanism (M, g,t), in conjunction with the economic en-
vironment F, defines a Bayesian game. We will use the following definitions
and notation. A strategy b; : 7 — M for agent ¢ is a mapping from his
type 7; to a message p;. This may be the null message, which means that
he has elected not to participate in the auction. ¥ denotes the set of possi-
ble strategies, i.e., the set of functions from types to messages in M. Each
agent’s type is that agent’s private information, but the whole setting is
common knowledge.

For notational simplicity we only define symmetric equilibria, where
all agents bid the same function of their type, as this is sufficient for our
purposes in this paper. A more general definition would proceed along the
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same lines. By L;(7i,b;, " ~!) we denote agent i’s ex post expected utility
given that his type is 7;, he follows the strategy b; and all other agents use
the strategy b, in the case that there are a total of j agents. The strategy
profile b™ € ¥™ is a symmetric equilibrium if and only if:

Vi e A, V1, € T,b € argmax E p;"’LZ-(Ti,bi,bj_l) (2)
bies 4
K 7:2

3. FIRST-PRICE AUCTIONS

In this section we discuss several different variants of the first-price
auction. First we describe classical first-price auctions, in which a fixed
number of participants belong to the economic environment, and hence
the number of bidders is common knowledge. Next we consider first-price
auctions with a stochastic number of participants, where the number of
bidders in the economic environment is drawn from a known distribution.
Using the previous two settings, we present first-price auctions with par-
ticipation revelation, where the number of agents is chosen stochastically,
but the auctioneer announces the number of agents who have registered in
the auction before taking bids. This last type of first-price auction is the
one we will consider in our discussion of bidding clubs in section 6.

3.1. Classical first-price auctions

In a classical first-price auction, each participant submits a bid in a
sealed envelope. The agent with the highest bid wins the good and pays
the amount of his bid, and all other participants pay nothing. In the case
of a tie, the winner of the auction is selected uniformly at random from the
bidders who tied for the highest bid. (Note, however, that when F is con-
tinuous and has no atoms the probability of two bidders having the same
type is 0; ties will therefore occur with probability 0 if bidders follow an
equilibrium in which they all bid a strictly monotonically-increasing func-
tion of their valuations.) The equilibrium analysis of first-price auctions is
quite standard:

PROPOSITION 1. If valuations are selected independently according to
the uniform distribution on [0, 1] then it is a symmetric equilibrium for each
agent i to follow the strategy:

n—1

b(’()i) = n V;.

Using classical equilibrium analysis (e.g., following Riley and Samuelson
[Riley and Samuelson, 1981]) it is possible to show how classical first-price
auctions can be generalized to an arbitrary continuous distribution F'.
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PROPOSITION 2. If valuations are selected from a continuous distribu-
tion F' then it is a symmetric equilibrium for each agent i to follow the
strategy:

b(vg) = v; — F(vi)%"*l)/ F(w)™ du
0

In both cases, observe that although n is a free variable, n is not a
parameter of the strategy; the same is true of the distribution F. Agents
deduce this information from their full knowledge of the economic environ-
ment. It is useful, however, to have notation specifying the amount of the
equilibrium bid as a function of both v and n. We write

b (vs,n) = v; — F(v;)~ ("D /0 F(u)" 'du. (3)

3.2. First-price auctions with a stochastic number of bidders

In the economic environment described in section 2.1 the number of
agents is not a constant; rather, it is chosen stochastically from a known
probability distribution. An equilibrium for this setting was demonstrated
by Harstad, Kagel and Levin [Harstad et al., 1990]:

PROPOSITION 3. If valuations are selected from a continuous distribu-
tion F' and the number of bidders is selected from the distribution P then
it is a symmetric equilibrium for each agent i to follow the strategy:

oo

b(vi) = ijbe(vi,j)

Jj=2

Observe that b¢(v;, 7) is the amount of the equilibrium bid for a bidder
with valuation v; in a setting with j bidders as described in section 3.1
above. P is deduced from the economic environment.* We overload our
previous notation for the equilibrium bid, this time as a function of the
agent’s valuation and the probability distribution P. Thus we write:

b(v;, P) = ijbe(vivj) (4)
j=2

We will make frequent use of this function throughout the paper. An
important note is that it describes the equilibrium bid in the situation
where the economic environment is such that the number of agents is chosen
by P and where all agents receive the null signal.

4Recall that P is a set: p; € P for all j > 0, where p; denotes the probability that
the economic environment contains exactly j agents.
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3.3. First-price auctions with participation revelation

In some first-price auctions (e.g., auctions held on the internet), bidders
participate in an economic environment where the number of bidders in the
auction is not common knowledge. However, this can be helpful informa-
tion for bidders. One obvious way of addressing this problem is to intro-
duce a two-phase mechanism with revelation of the number of participants
between the stages. Specifically, a first-price auction with participation
revelation is as follows:

1. Agents indicate their intention to bid in the auction.

2. The auctioneer announces n, the number of agents who registered in
the first phase.

3. Agents submit bids to the auctioneer. The auctioneer will only accept
bids from agents who registered in the first phase.

4. The agent who submitted the highest bid is awarded the good for the
amount of his bid; all other agents are made to pay 0.

It is unsurprising that, although a first-price auction with participation
revelation may have a stochastic number of participants,

PROPOSITION 4. There exists an equilibrium of the first-price auction
with participation revelation where every agent i indicates the intention to
participate and bids according to b(v;,n).

Proof. Agents are always better off participating in first-price auctions
as long as there is no participation fee. The only way of participating is
to declare the intention to participate in the first phase of the auction.
Thus the number of agents announced by the auctioneer is equal to the
total number of agents in the economic environment. From proposition 2
it is best for agent i to bid b¢(v;,n) when it is common knowledge that the
number of agents in the economic environment is n. That is exactly the
case under our mechanism. 1

In section 6 we will be concerned with first-price auctions with infor-
mation revelation, but we will show an equilibrium in which the number
of agents registering in the first phase is smaller than the total number of
agents participating in the auction, because some bidders with low valua-
tions drop out as part of a collusive agreement. The auctioneer’s declaration
acts as a signal about the total number of bidders, but individual agents
will still be uncertain about the total number of opponents they face.

4. TRUTHFUL EQUILIBRIA IN ASYMMETRIC MECHANISMS

In this section we describe a particular class of auction mechanisms
that are asymmetric in the sense that every agent is subject to the same
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allocation rule but to a potentially different payment rule, and furthermore
that agents may receive different signals. It will be helpful for the proof of
our main theorem in section 6 to show that a truth-revealing equilibrium
exists in such auctions under the following two conditions:

1. The auction allocates the good to the agent who submits the highest
bid.

2. Consider the auction M; in which all agents are subject to agent
i’s payment rule and the above allocation rule, and where (hypo-
thetically) all agents receive the signal s;. Truth-revelation is a
symmetric equilibrium in M;.

Observe that the second condition above is less restrictive than it may
appear. From the revelation principle we can see that for every auction
with a symmetric equilibrium there is a corresponding auction in which
truth-revealing is an equilibrium that gives rise to the same allocation and
the same payments for all agents. M; can thus be seen as a revelation
mechanism for some other auction that has a symmetric equilibrium.

More formally, given a good g, let M represent a set of auctions { My, ...,
M, } which all allocate the good to the agent who submits the highest
bid, and which are all truth-revealing direct mechanisms for n risk-neutral
agents with independent private valuations drawn from the same distribu-
tion. We now define another auction M:

1. Each agent ¢ sends a message p; to the center.

2. The center allocates the good to the agent ¢ with u; € max; p;. If
multiple agents submit the highest message, the tie is broken in some
arbitrary way.

6

3. Agent i is made to transfer ¢;(u,7) to the center.® The transfer

function ¢; is taken from M; € M.

We can now show:
LEMMA 1. Truth-revelation is an equilibrium of M.

Proof. The payoff of agent i is uniquely determined by the allocation
rule, the transfer function t;, and all agents’ strategies. Assume that the
other agents are truth revealing, then the other agents’ behavior, the al-
location rule, and agent i’s payment rule are all identical in M and M;.
Since truth-revelation is an equilibrium in M;, truth-revelation is agent i’s
best response in M. 1

5That is, for every agent j in the real auction, we create an agent k in the hypothetical
auction M; having type 75, = (vj, s;).
60f course, this transfer can be either positive or negative.

65



Example. Consider an auction for a single good g, where eight agents
bid for the good. The agents’ valuations are IPV, IID from a known distri-
bution F', and the agents are risk-averse. Let M; be a revelation mechanism
for a first-price auction: i.e., agents declare their valuations, and the win-
ner is charged b¢(v,8). In an economic environment consisting of eight
agents with IPV valuations from F' it is an equilibrium of M; for agents
to truthfully declare their valuations to the center. Let Ms be a second-
price auction; truthful declaration is a weakly dominant strategy under this
auction type. Both M; and Ms allocate the good to the agent with the
highest declaration, and so these auctions meet the conditions given at the
beginning of the section. Now consider an auction M where odd-numbered
agents are subject to the payment rule from M;, and even-numbered agents
are subject to the payment rule from M>. By lemma 1, truth-revelation is
an equilibrium of M. There are other differences between payment rules
that can cause agents’ expected utilities to differ: for example, lemma 1
would still hold if My gave each agent an additional payment of $10 for
participating in the auction.

The next corollary, which follows directly from the lemma, compares
a single agent’s expected utility under two different auctions M and M’,
which implement different payment rules. We will need this result for our
proof of theorem 1.

COROLLARY 1. Consider two auctions M and M’', defined as above,
which both implement the same transfer function for agent i. Agent i’s
expected utility is the same in both M and M.

Proof. The payoff of agent ¢ is uniquely determined by the allocation
rule, its transfer function, and all agents’ strategies. Both M and M’ have
the same allocation rule. Lemma 1 tells us that truth revelation is a best
response for all agents in both M and M’, so all agents’ strategies are
identical in the two auctions. In general, agents may not receive the same
expected utility from M and M’. However, since i has the same transfer
function in both auctions, i’s expected utility in M is equal to his expected
utility in M’.

5. AUCTION MODEL FOR BIDDING CLUBS

In this section we extend both the economic environment and auction
mechanism from section 2 to include the characteristics necessary for a
model of bidding clubs. Because our aim is not to model a situation where
agents’ decision to collude is exogenous—as this would gloss over the ques-
tion of whether the collusion is stable—we include the collusive protocol
as part of the model and show that it is individually rational ez post (i.e.,
after agents have observed their valuations) for agents to choose to collude.
However, we do consider exogenous the selection of the set of agents who
are offered the opportunity to collude. Furthermore, we want to show the
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impact of the possibility of collusion upon non-colluding agents; indeed,
even colluding agents must take into account the possibility that other
groups of agents in the auction may also be colluding. Once we have de-
fined the new economic environment and auction mechanism, a well-defined
Bayesian game will be specified by every tuple of primary auction type, bid-
ding club rules and distributions of agent types, the number of agents and
the number of bidding clubs.

5.1. The Economic Environment

We extend the economic environment F from the previous section to
consist of a set of agents who have non-negative valuations for a good at
auction, the distinguished agent 0 and a set of bidding club coordinators
who may invite agents to participate in a bidding club. Intuitively, we
construct an environment where an agent’s belief update after observing
the number of agents in his bidding club does not result in any change in
the distribution over the number of other agents in the auction, because
the number of agents in each bidding club is independent of the number of
agents in every other bidding club.

5.1.1.  Coordinators

Coordinators are not free to choose their own strategies; rather, they
act as part of the mechanism for a subset of the agents in the economic
environment. We select coordinators in a process analogous to our previous
approach for exogenously selecting agents: we draw a finite set of individ-
uals from an infinite set of potential coordinators. In this case, however,
this finite set is considered “potential coordinators”; in section 5.1.2 we will
describe which potential coordinators are “actualized”, i.e., correspond to
actual coordinators. Possible coordinators that are not actualized will cor-
respond to singleton bidders in the auction.

More formally, let C = N (excluding 0) be the set of all coordinators.
B¢ represents the probability that a finite set C' C C is selected to be the
set of potential coordinators. We add the restriction that all coordinators
are equally likely to be chosen. A consequence of this restriction is that
an agent’s knowledge of the coordinator with whom he is associated does
not give him additional information about what other coordinators may
have been selected. We denote the probability that an auction will involve
n. potential coordinators as yo(n.) = Ec,lclznc Bc. The distribution B¢
is common knowledge. We assume that y¢(0) = vo(1) = 0: at least two
potential coordinators will be associated with each auction.

5.1.2. Agents

We independently associate a random number of agents with each po-
tential coordinator, again drawing a finite set of actual agents from an
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infinite set of potential agents. If only one (actual) agent is associated
with a potential coordinator, the potential coordinator will not be actual-
ized and hence the agent will not belong to a bidding club. In this way
we model agents who participate directly in the auction without being as-
sociated with a coordinator. If more than one agent is associated with
a potential coordinator, the coordinator is actualized and all the agents
receive an invitation to participate in the bidding club.

More formally, let A = N be the set of all agents, and let x be the
maximum number of agents who may be associated with a single bidding
club. Partition A into subsets, where agent i belongs to the subset Ap; /1.
Let 84 be the probability that a finite set A C A; is the set of agents
associated with potential coordinator i; we assume that this distribution
is the same for all i. Furthermore, as above, we assume that it is common
knowledge that all agents are equally likely to be chosen. The probability
that n agents will be associated with a potential coordinator is denoted
va(n) = ZA,|A|=nﬂA' By the definition of &, Vj > k,va(j) = 0; we
assume that v4(0) = 0 and that y4(1) < 1.

5.1.3.  Signals

Each agent receives a signal informing him of the number of agents in
his bidding club; as above we denote this signal as s;.” Of course, if this
number is 1 then there is no coordinator for the agent to deal with, and
he will simply participate in the main auction. Note also that agents are
neither aware of the number of potential coordinators for their auction nor
the number of actualized potential coordinators, though they are aware of
both distributions.

5.1.4. Beliefs

Once an agent is selected, he updates his probability distribution over
the number of actual agents in the economic environment. Not all agents
will have the same beliefs—agents who have been signaled that they be-
long to a bidding club will expect a larger number of agents than singleton
agents. We denote by p™%* the probability that there are a total of m agents
in the auction, given that there are n bidding clubs and that there are k
agents in the bidder’s own club; we denote the whole distribution P™*.
Because the numbers of agents in each bidding club are independent, ob-
serve that every agent in the whole auction has the same beliefs about the
number of other agents in the economic environment, discounting those
agents in his own bidding club. Hence agent i’s beliefs are described by

“In fact, none of our results require that agents know the number of agents in their
bidding clubs; it would be sufficient that agents know whether they belong to a bidding
club. We consider the setting where agents’ signals are more informative because it
simplifies the exposition of the main theorem.
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the distribution P™?%. It is important to note that P™% is simply an-
other distribution over the number of agents in the auction. Although this
shorthand makes reference to the bidding club economic environment in
order to describe the construction of the distribution, it makes sense to
talk about a classical auction with a stochastic number of bidders (i.e.,
section 3.2) where the number of bidders is distributed according to P™*
for given values of n and k.

5.2. The Augmented Auction Mechanism

Bidding clubs, in combination with a main auction, induce an aug-
mented auction mechanism for their members:

1. A set A of bidders is invited to join the bidding club.

2. Each agent ¢ sends a message u; to the bidding club coordinator.
This may be the null message, which indicates that the agent will
not participate in the coordination and will instead participate freely
in the main auction. Otherwise, agent ¢ agrees to be bound by the
bidding club rules, and p; is agent i’s declared valuation for the good.
Of course, ¢ can lie about his valuation.

3. Based on pre-specified and commonly-known rules, and on the infor-
mation all the members supply, the coordinator selects a subset of
the agents to bid in the main auction. The coordinator may bid on
behalf of these agents (e.g., using their ID’s on the auction web site)
or it may instruct agents on how to bid. In either case we assume
that the coordinator can force agents to bid as desired, for example
by imposing a charge on agents who do not behave as directed.

4. If a bidder represented by the coordinator wins the main auction, he
is made to pay the amount required by the auction mechanism to the
auctioneer. In addition, he may be required to make an additional
payment to the coordinator.

Any number of coordinators may participate in an auction. However,
we assume that there is only a single coordination protocol, and that this
protocol is common knowledge.

6. BIDDING CLUBS FOR FIRST-PRICE AUCTIONS

In this section we first give some (mild) assumptions about the distri-
bution of agent valuations, then use these assumptions to prove a technical
lemma. We then give the bidding club protocol for first-price auctions. We
consider a first-price auction with participation revelation as described in
section 3.3. Bidders indicate their intention to participate, the auction-
eer announces the total number of bidders and then bidders place their
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bids. The bidding club decides whether to drop bidders before the first
phase; therefore the number announced by the auctioneer does not include
dropped bidders. We show an equilibrium of this auction, and demonstrate
that agents gain under this equilibrium.

6.1. Assumptions

Our results hold for a broad class of distributions of agent valuations—
all distributions for which the following two assumptions are true.

First, we assume that F is continuous and atomless.

In order to give our second assumption, we must introduce some nota-
tion. Define:

PxZi = pr (5)
r=1

We now define the relation “<” for probability distributions:

P < P iff (Vi <l,P>; = p;Zi and Vi > [, Pp>; < P;,ZZ-). (6)
We are now able to state our second assumption:

(P < P') implies that Vv, b¢(v, P) < b°(v, P’), (7)

Intuitively, we assume that every agent’s symmetric equilibrium bid in
a setting with a stochastic number of participants drawn from P’ is strictly
greater than that agent’s symmetric equilibrium bid in a setting with a
stochastic number of participants drawn from P, in the case where P’
stochastically dominates P.

6.2. A Technical Lemma

Recall from section 5.1.4 that the notation P™* may be seen as defining
a probability distribution over the number of agents that is independent
of the bidding club setting. It is thus possible to discuss equilibrium bids
in the classical stochastic settings where the number of bidders is drawn
from such a distribution. While it will remain to show why these values
are meaningful in our setting where (among other differences) agents have
asymmetric information, it will be useful to prove the following lemma
about the classical stochastic setting:

LEMMA 2. Yk > 2,Vn > 2, Vo, b¢(v, PPTE=11) > be(v, PoF)

Remark.  For convenience and to preserve intuition in what follows
we will refer to the number of potential coordinators and the number of
agents belonging to a coordinator even though we concern ourselves with
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the classical economic environment from section 2.1 where bidding clubs
do not exist. The number of potential coordinators is shorthand for the
number n, drawn from ¢ in the first phase of the procedural definition
of the distribution P™*. Likewise the number of agents associated with a
potential coordinator is shorthand for the number of agents chosen from
one of the n. iterative draws from ~y4. Intuitively, this lemma asserts that
the symmetric equilibrium bid is always higher when more agents belong
to the main auction as singleton bidders and the total number of agents is
held constant.

Proof. Recall our second assumption from section 6.1. We defined P <
P’ as the proposition that (Vi < [, Py>; = P, and Vi > [, Py>i < Py,).
Our second assumption was that (P < P’) implies that Vv, b%(v, P) <
b¢(v, P'). Tt is thus sufficient to show that PnTr—1L1 > prk We will take
l=n+k.

First we will show that Vj < n + k, P;L;rjk*l’l = P;gkj. The distribution
PtR=11 expresses the belief that there are n+k—2 potential coordinators,
the membership of which is distributed as described in section 5.1, and
one potential coordinator that is known to contain only a single bidder.
The distribution P™* expresses the belief that there are n — 1 potential
coordinators, the membership of which is again distributed as described in
section 5.1, and one potential coordinator that is known to contain exactly
k bidders. Under both distributions it is certain that there are at least
n + k — 1 agents. Therefore Vj < n + k, Pznjjkfl’l = P;gkj =1.

Second, Vj > n + k, P;‘jf‘l’l > P;L;kj. Considering P"T*=1.1 observe
that for n + k — 2 of the potential coordinators the probability that this
coordinator contains a single agent is less than one and these probabili-
ties are all independent; the last potential coordinator contains a single
agent with probability one. Considering P™", there are n — 1 potential
coordinators where the probability of containing a single agent is less than
one, exactly as above, and k potential coordinators certain to contain ex-
actly one agent. Thus the two distributions agree exactly about n — 1 of
the potential coordinators, which both hold to contain more than a sin-
gle agent, and likewise both distributions agree that one of the potential
coordinators contains exactly one agent. However, there remain k — 1
potential coordinators about which the distributions disagree; PmTrk—11
always generates a greater or equal number of agents for these potential
coordinators, as compared to P™F. Under the latter distribution all these
agents are singletons with probability one, while under the former there
is positive probability that each of the potential coordinators contains
more than one agent. As long as k > 2, there is at least one poten-
tial coordinator for which P™t*~1.1 stochastically dominates P™*. Thus
Vk > 2,Vn > 2, Vo PrtE-Ll 5 prk oy
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6.3. First-Price Auction Bidding Club Protocol

What follows is the protocol of a coordinator who approaches k agents.

1. Each agent i sends a message u; to the coordinator.

2. If at least one agent declines participation then the coordinator regis-
ters in the main auction for every agent who accepted the invitation
to the bidding club. For each bidder i, the coordinator submits a bid
of b¢(u;, P™*), where n is the number of bidders announced by the
auctioneer.

3. If all k agents accepted the invitation then the coordinator drops all
bidders except the bidder with the highest reported valuation, who
we will denote as bidder A. For this bidder the coordinator will place
a bid of b*(up, P™1) in the main auction.

4. If bidder h wins in the main auction, he is made to pay b¢(us, P™?!)
to the center and b®(up,, P™*) — b¢(uun, P™) to the coordinator.

We are now ready to prove the main theorem of the paper:

THEOREM 1. It is an equilibrium for all bidding club members to choose
to participate and to truthfully declare their valuations to their respective
bidding club coordinators, and for all non-bidding club members to partici-
pate in the main auction with a bid of b¢(v, P™1).

Proof. We first prove that the above strategy is in equilibrium for both
categories of bidders given that agents all participate; we then prove that
participation is rational for all agents.

For the proof of equilibrium we consider a one-stage mechanism which
behaves as follows:

1. The center announces n, the number of bidders in the main auction.
2. Bidders submit bids (messages) to the mechanism.

3. The bidder with the highest bid is allocated the good.

4. The winning bidder is made to pay b¢(v;, P™%).

This one-stage mechanism has the same payment rule for bidding club
bidders as the bidding club protocol given above, but no longer implements
a first-price payment rule for singleton bidders. In order to prove that the
strategies given in the statement of the theorem are an equilibrium, it is
sufficient to show that truthful bidding is an equilibrium for all bidders
under the one-stage mechanism. Observe that this mechanism may be
seen as a mechanism M in the sense of lemma 1: it allocates the good to
the agent who submits the highest message, and (by definition of b¢) the
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auction M; in which all agents are subject to agent i’s payment rule and
receive the signal s; has truth revelation as a symmetric equilibrium.

Strategy of non-club bidder: Assume that all bidding club agents bid
truthfully. Further assume that all non-club agents also bid truthfully
except for agent 3. The probability distribution P™! correctly describes the
beliefs of non-club agents, given the auctioneer’s announcement that there
are n bidders in the main auction. Although agents in bidding clubs have
additional information about the number of agents—each agent knows that
there is at least one other agent in his own club—their prescribed behavior
is to place bids of b(u, P™!) in the main auction. Agent i thus faces a
stochastic number of agents distributed according to P™! and all bidding
b¢(v, P™1). Using the result from lemma 1, i’s strategic decision is the same
as under a mechanism where all agents are subject to his payment rule and
share his signal s;, and with a stochastic number of bidders distributed
according to P™!. In particular, it does not matter that the club members
are subject to different payment rules and have additional information, and
so i will also bid b¢(v, P™1).

Strategy of club bidder: Assume that all agents accept the invitation
to join their respective clubs and then truthfully declare their valuations,
excluding agent ¢ who decides to participate but considers his bid. Once
again, observe that ¢ is in a setting that is exactly described by lemma
1: P™* really does describe the distribution over the number of agents
given his signal, and the bidder submitting the highest (global) message
will always be allocated the good. Therefore the information asymmetry
does not affect i’s strategy, and so truthful bidding is a best response for
agent 1.

We now turn to the question of participation; for this part of the proof
we return to the original, multi-stage mechanism.

Participation of non-club bidder: Because there is no participation fee,
it is always rational for a bidder to participate in a first-price auction.

Participation of club bidder: Likewise, because there is no participation
fee, all bidding club bidders will participate in the auction, but must decide
whether or not to accept their coordinators’ invitations. Assume that all
agents except for ¢ join their respective clubs and bid truthfully, and agent
¢ must decide whether or not to join his bidding club. Agent ¢ knows the
number of agents in his bidding club and updates his distribution over the
number of agents in the whole auction as P™F.

Consider the classical stochastic case where all bidders have the same
information as ¢ (and are subject to the same payment rules): from propo-
sition 3 it is a best response for i to bid b°(v;, P™*). In this setting i’s
expected gain is the same as in the equilibrium where all bidding club
members (including ¢) join their clubs and bid truthfully, by corollary 1.

As a result of i declining the offer to participate in the bidding club
there are n — 1 bidders in the main auction placing bids of b¢(v, PPTF=11)
and k — 1 other bidders placing bids of b¢(v, P™*). Note that this occurs
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because the singleton bidders and other bidding clubs in the main auction
follow a strategy that depends on the number of bidders announced by
the auctioneer; hence they bid as though all the £k — 1 bidders from the
disbanded bidding club might each be independent bidding clubs. We
know from lemma 2 that b¢(v, P***=11) > b¢(v, P™*). Thus the singleton
bidders and other bidding clubs will bid a higher function of their valuations
than the bidders from the disbanded bidding club. It always reduces a
bidder’s expected gain in a first-price auction to cause other bidders to
bid above the equilibrium, because it reduces the chance that he will win
without affecting his payment if he does win. This is exactly the effect of
1 declining the offer to join his bidding club: the k — 1 other bidders from
7’s bidding club bid according to the equilibrium of the classical stochastic
case discussed above, but the n — 1 singleton and bidding club bidders
submit bids that exceed the symmetric equilibrium amount. Therefore i’s
expected gain is smaller if he declines the offer to participate than if he
accepts it.

6.4. Do bidding clubs cause agents to gain?

We can show that bidders are better off being invited to a bidding club
than being sent to the auction as singleton bidders. Intuitively, an agent
gains by not having to consider the possibility that other bidders who would
otherwise have belonged to his bidding club might themselves be bidding
clubs.

THEOREM 2. An agent ¢ has higher expected utility in a bidding club
of size k bidding as described in theorem 1 than he does if the bidding club
does not exist and k additional agents (including i) participate directly in
the main auction as singleton bidders, again bidding as described in theorem

1.

Proof. Consider the counterfactual case where agent i’s bidding club
does not exist, and all the members of this bidding club become single-
ton bidders. We will show that ¢ is better off as a member of the bid-
ding club than in this case. If there were n potential coordinators in
the original auction and k agents in i’s bidding club, then the auction-
eer will announce n + k — 1 as the number of participants in the new
auction. Under the equilibrium from theorem 1, as a singleton bidder 4
will bid b¢(v;, P"*k=11). If he belonged to the bidding club and followed
the same equilibrium 4 would bid b¢(v;, P*). In both cases the auction
is economically efficient, which means ¢ is better off in the auction that
requires him to pay a smaller amount when he wins. Lemma 2 shows
that Yk > 2,¥n > 2, Vv, b¢(v, PPHE=11) > pe(v, P™F) and so our result
follows. 1

We can also show that singleton bidders and members of other bidding
clubs benefit from the existence of each bidding club in the same sense. Fol-

74



lowing an argument similar to the one in theorem 2, other bidders gain from
not having to consider the possibility that additional bidders might repre-
sent bidding clubs. Paradoxically, other bidders’ gain from the existence of
a given bidding club is greater than the gain of that club’s members.

COROLLARY 2. In the equilibrium described in theorem 1, singleton bid-
ders and members of other bidding clubs have higher expected utility when
other agents participate in a given bidding club of size k > 2, as compared
to a case where k additional agents participate directly in the main auction
as singleton bidders.

Proof. Consider a singleton bidder in the first case, where the club of k
agents does exist. (It is sufficient to consider singleton bidders, since other
bidding clubs bid in the same way as singleton bidders.) Following the
equilibrium from theorem 1 this agent would submit the bid b¢(v;, P™1).
Theorem 2 shows that it is better to belong to a bidding club (and thus to
bid b¢(v;, P™*)) than to be a singleton bidder in an auction with the same
number of agents (and thus to bid b¢(v;, P"*%~11). Since the distribution
P™F is just P! with k — 1 singleton agents added, Yk > 2,b¢(v;, P™') <
b¢ (v, PF). Thus Vk > 2,0°(v;, P™Y) < b(v;, PPPE=LL)

Finally, we can show that agents are indifferent between participating
in the equilibrium from theorem 1 in a bidding club of size k (thus, where
the number of agents is distributed according to P™*) and participating in
an economic environment with a stochastic number of bidders distributed
according to P™* but with no coordinators.

THEOREM 3. ForallT; € T, for allk > 1, for alln > 2, agent i obtains
the same expected utility by:

1. participating in a bidding club of size k in the economic environment
from section 5.1 and following the equilibrium from theorem 1;

2. participating in a first-price auction with participation revelation in
an economic environment with a stochastic number of bidders dis-
tributed according to P™* where all bidders receive the null signal,
and where there are no coordinators.

Proof. First we will show that agent i’s expected utility in case (2) above
is the same as in a classical first-price auction with a stochastic number of
bidders (i.e., without participation revelation). Second, we will show that
agent i’s expected utility in this classical stochastic setting is the same as
in case (1) above.

From proposition 4 it is an equilibrium for agent i to bid b°(v;,j) in
a first-price auction with participation revelation (case (2)), where j is
the number of bidders announced by the auctioneer. Since the number of
agents is distributed according to P™*, the expected payment of agent 4
is Z;}iz p?’kbe(vi7j). This is the definition of b¢(v;, P™*) from equation 4.
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From proposition 3 this is an equilibrium bid of agent ¢ when the number
of agents is distributed according to P™* (without information revelation).
Since both the classical first-price auction with a stochastic number of
bidders and the first-price auction with participation revelation are efficient,
agent i’s expected utility is the same under both auctions.

Under the equilibrium from theorem 1 (case (1)) the amount of 4’s
payment will be b¢(v;, P™*) if he wins. Since both the mechanism from case
(1) and the classical first-price auction with a stochastic number of bidders
are efficient, agent ¢ has the same expected utility in both auctions. 1

This theorem shows that an agent would be as happy in a world with-
out bidding clubs as he is in our economic environment. The difference be-
tween the two worlds is that in the latter bidding club coordinators make
a positive profit on expectation, and indeed never lose money. That is,
in the bidding club economic environment some expected profit is shifted
from the auctioneer to the bidding club coordinator(s) without affecting
the bidders’ expected utility. We observe that it would be easy for coordi-
nators to redistribute some of these gains to bidders along the lines of the
second-price auction protocol proposed by Graham and Marshall: coordi-
nators make a payment to every bidder who accepts the invitation to join,
where the amount of this payment is less than or equal to the ex ante ex-
pected difference that bidder makes to the coordinator’s profit. With this
modification coordinators would be budget balanced only on expectation
(violating requirement 2 from section 1.3), but agents would strictly prefer
the bidding club economic environment to the economic environment in
which coordinators are not present.

7. DISCUSSION

In this section we consider the trustworthiness and legality of coordina-
tors, and also discuss two ways for auctioneers to disrupt bidding clubs in
their auctions.

7.1. Trust

Why would a bidding club coordinator be willing to provide reliable
service, and likewise why would bidders have reason to trust a coordinator?
For example, a malicious coordination protocol could be used simply to
drop all its members from the auction and reduce competition. While this
is a reasonable concern, all the bidding club protocols discussed in this
paper allow the coordinator to make a profit on expectation. There is thus
incentive for a trusted third party to run a reliable coordination service.
Indeed, coordinators would be very inexpensive to run: as their behavior is
entirely specified, they could operate without any human supervision. The
establishment of trust is exogenous to our model; we have simply assumed
that all agents trust coordinators and that all coordinators are honest.
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7.2. Legality

We have often been asked about the legal issues surrounding the use
of bidding clubs. While this is an interesting and pertinent question, it
exceeds both our expertise and the scope of this paper. We should note,
however, that uses of bidding clubs exist that might not fall under the legal
definition of collusion. For example, a corporation could use a bidding club
to choose one of its departments to bid in an external auction. In this way
the corporation could be sure to avoid bidding against itself in the external
auction while avoiding dictatorship and respecting each department’s self-
interest. Coordinators may also be permitted by the auctioneer: e.g., by
an internet market seeking to attract more bidders to its site.

7.3. Disrupting Bidding Clubs

There are two things an auctioneer can do to disrupt bidding clubs in a
first-price auction. First, she can permit “false-name bidding.” Our auction
model has assumed that each agent may place only a single bid in the
auction, and that the center has a way of uniquely identifying agents. For
example, the auctioneer might use user accounts keyed to credit card billing
addresses in combination with a reputation ranking, making it impossible
for bidders to place bids claiming to originate from different agents. Second,
she can refrain from publicly disclosing the winner of the auction.

If bidders can bid both in their bidding clubs and in the main auction,
they are better off deviating from the equilibrium in theorem 1 in the
following way. A bidder i can accept the invitation to join the bidding
club but place a very low bid with the coordinator; at the same time, ¢
can directly submit a competitive bid in the main auction. Agent ¢ will
gain by following this strategy when all other agents follow the strategies
specified in theorem 1 because accepting the invitation to join the bidding
club ensures that the club does drop all but one of its members and also
causes the high bidder to bid less than he would if he were not bound to the
coordination protocol. If the bidding club drops any bidders other than 4
then all agents’ bids will also be lowered because the number of participants
announced by the auctioneer will be smaller, compared to the case where
the bidding club did not exist or where it was disbanded. However, if
false-name bidding is impossible and the winner of the auction is publicly
disclosed then the bidding club coordinator can detect an agent who has
deviated in this way. Because the agent has agreed to participate in the
bidding club the coordinator has the power to impose a punitive fine on
this agent, making the deviation unprofitable. If either or both of these
requirements does not hold, however, the coordinator will be unable to
detect defection and so the equilibrium from theorem 1 will not hold.
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8. CONCLUSION

We have presented a formal model of bidding clubs which departs in
many ways from models traditionally used in the study of collusion; most
importantly, all agents behave strategically based on correct information
about the economic environment, including the possibility that other agents
will collude. Other features of our setting include a stochastic number of
agents and a stochastic number of bidding clubs in each auction. Agents’
strategy space is expanded so that the decision of whether or not to join a
bidding club is part of an agent’s choice of strategy. Bidding clubs never
lose money, and gain on expectation. We have showed a bidding club
protocol for first-price auctions that leads to a (globally) efficient allocation
in equilibrium, and which does not make use of side-payments. There are
three ways of asking the question of whether agents gain by participating
in bidding clubs in first-price auctions:

1. Could any agent gain by deviating from the protocol?
2. Would any agent be better off if his bidding club did not exist?

3. Would any agent would be better off in an economic environment
that did not include bidding clubs at all?

We have showed that agents are strictly better off in the first two senses
and no worse off in the last sense; furthermore, we have described a simple
side-payment scheme that would make agents strictly better off in all three
senses. We have also showed that each bidding club causes non-members to
gain in the second sense. Finally, we have discussed ways for an auctioneer
to set up the rules of her auction so as to disrupt bidding clubs.
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Appendix G
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Abstract

A major achievement of mechanism design theory is the family of
truthful mechanisms often called VCG (named after Vickrey, Clarke
and Groves). Although these mechanisms have many appealing prop-
erties, their essential intractability prevents them from being applied
to complex problems like combinatorial auctions. In particular, VCG
mechanisms require the agents to fully describe their valuation func-
tions to the mechanism. Such a description may require exponential
size and thus be infeasible for the agents.

A natural approach for this problem is to introduce an intermediate
language for the description of the valuations. Such a language must
be succinct to both the agents and the mechanism. Unfortunately, the
resulting mechanisms are neither truthful nor do they satisfy individual
rationality.

This paper suggests a general method for overcoming this difficulty.
Given an intermediate language and an algorithm for computing the
results, we propose three different mechanisms, each more powerful
than its predecessor, but also more time consuming. Under reasonable
assumptions, the results of our mechanisms are at least as good as the
results of the algorithm on the actual valuations. All of our mechanisms
have polynomial computational time and satisfy individual rationality.

1 Introduction

1.1 Motivation

The theory of mechanism design may be described as studying the design

of protocols under the assumption that the participants behave according

*This research was supported by Darpa grants number F30602-98-C-0214 and F30602-
00-2-0598.
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to their own goals and preferences and not necessarily as instructed by the
protocol. The canonical mechanism design problem can be described as fol-
lows: A set of rational agents need to collaboratively choose an outcome
o from a finite set O of possibilities. Each agent ¢ has a privately known
valuation function v’ : O — R quantifying the agent’s benefit from each
possible outcome. The agents are supposed to report their valuation func-
tions v'(-) to some centralized mechanism that chooses an outcome o that
maximizes the total welfare >, v*(0). The main difficulty is that agents
may choose not to reveal their true valuations but rather report carefully
designed lies in an attempt to influence the outcome to their liking. The
tool that the mechanism uses to motivate the agents to reveal the truth
is monetary payments. These payments are to be designed in a way that
ensures that rational agents always reveal their true valuations — making
the mechanism, so called, incentive compatible or truthful. To date there is
only one general technique known for designing such a payment structure,
sometimes called the generalized Vickrey auction [21], the Clarke pivot rule
[1] the Groves mechanism [5], or, as we will, VCG. In certain senses this
payment structure is unique [4, 17].

Although VCG mechanisms have many appealing properties, their in-
tractibility prevents them from being applied to complex problems like
combinatorial auctions. This intractability is twofold: Firstly, VCG mecha-
nisms require the agents to fully describe their valuation functions. Secondly,
it requires the mechanism to find the optimal allocation.

The problem of combinatorial auctions (CA) is an important example of
a mechanism design problem. In CA, the designer would like to auction a set
S of items (e.g. radio spectra licenses) among a group of agents who desire
them. As items may be substitutes (e.g. two licenses in the same place)
or complementary (e.g. licenses in two neighboring states) the valuation

of each agent may have a complex structure. A formal definition of the
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problem can be found in section 2.1.

Consider a VCG mechanism for CA: The mechanism first asks each agent
to declare her valuation function, i.e. to report a function w’ : 25 — R,. It
then computes the optimal allocation and the payments of each agent.

Such a mechanism is clearly intractable. Firstly, finding the optimal
allocation is NP-hard even to approximate. Secondly, the mechanism relies
on the agents’ ability to describe their valuations in a way which is succinct
to its allocation algorithm. This ability cannot be taken for granted. For
example a naive solution will require each agent to report a vector of 2151 —1
numbers to the mechanism. This of course is not feasible unless the number
of items is very small. On the other extreme the designer can ask the
agents to submit oracles, i.e. programs that return for every set s their
valuation v’(s). However, it is not difficult to see that in order to find the
optimal allocation or even a reasonable one, the allocation algorithm must
query these oracles an exponential number of times. The natural solution
for this problem is to introduce the notion of a bidding language. Such
a language should enable the agents to efficiently represent or at least to
approximate their valuations, but should also allow the allocation algorithm
to compute the desired allocation in polynomial time. Hopefully such a
language will capture most "real life” valuations. Various bidding languages
were proposed in recent years. The interested reader is pointed to [11].

The drawback of this approach is that there are always valuation func-
tions which are impossible to represent in polynomial-time. We therefore
call such languages incomplete. Since VCG mechanisms with incomplete
languages are not optimal, the impossibility results of [13] imply that they
cannot be truthful! In other words, instead of describing their true valua-
tion according to the designer’s instructions, agents may have incentive to
misreport. Therefore, there is no guarantee, even when the agents are ratio-

nal, that the mechanism will find a reasonable allocation. Moreover, such
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mechanisms do not even guarantee individual rationality. That is, there are
cases where truthful agents will pay for their allocated sets more than their
actual valuations for them.

Our goal in this paper is to prevent these phenomena.

1.2 This work

This paper proposes a general method for overcoming the non truthfulness
of VCG mechanisms with incomplete languages. We first introduce the no-
tions of oracles!, descriptions and consistency checkers in the context of
VCG mechanisms. Oracles are programs that represent the agents’ valua-
tions. They are used by the mechanism to measure the agents’ welfare. A
consistency checker is a function that checks whether an agent’s description,
which is given in the intermediate language, is consistent with her oracle.
These additions to the VCG method still do not suffice to guarantee its
truthfulness.

We then describe three mechanisms which guarantee that under rea-
sonable assumptions, truth-telling is the rational strategy for the agents.
Each mechanism is more powerful but also more time consuming than its
predecessor. All of our mechanisms have polynomial computational time.

Following [13] we adopt the concept of feasibly dominant actions (FDAs).
Informally speaking, we assume that the agents choose their actions (strate-
gies) according to their strategic knowledge. We say that an action is feasibly
domiant if the agent is not aware of any circumstances where another strat-
egy is better for her. It was argued in [13] that when feasibly dominant
actions are available for the agent, it is irrational for her not to choose one
of them. It was also shown in [13] that if the payment of a non-optimal mech-
anism is calculated according to the VCG formula, the existence of FDAs

must rely on further assumptions on the agent’s knowledge. Our mecha-

!Some advantages of using oracles were discussed in [19]
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nisms guarantee that, under such reasonable assumptions, truth-telling is
indeed an FDA. Each of them handles a more general form of knowledge
than its predecessor (i.e. more sophisticated agents).

When the agents are truthful, the result of our mechanisms is at least
as good as the result of the allocation algorithm on the truthfully reported
descriptions. Our mechanisms also satisfy individual rationality.

Note that our method does not make any assumptions on the algorithm
or the bidding language. The designer needs to design an intermediate lan-
guage, a consistency checker and an allocation algorithm such that, when the
agents prepare their descriptions according to her instructions, the overall
result is good. She then gets the mechanism for free.

For simplicity we prove all our theorems directly for the combinatorial
auction problem. Our results however are much more general and can be
applied to any VCG, weighted VCG or compensation and bonus [14] mech-

anism.

1.3 Related work

Non optimal VCG mechanisms were first studied in [13]. This paper dis-
cusses VCG mechanisms where the optimal algorithm is replaced by a poly-
time approximation or heuristic. This paper shows that mechanisms con-
structed this way cannot be truthful. It then proposes a general way of
dealing with this non-truthfulness using a certain form of appeal functions.

The problem of combinatorial auctions has been studied by several re-
searchers in recent years. A comprehensive survey of various aspects of
this problem can be found in [2]. In particular, various bidding languages
[3, 7, 20] and restrictions on the classes of bids that can be submitted (e.g.
[6]) were proposed. A comparative study of some of these languages can be
found in [11].

An alternative approach to the one that is taken here is to consider
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mechanisms where the agents are not required to declare their valuation
functions (non-revelation mechanisms). Examples of such mechanisms are
the simultaneous ascending auction [10] and iBundle [16]. The efficiency of
these auctions however is dependent on strong assumptions on the agents’
behaviour. They are also specifically designed to address the combinatorial
auction problem.

Finally, there is an extensive literature in the field of mechanism design.

An introduction can be found in [8, chapter 23] and [15, chapter 10]

Organization of this paper: The rest of the paper is organized as follows:
Section 2 formally defines combinatorial auctions and VCG mechanisms for
CA and explains their intractability. Section 3 provides an example of a
VCG mechanism with incomplete language and demonstrates the drawbacks
of such mechanisms. Section 4 defines our most basic mechanism, describes
the main concepts of [13] and shows that under reasonable assumptions on
the agents’ knowledge, truth-telling is an FDA. Sections 4 to 6 define ex-
tended versions of this mechanism and prove their basic properties. Section

7 discusses additional implementation issues and section 8 concludes the

paper.

2 Preliminaries

2.1 Combinatorial auctions (CA)

The problem of combinatorial auctions (CA) has been extensively studied
in recent years (see e.g. [7] [20] [3] [6] [11] ). The importance of this problem
is twofold. Firstly, several important applications rely on it (e.g. the FCC
auction [9]). Secondly, it is a generalization of many other problems of
interest, in particular in the field of electronic commerce. A recent survey of
various aspects of this problem can be found in [2]. For simplicity we prove

all our theorems directly for this problem.
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The problem: A seller wishes to sell a set S of items (radio spectra licenses,
electronic devices, etc.) to a group of n agents who desire them. Each agent
i has, for every subset s C S of the items, a non-negative number v'(s)
that represents how much s is worth for her. The function v*(.) is called
the agent’s valuation or type. We assume that v*(.) is privately known to
the agent. Given a (possibly partial) allocation s = (s!,...,s") we shall
define the total welfare of the agents as g = >, v'(s). In this paper we will
be interested in mechanisms (protocols) which are designed to mazimize
the total welfare. This goal is justified in many settings. There is also a
basic correlation between maximizing welfare and maximizing the seller’s
revenue. Solving the problem without monetary transfers is impossible (see
a discussion at [8, chapter 23]). We assume that the mechanism can ask
for payment from the agents and that the overall utility of each agent i is
u’ = v'(s) + p’ where s denotes the chosen allocation and p’ the amount of
currency that the mechanism pays to the agent?. In an auction, p’ will be
non-positive. This utility is what each agent tries to maximize.

For the sake of the example we take some standard additional assump-

tions on the type space of the agents:

No externalities The valuation of each agent depends only on the items
allocated to her. Le. {v'(s%)|s C S)} completely represents the agent’s

valuation.

Free disposal Items have non-negative values. Le if s C ¢ then v'(s) <

V().
Normalization v'(¢) = 0.

Note that the problem allows items to be complementary, i.e.
v (SUT) > v(S) + v¥(T) or substitutes, i.e. v*(SUT) < v¥(S) + v¥(T)

2This is called the quasi-linearity assumption.
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(S, T disjointed). For example an agent may be willing to pay $200 for
a TV set, $150 for a VCR, $450 for both and only $200 for two VCRs.
The structure of the valuation functions might therefore be complex. The
problem of finding an optimal allocation is equivalent to set-packing and is
N P-hard even to approximate within any reasonable factor.

Note that the valuation functions are not known to the mechanism in
advance. Moreover, if the mechanism is not carefully designed, the agents
will have an incentive to manipulate it for their own self interest. Such
manipulations might severely damage the efficiency of the mechanism. In
mechanism design problems the agents are assumed to be rational in a game
theoretic sense. They choose strategies which are good for them and not nec-
essarily act as instructed. The goal of the designer is to design a mechanism
(protocol) that produces good results under this assumption. Comprehen-
sive surveys of mechanism design theory can be found in [15, chapter 10] [8,
chapter 23].

In order to handle complex problems like combinatorial auctions the

mechanism needs to address the following issues:
e Agents’ valuations might be complex to express.
e The allocation and payments might be hard to compute.

e The mechanism needs to be designed to find good allocations even

though the agents follow their own self interest.
Let us summarize our notations and terminology regarding this problem.

Notations: We shall denote the whole set of items by S and a (possibly
partial) allocation by s = (s!,...,s™). Note that the s's are disjointed. We
denote the type of agent i by v and the group’s type by v = (v!,...,v").
Let p* denote the amount of currency that the mechanism pays to each agent

i and u’ the agent’s utility. Given an allocation s and a type v we denote by
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gs(v) the welfare =, v*(s?). Finally we shall use the following vectorial nota-
tion: given a vector a = (a!,...,a") welet a=¢ = (a',...,a" 1, '}, ... a")

and (b,a~%) denote the vector (a',...,a’"1 b%,a’*!, ... a™).
2.2 VCG mechanisms for CA

One of the major achievements of mechanism design theory is the VCG
method for constructing truthful mechanisms. In this subsection we briefly
describe these mechanisms for CA and discuss some of their properties.
The simplest kind of mechanisms are protocols (called revelation mecha-
nisms) where the agents are simply required to (privately) report their types
to the mechanism. According to these declarations the mechanism computes
the allocation and the payments. Note that agents may lie if it is beneficial
for them. Such a mechanism can be denoted by a pair m = (k(w), p(w))
where k denotes the allocation function, p the payment function and w the

agents’ declaration .

Definition 1 (truthful mechanism) A revelation mechanism is called
truthful if truth-telling is a dominant strategy for all agents. Le. if lying to

the mechanism can never be more beneficial than declaring v"*.
VCG mechanism are a special kind of revelation mechanisms.

Definition 2 (VCG mechanism) A VCG mechanism for CA is a reve-

lation mechanism m = (k(w), p(w)) such that:

e The mechanism chooses an allocation s = k(w) that maximizes the

total welfare gs(w) according to the declaration w.

e The payment is calculated according to the VCG formula: p'(w) =
>z wl(s)) + hi(w™") (h'(.) can be any real function of w™").

Theorem 2.1 ([5]) A VCG mechanism is truthful.
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Proof: Assume by contradiction that the mechanism is not truthful. Then
there exists an agent i of type v’, a type declaration w™* for the other
agents, and w’ # v’ such that v (k((v',w™%))) + p*((v},w™)) + hi(w™?) <
vi(k((w', w™?))) + p'((wh, w™)) + hi(w™). Let s = k((v',w™")) denote the
chosen allocation when the agent is truthful and let s’ = k((w?, w=%)). The
above inequality implies that gs((v?, w ™)) < gy ((v',w™?)). This contradicts
the optimality of k(.). 0

Rational agents will therefore reveal their true type to the mechanism.
Thus, when agents are rational the mechanism will result in the optimal
allocation!

Note that the main trick of this method is to identify the utility of
truthful agents with the declared total welfare. Similar techniques were
introduced in [14] for handling different type of problems. The results pre-
sented here are applicable to their methods as well.

Another desirable property of mechanisms is called individual rationality.
This means that the utility of a truthful agent is guaranteed to be non-
negative. A special kind of VCG mechanism called Clarke’s mechanism
[1] can guarantee this property. It also guarantees that the payment of
agents who are not allocated any object is zero. It does so by setting h =
— Dt k(w™?) where k(w™%) denotes the result of the algorithm when agent
7 is 7ignored”. Until section 7 we shall only be interested in truthfulness.
Thus, for simplicity we can assume that h*(w=) = 0.

It is worth notifying that weighted VCG mechanisms are possible as well
(see e.g. [17] [14]). Also the designer can impose her own preferences by
"pretending” to be one of the agents. To date VCG is the only general
known method for the construction of truthful mechanisms. There is also

some evidence [17] that other methods are generally impossible.
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2.3 The intractability of VCG mechanisms

Although VCG mechanisms have many desirable properties, their essential
intractability prevents them from being used for complex problems like CA.
This intractability is twofold: VCG mechanisms require the agents to fully
describe their valuation functions and require the mechanism to find opti-
mal allocations.

The second aspect has been extensively discussed in [13]. This paper
discusses VCG mechanisms where the optimal algorithm is replaced by a
poly-time approximation or heuristics. It shows that mechanisms which are
constructed in this way cannot be truthful. The paper proposes a method
to overcome this non-truthfulness. It suggests a bounded rationality variant
of truthfulness called feasible truthfulness and shows that under reasonable
assumptions there is a general way of constructing poly-time feasible truthful
mechanisms.

An even more fundamental obstacle on the way to the application of VCG
mechanisms (and revelation mechanisms in general) to complex problems is
the fact that the agents are required to describe their valuation functions
to the mechanism. Consider for example a VCG mechanism for CA. One
natural way in which an agent can describe her valuation function to the
mechanism is by reporting a vector of numbers denoting her valuation for
every possible combination of items. This however is infeasible unless the
number of items is very small as it will require a vector of size 25/ — 1. On
the other extreme, the designer can ask the agent to construct an oracle, i.e.
a program that returns for every set s the agent’s valuation v*(s). However
it is not difficult to see that in order to find the best allocation or even
a reasonable one, the algorithm needs to query the oracle an exponential
number of times.

The natural solution for this problem is to introduce the notion of a
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bidding language (see e.g. [11]) — a language that will enable agents to effi-
ciently represent or at least approximate their valuations but will also allow
the mechanism’s algorithm to compute the desired allocation in polynomial
time. Hopefully such a language will capture most "real life” valuations.
In addition the designer must provide the agents with instructions of how
to construct these descriptions from their actual valuations. Given such a
language L we can define VCG mechanisms as before. The bidding lan-
guage and allocation algorithm must be constructed in a way that when the
agents follow the designer’s instructions, the results will be good (heuristi-
cally, within a certain factor from the optimum etc.)

The problem with this approach is that there are always valuation func-
tions which are impossible to represent in polynomial-time. We therefore
call such languages incomplete. As such a mechanism is not optimal, the
impossibility results in [13] imply that VCG mechanisms with incomplete
languages cannot be truthful!l In other words, agents may have incentives
not to follow the designer’s instructions. Therefore there is no guarantee,
even when the agents are rational, that the overall results will be good.
Moreover, such mechanisms do not even guarantee individual rationality.
That is, there are cases where truthful agents will pay for their allocated
sets more than their actual valuations for them.

In this paper we propose a general method for overcoming this non-
truthfulness. Our solution is in the same spirit of [13]. However several
additional steps are needed to guarantee the good game theoretical proper-

ties of the resulting mechanisms.

3 Example VCG with OR bids

In this section we describe a simple example for a VCG mechanism with

an incomplete bidding language. We shall use this example throughout
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A | B AB
Agentl: | 1 1 ] 1.25(2)
Agent2: | 0.8 | 0.8 | 1.2 (1.6)

Figure 1: Type matrix for the OR example

the paper. We first describe the language and the mechanism. Then we
analyze what strategies rational agents might choose when participating in
it. Note that our language is less expressive than what we expect from real
life mechanisms. We will demonstrate that even with such a language it is
possible to construct mechanisms where truth-telling is the rational strategy.

Following [11] we define an atomic bid to be a pair (s,p) where s C S is
a set of items and p is a price. The semantic of such a bid is "my maximum
willingness to pay for s is p”. A description in this language consists of a
polynomial number of such pairs. Given such a description (s;,p;) we can
define, for every set s, the price ps to be the maximal® sum of pjs such that
sj C s are disjointed: max{}; p;|(s; C s) and Vj # k,s; (s, = ¢}. This so
called OR language was used in [20].

Proposition 3.1 [11] OR bids can represent only super-additive valuation

functions.

O
The OR language therefore assumes that if an agent is willing to pay

up to P4 for item A and Pp for item B, then she is willing to pay at least
(Pg + Pp) for both.

Consider now the following (toy) example of a VCG mechanism: There
are only two items A and B. As shown in figure 3, the type of Agentl is
(1,1,1.25) and of Agent2 is (0.8,0.8,1.2).

3For the sake of the example we ignore the fact that computing this maximum might
be N P-hard.
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Suppose that the designer instructs the agents to submit their true
valuation for every singleton. In this case we can define a description
d* = {(sj,p;)} as truthful if for every item j, p; = v(j). In other words,
such a description was prepared according to the designer’s instructions.
Consider a VCG mechanism with this language. After the descriptions are
reported, the mechanism allocates the items optimaly (according to the de-
scriptions but not to the actual allocations!). It then calculates the payments
according to the VCG formula. We assume that the designer has a small
reserved price for each item, so objects which are not desired by the agents
are not allocated.

In the example, when both agents are truthful, the mechanism will assign
the valuation in brackets to the set AB (see figure 3). The mechanism in this
case will allocate both items to Agentl resulting in a utility of v = 1.25 for
each agent (recall that we assume the simplified form where h* = 0). The
optimal allocation will allocate to each agent one item, resulting in a welfare
of 1.8.

The above mechanism is not truthful. For example if Agent1 ”gives up”
item B and declares (1,0, 1.25) while Agent2’s declaration remains the same,
it will cause the algorithm to produce the optimal result and therefore will
increase Agentl’s utility to 1.8! The same is true for Agent2. On the other
hand if both agents are "giving up” the same item, only one item will be
allocated (to Agentl). This will result in a welfare of only 1.0. We shall
call a declaration where the agent reports a 0 value on one of the items
singleton concession. Another reasonable strategy for an agents is to find
a description which will bring the mechanism’s interpretation as close as
possible to her actual valuation. Formally we define the [ -approzimation

of v¥(.) to be the description that minimizes max; [v'(s) — d’(s)[*. Such a

“For the sake of the example we ignore the fact that calculating such a description
might be NP-hard.
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description for Agentl is {2/3,2/3,4/3} . Note that the worthwhileness
of such declarations is highly dependent on the declarations of the others.
There are cases where such declarations will considerably improve the result
of the algorithm and therefore will increase the agent’s utility. On the other
hand there are many cases where such designated ”lies” will severely damage
the total welfare and henceforth the agent’s utility.

Note that the Clarke version of the above mechanism does not satisfy
individual rationality. For example, if both agents are truthful, Agentl gets
both items, but pays 1.6, thereby loosing 0.35.

In this paper we will try to prevent these bad phenomena from happen-

ing.
4 Mechanisml

In this section we describe our first and most basic mechanism. We first
describe the building blocks of the mechanism — oracles, descriptions and
consistency checkers. Then we define the mechanism and formulate its basic
properties. Finally we show that under reasonable assumptions truth-telling
is the rational strategy for the agents.

We start with a formal definition adopted from [13] of computationally

bounded algorithms®.

Definition 3 (algorithm of degree d) Let n denote the number of agents.
We say that a function F is of degree d if its running time is bounded by

some polynomial of degree d of n.

Our mechanism fixes a constant ¢ = O(n¢) and terminates each function

that runs more than ¢ time units (see section 7 for more details).

5There are several alternative definitions. This one simplifies the formalization of the
results.
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4.1 Oracles and valid descriptions

All the mechanisms described in this paper ask the agents to prepare oracles
that represent their valuation functions. These oracles are queried by the

mechanisms in order to measure the total welfare. Formally:

Definition 4 (oracle) An oracle is a function w : 25 — R.. It is called

truthful for agent i if w'(s) = v'(s) for every set s.

We shall assume that agents are capable of preparing such oracles®. We
also assume that all the oracles are of degree d.

As mentioned earlier, it is hard for allocation algorithms to work with
oracles. We assume that the allocation algorithm accepts as input descrip-
tions in some bidding language (e.g. the OR language) and ask the agents
to prepare such descriptions. A consistency checker verifies that the agents’

descriptions are consistent with their oracles.

Definition 5 (valid description) A consistency checker is a function

Y(w,d) such that:

e Y(w,d) gets an oracle w and a description d in the bidding language

and returns a ”corrected” oracle w'.

o for every oracle w there exists at least one description d such that

w = P(w,d). Such "fixpoint” descriptions are called valid.

Semantically, a valid description was prepared according to the designer’s
instructions. Since the mechanism can always use the ”corrected” oracle w’
we shall assume that agents’ descriptions are valid. We also assume that a

consistency checker of degree d is available to the designer and that given a

5The tools which must be provided by the designer in order to make this assumption
realistic are not discussed in this paper.
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declaration d, the designer can compute an oracle wy such that d is a valid
description of wy. We say that an agent’s description is truthful if it is a
valid description of a truthful oracle.

In the OR language for example we can define w’(s) = p for every atomic
bid (s,p) in the description. Creating an oracle w from a description d such

that d is valid is straight forward.

4.2 Appeal functions

Another basic building block of our mechanism is the notion of appeal func-
tions. This is a modification of the appeals that were introduced in [13].
Intuitively an appeal function lets an agent incorporate her own knowledge
about the algorithm into the mechanism. The idea is that instead of declar-
ing a falsified type, the agent can follow the designer’s instructions and ask
the mechanism to check whether the false description would have lead to
better results. The mechanism will then choose the better of these two

possibilities leveraging both the agent’s utility and the total welfare.

Definition 6 (appeal) An appeal function gets as input the agents’ oracles
and valid descriptions and returns a tuple of alternative descriptions. ILe.
it is of the form: l(w',... w"™ d}, ... ,d") = (d,...,d™) where d' is a valid

description of w'.

Note that the d’’s do not have to be valid. The semantics of an appeal [ is:
“when the agents’ type is w = (w!,...,w") and is described by (d*, ..., d"),
I believe that the output algorithm k produces a better result if it is given
d' instead of the actual description d”.

We assume that all appeal functions are of degree d for some reasonable
value of d. In section 7 we will discuss ways to enforce such a limit.

In our OR example (section 3) an appeal for Agentl might try to give

up one of the items (i.e. perform a singleton concession) or try to give up
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item A for herself and B for Agent2 etc.
The actual implementation of the appeal functions is discussed in sub-

section 7.

4.3 Mechanisml

We can now define our first mechanism.

Definition 7 (mechanisml) Given an allocation algorithm k(d), and a
consistency checker for the bidding language we define mechanisml as fol-

lows:

1. FEach agent submits to the mechanism:

o An oracle w'(.).
e A (valid) description d'.

e An appeal function I°(.).

2. Let w= (w',...,w"), d=(d',...,d"). The mechanism computes the
allocations k(d),k(I*(w,d)),...,k(I"(w,d)) and chooses among these
allocations the one that mazimizes the total welfare (according to w!).
In other words, the mechanism tries all the appeals and chooses the

one that yields the best result.

3. Let § denote the chosen allocation.  The mechanism calculates
the payments according to the VCG formula: p' = Dk w’ (8) +
R (w=t d=% 1Y) (h'(.) can be any real function,).

Note that h'(.) is independent of agent i. Until section 7 we simply assume
that it is always zero. Note also that we do not require the allocation
algorithm k(.) to be optimal. It can be any polynomial time approximation

or heuristic.
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An action (strategy) in mechanisml1 is a triplet (w’,d*,1°). We say that
such an action is truthful if w® is truthful. The following two observations

are key properties of the mechanism:

Proposition 4.1 Consider mechanisml1 with an allocation algorithm k(.).
Let d = (d',...,d") denote the agents’ descriptions. If all the agents are

truth-telling, the allocation chosen by the mechanism is at least as good

as k(d).

O

Proposition 4.2 If the allocation algorithm k, the appeal functions, oracles
and consistency checkers are of degree d, then the mechanism is of degree

d+2.

0
Let § denote the chosen allocation. Let © = (v', w™%). Since we assume

that hi() = 0, the utility of agent i equals g3(?) — the total welfare when the
allocation is § and the type is ¥ . Lying to the mechanism, i.e. submitting an
oracle w® # v%, is thus beneficial for the agent only if it causes the mechanism
to compute a better result (relatively to ©). (For a more comprehensive
discussion see [13].) Note that when an agent lies to the mechanism, she
may not only cause damage to the algorithm’s result, but may also cause
the mechanism to prefer the wrong allocation on the second stage. Thus,
an agent needs to have a good reason for lying to the mechanism.

We will show that under reasonable assumptions on the agents, truth-
telling is the rational strategy for the agents. Thus, when the agents are
rational, the result of the mechanism is at least as good as the result of the

allocation algorithm on the truthful descriptions.
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4.4 An example

Consider the OR example of section 3. Suppose that Agentl notices that
usually the result of the algorithm improves when she is giving up item A.
In a VCG mechanism the agent may be tempted to misreport in order to
increase the total welfare and henceforth her own utility. In many cases how-
ever this will cause damage to the overall welfare and henceforth to Agent1.
In our mechanism Agentl can, instead of lying, declare her true type to the
mechanism and ask it to check whether such a lie would have been helpful.
If so, it prefers the result that was obtained by ”lying”. Otherwise, the
mechanism prefers the result of the algorithm on the truthful description
and thus prevents the damage that would have been caused by the lie. This
form of appeal functions provides the agents with a lot of power. Suppose,
for example, that Agentl notices that the result improves if she gives up
item A while Agent2 is giving up item B. As before, the agent can ask the
mechanism to check whether such a transformation of the input would have
improve the overall result.

We note that not every knowledge of the agent about the allocation
algorithm k(.) can be exploited in this mechanism. Suppose that Agentl
notices that when both agents submit [,,-approximations of their valuations
the overall result improves. However, as she is given an oracle for v2, she
cannot compute Agent2’s approximation as it requires her to query the
oracle for every possible subset. Therefore, she cannot exploit her knowledge
about the algorithm. Such phenomena is problematic and do not occur in

the setting of [13].

4.5 When is it rational to tell the truth to the mechanism?

It was shown in [13] that even with full descriptions available, non-optimal

VCG mechanisms cannot be truthful (unless they produce unreasonable re-
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sults). That paper introduces a bounded rationality variant of the concept
of dominant strategies called feasible dominance and shows that under rea-
sonable assumptions truth-telling is feasibly dominant for the agents. This
paper follows this pattern. In this section we first describe the basic con-
cepts of [13]. We then consider mechanisl and analyze the conditions under

which truth-telling is feasibly dominant for the agents.

4.5.1 Feasibly dominant actions (FDAs)

In this section we briefly describe the main concepts of [13]. The reader is

referred to this paper for a more comprehensive discussion.

Notations: We denote the action (strategy) space of agent i by A’. Given a
tuple a = (a',...,a") of actions chosen by the agents, we denote the utility
of agent i by u’(a).

In mechanism1 an action for the agent is a triplet (w?, d’, 1%).

In classical game theory, given the actions of the other agents a™¢, the
agent is (implicitly) assumed to be capable of responding by the optimal a'.
As the action space is typically very complex, this assumption is not natural
in many real-life situations. The concept of feasibly dominant actions re-
formulates the concept of dominant actions under the assumption that the
agent has only a limited capability of computing her response. It is meant

to be used in the context of revelation games.

Definition 8 (strategic knowledge) Strategic knowledge (or response

function) of agent i is a partial function b* : A=% — A%,

Knowledge is a function by which the agent describes (for herself!) how
she would like to respond to any given situation. The semantics of a’ =
bi(a~%) is “when the others’ actions are a~?, the best action which I can

think of is a*”. The fact that a~* is not in the domain of b* means that the
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agent does not know how to respond to a~* or alternatively will not regret
her choice of action when the others played a~%. Naturally we assume that
each agent is capable of computing her own knowledge and henceforth that

b is of degree d.

Definition 9 (feasible best response) An action a’ for agent i is called

i

feasible best response to a~" if either a™* is not in the domain of the agent’s

knowledge b or ui((b'(a™?),a™")) < u'(a).

In other words, other actions may be better against a~* but at least
when choosing her action the agent was not aware of these.

The definition of feasibly dominant actions now follows naturally.

Definition 10 (feasibly dominant action) An action a' for agent i is
called feasibly dominant if it is a feasible best response against any a=*. We

also call such an action FDA .

It was argued in [13] that if an agent has feasibly dominant actions

available, then it is irrational not to choose one of them.

4.5.2 When is it rational to tell the truth to the mechanism?

Recall that the overall utility of each agent i equals g;(0) where § denotes
the chosen allocation and ¥ = (vf,w™%). It is not difficult to see that when
the agent declares a falsified valuation, there are cases where she will con-
sequently lose. The agent needs therefore a good reason for lying to the
mechanism. When the appeals of the agents are time-limited (i.e. of degree
d) it was shown in [13] that the existence of FDAs for the agents must rely on
further assumptions on the agents’ knowledge. Here we formulate two such
assumptions and show how to construct computationally efficient truthful

FDAs for the agents.
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Definition 11 (/13]) (declaration based knowledge) Knowledge b'(.) is
called declaration based if it is of the form b'(w™%, d=%) = (w',d").

The semantics of declaration based knowledge is: “If I knew that the
others declare (w=%, d~%), regardless of their appeals, I would like to declare
(w',d")”. In our OR bids example of section 3, such knowledge for Agent1l
may be: 7If Agent2 has a high valuation for item B, I would like to give it

99

up”.
A declaration based knowledge naturally defines an appeal function

which we also denote by b'(.): bi(w,d) = (b*(w=% d~*),d~").

Theorem 4.3 If b(.) is a declaration based knowledge for agent i then
(v',d*, b is feasibly dominant for the agent.

Proof: Let § denote the chosen allocation. Let & = (vf,w™"). Recall that
the utility of agent i equals g;(0). Also let ¢ denote the empty appeal.
Assume by contradiction that there exists a=* = (w™% d~*,¢~%) that con-
tradicts the agent’s knowledge. Note that the appeals of the other agents
can be assumed empty and also that it must be that = is in the domain of
bi(.). Let (w',d") = b'(a™"). Let s = k(d) and let s’ = k(d",d™") denote the
allocation when she lies. By the assumption, gs(0) < ¢.(v). However when
the agent truthfully submits (v%,d’,b") the mechanism computes s = k(d)
and s’ = k(d",d~%) and takes the better among them according to o. A

contradiction. 0

Definition 12 (/13])(appeal independent knowledge) Knowledge b'(.)
is called appeal independent if it is of the form b'(w™", d=%) = (w",d",I").

Theorem 4.4 If b(.) is an appeal independent knowledge of agent i then
there exists a truthful FDA of degree d for the agent.
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Proof: Define an appeal I’ as follows. Given (w~% d~%) let (w",d", ") =
b (w=, d="). I' computes k(d',d~?), k(I ((w", w™%), (d",d~"))) and takes the
best according to (v', w™*). Since all the functions involved are of degree d,
so is I*(.). Similarly to theorem 4.3, (v%,1) is an FDA. 0

The semantics of declaration based knowledge is the same as declaration
based except that the agent also submits an appeal [*.

Agents who are not capable of reasoning about others’ appeals or do
not want to count on them would have appeal independent knowledge. We
argue that this would be the most common case. In all of the examples of

section 4.4 the agents’ knowledge was appeal independent.

5 Mechanism2: moving information around

A major difficulty that arises when coping with incomplete languages is
the asymmetric knowledge of the agents regarding their own valuations.
For example, in the setting of section 3, it is reasonable to assume that
Agentl can compute her own [.-approximation but Agent2 cannot compute

it. Thus, Agentl might face the following considerations:

e The result of the algorithm improves significantly when all agents re-

port their [ ,-approximations.

e Reporting my [.-approximation instead of my truthful description,

will enable Agent2 to compute the optimal result.

In other words, in mechanisml, agents may want to misreport in order to
pass useful information about their own valuation to the others. In order to
prevent this we modify the mechanism to allow the agents to convey such

information.

Definition 13 (information structure) An information structure I°

for agent i is a sequence of descriptions (possibly with repetitions)
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(do,du,...,dy) such that dy is a valid description.

In addition we require each agent to provide for each d; an example
(w™*,d~") such that k(d;,d™") is a better allocation than k(do,d™"). This is
done in order to force the agents to submit only useful information.

I’ contains additional information that the agent can pass to the others’
appeals. The semantics of I; is ”My valid description is dy. Nevertheless, I
suggest that you first try to work with dj, after that with ds, etc¢”. Many
alternative ways to define such information structures are possible. It may
be interesting to compare between different structures.

‘We can now define our second mechanism.

Definition 14 (mechanism?2) Given an allocation algorithm k(d), and
consistency checker for the bidding language we define mechanism?2 as fol-

lows:

1. Fach agent submits to the mechanism:

e an oracle w'. (let w = (w',...,w"))
e an information structure I*. (let I = (I',... I"))
e an appeal function of the form I*(w,I) = d.
2. The mechanism computes the allocations

k(d), k(Y (w, I)),...,k(I"(w,I)) and chooses among these alloca-

tions the one that maximizes the declared total welfare.

3. The mechanism calculates the payments according to the VCG formula.

We can now expand the definition of knowledge under which the exis-
tence of truthful FDAs is guaranteed. This definition refers to knowledge
that was obtained by checking a representative family of (tuples of) appeals

of the other agents.
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Definition 15 [13] (d-obtainable knowledge) Knowledge b'(.) is called
d-obtainable if the following holds:

1. b is of degree d.

2. FEvery appeal function that appears in the domain or in the range of

bi(.), is of degree d.

3. There are at most n® appeal functions that appear in the domain or
in the range of b'(.). Moreover there exists a representative family L
of no more than n® (n — 1)-tuples of appeals such that for every tuple

=" that appears in the domain of b® there exists a 1~ € L' such that
for all (wi, I79), B(((w, I-),¢~)) = b(((w™, 1), 4.

The assumption that agents’ knowledge is d-bounded is justified by the
immense complexity of the appeal space. It assumes that an agent cannot
think about more than a small family of representative cases L. For a more
comprehensive discussion on this assumption see [13]. We need an additional
assumption on the appeal class that the agent considers. We will remove

this assumption later on.

Definition 16 (monotonic appeal) We say that an appeal function I(.)
is monotonic if for every w and for every two structures I = (I',... I")
and I' = (I"',..., I'") such that I7 is a subset of I} for all j, k(I(w,I")) is
at least as good as k(l(w,I')).

In other words, giving more information to the appeal can just help it
to compute a better result. We cannot expect the appeals to be monotonic
as such monotonicity usually requires exponential time. However, it is rea-
sonable to think that appeals will be monotonic in general, that is that the

addition of useful information and, in particular, of truthful descriptions,
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usually helps the appeals to improve the overall result. Changing the order

of the d;s in the information structures does not affect monotonic appeals.

Definition 17 (monotonic d-obtainable knowledge) Knowledge for
agent © s called monotonic d-obtainable if it is d-obtainable and all the

appeals that appear in its domain or in its range are monotonic.

Theorem 5.1 If the agent’s knowledge is monotonic d-obtainable, she has

a truthful FDA of degree 3 - d.

Proof: Let I’ denote a maximal sequence of useful information that an
agent ¢ can compute (i.e. it contains all the cases that the agent finds
useful). Let b’ be a d-obtainable knowledge for agent i. Given (w™, I~%) we
shall define an appeal [’ as follows: Let L be the family of all appeals that
appear in the domain or in the range of b*. Let L’ be the representative
family. We define w to denote the set of all the "useful lies” w = {w!|Fp~* €
LE pist.(wh It ') = b (w™, I7% =) }. Obviously |W|,|L| are bounded by
a polynomial of degree d.

For every pair (w® € w,l € L) we let I' compute the result of [ as if she
had submitted (w’,I*,1), i.e. compute k(I(w?,w™"),(I*,I7%)). The appeal
returns the best of these allocations according to (v¢,w™).

As all the functions involved are of degree d, it is not difficult to verify
that the appeal is of degree 3 - d.

We now show that submitting (v?, I, L?) is an FDA. Otherwise there ex-
ists a triplet (w™, I~%,17%) that contradicts b(.). Since b’(.) is d-obtainable
we can assume that [~ is in the representative family. Let (w?’,:%,d") =
b (w=%, I7%17"). Because of the monotonicity we can assume that .* con-
tains all the useful information that i can think of (i.e. (* = I'). However
the appeal [ checks the case where i submits (w’, I, §%). Therefore I’s result
must be at least as good as the result of the mechanism in this case — a

contradiction. 0
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6 Mechanism3: adding meta-appeals

In section 5 we assumed that the agents’ appeals are monotonic. Our final
step is to get rid of this assumption. We first define the notion of a meta-

appeal.

Definition 18 (meta appeal) A meta appeal is a function that gets a
vector of information structures I = (I',...,I") and returns a list of vectors

of the form I' = (I'', ..., I') such that I is a subset of I7.

In other words, the meta appeals compute a list of alternative informa-
tion structures for the group. Note that many variants of this definition are

possible. We assume that all the meta-appeals are of degree d.

Definition 19 (mechanism3) Given an allocation algorithm k(d), and a
consistency checker for the bidding language we define mechanism3 as fol-

lows:

1. Fach agent submits to the mechanism:

e An oracle w'. (let w= (w!,... ,w"))

e An information structure I'. (let I = (I*,... I"))
o An appeal function of the form I*(w,I).

e A meta appeal X*(.).

2. The mechanism computes a list I' containing all the results of the meta-

appeals as well as the original tuple of information structures I.

3. The mechanism computes, for every pair (1, I') such that I' € T and I/
is an appeal, the allocation k(17 (w,I')). It also computes k(d). It then
chooses among these allocations the one that maximizes the declared

total welfare.
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4. The mechanism calculates the payments according to the VCG formula.

Note that the mechanism is of degree d + 3.
We can now define d-obtainable knowledge similarly to the previous sec-
tion. We add however the condition that it ignores the meta appeals of the

other agents.

Definition 20 [13/ (d-obtainable knowledge of mechanism3) We say
that knowledge b'(.) of mechanism3 is d-obtainable if the following holds:

1. bi(.) is of degree d.

2. b'(.) ignores the meta-appeals of the other agents, i.e it is of the form
V(w8 T4 17%) = (wh, T4 1%).

3. Every appeal function that appears, in the domain or in the range of

b'(.), is of degree d.

4. There are at most n® appeal functions that appear in the domain or
in the range of b'(.). Moreover there exists a representative family L
of no more than n® (n — 1)-tuples of appeals such that for every tuple
©~% that appears in the domain of b'(.) there exists a ¥~% € L' such
that for all (w=%, I7%), b'(((w™% I7%), ¢~ %)) = b*'(((w™", 17,9~ %)).

The main justification behind the assumption that b’ ignores the meta-
appeals is that the space of meta-appeals is extremely complex. Moreover,
properties of the meta-appeals are only partially connected to the actual
bidding language or the algorithm. The only potential profit from lying
that we can imagine are ”extra-trials” of the allocation algorithm when the
others’ appeals are forced to use the agent’s false description. We presume
that such potential gains are negligible compared to the obvious loss caused

by lying. It is also natural to think that if the appeals of the other agents
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ignore the agent’s recommendation to use dj, they have a good reason to do
so. We argue that knowledge which is not d-obtainable is unlikely to exist.

However, this ”thesis” needs to be checked experimentally.

Theorem 6.1 If the agent’s knowledge is d-obtainable, then she has a truth-
ful FDA (v',1,1%,X*) such that I* is of degree 3 -d and X' of degree d.

Proof: Similarly to the proof of 5.1, given (w~*,I~%), we define the set of
"useful lies” w = {w!|Fp~¢ € Lt pls.t.(w, It, o) = b (w4 T4, ~%)}, and
the family L of appeals which appear in b*(.). In addition we define the
set of useful information structures x* = {I*|3~% € L?, ¢'s.t.(w', I, o) =
b (w=t I7%,4~%)}. We define I to be a union of all I € x*, an appeal I’ like
in the proof of 5.1. The proof that (v%, I, 1%, x?) is an FDA is similar to 5.1.

(|
6.1 Example: Mechanism3 with OR bids

Consider mechanism3 for CA with OR bids (section 3). Suppose that Agentl

notices the following phenomena:

1. When all agents perform [ -approximations the result of k(.) usually

improves considerably.

2. The result also typically improves if agents perform singleton conces-
sions on different items. The improvement however is less significant

than in the first case.

Such an agent may anticipate three kinds of appeals:

e Appeals of agents that notice the first phenomenon and will therefore

leverage from her [,,-approximation.

e Appeals of agents who notice only the second phenomenon and will

only be disturbed by her [,,-approximation.
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e Appeals that will work best with her valid description.

Mechanism3 gives Agentl the possibility of constructing a strategy that
will dominate every case that she can think of! She just needs to include
in her meta appeal three information structures. One that includes only her
valid description, one that will include her singleton concessions as well and
one that will also include her [,-approximation.

We note that there exist additional ways to justify why truth-telling
is the rational strategy for the agents. Those are omitted from the paper

mainly due to space constraints.

7 Other implementation issues

In this section we address two additional issues which a designer may face
when implementing our mechanisms: guaranteeing individual rationality
and forcing reasonable time limitations on the agents.

In [13] it was shown that the allocation algorithm can be transformed
in polynomial time to an algorithm which satisfies additional monotonicity
requirements. With such an algorithm it is possible to define the function
h'(.) of our mechanisms similarly to Clarke’s mechanism [1]. The proof that
the resulting mechanisms satisfy individual rationality is similar to [13].

This paper shows that if enough computational time is given to the
agents, they can construct truthful FDAs. On the other hand the mechanism
needs to find a way to enforce reasonable time limits on the computational
time of the agents, i.e. to enforce time limits on the appeals and meta
appeals. This issue was discussed in [13]. In particular it was suggested that
knowledge-reflecting structure will be chosen for description of the appeal
functions. Such a structure enables the limitation of the computational time
of the appeals according to the agents’ own limitations and thus preserves

the existence of truthful FDAs. We presume that severe limitations can
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be imposed on the length of the lists produced by the meta appeals while
preserving the existence of FDAs. Finally, we think that it is a good heuristic
to charge small fees for extra computational time.

At a first glance our protocols may seem to put a lot of burden on the
agents. However we argue that with the right tools (e.g. tools for building
oracles), mechanisms like ours can become even more ”agent friendly” than

non-revelation mechanisms.

8 Conclusions and further research

In this paper we propose a general way to overcome the deficiencies of VCG
mechanisms with incomplete languages. Given an intermediate language, a
consistency checker, and an algorithm for the computation of the outcomes
(e.g. allocations) we construct three mechanisms, each more powerful but
also more time-consuming than its predecessor. All our mechanisms have
polynomial computational time and satisfy individual rationality.

We adopt the strong concept of feasible dominant strategies of [13] which
is a bounded rationality version of dominant strategies and showed that un-
der reasonable assumptions on the agents’ knowledge, truth-telling is feasibly
dominant for the agents. In addition when an agent lies to the mechanism,
there are cases where she will consequently lose.

When the agents are truth-telling the results of our mechanisms are at
least as good as the mechanisms’ algorithm. Our methods are general and
can be applied to any VCG , weighted VCG or compensation and bonus [14]
mechanism.

The paper assumes that in practice, agents will have only limited knowl-
edge and thus will not be able to do better than their truthful FDAs. This
thesis can and should be checked by experiments with ”real” agents. On

the other hand we feel that this assumption will remain true even when
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severe time limitations are forced on the agents. In fact it will not even be
a surprise if even in a VCG mechanism, if the bidding language and the
allocation algorithm are reasonably designed, the agents will not be able to
do better than truth-telling! This too can be checked experimentally.

Very little is currently known about the revenue of mechanisms for com-
plex problems. In particular note that when a non-optimal VCG mechanism
is naively used for a combinatorial auction, there are even cases where the
mechanism must pay to the agents instead of vice-versa!

In our constructions, there are several tools that the designer must pro-
vide to the agents. Tools to construct oracles, descriptions, appeals etc.
Methods for providing such tools were not discussed in this paper and are
crucial for the success of our mechanisms.

Finally we note that it might be fruitful to explore the possibility of using
appeal functions in situations where the agents have budget limits. When
such limits exist, agents may have incentives to cause others to run out of
budget and it is not likely that dominant strategy mechanisms exist. One
natural way to deal with budget limits, is to truncate the agent’s valuation
to her limit and then use VCG [12]. Truth-telling in this mechanism is a
safe strategy for the agent as she never pays more than her budget. We
argue that appeals of certain forms can play the role of threats and prevent

the worth-willingness of causing others to run out of budget.
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Appendix H

Anonymous Bidding and Revenue
Maximization

Yossi Feinberg-and Moshe Tennenholtz
Stanford University

March 19, 2002

1 Introduction

The recent adoption of market mechanisms in general and auctions in par-
ticular for electronic commerce raises potent new theoretical questions. One
aspect of an online environment is the prevalence of anonymous interaction.
In particular, it is easier to maintain anonymity in an online auction than
it is to maintain it in an offline auction. In the case of a single seller with
multiple bidders anonymity mostly pertains to the identity of the bidders.

A natural question would be, should the seller opt for minimizing the
opportunity for anonymous bidding? or, more precisely, when should the
seller adopt an anonymous auction mechanism as a function of the interde-
pendencies between the bidders’ valuations? In this paper we show that even
in the single unit english auction case, there seems to be no simple qualita-
tive property that characterizes whether anonymous bidding yields higher or
lower expected revenue to the seller.

The notion of anonymous bids employed here requires an additional ex-
planation. We consider two variants of a dynamic ascending bid auction —

*Stanford Graduate School of Business, Stanford CA 94305-5015. e-mail:
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english auction. In the first mechanism the bidders actions are observable
and each bidder can observe the identity of a bidder that dropped from the
race. The second mechanism differs only in one aspect, the bidders only
observe the fact that someone dropped from bidding at a given price, but
they do not know who that bidder is. Admittedly, we consider a narrow
view of the notion of anonymity and in particular exclude the discussion of
uncertainty as to the identity of the players that participate in this auction.

Our example consists of three risk neutral bidders and a risk neutral seller.
Two bidders, Ann and Bob, have independent identically distributed (uni-
form) private valuations and the third bidder, Carol, has a valuation equal
to Bob’s valuation plus a positive constant. Both Ann and Bob know their
own valuation and the constant determining Carol’s valuation as a function
of Bob’s valuation is commonly known. However, Carol does not know Bob’s
valuation ex-ante, i.e., does not know her own valuation. It turns out that
both variants of the english auction support a unique perfect equilibrium.
We compare the expected revenue for the seller at this equilibrium as a func-
tion of the constant determining Carol’s valuation given Bob’s valuation.
The main result is that for some values of this constant the expected rev-
enue is higher when the bidders observe the identity of a bidder that drops,
while for other values it is the auction where bidders do not observe the
identity of a dropping bidder that yields the higher expected revenue. The
puzzling feature of this example is that the information structure and corre-
lation structure are basically the same for every value of this variable. It is a
quantitative change that determines which mechanism is more profitable to
the seller rather than a qualitative one.

2 An Example

Consider 3 buyers Ann, Bob and Carol bidding for a single indivisible good
in an ascending bid auction. Assume that the price p ascends from 0 to 1.
Let v4 be Ann’s valuation uniformly distributed in the interval [0, 1]. Let vp
be Bob’s valuation which is independent of Ann’s valuation and identically
distributed. Both Ann and Bob know their own valuation. Let vo be Carol’s
valuation which is equal to vg + « for some commonly known positive o €
(0,1). Assume that Carol does not know her valuation. These distributions
and the information available to the bidders are assumed to be commonly
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known.

We consider two procedures for the ascending auction. In the first version
each bidder can observe the identity of the other bidders, i.e., a bidder can
identify who drops at a certain price. In the second procedure each bidder
can only observe that someone dropped but the identity of the bidder that
dropped is not revealed — the anonymous case.

Lemma 1 There exists a unique perfect equilibrium in pure strategies for
each of the two procedures.

We prove this lemma by explicitly constructing a pure strategy equilib-
rium for this example.

Let Ann’s strategy be: ”drop at p iff p > v4”

Let Bob’s strategy be "drop at p ift p > vg”

Let Carol’s strategy be "drop at piff p > EP” where E¥ is the expectation
of ve given that Carol wins the auction at p and that Ann and Bob follow
the strategies above. Note that EP — p is actually Carol’s expected payoff if
she wins the auction at p and Ann and Bob follow the strategies above.

Since Ann and Bob are both perfectly informed as to their private valua-
tion of the item, the strategies described above are weakly dominant strate-
gies for them. Moreover Ann’s strategy strictly dominates any other strategy
at any given price p < v4. We also note that Bob’s strategy is strictly dom-
inant when Carol does not observe the identity of a bidder that drops as
long as p < vg, and it is dominant whenever we perturb the other bidders’
strategies. Hence both Ann and Bob play the unique perfect equilibrium
strategies under the assumption that they play optimally at every price p.
By definition, Carol’s strategy is a best response to strategies ascribed to
Ann and Bob. Thus we have the unique perfect equilibrium.]

We now explicitly calculate Carol’s strategy for an arbitrary a.

Consider the first case where Carol (and everyone else) can observe the
identity of a bidder who drops from the auction. Recall that Carol’s valuation
is Bob’s valuation plus a. Hence she would bid as long as p < pp + a where
pp is the price where Bob dropped, i.e., it is equal to vg. For each of these
p's her expected payoff if she wins is non-negative (it is strictly positive if the
strict inequality holds). For every p > pp + « her expected payoff is strictly
negative if she wins. But in this case EP = pg+a. So Carol’s strategy is (not

surprisingly) to bid until the price is increased by « from the point where
Bob dropped.
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Figure 1: E(Ry) — E(R4) as a function of «

In the second case Carol clearly stays as long as no one else drops. The
moment one other bidder drops, say at the price p;, Carol must assign a
probability of .5 to vg = p; — the case it was Bob who dropped — and
the rest of the weight is uniformly distributed on the interval [p;, 1] — the
case it is Ann who dropped. At every price p > p; we have that Carol’s
belief as to the distribution of vg has an atom at p; with probability .5
and the rest of the weight is uniformly distributed on the interval [p,1].
Obviously if another bidder drops then the auction is over. But the moment
she wins the auction, say at the price p, her belief as to Bob’s valuation is p;
with probability .5 and p with probability .5. Hence, her expected payoff is
5(p1+p)+a—p=.5(p1 —p) +«a and she will drop iff this payoff is negative.
We just deduced that Carol will only drop the auction at p > p; + 2a.

We now turn to the calculation of the seller’s revenue as a function of a.

In the non-anonymous case we have that Ry = Max {Min{va,vg + a},vp}
according to the strategies above, and for the anonymous case we have
Ry = Min{Maz{va,vp}, Min{va,vp} +2a}. The expected revenue to
the seller is therefor E(Ry) = 1/2 + 1/2a — a*/2 — a*/6 and E(Ra) =
1/3 + 2a — 4a® + 8a®/3 respectively. The graph depicted in Figure 1 plots
E(Ry) — E(R4) as a function of a.

As claimed, for the given information structure, the anonymous mech-
anism yields a higher expected revenue for the seller for some values of «
(approximately higher than .171) and it yields a lower expected revenue for
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other values of a (below .171).

3 Discussion

One needs to be precise as to the sense in which the two mechanisms have
similar information structures. For a given o we actually use the same ex-
tensive form game with an interim refinement of the information structure as
someone drops from the bidding process. The important feature is that the
ex ante information structure is identical for both games. When varying o
we maintain the same game form for both mechanisms but change the pay-
offs in an identical manner for both the anonymous and the non anonymous
auctions. One can also view this comparison as analyzing a single mecha-
nism with a refined information structure. The characterizing feature of this
refinement stems from the natural structure of an auction — the ability to
observe the identity of a bidder that drops. It is interesting to note that even
if we normalize (divide by the expected revenue) the difference between the
expected revenue for the two mechanisms as a function of «, we find that the
normalized difference is not monotonic.
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1

In what is by now classical work, Alchourrén, Gardenfors, and Makinson [13, 1]
proposed a theory of “reasonable” belief revision, the AGM theory henceforth.
The intention of the theory is to formalize an Occam’s-razor principle, ensuring
that beliefs change only when forced to by new information. The most common
way of presenting the AGM theory is through the famous AGM postulates,
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Abstract

We introduce a new operator—belief fusion—which is a generalization
of the classical AGM revision operator to the multi-agent case. In the
process we define pedigreed belief states, which enrich standard belief states
with the source of each piece of information. We show that AGM revision
can be derived from belief fusion. We then note that the fusion operator
defines a semi-lattice, and in particular is idempotent, associative, and
commutative. As one consequence, we illustrate how belief fusion can be
iterated without difficulty, in contrast to belief revision whose iteration
has proved challenging. Finally, we define belief diffusion; whereas fusion
produces a belief state with more information than is possessed by either of
its two arguments, diffusion produces a state with less information. Fusion
and diffusion are symmetric operators, and together define a distributive
lattice.

Introduction

which impose restrictions that attempt to capture this principle precisely.

L Although the discussion in this paper will be semantic rather than axiomatic, for com-
pleteness we include here the AGM postulates (as formulated in [17] for the finite propositional
case). If K is a theory in some propositional language, p and r are sentences in that language,

and o is a revision operator, then:
R1 K o p implies p
R2 If K A p is satisfiable, then Kop =K Ap
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There has been much subsequent work in several disciplines, consisting
mostly of complaints about and modifications of the AGM postulates and set-
ting. The catalyst for much of this work in recent years has been the iterated
case of belief revision (that is, revising previously-revised beliefs). The AGM
postulates restrict an agent’s beliefs after a single revision, but provide no assis-
tance in determining what an agent ought to believe after a sequence of revisions.
Work on extending AGM to the iterated case includes [7, 10, 11, 19, 22, 26],
but it is fair to say that as of now the theory of iterated belief revision is not a
settled matter; see [12] for discussion of some of the outstanding issues.

Our direct interest lies in multi-agent belief revision, that is, the situation
in which an agent is informed by multiple other agents, and, more interestingly,
when multiple agents inform each other. However, it turns out that this issue
is inextricably bound to that of iterated belief revision. Not only do we view
multi-agent revision as a sequence of revisions each of a single agent’s beliefs,
but we will show that under the multi-agent perspective iterated belief change
is unproblematic.

The basis for this paper is two observations, both of which are discussed
further in the next section:

1. The AGM revision operator contains two asymmetries in its two argu-
ments. The obvious asymmetry is the precedence of the second argument
over the first one. The more subtle asymmetry, which is exposed only by
examining the model theoretic characterization of the AGM setting, is the
richer structure of the first argument as compared to the second.

2. The very setting of AGM revision is open to many interpretations, and re-
solving problems associated with AGM revision requires in general choos-
ing among these interpretations. In particular, there is a choice between
a temporal perspective and a multi-agent perspective.

We will adopt the multi-agent perspective, and will develop a theory of belief
fusion which removes the second source of asymmetry from belief revision (but
not, in this paper, the first asymmetry). Some of the specific contributions of
this paper are as follows:

e The new fusion operator is technically and conceptually clear.

e Its definition appeals to another novel definition, of pedigreed belief state,
which enriches the standard notion of belief state with the source of each
belief.

o AGM revision can be derived from belief fusion.

R3 If p is satisfiable, then K o p is satisfiable

R4 If K1 = K3 and p; = p2, then K3 op; = Ky 0o p2

R5 (K op) Ar implies K o(p A T)

R6 If (K op) A7 is satisfiable, then K o (p A r) implies (K op) AT
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e Iterated fusion is not only well defined but also extremely well-behaved.
This is because the fusion operator defines a semi-lattice, and in particular
is idempotent, associative, and commutative.

e An additional operator is defined, diffusion, which is symmetric to fu-
sion; whereas fusion in general adds information, diffusion removes some.
Together, the fusion and diffusion operators define a distributive lattice.

We now proceed to cover these points in order.

2 The two asymmetries in AGM revision

Since the conceptual elements of our approach are as important as the technical
ones, in this section we start with a somewhat lengthy pre-formal discussion of
background and intuition. The remaining sections are mostly formal.

As classically presented, an AGM revision operator o accepts two arguments—
a (typically, propositional logic) theory K and a sentence p in some language
L—and produces a new theory K op. Or, from the semantic point of view, a re-
vision operator is usually viewed as accepting two sets of interpretations—those
satisfying K and p, respectively—and producing a third set, one satisfying K op.
As we shall discuss, this is a misleading view which is exposed by looking more
closely at the semantics of AGM revision.

Indeed, the entire discussion in this paper will be semantic rather than ax-
iomatic, and so it will be useful to start by recalling the well-known model
theoretic characterization of AGM revision [14, 17]. Let W be the set of worlds
(i.e., interpretations) for £. A revision operator o satisfies the AGM postulates
if and only if for every theory K there exists a total pre-ordering < over W
such that the worlds minimal with respect to < are exactly those that satisfy K
and, for every sentence p, the worlds that satisfy K op are precisely the minimal
worlds, with respect to <, satisfying p. Indeed, the role of orderings in belief
revision and non-monotonic logics has been well established in the literature.

In the sequel, we will call a pair (W, <) a belief state, and a set of worlds
W € W a belief set. Intuitively, a belief set describes an agent’s actual beliefs,
while a belief state describes his conditional belief sets given any possible new
information. Clearly, every belief state induces a belief set, namely the set of
minimal worlds in the belief state.

Although for those familiar with the AGM postulates the model theoretic
characterization was obvious in hindsight, it has far-reaching ramifications. In
particular, it means that revision is a uniquely defined operation that takes as its
first argument not a mere belief set, but a full belief state. The AGM postulates
are not rendered meaningless by this observation, but it is important to realize
that they employ a misleading notational economy by implicitly building into
the revision operator information more accurately considered as part of its first
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argument. Consider, for example, the first postulate (see footnote in Introduc-
tion), ‘R1. K o p implies p.” The naive reading of this postulate is “When the
belief set validating K is revised by ...”; the correct reading should be “When
any belief state whose induced belief set validates K is revised by ....”2 In the
remainder of the paper, we assume “AGM setting” and “AGM revision” refer
to this modified view, explicitly indicating any reference to the original view.

From this perspective, it is clear that the AGM setting contains two sources
of asymmetry. First, as is well-known, the second argument to the revision
operator takes complete precedence over the first one (see postulate R1 above).
Second, as we have just discussed, the first argument is a full belief state, whereas
the second is a mere belief set. This second asymmetry is more subtle and, we
believe, ultimately deeper.

Some recent work in the area has attacked the first source of asymmetry.
This asymmetry is often interpreted as “new information overrides old infor-
mation,” and there have been suggestions that this chronological precedence is
unjustified in general (recalling similar conclusions in the case of non-monotonic
temporal reasoning, cf. [24]). However, it’s important to realize that there is
nothing in the AGM setting to uniquely sanction the temporal interpretation.
In particular, several researchers choose to view the process as one in which the
belief sets of two agents are combined to produce a third. In this view, the first
asymmetry amounts to giving one agent (the ‘expert’) total precedence over
the other (the ‘novice’), and these recent attempts have been geared towards
capturing less biased kinds of belief pooling. For example, [20] use the term
arbitration to describe a commutative revision operator. In their system the
fairness is achieved by omitting the first AGM axiom (R1 above) (they also
consider adding other restrictions on arbitration, but these are not geared to-
wards fairness). [18] place an additional fairness requirement that amounts to
requiring that when two inconsistent theories are merged each one has to give
up something. Other research in the area includes [3, 6, 23].

Since we agree with [12] that the AGM setting is unclear on issues of in-
terpretation, we consider it meaningless to argue that one interpretation—the
temporal one or the multi-agent one—is right and another wrong, only that
one should be clear on one’s interpretation and should explore its consequences.
However, we do argue that the multi-agent perspective leads to quite attractive
properties.

We replace the operator of belief revision by the operator of belief fusion.
Like merging and arbitration, fusion involves two agents, whose beliefs are fused.
Specifically, the arguments to belief fusion are two full belief states. Unlike
merging and arbitration, however, there is nothing fair about fusion. Indeed, in
a precise sense fusion is a faithful generalization of AGM revision to the multi-

20ne important change is necessary: We rewrite R4 as “¥; = WUy and p; = p2, then
Ki0op1 = Kaopa,” where ¥ and Uy are belief states. Without this change which, essentially,
allows the result of a revision to depend on past revisions, most iterated revision proposals—
including our own—are inconsistent with the postulates.
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agent case. We show that fusion is extremely well-behaved, and in particular,
its iteration poses no problems.

Since in this paper we do not directly challenge the first asymmetry and
continue to rely on dominance in the process of fusion, two remarks are in
order. First, as we shall see, the notion of dominance we have is much more
fine-grained than that of one agent dominating another. Essentially, we will
have one agent dominating another only with respect to particular judgments.
Second, while our framework can be adapted to embrace ideas on “fair” merging,
it is instructive to see that solving the problems that have plagued iterated belief
revision does not require doing away with dominance as a method for resolving
conflicting beliefs.

A proposal related to our own is that of [8] for revising belief states by
conditional beliefs. That work can be thought of as taking into account not
necessarily the revising agent’s unconditional belief, but his conditional ones.
In a sense our construction takes into account his entire set of conditional beliefs.
Other differences include the fact that our approach also takes into consideration
sources of information and the relative credibility of these sources. Finally,
we think it a fair statement that our approach is based on clearer semantical
underpinnings.

Perhaps closest to our work is the recent proposal in [9] for combining infor-
mation from conflicting sources. He addresses a complementary problem to our
own: deciding what information to reject given the subset of informing sources
rejecting the information. In making this decision, Cantwell assumes a gener-
alization of our credibility ordering, in this case a partial pre-order over sets
of sources. He explores a number of ways of inducing a partial pre-order over
sentences based on this ordering, which can then be used to determine a subset
(although not all) of the sentences to reject. The proposal also differs with ours
in that the sources of information and resulting belief states are essentially belief
sets; non-trivial conditional beliefs are not accounted for. In addition, the work
does not address the problem of combining these belief states. The degree to
which the framework captures our intuitions in specific domains deserves further
research.

Other related research include [4] which approaches information aggregation
from a possibilistic logic point of view, and several papers in a special issue
of Theoria [15] which also seek to extend the AGM framework to deal with
non-prioritized revision.

3 Belief fusion

First, a bit of standard notation: We assume some language £. A world w is an
interpretation over £, and we say that for a sentence p € £, w |= p iff p evaluates
to true in w. Given a set of worlds W and a sentence p, ||p|| = {w € W | w [ p}.
If p and r are sentences, then p |= 7 iff Vw € ||p||, w = r. Also, in the treatment
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that follows we make use of a number of (pre-)orders. Given a set © and a
(pre-)order < over O, we define min(<,0) ={a € O |V3 € 0, a < §}.

Let us start by formally defining belief states. For reasons that will be made
clear, we shall call them anonymous belief states.

Definition 1 An (anonymous) belief state (over W) is a pair (W, <) where W
is a set of possible worlds and < is a total pre-order over W.

We use < to denote the strict version of <. In this article the set VW will not
play a role, and can be assumed to be fixed. We denote by sg the ‘agnostic’
belief state, in which < is the complete relation.

To first approximation, the belief fusion operator we will define accepts two
belief states and produces a third. However, in order for the operator to be
meaningful, it will require additional input, which, intuitively, will adjudicate
between the two belief states where they disagree.

It is tempting to resolve conflicts by declaring one agent (B) more credible
than the other (A) and have his judgments dominate. Specifically, one could
define fused belief state A (YB to be the refinement of B by A. Here is the
definition of this straw-man fusion operator, §}:

A©*B = {(wy,ws) :
(w2,w1) € BV ((w1,w2) € BA (wa,w1) ¢ A)}.

In other words, we would construct the fused belief state as follows: for each
pair of worlds, whenever the more credible agent strictly prefers one world to
the other, we side with this preference. In cases where the most credible agent
has no preference, we follow the ranking of the less credible agent. Naturally,
¥) is not a symmetric operator. This operator is illustrated in Figure 1. The
dots labeled with lower-case letters are worlds; the circles represent equivalence
classes of worlds.

Figure 1: The straw-man fusion operator (belief sets in each belief state are
highlighted).

This is a well-defined operation in that it produces a total pre-order. How-
ever, there is a problem with this definition pertaining to the iteration of the
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operator. Consider three belief states A, B and C with increasing order of dom-
inance (A dominated by B, and both by C). Presumably, the above definition
would give meaningful interpretation to (A ©*B) @*C, since, intuitively speak-
ing, all the information in C' dominates all the information in A (Y*B. But
what about (4 (W*C) W*B? Here it would seem that some of the information
in A ©*C dominates the information in B (because it originated from C) and
some is dominated by it (because it originated from A).

The problem is that the standard belief state is not rich enough to represent
the source of each information item, which is the reason we term it ‘anonymous’.
Our actual definition will enrich belief states with this missing information.
To develop intuition for the following definitions, imagine a set of information
sources and a set of agents. The sources can be thought of as primitive agents
with fixed (anonymous) belief states. Each source informs some of the agents of
its belief state; in effect, each source offers the opinion that certain worlds are
more likely than others, and remains neutral about other pairs.

An agent’s belief state is simply the amalgamation of all these opinions, each
annotated by its origin (or “pedigree”). Of course, these opinions in general
conflict with one another, and the agent must resolve these conflicts in order to
arrive at a coherent belief state. There are various plausible ways of performing
this resolution. In this paper we assume that the agent places a strict “credibil-
ity” ranking on the sources, and accepts the highest-ranked opinion offered on
every pair of worlds.

The following definition considers only finite sets of sources; this restriction
can be relaxed at the price of complicating the subsequent development in this

paper.

Definition 2 Given a finite set of anonymous belief states S C S the pedigreed
belief state (over W) induced by S is a function ¥ : W x W — 259{s0} sych
that

\I!(wl,wg) = {(W, S) eS:w < QUQ} (@] {80}.

We will use S to denote the set of all of sources over W, and throughout this
paper we will consider pedigreed belief states that are induced by subsets of
S. Note that both {} and sg induce the same pedigreed belief state; we will
denote it too by ag. Finally, we will use amax to denote the pedigreed belief
state induced by S.

Next we define a particular policy for resolving conflicts within a pedigreed
belief state. We assume a strict ranking C on S (and thus also on the sources
that induce any particular ¥); the strictness of the ranking is a significant
restriction that we discuss further in the final section. We interpret s; C s2 as
‘so is more credible than s;’. As usual, we define C, read “as credible as”, as
the reflexive closure of .

We also assume that sg is the least credible source, which may merit some
explanation. It might be asked why equate the most agnostic source with the
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least credible one. In fact we don’t have to, but since in the definitions that
follow, agnosticism is overridden by any opinion regardless of credibility ranking,
we might as well assume that all agnosticism originates from the least credible
source, which will permit simpler definitions.

Intuitively, given a pedigreed belief state ¥, ¥ will retain from ¥ the
highest-ranked opinion about the relative likelihood between any two worlds.

Definition 3 Given W, S, ¥ and C as above, the dominating belief state of ¥
is the function ¥ : W x W — S such that Ywy,ws € W the following holds: If
max(P(wy,w1)) C max(P(wy,ws)) then U (wi,ws) = max(P(wq,ws)). Oth-
erwise, U (wy,ws) = 89.3

Clearly, for any wy,ws € W either (w1, ws) = 8¢9 or - (ws,w1) = 8¢ Or
both.
Somewhat surprisingly, ¥~ induces a standard (anonymous) belief state:

Definition 4 The ordering induced by ¥ is the relation < ¢ W x W such
that wi = way iff U-(wa,w1) = sg-

We denote the strict version of < by <.
Proposition 1 < is a total pre-order on W.

Thus a dominating belief state is a generalization of the standard notion of
(anonymous) belief state, representing the agent’s ordering on worlds based on
the agent’s opinion of their relative likelihood as well as which source the opinion
originated from. Now, if the agent later interacts with another agent and they
disagree over some piece of information, intuitively they can resolve the conflict
based on who has the stronger support.

The fusion operator we define captures this intuition. We first give a very
natural definition for the fusion of two pedigreed belief states ¥; and ¥» based
on their respective sets of supporting sources: we simply combine them. Then
we show that it is possible to compute the new pedigreed belief state directly
in terms of the ¥; and ¥, without needing to refer to the sets of sources.
Furthermore, we show how to determine the new dominating belief state based
on those associated with ¥y and ¥s. As it turns out, the result will match the
conflict-resolution policy we outlined above.

Definition 5 Given a set of sources S and C as above, S1,S2 C S, the pedigreed
belief state ¥y induced by Si, and pedigreed belief state ¥y induced by Sa, the
fusion of ¥; and U,, denoted ¥y WV¥2, is the pedigreed belief state induced by
S1US,.

3Note the use of the restrictions. Finiteness assures that a maximal source exists; we could

readily replace it by weaker requirements on the infinite set. The absence of ties in the ranking
C ensures that the maximal source is unique; removing this restriction is not straightforward.
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Obviously, the set of pedigreed belief states is closed under §)

Proposition 2
1. (\I’l @‘I’z)(wl,wz) = \Ill(wl, ’ll)g) U \1’2(11)1,11)2)

2. (U1 O¥2) (w1, ws) =
max(lIllt (w15w2)7‘112[ (’LUl,’LUz))
'Lf max(lIllc(wQ,wl),lIIQE(wg,wl)) [
max (¥ (wy,w2), Yo (w1, ws)), and
so otherwise.

3. If <1, =2, and < are the orderings induced by ¥1_, ¥o_, and (¥1 QW)
respectively, then
wy < wsy iff
wy <1 wa and max(Ws_ (wy,ws), Yo (wa,w;)) C ¥y (wy,ws) or
w1 <9 wo and ma,x(lIllc(wl,wQ), lIllc(wg,wl)) C \IJQE('U)l,'LUQ).

The second property formalizes the idea that, for a given pair of worlds, the new
dominating belief state should choose the order of the pair that gives the most
credible support between the two agents for this pair of worlds, assigning the
same support to this order, and so to the opposite order. The third property
describes how to derive the new induced ordering from those of the two fused
belief states.

Figure 2 illustrates the fusion operation on three dominating belief states.
We can view A, B, and C, to be agents with information of from sources of
high (source 3), medium (source 2), and low (source 1) credibility, respectively.
Because we now make precedence decisions at a local rather than global level
based on sources of support, fusing A with C' and the result with B is now
well-defined in a conceptually justified way, unlike in the case of the strawman
operator discussed earlier. Notice the dependence of the final belief state on all
three sources.

We will further explore the properties of belief fusion in later sections, but
first we discuss the connection between belief fusion and classical AGM revision.

4 Revision as under-specified fusion

Now that we have defined fusion, one can view the traditional AGM revision
operator as the application of the fusion operator to a partially specified input
(only the belief set of the expert is given, not his full belief state). In general,
the full belief state of the expert strongly affects the resulting “fused” belief
state. However, it turns out that the belief set defined by the fused belief state
depends only on the belief set of the expert. We now show that this is so, and
that the AGM revision precisely captures the properties of this belief set.

129



[N

AQC

ApCO®B

c%

R

Figure 2: The correct fusion operator.

In order to mimic AGM revision we need to be able to differentiate between
the expert agent and the novice. We do so by defining an ordering on agents, (or,
equivalently, on pedigreed belief states). Intuitively, one can distinguish between
the quantity of information an agent has (which worlds he can distinguish) and
its quality (what are the sources of these distinctions). The following definition
ranks agents first on quality, breaking ties by quantity:

Definition 6 Agent Ay with a pedigreed belief state ¥o over YV has as reliable
sources as agent A; with pedigreed belief state ¥1 over W (written Ay > Ay or
Uy > Wy ) iff it is the case that whenever ¥ _ (w1, w2) # so then

max (¥ (w1, w2), Y1 (w2, w1)) E Yo, (w1, w2).

Proposition 3 Let ¥; and Uy be pedigreed belief states, and let <1 and <2
be the orderings induced by ¥,_ and ¥y_, respectively. Further, let < be the
ordering induced by (1 OU2). If ¥y > Uy, then wy <2 we implies wy < wsy
for all wy,ws € W.

Note that any pedigreed belief state has as reliable sources as ag, and amax has
as reliable sources as any other pedigreed belief state.

In the following, we use the notation ¥ to denote the belief set defined by
a pedigreed belief state ¥, that is, the set of worlds minimal with respect to
the ordering induced by ¥. Also, we use ¥ o w to denote the revision of belief
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state ¥ by belief set w according to AGM (that is, the the worlds in w that are
minimal according to ¥r).

Proposition 4 Let ¥, and U5 be pedigreed belief states such that ¥4 > ¥,
Then (\Ill @lIJZ)*L: lI/1 o (‘IIQ,L)

Corollary 4.1 Let ¥;,U,, U3 be pedigreed belief states such that ¥y > Uy,
U3 > Uy, and Vo= T3).
Then (‘I’l @‘I’Q),L: (\I’l @‘I’g)l

Thus, AGM revision is simply a projection of belief fusion, in which one
ignores all but the belief set of one of the initial belief states, and all but the
belief set of the resulting belief state.

5 Well-behavedness of iterated, multi-agent be-
lief fusion

We mentioned in the introduction that the problem of iteration has proved
a major challenge to AGM-style revision. We now show that this is not the
case for fusion. To begin with, note that iteration is formally well-defined; the
output of fusion (a pedigreed belief state) is a legitimate input to another fusion
operation.

From the set-theoretic definition of fusion, it follows immediately that iter-
ated belief fusion is not only well-defined, but also extremely well-behaved. In
particular, it inherits the idempotence, commutativity, and associativity prop-
erties of U.

To demonstrate the well-behavedness of iterated belief fusion, we give several
related examples which depend on these properties; the examples are stated
informally for readability, but can easily be stated formally and proved. In all
of them assume that there are n agents, each with his own belief state over the
same set of worlds W, all agreeing on their expertise ranking relative to one
another, and all employing belief fusion as the method of update.

e One of the agents is the manager. Question: Will the order in which
he gets briefed by his various employees affect his resulting belief state?
Answer: No.

e The same manager is considering whether to get directly updated by the
employees, or to have his vice-manager get updated by the rest of the
employees, and then have the vice-manager update him. Question: Should
the manager worry that the result will be skewed by the vice-manager’s
personal biases? Answer: No, the manager’s resulting belief state will be
as in the first case.
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e The manager is gone and the team needs to reach consensus. Each agent
broadcasts his belief state to all the others who receive it immediately,
and incorporates all the belief states communicated to it. Question: Will
the agents end up with identical belief states? Answer: Yes, even if they
each perform the fusions in different orders.

e The situation is as above, but agents don’t have unlimited broadcast capa-
bility. Instead, each agent can communicate with some of the others, and
this capability is not necessarily symmetric. Question: Can the agents
reach consensus through a process of fusion? Answer: Yes, iff the com-
munication graph is strongly connected (the communication graph is the
directed graph in which agents are nodes and directed arcs represent com-
munication capability; a directed graph is strongly connected if there is
a directed path from any node to any other). In this case each agent
should simply communicate his belief state to all the agents he can, in-
corporate the belief states communicated to him, and repeat. After d
rounds all agents will have identical belief states, where d is the diame-
ter of the communication graph (the diameter of a directed graph is the
longest shortest directed path between any two nodes in the graph).

5.1 Comparison to iterated revision approaches

It is natural to ask why we do not simply extend one of the existing iterated belief
revision approaches to accomodate a multi-agent point of view. Specifically,
we could assume that both arguments to an operator are full belief states,
but that only the belief set portion of the second argument is used during
revision. (Obviously, associativity does not make much sense given the temporal
interpretation of iterated revision as the arguments are of different types, a belief
state and a belief set.?) Accordingly, we briefly take a look at some of the recent
iterated revision proposals, extended as described above, and subject them to
one of the most benign invariance tests imaginable, namely, associativity.

We should point out that we don’t necessarily view the invariance of asso-
ciativity as obviously valid, even given a multi-agent interpretation; experience
has taught us to be wary of postulates resting on loose intuition alone. But
associativity is a natural criterion to consider, and it is interesting to see—even
without attaching a value judgment to the outcome—how these proposals fare
relative to this criterion.

4Incidentally, if we consider the original AGM postulates as applied to the revision of one
theory by another, the question of whether associativity holds is legitimate. However, a simple
example shows that associativity is actually inconsistent with the postulates: Consider the
two possible associations of p revised by r revised by p XOR r. If associativity is assumed,
the AGM postulates—in particular, R1, R2, and R4—force the result of left association to
entail —p A r, and the result of right association to entail p A =, a contradiction. This can
be traced to the independence of the original AGM revision on past revisions. However, the
iterated revision operators we consider here are, like fusion, history-dependent.
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As it so happens, not only does this invariance not hold for any of the
proposals, but in each case it is possible to even get conflicting results depending
on the revision order. We consider here the proposals in [7, 10, 25, 19, 26].
We describe each of these proposals below and show that there exists at least
one example such that (a) all five proposals agree on the result of iterated
revision, for any fixed association order of revision, and (b) these different orders
of revision yield belief sets that are not only distinct, but actually mutually
inconsistent. This counter-example is shown in Figure 3.

A @®—0)—0
8 O—f)—0
c O

(Ao (B o C))y = [Pl
(Ao B)oC) = P

Figure 3: Counter-example showing alternative iterated revision operators are
not associative. A, B, C are belief states.

Boutilier’s natural revision Natural revision, proposed by Boutilier [7],
extends the AGM idea of minimally changing beliefs to apply to the agent’s
counterfactual beliefs as well. Given a belief state, this approach specifies that
we only change the ordering as much as is required by the AGM postulates, and
no more.

Proposition 5 The resulting belief sets using left and right association of Boutilier’s
natural revision operators can be inconsistent.

Darwiche and Pearls’ formulation Darwiche and Pearl [10] suggest ad-
ditional postulates in an attempt to adapt the AGM framework for iterated
revision. As in the case of natural revision, this approach derives its inspira-
tion from a notion of minimizing change to the belief state. However, it relaxes
the constraint that change must be completely minimized, thus allowing for a
whole family of revision operators, including natural revision as one instantia-
tion. Somewhat surprisingly, natural revision’s lack of associativity applies to
every member in the family of operators.
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Proposition 6 The resulting belief sets using left and right association of any
revision operators satisfying the Darwiche and Pearl postulates can be inconsis-
tent.

Spohn’s conditionalization In [25], Spohn introduces conditionalization op-
erators over ordinal conditional functions (OCFs). OCFs can be viewed as
anonymous belief states imbued with the additional structure of an ordinal rank-
ing (aka a k-ranking) over worlds so that it is possible to speak about degrees
of belief.> Spohn proposed conditionalization operators over these functions as
qualitative versions of probabilistic conditionalization. The set of operators is
parameterized by a which takes on ordinal values. Intuitively, revising by a
sentence p using a particular a-conditionalization operator will cause the agent
to believe p with a firmness.

Proposition 7 The resulting belief sets using left and right association of any
combination of a-conditionalization operators can be inconsistent.

We hasten to point out that in this paper Spohn also defines an operator
for the conditionalization of one OCF by another. With intuitions based on
Jeffrey’s generalized conditionalization [16], this operator is associative, though
not commutative (given two OCFs k and A, k conditioned by A generally is not
the same as A conditioned by k). The operator behaves quite similarly to ours
in the special case where the conditioning agent’s sources are all more reliable
than the conditioned agent’s.

Lehmann’s formulation In [19], Lehmann proposes yet another set of postu-
lates intended to regulate sequences of revisions. He provides a semantic account
based on what he calls widening rank models which, like OCFs, can be viewed
as augmented anonymous belief states. He provides a recursive definition for
computing the result of a sequence of revisions based on a given widening rank
model.

Proposition 8 The resulting belief sets using left and right association of Lehmann’s
revision operator can be inconsistent.

Williams’ transmutations Williams [26] generalizes Spohn’s notion of con-
ditionalization operators to include any operators over OCFs that satisfy the
AGM properties, refering to this larger class of operators as the set of transmu-
tations. She describes two particular sub-classes of transmutations: conditional-
ization operators which are equivalent to Spohn’s conditionalization operators,
and adjustment operators, a family of operators parameterized by 3 which takes

5Spohn actually defined OCFs with respect to subfields of 2" closed under U and N.
However, the additional structure does not play a role in our results and so, for the sake of
clarity, we use the simpler definition.
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on ordinal values. We have already seen that conditionalization operators are
not associative. As it turns out, the same is true for adjustment operators.

Proposition 9 The resulting belief sets using left and right association of any
combination of B-adjustment operators can be inconsistent.

6 The belief lattice: fusion and diffusion

In the previous section we mentioned that §)is idempotent, commutative, and
associative. Thus, a set of pedigreed belief states that is closed under {)forms a
semi-lattice [5]. Intuitively, higher states in the lattice contain more information
than lower ones (where, as explained, ‘more’ is determined first by quality and
then by quantity). @accepts two pedigreed belief states and returns the least
pedigreed belief state that contains at least as much information as both of
them. Note that this semi-lattice has a “unit” element, ay (since ¥ Qag = P)
and an “annihilator” element, amax (since ¥ Wamax = Gmax)-

This suggests that there might be a symmetric operator to §) one which
takes two pedigreed belief states and returns the greatest state containing no
more information than either one. In fact, this operator can be readily defined:

Definition 7 Given S1,S2 C S, the pedigreed belief state Uy induced by Sy,
and pedigreed belief state U induced by S, the diffusion of ¥y and Uy, denoted
Uy AY,, is the pedigreed belief state induced by Sy N Ss.

In other words, we transform fusion into diffusion by replacing the union of the
sources by their intersection.

Trivially, we have the characterization of ¥; (A¥, directly in terms of ¥,
and 1112.

Proposition 10
(U1 QU2)(w1,w2) = ¥y (w1, w2) N Wa(wr,ws).

However, unlike the case of fusion, it is not possible to provide a characterization
of (¥y A¥,)r (or its induced orderings) directly in terms of ¥;_ and ¥y_ (or
their induced orderings); the latter simply do not contain enough information.
This is illustrated in Figure 4. The figure shows the diffusion of two pedigreed
belief states along with the corresponding dominating belief states. Now, con-
sider the case where agent B also had source 1 as a source, i.e., Sp = {1, 2, 3}.
Although the dominating belief states for A and B would be identical to those in
the figure, the dominating belief state resulting from diffusion would be exactly
that of A. Thus, it is impossible, in general, to determine the new diffused state
given solely the dominating belief states.

Clearly, ®also forms a semi-lattice. However, the roles of ag and amax are
reversed: the “unit” element is amax (¥ Padmax = ¥) and the “annihilator”
element is ag (¥ Pap = ag)- Also note that, together, the fusion and diffusion
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operators represent a distributive lattice [5] over the set of pedigreed belief states.
In particular, they are absorbitive and distributive.

7 Future work

We summarized the main contributions of this paper in the introduction, and
discussed related research in the first two sections. We conclude here with a
discussion of several of the many directions in which this work can be extended.

The restriction precluding equally ranked sources is an important one. Its
root resides in the fact that it is unclear what to do in situations where sources of
equal credibility offer conflicting information. One possibility would be to take
the disagreement as reason for agnosticism. However, such a policy can lead to a
loss of transitivity so that the result of a fusion is no longer another dominating
belief state. That technicality aside, the issue resurfaces if later we are informed
by a lower ranked source that has definite opinions on the matter. One could
override the agnosticism as we have in the treatment above, thereby essentially
promoting the opinion of the lower ranked source over the combined opinion
of the higher ranked ones. These may seem reasonable—we might consider the
less credible source to be a tie-breaker. However, the approach breaks down
if instead of having two equally-ranked sources with opposite opinions, we had
one hundred that voted one way and one that voted the other way. This would
also result in a tie. If a lower ranked source came along later and sided with the
one renegade source, the fusion operator would force agreement with it.

One could, of course, invent more clever schemes such as voting with the ma-
jority or using the next highest opinionated sources to break deadlocks. How-
ever, without weakening some basic assumptions, these will all be doomed in
general, since it is possible to view our setting as a generalization of the setting
Arrow addressed in his Impossibility Theorem [2]. Basically, we can model his
setting as one where all agents are informed by n equally-ranked sources.® We
are essentially asking that the following conditions hold:

e unrestricted domain: sources can be arbitrary total pre-orders over W,

e restricted range: the belief state induced by a set of these sources should
be another total pre-order,

e independence of irrelevant alternatives: the ordering between two worlds
in an induced belief state should only depend on how the sources rank
those two worlds,

e weak Pareto principle: if all sources strictly prefer one world to another,
this preference should be preserved, and

8More accurately, in his formulation, each agent is informed by n “individuals” where each
individual’s belief state can be any of the possible sources. The distinction is not important
here, however.
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e nondictatorship: since the sources are equally-ranked, no particular source
should have its opinions dominate.”

Arrow proved that there is no policy that obeys all of these conditions.

It is clear, however, that since pedigreed belief states retain the full pedigree of
each belief, it is possible to experiment with many kinds of induced beliefs states
other than dominant ones. In particular, in the second section we discussed
recent interest in “fair” merging of beliefs. It will be interesting to see if we can
capture the specific proposals made recently, and if not why.

In this paper when we assumed that all agents share the credibility ranking
on sources. In general, and these rankings can vary among agents, and even
change within an agent over time. Furthermore, an agent’s ranking function can
depend on the context; different sources may have different areas of expertise.
Exploring the behavior of fusion and diffusion in these more general settings is
an obvious next step.

The work here has been qualitative in nature. However, often domains of
interest have additional quantitative structure (e.g., a probability distribution
rather than a simple total pre-order over worlds defining a belief state) which
agents can take advantage of when modifying their mental states. Consequently,
extending this work to provide principled accounts of how the belief states of
a group of agents change under such conditions is another important followup
step.

Finally, we note that while through this paper we viewed the (pre- or strict)
orderings on possible worlds as describing ‘belief’, in fact there is nothing in the
formalism to make the ‘preference’ interpretation less apt (indeed, this remark
applies to most of the work in AT on belief revision and nonmonotonic reason-
ing). This raises the question whether there is an interesting connection to be
made between the development in this paper and classical work in economics
on preference aggregation.
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A Appendix: Proofs
Proposition 1 < is a total pre-order on W.

Proof: In the following, we use s;; to denote the source max(¥(w;, w;)). By
Definition 2, ¥(w;,w;) is always defined and non-empty, so s;; is always defined.

We need to show that < is connected and transitive; we first prove the
former. Suppose wi, w2 € W. C is a total order on S, so either s5; [ s12 or
$12 I $21. Thus, by Definition 3, either ¥ (wq,ws) = sg or ¥-(wz,w1) = so,
respectively. By Definition 4, either ws < wy or w; < ws.

Now we show that < is transitive. First, we make the following observations
for arbitrary w;,w; € WWand S C S:

1. w; R w; iff 555 C sy, by a straightforward application of Definitions 4 and
3 show this.

2. w; <,,; wj, since by Definition 2 either s;; = so and, therefore, fully
connected, or w; <s,;; wj, in which case the result must be true given s;;
is connected.

3. If 55 = s then Vs € S. w; <; w;. If there was an s’ such that this were
false, then s’ would be in ¥(w;,w;), and since sg is minimal wrt C, s;;
would not be max(¥(w;,w;)), a contradiction.

4. If s;; = s;; then s;; = sg. If not, then w; <,,; w; by Definition 2 and,
since s;; = 8;;, wj <s,; W;, a contradiction since <, is connected.

5. If 555 C sw, then w; <;,, w;. If not, then sy € ¥(w;,w;) and s;; #

— Skl
max(¥(w;,w;)), a contradiction.

Now, suppose w1, wa, w3 € W, w1 = wsa, and wy < ws. We need to show
that w; < ws. By the first Observation 1, sa; C s12 and s32 C sa3, and it
suffices to establish that s3; C s13. If s3;7 = s¢ then we’re done. Assume not.
Then w3 <g4, w; by Definition 2.

Case 1: s21 = s12. Then so1 = sg (Observation 4) which implies Vs €
S. wy <; we. In particular, wy <5, w2, S0 w3 <4, we which implies s13 €
U (w3, ws) by Definition 2. Thus, s31 C 832, 50 831 C s23. Since s31 # 8¢ and sg
is minimal wrt C, s23 # so. Consequently, ws <s,, w3, and since w; <s,, wa,
w1 <gsys W3, SO S23 € U(wy,wsz). Therefore, so3 T s13, and by transitivity,
s31 £ s13.

Case 2: s33 = s23. The proof that s3; C s13 is almost identical to the first
case, switching s3zo with so; and so3 with s15.

Case 3: sy1 C s12 and s32 C sz3. We prove the result by contradiction.
Suppose s13 C s31. Then s31 # s and ws <g,, w; by Definition 2.

First suppose sa; = sg. Then, by Observation 3, Vs € S. w; <; ws and, in
particular, wq <g,, w2 and wy <;,, we. Note that sag # sg, SO wy <s,5 w3 by
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Definition 2. Thus, w3 <s,, w2 and w; <s,, ws, implying that s3; € ¥(ws, ws)
and so3 € U(wyi,ws3). So, by s31 E s32 C s23 C s13, a contradiction. Suppose
instead s21 # sp. Then we <4,, wi. We consider two cases:

Case 3a: si2 C s32. Then s91 C s23, so by Observation 5, w; <j,, w2. Since

wy <s,, w3 by Observation 2, wy <s,, w3, S0 s23 € ¥(wy,ws). Thus,
s23 C s13 and by transitivity of C, so; T s31. By Observation 5, w; <gj,
wy. S0 w3 <s,, wa by transitivity of <,,,. Therefore, s31 € ¥ (w3, ws), so

s31 C s32. But then s31 C s23 C s13, contradicting our assumption.

Case 3b: 832 [ S19. Then s19 75 So and ws 5312 w3 by Observation 5. s1o 75 S0

implies wy <s,, w2 by Definition 2, so wy <s,, ws. Thus, s12 € ¥(wyi,ws),
implying that si;o C s13. Thus, by transitivity of C, ss; C s3; and,
by Observation 5, wy <g5, we. By transitivity of <, ws <g, w2, so
S31 € l11(11}3,11)2) which 1mp11es 831 E 832. But then S31 C 819 E 813,
contradicting our assumption.

Proposition 2

1.
2.

(U1 OP2)(wr1, w2) = ¥1 (w1, ws) U Vs (wr,w2)

(1 OF2)c (w1, w2) =
max(qllc (101,’11)2),‘1’2,: ('LU1,'LU2))
if max(\I'lc(w2,w1),lIJQE(wg,wl)) C
max (¥ (wy,ws), Yo (wi,ws)), and
so otherwise.

3. If %1, =2, and < are the orderings induced by ¥;_, ¥o_, and (¥ QW)

respectively, then

w, < We Zﬁ

wy <1 w2 and max(Wo (wi,ws), Yo (wa,w:1)) C ¥y (wy,ws) or
wy <2 wa end max(¥q_ (wi,ws), ¥i_(w2,w1)) C Yo (wy,ws).

Proof:

1.

Suppose wy,wy € W, and ¥; and ¥, are induced by sets of sources
51,852 € S, respectively. Suppose s € (¥; W¥2)(wy,ws). Then, by Defi-
nitions 2 and 5,

s € )651US2:w1<w2}U{30}
)651:UJ1<'11)2}U{80}U
)GSQZUJ1<U)2}U{S()}

= Uy (wr,ws) U Pa(wr,ws)

Il
==
SIS
IA INA INA
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Now suppose s € ¥y (wq,ws) U Pa(wy,wz). Then, again applying Defini-
tions 2 and 5,

{W,<) € S1:wr <wz}U{se}) U
({W,<) € S2:wi <wa}U{so})

= {(W7 S) E‘S’1US2 T <’U)2}U{$0}
(T1 QF2)(w1, w2)

. By Definition 3,

(T Q) (w1, wq) =
max((¥1 Q¥2) (w1, w2))
if max((¥1 ©¥2) (w2, w1)) C
max((¥; ©¥2) (w1, w2)), and
so otherwise.

Thus, it suffices to show that
max(¥;_ (wa,wr), ¥ar (w2, w1))
C max(¥q (we,wr), ¥ao (wa,wr))
iff
max((¥; Q¥2) (w2, w1))

C max((¥; Q¥2) (w1, ws))
= max(¥i_ (w1, ws), Yo (w1, ws))

Now, by the first part of this proposition,
(1 QF:) (w1, w2) = Ty(wy, wa) U Ta(wy, ws)
S0

max((¥; Q¥2) (w1, ws))
= max(¥q(wr,ws) U Ts(wr,ws))

= max(max(‘Iﬁ(whw2)),max(‘1’2(w1>w2)))
and, similarly,
max((¥; Q¥2) (w2, w1))
= max(max(¥(ws,w1)), max(¥s(wa,w1)))
(<=) Suppose

max((¥; O¥2)(wz2,w:))
C max((¥; Q%) (w1, ws))
= max(‘;[llc (w1, ws), ‘I’QE (wr,ws))
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Then

max((¥; @¥2) (w2, w1))
= max(max(llll ('11)2, ’lU1)), max(lIl2 (U)2 ) U)1)))

C max(\I’llz ('lUl, w2)a lI;2|: (wl ) w2))
so it is enough to show

max(qllc (w27 wl)a l:[12|: (w27 wl))
C  max(max(¥ (w2, w)), max(¥a(ws,wr)))
To do so, we only need to show that ¥;_(w2,w1) T max(¥;(ws,w))
and Uy (w2, w1) C max(¥o(we,w1)). These follow immediately from
Definition 3 and the fact that s¢ is minimal wrt C.
(=) Suppose
max(\h[ (UJQ, ’11)1), \I’2E (HJQ y 11]1))
C max(\Illc (wl, UJQ), lI’QE (11)1 , U)Q))

Assume, without loss of generality, that Wo_(wi,ws) T ¥y (wi,ws).
Then, ¥ _ (w2, w;) C ¥ (wy,ws) and since ¥y _ (w1, ws) # so, by Defini-
tion 3 max(¥; (wy,ws)) = W1 (w1, ws). Observe also that ¥y (wa,w;) C
\Illr: (wl, U)Q).
We now show that max(¥s(wy,ws)) C ¥y (wi,ws). Suppose
max(¥s(wae,w1)) C max(¥y(wy,ws2)). Then by Definition 3,

max(‘l’z (w1 ))

= Uy (w1, w2)
C Ui (wi,ws)
On the other hand, if max(¥y (w2, w;)) = max(Ps(wy,ws)) then
ma,x(‘IIQ(wl,wg)) = So C \Illc(wl,wg) Finally, if ma.x(‘IIQ(wl,wg)) C
max(¥s(ws,wq)) then from Definition 3 and the observation above,
max(lllz(wl, ’LU2))

C max(‘IJ2(w2,w1))

= Uy (w2, w)

C ‘I’lE (wl, UJ2)

Therefore,

max((¥; Q¥2) (w1, w2))
= max(max(llll (’U)l, TU2)), ma»X(II;2 (11)1 ) U)z)))

max(\Il1E (wl, U)Q), max(\I12 (w1 y 1,U2)))

‘Illc(wl,wQ).
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Note that we have also shown that max(¥, (w2, w1)) C ¥1, (w1, ws).

Now, since ¥;_ (w2, w;) C ¥ (w1, w2) and, consequently, ¥;_(wy,ws) #
50, by Definition 3 max(¥;(ws,w;)) C max(¥;(wy,ws)) = ¥ (wi,ws).
Putting this together with the results from the previous paragraph, we
have that

max((¥1 Q¥2)(w2,w1))
max(max(¥q (ws,w;)), max(¥s(ws,wr)))

A

Uy (w1, ws)
max((¥1 O¥s)(wi,ws))

and, given our earlier assumption,

max((¥; Q¥2) (w1, ws))
= ma,x(‘IﬁE (wla w2)a lI;2E (11)1 ) U)z))

. We start by proving an auxiliary lemma.

Lemma 1 Given W and S as above, for any two pedigreed belief states
¥y, Uy, and any two worlds wi,ws € W,

l1’1(11)1,'1112) n \IIQ(wg,wl) = {50}

Proof: By Definition 2, sg € ¥y (w1, w2) and sg € ¥a(wsa,wn), so {so} C
\Ill(wl,wz) n l:[»'2(1112,11)1).

Suppose s = (W, <) € Uy (w1, ws) N Ua(wy,wy) for some s € S. Then
s € Uy(wy,ws) and s € Vy(ws,wr). Assume s # sg. Then, by Defini-
tion 2, w; <s we and w; <, was, a contradiction. Therefore, s = sg, soO
‘111(11)1,11)2) n \I'g(wz,wl) - {So}. | ]

Corollary 2.1 Given W, S, ¥, Uy, wy, and ws as above, max(¥q(wi,ws)) =
max(Wo(wa,w1)) implies max(P¥q (w1, ws)) = so-

Proof: Suppose max(¥q(wi,ws)) = max(¥s(ws,wy)). Then, since
max(\I'l(wl,wg)) € llll(wl,wg) and ma,x(lllg(wz,wl)) S ‘I’Q(U}Q,ﬂ]l),
max (¥ (w1, ws)) € ¥y (w1, w2) N ¥a(wy,wr). By the above result,
max(\I'l(wl,wg)) = §p. N

We proceed to prove the proposition.

(<=) Suppose w; <1 wp and max(¥y_ (w1, w2), Yo, (w2, w1)) C ¥y (wi,ws).
Then, by Definition 4, ¥i_(wi,ws) # so and ¥y (ws,w1) = so, SO

145



‘I’lc(wbwl) C \Illc(wl,wg). AISO, ‘I’QE (’11)1,11)2) C llllc(wl,wg)

and Wy (w2, w1) C ¥y (wi,ws). Suppose ¥y (wr,w1) = ¥y _(wi,ws).
Then, ¥y (wa,w1) # so and, thus, ¥s_(wq,ws) = so. Furthermore, by
Definition 3, ¥5_ (w2, w;) = max(¥y(wy,w)) so

max(lIll (U}l, U)Q))

= lIllc(’wl,UJz)

Uy (wa,wr)
= max(ll'z(wz,wl))
and, by Corollary 2.1, max(¥; (w1, w2)) = 8¢, a contradiction. Conse-
quently, ¥y_(wo,wq) C ¥y (w1, wz), s0
max(\I'lc(wg,wl),\Ilgc (11&,11]1))
C ¥y (w1, ws)

= maX(lI’llz (wla w2)7 \I;2|: (11)1 ) w2))
By Definition 3 and Proposition 2,

(T1 QT2) (w1, w2) # so and

(1 O¥2) (w2, w:) 50

S0, by Definition 4, w; < ws.

Similarly, ifw; <2 wy and max(lI!1E (11)1 R U)z), \I’1E (’LUQ, U)l)) C \I’QE (wl, ’11)2),
then w, < w».

(=) Suppose wy < w2. By Definition 4,

(T1 Qo) (w1, w2) # so and
(U1 O¥2)c (w2, w1) = $o,

by Definition 3

max((¥1 @¥2) (w2, w1))
C  max((¥; QT2)(w,w2)),

and by Proposition 2

—~

Uy (w2, w1)))
U max(Pa(wsa, w)))

wi,wy))
,max(Py(wr,ws)))

max(max(¥; (wy, w;)), max

= ma,x(max(llll (’U)Q, ’11)1)

= maXx

~— o~ —

C ma,x(\Ill(wl,wQ) u v,
(m

a,x(lIll (wl, 'LUQ)
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Assume max(¥s(wy,ws)) C max(Pq (wy,ws)). Then

max(¥y(we,w1)) C max(Pq(wi,ws)) and
max(Po(we,w1)) C max(Pq(wr,ws)).

Definition 3 gives us that

Uy (wy,ws) = max(¥q(wr,ws)) and

Ui (w2, w1) = So

Thus, by Definition 4 w; <3 ws. Also, from Definition 3 we know

Uy (w1, w2) C max(¥s(wr,w2)) and To (we,wr) T max(¥a(ws,w)).
Therefore, given that our original assumption and the fact that
max(Py(ws,w)) C max(¥y (wy,ws)), we have

max(lll2E (’LUl, ’LUQ), \I’QE (UJ2, ’11)1))

max(max (s (w1, ws)), max(Ts(ws,wr)))

I im

max(‘Ill (w1 y ’UJQ))

U, (wr,ws)

Similarly, if max(¥; (w1, w2)) C max(¥s(w;y,ws)), then wy; <5 ws and
max (U1 (w1, w2), U1 (w2, w1)) E ¥a_ (w1, ws).
| ]

Proposition 3 Let ¥y and Uy be pedigreed belief states, and let <1 and <3
be the orderings induced by ¥,_ and ¥y_, respectively. Further, let < be the
ordering induced by (1 OU2). If ¥y > Uy, then wy <2 we implies wy < wsy
for all wy,ws € W.

Proof: Suppose ¥y > Uy, wy,w2 € W, and wy <2 wa. By Definition 4, it
suffices to show that (lI/1 @‘I’g):(wl,wg) ;'é So and (\IJl @‘I’Q)E(U}Q,U)l) = 80-
By Definition 4, ¥y_ (w1, ws2) # so and ¥y (wa,w1) = sp. Since ¥y > ¥, and
lI'QE(wl,w2) ;é S0, max(\Illz(wl,w2),lIllt(wz,wl)) E ‘I’zc(wl,’wg) by Defini-
tion 6. Thus, \Illc(wl,uu) E \I’QE(’wl,UJQ) and \Illc(wQ,wl) E ‘I’QE (’11)1,’[1)2), SO
max (¥ _ (wy,ws), o (wi,w2)) = Po_ (w1, wz). Also, since Vs € S. s # so =
So C s, we have max(llllc(wg,wl), IPQE (’11)2,11)1)) = \I’lc(U)z,wl).

Suppose ¥;_ (w2, w1) = ¥y (w1, w2) = s for some s € S. Then, by Defini-
tion 3, s € ¥y(wa,w1) and s € Uy(wy,ws). But then, since s # sg, by Defi-
nition 2 we <z w; and w; <z we. This is a contradiction since s € S implies
<, is connected. Therefore, max(¥;_ (w2, w:), ¥or (w2, w1)) = Y1 (w2, w1) C
Uy (wy,ws) = max(¥y_ (wr,ws), ¥a_ (w1, w2)). By Proposition 2,

(¥1 QU2)(wr,w2) # so and (¥1 Q¥2)c (w2, w1) = so. W
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Proposition 4 Let ¥, and Uy be pedigreed belief states such that ¥4 > ¥;.
Then (\I’l @‘I’Q)J,Z 1111 o} (\IJQJ,)

Proof: Let <;, <5, and < be the orderings induced by ¥;, ¥,, and ¥ =
U, @, respectively. Suppose w € ¥). To show that w € ¥y 0 (¥2]), it suffices
to first show that w € ¥yl and that for every w' € U2, w <; w'. By definition,
w € min(=X, W), so Yw' € W. w < w'. By Proposition 3, Vw' € W. w < w'.
Thus, w € min(=<, W), so w € ¥o|.

Now let w' € ¥5]. We show that w <; w'. Suppose not, i.e., w' <; w.
Then, by Definition 4, ¥;_(w,w') = s and ¥;_(w',w) # so. Since w' € ¥p|=
min(=<2, W), w <2 w' and w' <2 w. So ¥y_(w,w') = ¥y_(w,w') = so by
Definition 4. Thus, max(¥s_(w,w'), ¥o_ (w',w)) = so C ¥ (w',w) = s since
Vs € S. s # 59 = s¢ C s. By Proposition 2, w' < w. But then w & min(=<, W).
Contradiction. Therefore, Yw' € W. w <, w'.

We now prove the other direction of the proposition. Suppose w € ¥10(¥sl).
Then w € min(=<1, min(<2,W)). This implies that w € min(<2, W) which, in
turn, implies that V' € W. w <5 w'. Suppose w' € W. We show that w < w'.
Suppose not, i.e., w' < w. Proposition 2 gives us two case:

1. w' <3 w. Then w & min(=<2, W). Contradiction.

2. w' <1 w. Since w' < w, w' <5 w by Proposition 3. Thus, since w €
min(=<5, W), so is w'. But if w' <; w, then w ¢ min(=<;, min(=<2, W)).
Contradiction.

Therefore, Vw' € W. w 2 w', so w € (¥ ©T3)|. &

Corollary 4.1 Let ¥,,U,, U3 be pedigreed belief states such that ¥y > Uy,
U3 > Uy, and Vo= Ps).
Then (\I’l @‘I’Z)J,: (lIll ®l113)¢

Proof: Appealing to Proposition 4,

(T @¥2))

= U0 (Vs])
T, 0 (Us))
= (1 Q).

We introduce some notation for the proofs that follow: Given a belief state
(W, <), let «+ be a total order over subsets of W such that if W,W' C W,
W« W'iff

1. W and W' are non-empty,
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2. W and W' are (not necessarily maximal) equivalence sets, i.e., for every
weWand w' € W, if w' € W then w < w' and w' < w (and similarly
for W), and

3. worlds in W are strictly prefered to worlds in W', i.e., for every w; € W
and wes € W', w; < wo.
Thus, we can represent the belief states in Figure 3 as A = ||p|| « [|[=p A r|| «
I=p A =rll, B = |Ir|| < [[=p A —r|| < [lp A =rl], and C = ||r|| + [[=r]]. AGM
requires that (4 o (B o Cl)}){=|-p A —r||. In each of the following proofs, we
show that left association gives an inconsistent result, specifically, ||[p A —r||.

Boutilier’s natural revision The natural revision operator ¢pg is defined as
follows:

Definition 8 If M = W, <) is a belief state, then (M opp) = W, <') is the
belief state resulting from the natural revision of M by sentence p if and only if

for all wy,ws € min(<,p), wr <" ws iff w1 < we and, by the AGM postulates,

for all wy € min(<,p) and w2 € W, w1 <" wo .

Proposition 5 The resulting belief sets using left and right association of Boutilier’s
natural revision operators can be inconsistent.

Proof: Applying the operator to the belief states A, B,C, we get ((A op Bl
) o Cl)l= ||[p A —r|| which is inconsistent with the result of right association. ®

Darwiche and Pearls’ formulation Let M = (W, <) be a belief state, p
be a sentence in £. Darwiche and Pearl suggest a set of postulates (see [10] for
their enumeration) to supplement the AGM postulates for iterated revision, then
show by way of a representation theorem that an AGM operator ¢pp satisfying
the postulates obeys the following rules:

1. If wy = p and we = p, then wy < wsy iff wy < ws.

2. If wy | —p and we |= —p, then wy < wsy iff wy <" wa.

3. If w; = p and wy = —p, then w; < wo only if and w; <’ ws.

4. If wy E p and ws |= —p, then wy < wo only if wy <" ws.
where (M opp p) = (W, <') is the result of revising M by p.

Proposition 6 The resulting belief sets using left and right association of any
revision operators satisfying the Darwiche and Pearl postulates can be inconsis-
tent.

Proof: Let opp be an AGM operator that is a member of the above family of
operators. Then, given A, B, C as above, by the third rule ||pA—r|| < ||[-pA-7]|
in Aop B, so ((Aop Bl) og Cl)l=|lp A —r|| which is inconsistent with the
result of right association. m
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Spohn’s conditionalization Let A be the set of ordinals.

Definition 9 An ordinal conditional function (OCF) is any function k: W >
N such that 3w € W. k(w) = 0. For W C W, we define k(W) = mingew r(w).
The belief set of an OCF is kl= {w € W | k(w) = 0}.

Definition 10 Let k be an OCF. o, is an a-conditionalization operator iff a
is a non-zero ordinal and, for any sentence p € L and any w € W,

[ sw)=sp)  ifwip
woan = { S0

Proposition 7 The resulting belief sets using left and right association of any
combination of a-conditionalization operators can be inconsistent.

Proof: Let k4, kB, ko be the OCFs representing belief states A, B, C, respec-
tively, such that ka(p A1) = ka(pA—-1) =0 < ka(-p A1) < Ka(—p A ),
kp(pAr) =kp(-pAr) =0< kp(-pA-r) < kp(pA-r), and kc(p A —r) =
ko(-pA-r) =0 < ke(pAr) = ke(-p Ar). Let o, and o4, be any two
a-conditionalization operators. It is easily seen that (k4 ¢4, (KB ©as Kcd)d)d=
||[=pA—r||. Now, by Definition 10, (k4 ¢4, £B))(PA—T) < (Ka©a, kBL)(CDPA—T).
Subsequent conditioning by k¢l using the as operator preserves this ordering
and produces the belief set ||[p A —r||. m

Lehmann’s formulation We refer the reader to [19] for the postulates Lehmann
proposes should govern the behavior of a sequence of revisions. Lehmann gives
model-theoretic semantics in terms of widening rank models, defined below. Us-
ing these models, he describes a recursive definition for computing the belief set
that results from a sequence of revisions that obey the postulates.

Definition 11 A widening rank model is a function WR : N'+— 2V \ § such
that

1. for any n,m € N, if n < m then WR(n) C WR(m), and
2. for any w € W, there is some n € N such that w € WR(n),

where N is a sufficiently long initial segment of the ordinals. For p € L, we define
rank(p) = argminpen(w € WR(n) A w = p). The belief set WR|= WR(0).

Let o be a sequence of sentences in £ where @ is the empty sequence and -
is the concatenation operator.

Definition 12 Given a widening rank model WR, the belief set resulting from
the revision sequence corresponding to o and obeying Lehmann’s postulates, de-
noted [o]lwr, is (o) defined recursively as follows:

1. (@) =0 and 7w(B) = WR(0).
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2. If T is a sentence sequence, p € L, and there exists w € w(r) such that
w = p, then r(7-p) =r(r) and w(7-p) = {w € w(7) | w E p}.

3. Otherwise, (T - p) is the smallest n > r(7) such that there exists w €
WR(n) and w = p, and w(1 - p) = {w € WR(n) | w = p}.

where r maps revision sequences to ordinals, and ™ maps revision sequences to
subsets of W.

This procedure is equivalent to iteratively applying the following revision oper-
ator to the members of o:

Definition 13 If WR is a widening rank model over VW, then the widening rank
model (WR o, p) resulting from the revision of WR by sentence p is defined as
follows:

1. (WRorLp)(0)={weW |wlpand w € WR(rank(p))}.
2. For allm € N such that n > 0, (WR o, p)(n) = WR(rank(p) + n).

Let WR, be the result of using ¢ to iteratively revise WR by consecutive
members of o, that is, WRy = WR and, recursively, WR,., = WR, o, p for
any p € L. Let rank,(p) be the rank of p in WR,.

Lemma 2 Let WR be a widening rank model. Then w(c) = WR,(0), and
for all n € N such that n > 0, WR(r(c) + n) = WR,(n). In particular,
[olwr = WR,].

Proof: The proof is by induction on the length of o.
Base case: If 0 = (), then WR = WR,, so

(o)
= WR(0)
WR,(0).

Furthermore, for all n > 0,

WR(r(o) +n)
= WR(n)
= WR,(n).

Inductive case: Suppose m(c) = WR,(0) and for all n > 0, WR(r(o) +
n) = WR,(n). We show that 7(c - p) = WR,.,(0) and for all n > 0, WR(r(o -
p) +n) = WRy.,(n) where p € L.

First note that rank,(p) = r(o - p) — (o). If rank,(p) = 0, then there exists
w € WR;(0) such that w = p. By the inductive hypothesis, w € 7(o) so, by
Definition 12, r(o - p) = r(0) and rank,(p) = r(c-p) —r(c). On the other hand,
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w |= p. Moreover, for all w € WR,(0) = n(o), and for all w € WR,(n') =
WR(r(o) + n') such that 0 < n' < n, w |E —p. Thus, r(o-p) = r(o) +n, so
rank,(p) =n =r(o - p) — r(o).

Suppose w € (o -p). Then w |= p. If there exists w' € w(o) such that w' =
p, then by Definition 12, r(o - p) = r(0), so rank,(p) = 0 and, by Definition 13,
w € WR,.,(0). Otherwise, r(o - p) =n > r(o) is the smallest ordinal such that
there exists w' € WR(n) and w' = p, and 7(o - p) = {w € WR(n) | w = p}.
Therefore,

if rank,(p) = n > 0, then there exists w € WR,(n) = WR(r(o) + n) such that
S

w € WR(r(o - p))
= WR(r(o) + rank,(p))
= WR,(rank,(p)).
and, by Definition 13, w € WR;.,(0).
Suppose w € WR;.,(0). Thenw |= pand w € WR,(rank,(p)). If rank,(p) =
0, then r(o - p) = r(o) and
w € WR,(0)
= w(o)
= 7(o-p).
Otherwise, rank,(p) > 0, so r(o - p) > r(o) and

w € WR,(rank,(p))
=  WR(r(o) + rank,(p))
= WR(r(o-p))
so w € w(o - p). Therefore, m(o - p) = WR4.,(0).
Now let n > 0 for some n € N. Then, since rank,(p) = r(o - p) — r(o), by
Definition 13
WR(r(o -p) +n)
= WR(r(o) + rank,(p) +n)
= WR,(rank,(p) +n)
WR.p(n)

Finally, it follows that

[o]wr
= (o)
= WR,(0)
= WR,|.
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Proposition 8 The resulting belief sets using left and right association of Lehmann’s
revision operator can be inconsistent.

Proof: Widening rank models corresponding to the belief states in Figure 3

are: _
lIpl if n=0
WRa(n) =< llpvrll ifn=1
w otherwise,
[I7] if n=0
WRg(n)=4q [-pVr| if n=1
w otherwise,
. il if
-rll f n=0
Who(n) = { w otherwise

where n € . The reader will easily confirm that (WR4 o, (WRp o1, WRcl))
W= ||=p A =r|| whereas (WR A o, WRB|) or, WRcl)l=|lpA-r|.

Williams’ transmutations It is easy to verify that the following definition
of adjustment operators is equivalent to William’s.?

Definition 14 Let x be an OCF. og is an (-adjustment operator iff 8 is a
non-zero ordinal and, for any sentence p € L and any w € W,

0 if wEp and k(w) = k(p)
8 ifwk-p, and

K(w) < B or k(w) = k(-p)
k(w) otherwise.

(k op p)(w) =

Proposition 9 The resulting belief sets using left and right association of any
combination of B-adjustment operators can be inconsistent.

Proof: Let og, and ¢og, be two S-adjustment operators. Let k4, kg, kc be the
same as in the proof to Proposition 7, with the added restriction that x4 (—p A
—r) > (1. As usual, (k4 0, (kB 08, Kcd)I)I=|[-p A —=r||. By Definition 14,

(ka 0, BL)(p A )

= b
(ka o, BL)(p A )
= Kka(-pA-T)

A

so ((ka 0g, £BL) g, kKcdd=[[p A —r|.

8 Also see [21, p. 364] for a similar definition.
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Proposition 10
(\I'l @‘Pg)(wl,wg) = \I'l(wl,wz) n \I'Q(U]l,'ZIJQ).

Proof: Suppose wi,ws € W, and ¥; and ¥, are induced by sets of sources
S1,S2 € S, respectively. Suppose s € (U1 ®¥2)(w;y,ws). Then, by Definitions 2
and 7,

s € {W, ) e8NSy :w <ws}U{se}
= ({W, L) €S1:w <wyin
{W,<) € Sy : w1 <wa})U{so}
= ({W,Q) €S :w <wy}U{se})N
{W, <) € Sz : w1 <wa}U{so})
= Uy(wr,w2) N ¥o(wr,ws)

Now suppose s € ¥y (w1, wz) N Uo(wy,ws). Then, again applying Defini-
tions 2 and 5,

IA

YE ST twr <w2}U{so})N
)€ Sy iwy <wa}U{so})
) €51 iwy < wain

{W,<) € Sy : w1 <wa}) U {sp}
= {(W,<)eSiNSy:wi <wa2}U{so}
= (¥ Q) (w1, w2)

{w,
{w,
{W

)

IA IA

A IA
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Sources:

Pedigreed Belief State (W) Dominating Belief State('H)
1,2

C)=)

Figure 4: The diffusion operator. S4 and Sp are the sets of sources that induce
the pedigreed belief states for agents A and B, respectively.
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Representing and Aggregating Conflicting Beliefs

Pedrito Maynard-Reid II
Department of Computer Science
Stanford University
Stanford, CA 94305, USA
pedmayn@cs.stanford.edu

Abstract

We consider the two-fold problem of rep-
resenting collective beliefs and aggregating
these beliefs. We propose modular, transitive
relations for collective beliefs. They allow
us to represent conflicting opinions and they
have a clear semantics. We compare them
with the quasi-transitive relations often used
in Social Choice. Then, we describe a way
to construct the belief state of an agent in-
formed by a set of sources of varying degrees
of reliability. This construction circumvents
Arrow’s Impossibility Theorem in a satisfac-
tory manner. Finally, we give a simple set-
theory-based operator for combining the in-
formation of multiple agents. We show that
this operator satisfies the desirable invariants
of idempotence, commutativity, and associa-
tivity, and, thus, is well-behaved when iter-
ated, and we describe a computationally ef-
fective way of computing the resulting belief
state.

Keywords: representation of beliefs, multi-agent sys-
tems

1 Introduction

We are interested in the multi-agent setting where
agents are informed by sources of varying levels of reli-
ability, and where agents can iteratively combine their
belief states. This setting introduces three problems:
(1) Finding an appropriate representation for collec-
tive beliefs; (2) Constructing an agent’s belief state by
aggregating the information from informant sources,
accounting for the relative reliability of these sources;
and, (3) Combining the information of multiple agents
in a manner that is well-behaved under iteration.
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The Social Choice community has dealt extensively
with the first problem (although in the context of
representing collective preferences rather than beliefs)
(cf. (Sen 1986)). The classical approach has been to
use quasi-transitive relations (of which total pre-orders
are a special subclass) over the set of possible worlds.
However, these relations do not distinguish between
group indifference and group conflict, and this distinc-
tion can be crucial. Consider, for example, a situa-
tion in which all members of a group are indifferent
between movie a and movie b. If some passerby ex-
presses a preference for a, the group may very well
choose to adopt this opinion for the group and borrow
a. However, if the group was already divided over the
relative merits of a and b, we would be wise to hesitate
before choosing one over the other just because a new
supporter of a appears on the scene. We propose a
representation in which the distinction is explicit. We
also argue that our representation solves some of the
unpleasant semantical problems suffered by the earlier
approach.

The second problem addresses how an agent should
actually go about combining the information received
from a set of sources to create a belief state. Such a
mechanism should favor the opinions held by more re-
liable sources, yet allow less reliable sources to voice
opinions when higher ranked sources have no opin-
ion. True, under some circumstances it would not
be advisable for an opinion from a less reliable source
to override the agnosticism of a more reliable source,
but often it is better to accept these opinions as de-
fault assumptions until better information is available.
(Maynard-Reid II and Shoham 2000) provides a solu-
tion to this problem when belief states are represented
as total pre-orders, but runs into Arrow’s Impossibil-
ity Theorem (Arrow 1963) when there are sources of
equal reliability. As we shall see, the generalized rep-
resentation allows us to circumvent this limitation.

To motivate the third problem, consider the follow-



ing dynamic scenario: A robot controlling a ship in
space receives from a number of communication cen-
ters on Earth information about the status of its en-
vironment and tasks. Each center receives informa-
tion from a group of sources of varying credibility or
accuracy (e.g., nearby satellites and experts) and ag-
gregates it. Timeliness of decision-making in space is
often crucial, so we do not want the robot to have to
wait while each center sends its information to some
central location for it to be first combined before be-
ing forwarded to the robot. Instead, each center sends
its aggregated information directly to the robot. Not
only does this scheme reduce dead time, it also allows
for “anytime” behavior on the robot’s part: the robot
incorporates new information as it arrives and makes
the best decisions it can with whatever information it
has at any given point. This distributed approach is
also more robust since the degradation in performance
is much more graceful should information from indi-
vidual centers get lost or delayed.

In such a scenario, the robot needs a mechanism for
combining or fusing the belief states of multiple agents
potentially arriving at different times. Moreover, the
belief state output by the mechanism should be invari-
ant with respect to the order of agent arrivals. We will
describe such a mechanism.

The paper is organized as follows: After some pre-
liminary definitions and a discussion of the approach
to aggregation taken in classical Social Choice, we in-
troduce modular, transitive relations for representing
generalized belief states. We then describe how to
construct the belief state of an agent given the be-
lief states of its informant sources when these sources
are totally pre-ordered. Finally, we describe a simple
set-theory-based operator for fusing agent belief states
that satisfies the desirable invariants of idempotence,
commutativity, and associativity, and we describe a
computationally effective way of computing this belief
state.

2 Preliminaries

We begin by defining various well-known properties of
binary relations'; they will be useful to us throughout
the paper.

Definition 1 Suppose < is a relation over a finite
set Q, i.e., <CQx Q. We shall use x <y to denote
(z,y) €< and x £y to denote (x,y) €<. The relation
< is:

!We only use binary relations in this paper, so we will
refer to them simply as relations.
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1. reflexive iff © <z for x € Q. It is irreflexive iff
x L x forx €.

2. symmetric iff t <y =>y <z for v,y € Q. It is
asymmetric iff e <y=>y <Lx for z,y e Q. It
is anti-symmetric iff x <yAy <z =z =y for
x,y € Q.

3. the strict version of a relation <' over Q iff
r<ysrc<yny <Lz forzye

4. total iff t <yVy<uaz forx,y €.
5. modular ifft <y=>a2<z2Vz<yforz,yze .

6. transitive iff
x,y,z € .

r<yANy<z=z<z for

7. quasi-transitive iff its strict version is transitive.

8. the transitive closure of a relation <’
over Q  iff <y & Jwy,...,w, €.
z=wy <"+ <"wy,=y for some integer mn,
for z,y € Q.

9. acyclic iff Ywg,...,w, € Q. wg < --- < w, im-
plies wy, £ wo for all integers n, where < is the
strict version of <.

10. a total pre-order iff it is total and transitive. It is
a total order iff it is also anti-symmetric.

11. an equivalence relation iff it is reflexive, symmet-
ric, and transitive.

Proposition 1

1. The transitive closure of a modular relation is
modular.”

2. Every transitive relation is quasi-transitive.

3. (Sen 1986) FEvery quasi-transitive relation is
acyclic.

Given a relation over a set of alternatives and a subset
of these alternatives, we often want to pick the subset’s
“best” elements with respect to the relation. We define
this set of “best” elements to be the subset’s choice set:

Definition 2 If < is a relation over a finite set ), <
is its strict version, and X C (), then the choice set of
X with respect to < is

CX,<)={zeX:Ar e X 2' <z}
2Due to space considerations, we have omitted all proofs

from this manuscript. They can be found at the website
http://robotics.stanford.edu/~pedmayn/Papers/.



A choice function is one which assigns to every subset
X a non-empty subset of X:

Definition 3 A choice function over a finite set Q is
a function f : 22\ 0 — 22\ 0 such that f(X) C X for
every X C Q.

Now, every acyclic relation defines a choice function,
one which assigns to each subset its choice set:

Proposition 2 (Sen 1986) Given a relation < over a
finite set Q), the choice set operation C defines a choice
function iff < is acyclic.’

If a relation is not acyclic, elements involved in a cycle
are said to be in a conflict because we cannot order
them:

Definition 4 Given a relation < over a finite
set Q, = and y are in a conflict wrt < iff
there exist wg,...,Wn,20,...,2m € 1 such that
r=wy < - <W,=y=20<--<2p=2a, where
x,y € Q.

3 Aggregation in Social Choice

We are interested in belief aggregation, but the com-
munity historically most interested in aggregation has
been that of Social Choice theory. The aggregation is
over preferences rather than beliefs, so the discussion
in this subsection will focus on representing prefer-
ences; however, as we shall see, the results are equally
relevant to representing beliefs. In the Social Choice
community, the standard representation of an agent’s
preferences is a total pre-order. Each total pre-order
= is interpreted as describing the weak preferences of
an individual ¢, so that  <; y means ¢ considers al-
ternative x to be at least as preferable as alternative
yt If ¢ <; y and y <; z, then 7 is indifferent between
x and y.

Unfortunately, Arrow’s Impossibility Theorem (Arrow
1963) showed that no aggregation operator over total
pre-orders exists satisfying the following small set of
desirable properties:

Definition 5 Let f be an aggregation operator over
the preferences <1, ..., <n of n individuals, respec-
tively, over a finite set of alternatives ), and let
j :f(jlaajn)

3Sen’s uses a slightly stronger definition of choice sets,
but the theorem still holds in our more general case.

“The direction of the relation symbol is unintuitive, but
standard practice in the belief revision community.
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e Restricted Range: The range of f is the set of
total pre-orders over ().

e Unrestricted Domain: The domain of f is the set
of n-tuples of total pre-orders over ().

e Pareto Principle: If x <; y for all i, then = < y.

e Independence of Irrelevant Alternatives (IIA):
Suppose j, :f(jllaaj{n) If’ fOT CU,yGQ,
=iy iff e <Ly foralli, thena <y iff v <" y.

e Non-Dictatorship: There is no individual © such
that, for every tuple in the domain of f and every
z,y € Q, x <;y implies x < y.

Proposition 3 (Arrow 1968) There is no aggregation
operator that satisfies restricted range, unrestricted do-
main, (weak) Pareto principle, independendence of ir-
relevant alternatives, and nondictatorship.

This impossibility theorem led researchers to look for
weakenings to Arrow’s framework that would circum-
vent the result. One was to weaken the restricted range
condition, requiring that the result of an aggregation
only satisfy totality and quasi-transitivity rather than
the full transitivity of a total pre-order. This weak-
ening was sufficient to guarantee the existence of an
aggregation function satisfying the other conditions,
while still producing relations that defined choice func-
tions (Sen 1986). However, this solution was not with-
out its own problems.

First, total, quasi-transitive relations have unsatisfac-
tory semantics. If < is total and quasi-transitive but
not a total pre-order, its indifference relation is not
transitive:

Proposition 4 Let < be a relation over a finite set
Q and let ~ be its symmetric restriction (i.e., T ~y
iff t Ry andy < z). If < is total and quasi-transitive
but not transitive, then ~ is not transitive.

There has been much discussion as to whether or not
indifference should be transitive; in many cases one
feels indifference should be transitive. If Deb enjoys
plums and mangoes equally and also enjoys mangoes
and peaches equally, we would conclude that she also
enjoys plums and peaches equally. It seems that total
quasi-transitive relations that are not total pre-orders
cannot be understood easily as preference or indiffer-
ence.

Since the existence of a choice function is generally suf-
ficient for classical Social Choice problems, this issue
was at least ignorable. However, in iterated aggrega-
tion, the result of the aggregation must not only be us-
able for making decisions, but must be interpretable as



a new preference relation that may be involved in later
aggregations; consequently, it must maintain clean se-
mantics.

Secondly, the totality assumption is excessively restric-
tive for representing aggregate preferences. In general,
a binary relation < can express four possible relation-
ships between a pair of alternatives a and b: a < b and
bAa, b<a and a Ab, a<b and b<a, and a A b
and b A a. Totality reduces this set to the first three
which, under the interpretation of relations as repre-
senting weak preference, correspond to the two strict
orderings of a and b, and indifference. However, con-
sider the situation where a couple is trying to choose
between an Italian and an Indian restaurant, but one
strictly prefers Italian food to Indian food, whereas the
second strictly prefers Indian to Italian. The couple’s
opinions are in conflict, a situation that does not fit
into any of the three remaining categories. Thus, the
totality assumption is essentially an assumption that
conflicts do not exist. This, one may argue, is appro-
priate if we want to represent preferences of one agent
(but see (Kahneman and Tversky 1979) for persua-
sive arguments that individuals are often ambivalent).
However, the assumption is inappropriate if we want to
represent aggregate preferences since individuals will
almost certainly have differences of opinion.

4 Generalized Belief States

Let us turn to the domain of belief aggregation. A
total pre-order over the set of possible worlds is a
fairly well-accepted representation for a belief state in
the belief revision community (Grove 1988; Katsuno
and Mendelzon 1991; Lehmann and Magidor 1992;
Gérdenfors and Makinson 1994). Instead of prefer-
ence, relations represent relative likelihood, instead of
indifference, equal likelihood. For the remainder of the
paper, assume we are given some language £ with a
satisfaction relation |= for £. Let W be a finite, non-
empty set of possible worlds (interpretations) over L.
Suppose < is a total pre-order on W. The belief re-
vision literature maintains that the conditional belief
“if p then ¢” (where p and ¢ are sentences in £) holds
if all the worlds in the choice set of those satisfying p
also satisfy ¢; we write Bel(p?q). The individual’s un-
conditional beliefs are all those where p is the sentence
true. If neither the belief p?q nor its negation hold in
the belief state, it is said to be agnostic with respect
to p?q, written Agn(p?q).

It should come as no surprise that belief aggregation
is formally similar to preference aggregation and, as a
result, is also susceptible to the problems described in
the previous section. We propose a solution to these
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problems which generalizes the total pre-order repre-
sentation so as to capture information about conflicts.

4.1 Modular, transitive states

We take strict likelihood as primitive. Since strict like-
lihood is not necessarily total, it is possible to repre-
sent agnosticism and conflicting opinions in the same
structure. This choice deviates from that of most au-
thors, but are similar to those of Kreps (Kreps 1990,
p. 19) who is interested in representing both indiffer-
ence and incomparability. Unlike Kreps, rather than
use an asymmetric relation to represent strict likeli-
hood (e.g., the strict version of a weak likelihood rela-
tion), we impose the less restrictive condition of mod-
ularity.

We formally define generalized belief states:

Definition 6 A generalized belief state < is a mod-
ular, transitive relation over YWW. The set of possible
generalized belief states over VW is denoted .

We interpret a < b to mean “there is reason to con-
sider a as strictly more likely than b.” We represent
equal likelihood, which we also refer to as “agnosti-
cism,” with the relationship ~ defined such that x ~ y
if and only if z £ y and y £ x. We define the conflict
relation corresponding to <, denoted oo, so that xooy
iff x < y and y < z. It describes situations where there
are reasons to consider either of a pair of worlds as
strictly more likely than the other. In fact, one can
easily check that oo precisely represents conflicts in a
belief state in the sense of Definition 4.

For convenience, we will refer to generalized belief
states simply as belief states for the remainder of the
paper except when to do so would cause confusion.

4.2 Discussion

Let us consider why our choice of representation is
justified. First, we agree with the Social Choice com-
munity that strict likelihood should be transitive.

As we discussed in the previous section, there is of-
ten no compelling reason why agnosticism/indifference
should not be transitive; we also adopt this view.
However, transitivity of strict likelihood by itself does
not guarantee transitivity of agnosticism. A sim-
ple example is the following: <= {(a,c)}, so that
~= {(a,b), (b,c)}. However, if we buy that strict like-
lihood should be transitive, then agnosticism is transi-
tive identically when strict likelihood is also modular:

Proposition 5 Suppose a relation < is transitive and



~ is the corresponding agnosticism relation. Then ~
is transitive iff < is modular.

In summary, transitivity and modularity are necessary
if strict likelihood and agnosticism are both required
to be transitive.

We should point out that conflicts are also transitive
in our framework. At first glance, this may appear
undesirable: it is entirely possible for a group to dis-
agree on the relative likelihood of worlds a and b, and
b and ¢, yet agree that a is more likely than ¢. How-
ever, we note that this transitivity follows from the
cycle-based definition of conflicts (Definition 4), not
from our belief state representation. It highlights the
fact that we are not only concerned with conflicts that
arise from simple disagreements over pairs of alterna-
tives, but those that can be inferred from a series of
inconsistent opinions as well.

Now, to argue that modular, transitive relations are
sufficient to capture relative likelihood, agnosticism,
and conflicts among a group of information sources,
we first point out that adding irreflexivity would give
us the class of relations that are strict versions of total
pre-orders, i.e., conflict-free. Let 7 be the set of total
pre-orders over W, T, the set of their strict versions.

Proposition 6 The set of irreflexive relations in B is
isomorphic to T and, in fact, equals T<.

Secondly, the following representation theorem shows
that each belief state partitions the possible worlds
into sets of worlds either all equally likely or all poten-
tially involved in a conflict, and totally orders these
sets; worlds in distinct sets have the same relation to
each other as do the sets.

Proposition 7 <€ B iff there is a
W = (Wy,...,W,) of W such that:

partition

1. For everyx € W; andy € Wj, i # j implies ¢ < j
iff v <y.

2. Every W; is either fully connected (w < w' for all
w,w’ € W;) or fully disconnected (w £ w' for all
w,w' € W;).

Figure 1 shows three examples of belief states: one
which is a total pre-order, one which is the strict ver-
sion of a total pre-order, and one which is neither.

Thus, generalized belief states are not a big change
from the strict versions of total pre-orders. They
merely generalize these by weakening the assumption
that sets of worlds not strictly ordered are equally
likely, allowing for the possibility of conflicts. Now

OO
OO0
@ (b) ©

Figure 1: Three examples of generalized belief states:
(a) a total pre-order, (b) the strict version of a total
pre-order, (c) neither. (Each circle represents all the
worlds in W which satisfy the sentence inside. An arc
between circles indicates that w < w' for every w in
the head circle and w’ in the tail circle; no arc indi-
cates that w £ w' for each of these pairs. In particular,
the set of worlds represented by a circle is fully con-
nected if there is an arc from the circle to itself, fully
disconnected otherwise.)

we can distinguish between agnostic and conflicting
conditional beliefs. A belief state < is agnostic about
conditional belief p?q (i.e., Agn(p?q)) if the choice set
of worlds satisfying p contains both worlds which sat-
isfy ¢ and —¢ and is fully disconnected. It is in conflict
about this belief, written Con(p?q), if the choice set is
fully connected.

Finally, we compare the representational power of our
definitions to those discussed in the previous section.
First, B subsumes the class of total pre-orders:

Proposition 8 7 C B and is the set of reflexive rela-
tions in B.

Secondly, B neither subsumes nor is subsumed by the
set of total, quasi-transitive relations, and the inter-
section of the two classes is 7. Let Q be the set of
total, quasi-transitive relations over W, and Q., the
set of their strict versions.

Proposition 9

1. 9nB="T.

2. BZ Q.

3. Q& B if W has at least three elements.

4. Q C B if W has one or two elements.
Because modular, transitive relations represent strict
preferences, it is probably fairer to compare them to
the class of strict versions of total, quasi-transitive re-

lations. Again, neither class subsumes the other, but
this time the intersection is 7<:
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Proposition 10

1. Q< N B = T<-
2. BZ Q.
3. Q € B if W has at least three elements.

4. Q< C B if W has one or two elements.

In the next section, we define a natural aggregation
policy based on this new representation that admits
clear semantics and obeys appropriately modified ver-
sions of Arrow’s conditions.

5 Single-agent belief state
construction

Suppose an agent is informed by a set of sources, each
with its individual belief state. Suppose further that
the agent has ranked the sources by level of credibility.
We propose an operator for constructing the agent’s
belief state < by aggregating the belief states of the
sources in S while accounting for the credibility rank-
ing of the sources.

Example 1 We will use a running example from our
space robot domain to help provide intuition for our
definitions. The robot sends to earth a stream of
telemetry data gathered by the spacecraft, as long as
it receives positive feedback that the data is being re-
ceived. At some point it loses contact with the auto-
matic feedback system, so it sends a request for infor-
mation to an agent on earth to find out if the failure
was caused by a failure of the feedback system or by an
overload of the data retrieval system. In the former
case, it would continue to send data, in the latter, de-
sist. As it so happens, there has been no overload, but
the computer running the feedback system has hung.
The agent consults the following three experts, aggre-
gates their beliefs, and sends the results back to the
robot:

1. s,, the computer programmer that developed the
feedback program, believes nothing could ever go
wrong with her code, so there must have been an
overload problem. However, she admits that if
her program had crashed, the problem could rip-
ple through to cause an overload.

2. sm, the manager for the telemetry division, unfor-
tunately has out-dated information that the feed-
back system is working. She was also told by the
engineer who sold her the system that overloading
could never happen. She has no idea what would
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happen if there was an overload or the feedback
system crashed.

3. s¢, the technician working on the feedback sys-
tem, knows that the feedback system crashed, but
doesn’t know whether there was a data-overload.
Not being familiar with the retrieval system, she is
also unable to speculate whether the data retrieval
system would have overloaded if the feedback sys-
tem had not failed.

Let F and D be propositional variables representing
that the feedback and data retrieval systems, respec-
tively, are okay. The belief states for the three sources
are shown in Figure 2.

:

<
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q

Figure 2: The belief states of s;, s,,, and s¢ in Exam-
ple 1.

Let us begin the formal development by defining
sources:

Definition 7 S is a finite set of sources. With each
source s € S is associated a belief state <€ B.

We denote the agnosticism and conflict relations of a
source s by ~° and °, respectively. It is possible to
assume that the belief state of a source is conflict free,
i.e., acyclic. However, this is not necessary if we allow
sources to suffer from the human malady of “being
torn between possibilities.”

We assume that the agent’s credibility ranking over
the sources is a total pre-order:

Definition 8 R is a totally ordered finite set of ranks.

Definition 9 rank : S — R assigns to each source a
rank.

Definition 10 J is the total pre-order over S in-
duced by the ordering over R. That is, s 3 iff



rank(s) > rank(s'); we say s' is as credible as s. Jg
is the restriction of J to S C S.

We use 1 and = to denote the asymmetric and sym-
metric restrictions of J, respectively.® The finiteness
of § (R) ensures that a maximal source (rank) al-
ways exists, which is necessary for some of our results.
Weaker assumptions are possible, but at the price of
unnecessarily complicating the discussion.

We are ready to consider the source aggregation prob-
lem. In the following, assume an agent is informed by
a set of sources S C S. We look at two special cases—
equal-ranked and strictly-ranked source aggregation—
before considering the general case.

5.1 Equal-ranked sources aggregation

Suppose all the sources have the same rank so that
Jg is fully connected. Intuitively, we want take all
offered opinions seriously, so we take the union of the
relations:

Definition 11 If S C S, then Un(S) is the relation
USES <

By simply taking the union of the source belief states,
we may lose transitivity. However, we do not lose mod-
ularity:

Proposition 11 IfS C S, then Un(S) is modular but
not necessarily transitive.

Thus, we know from Proposition 1 that we need only
take the transitive closure of Un(S) to get a belief
state:

Definition 12 If S C S, then AGRUn(S) is the re-
lation Un(S)*.

Proposition 12 If S C S, then AGRUn(S) € B.

Not surprisingly, by taking all opinions of all sources
seriously, we may generate many conflicts, manifested
as fully connected subsets of W.

Example 2 Suppose all three sources in the space
robot scenario of Example 1 are considered equally
credible, then the aggregate belief state will be the fully
connected relation indicating that there are conflicts
over every belief.

®Note that, unlike the relations representing belief
states, > and I are read in the intuitive way, that is,
“greater” corresponds to “better.”
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5.2 Strictly-ranked sources aggregation

Next, consider the case where the sources are strictly
ranked, i.e., Jg is a total order. We define an operator
such that lower-ranked sources refine the belief states
of higher ranked sources. That is, in determining the
ordering of a pair of worlds, the opinions of higher-
ranked sources generally override those of lower-ranked
sources, and lower-ranked sources are consulted when
higher-ranked sources are agnostic:

Definition 13 If S C S, then AGRRf(S) is the re-
lation
{(x’y) A5 €S <FyA (Vs’ JseS wnt y)}

The definition of the AGRRf operator does not rely
on _g being a total order, and we will use it in this
more general setting in the following sub-section. How-
ever, in the case that Jg is a total order, the result of
applying AGRRf is guaranteed to be a belief state.

Proposition 13 If S CS and Jg is a total order,
then AGRRf(S) € B.

Example 3 Suppose, in the space robot scenario of
Ezxample 1, the technician is considered more cred-
ible than the manager who, in turn, is considered
more credible than the programmer. The aggregate be-
lief state, shown in Figure 3, informs the robot cor-
rectly that the feedback system has crashed, but that it
shouldn’t worry about an overload problem and should

keep sending data.

Figure 3: The belief state after aggregation in Exam-
ple 3 when s; 1 s, 1 5p.

Note that this case of strictly-ranked sources is al-
most exactly that considered in (Maynard-Reid II and
Shoham 2000), except that the authors are not able to
allow for conflicts in belief states. A surprising result
they show is that standard AGM belief revision (Al-
chourrén et al. 1985) can be modeled as the aggrega-



tion of two sources, the informant and the informee,
where the informant is considered more credible than
the informee.

5.3 General aggregation

In the general case, we may have several ranks rep-
resented and multiple sources of each rank. It will
be instructive to first consider the following seem-
ingly natural strawman operator, AGR*: First com-
bine equi-rank sources using AGRUn, then aggregate
the strictly-ranked results using what is essentially

AGRRf:

Definition 14 Let S CS. For any r € R,
let <,=AGRUn({s € S :rank(s)=r}) and =,
the corresponding agnosticism relation.  Also, let
rank(S) ={r € R :3s € S. rank(s) =r}. AGR*(S)
is the relation

{@n:

AGR* indeed defines a legitimate belief state:

IreR. <, yA
(Vr' > r € ranks(S). z ~, y)

Proposition 14 If S C S, then AGR*(S) € B.

Unfortunately, a problem with this “divide-and-
conquer” approach is it assumes the result of ag-
gregation is independent of potential interactions be-
tween the individual sources of different ranks. Con-
sequently, opinions that will eventually get overridden
may still have an indirect effect on the final aggrega-
tion result by introducing superfluous opinions during
the intermediate equi-rank aggregation step, as the fol-
lowing example shows:

Example 4 Let W = {a,b,c}. Suppose S C S
such  that S ={sp,s1,s2} with belief states
<fo={(b,a),(b,c)} and <'=<%2={(a,b),(c,b)},
and where sy 1 s1 = Sg. Then AGR*(S) is
{(a,b), (), (a,0), (,0), (,0), (b,b), (¢, )} All
sources are agnostic over a and ¢, yet (a,c) and (c,a)
are in the result because of the transitive closure in
the lower rank involving opinions ((b,c) and (b,a))
which actually get overridden in the final result.

Because of these undesired effects, we propose another
aggregation operator which circumvents this problem
by applying refinement (as defined in Definition 13)
to the set of source belief states before infering new
opinions via closure:

Definition 15 The rank-based aggregation of a set of
sources S C S is AGR(S) = AGRRf(S)*.
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Encouragingly, AGR outputs a valid belief state:
Proposition 15 If S C S, then AGR(S) € B.

Example 5 Suppose, in the space robot scenario of
Ezxample 1, the technician is still considered more cred-
ible than the manager and the programmer, but the
latter two are considered equally credible. The aggre-
gate belief state, shown in Figure 5, still gives the robot
the correct information about the state of the system.
The robot also learns for future reference that there
1s some disagreement over whether or not there would
have been a data overload if the feedback system were
working.

Figure 4: The belief state after aggregation in Exam-
ple 5 when s; 1 s, = sp.

We observe that AGR, when applied to the set of
sources in Example 4, does indeed bypass the problem
described above of extraneous opinion introduction:

Example 6 Assume W, S, and 1 are as in Eram-

ple 4. AGR(S) = {(a,b), (¢, b) }.

We also observe that AGR behaves well in the special
cases we’ve considered, reducing to AGRUn when all
sources have equal rank, and to AGRRf when the
sources are totally ranked:

Proposition 16 Suppose S C S.

1. If dg is fully connected, AGR(S) = AGRUn(S).

2. If Jg is a total order, AGR(S) = AGRRf(S).

5.4 Arrow, revisited

Finally, a strong argument in favor of AGR is that
it satisfies appropriate modifications of Arrow’s condi-
tions. Let f be an operator which aggregates the belief
states <°1, ..., <°* over W of n sources s1,...,5, €S,
respectively, and let < = f(<®1,...,<**). We con-
sider each condition separately.



Restricted range The output of the aggregation
function will be a modular, transitive belief state
rather than a total pre-order.

Definition 16 (modified) Restricted Range: The
range of f is B.

Unrestricted domain Similarly, the input to the
aggregation function will be modular, transitive belief
states of sources rather than total pre-orders.

Definition 17 (modified) Unrestricted Domain: For
each i, <* can be any member of B.

Pareto principle Generalized belief states already
represent strict likelihood. Consequently, we use the
actual input and output relations of the aggregation
function in place of their strict versions to define the
Pareto principle. Obviously, because we allow for the
introduction of conflicts, AGR will not satisfy the orig-
inal formal Pareto principle which essentially states
that if all sources have an unconflicted belief that one
world is strictly more likely than another, this must
also be true of the aggregated belief state. Neither
condition is necessarily stronger than the other.

Definition 18 (modified)
x <%y for all i, then v < y.

Pareto Principle: If

Independence of irrelevant alternatives Con-
flicts are defined in terms of cycles, not necessarily
binary. By allowing the existence of conflicts, we ef-
fectively have made it possible for outside worlds to
affect the relation between a pair of worlds, viz., by
involving them in a cycle. As a result, we need to
weaken ITA to say that the relation between worlds
should be independent of other worlds unless these
other worlds put them in conflict.

Definition 19 (modified) Independence of Irrelevant
Alternatives (IIA): Suppose si,...,s, € S such that
si = s, for all i, and <'= f(<1,..., <), If, for
T,y €W, x <5 yiffw < y for alli, xgoy, and xgo'y,
then x <y iff v <'y.

Non-dictatorship As with the Pareto principle def-
inition, we use the actual input and output relations
to define non-dictatorship since belief states repre-
sent strict likelihood. From this perspective, our set-
ting requires that informant sources of the highest
rank be “dictators” in the sense considered by Ar-
row. However, the setting originally considered by Ar-
row was one where all individuals are ranked equally.
Thus, we make this explicit in our new definition of
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non-dictatorship by adding the pre-condition that all
sources be of equal rank. Now, AGR treats a set of
equi-rank sources equally by taking all their opinions
seriously, at the price of introducing conflicts. So, in-
tuitively, there are no dictators. However, because Ar-
row did not account for conflicts in his formulation, all
the sources will be “dictators” by his definition. We
need to modify the definition of non-dictatorship to
say that no source can always push opinions through
without them ever being contested.

Definition 20 (modified) Non-Dictatorship: If
s; = sj for all i,7, then there is no ¢ such that, for
every combination of source belief states and every
z,y €W, <%y and y £% = implies x <y and
yAw.

We now show that AGR indeed satisfies these condi-
tions:

Proposition 17 Let S ={s1,...,5,} CS and
AGR; (<, ..., <) = AGR(S). AGRy satisfies (the
modified versions of) restricted range, unrestricted
domain, Pareto principle, IIA, and non-dictatorship.

6 Multi-agent fusion

So far, we have only considered the case where a sin-
gle agent must construct or update her belief state
once informed by a set of sources. Multi-agent fu-
sion is the process of aggregating the belief states of a
set of agents, each with its respective set of informant
sources. We proceed to formalize this setting.

An agent A is informed by a set of sources S C S.
Agent A’s induced belief state is the belief state
formed by aggregating the belief states of its infor-
mant sources, i.e., AGR(S). Assume the set of agents
to fuse agree upon rank (and, consequently, J).6 We
define the fusion of this set to be an agent informed
by the combination of informant sources:

Definition 21 Let A={A,...,A,} be a set of
agents such that each agent A; is informed by S; C S.
The fusion of A, written ) (A), is an agent informed
by S=U;_, Si.

5We could easily extend the framework to allow for indi-
vidual rankings, but we felt that the small gain in general-
ity would not justify the additional complexity and loss of
perspicuity. Similarly, we could consider each agent as hav-
ing a credibility ordering only over its informant sources.
However, it is unclear how, for example, crediblity order-
ings over disjoint sets of sources should be combined into a
new credibility ordering since their union will not be total.



Not surprisingly given its set-theoretic definition, fu-
sion is idempotent, commutative, and associative.
These properties guarantee the invariance required in
multi-agent belief aggregation applications such as our
space robot domain.

In the multi-agent space robot scenario described in
Section 1, we only have a direct need for the belief
states that result from fusion. We are only interested
in the belief states of the original sources in as far as
we want the fused belief state to reflect its informant
history. An obvious question is whether it is possi-
ble to compute the belief state induced by the agents’
fusion solely from their initial belief states, that is,
without having to reference the belief states of their
informant sources. This is highly desirable because of
the expense of storing—or, as in the case of our space
robot example, transmitting—all source belief states;
we would like to represent each agent’s knowledge as
compactly as possible.

In fact, we can do this if all sources have equal rank.
We simply take the transitive closure of the union of
the agents’ belief states:

Proposition 18 Let A and S be as in Definition 21,
<4 agent A;’s induced belief state, and Js, fully con-
nected. If A= @ (A), then (U, ea -<A")+
duced belief state.

is A’s in-

Unfortunately, the equal rank case is special. If we
have sources of different ranks, we generally cannot
compute the induced belief state after fusion using
only the agent belief states before fusion, as the fol-
lowing simple example demonstrates:

Example 7 Let W = {a,b}. Suppose two agents A,
and Ay are informed by sources s; with belief state
<*1={(a,b)} and sy with belief state <52= {(b,a)},
respectively. Ay’s belief state is the same as s1’s and
As’s is the same as s3’s. If s1 1 so, then the belief
state induced by ©) (A1, A2) is <*, whereas if so 1 s1,
then it is <*2. Thus, just knowing the belief states
of the fused agents is not sufficient for computing the
induced belief state. We need more information about
the original sources.

However, if sources are totally pre-ordered by credi-
bility, we can still do much better than storing all the
original sources. It is enough to store for each opinion
of AGRRf(S) the rank of the highest-ranked source
supporting it. We define pedigreed belief states which
enrich belief states with this additional information:

Definition 22 Let A be an agent informed by a set
of sources S CS. A’s pedigreed belief state is a pair
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(<,1) where <= AGRRf(S) and | :<— R such that
[((z,y)) = max{rank(s) : x <® y,s € S}. We use <2
to denote the restriction of A’s pedigreed belief state
to r, that is, <A= {(z,y) €<:1((z,y)) =r}.

We verify that a pair’s label is, in fact, the rank of
the source used to determine the pair’s membership in
AGRRf(S), not that of some higher-ranked source:

Proposition 19 Let A be an agent informed by a set
of sources S C S and with pedigreed belief state (<,1).
Then

:U-<,i4y
iff
ds e S. z <®yAr=rank(s)A
(Vs’jsES.azzS’ y)

The belief state induced by a pedigreed belief state
(<,1) is, obviously, the transitive closure of <.

Now, given only the pedigreed belief states of a set of
agents, we can compute the new pedigreed belief state
after fusion. We simply combine the labeled opinions
using our refinement techniques.

Proposition 20 Let A and S be as in Definition 21,
ds, a total pre-order, and A = ©) (A). If

1. < is the relation

JA; € A,r € R <A yA
() : (VAj ceAr >reR.z Nf,j y)
over W,
2.1:<—=R such that

I((z,y)) = max{r : x <% y, A; € A}, and

then (<,1) is A’s pedigreed belief state.

From the perspective of the induced belief states,
we are essentially discarding unlabeled opinions (i.e.,
those derived by the closure operation) before fusion.
Intuitively, we are learning new information so we may
need to retract some of our inferred opinions. After
fusion, we re-apply closure to complete the new be-
lief state. Interestingly, in the special case where the
sources are strictly-ranked, the closure is unnecessary:

Proposition 21 If A and S are as in Definition 21,
ds is a total order, and (<,1) is the pedigreed belief
state of @ (A), then <T=<.



Example 8 Let’s look once more at the space robot
scenario considered in FExample 1. Suppose the arro-
gant programmer is not part of the telemetry team, but
instead works for a company on the other side of the
country. Then the robot has to request information
from two separate agents, one to query the manager
and technician and one to query the programmer. As-
sume that the agents and the robot all rank the sources
the same, assigning the technician rank 2 and the other
two agents rank 1, which induces the same credibility
ordering used in Example 5. The agents’ pedigreed be-
lief states and the result of their fusion are shown in
Figure 5.

E

A1QA,

Figure 5: The pedigreed belief states of agent A; in-
formed by s, and s; and of agent A» informed by s,
and the result of their fusion in Example 8.

The first agent does not provide any information about
overloading and the second agent provides incorrect in-
formation. However, we see that after fusing the two,
the robot has a belief state that is identical to what it
computed in Exzample 5 when there was only one agent
informed by all three sources (we’ve only separated the
top set of worlds so as to show the labeling). Conse-
quently, it now knows the correct state of the system.
And, satisfyingly, the final result does not depend on
the order in which the robot receives the agents’ re-
ports.

The savings obtained in required storage space by
this scheme can be substantial. Whereas explicitly
storing all of an agent’s informant sources S requires
O(]|S]|2"Y) amount of space in the worst case (when
all the sources’ belief states are fully connected rela-
tions), storing a pedigreed belief state only requires
O(2") space in the worst case. Moreover, not only
does the enriched representation allow us to conserve
space, but it also provides for potential savings in the
efficiency of computing fusion since, for each pair of
worlds, we only need to consider the opinions of the

agents rather than those of all the sources in the com-
bined set of informants.

Incidentally, if we had used AGR* as the basis for
our general aggregation, simply storing the rank of the
maximum supporting sources would not give us suffi-
cient information to compute the induced belief state
after fusion. To demonstrate this, we give an example
where two pairs of sources induce the same annotated
agent belief states, yet yield different belief states after
fusion:

Example 9 Let W, S, and 3 be as in Ezam-
ple 4. Suppose agents Ay, As, Aj, and A
are informed by sets of sources Sy, S», Si, and
S4, respectively, where S1 = Sy = {s2}, S| = {s0, s2},
and S}y ={s1,s2}. AGR* dictates that the pedi-
greed belief states of all four agents equal <°2 with
all opinions annotated with rank(sz).  In spite
of this indistinguishability, if A= ({A1,42}) and
A=W ({A],AL}), then A’s induced belief state
equals <°2, i.e., {(a,b),(c,b)}, whereas A'’s is

{(a7 b)? (C, b)? (a7 c)? (C, a)? (a7 a)? (b7 b)? (C, C)}'
7 Conclusion

We have described a semantically clean representa-
tion for aggregate beliefs which allows us to represent
conflicting opinions without sacrificing the ability to
make decisions. We have proposed an intuitive oper-
ator which takes advantage of this representation so
that an agent can combine the belief states of a set
of informant sources totally pre-ordered by credibility.
Finally, we have described a mechanism for fusing the
belief states of different agents which iterates well.

The aggregation methods we have discussed here are
just special cases of a more general framework based on
voting. That is, we account not only for the ranking of
the sources supporting or disagreeing with an opinion
(i-e., the quality of support), but also the percentage of
sources in each camp (the quantity of support). Such
an extension allows for a much more refined approach
to aggregation, one much closer to what humans of-
ten use in practice. Exploring this richer space is the
subject of further research.

Another problem which deserves further study is de-
veloping a fuller understanding of the properties of the
Bel, Agn, and Con operators and how they interrelate.
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Abstract

Ensemblelearning algorithms combinethe re-
sults of several classifiersto yield an aggreyate
classification We presentinormatie evaluation
of combinationmethods,applying and extend-
ing existing axiomatizationgrom SocialChoice
theory and Statistics. For the caseof multiple
classesyve show that several seeminglyinnocu-
ous and desirablepropertiesare mutually satis-
fied only by a dictatorship. A wealer set of
propertiesadmitonly theweightedaveragecom-
bination rule. For the caseof binary classifi-
cation, we give axiomaticjustificationsfor ma-
jority vote and for weightedmajority. We also
shaw that, evenwhenall componenglgorithms
reportthat an attribute is probabilisticallyinde-
pendenibf the classificationcommonensemble
algorithmsoftendestrq thisindependencifor-
mation. We exemplify thesetheoreticalresults
with experimentson stock market data,demon-
stratinghow ensemblesf classifierscanexhibit
canonicalvoting paradoes.

1. Intr oduction

A recenttrendin machinelearningis to aggreyatethe out-
puts of several learning algorithmstogetherto produce
a compositeclassification(Dietterich, 1997). Under fa-
vorable conditions,ensembleclassifiersprovably outper
form their constituentalgorithms,an advantageborn out
by muchempiricalvalidation. Yet theredoesnot seemto
beasingle,obviousway to combineclassifiers—maydif-
ferentmethodshave beenproposedandtested,with none
emeging as the clear winner. Most evaluation metrics

centeron generalizatioraccuray, eitherderiving theoreti-
cal bounds(Schapire, 1990; Freund& Schapire, 1999)or
(more commonly)comparingexperimentalresults(Bauer
& Kohavi, 1999;Breiman,1996;Dietterich,in press;Fre-
und& Schapire,1996).

We take insteada normative approachijnformedby results
from Social Choicetheory and statisticalbelief aggreya-
tion. First, we identify several propertieghatanensemble
algorithmmight ideally possessandthencharacterizeéhe
implied form of thecombinatiorfunction. Sectior4 exam-
inesthecaseof morethantwo classesWe show that,under
a setof seeminglymild andreasonableonditions,no true
combinationmethodis possible.The aggrayateclassifica-
tion is alwaysidenticalto that of only one of the compo-
nentalgorithms. The analysismirrors Arrow’s celebrated
Impossibility Theorem,which shaws that the only voting
mechanisnthatobeys a similar setof propertiess a dicta-
torship(Arrow, 1963).Underslightly wealkerdemandswe
shaw thatthe only possibleform for the combinationfunc-
tion is aweightedaverageof the constituentlassifications.

Sectionb considerghespecialkcaseof binaryclassification.
Basedon May's (1952) seminalwork, we presenta setof
axiomsthat necessitat¢he useof simple majority voteto
combineclassifiers We thenextendthis result,deriving an
axiomaticjustificationfor the weightedmajority vote. Ma-
jority andweightedmajority aretwo of the mostcommon
methodausedfor classifiercombinationDietterich,1997).
Onecontrikution of this paperis to provide formal justifi-
cationsfor them.

Section6 exploresthe independencgreseration proper
ties of commonensembldearning algorithms. Suppose
that, with someattribute valuesmissing, all of the con-
stituentalgorithmsjudgeoneattributeto be statisticallyin-
dependentf the classification. We demonstratehat this
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independencés generallylost after combination,render
ing the aggreyate classificationstatisticallydependenbn
theattributein question.

Section7 presenteempirical evidenceof violations of the
various axioms. We shown that an ensembleof neural
networks—trainedo predictstockmarket data—cargen-
eratecounterintuitve results,reminiscenbof so-calledvot-
ing paradoxesin the Social Choiceliterature. Section8
summarizesinddiscussesuture work.

2. EnsembleLearning

We presenta very brief overview of ensembléearning;

see(Dietterich,1997)for an excellentsurwey. Represen-
tative algorithmsinclude bagging(Breiman,1996),boost-
ing (e.g.,ADABOOST (Freund& Schapire,1999)),anda

methodbasedon Error-CorrectingOutput Codes(ECOC)

(Dietterich & Bakiri, 1995). Ensemblealgorithmsgener

ally proceedn two phasesi(1) generateandtrain a setof

weaklearnersand(2) aggreatetheir classifications.

The first stepis to constructcomponentearnersof suffi-
cientdiversity (Hansen& Salamon,1990). Onecommon
techniques to subsampléhetrainingexamplesgitherran-
domly with replacemen{Breiman,1996), by leaving out
randomsubsetgasin cross-walidation),or by aninduced
distribution meanto magnifytheeffectof difficult training
examples(Freund& Schapire,1999). Anothertechnique
basesachlearners predictionson differentinput features
(Tumer& Ghosh,1996). The methodof Error-Correcting
OutputCodeg ECOC)generateslassifierdy having each
learnwhetheran examplefalls within a randomlychosen
subsebdf theclassesAnotherapproachnjectsrandomness
into the training algorithmsthemseles. Thesefour tech-
niguesapply to arbitrary classifieralgorithms—thereare
alsomary algorithm-specifi¢echniquesAnd, of coursejt
is possibleto createan ensembldoy mixing andmatching
differenttechniquedor differentclassifiers.

After generatingand training a set of weak learners,the
ensemblalgorithmcombinegheindividual learners’pre-
dictionsinto a compositeprediction. The choiceof com-
binationmethodis thefocusof this paper Commonmeth-
ods canbe catagyorizedlooselyinto two cateyories: those
that combine votes and those that can combine confi-

dencescores Theformertypeincludesplurality votet and
weightedplurality; thelatterincludesstacking serialcom-
bination, weightedaverage,andweightedgeometricaver

age.

Baggingand ECOC are examplesof algorithmsthat use
plurality vote. The ensembles chosenclassis simply that

This is the familiar “one person onevote” procedurevhere
the candidateeceving the mostvoteswins. We resere majority
voteto referto the specialcaseof two candidates.

which is predictedmost often by the individual learners.
Weighted plurality is a generalizationof plurality vote,
whereeachalgorithm’s vote is discounted(or magnified)
by a multiplicative weight; classesrethenrankedaccord-
ing to the sumof theweightedvotesthey receve. Weights
canbechoserto correspondvith theobsenedaccuray of

theindividual classifiersusingBayesiartechniquesor us-
ing gating networkg(Jordan& Jacobs1994),amongother
methods.The ADABOOST algorithmcomputesveightsin

anattemptto minimizetheerrorof thefinal classification.

Staking turnsthe problemof finding a good combination
function into a learning problemitself (Breiman, 1996;
Lee & Srihari, 1995; Wolpert, 1992): The constituental-
gorithms’ outputsare fed to a metalearners inputs; the
metalearners outputis taken as the ensembleclassifica-
tion. Serial combinationusesonelearners top & choices
to reducethe spaceof candidateclassespassingthe sim-
plified problemontothe next learner etc. (Madhvanath&
Govindaraju,1995).Weightedalgebraic (or geometriclav-
erage computegheaggrejateconfidencen eachclassasa
weightedalgebraiqor geometricaverageof theindividual
confidencesn that class(Jacobs1995; Tax et al., 1997).
Somevariantsof boostingemploy weightedaveragecom-
bination(Druckeretal., 1993).

3. Notation

Let A = (A4, A,, ..., Ar) denotea vectorof L attribute
variableswith domainD = D; x --- x Dy,. Denoteacor-
respondingvectorof values(i.e., instantiatedsariables)as
a = {ai1,as,...,ar) € D. Eachvectora is catgorized
into oneof M classesC1,Cs,...,Cyp. ThereareN clas-
sifiers, or learnerswhichattempto learnafunctionalmap-
ping from instantiatedattributesto classesDifferenttypes
of classifiersreturn different amountsof information—
somereturn a single vote for one predictedclass, others
returnarankingof theclassesandstill othersreturnconfi-
dencescoredor all classe€. Our contentionis that confi-
denceinformationis usually available, whetherexplicitly
(e.g., from neural net activation values, or Bayesiannet
or decisiontree likelihoods)or implicitly from obsened
performanceon the training data. Thuswe denotelearner
i's classificationasan assignmentS;y, . .., Siar) of con-
fidencescoreso the classeswhereS;; € . Eachclassi-
fieris afunction f; : D — R®M™. Whenconfidencemag-
nitude informationis truly unavailable,we adoptLee and
Srihari’s (1995) corventionsfor encodingclassifications:
A singlevotefor classC; is representedsa classification
vectorwith a 1 in the jth positionand zeroselsevhere;a
ranklist of the classesds represente@sa vectorwith a1

2Thesethreeoutputconditionscorrespondo LeeandSrihari's
(1995)definitionsof Typel, Typell, andTypelll classifiersye-
spectvely.
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in thetop classposition,1 — 1/M in the secondplacepo-
sition, 1 — 2/M in thethird placeposition,etc. Note that,
technically thesewo encodingsntroduceunfoundeccom-
parative information. For example,a vote for C; corveys
only that all otherclassesare lesspreferredthanC;, but
areotherwisencomparabl@amongthemseles. Variantsof
thelimitativetheoremsn this paperarealsopossibleusing
morefaithful representationsf votesandrankings.

An ensembleombinatiorfunctiong acceptan N-tupleof

classificationsaand returnsa compositeclassification;that
is, g : K —» ®M, whereK C (®™)". Thus,assuming
K= (®M )N, theaggreateclassificatiorof arbitraryclas-
sifiersfi,..., fxv onaninputais g(fi(a),..., fn(a)).

For a giveninput vectora € D, we find it corvenientto

defineS asthe N x M matrix of all learners’confidence
scoredor all classesThatis, S;; is learneri’s confidence
thata is in classj. Let r; be an N-dimensionakow vec-
tor with a 1 in theith positionandzeroselsevhere;simi-

larly, let c; be an M-dimensionakcolumnvectorwith al

in the jth positionand zeroselsevhere. Thenr;S is the
ith row of S, andSc; is the jth columnof S. In other
words, r;S = f;(a) is learneri’s classification,and Sc;

is the vectorof all confidencescoredfor class;j. Notethat
r;Sc; = S;;. We denotethe ensembleclassificationby

So = (SOl,SOQ, R S()M> = g(S) We write v > w to

indicatethat every componenbf v is strictly greaterthan
thecorrespondingomponenbdf w.

4. Multiple Classes

In this section,we proposea normative basisfor ensemble
learningwhen M > 3. Our treatments similar in spirit
to PennockHorvitz andGiles’s (2000)analysisof the ax-
iomaticfoundationsof collaborativefiltering.

4.1 An Impossibility Theorem

We presenfive propertiesadoptedrom SocialChoicethe-
ory, arguetheir meritsin the context of ensembldearning,
anddescribanhich existing algorithmsexhibit which prop-
erties. Eachpropertyplacesa constrainton the allowable
formof g.

Property 1 (Universaldomain (UNIV)) K = (%M)N.

UNIV requiresthat g be definedfor any combinationof
classificationvectors. Sincean arbitrary classifiermay re-
turn an arbitrary classification,it seemsonly reasonable
that g shouldreturnsomeresultin all circumstancesAll
existingensembleombinatiormethodsto ourknowledge,
aredefinedfor all possibleclassifieroutputpatterns.

Property 2 (Non-dictatorship (ND)) Thereis no dictator
1 sudh that, for all classificationrmatricesS andall classes
j andk, Sij > S = Soj > Sok.
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In words, g is not permittedto completelyignore all but
oneof theclassifiersjrrespectve of S. We consideithede-
sirability of this axiomto be self-evident, sincethe whole
point of ensembldearningis to improve uponthe perfor
manceof theindividual classifiers.

Property 3 (Weak Pareto principle (WP)) For all
classeg andk, Sc; > Sci = So; > Sok-

WP capturesthe naturalideal that, if all classifiersare
strictly more confidentaboutone classthananother then
this relationshipshouldbe reflectedin the ensembleclas-
sification. Essentiallyall voting schemege.g., plurality,
pairwisemajority, Bordacount)satisfyWP. Weightedplu-
rality andweightedaveragingmethodsobey WP whenall
weightsare nonnaative (and at leastoneis positive). If
a particularclassifiers predictionsare bad enough,some
combinationfunctions(e.g., weightedaveragewith nega-
tive weights,or stacking)may establisha negative depen-
dencebetweenthat classifiers opinion and the ensemble
result,andthusviolate WP. However, researchertypically
striveto generateensemblesf algorithmsthatareasaccu-
rateaspossiblefor a givenamountof diversity (Dietterich,
1997;Dietterich,in press).

Property 4 (Independence of irrelevant alter-
natives (I1A)) Consider two classification matri-
ces S,S'. If Sc; =S'c; and Sci =S'ci, then
S(')j > S(I)k =4 Soj > Sok-

UnderllA, the final relative ranking betweentwo classes
cannot dependon the confidencescoresfor ary other
classesFor example,supposdhat,in classifyinga fruit as
eitheranapple,abananagr apeartheensembleoncludes
that“apple” is mostlikely. Now imaginethatwe learnone
pieceof categyoricalknowledge(andnothingelse):thefruit
is not a pear Every classifierdiminishesits confidencen
“pear”, but leavesits relative confidencebetweeri'apple”
and“banana’untouched.Intuitively, the ensembleshould
notsuddenlyconcludehatthefruit is abananaindeed ad-
mitting suchareversalis contraryto mostformalreasoning
proceduresincluding Bayesiarreasoning.Seeminglyun-
foundedreversalslik e this are preciselywhat IIA guards
against. Weightedaveragingmethodsdo satisfy lIA, al-
though plurality vote, and most other voting techniques,
canviolateit. In Section7, we illustrate the paradoxical
resultsthancanoccurwhenllA is notmet.

Property 5 (Scaleinvariance (Sl)) Considertwo classifi-
cation matricesS, S'. If r;S' = o;1r;S + §; for all 4+ and
for any positive constantse; and any constantsg;, then
Soj > Sor € Soj > Soy, for all classeg andk.

Different classifiers(especiallythose basedon different
learningalgorithms)may report confidencesusing differ-
ent scales—onesay rangingfrom 0 to 1; anotherfrom
-100to 100. Evenif they shareacommonrange,oneclas-
sifier maytendto reportconfidencescoresin the high end



of the scale while anothertendsto usethe low end. Sl re-
flectstheintuition thatall classifiers’scoresshouldbenor-
malizedto a commonscalebeforecombiningthem. One
naturalnormalizationis:

S r;S — min(r;S)

max(r;S) — min(r;S)’ @
Thistransformsall confidencescorego the[0, 1] range fil-
teringoutary dependencenmultiplicative («;) or additive
(B;) scalefactors® LeeandSriharijustify asimilarnormal-
ization simply becauséeachoutput[classification]vector
is definedover a differentspace”(1995, p.42). Ensemble
combinationschemesbasedon votes or rankingsare by
definition invariantto scale;weightedaveragingmethods,
ontheotherhand,arenot.

Differentresearchers$avor differing subsetsof thesefive
propertiesat leastimplicitly via their choiceof combina-
tion methods.Roberts(1980) provesthat no combination
algorithmwhatsoeer can“haveit all”.

Proposition1 (Impossibility) If A > 2, nofunctiong si-
multaneouslsatisfiedUNIV, ND, WR 1A, and Sl.

Proof: Follows from Sens (1986) or Robertss (1980,
TheorenB) extensionof Arrow’s (1963)originaltheorem.
[ |

4.2 Weighted AverageCombination

We might wealen SI, allowing the final classificationto
dependon the magnitudesof confidencedifferences but
noton additive scaleshifts.

Property 6 (Translation invariance (Tl)) Considertwo

classificationmatricesS, S'. If r;S' = ar;S + 3; for all ¢

andfor any (single)positiveconstanta. and any constants
Bi, thenSy; > Sp,, & Soj > Sox for all classeg andk.

TI canbe enforcedby an additive normalizationor align-
ing all classifiers’scoreswith a commonreferencepoint
(e.g9.,r;S' + r;S — min(r;S)).

This wealeningis sufficient to allow for a non-dictatorial
combinationfunction g. Moreover, the only suchg com-
putesthe ensembleonfidencdn eachclassasa weighted
averageof the componentlearners’ confidencesin that
class.

Proposition2 (Weighted Average) If M > 2, then the
only function g satisfying UNIV, WR 1IA, and TI is
sud that wSc; > wSc, = Sy; > Sok, Whee
w = (wy,w2,...,wN) IS arow vectorof N nonngative
weights,at leastoneof which is positive If g is alsocon-
tinuous,thenwSc; > wScy < So; > Sor-

3If max(r;S) = min(r;S) thensetr;S’ to 0.
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Proof. Followsfrom Robertss (1980)Theorem2. m
Certainly there may exist classificationdomainswhere
someof thesepropertiesdo not seemappropriateor jus-
tified. However, we believe that,becausehe propertiesare
very natural,understandinghe limitations that they place
onthespaceof ensembldearningalgorithmshelpsto clar-
ify whatpotentialalgorithmscanandcannotdo.

5. Binary Classification

Now considerthe subsebf learningproblemswhere M =
|C| = 2. In this case theimpossibility outlinedin Propo-
sition 1 disappearsthe five propertiedUNIV, WP, 11A, SI,
andND arein fact perfectlycompatible.For example,all
five aresatisfiedby the standardnajority vote

N
1801 = Soall = || 151 — Szl ‘ )
i=1
where
1 : ifz>0
-1 : ifz<0

Notethatthe propertiesarenecessaryput not sufficient for
characterizingnajority vote. Proposition3 below provides
onesufficientcharacterization.

5.1 Majority Vote

The use of majority vote for ensemblelearningis typi-
cally motivatedby its simplicity, its obsenedeffectiveness,
andits percevedfairnesswhenthe constituentalgorithms
areessentially‘createdequal” (Dietterich,1997). For ex-
ample,the componentalgorithmsemployed for bagging,
ECOC,andrandomizatiorare generallya priori indistin-
guishableand(2) is typically usedto combineclassifica-
tionsin thesecases.

May (1952) providesan axiomaticjustificationfor major

ity vote. His treatmentis directly applicablewhenthecon-
stituentalgorithmsreturnonly votes(equivalentto rankings
sinceM = 2), ratherthanarbitraryconfidencescores.We

now generalizénisaxiomsandhis characterizatiotheorem
to applyto confidencescores.

Property 7 (Neutrality (NTRL))

If  g((S11,512),...,(Sn1,Sn2))
then g ((Si2,S11),---,(Sn2,Sn1))

= (So1, S02)
= (So2, So1)-

Under NTRL, the effect of every algorithm reversingits
voteis simply to reversethe aggreatevote. NTRL estab-
lishesa symmetrybetweenthe two classnames,C; and
C-, ruling outary a priori biasfor oneclassnameoverthe



other Indeed,the subscriptsl and 2 are assignedo the
two classesrbitrarily; NTRL simply ensureghatthefinal
resultdoesnot depencbn how thetwo classesreindexed.
NTRL is astrictly strongerconstrainthanllA.

Property 8 (Symmetry (SYM))

9 ({(S11,S12), .-+, (SN1, Sn2))
= g(<Si117’Si12>7‘"7<S’iNIJSiN2>)

whee  {iq,iz,...
{1,2,...,N}.

SYM is strongerthanND andis sometimegeferredto as
anonymity WhereasNTRL implies an invarianceunder
classnamereversal, SYM enforcesaninvarianceunderary
permutationof algorithm names,or subscripts. It simply
insiststhatour numberingscheméhasno effect on theout-
put of the combinationrule. Note that SYM doesnot, by
itself, rule out a posteriorbiasbasedon the classifiers're-
portedconfidencescores.

,in} is any permutation of

Property 9 (Positive Responsieness(POSR)) Consider
two classificationmatricesS, S'. If ||So1 — So2|| € {0,1},
andr;S' = r;S for all i # h, andr,S' is suct that either

1. S;zl > Sh1 andS}lQ = Sha, Or

2. S;zl = Sh1 ands;ﬂ < Sho,

then||S§; — Sgall = 1.

If the currentaggreyatevoteis tied (||So1 — Soz2|| = 0),
then,underPOSR ary changeby ary algorithms in apos-
itive directionfor C (i.e., Sp1 increase®r Sy, decreases)
breaksthis deadlock yielding Sg1 > So2. Moreover, ary
changeof oneof theconstituenvotesthatstrictly favorsCy
cannotswing the ensemblevote in the oppositedirection,
from C; to undecidedor to Cy. Combinedwith NTRL,
POSRIis a strongerversionof WP, but is still quite rea-
sonable.Note that, becausdhereare only two classesif
ary learnersvotesareobsenedto be negatively correlated
with thecorrectclassificatior(and,for example aweighted
averagemethodassignsa negative weight), thenits votes
cansimply be reversed,renderingPOSR(anda nonnea-
tive weight) appropriateagain.

Proposition3 (Majority Vote) Anaggregationfunctiong
is the majority vote (2) if andonly if it satisfiesUNIV, S,
NTRL,SYM,andPOSR.

Proof: Choosescalingparametergsin Equationl: a; =
(lSzl — Si2|)_1 (or if Sil = Si2, Setai = ].) andﬂi e
—a; min(S;, Si2). Letr;S" = a;r;S + §; for all 4. Then

<1,0> if Si1 > Sio
(Si1,Sia) = ¢ (0,0) if Si1 = Sio
(0, 1) if Sﬂ < SZ'Q
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Thatis, with only two classesandtwo degreesof freedom
in choosingthe scaling constants Sl effectively restricts
thedomainK of g to votes.May (1952)provesthatNTRL,

SYM, andPOSRarenecessargndsufficientconditionsfor

majority votewheninputsarevotes.We referthereadeito

May'’s articlefor theremainderof the proof. m

Notice that, when the componentalgorithmsreturn only
votes,andno otherinformationis available,Slis avacuous
requirementjn this setting,Proposition3 becomesa very
compellingnormativeargumentor theuseof majority vote
for classifiercombination.

5.2 Weighted Majority Vote

Whenthecomponenalgorithmsdo returnmeaningfulcon-
fidencescoresSI mayseemoverly severe,asit essentially
stripsaway magnitudeénformation.Confidencescoresnay
reflectmary source®f information—forexample theacti-
vationlevelsof aneuralnetwork’s outputnodesthe poste-
rior probabilitiesof a Bayesiametwork’s outputvariables,
or an algorithm’s obsened performanceon the training
data(asis usedin Boosting). Regardlessof its origin we
interpretS;; > S;2 asa predictionin favor of classone,
Siz > S; asa predictionin favor of classtwo, andthe
magnitudeof thedifferencen confidencescoregS;, —S;1 |
astheweightof algorithmi’s corviction.

Thenwe definetheweightedmajority voteas

1So1 — So2ll =

N
> 18 = Sial - 1S = Saall
i—1

N
Z Si1 — Sia
=1

: ®)

Property 10 (SeparableSymmetry (SSYM))

g ((S11,512), - - -, (Sn1, Sn2))
= g ((Si1175]'12)a tey (SiNIJ SjN2))

whee {i1,i2,...,in} and {j1,j2,...,jn} are any two
permutationf {1,2,...,N}.

SSYM is a strongerconstraintthan SYM. Under SSYM,

the ensembleclassificationdependson the set of confi-

dencescoredor classoneandthe setof confidencescores
for classtwo, but not on theidentity of the algorithmsthat
returnthosescores.

Proposition4 (WeightedMajority Vote) Theonlyaggre-
gationfunctiong that satisfiedJNIV, Tl, NTRL,SSYMand
POSRis theweightedmajority vote(3).

Proof:
So1 = Soo.

Under UNIV and NTRL, S = 0 implies that
Thus, under POSR,if Sy1 > Sn2 and



Sii = S;p = 0foralli # N, thenSy; > Sp2. Simi-
larly, becaus@f NTRL, if Sy2 > Sny1 andS;; = Si2 =0
forall i # N, thenSys > Sp1. Givenan arbitrary clas-
sificationmatrix S, we canmalke the following invariance
transformationsWe invoke Tl andSSYM alternatelyand
repeatedlyasfollows:

g(((Su, Su), <521, 522), <531, 532), .- )) =

9({{(S11 — S12,0),(0, Sa2 — S21),(S31, S32),--.)) =
9(¢{0,0), (S11 — S12, S22 — S21), (531, S32),...)) =
9({(0,0), {S11 + S21 — S12 — S22,0),

(0, S52 — S31),...)) =

N
g (<<0,0>, (0,0),(0,0),.., <Z Sin — Si2,0>>>

Thusif )°, Si1 — Si» is greaterthan (lessthan, equalto)
zero,then Sp1 — Sp2 is greaterthan (lessthan, equalto)
zero,preciselythe weightedmajority vote (3). m

6. IndependencePresewnation

Considerthe learners’predictionswhenasled to evaluate
an examplea* with somemissingvalues. Without loss
of generalitylet A,, A,, ..., A,, betheattributevariables
with missingvalues,andlet 4,,,1,..., A be the vari-
ableswith known values. Leta} . = (a},,;,...,a})
denotethe vector of known values. If we definea prior
joint probability distribution Pr(a) over all possiblecom-
binationsof attribute values,then we can computeeach
learners inducedposteriordistribution over classifications
giventheknown valuesa; . :
Pr;(r;Sla’ ;) = > Pr(x|a),s).
x€{D1X+*XDm }:
fi(x ) =ris

Similarly, we cancomputethe ensembles posteriordistri-
bution over classifications:

Pro(Sola),+) = Z Pr(x|a} ;).

x€{D1X-XDm }:
(1 (o oo ()} =50

Now we canascertainwhethersomeattributesare statisti-
cally independenbf the classification.Again without loss
of generality selectattribute A,,, 1 for this purpose What
if everyconstituentlgorithmagreeshatA,,, is indepen-
dentof theclassificationgiventheremainingknown values
ay,1o,---,a7? It seemsnaturalanddesirablethat sucha
unanimougudgmentof “irrelevance”shouldbe presered
in the ensembldistribution. The following propertyfor-

mally captureghisideal:
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A1 A2 A3 | rls I'2S I‘3S | SO
0 0 0 [ (L,0) (0,1) (1,0) |(1,0)
0o 1 0 | (0,1) (1,0) (0,1) |(0,1)
10 0 | (1,0) (0,1) (0,1) | (0,1)
1 1 0 | {1,0 (1,00 (1,0)]|1,0)

Pr;((1,0)|43 =0) | 0.75 0.5 0.5 0.5

A1 A2 A3 | rls I'QS r3S | SO
Y 1 1{(0,1) (0,1) (1,0)|(0,1)
0 1 1| {L,0) (0,1) (1,0) |(1,0)
10 1| (1,0 (1,00 (0,1) | (1,0)

1 1 1 {0 1,0 (1) (1,0
Pr;((1,0)|43 =1) | 0.75 0.5 0.5 0.75
Table1. Examplewhereplurality voteviolatesIPP.
Property 11 (Independence Presewation Property

(IPP))
If  Pry(r;S|a),.) = Pri(r;S|ay, 5,...,a7) foralli
then Pro(Sola),+) = Pro(Sola}, o,-..,a%).

Table 1 presentsa constructve proof that plurality vote
fails to satisfy IPP. Three attributes eachhave domain
D; = {0,1}, andthe prior distribution over attribute val-

uesPr(a) = 1/8 is uniform. VariablesA; and A, have

missingvalues(i.e., m = 2). Eachof threeconstituent
algorithmsagreethat the classificationis independenbf

As. But combinationby plurality vote destrgs this in-

dependenceAccordingto the ensemblethe classification
doesin factdependon the valueof A;. Similar examples
demonstratéhatalgebraicandgeometricaveragesalsovi-

olate IPP. It remainsan openquestionwhetherary rea-
sonableensemblecombinationfunction can satisfy IPP.
Resultsfrom Statisticsconcerninggeneralizedsariantsof

IPP aremostly negative: No acceptableaggreyationfunc-

tion hasbeernfoundthatpreseresindependencéGenes&

Zidek, 1986),and severalimpossibility theoremsseverely
restrictthe spaceof potentialcandidatefGenest& Wag-
ner, 1987;Pennock& Wellman,1999).

7. Experimental Observations

We have shawn, in theory, thattheclassof potentialensem-
ble algorithmsis severelylimited if we wanta smallnum-
ber of intuitive propertiessatisfied. One might arguethat
situationswhere thesepropertiescomeinto conflict may
neverarisein practiceif we usepopularaggreyationmeth-
ods. Thepurposeof this sectionis to shav by examplethat,
in fact,suchconflictsdo occurin practice.Specifically we
will give examplesfrom a stockmarket predictiondomain
wherellA breaksdown if we baseour aggreyationon vot-

ing.



rankorder |

# | rankorder |
UP > SAME > DOWN | 6

1

3

#
DOWN > SAME > UP | 5
5
1

UP > DOWN > SAME
DOWN > UP > SAME

SAME > UP > DOWN
SAME > DOWN > UP

Table2. Six learnedvote patternsandthe numberof neuralnet-
worksthatlearnedeach.An instanceof the Bordaparadox.

To this end, we report results of empirical tests of an
ensemblelearnertrained on stock market data. We re-
trieved daily closing pricesof the Dow betweenl1/20/97
and 1/18/00from MSN Investor* From this, we gener
ated an approximatelyzero-meanand unit-variancetime
seriesof the form {d; = 85(lnp; — Inp;_1)}, wherep;
is the Dow’s price on day t. The attributesare A =
(dy_5,d¢_4,--.,di_1). Theclassesarediscreteintervals
of d; suchthatC; = up = (d; > 0.35), Co = DOWN =
(dy < —0.35), andC3; = saME = (—0.35 < d; < 0.35).
Theintervalsaresuchthateachclassfrequeng is roughly
1/3. Thecomponentearningalgorithmsarebackpropaga-
tion neuralnetworks built using Flake’s (1999) NODEL 1B
codelibrary; eachconsistsof aninput layer of five nodes,
a hiddenlayer of from oneto seven nodes,andan output
layer of threenodes. Diversity is due only to differences
in the numberof hiddennodesandto randomizatiorin the
training algorithm. The time seriesd; wasdividedinto a
training setof 562 daysandatestsetof 187 days.

Table 2 shaws the learnedclassrankingsfor twenty one
networks (threeeachwith 1,2, ..., 7 hiddennodes)n test
day 7/14/99. If we usestandardlurality vote to combine
predictions,then bowN wins with 8 votes, Up placesin

secondwith 7 votes,andsaME comesin lastwith 6 votes.
By this measurewe should shortthe Dow. But are we

sure?SincesAME is presumablythe leastlik ely outcome,
let's focuson therelative lik elihoodsbetweenonly bownN

andupr.® If we ignore sAME andrecomputethe vote, we

find that up actuallybeatsbowN by 12:9! Thisis a vivid

demonstratiorthat plurality vote violatesllA; the prefer

encebetweenup andDOWN depend®n SAME. Soshould
we investin the Dow? Well, the othertwo pairwise ma-
jority votesrevealthat SAME beatsup by 11:10andsAME

beatsbowN by 12:9. Thenaccordingto the pairwisema-
jority, SAME wins againstboth otherclassespp comesin

secondandbownN islast,completelyreversingtheoriginal

orderpredictedby the three-way plurality vote. Thisis an
illustration of the so-calledBorda voting paradox named
afterthe eighteenttcenturyscientistwho discoveredit.

Table 3 demonstratesnotherclassicvoting paradox,due
to Condorcetpneof Borda's peers.Thetablelists the ac-

“http:// noneycentral . msn. conl i nvest or
0r we may have receied outsideinformationthat discounts
thelikelihoodof sAME.

i| Si S; Sis | rankorder

1]-0.33 -0.41 -0.25| SsAME > UP > DOWN
2| -0.45 -0.25 -0.27 | DOWN > SAME > UP
3]-0.31 -0.35 -0.37| uP> DOWN > SAME

Table3. Confidencescoresand corresponding/ote patternsfor
threeneuralnetworks. An instanceof the Condorceparadox.

tivationvalues(confidencescores)pf threenetworks (with

one,two, andthreehiddennodes)on testday4/23/99.PIlu-
rality vote is tied, sinceeachalgorithm ranksa different
classhighest. What aboutpairwisemajority vote? In this
casesSAME beatsup by 2:1,andup beatDowN by 2:1. So
is SAME our predictedoutcome?Not necessarily-BOwWN

beatssAME, alsoby 2:1. We seethatpairwisemajority vote
canreturncyclical predictions,a violation of our generic
definition of a classificationR™, which assumeshat ag-
gregationreturnsa transitve orderingof classes.

Thesetwo “paradoes” illustrate the undesirableconse-
guencef violating someof the basicpropertiesof g de-
fined earlier The examplesalso constitutean existence
proofthatsomeof the samecounterintuitve outcomeghat
have perplexed social scientistsfor centuriescan and do
occurin the context of ensemblédearning.

8. Conclusion

We identified several propertiesof combinationfunctions
that Social Choice theoristsand statisticianshave found
compelling,andarguedtheir applicabilityin the context of

ensembldearning.We catalogeccommonensembleneth-
odsaccordingto the propertieghey do anddo not satisfy

andshovedthatno combinatiorfunctioncanpossesthem
all. We provided axiomaticjustificationsfor weightedav-

eragecombination,majority vote, and weightedmajority
vote. We describechow commonaggreyationmethoddail

to respecunanimougudgmentsof independencekinally,

we exemplifiedthe fundamentahndunavoidabletradeofs

amongthe various propertiesusing an ensembléelearner
trainedon stockmarket data.

Drucker, et al. (1993) presentempirical evidence that
weightedaverageoutperformsplurality vote in somecir-
cumstances. Futurework will examine whetherthe ax-
iomatic framework developedin this papercanaid in de-
riving theoreticalboundson the performanceof weighted
averageand othercombinationrules. We alsoplanto ex-
plore normatiejustificationsfor individual classifiersand
investigatewhether in somecasesa comple individual
classifiermight reasonablybe interpretedas an ensemble
of simplerconstituentlassifiers.
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Appendix L

Aggregating Learned Probabilistic Beliefs

Pedrito Maynard-Reid |l
ComputerScienceDepartment
StanfordUniversity
Stanford,CA 94305-9010
pedmayn@s. st anf ord. edu

Abstract

We considerthe task of aggreating beliefs of sev/-
eral experts. We assumethat thesebeliefs are rep-
resentedas probability distributions. We argue that
the evaluationof ary aggreationtechniquedepends
on the semanticcontet of this task. We proposea
framework, in which we assumehatnaturegenerates
sampledrom a‘true’ distribution anddifferentexperts
form their beliefshasedn the subsetof the datathey
have a chanceto obsere. Naturally the optimal ag-
gregatedistribution would bethe onelearnedrom the
combinedsamplesets. Sucha formulationleadsto a
naturalwayto measureéheaccurag of theaggreation
mechanism.

We shawv that the well-knowvn aggreation operator
LinOP is ideally suited for that task. We propose
a LinOP-basedlearning algorithm, inspired by the
techniquesdeveloped for Bayesianlearning, which
aggr@atesthe experts’ distributions representecas
Bayesiametworks. We shav experimentallythatthis
algorithmperformswell in practice.

1 Intr oduction

Belief aggreyation of subjective probability distributions
hasbeena subjectof greatinterestin statistics(see[GZ86,

CW299]) and, more recently artificial intelligence (e.qg.,
[PW99) andmachinelearning(ensembldearningin par

ticular[PMGHOQ), especiallysinceprobabilisticdistribu-

tions are increasinglybeing usedin medicineand other
fields to encodeknowledge of experts. Unfortunately
mary of the aggreyation proposalshave lacked sufficient

semanticalunderpinnings,typically evaluatinga mecha-
nism by how well it satisfiespropertiesjustified by little

morethanintuition. However, ashasbeennotedin other
fields suchasbelief revision (cf. [FH96]), the appropriate-
nessof propertiedepend®n the particularcontext.

We take a moresemantiapproacho aggreyation: we first
describethe realistic framawork in which the expertsor
souiceslearntheir probability distributions from dataus-
ing standardprobabilisticlearningtechniquesWe assume
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aDecisionMaker (DM) — thetraditionalnamefor the ag-
gregator— wantsto aggreyatea setof theselearneddis-
tributions. This framework suggests naturaloptimal ag-
gregationmechanismconstructhedistribution thatwould
be learnedhadall the sources'datasetsheenavailableto
theDM. Sincetheoriginal datasetsaregenerallynot avail-
able,the aggreationmechanisnshouldcomeascloseas
possibleto reconstructinghe datasetsandlearningfrom
thecombinedset.

For intuition, considerthe the task of creatingan expert
systemfor somespecializedmedicalfield. We would like

to take advantageof the expertiseof severaldoctorswork-

ing in this field. Each of thesedoctors sharpenechis

knowledgeby following mary patients. The doctorscan
no longerrecall the specificsof eachcase,but they have

formed over the yearsfairly accuratemodelsof the do-

main that canbe representeds setsof conditional prob-

abilities. (In fact, mary expert systemshave beencreated
over the yearsby eliciting such conditional probabilities
from experts[HHN92].) Of course,if therewasa doctor
who hadseenall of the patientshe othersdoctorssaw, the
ideal expert systemwould resultfrom eliciting her model.
However, thereisn't one suchexpert. Therefore,our sys-
temwould benefitfrom incorporatingthe knowledgeof as
mary expertsaswe canfind. The systemwould alsoac-
countfor thediffering levelsof experienceof differentdoc-

tors — someof themmay have practicedfor muchlonger
thanothers.

One of the best-knevn aggreyation operatorsis the Lin-
earOpinionPool (LinOP) which aggreyatesa setof distri-
butions by taking their weightedsum. It hasbeenshovn
in the statisticscommunitythat, undersomeintuitive as-
sumptions,learningthe joint distribution from the com-
bineddatasetis equivalentto usingLinOP overtheindivid-
ualjoint distributionslearnedfrom theindividual datasets.
However, whereasthe weightsin typical usesof LinOP
are often criticized for being ad-hoc,our framework pre-
scribessemantically-justifiedveights: the estimatedper
centage®f the dataeachsourcesaw. Intuitively, a high
weight meanswe believe a sourcehas seena relatively



largeamountof dataandis, hencelikely to bereliable.

However, joint distributions are hardly the preferredrep-
resentatiorfor probabilisticbeliefsin real-world domains.
BNs (akabelief networks, etc.) [Pea88 have gainedmuch
popularityasstructuredrepresentationsf probability dis-
tributions. They allow suchdistributionsto berepresented
much more compactly thereforeoften avoiding exponen-
tial blowupin bothmemorysizeandinferencecomplexity.

Thus,we assuméhe sourcedeliefsareBNs learnedrom
data.Accordingto our semanticstheaggreyateBN should
beonethe DM wouldlearnfrom thecombinedsetsof data.
We describea LinOP-based®N aggreyationalgorithm,in-
spiredby the algorithm designedo learnBNs from data.
The algorithm usessources’distributionsinsteadof sam-
plesto searchover possibleBN structuresand parameter
settings. It takes advantageof the marginalizationprop-
erty of LinOP to make computatiormoreefficient. We ex-
plore the algorithm’s behavior by runningexperimentson
thewell-known, real-life Alarm network [BSCC89]andon
thesmallerartificial Asia network [LS88].

2 Formal Preliminaries

We restrictourattentionto domainswith discretevariables.
We considerhow to computethe aggreyate distribution,
andhow the accurag of our computationrdependsn how
muchwe know aboutthe sources.

Formally, we considerthe following setting: Thereare L
sourceaand N discreterandomvariableswhereeachvari-
able X hasdomaindom(X). We follow the cornventionof
usingcapitallettersto denotevariablesandlowercasdet-
tersto denotetheirvalues.Symbolsin bold denotesets. )V
is the setof possibleworlds definedby valueassignments
to variables.The true distribution or modelof theworld is
w. Eachsourcei hasadatasetD; sampledrom (unknowvn
to us)w. We will assumehateachD; is finite of size M;.
The correspondingempirical(i.e., frequeng) distribution
is p;. Eachsourcei learnsa distribution p; over W. This
is 2’'s modelof theworld. The combinedsetof sampless
D = U;D; of size M. Thecorrespondingmpiricaldistri-
butionis p. TheDM constructanaggreatedistribution p.
The optimal aggreyatedistribution p* is positedto be the
distributionthe DM would learnfrom D.

Sinceit is unrealisticto expectthe DM to have accesso the
sources’samplesets,we considerhow to useinformation
aboutthe sources'learneddistributionsto at leastapprox-
imatep*. Specifically we considerthe situationwherethe
DM knows the sources'distributionsandhasa good esti-
mateof thepercentagey; = M;/M of thecombinedsetof
samplesachsourcei hasobseredaswell aswhatlearn-
ing methodit used.

We make a numberof assumptionsFirst, we assumehat
the samplesarenot noisy or otherwisecorrupted andthey
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arecomplete(no missingvalues).

Secondwe assumehattheindividual samplesetsaredis-
joint (soM = ", M;). Thisimpliesthattheconcatenation
of theD; equalsD, sowe don’t have to concernoursehes
with repeatsvhenaggreyating. This assumptioris not al-
ways appropriate.lt is invalidatedwhen multiple sources
obsene the sameevent. However, thereareinterestingdo-
mainswherethis propertyholds. For example,in our mo-
tivating medicaldomain, doctorsare likely to have seen
disjoint setsof patients.

Third, we assumehatthe sourceselieve their samplego
bellD — independenandidenticallydistributed. Thema-
chinelearningalgorithmsusedin practicecommonlyrely
onthisassumption.

Finally, we assumehatthe samplesn thecombinedsetD
aresampledrom 7 andlID. This assumptiormay appear
overly restrictive at first glance. For one, it may seemto
precludethe commonsituationwheresourceseceve sam-
plesfrom differentsubpopulationsior example,if doctors
arein differentpartsof theworld, the characteristicef the
patientshey seewill likely bedifferent.

In fact,we canaccomodat¢his situationwithin our frame-
work by assumingr is adistribution overthe domainvari-
ablesand a sourcevariable S which takes the different
sourcesasvalues;S = i meanssource; obsenedthein-
stantiateddomainvariables. This generalizedlistribution
is sampledID. EachD; consistof the subsebf samples
whereS = i. It is not necessaryo keeparoundthe S val-
ues;computingthep; andp* without S will give thesame
resultsaslearningdistributionsover the completesamples
andmarginalizing out S. Thus,althoughsampleswill be
IID, differentsubpopulatiordistributionswill be possible,
capturedby differentconditional probability distributions
of thedomainvariablesgivendistinctvaluesof S.!

3 AggregatingLearned Joint Distrib utions

We first considerthe casewheresourceshave learnedoint
distributions,andthe aggreyateis alsoajoint.

3.1 Learning joint distrib utions: review

Givensample®f avariableX, thegoalof alearneristo es-
timatethe probability of future occurencesf eachvalueof
X. In oursetting thedomainof X is W andtheparameters
that needto be learnedarethe |W| probabilites. The dis-
tribution over X is parameterizetty ®. Two standardap-
proachesare MaximumLikelihood Estimation(MLE) and
MaximumA Posteriori estimation(MAP).

1Two implicationsof this formulationarethatthe assumption
thatthe D; aredisjointis implicit anda; will approachr(S = 7)
asM approacheso for all 7.



An MLE learnerchooseshe memberof a specifiedfamily
of distributionsthatmaximizesthelik elihoodof thedata:

Definition 1 If X is a random variable, dom(X) =
{Xl,. ..,Xk}, and® = <(")1,.. .,(“)k> whee ©; = P(.’L’, |
®), thenthe MLE distribution over X givendatasetD is

MLE(X,D) = argmﬂgxP(D | 6)

It is easyto shaw thatthe MLE distributionis theempirical
distributionif samplesarellD.

MAP learning,ontheotherhand followsthe Bayesiarap-
proachto learningwhich directsusto put a prior distribu-

tion over the value of ary parameteme wish to estimate.

We treattheseparameterasrandomvariablesanddefinea
probability distribution over them. More formally, we now
have a joint probability spacethat includesboth the data
andthe parameters.

Definition 2 If X is a random variable dom(X) =
{Xl, Ce ,Xk}, and® = ((")1, . .,(“)k) Whele@i = _P(.’IIZ |
®), thenthe MAP distribution over X givendata setD
andprior P(®) is thedistribution

MAP(X,P(®),D) = P(X|D) =/P(X|®)P(®|D)d®

Theappropriateconjugateprior for variableswith multino-
mial distributionsis Dirichlet. Dir(® | ~v,...,v), where
eachry; is ahyperparametesuchthat~y; > 0.

We will assumehatDirichlet distributionsareassesseds-
ing the methodof equivalentsamples given a prior dis-
tribution p over X and an estimatedsamplesize ¢, ~; is
simply p(z;)¢. We usetheseto parameteriz8IAP:

Definition 3 If X is a random variable dom(X) =
{Xl,...,Xk}, e = ((“)1,...,(“)k> whee G')z = p(xi |
®), p is a probability distribution over X, and
& > 0, thenMAP(X, (p, &), D) denotesthe distribution
MAP(X, Po, D) Whelepo = Dlr(glp(xl)£7 tee :P(Xk)f)-

We will omitthe X argumentfrom the MLE andMAP no-
tationsinceit is understood.

3.2 LinOP: review

Let usturn to the problemof aggreyation. We will show
thatjoint aggreyationessentiallyeducego LinOP. LinOP
was proposedby Stonein [Sto61], but is generally at-
tributedto Laplace.lt aggreyatesa setof joint distributions
by takinga weightedsumof them:

Definition 4 Given probability distributions py,...,pL
and non-n@ative parametes (;,...,0r sud that
>;Bi = 1, the LinOP operator is definedsud that, for
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anyw € W,

LinOP(ﬁla P1,.-- J/BLJPL)(W) = Z ﬂlpl(w)

LinOP is popularin practicebecausef its simplicity. As

describedin [GZ86], it also hasa numberof attractive

propertiessuch as unanimity (if all the p; = p’, then
LinOPreturnsp'), non-dictatoship(nooneinputis always
followed), and the marginalization property (aggreyation
andmaurginalizationarecommutatve operators)However,

LinOP hasoftenbeendismissedn theaggre&ationcommu-
nitiesasanormative aggregationmechanismprimarily be-

causadt failsto satisfyanumberof otherpropertiesleemed
to be necessaryf ary reasonablaggreyator, e.g.,the ex-

ternal Bayesianityproperty(aggreyationand conditioning
shouldcommute)andthe presenration of sharedindepen-
dences. Furthermoretypical approacheso choosingthe
weightsareoftencriticizedasbeingad-hoc.

However, this dismissal may have been overly hasty
LinOP provesto bethe operatorwe arelooking for in our
framework: usingit is equivalentto having the DM learn
from the combineddatasetunderintuitive assumptions.

3.3 MLE aggregation

Supposeghesourcesandthe DM areMLE learners As has
beenknown in statisticsfor sometime, the DM needonly
computethe LinOP of the sourcesdistributions.

Proposition1 (JWin68, Mor83]) If p; = MLE(D;) for
eahi € {1,...,L} andp* = MLE(D), thenp* =
LinOP(alapla"'aaLapL)'

Althoughstraight-forward,this propositionis illuminating.
For one,theweightcorrespondingo eachsourcehasavery
clearmeaningit is the percentagef total dataseerby that
source.The DM only needsto provide accurateestimates
of thesepercentagesA highweightindicatesthatthe DM
believesa sourcehasseerarelatively largeamountof data
andis, hence likely to be very reliable. Thus,we address
a commoncriticism of LinOP, that the weightsare often
chosenin an ad-hocfashion. Also, if M is known, the
DM cancomputethe numberof samplesn D thatwere
w: MLinOP(a4,p1,-..,aL,pL). Thus,LinOP canbe
viewed asessentiallystoringthe suficient statisticsfor the
DM learningproblem.

It is now easyto seewhy a propertysuchaspreseration

of independencavill not always hold given our learning-
basedsemantics.In our frameawork, sourcesdo not have

strongbeliefsaboutindependencesiry believedindepen-
dencedependson how well it fits the sources data. The

independencereseration propertydoesnot take into ac-

countthe possibility that, becausef limited data,sources
mayall have learnedndependenceshich arenotjustified

if all thedatawastakeninto account.



Considerfor example,the following distribution over two
variablesA and B: w(ab) = 1/4, n(ab) = 1/6, w(ab) =
1/3, andw(ab) = 1/4. Obviously, A and B arenot in-
dependentSupposdwo sourceshave eachreceved a set
of six samplesrom this distribution: D; consistsof one
eachof ab andab, two eachof ab andab; D, consistsof
one eachof ab and ab, two eachof ab andab. Further
supposeeachusedMLE to learnadistribution over A and
B. A andB areindependenin eachof thesedistributions.
TheLinOPdistribution, ontheotherhand effectively takes
into accountheevidenceseerby bothsourcesaindactually
computesr wherethevariablesarenotindependent.

3.4 MAP aggregation

MLE learnersareknown to have problemswith overfitting
and low-probability eventsfor which datanever material-
ized. MAP learningoftendoesa betterjob of dealingwith

theseproblems especiallywhendatais sparse.

Consequentlysupposehe sourcesandthe DM are MAP
learnerswith Dirichlet priors. The optimal aggreyatedis-
tributionis a variationon LinOP:2

Proposition2 Supposefor eadhi € {1,...,L}, p; =
MAP((m;&)aDi) andp* = MAP(<p7§)7D1) Then,

P (w) = ﬁ (MLinOP(ax,pu,. -, oL, pr) + p(w)§)

+> Mi ¢ (pi(w) = pi(w)). @)

Thefirst termin Equationl is the DM’s MAP estimation,
the secondterm accountsfor the sources’priors by sub-
tractingouttheir effect.

Corollary 2.1 Supposefor eah i € {1,...,L}, p; =
MAP({pi, &), Di) andp* = MAP({p, ), Ds). Then,

5/111\?_1,0 p* = LinOP(ay, p1,---,0L,PL)-
£;/M—0Vi

Thus, as M becomeslarge, the LinOP distribution ap-
proache®*. Thisis notsurprisingsinceit is well-known
thatMLE learningandMAP learningwith Dirichlet priors
areasymptoticallyequivalent. Theimplicationis thatif M
is large, not only do we not needto know M to aggrejate,
we do not needto know what priors the sourcesusedei-
ther And if we approximatehe aggreyatedistribution by
theLinOP distribution, thisapproximatiorwill improvethe
moresampleseenby thesources.

4 AggregatingLearned BayesianNetworks

Bayesiametworks (BNs) arestructuredrepresentationsf
probability distributions. A BN b consistsof a directed

2We omit proofsfor lack of space.

agyclic graph(DAG) g whosenodesarethe N randonvari-
ables. The parentsof a node X are denotedby Pa(X);

pa(X) denotesa particularassignmento Pa(X). The
structureof the network encodesnaminal andconditional
independenciegresentn thedistribution. Associatedvith

eachnodeis the conditionalprobability distribution (CPD)
for X givenPa(X).

We considethecasewnheresourcesbeliefsarerepresented
as BNs learnedfrom data. We briefly review the tech-
niguesusedfor learningBNs from data. For a more de-
tailed presentationsee[Hec9q.

4.1 Learning Bayesiannetworks: review

If the structureof the network is known, the taskreduces
to statisticalparameteestimationby MLE or MAP. In the

caseof completedata,thelikelihoodfunctionfor theentire
BN convenientlydecomposeaccordingto the structureof

the network, so we can maximizethe likelihood of each
parametemdependently

If thestructureof thenetwork is notknown, we haveto ap-
ply Bayesiarmodelselection.More precisely we definea
discretevariable G whosestatesg correspondo possible
models,i.e., possiblenetwork structures;we encodeour
uncertaintyaboutG with the probability distribution P(g).

For eachmodel g, we definea continuousvectorvalued
variable®,, whoseinstantiationg, correspondo the pos-
sible parametersf the model. We encodeour uncertainty
about®, with aprobabilitydistribution P(6, | g).

We scorethe candidatenodelsby evaluatingthe maminal

likelihood of the dataset D given the model g, that is,

the Bayesianscoe P(D | g) = [P(D | 6,,9)P(6, |

9)P(g)db,.

In practice, we often use some approximationto the
Bayesianscore. The mostcommonlyusedis the MDL

score,which corvergesto the Bayesianscoreasthe data
setbecomedarge. The MDL scoreis definedas

scoreypr (b’ : D) =

N
MZ Z Zﬁ(ﬂii,pa(ﬂfi))logﬁ($i|pa(ﬂfz’))

i=1 pa(X;) @i
_log M
2

Dim[g'] — DL(g')

whereDim|[g'] is the numberof independenparametern

thegraphandDL(g') is thedescriptionengthof ¢'. Find-
ing the network structurewith the highestscorehasbeen
shavn to be NP-hardin general Thus,we have to resortto

heuristicsearch. Sincethe searchcaneasilyget stuckin

alocal maximum,we oftenaddrandomrestartgo the pro-
cess.TheBN learningalgorithmis presentedn Figurel.

Why are we interestedin learning BNs ratherthan joint
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1. pick a random DAG g
2. parameterize g to form b
3. scoreb
4. loop
5. for each DAG g’ differing from g by
adding, removing, or reversing an edge
6. parameterize g’ to form b’
7. score b’
8. pick the b’ with the highest score and replace

g with g’ and b with b’ if score(b’) > score(b)
9. until no further change g
10. return b.

Figurel: Bayesiametwork learningalgorithm.

distributions? Besidessomeobvious reasonsconcerning
compactrepresentationd efficient inference a distribu-
tion learnedby the BN algorithmmaybecloserto theorig-
inal distribution usedto generatehe datain thefirst place.

First, note that the networks which canbe parameterized
to represenexactly the MLE- or MAP-learnedoint distri-
butionsare,in general fully connected.Intuitively, a dis-
tribution learnedfrom finite sampledatawill alwaysbe a
little noisy, sotrueindependencewill almostalwayslook
like slight dependencemathematically As a result, the
BNs we areinterestedn (eitherfor the sourcesor for the
DM) will not be exact representationsf the independen
ciespresentn theMLE- or MAP-learnedlistributions,but,
rather will accounffor this overfitting.

BN learning ‘stretches’the distribution that bestfits the
datato match candidatenetwork structures. For every
structurewe look for thebest(producingthehighestscore)
parameterizatiowf that structue. The scorebalanceghe
fit to the datawith modelcomplexity.

4.2 LinOP-basedAggregationAlgorithm

Now supposeachsourcehaslearneda BN b; with DAG g;

from D; usingthe MDL scoreandthe DM is giventhese
BNs aswell asthe «;. Accordingto our semanticsthe
aggregjateBN shouldbe ascloseaspossibleto the onethe
DM would learnfrom D.

We cannotapplythe BN learningalgorithmdirectly, since
we don't have the datausedby sourcedo learntheir mod-
els. A simplesolutionwould be to generatesamplesrom
eachsourcemodelandtrain the DM on the combinedset.
That algorithm, althoughappealinglysimple, raisessome
new questionslt is notclearhow mary samplesve should
generatdrom eachsource.Onepossibilitywould beto use
thesamenumberasthe (estimatedhumberof sampleghat
eachsourceusedto learnits model. However, if thathum-
beris small, the sampleswill not representhe generating
distribution adequatelyintroducingadditionalnoiseto the
processlf we generatenoresampleghaneachsourcesav
(increasingt proportionallyto preseretheq; settings)we
give too muchweightto the MLE componenbf thescore,
thuspossiblychoosinga suboptimalnetwork. In fact, our
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experimentslescribedn Sectionb shaw thatthisalgorithm
doesverybadlyin practice.

Instead,we can adaptthe BN learning algorithmto use
sourcesdistributionsinsteadof samples.

The main differenceis in the way we compute the
MLE/MAP parameter$or eachstructurewe considerand
the way we computethe score(lines 2, 3, 6 and7 in Fig-
ure 1). Our algorithmrelieson the obsenationthatit is
not necessaryo have the actualdatato learna BN; it is
sufficient to have their empiricaldistribution. As we have
demonstrateih Section3, we cancomeup with saiddis-
tribution by applying the LinOP operatorto distributions
learnedby our sources.

We cantake advantageof the mamginalizationpropertyof

LinOP to make computationmore efficient. As is noted
in [PW99], we canparameterizéhe network in top-dovn

fashionby first computingthe distribution over the roots,
then joints over the secondlayer variablestogetherwith

theirparentsetc. Theconditionalprobabilitiescanbecom-
putedby dividing the appropriatemarginals (using Bayes
Law). In mary casesthatwould requireonly local compu-
tationsin sourcesBNSs.

The MDL scorealsorequiresknowing only the empirical

distribution for D and M. Again, sincethe empiricaldis-

tributionis theLinOP distribution if theweightsarechosen
correctly and the sourcesusedMLE or MAP (assuming
sufficient data)learning, it is possibleto scorethe candi-
datenetworkswithouthaving theactualdata.Furthermore,
themaminalsusedin the MLE scorearefamily mamginals.

If the previous parameterizatiostepis doneby computing
mauginals,thenthesewill have alreadybeencomputed.

Although the MDL scorerequiresknowledgeof M, this
dependencenay not be strong,especiallyfor large M in
which casethe secondermis dominatedby thelikelihood
termandM becomesfactorcommonto all networksand
canbe ignored. Otherwise,a rough approximationof M
shouldsufice.

As in traditional BN learning, cachingcan make the pa-
rameterizatiorandscoringof ‘neighboring’networksmore
efficient. Sincewe are making only local changego the
structure,only a few parametersvill needupdating.If an
arcis addedor removed, we only needto recomputenew

parametersor the child node,andif anarcis switched we

only needto recomputeparametergor the two nodesin-

volved. Also, sincetheseLinOP maginalsdon't change,
cachingcomputedvaluesmay helpto further speedup fu-

turecomputations.



5 Experiments

We implementedhe BN aggreationalgorithmin Matlab
usingKevin Murphy’sBayesNet Toolbox® andexploredits
behavior by runningexperimentson the well-known, real-
life Alarm network [BSCC89, a 37-nodenetwork usedas
partof a systemfor monitoringintensve carepatientsand
onthesmaller8-nodeatrtificial Asia network [LS88].

In our experimentswe learnedtwo sourceBNs from data
sampledrom the original BN, thenaggreyatedtheresults
usingour algorithm(AGGR). We hadboththe sourcesand
the DM useMAP to parameteriz¢heir networks. In com-
putingLinOP, we usedthea; asweights.We comparedur
proposals accurag againstlearning from the combined
datasets(oPT) by plotting the Kullback-Leibler(KL) di-

vergencgKul59]* of eachdistribution from thetrue distri-

butionfor differentvaluesof M = |D|.

5.1 Sensitvity to M

We consideredhe situationwherethe DM knows the pri-
ors usedby the sourcesand adjustsfor the unduly large
numberof imaginarysamples.All sourcesandDMs used
the Dirichlet prior definedby the uniform distribution and
an estimatedsamplesize of 1. We variedthe total num-
berof samples) betweer200and20000,having sources
seethe samenumberof samplesin somecasesand dif-
ferentnumbersn others. We conductedmultiple runsfor
eachsettingand averagedthem. Figure 2(a) plots the av-
eragedor the Alarm network whensourceshave equaley;.
Dueto softwarelimitations, we hadto starteachstructure
searchwith thefully disconnectedjraphandusedno ran-
dom restartsfor this larger network. As canbe seen,in
spite of the limited search our algorithmdoesfairly well
asfarascomingcloseto the optimalandimproving on the
sources.Not surprisingly the KL divergencedropsasthe
total numberof samplesncreaseskurthermorethe exper
imentson sourceswith differenta; shavednodependence
of the performanceof the algorithmon the relative differ-
encein q;.

We ran similar experimentson Asia. Here,we variedthe

numberof sampleshetween200 and 3000, with five runs
per setting. For eachrun, we usedfive randomrestarts.
Figure 2(b) plots the averagefor eachsetting. The plot

shavs that whenwe are ableto explore the searchspace
sufficiently in thelearningandaggregationalgorithms our

algorithmconsistentlyimprovesonthesourcesandclosely
approximateso the optimal.

3 Availableat http://www.cs.berleley.edu/murphyk/bnt.html.

4The KL divergenceof distribution ¢ from p is definedas

ZwEW p(w)log %.
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Figure2: Sensitvity to M (a) Alarm network results. (b)
Asianetwork results.
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5.2 Sensitwvity to the DM’ s estimation of M

We hypothesizectarlierthat the actualvalue of the DM’s
estimateof M doesnot matterall that much. To demon-
stratethis, we ranexperimentson the Asia network similar
to thoseabove, but leaving M fixedandvaryingtheDM’s
estimatel orderof magnitudeabove andbelov M. Fig-
ures3(a)summarizesheresultsfor M = 100.

Any approximatiorabove 0.25 ordersof magnitudebelow
M providesimprovementover the sources.Estimatede-
low this madethe complexity penaltysufficiently strongto
selectDAGs with fewer arcsthanthe original and under
fit thedata.Onthe otherhand,althoughoverestimatingl/
did notincreaseheKL distancdrom theoriginal,thereis a
dangerof extremeoverestimatesausingoverfitting. How-
ever, we did notfind ary increasean the compleity of the
aggreyatenetworksfor the 1 orderof magnituderangewe
consideredthey remainedcat8—9arcson average.

Figure3(b) summarizingheresultsfor A = 10000 shows
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(c) with differentsubpopulations.

that, aspredicted the rangeof “slack” increasewith M
the more samplesseenby the sourcesthe lessimportant
theaccurag of theDM’s estimate.

5.3 Subpopulations

Our algorithmperformswell whencombiningsourcedis-
tributionslearnecbasedn samplesrom differentsubpop-
ulations.To shaw this, we modifiedthe Asianetwork to ac-
comodatdwo sourcesadoctorpracticingin SanFrancisco
andonepracticingin Cincinnati. The probability distribu-
tions of thetwo root nodesin the Asia network, represent-
ing whethera patientsmolesandwhethershehasvisited
Asia would be significantly differentfor the two doctors.
A patientfrom SanFranciscas lesslikely to bea smoler,
andonefrom Cincinnatiis lesslik ely to have visited Asia.
Thus,we addeda sourcevariableasdescribedn Section2,
gave the sourcesequalpriors of seeingpatients,madethe
sourcevariablea parentof thetwo rootvariablesandgave
them appropriateCPDs. We drew M samplesfrom this
extendednetwork and had eachsourcelearnfrom the ap-
propriatesubset,then usedAGGR to combinethe results
usingthe correcta; and M. Figure 3(c) plotsthe KL di-
vergenceof eachdistribution from the original distribution
with the sourcevariablemamginalizedout. Becausethe
sourcesarelearningthe distributionsfor differentsubpop-
ulations,whatthey learnis relatively far from the overall
distribution. The DM takes advantageof the information
from both sourcesandlearnsa BN that approximateshe
originalmuchmorecloselythaneithersource.

5.4 Comparisonto sampling algorithm

In eachof the abore experiments,we also comparedhe
performancef ouralgorithmto thealternatve intuitive al-
gorithm samP we describedin Section4.2 in which we
samplea; M samplesrom eachsourcei’s BN andlearn
a BN from the combineddata. samP did very badly in

generalconsistentlyworsethannot only AGGR, but worse
thanthe sourcesaswell, oftenby anorderof magnitude.

6 RelatedWork

A wealthof work existsin statisticson aggreating prob-
ability distributions. Good suneys of the field include
[GZ86, CW9Y. Many of theearlier axiomaticapproaches
sufferedfrom alack of semanticagrounding.For thisrea-
son, the communitymoved towardsmodelingapproaches
instead. The most studiedapproachhasbeenthe supra-
Bayesianone, introducedin [Win68] andformally estab-
lishedin [Mor74, Mor77]. Here,the DM hasa prior not
only over the variablesin the domain,but over the possi-
ble beliefs of the sourcesaswell. Sheaggreyatesby us-
ing Bayesianconditioningto incorporatethe information
sherecevesfrom the sources.In fact, Propositionl de-
rivesfrom this body of work. However, almostall of this
work hasbeenrestrictedto aggreyatingbeliefsrepresented
aspoint probabilitiesor odds,or joint distributions.

Therehasbeensomerecentinterest,particularlyin Al, in

the problemof aggreyatingstructuredistributionsinclud-

ing [MA92, MA93, PW99]. But, like the early axiomatic
approache#n statistics,muchof this work focuseson at-

temptingto satisfy abstractpropertiessuchas preserving
sharedndependencesndoftenrunsinto impossibilityre-

sultsasa consequence.

In somesense what we are doing could also be viewed

asensembldearningfor BNs. Ensembldearninginvolves
combiningtheresultsof differentweaklearnerdo improve

classificatioraccurag. Becausef its simplicity, LinOP is

often usedwithout justificationto do the actualcombina-
tion. Our resultsjustify this usewhenthe weaklearners
useMLE, MAP, or BN learning.

Anothernew areain Al thatbearssimilaritiesto our work
is that of on-line or incrementallearning of BNs (e.g.,
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[Bun9l, LB94, FG97). There,we aregivena continuous
streamof samplesandwe wantto maintaina BN learned
from all thedatawe have seensofar. Becausehestreams
verylong, it is generallynotpossibleo maintainthefull set
of sufficient statistics Approachesangefrom approximat-
ing the sufficient statisticsto restrictingthe network that
canbelearned.We essentiallydo the former by assuming
thatthe sufficient statisticsfor the dataseenby eachsource
is encodedn its network. Cross-fertilizationbetweenthe
two fieldsmay prove profitable.

7 Conclusion

We have presentech new approachto belief aggreyation.
We believe that we cannotformulate that problem pre-
cisely or measuresuccesof differenttechniqueswithout
answeringguestionsaboutthe way in which sources’be-
liefs were formulated. We arguedthat a framework in

which the sourcesareassumedo have learnedheir distri-

butionsfrom datais bothintuitively plausibleandleadsto a
very naturalformulationof the optimalDM distribution—

one which would be learnedfrom the combineddatasets
— anda naturalsuccessneasure— a distancefrom the
generating;true’ distribution.

Basedon the obsenation that LinOP is the appropriate
operatorfor this framework if sourcesand DM are MLE
learnerswe presentech LinOP-basedilgorithmto aggre-
gatebeliefsrepresentetly Bayesiametworks. Ourprelim-
inary resultsshow thatthis algorithmperformsvery well.

Onedirectionof future work will involve finding waysto
relaxthevariousassumptionskor example ,we would like
to extendthe framework to allow for continuousvariables
andto allow for dependencbetweersources'samplesets.

In ourframework, theDM completelyignoressourcespri-

ors. This maybe appropriatdf the priorsareknown to be
unreliableor uninformative. However, the priors usedin

realapplicationsareofteninformativein andof themseles.
Thus,a seconddirectionwill involve finding valid waysof

taking advantageof sources’priorsto improve the quality
of the aggreyation. For example,if sourcesuseDirichlet
priorsandthe DM truststheir estimatedsamplesizes,she
may choseto incorporategheminto herestimateof M.
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