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Final Report on Application of the Optimized Effective Potential Method to 

Quantum Chemistry 

Foreword 

The development of density functional theory (DFT) beginning with the seminal work of 

Hohenberg and Kohn^^^^^ and Kohn and Sham^^^^^^ in the mid 1960's has revolutionized the 

development of accurate quantum mechanical calculations of the ground state properties of 

atoms, molecules and solids. HK were able to show that for a given ground state density there 

exists a corresponding unique external potential (up to a trivial additive constant). Thus the 

many body wave-function of any quantum mechanical system can be considered to be a 

functional of the ground state density. Consequently, in addition to the expectation value of the 

external potential, all the other elements entering into a calculation of the ground state energy i.e. 

the kinetic energy and the expectation value of the electron-electron interaction, are also 

functionals of the ground state density, although the functional form of these latter two 

functionals are not given by the HK theorem. Furthermore, HK showed that when the ground 

state energy of the system was written in terms of these functionals, then the true energy of the 

system could be obtained by minimizing the energy functional with respect to the density, thus 

generalizing the variational theorem to DFT. 

This theorem has been employed by KS who developed a computationally efficient 

means of performing ground state calculations by considering a corresponding system of non- 

interacting electrons with the same density moving in the same external potential as in the 

interacting system. They found that the exact ground state energy of the interacting system 

could then be vmtten as the sum of the kinetic energy of the non-interacting system plus the 

average external potential, the Hartree energy and a non-classical term referred to as the 

exchange-correlation energy Exc[n], which is in general an unknown universal functional of the 

density n. They were able to show that the single particle Schrodinger equations satisfied by the 

orbitals in the non-interacting gas satisfy Hartree-like equations with the Hartree potential 



corrected by an additional term, the so-called exchange-correlation potential, Vxc[n], which is the 

functional derivative of the Exc with respect to n just as the Hartree potential is the functional 

derivative of the Hartree energy with respect to n. The KS theory has been extended to the more 

accurate spin density functional theory by von Barth and Hedin^^^ for spin-polarized system in 

which the exchange-correlation energy functional is considered to be a functional of the separate 

spin densities and there are two exchange-correlation potentials, Vxco, corresponding to electrons 

with spin a up or down. 

Although the exact form of Vxco[nt, n4,] is not known in general, it is characterized by 

certain essential properties: 

1) In the slowly varying density limit the exchange-only potential, Vxo should approach 

2/3 of the Slater exchange potentiaF\ 

2) VxcoCr).should be self-interaction-free^''^ so that if a system contains only one electron 

the Vxco(r) exactly cancels the self-Hartree potential independent of the form of the 

external potential. 

(5) 3)   For systems containing a finite number of particles, Vxco -> -1/r as r -^ oo' 

4) The energy eigenvalue, £„, of the highest occupied molecular orbital (HOMO) 

should equal the negative of the removal energy including all relaxation effects^^l 

5) Vxco should exhibit an integer discontinuity, i.e. when the number of electrons in a 

system having discrete energy spectrum with filled subshells changes from N to N +5 

(with 6 being a positive infinitesimal) the Vxco^ ^ ^ (r) will shift fi-om V^„ by a 

constant for finite /^'^l 

The local spin density (LSD) approximation^^'^^ plus gradient corrections, which is the 

approximation for Exc and Vxco nearly universally employed in DFT calculations, satisfies 



property(l), but fails to satisfy the other properties. The fact that property (2) is not satisfied 

leads to a significant overestimate of the correlation energy^'*^ The fact that property (3) is not 

satisfied results in inaccurate description of the potential in which the valence electrons move, 

leading to moderate discrepancies in the valence electron distribution as well as significant errors 

in Sm. Thus property (4) is generally poorly satisfied with e™ being « 40% too small in 

magnitude compared to the ionization energies of atoms. In addition, there are no stable 

negative ions predicted in disagreement with reality. Finally, the failure to satisfy property (5) 

leads to significant errors in the calculation of energy band gaps in semiconductors and 

insulators^'''^^ as well as violations of the principle of integer preference^^\ which requires that 

when molecules dissociate there is an integer number of electrons localized around each atom. 

However, the likelihood of ever finding a Vxca([no],r) that respects the principle of integer 

preference has been considered doubtful^^°\ Moreover, no finite expansion in higher order 

derivatives of the spin density can account for the discontinuity in Vxeo/^^^ 

These facts require a reconsideration of density functional theory in order that these 

problems be addressed. Thus, as the first generation of DFT, the HK method, employing a 

Thomas-Fermi approximation for the kinetic energy functional gave way to the more accurate 

second generation KS method, which treated the kinetic energy exactly, a third generation DFT 

must employ expressions for Exc which are explicit functionals of the occupied single particle 

orbitals (j)io . Since the ^[^ are functionals of the spin densities, such Exc[{<|)io}] are implicit 

functionals of the n^ but carry a great deal more information about the system. Thus, for 

example, the exact exchange energy functional is the orbital-dependent expression given in the 

Hartree-Fock (BF) approximation. However, unlike the HF method, in which the single particle 

orbitals satisfy Schrodinger-like equations with non-local exchange potentials which are different 

for each orbital, the Kohn-Sham method continues to treat all electrons with a given spin 

projection as moving in a single, local, multiplicative potential, thus enabling the application of 

this method to much larger systems than can be treated by the HF method. Moreover, the KS 

theory allows for the direct inclusion of correlation effects through the incorporation of a 

correlation energy fiinctional into Exc whereas the HF method can only include such effects 

through a complicated and slowly convergent perturbation theory calculation. Such a method 

also permits the use of simpler energy fimctionals with important self-interaction-corrections 



(SIC) which are orbital dependent contributions as provided for example by Perdew and 

Zunger/'*^ 

The difficulty in employing orbital dependent exchange-correlation functionals arises 

from the fact that the corresponding exchange-correlation functionals, Vxca, cannot simply be 

obtained from Exe[{<t)ia}] because^^^) ^'"    ^ ^" 
6n 

^s:_    V 
..o.^ 

. Instead, a complicated integral equation 

must be solved anew for the optimized effective potential (OEP) Vxco, for each system. 

This was the situation when we began our investigations into the Application of the Optimized 

Effective Potential Method to Quantum Chemistry. 



L        The Optimized Effective Potential (OEP) Method 

In order to carefully investigate the application of the OEP method to quantum chemistry 

we have extended the derivation of the equation for the OEP, V^, to the case of fractional 

occupancy^*^^ for the exact exchange-only case and subsequently generalized this result to the 

general case of an arbitrary Exc[{(|)ic}].^^'*^ The need for such an investigation has already been 

discussed in the Foreword. In the following we shall summarize the most important results of 

our investigations as requested in the instructions for preparation of the final report and in each 

case provide the appropriate reference in which the details may be found. 

We have carefully investigated the analytic properties of the exact VJ^„ that follows from 

the integral equation and have shown ^^'^^ that for arbitrary Exc[{(l)io}] 

V°     =v° m xcom mo V-^/ 

where the bar indicates the average value over the (|)^„ state. Here ma represents the highest 

(fractionally) occupied state of spin projection o and Vma corresponds to the single particle 

exchange-correlation potential that would enter into the equation 6E/6(j)||,„ =0 subject to ^r^a 

being normalized to unity in a multi-potential theory. 

From eq. (1) it immediately follows ^^'*^ that 

"mo Kr (2) 

Where &°^^ is the OEP energy eigenvalue for the highest occupied state and '^^ is the 

corresponding expectation value with respect to ^°^„ of the single particle hamihonian for the 

ma state in a multi-potential theory. Equation (2), which is now generally referred to as the 

HOMO condition for the OEP, is very useful for checking the self-consistency of any "exact" 



solution of the DEP integral equation. It was first derived for the exchange-only case by the P.I. 

and coUaborators^^'^ and immediately applied to test the accuracy of then recently reported 

exchange-only OEP results.^^^^ 

More significantly, it follows fi^om eq. (I) that in the exchange-only case in the slowly 

2 
varying density limit, V^,, ->—V^„ where V^„ is the Slater potential. ^^^ Thus, without making 

any density fiinctional approximation for Ex, it is possible to derive this fiindamental result 

directly fi-om the OEP integral equation. ^^^' ^''^ Moreover, it also follows fi-om eq (1) and the 

condition that Vxco -> o as r ^ oo that if Exca includes the self-interaction terms that cancel the 

self-Hartree terms, terms ^^^' ^'^^ Vxco -^ -1/r as r -> oo . In addition, we have shown first in the 

exchange-only case ^^^^ and subsequently for a more general Exc[{(l)ic}] that  Y^^  has a 

discontinuity when a new spin sub-shell begins to be filled. ^^'^^ Thus, the exact solution of the 

OEP integral equation would exhibit many of the important properties missing fi-om the LSD 

approximations as well as those employing gradient corrections. 

Furthermore, we have shown that Janak's theorem^^^^ is satisfied for any Exc[{<i)ia}], but 

only for the highest partially occupied state of spin projection a i.e. 

^^° = <. (LJ (3) df. 

where fm© is the fi-actional occupancy of the ma state.^^''^ In addition, we have proved^^'*^ that the 

electron spin densities and Smo obtained by employing the OEP method differ by 0(5^) fi-om that 

given by the corresponding multi-potential theory where 5 is a measure of the difference between 

the OEP and multi-potential wavefiinctions. Thus, in the special case of exchange-only 

calculations, the OEP and Hartree-Fock densities are the same to 0(5^) which should result in 

nearly identical values of all single particle expectation values. Moreover, in the exchange-only 

case we have shown^^^'^'*^ that the OEP method satisfies Koopmans' theorem^^°^ for the highest 

occupied state i.e. 



E°(N)-E;(N-I)=G;, (4) 

where the subscript u denotes the unrelaxed state i.e. the energy evaluated with the same orbitals 

with the mo orbital missing. It then follows from eqs. (2) and (4) that the Hartree-Fock and OEP 

ionization energies in an exchange-only calculation should be nearly identical. 

Thus the OEP method not only provides the possibility of overcoming most of the 

important shortcomings of DFT that employ Exc that are explicit functionals of only the spin 

densities as well as makes significant connections to the HP method in the limit of exchange- 

only calculations. 

However, despite the fact that this alternative method of performing KS calculations of 

the effective local potential had been available as early as a decade before the HK and KS 

articles at least for the exchange-only case^^°^ and rederived two decades later/^^^ it was not 

generally employed because of the difficulty of solving the integral equation for the OEP. 

n.       The Krieger-Li-Iafrate (KLI) Approximation to the Optimized Effective Potential 

We have shown^^"*^ that for an arbitrary Exc[{(l)io}], an approximate solution to the OEP 

integral equation may be written for real occupied orbitals {^ia} for a system with arbitrary 

symmetry 

V^Hr) = Z^K(r)4-(V,,„,-vJ] (5) 

Here 

5Exc[{<|)ia}] (g) 

io "fio *"fia f. (b* 5(1). lO   Tio  "Til 



where f;„ is the fractional occupancy of the ia state and Vj^ s 0 if fj^ = 0.  Equation (5) was 

obtained by generalizing the results of an earlier ^^^^ exchange-only theory and results from 

making an exact transformation of the OEP integral equation and then setting some terms, whose 

average value are separately zero, to zero. Other less rigorous derivations have also been 

provided by KLl/"'^'*^ 

Equation (5) is still an integral equation because the expectation value of the unknown 

Vxco appears on the right-hand-side. However, the exact solution of this equation may be written 

down explicitly^^'*^ in terms of the {nio} and {via}- Alternatively, one can solve for the unknown 

constants in eq. (5) by muhiplying both sides by nja and integrating over r each occupied orbital. 

The resulting set of linear equations may then be solved using programs for sets of linear 

equations. 

We^^'*^ have carefully investigated the analytic properties of the KLI approximation to the 

OEP.   We find that for any f^^ > 0 

V^i =v '        (7) ' xcoc mo V   / 

where the average values are calculated using the KLI {^i^} which are the solutions of the KS 

single particle equations with the exchange correlation potential given by V^^. Thus V^^ 

satisfies the analogous equations to eq. (1). It then follows as in the exact OEP calculations that 

€ma=^f, and in the limit of slowly varying density V^^' -^-V,^„  and that, if Exc[{(j)ia}] 

includes the SIC terms that cancel the self-Hartree terms, V^^ ->-l/r asr->oo. Furthermore, 

in the exact exchange-only case, Koopmans' theorem is still satisfied and in the general case 

there is an integer discontinuity in V^^ as a new spin subshell begins to be occupied. Thus all 

the exact analytic properties satisfied by the exact OEP are maintained by the KLI approximation 

with the exception of Janak's theorem which is now approximately satisfied. 



In addition we have performed a series of numerical calculations to test the accuracy of 

the KLI approximation in comparison with numerical calculations using the exact OEP in the 

one case in which previous work with the exact OEP had been performed i.e. spherically 

symmetric atoms in the exchange only approximation.^^^'^^^ 

We^"' ^'^' ^^^ have demonstrated that for such systems form He(Z = 2) to Ba(Z = 56), 

Au(Z = 79) and Hg(Z = 80) the KLI results for the total energy of the system is only 1/4 to 1/3 

higher than the OEP results compared to the OEP overestimate oif the spin unrestricted Hartree- 

Fock (SUHF) energy which varies from 50ppm for the lightest atoms to 2 ppm. In addition for Z 

< 20 the KLI eigenvalues for the HOMO, e^, are on average within 0.2% of the exact OEP 

results which are within 0.1% of the SUHF results and the KLI ionization energies, I, are within 

.05 mH of the OEP calculations which are about 0.25 mH from the SUHF resuUs. Furthermore, 

expectation values of <r^> and <r''> and the electron density at the nucleus are different from the 

OEP results by 0.15%, 0.02% and 0.02% respectively. For atoms with Z > 20 similar results 

obtain except that for atoms in the first and second transition series in which there is nearly an s 

- d degeneracy the KLI approximation yields resuhs for em and <r^> which are typically «1% 

from the OEP results. In addition the discrepancy in the values of I in the KLI approximation are 

then of O (0.5 mH). The only significant error in the KLI resuhs is in the calculation,of m(0), 

the spin density at the nucleus, for atoms that have no unpaired s electrons but are spin polarized 

such as N and P. In such cases the spin density at the nucleus arises because electrons in spin 

polarized subshells (in this case p electrons) slightly polarize the s electrons which make a very 

small contribution to the separate spin densities. Thus, for example, although the KLI 

approximation yields separate spin densities at the nucleus of N which are accurate to 0.2%, the 

value of m(0), which depends on the difference of these two numbers, doesn't even have the 

correct sign.^^^^ 

Even more remarkable than the atomic results are the results for singly charged negative 

ions which aren't even stable when the LSD approximation or its gradient corrected versions are 

employed. We find^^''' ^^ that in the KLI approximation for Z < 20, on average Sm is accurate to 

0.2 mH while the electron affinity is within 0.05 mH of the exact OEP results. In addition the 

expectation values of <r^), <r'^> and the density at the origin are within 0.5%, 0.02% and 0.2%, 

10 



respectively. Furthermore, when the KLI approximation is employed in calculations of heavier 

singly charged negative ions these results are essentially unchanged. The agreement between the 

OEP and KLI results for total energies and single particle properties for positive ions is even 

better than that for neutral atoms and negative ions because the effects of electron-electron 

interaction are reduced compared to the electron-nuclear attraction.^^'*^ 

In addition, we have shown by direct numerical calculation that the discontinuity in the 

OEP and KLI potentials are nearly identical when a new spin subshell begins to be fiUed.^^'*^ 

Moreover, by studying how the potential changes we have been able to show that the bumps in 

the exact OEP are renmants of the integer discontinuity in VJ^„ S^^' ^^^ 

In order to test the accuracy of the KLI approximation for functionals other than in the 

exact exchange only case, we have performed detailed comparisons between the results of an 

exact numerical OEP calculation and the KLI results for the case of an energy functional given 

by the local-spin-density approximation with Perdew-Zunger^'*^ self-interaction-correction 

(LSDSIC) for the exchange-correlation energy. We^^^^ have demonstrated that the KLI 

approximation is equally valid in this case as well. We find that both the OEP and KLI are 

remarkably similar for atoms with Z = 1 to 20. In addition we find excellent agreement between 

the calculated total energies as well as quantities that are strongly related to the behavior of the 

valence electrons and are nearly identical in both OEP and KLI calculations, i.e. the difference 

between the <r^> and Sm is less than 0.2% on average while the difference between the calculated 

I is less than 0.2 mH on average with the corresponding difference if only 0.1 mH for A. 

The KLI method has also been applied to the self-consistent calculation of ionization 

potentials and electron affinities for atoms for a wide variety of proposed exchange-correlation 

energy functionals. Our results^'"'^ demonstrate that no single choice gives entirely reliable 

results for atoms with Z = 1 to 20 and that further research is required to develop more accurate 

functionals. In order to facilitate such research we^^^^ have obtained the Kohn-Sham effective 

potentials for the spin polarized lithium isolectronic electronic series (Z = 3-10) and for the 

nitrogen atom. Configuration interaction (CI) and spin-unrestricted Hartree-Fock (SUHF) 

densities were used as input and the Kohn-Sham effective potentials for spin-majority and - 

11 



minority channels were deduced, from which the exchange and correlation contributions were 

obtained. In addition, accurate values were obtained for quantities such as exchange and 

exchange-correlations energies, Kohn-Sham orbital energies and kinetic contributions to 

exchange and correlation energies. These benchmark resuhs can be used to provide rigorous 

tests on any future proposed exchange-correlation energy functional. 

We^^^^ have also employed the KLI method to make an ab-initio theoretical determination 

of the exact-exchange mixing parameter in Becke's^^^^ exchange-correlation energy functional. 

This was accomplis"hed by requiring that the parameter be chosen such that condition (4) of the 

foreword be satisfied as closely as possible for atoms with Z < 20, i.e. that the calculated 6m 

equal the negative of the calculated ionization energy. We found that the calculated parameter 

was very close to the results obtained by Becke's empirical fit and also provided excellent results 

when applied to the electron afiBnity of the same atoms. 

We^^'*^ have also shown that it is possible to achieve essentially the same level of 

accuracy as that provided by an exact OEP or KLI calculation for properties primarily 

determined by the valence electron distribution by making a simple approximation. We have 

found that if the exchange energy functional is written as E^ =E^ + E™+E^ where v 

corresponds to "valence" electrons which are taken to be those occupied orbitals in the last two 

subshells of an atom and c corresponds to all the other "core" electrons, then one may 

approximate E™ by E^^ or E^^^^^^. When such an approximation is made the required 

number of HF overiap integrals is significantly decreased while the values of I, A, Sm and <r^> 

remain essentially unchanged.^^''^ This method should prove usefial in fiature calculations of the 

bond strengths in complex molecules. 

Most significantly, we have extended the application of the KLI method to the calculation 

of the properties of molecules^^^' ^^^ employing both the exact-exchange only functional as well 

as the LSDSIC exchange functional as was done in the atomic case. We have found that the 

KLI-HF results for the total energy for both homopolar and heteropolar diatonic molecules were 

as close to the exact HF results as they were for atoms. In addition, we have demonstrated that 

12 



the Sm were also as accurately given by the KLI approximation thus making this method the only 

systematic, parameter free, approach to the calculation of molecular properties when orbital 

dependent exchange-correlation energy functionals are employed. 

Since these results were presented, this method has been employed by many other 

investigators, the most interesting that provided by Engel etziP^ These authors performed HF- 

KLI calculations and compared them with the results of so-called "exact" OEP-HF reported by 

Ivanov et.al/^^^ who attempted to solve the OEP integral equation using a basis set expansion for 

both the potential and the wavefunctions. Engel et. al. found that in every case the KLI results 

for the total energy were lower than the "exact" results, thus demonstrating that the latter were 

not as good an approximation since by definition the exact OEP resuhs for the energy are the 

lowest possible when the wavefunctions are calculated as eigenfimctions of a single local 

multipUcative potential. Moreover, Engel et. al. also found that the dissociation energy for 10 

diatomic molecules calculated using the KLI approximation were very close (< .02 ev) to the HF 

results, whereas the results of another "exact" calculation^^'^ were significantly different. In 

addition our^'*"^ earlier investigation of the band structure of noble gas and alkali solids have 

demonstrated that the KLI approximation yields almost identical results as an exact HF 

calculation and provides the proper discontinuity that yields accurate band gaps 

Thus, we have shown that the KLI approximation is robust, providing a highly accurate 

method for the calculation of atomic, molecular and solid state properties. 

in      Construction    and    Application    of   an    Accurate    Self-Interaction-Corrected 

Correlation Energy Functional Based on an Electron Gas with a Gap. 

Since the KLI approximation yields results for the exchange-only KS theory that are at 

least an order of magnitude more accurate that that required by quantum chemistry accuracy 

criterion (1 kcal/mol for the dissociation energy), we have turned our attention to the 

development of an accurate correlation energy fiinctional that would be appropriate for systems 

for which there is an energy gap between the highest energy occupied state and the lowest energy 

unoccupied state, e.g. atoms, molecules and semiconductors as opposed to metals on which 

13 



conventional density functional approximations are based. When the LSD approximation is 

applied to atoms, the calculated correlation energy is too large in magnitude by approximately a 

factor of two. As early as 1970, Dr. Walter Kohn, the father of density functional theory 

(Nobelist, 1999) pointed out that the large discrepancy between atomic correlation energies using 

the local density approximation (LDA) and the accurate (but difficult to perform) correlation 

energy calculated using quantum chemistry techniques was probably due to the lack of an energy 

gap in the derivation of the LDA^'*^^ correlation energy functional. 

In collaboration with Dr. Andreas Savin (CNRS, Paris) we^''^^ have for the first time been 

able to construct a correlation energy functional based on an electron gas with an energy gap. In 

applying this to any quantum system we have made use of the fundamental theorem of 

Hohenberg and Kohn^^^ that the correlation energy functional can be written as a functional of 

the electron density. Thus, we have chosen the gap to be (1/8) | VCn n | ^ which is non-negative 

and reduces to the ionization energy in the large r limit as well as approximately reduces to the 

excitation energy of the core electrons for r near the atomic nuclei. We have developed a spin 

density functional theory by interpolating between the unpolarized and completely polarized 

cases by employing the von Barth-Hedin formula.^"*^^ We have found that the resulting 

functional reduces the LSD error by more than a factor of two. In addition, we have added a 

self-interaction-correction ^''''^SIC) which is invariant to a unitary transformation of the occupied 

orbitals. This correction, entirely missing from the usual homogenous electron gas theory, is 

important in systems in which there are regions with only a few localized electrons as in the case 

for valence electrons in atoms and molecules. We find that the SIC functional yields correlation 

energies for atoms and molecules that are « 15% larger in magnitude than the exact resuhs. 

Furthermore, we have added a gradient correction whose form is based on the requirement 

satisfied by the unknown exact functional that the functional should saturate under uniform 

scaling of the density and have the correct gradient expansion to lowest order in the high density 

limit. The resulting functional is then found to yield correlation energies that are correct to 

within a few percent for atoms and singly charged positive ions which is a greater accuracy than 

any other first principles correlation energy functional. Finally, in collaboration with Dr. Stefan 

Kurth, we^"*'^ have improved on our functional by imposing the condition that the small gradient 

expansion satisfy the known exact result not merely in the large density limit bur for densities as 

14 



small as those found in atoms and molecules. The improved functional not only yields improved 

correlation energies for atoms and positive ions, but also yields atomization energies for 20 small 

molecules that are on average in error by « 3.4 kcal/mole compared to an average error of « 32 

kcal/mole when the LSD approximation is employed. Moreover, the results for the surface 

energy of jellium over a wide range of densities is accurate to within only a few percent when 

compared to exact results whereas nearly all other correlation energy fiinctionals yield results 

that are significantly in error for this quantity. 

In addition, we have come to realize that highly accurate results employing density 

fiinctional theory can be obtained only through the explicit inclusion of contributions to the 

correlation energy from low lying virtual states above the occupied orbitals. These contributions 

have in general been ignored in density functionals for the correlation energy and would be 

difiBcult to insert in a theory based on a uniform electron gas without a gap. However, our 

functional enables such contributions to be included. In collaboration with Dr. Savin and Ms. 

Claudine Gutle, we^''^''*^ have found by employing second order perturbation theory that for 

atoms for which there are no virtual states corresponding to a two electron excitation that is 

nearly degenerate with the ground state, e.g. helium and lithium, that the inclusion of the virtual 

localized states (using KLI perturbation theory) gives a negligible contribution to the correlation 

energy. However, for atoms for which there are doubly excited virtual states which are nearly 

degenerate with the ground state, e.g. beryllium, boron and carbon, there are significant 

contributions to the correlation energy fi-om these localized virtual states. In fact the 

contributions are so large that they can be accurately calculated only by treating them as quasi- 

degenerate and using nearly degenerate perturbation theory. These considerations have recently 

been extended^'*^^ to a study of the isoelectronic series for neon, magnesium and argon. Since the 

addition or subtraction of only one electron ion significantly change the existence of these states, 

they must be taken into careful consideration when calculations of chemical bonding are made. 

We are currently trying to develop a consistent method of incorporating these results into 

our functional obtained fi^om an electron gas with a gap. In addition, we^"*^^ have recently 

completed constructing a new correlation energy functional based on an electron gas with a gap 

but with a density of states in the continuum that varies as the square root of the energy above 
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the gap as is the case for atoms, molecules and semiconductors. The combination of these 

fiinctionals along with the inclusion of contributions from the virtual localized states is being 

carefully studied and is expected to lead to improved results for atomic and ionic correlation 

energies as well as for atomization of molecules. 
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