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Abstract-Selective activation of targeted neuronal populations is 
required for central nervous system (CNS) neuroprosthetic device 
efficacy.  However in many regions of the CNS, cells and fibers of 
passages are intermingled.  The goal of this project was to design 
stimulus trains that would enhance selectivity between 
microstimulation of cells and fibers of passage.  Detailed 
computer-based models were developed that accurately 
reproduced the dynamic firing properties of mammalian neurons.  
The neuron models were coupled to a three-dimensional finite 
element model of the spinal cord that solved for the potentials 
generated in the tissue medium by an extracellular electrode.  The 
results demonstrate that alterations in the stimulus frequency, 
based on differences in the post-action-potential recovery cycles of 
cells and axons, enabled differential activation of cells or fibers of 
passage.  The results also show that asymmetrical charge-balanced 
biphasic stimulus waveforms, designed to exploit the non-linear 
conductance properties of the neural elements, can be used in 
combination with the appropriate stimulus frequency to further 
enhance selectivity.  These outcomes provide useful tools for 
selective stimulation of the CNS, as well as basis for understanding 
frequency-dependent outputs during CNS stimulation. 
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I. INTRODUCTION 
 
     Microstimulation in the central nervous system (CNS) can 
activate populations of neurons with greater specificity than is 
possible with larger electrodes on the surface of the spinal cord 
or brain [1,2].  The potential thus arises for electrical activation 
of intact neuronal circuitry, and in turn, generation of 
distributed and controlled motor outputs for application in 
neural prostheses [3].  Selective activation of targeted 
populations is required for device efficacy.  However in many 
regions of the CNS, cells and fibers of passages are 
intermingled and the thresholds of cells and fibers in close 
proximity to the electrode are similar with conventional stimuli 
[1,4]. 
    We have previously developed asymmetrical charge-
balanced biphasic stimuli that increased the selectivity between 
local cells and fibers of passage [5].  However this analysis was 
limited to idealized neural orientations and single stimuli. 
Neural prostheses use trains of stimuli with frequencies that 
range from 10-150 Hz.  Therefore, we developed computer-
based models of cells and fibers that could reproduce the 
dynamic firing properties of mammalian CNS neurons.  These 
neuron models were coupled to a three-dimensional finite 
element model of the spinal cord that solved for the potentials 
generated in the tissue medium by an extracellular electrode. 
   The goals of this study were to answer three questions related 
to the development of effective stimulus trains for CNS 

neuroprosthetic devices.  1) Are the selective stimulation 
waveforms developed in our previous work [5] effective in a 
specific neuroprosthetic application?  2) Are these waveforms 
effective when used in a high frequency stimulus train? and 3) 
What is the influence of synaptic inputs on excitation of cells 
near the electrode? 
    The results demonstrate that the appropriate choice of 
stimulus waveform and frequency, based on geometrical and 
electrical differences in the different target neuronal elements 
as well as changes in excitability that occur following their 
respective action potentials, provide effective techniques to 
improve selectivity between neural populations.  The results 
also indicate that when stimulating local cells near the electrode 
that thresholds for pre-syanptic inputs are less than thresholds 
for direct activation of the post-synaptic cell and, as a result, 
post-synaptic potentials can play a role in the excitability of 
local cells at high stimulus frequencies. 
 

 
Fig. 1. Motoneuron model.  Multi-compartment cable model consisted of a 
branching dendritic tree, multi-compartment soma and initial segment, and a 
myelinated axon with explicit representation of the myelin and underlying 
axolemma.  The soma, initial segment and nodes of Ranvier used non-linear 
membrane dynamics derived from experimental measurements of mammalian 
neurons.  Intracellular resisters determined by the dimensions of the adjoining 
compartments connected the different elements of the model together. 
 

II. METHODS 
 
     This project used an integrated field-neuron model to study 
neural activation by stimulation with microelectrodes within the 
spinal cord.  Three-dimensional (3-D) multi-compartment cable 
models of spinal motoneurons were generated with branching 
dendritic trees, multicompartment cell bodies and myelinated 
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axons including explicit representation of the myelin sheath 
(Fig. 1).  The geometry and membrane properties of the neural 
models were based upon experimental results from mammalian 
motoneurons.  A 3-D finite element model of the spinal cord 
was used to calculate the potential distribution generated in the 
spinal cord by intraspinal microelectrodes (Fig. 2).  These 
potentials were then applied to the neuron models to predict 
excitation using equivalent intracellularly injected currents 
[5,6]. 
 
 
 

 
Fig. 2. Spinal cord model.  A finite element model, incorporating the 
inhomogenous and anisotropic tissue properties of the spinal cord, was 
generated and used to solve for the potential distribution generated by 
microstimulation in the ventral horn.  A non-uniform mesh, both cross-
sectionally and longitudinally, was used to allow for improved accuracy near 
the electrode where the gradient of the electric field was the greatest.  Potential 
distribution plotted for a 1 µA stimulus. 
 
    We modeled microstimulation near Onuf’s nucleus in the 
ventral horn of the S2-S3 region of the cat spinal cord.  The 
axons of the preganglionic parasympathetic innervation of the 
bladder run in close proximity to the cell bodies of the somatic 
motoneurons innervating the external urethral sphincter [7,8]. 
Neuron models were integrated into the volume conductor 
model of the spinal cord with anatomical locations based on 
experimental tracing studies allowing for comparisons of three 
different situations (Fig. 3):  Activation of neurons with their 
cell bodies near the electrode (representative of neurons 
controlling the external urethral sphincter), activation of 

neurons with their axons passing by the electrode but with their 
cell bodies within ~1000 µm of the electrode (representative of 
neurons controlling the bladder), and activation of fibers of 
passage whose cell bodies were far from the electrode 
(representative of fibers of passage in the white matter).  The 
three neuron models were positioned such that the thresholds 
for excitation from a single symmetrical, charge-balanced, 
cathode first, anode second, biphasic stimulus 0.2 ms in 
duration was 34 µA.  This enabled comparison of changes in 
the neuronal output with alteration in the stimulus frequency 
and stimulus waveform from a reference point that represents 
the most commonly used stimulus waveform in neuroprosthetic 
applications. 
 

III. RESULTS 
 
    The neuron models were able to replicate a wide range of 
experimental data from mammalian motoneurons including 
input resistance, time constant, and action potential shape.  
Most importantly for dynamic firing properties, the models 
accurately reproduced the shape of the depolarizing and 
hyperpolarizing afterpotentials measured experimentally in both 
the cell body and myelinated axon.  As a result, the models 
were able to match experimental records on post-action 
potential excitability, as well as spike frequency adaptation and 
steady-state repetitive discharge in response to a constant 
current stimulus. 
    The neuron models were used to predict excitation using 
trains of stimuli applied to the spinal cord model.  We 
hypothesized that due to differences between the post-action 
potential recovery cycles of cells and axons, that selectivity 
could be enhanced by an appropriate choice of stimulus 
frequency.  Neuronal output was quantified as the percentage of 
stimuli in the train that generated propagating action potentials 
in the neurons.  Figure 3A shows the neuronal output of each of 
the three different neurons for symmetrical biphasic stimulus 
trains of 25-150 Hz and 25-50 µA amplitudes.  The results 
demonstrate that modulation of the frequency of the stimulus 
train enhanced selectivity between activation of cells and fibers 
of passage within the CNS. 
    Selectivity of either the local cell or fibers of passage could 
be improved using asymmetrical charge-balanced biphasic 
stimuli.  When an asymmetrical charge-balanced biphasic 
cathode first anode second stimulus waveform designed to 
selectively activate the cells near the electrode [5] was used 
there was a decrease in the threshold for activation of the cell 
near the electrode and there was no activation of either of the 
fibers of passage for the stimulus amplitude range tested (Fig. 
3B).  When an asymmetrical charge-balanced biphasic anode 
first cathode second stimulus waveform designed to selectively 
activate fibers of passage near the electrode [5] was used there 
was enhanced activation of the fibers of passage with no 
activation of the local cell (Fig. 3C). 

 



 

 

 
Fig. 3. Neuronal output as a function of stimulus amplitude and frequency.  
Neuronal output (percentage of stimuli in the stimulus train that generate 
propagating action potentials (AP) in the neuron models) was quantified for 
three different neurons for three different stimulus waveforms. A) Neuronal 
output for a charge-balanced symmetrical biphasic (100 µs pulse duration for 
each phase, no interphase delay) cathode first anode second stimulus train.  B) 
Neuronal output for a charge-balanced asymmetrical biphasic (no interphase 
delay) cathode first (1000 µs pulse duration) anode second (100 µs pulse 
duration) stimulus train designed to selectively activated local cells.  C) 
Neuronal output for a charge-balanced asymmetrical biphasic (no interphase 
delay) anode first (1000 µs pulse duration) cathode second (100 µs pulse 
duration) stimulus train designed to selectively activated fibers of passage. 
 
    Previous experimental results suggest that the threshold for 
indirect, or transsynaptically evoked action potentials, is similar 
to the threshold for direct excitation of the neuron with 
extracellular sources [2].  We developed a model of synaptic 
input on our motoneuron model to determine the potential roles 
of indirect activation of local cells by extracellular stimulus 
trains (Fig. 4).  Action potentials were evoked at all eight 
boutons of the pre-synaptic input and the pre-synaptic fibers 
followed the stimulus frequency 100% for the extracellular 
stimuli examined.  After the onset of extracellular stimulus 
pulse there was a 2 ms delay before onset of the synaptic 
potential in the motoneuron, representative of activation of the 
pre-synaptic fiber, transmitter release, and post-synaptic 
channel activation. 

    The output map of the motoneuron with excitatory synaptic 
input (Fig. 4A) was only slightly different than the map without 
the synaptic input (Fig. 3).  The excitatory post-synaptic 
potential (PSP) reached peak amplitude of 4.5 mV, 1.5 ms after 
onset and lasted 10 ms, as recorded in the soma [9].  Therefore, 
for the stimulus frequencies examined in this study, the synaptic 
influence from the previous pulse was minimal by the onset of 
the next pulse.  However, inhibitory synaptic action has a 
longer time course.  An inhibitory PSP was implemented that 
reached a peak of 3 mV 5 ms after onset and lasted 30 ms [10].  
The results with the inhibitory synaptic influence (Fig. 4) show 
that the output of the neuron was reduced during high frequency 
stimulation (> 75 Hz). 
 

 
Fig. 4. Influence of synaptic excitation and inhibition on neuronal output.  
Incorporation of the excitatory input had little effect on the neuronal output 
map for a symmetrical charge-balanced biphasic stimulus train.  Inhibitory 
input with a time course and magnitude representative of GABAergic 
inhibition shows that synaptic influences on local cells can affect neuronal 
output at high frequencies when driven by extracellular sources. 
 

IV. DISCUSSION 
 
    Previously we developed asymmetric charge-balanced 
stimulus waveforms effective in activating targeted neuronal 
populations, however only single stimuli were considered [5].  
In this study we examined the effects of trains of stimuli, which 
are used in neural prosthetic devices.  Studying the effect of 
stimulus frequency on excitation patterns required models that 
were able to reproduce accurately the dynamic firing properties 
of the neurons being stimulated.  The neuron models used in 
this study allowed for the first time, an accurate response to 
stimulation frequencies greater than 10 Hz, because of the 
models ability to accurately reproduce the shape and magnitude 
of the depolarizing and hyperpolarizing afterpotentials.  
Differences in the afterpotentials of cell body and myelinated 
axon allowed for enhanced activation of fibers of passage with 
high stimulus frequencies (Fig. 2).  The results demonstrate that 
manipulation of the non-linear conductances of the neural 
membrane can enable selective activation of targeted neuronal 



 

 

populations, and this manipulation can be accomplished by 
alterations in the stimulus waveform as well as the stimulus 
frequency. 
    The results also provide insight into the effect of stimulus 
frequency on the arrest of tremor by high-frequency stimulation 
of the thalamus (deep brain stimulation (DBS)).  At higher 
frequencies (> 80 Hz) tremor is suppressed, with a nadir in the 
stimulus amplitude-frequency tuning curve at ~ 125 Hz [11].  
There are large numbers of pre-synaptic GABAergic fibers in 
the thalamus [12], and activation of these fibers by high 
frequency stimulus trains may inhibit tremor activity in post-
synaptic thalamocortical cells via IPSP summation and 
decreases in the membrane resistance [13].  This hypothesis is 
supported by the fact that GABAergic IPSPs have a time course 
that match well with maximal summation occurring at stimulus 
frequencies where DBS is most effective (Fig. 4).  The 
GABAergic IPSP reaches it maximum conductance ~5 ms after 
onset and last for ~30 ms [10].  Therefore, with the ~2 ms delay 
from excitation of the pre-synaptic fiber to onset of the IPSP in 
the post-synaptic fiber there exists a peak effectiveness at ~140 
Hz for IPSP summation.  While the mechanisms regulating the 
therapeutic effects of DBS are not clear, the results of this study 
showing that high frequency stimulation enhances the selective 
activation of fibers of passage and that the summation of 
GABAergic IPSPs on local cells is maximal at ~140 Hz, 
suggest that the principal effects of high frequency extracellular 
thalamic stimulation are synaptically-mediated suppression of 
local cells and direct excitation of fibers of passage. 
 

V. CONCLUSIONS 
 

    The results demonstrate three main conclusions: 1) 
Differences in the after potentials, and post action potential 
excitability of the neuronal cell bodies compared to fibers of 
passage allowed for alterations in stimulus frequency enabled 
selective activation of fibers of passage.  2) Alterations in the 
stimulus waveform enabled selective activation of either cells 
near the electrode or fibers of passage in a realistic 
neuroprosthetic application. and 3) The selective stimulation 
waveforms are effective when used in a stimulus train.  In 
addition, preliminary results point toward indirect (synaptic) 
activation of cells as a possible influence to exploit for selective 
stimulation. 
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