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I. Introduction. 
An electronic retinal prosthesis is under 
development to treat retinitis pigmentosa 
and age-related macular degeneration, 
two presently incurable diseases of the 
outer retina that afflict millions world-
wide. Previous studies have established 
the feasibility of the retinal prosthesis. 
Short-term tests in blind humans have 
shown that degenerated retina will 
respond to light in a way that is 
consistent with form vision [1]. Post-
mortem analysis of human eyes with RP 
and AMD show a significant survival of 
inner retinal cells despite near complete 
degeneration of the photoreceptors in the 
outer retina [2]. Long-term implants 
have demonstrated that the retina can 
tolerate the physical presence of an 
electrode array without degenerating due 
to pressure or other mechanical affects 
[3].  

The focus now has turned 
towards the development of a chronic 
stimulator [4]. Initial prototypes based 
on current technology will have a small 
number of pixels and will place the 
stimulation electronics outside the eye. 
However, more advanced devices are in 
the early development stages. A 
completely implantable, light-sensitive 
retinal prosthesis must include capability 
for both phototransduction and stimulus 
current generation, two power intensive 
functions. These devices will be 
implanted in the eye, creating a 
significant source of heat that must be 
dissipated by the ocular tissue without 

damaging the retina. Therefore, it is 
imperative to obtain a good 
understanding of the power dissipation 
properties of the eye to guide the 
development of such a chip. Future 
prosthesis must also have a high density 
electrode array with over 1000 contacts, 
in order to be restore any useful vision to 
blind individuals. An electrode structure 
that can interface a flat chip to the 
curved retina would have distinct 
advantages over silicon or polyimide 
arrays, where material strength and 
routing of conducting lines may be 
problematic. While other technological 
barriers do exist to a completely 
implanted, light-sensitive retinal 
prosthesis, heat tolerance and high-
density electrodes have been the focus of 
recent activity. 
 
II. Methods  
 
Heat Experiments - A custom, 
intraocular heater appuratus was 
constructed to apply 0, 10, 20, 50, 100, 
200, or 500 mW via a 1.4x1.4.x1 mm 
resistor. The heater probe was 
instrumented with 2 thermocouples: one 
on the heater and a second on the probe 
cable, 6 mm away. The heater probe was 
inserted into the vitreous cavity and 
power was applied. Two heater positions 
were tested: retinal and mid-vitreous. 
Dogs were used in these experiments 
following an approved protocol. An 
initial experiment was followed for 
weeks later by a second, identical 
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experiment in the fellow eye, yielding 
acute and chronic damage data from a 
single animal. Electroretinography, 
fundus photography, and histology were 
used to determine the health of the retina 
after heating. 
 High Density Electrode Array – 
Nanoscale wires were formed in porous 
substrates to serve as the basis for a 
retinal stimulating array. Channel glass 
is an electrically insulating materials that 
forms pores with high aspect ratios. 
Glass can be polished to match the 
curvature of the retina. Channel glass is 
fabricated using glass drawing 
procedures that involve bundled stacks 
of composite glass fibers[5].  The 
process begins by placing an acid-
etchable glass rod into an inert glass tube 
and drawing this pairing of dissimilar 
glasses at elevated temperature into a 
fiber of smaller diameter.  Several 
thousand of these fibers are then cut and 
stacked in a hexagonal-close-packed 
arrangement, yielding a hexagonal-
shaped bundle.  This bundle is 
subsequently drawn at elevated 
temperature, fusing the individual 
composite fibers together while reducing 
the overall bundle size.  At this stage, the 
fibers are hexagonal shaped and contain 
a fine structure of several thousand 
micron-sized (typically 5 to 10 micron 
diameter) acid etchable glass fibers in a 
hexagonal-close-packed pattern.  
Standard microchannel plate glass is 
obtained at this point by bundling these 
fibers together in a twelve-sided bundle 
and fusing the bundle together at 
elevated temperature.  Alternatively, 
nanochannel glass may be obtained by 
stacking the hexagonal shaped fibers 
into a new bundle and then drawing the 
bundle at elevated temperature, thereby 
fusing the individual fibers together and 
reducing the overall size.  In this 

manner, submicron channel diameters 
and extremely high channel densities can 
be achieved.  After the last glass draw, 
the boules are wafered, polished and 
then etched to remove the acid etchable 
glass.  In this way, a glass with 
extremely uniform, parallel, hollow 
channels is obtained. 
 Conductors are formed in the 
porous substrates by sputtering one side 
of the porous material, attaching a lead 
wire to the sputter side, and then 
exposing the other side of the porous 
material to plating solution. Wires of 
nickel, copper, and platinum were 
deposited. 

An in depth study of platinum 
microstructure as related to plating 
potential was conducted. Platinum films 
were electrochemically deposited out of 
solution onto gold substrates using 
different deposition potentials.  
Electrochemical deposition was 
performed using a three-electrode setup 
consisting of a Au-Cr-Si working 
electrode (chromium sputtered on silicon 
followed by a superlayer of gold – 
chromium alleviates mechanical stresses 
between Au & Si so flaking does not 
occur), a platinum counter electrode and 
a Ag/AgCl (silver-silver chloride) 
reference electrode.  A teflon open 
bottom chamber was clamped onto the 
working electrode and the cell was filled 
with 0.01667M ammonium 
hexachloroplatinate (IV) solution. This 
solution is different from standard 
platinum plating solution which contains 
lead acetate. The working electrode was 
inserted through the top of the cell and 
the reference electrode was placed inside 
the auxillary Luggin capillary (small 
channel bored into the teflon to allow 
correct reference placement) built into 
the teflon cell.  The system was 



connected to a digital potentiostat 
controlled by PC. 
Potentiostatic (constant potential vs. 
time) depositions were performed at 300, 
400, 500, 600, 700 and 800mV 
potentials, each for two-hour intervals.  
Current was recorded vs. time for each 
2-hour interval.  Following each 
deposition, remaining solution was 
poured off, the cell was unclamped, and 
the sample was rinsed with distilled 
water.  Compressed nitrogen was used to 
dry the samples. 
 
III. Results 
Heat Experiments. When the heater was 
positioned on the surface of the retina, 
50mW or higher heater settings caused a 
immediate, visible damage to the retina.  
However, histologically, this damage 
was evident only if the eyes were 
immediately sacrificed and fixed (i.e., 
acutely studied).  If the histology was 
performed 4 weeks later (i.e., studying 
the chronic effect), damage was only 
noted at 100mW or higher heater 
settings.  When the heater was placed in 
the midvitreous cavity, no 
ophthalmological, ERG, or histological 
differences were noted. When 500 mW 
was applied, the thermocouple on heater 
reached temperatures of 77 – 87 deg. C, 
but obtained a steady state. A third 
thermocouple probe, in a hypodermic 
needle that could be positioned 
independently of the heater, was used to 
monitor the temperature of the retina, 
which was increased only 2-3 deg. C by 
500 mW power dissipation. Likewise, 
the temperature at the thermocouple on 
the cable, 6 mm from the heater, was 
elevated much less than the heater. Fig. 
1 shows the temperature at all three 
locations recorded during a two hour 
experiment. 
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Figure 1 Heat in the eye during 90 minutes 
heating with 500 mW measured at the heater 
(square), the retina (triangle), and on the 
cable 6 mm from the heater. 

High-Density electrode array. 40 
micron platinum wires were formed in 5 
micron pores (Figure 2). These appear to 
be high quality wires with no 
discontinuities. However, platinum 
plating occurs very slowly, creating 
difficulties in maintaining the integrity 
of the plating setup throughout the 
process. The process may last several 
hundred hours to achieve a 400 micron 
wire. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – 40 micron long platinum wires 
formed in 5 micron channels. 
 



A study of the microstructure of plated 
platinum vs. potential revealed that a 
plating potential of –600 mV yielded a 
dendritic porous structure, while other 
potentials (-300, -400, -500, -700, and –
800 mV) yielded platinum with a finer 
microstructure. The highest efficiency 
deposition was at –400 mV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 – Top platinum deposited at –400 
mV showing a dense, smooth structure. 
Middle – platinum deposited at –600 mV has 
a dendritic structure, Bottom – higher 
magnification of dendritic platinum. 
 

IV. Conclusion 
 
Significant technological hurdles remain 
to developing a high-density, light-
sensitive intraocular retinal prosthesis. 
The amount of heat that can be safely 
dissipated by the eye and surrounding 
head without harming the retina, 
depends significantly on the position of 
the heater. Technology for a high-
density electrode array is advancing, but 
high-quality wires of biocompatible 
material in dimensions usable for a 
retinal prosthesis material have yet to be 
achieved. 
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