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Abstract  -  The cable model for nerve activation is 
based, among other things, on the assumption of 
cylindrical symmetry. For the externally applied field 
in the case of electrical or magnetic stimulation the 
implication is that the transverse component of the 
field should be negligible. The present theoretical 
work shows that for electrical stimulation this 
assumption is valid in most of the cases, but for 
magnetic stimulation the assumption is not generally 
valid, although, with the note that this is strongly 
dependent on the resistivity of the perineurium of the 
nerve. 
 

I. INTRODUCTION 
 
Both for electrical and magnetic stimulation of nerve 
fibers the activating mechanism is usually described on 
basis of the cable model [1], [2]. For unmyelinated fibers 
the cable model leads to the cable equation for the 
subthreshold transmembrane potential, V=V(t,x) 
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where τ and λ are the time constant and space constant of 
the fiber, t is time, x is the space co-ordinate along the 
fiber, and Ex is the electric field along the fiber, either 
electrically or magnetically induced. 
For myelinated fibers a similar equation holds, where the 
spatial derivatives are replaced by spatial differences. 
Equation (1.) explicitly shows that there should be a non-
vanishing gradient of the electric field along the fiber to 
be able to change the transmembrane potential. Moreover, 
it is only the gradient of Ex, not other components of the 
field that may activate the fiber. 
 
Triggered by experimental observations on magnetic 
stimulation of the median nerve in humans, Ruohonen et 
al, [3] added the electric field component transverse to the 
nerve fiber in the right hand side of equation 1. With a 
small modification (the cosine term) the r.h.s. then reads: 
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yielding a good approximation of the transmembrane 
potential. In (2.) Et is the transverse field at the fiber, a is 
the fiber radius, and θ is the azimuthal angle. Note that, 
implicitly, the transmembrane potential has become a 
function of θ as well: V= V(t,x,θ). 
 
The necessity of the addition of the component Et to the 
equation is questionable. Other explanations for the 
experimental results would be obvious: tissue inhomo-
geneity around the nerve, undulation of nerve fibers 
within the nerve [4], and physiological and anatomical 
inhomogeneity of the fiber itself. However, the issue begs 
for a more profound analysis of the validity of the cable 
model in the case of strong transverse electric fields. 
 
The key assumption underlying the cable model is 
rotational symmetry, not only of the fiber structure itself, 
but also symmetry of the activating field at the fiber 
membrane. Where this assumption is a fair approximation 
for most (but not all) cases of electrical stimulation, this is 
not necessarily true for magnetic stimulation. In the 
present paper we show that the transverse field cannot 
always be neglected. 
 

II. METHODOLOGY 
 
The cable model is used for a cylindrical representation of 
nerve fibers. We, therefore, used a cylindrical model of a 
fiber situated along the axis of another cylinder 
representing the nerve fascicle, which in turn was placed 
off-axis in another cylinder, which represented a limb. 
Outside the limb a coil was placed, carrying a current I 
(see fig 1). The nerve fiber itself consists of two 
concentric cylinders to represent the membrane, which 
has a thickness of 5 nm. The perineurium, with a 
thickness of 10 µm, was again created by the use of two 
concentric cylinders. 
 
The magnetically induced electric field was calculated 
analytically, by solving Poisson�s equation in cylindrical 
coordinates within the various cylinders with application 
of the necessary boundary conditions at the cylinder 
interfaces. 
 
A simpler model was used for electrical stimulation, 
where the current was induced through a point current 
source. Here the fiber was immersed in a large 
homogeneous medium. 
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Fig.1 � Cylindrical model of a nerve fiber and nerve trunk 
in a limb (not to scale), with the relative position of the 
stimulating coil indicated 
 
 
Values of the model parameter were: membrane 
conductance = 6.77 S/m2, axoplasmatic conductivity = 
2.82 S/m, nerve conductivity = 1 S/m, limb conductivity 
= 2.0 S/m, fiber radius = 3 µm, limb radius = 5.0 cm, 
nerve position = 1.0 cm under limb surface. Coil diameter 
= 5.0 cm, with the coil placed in touch with the limb. 
 
The results of the 3D models were compared with the 
results from the steady state cable equation, either 
equation (1) or with the r.h.s. replaced by (2.), and in both 
cases without the time varying term. 
 
For more detailed information on the calculations see [5] 
and [6]. 
 

III. RESULTS 
 
Figure 2 shows the transmembrane current for three 
different cases of electrical stimulation. Only in fig 2A 
the situation is rotationally symmetric and does the cable 
equation (1.) hold. Case B shows a very asymmetric 
situation due to the fact that the electrode is at 4.5 µm 
away from the fiber. A situation that might occur in 
microstimulation. Figure 2C also shows a asymmetric 
case, but now for an electrode at more than 10 cm away 
from the fiber.  
 

 
 

Fig 2  -  Arrows indicate membrane current for electrical 
stimulation. A) the electrode (cathode) is 1 mm away 
from the fiber, B) electrode very close to the fiber, C) 
electrode 30 cm from the fiber 
 
 
 
 

 
 
Fig 3  -  Transmembrane potential along the positive half 
of the fiber. The coil position is indicated by the insets 
 
 
In figure 3 the transmembrane potentials for magnetic 
stimulation are shown for two cases: A) the coil is 
positioned symmetrically with respect to the fiber, in 
which case equation (1.) predicts zero polarization, and 
B) the coil is positioned in such a way that maximum 
depolarization exists. 
In fig 3A the fiber is strongly depolarized on one side and 
equally hyperpolarized on the other side. According to 
equation 1 there should be no polarization at all, because 
with this symmetrical coil configuration the longitudinal 
field Ex along the fiber is zero. 
In fig. 3B the fiber is depolarized more strongly on one 
side than on the other. Compared with equation (1.) the 
maximum difference is about 25% stronger or lesser 
depolarization. In these cases the transmembrane potential 
is very well described by eq. 2 (less than 1% difference). 
 
For low values of the conductance of the perineurium the 
transverse field becomes significantly weaker. For this 
conductivity being 2.10-4 S/m, the transverse field is 
negligible. 
 

IV. DISCUSSION 
 
This paper focuses on the polarization of nerve fiber 
membrane in several cases of electrical and magnetic 
stimulation. The 3D model suggests that the transverse 
induced electric fields cannot always be neglected, and 
that therefore, equation (1.) may be insufficient. In 
contrast, replacing the rhs of eq. (1.) by (2.) always gave 
an excellent match between the extended cable model and 
the 3D model. 

A B 



However, the relative strengths of the two terms in 
expression (2.) turns out to be strongly dependent on the 
value of the conductivity of the perineurium. Information 
on the value of this parameter is scarce [7] in the literature 
and the availability of more data is highly desirable. 
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