AFRL-VA-WP-TP-2003-300

COMBINING STATE DEPENDENT
RICCATI EQUATION APPROACH
WITH DYNAMIC INVERSION:
APPLICATION TO CONTROL OF
FLIGHT VEHICLES

Rama K. Yedavalli
Praveen Shankar
David B. Doman

FEBRUARY 2003

Approved for public release; distribution is unlimited.

©2001 ATAA

This work is copyrighted. The United States has for itself and others acting on its
behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other
form of use is subject to copyright restrictions.

AIR VEHICLES DIRECTORATE

AIR FORCE RESEARCH LABORATORY

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

20030320 017




REPORT DOCUMENTATION PAGE o Approved

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comptly with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
February 2003 Conference Paper Preprint
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
COMBINING STATE DEPENDENT RICCATI EQUATION APPROACH F33615-01-2-3154
WITH DYNAMIC INVERSION: APPLICATION TO CONTROL OF Sb. GRANT NUMBER
FLIGHT VEHICLES .| 5c. PROGRAM ELEMENT NUMBER
N/A
6. AUTHOR(S) 5d. PROJECT NUMBER
‘Rama K. Yedavalli and Praveen Shankar (The Ohio State University) N/A
David B. Doman (AFRL/VACA) 5e. TASK NUMBER
N/A
5f. WORK UNIT NUMBER
N/A
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
The Ohio State University | Control Theory Optimization Branch (AFRL/VACA)
2036 Neil Ave. Mall Control Sciences Division
Bolz Hall, Room 328 Air Vehicles Directorate

Columbus, OH 43210-1276 | Air Force Research Laboratory, Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
. . ] AGENCY ACRONYM(S)
Air Vehicles Directorate

Air Force Research Laboratory AFRL/VACA
Air Force Materiel Command 11. SPONSORING/MONITORING

Wright-Patterson Air Force Base, OH 45433-7542 AGENCY REPORT NUMBER(S)
AFRL-VA-WP-TP-2003-300

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Proceedings to be presented in the ATAA Guidance Navigation and Control Conference,_August 11, 2003, Austin, TX

©2001 ATIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up,
nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions.

14. ABSTRACT (Maximum 200 Words) :

State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a
systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of
integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control
systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION | 18. NUMBER OF| .
OF ABSTRACT: PAGES 19a. Nm OF RESPONSIBLE PERSON (Monitor)
a. REPORT | b. ABSTRACT | c. THIS PAGE SAR 27 David B. Doman
Unclassified | Unclassified | Unclassified 19b. TELEPHONE NUMBER (Include Area Code)
(937) 255-8451

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18




Combining State Dependent Riccati Equation Approach with
Dynamic Inversion: Application to Control of Flight Vehicles

Rama K. Yedavalli* and Praveen Shankar" ' David B. Doman®
The Ohio State University Air Force Research Laboratories
Abstract

State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as
a design method, which provides a systematic and effective means of designing nonlinear
controllers, observers and filters. This paper describes a new method of integrating the
SDRE technique with the Dynamic Inversion control law that is frequently used in the
design of aircraft control systems. This paper also provides an example by applying this
control design technique to a reusable launch vehicle.

Introduction

There have been a number of design methodologies developed for control of nonlinear
systems. The aircraft problem is one such nonlinear system to which control design
techniques such as Dynamic Inversion have been applied. Lesser-known nonlinear design
procedures are those that involve the state dependent Riccati equations (SDRE). The
State Dependent Riccati Equation approach to nonlinear system stabilization relies on
representing a nonlinear system’s dynamics similar to linear dynamics, but with state
dependent coefficient matrices that can be inserted into state dependent Riccati equations
to generate a feedback law. Although stability of the resulting closed loop system need
not be guaranteed a priori, simulation studies have shown that the method can often lead
to suitable control laws.

Over the past several years various SDRE design methodologies have been successfully
applied t0 aerospace problems. SDRE based design procedures have been used in
advanced guidance law development [1,2] and in'an output feedback autopilot design [3].
Additionally, SDRE design methods have been used in nonlinear filter development [4].
In [5], Ehrler and Vadali investigated the nonlmear regulator problem and showed that
solving an algebraic Riccati as it evolved over time provided one means of obtaining a
sub optimal solution of the infinite horizon problem. In essence the State Dependent
Riccati Equation was treated as being time dependent and its state dependency was not
explicitly acknowledged, addressed or analyzed. In [6], SDRE nonlinear regulation,
- SDRE nonlinear H,,, and SDRE nonlinear H; des1gn methodologies were defined and the
optimality, sub optimality and stability properties of SDRE nonlinear regulation was
investigated.
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Overview

SDRE stabilization refers to the use of State Dependent Riccati Equations to construct
nonlinear feedback control laws for nonlinear systems. The main idea is to represent the
nonlinear system

x=f(x)+ B(x)u

in the form

x=A(x)x+B(x)u

and to use the feedback

u=—R"(x)B” (x)P(x)x

where P(x) is obtained from the SDRE

P(x)A(x) + A" (x)P(x) + Q(x) - P(x)B(x)R™ (x)BT (x)P(x)=0

;ﬁd Q(.) and R(.) are design parameters that sétisfy the point wise definiteness condition
O(x)>0 R(x)>0

The resulting closed loop dynamics have a linear-like structure given by

X=A, (x)x 'where
Ag (x)=A(x) - R (x)B(x)B” (x)P(x)

Simulation studies have shown that the dynamics matrix satisfies the Lyapunov Criterion
for stability given by

P(x)Aq, (x)+ AZ, (X)P(x)<—Q,, where
0,>0




"Equations of Motion of Aircraft -
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State Dependent Linear State Space System -

Example 1
State ;' x=[P Q R]
X, cx, 0 il 0 ¢ L
X=l-cx; 0 cx+ex|x|+|0 ¢, 0M
0 gx -cx x| |l 0 N
Example 2

State : x=[P Q R ¢ 6 v]

[ c,x, C\X, 0 0 0 0fx] [c, 0 c, |
—ceX, 0 CsX+cx; 0 0 Oflx,| |0 ¢ OFf I
. 0 ' CeX, —C,X, 0 0 Ofx, N 0 ¢ M
1 sinx;tanx; cosxs;tanx; 0 0 Ofx, 0 0 o N
0 . cosx, -sinx, 0 0'Ofx,|] (0 0 o
| 0 sinx;secx; cosx,secx; 0 0 OJ (%] L0 O Oj
Example 3

Sate : x=[U V W P Q R sind cosfsing cosfcosd]

[0 x, -x, 0 0 0 -g 0 07x]
-x, 0 x, 0 0 0 0 0 O0fx,
x -x, 0 0 0 0 0 g 0fx
0 0 0 cx cx 0 0 0 O0fx,
x=[ 0 0 0 -cox, 0 cx,+cexy O 0 0 fx(+
0 0 0 0 cx —CyX5 0 0 O0}fx
0 0 0 0 0 0 0 -x x[x
0 0 0 0 0 0 x 0 x,lx
| 0 0 0 0

0 0 =X =%, 0 x|

0 o0
0 0
/m 0
0 ¢
0 0
0 ¢
0 o
0 o0
0 o
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Schematic Representation of the Method
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Combined SDRE and Dynamic Inversion Control Law

Stability of Nominal System for Full State Feedback
x=A(x)x+ Bu

Riccati Based Control Law

u=—R'B"P(x)x

Dynamic Inversion Control Law

u=B""(x,, - A(x)x

W.KT B'=(B"B)?

Let

Xges = Ages (X)x

Then _
u=—(B"B)'BT(A(x)- 4, (x))x

Comparing Equations (1) & (2) Cresihe
R=B"B
P(x) = A(x) — A, (x)
The SDARE becomes
P(x)A(x) + AT (x)P(x) +Q — P(x)P(x)=0




Solving the above equation for P(x), we can calculate

A4, (0) = A(9) - P(x)

Stability of Nominal System for Output Feedback

X=A(x)x+ Bu

o=Cx

® =Cx=CA(x)x+CBu
Let &, =A, (x)x

Riccati Based Control Law
u=-R"'BTP(x)x

Dynamic Inversion Control Law
u=(CB)* (&, — CA(x)x)
==(CB)* (CA(x) - 4,,,(x))x

u=—{(CB)" (CB)}"(CB)" (CA(x) - 4, (x))x
u=—(B"C"CB)™ B"CT (CA(x) - A, (X))x

Comparing Equations (3) & (4)
R=B"C7CB
P(x)=C"(CA(x) - 4,,(x))

The SDARE becomes
P(x)A(x) + A" (x)P(x) + Q- P(x)B(BTCT CB)“l BT P(x)=0

S.oivm'g'fhé ébové eqﬂétion for P(x), we can calculate Ages using the equation
P(x)=C" (CA(x) - 4,,, (x))

Closed Loop System
X =[A(x) + B(CB)" (4,4, (%) - A(x))x = 4, (x)x.

Verification of Stability

LetP be:a positive definite matrix, which is chosen as P =P(x). P(x) is the solution to

the SDARE at the initial condition {Xo}.




Full State Feedback

P(x,) A(xy) + 47 (%,)P(x) + Q= P(x) P(3,)=0

Output Feedback

P(x,)A(x,) + A7 (% )P(x,) + Q — P(x,)B(B"CCB)™ B" P(x,)=0

The Closed Loop System is locally asymptotically stable if

PAx)+ A" ()P, <0

Application of Combined SDRE and Dynamic Inversion Control Law to Aircraft

State : x=[U vV W P Q R siné cosfsing cosfcosd |

0 x -x 0 0 0
-xs 0 x 0 0 0
x -x, .0 0 0 0
0 0 0 cx cx 0
0 0 0 —cx, 0 c5x,+cexg
0 0 0 0 cx; —cx5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

|

S O O
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[0 x, -x; O 0 0
-x, 0 x, 0 0 -0
x -x, 0 o -0 0
0 0 0 cx; cx 0
0 0 0 -—cx, 0 csx,+cexg
0 0 0 0 cx —CyX;s
0 0 0 0 0 0
0o 0 0o 0 0 0
| 0 0 0o 0 0 0

O O O O O ©

x| [1/m 0 0
X, 0 1/m 0
X3 0 0 1/m O
X, 0 0 0
xs; [+] O 0 0
X 0 0 0
X, 0 0 0
Xy 0 0 0
X | O 0 0

[1/m 0 0 0
0 /m 0 O
0 0 UUm 0
0 0 0 ¢
=0 0 0 0
0° "0 0 ¢
0 0 0 0
0 0 o0 O
0 0o o0 O

The above state space éystem is not completely controllable. However if we separate the

A(x) matrix into A;(x) and A(x) given by
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(0 x, -x, O 0
-x 0 x, 0 0
N .
CXs €)X

0 0 0 —cx, O

| 0 0 0 0 ¢

o o o

0
= CyXs

then the pair (A;(x),B;) are completely controllable.

[0 x, -x, 0 0

-x 0 x 0 0
s
CyXs € Xg

0 0 0 -cex, O

| 0 0 0 0 ¢x

0
0
0
0

CsXy +CeXg

—CyXs

Therefore we can design a control law given by -

u=B" (k4 - 4,(x)x,

where Jc,=[xl X, X3 X, X x,]
and u=[F, F, F, L M N]
W.KT B™=(B"B)"

. Let

Xides = Ay (X)x,

Then
u=-(B,"B,)" B, (4,(x) - 4,4, (x))x,

Ajdes(x) is calculated from the equation

4405 (%) = 4,(x) - P(x)

where P(x) is the solution to the Riccati Equation

|

d

P(x)4,(x) + 4] (x)P(x) + 0~ P(:)B,(x)R" (x)B,” (x)P(x)=0

However we know that
R=BB,

-Xg X
0 x
-x, 0
0 0 0 0
I/m 0 0 0
0 1/m 0 0
0 0 cy
0 0 0 ¢
0 0 ¢, 0




Therefore the State Dependent Algebraic Riccati Equation reduces to
P(x)4,(x)+ A" (x)P(x)+ Q- P(x)P(x)=0 " -

'f‘he closed loop system is give'n by

% =4,(x)x+B,[B] (A,”“’ (*) = 4,(0)x,]

Therefore, we have

| % =Ae; (%)x)
where A (x)=4,(x)+ B, [B (A (%) — 4, (2))]

Verification of Closed Loop System Stability

In the previous section we separated A(x) into

[0 x;, -x O 0 0
—x, 0 x, 0 -0 70 0 —r s
4 (%)= ¥ % 0 0 0 0 and A,(x)=| x O6 x5
! 0 0 0 x5 cx 0 2 6 4
0 0 0 =—cex, 0 cux,+cex —% m% 0
| 0 0 0 0 cx —Cy X

The matrix Ay(X) is neutrally stable if we calculate it’s eigenvalues by freezing the states
- at each time instant. However we are more concerned about the stability of matrix A;(x)
under the control ‘v’ that we previously discussed. The closed loop system under control

w’ is given by A (%).
Let Py be a positive definite matrix, which is. chosen as Pp = P(Xy¢). P(x;p) is the solution
to the SDARE at the initial condition {x;o}.

P(x,4) A(x,0) + A7 (x10)P(x0) +Q - P(xIO)P(x10)=O

The closed loop system is locally asymptotically stable if
P A, (x)+ A5 (x)P, <0

Results

Initial Condition 1
Uo=5175




Vo=0
Wo=275
Po=0
Qo=0
Ro=0
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Results :
Initial Condition 2
Uo=517.5
Vo=0

Wo=27.5
Po=0.5

Qo=0.5

Ro=0.5
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Conclusions

In this paper a new control law was developed that is a combination of the existing State
Dependent Riccati Equation techniques and the Dynamic Inversion control law. This
control system design was then applied to the aircraft dynamics and the resulting closed
loop system was shown to be stable even under change in the initial conditions.
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