AFRL-VA-WP-TP-2003-300

COMBINING STATE DEPENDENT RICCATI EQUATION APPROACH WITH DYNAMIC INVERSION: APPLICATION TO CONTROL OF FLIGHT VEHICLES

Rama K. Yedavalli Praveen Shankar David B. Doman

FEBRUARY 2003

Approved for public release; distribution is unlimited.

©2001 AIAA

This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions.

AIR VEHICLES DIRECTORATE AIR FORCE RESEARCH LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

Target production of the function of contraster is barried as in the control of the cont	REPORT DOCUMENT	REPORT DOCUMENTATION PAGE										
1. REFORT DATE 2. REPORT TYPE 3. DATES COVERED (From - To) February 2003 Conference Paper Preprint 5. CONTRACT NUMBER - TITLE AND SUBTITLE CONDEINING STATE DEPENDENT RICCATI EQUATION APPROACH 5. CRANT NUMBER WITH DYNAMIC INVERSION: APPLICATION TO CONTROL OF 5. CRANT NUMBER F33615-01-2-3154 6. AUTHOR(S) Rama K. Yedavalli and Praveen Shankar (The Ohio State University) 5. PROFERAN ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(DS) 8. PROJECT NUMBER N/A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(DS) 8. FEBFORMING CRGANIZATION NAME(S) AND ADDRESS(DS) 8. FEBFORMING CRGANIZATION NAME(S) AND ADDRESS(DS) 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(DS) 8. FEBFORMING CRGANIZATION NAME(S) AND ADDRESS(DS) 8. FEBFORMING CRGANIZATION 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(DS) 8. FEBFORMING CRGANIZATION 8. FORCE NUMBER 7. SPONSORING/MONITORING ACENCY NAME(S) AND ADDRESS(DS) 8. FEBFORMING CRGANIZATION 8. FORCE NUMBER 0. JUNITUDIA VALLABILITY STATEMENT APPORT PORCE Base, OH 45433-7542 14. SPONSORING/MONITORING ACENCY NAME(S) AND ADDRESS(DS) 1. SUPPLICENTIAL NOTING AFEL VACA AFEL/VACA AFEL/VACA ANT PORCE RESARCH Laboratory	The public reporting burden for this collection of gathering and maintaining the data needed, and co suggestions for reducing this burden, to Departme Arlington, VA 22202-4302. Respondents should display a currently valid OMB control number. P	information is estimated to mpleting and reviewing to ant of Defense, Washingto be aware that notwithstan LEASE DO NOT RETU	to average 1 hour per response, ind the collection of information. Sen on Headquarters Services, Directo ding any other provision of law, r JRN YOUR FORM TO THE A	cluding the time for reviewir d comments regarding this b rate for Information Operation person shall be subject to BOVE ADDRESS.	ng instructions, searchin burden estimate or any o ons and Reports (0704-(any penalty for failing t	g existing data sources, searching existing data sources, ther aspect of this collection of information, including 0188), 1215 Jefferson Davis Highway, Suite 1204, o comply with a collection of information if it does not						
February 2003 Conference Paper Preprint 4. TITLE AND NUBTITLE Sa. CONTRACT NUMBER COMBINING STATE DEPENDENT RICCATI EQUATION APPROACH Sa. CONTRACT NUMBER WITH DYNAMIC INVERSION: APPLICATION TO CONTROL OF F. BAGENT NUMBER FLIGHT VEHICLES Sc. FROGRAM ELEMENT NUMBER 6. AUTHOR(S) Rama K. Yedavalii and Praveen Shankar (The Ohio State University) Sc. TASK NUMBER David B. Doman (AFRL/VACA) N/A Sc. TASK NUMBER 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(CS) Sc. TasK NUMBER N/A 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(CS) Sc. Testeromsing Organization Branch (AFRL/VACA) N/A 2036 Neil Ave. Mall Control Theory Optimization Branch (AFRL/VACA) N/A Sc. TASK NUMBER 2041 RL ROO RESCIPTION TO RESCIPTION TO ADDRESS(CS) Sc. Testeromsing Organization Branch (AFRL/VACA) Sc. To SCHONTRO/MONTORING AGENCY NAME(S) AND ADDRESS(CS) Is. SPONSORING/MONTORING AGENCY NAME(S) AT ADDRESS(CS) Is. SPONSORING/MONTORING AGENCY NAME(S) AT VehicleS Directorate N/A Air Force Research Laboratory Air Force Research Laboratory Is.	1. REPORT DATE (DD-MM-YY)		2. REPORT TYPE		3. DAT	ES COVERED (From - To)						
4. TTLE AND SUPTITLE 54. CONTRINUS STATE DEPENDENT RICCATI EQUATION APPROACH WITH DYNAMIC INVERSION: APPLICATION TO CONTROL OF FLIGHT VEHICLES 53. CONTRACT NUMBER F33615-01-2-3154 6. AUTHORIS 8. GRANT RUMMER 55. CRANT RUMMER 7. AUTHORIS 8. GRANT RUMMER 56. PROGRAM ELEMENT NUMBER N/A 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. FRANT RUMMER N/A 54. PROJECT NUMBER N/A 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. FRANT RUMMER N/A 56. PROFORT NUMBER N/A 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. FORT NUMBER N/A 56. PROFORT NUMBER N/A 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. FORT NUMBER N/A 57. PREFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 10. SPONSORING ORGANIZATION AT Vehicles Directorate Air Vehicles Directorate Air Force Research Laboratory Air Vehicles Directorate Air Force Research Laboratory Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY NEWFOR NUMBER AFRL-VA-WP-TP-2003-300 12. DISTRUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 11. SPONSORIMON/MONTORING AGENCY REFORT NUMBERS AFRL-VA-WP-TP-2003-300 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX @2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unl	February 2003		Conference Pap	per Preprint								
WITH DYNAMIC INVERSION: APPLICATION TO CONTROL OF FLICHT VEHICLES 5. GRAM ELEMENT NUMBER N/A 6. AUTHOR(5) Rama K. Yedavalli and Praveen Shankar (The Ohio State University) David B. Doman (AFRL/VACA) 5. PROCRAM ELEMENT NUMBER N/A 7. FERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 7. FERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION N/A 502 Hall, Room 328 Control Science Division Bolz Hall, Room 328 Air Vehicles Directorate Air Vehicles Directorate Columbus, OH 43210-1276 The Force Research Laboratory, Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 9. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER(5) AIR Vehicles Directorate Air Vehicles Directorate Nir Vehicles Directorate Air Porce Research Laboratory 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(5) AFRL/VACA 11. SUPPLEMENTARY NOTES 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(5) AFRL/VACA 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(6) AFRL/VACA 13. SUPPLEMENTARY MOTES Are Unclassified 11. MINER of Meendol State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonol	4. TITLE AND SUBTITLE COMBINING STATE	DEPENDEN	ATION APPRO	DACH	a. CONTRACT NUMBER F33615-01-2-3154							
FLIGHT VEHICLES 5c. PROCRAM ELEMENT NUMBER N/A 6. AUTHOR(5) Rama K. Yedavalli and Praveen Shankar (The Ohio State University) David B. Doman (AFRL/VACA) 5c. FASCECT NUMBER N/A 6. AUTHOR(5) Rama K. Yedavalli and Praveen Shankar (The Ohio State University) David B. Doman (AFRL/VACA) 5c. FASCECT NUMBER N/A 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) The Ohio State University 2036 Neil Ave. Mall Dot Hall, Room 328 Columbus, OH 43210-1276 Control Theory Optimization Branch (AFRL/VACA) Control Sciences Division Air Vehicles Directorate Air Force Research Laboratory, Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONTORING AGENCY ACRONYM(5) AFRL/VACA 9. SPONSORING/MONTORING AGENCY NAME(S) AD DADRESS(ES) Air Vehicles Directorate Air Force Research Laboratory Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONTORING AGENCY ACRONYM(5) AFRL/VACA 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX C2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worklyide License. Any other form of use is subject to copyright restrictores a systematic and flective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systemates. This paper also provides an example by applying t	WITH DYNAMIC INV	VERSION: A	PPLICATION TO	CONTROL O	F 5	b. GRANT NUMBER						
6. AUTHOR(S) Rama K. Yedavalli and Praveen Shankar (The Ohio State University) David B. Doman (AFRL/VACA) 54. PROJECT NUMBER N/A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. Down 328 Columbus, OH 43210-1276 Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY ACRONYNKS) Air Vehicels Directorate Air Force Research Laboratory Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY ACRONYNKS) AFRL/VACA 13. SUPPLEMENTARY NOTES Proceedings to be presented in the ALAG Guidance Navigation and Control Conference, August 11, 2003, Austin, TX 9. COLALA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, inevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Wordd) 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 22 19. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19. NAME OF RESPONSIBLE PERSON (Monitor) 21. SUPPLET TERMS	FLIGHT VEHICLES		c. PROGRAM ELEMENT NUMBER N/A									
Rama K. Yedavalli and Praveen Shankar (The Ohio State University) N/A David B. Doman (AFRL/VACA) Se. TASK NUMBER N/A 5. TASK NUMBER N/A Se. TASK NUMBER N/A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION NAME (State University) Control Theory Optimization Branch (AFRL/VACA) S. PERFORMING ORGANIZATION NAME (State University) Odo Keil Ave. Mall Control Theory Optimization Branch (AFRL/VACA) David B. Doman (Zolumbus, OH 43210-1276) Air Vehicles Directorate Columbus, OH 43210-1276 Air Force Research Laboratory, Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) In. SPONSORING/MONITORING AGENCY ACEONYM(S) AIr Force Research Laboratory Air Force Research Laboratory Air Force Base, OH 45433-7542 10. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT Mathemation (SDRE) techniques are rapidly emerging as a design method, w	6. AUTHOR(S)	5	id. PROJECT NUMBER									
David B. Doman (AFRL/VACA) Se. TASK NUMBER N/A Se. TASK NUMBER Second	Rama K. Yedavalli and		N/A									
N/A 5f. WORK UNTT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The Ohio State University 2036 Neil Ave. Mall Control Theory Optimization Branch (AFRL/VACA) Control Sciences Division Air Vehicles Directorate Air Force Research Laboratory, Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 8. PERFORTING/MONTORING AGENCY ACRONYM(S) AFRL/VACA 9. SPONSORING/MONTORING GAENCY NAME(S) AND ADDRESS(ES) Air Vehicles Directorate Air Force Research Laboratory Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONTORING AGENCY ACRONYM(S) AFRL/VACA 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. AFRL-VA-WP-TP-2003-300 13. SUPPLEMENTARY NOTES 7. Dividiance Navigation and Control Conference, August 11, 2003, Austin, TX C0201 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Wordd) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PACES SAR 19a. NAME OF RESPONSIBLE FERSON (Monitor) David B. Doman Inteleform 2007 255-8451	David B. Doman (AFR	L/VACA)			5	ie. TASK NUMBER						
5. WORK UNIT NUMBER N/A N/A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) N/A The Ohio State University 2036 Neil Ave. Mall Bolz Hall, Room 328 Control Theory Optimization Branch (AFRL/VACA) Churbus, OH 43210-1276 8. PERFORMING ORGANIZATION REPORT NUMBER 2036 Neil Ave. Mall Bolz Hall, Room 328 Control Sciences Division Air Vehicles Directorate Air Force Besearch Laboratory, Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Vehicles Directorate Air Force Research Laboratory Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY ACRONYM(S) AFRL/VACA 11. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 11. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX 2020 J.IAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Machum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT: Unclassified 18. NUMBER OF PACES SAR 19. NAME OF R						N/A						
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) N/A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PEFORMING ORGANIZATION 7. The Ohio State University Control Sciences Division 2036 Neil Ave. Mall Bolz Hall, Room 328 Columbus, OH 43210-1276 Control Sciences Division Air Vehicles Directorate Air Force Research Laboratory, Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING Air Force Research Laboratory Air Force Base, OH 45433-7542 Air Force Research Laboratory Air Force Base, OH 45433-7542 Air Force Base, OH 45433-7542 11. SPONSORING/MONITORING AGENCY ACCONYM(S) AFRL-VA-CA Air Force Base, OH 45433-7542 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-VA-CA Air Force Base, OH 45433-7542 11. SPONSORING/MONITORING 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPLEMENTARY NOTES ForceeBase, Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Machuma 200 Mordy) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filter					5	if. WORK UNIT NUMBER						
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 7. The Ohio State University 2036 Neil Ave. Mall Control Sciences Division 8. Dol: Hall, Room 328 Air Vehicles Directorate 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Vehicles Directorate Air Force Research Laboratory Air Force Research Laboratory 11. SPONSORING/MONITORING Air Force Materiel Command Mirght-Patterson Air Force Base, OH 45433-7542 12. DISTRIBUTION/AVAILABILITY STATEMENT AFRL/VACA Approved for public release; distribution is unlimited. 11. SPONSORING/MONITORING 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX @2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Machuma 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control desig					·	<u>N/A</u>						
The Ohio State University 2036 Neil Ave. Mall Bolz Hall, Room 328 Control Sciences Division Air Vehicles Directorate Air Force Research Laboratory, Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Vehicles Directorate Air Vehicles Directorate Air Vehicles Directorate Air Vehicles Command Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY ACRONYM(S) AFRL/VACA 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Vehicles Directorate Air Vehicles Directorate Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY ACRONYM(S) AFRL/VACA 11. SUPFLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX @2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	7. PERFORMING ORGANIZATI	ION NAME(S) AN	ID ADDRESS(ES)		8	. PERFORMING ORGANIZATION REPORT NUMBER						
2036 Neil Ave, Mail Bolz Hall, Room 328 Columbus, OH 43210-1276 Control Sciences Division Air Vehicles Directorate Air Force Research Laboratory, Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY AGENCY NAME(S) AND ADDRESS(ES) Air Vehicles Directorate Air Force Research Laboratory Air Force Research Laboratory Air Force Research Laboratory Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY ACRONYM(S) AFRL/VACA 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX @2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	The Ohio State University	Control Theory	Optimization Brand	ch (AFRL/VACA	A)							
BOID Flair, ROOM 328 Air Voincles Directorate Air Voincles Directorate Air Force Research Laboratory, Air Force Materiel Command Air Voincles Directorate AFRICK CR Research Laboratory Air Force Research Laboratory Air Force Research Laboratory Air Supproved for public release; distribution is unlimited. 11. SPONSORING/MONITORING AGENCY CONSTRUE The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebrary Re	2036 Neil Ave. Mall	Control Scienc	es Division									
Wright-Patterson Air Force Base, OH 45433-7542 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Vehicles Directorate Air Vehicles Directorate AGENCY ACRONYIN(S) Air Force Research Laboratory Air Force Materiel Command AFRL/VACA Wright-Patterson Air Force Base, OH 45433-7542 11. SPONSORING/MONITORING AGENCY ACRONYIN(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT AFRL-VA-WP-TP-2003-300 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear control law that is frequently used in the describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the describes and example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 17. LIMITATION OF ARSTRACT: SAR 19. NAME OF RESPONSIBLE PERSON (Monitor) DAWIGE (Include Area Code) (937) 255-8451	Columbus OH 43210-1276	Air Force Rese	arch Laboratory, Au	r Force Materiel	Command							
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Vehicles Directorate Air Force Research Laboratory Air Force Materiel Command Afrent Force Base, OH 45433-7542 Wright-Patterson Air Force Base, OH 45433-7542 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL/VACA 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	Columbus, 011 15210 1270	Wright-Patters	on Air Force Base, C	OH 45433-7542								
Air Vehicles Directorate AGENCY ALKONYN(S) Air Force Research Laboratory Air Force Research Laboratory Air Force Materiel Command Mir Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 II. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-VA-WP-TP-2003-300 12. DISTRIBUTION/AVAILABILITY STATEMENT Agency Report NUMBER(S) AFRL-VA-WP-TP-2003-300 II. SPONSORING/MONITORING MONITORING AGENCY REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 17. LIMITATION OF: SAR 18. NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	9. SPONSORING/MONITORING	1	0. SPONSORING/MONITORING									
Air Force Research Laboratory Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 INPLOVACA 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-VA-WP-TP-2003-300 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	Air Vehicles Directorat		AGENCY ACRONYM(S)									
Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7542 11. SPONSORING/MONITORING ACENCY REPORT INUMBER(S) AFRL-VA-WP-TP-2003-300 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonecclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	Air Force Research Lal		AFRL/VACA									
Wright-Patterson Air Force Base, OH 45433-7542 AGREL FAIL OR TRUDENCY AFRL-VA-WP-TP-2003-300 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. AFRL-VA-WP-TP-2003-300 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Machnum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION Unclassified 18. NUMBER OF ABSTRACT: SAR 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	Air Force Materiel Con	nmand			1	1. SPONSORING/MONITORING						
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT: Unclassified 18. NUMBER OF PAGES SAR 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	Wright-Patterson Air F	orce Base, OI	H 45433-7542			AFRI -VA-WP-TP-2003-300						
12. DISTRIBUTIONAVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor) DATE PAGES 19. ABSTRACT Unclassified 0. ABSTRACT C. THIS PAGE 19. ABSTRACT (Include Area Code) (937) 255-8451												
13. SUPPLEMENTARY NOTES Proceedings to be presented in the AIAA Guidance Navigation and Control Conference, August 11, 2003, Austin, TX ©2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. ABSTRACT Unclassified c. THIS PAGE Unclassified 10classified Unclassified 11 SAR 12 12 12 13. NUMBER (Include Area Code) (937) 255-8451	12. DISTRIBUTION/AVAILABIL Approved for public release; of	distribution is u	nlimited.									
©2001 AIAA. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF Unclassified 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	13. SUPPLEMENTARY NOTES Proceedings to be presented in	n the AIAA Gu	idance Navigation a	nd Control Confe	rence, August	11, 2003, Austin, TX						
nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. 14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES Unclassified 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	©2001 AIAA. This work is c	opyrighted. Th	e United States has f	for itself and othe	rs acting on it	s behalf an unlimited, paid-up,						
14. ABSTRACT (Maximum 200 Words) State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: a. REPORT b. ABSTRACT Unclassified c. THIS PAGE SAR 22 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	nonexclusive, irrevocable wor	rldwide license.	Any other form of	use is subject to	copyright rest	rictions.						
State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: a. REPORT b. ABSTRACT Unclassified C. THIS PAGE SAR 22 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	14. ABSTRACT (Maximum 200 W	ords)										
systematic and effective means of designing nonlinear controllers, observers, and filters. This paper describes a new intended of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: C. THIS PAGE Unclassified Uncl	State Dependent Algebraic Ri	ccati Equation	(SDRE) techniques a	are rapidly emerg	ging as a design	n method, which provides a						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19. NAME OF RESPONSIBLE PERSON (Monitor) 19a. NAME OF RESPONSIBLE PERSON (Monitor) 19. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	systematic and effective means of designing nominical controllers, observers, and inters. This paper describes a new include of integrating the SDDE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control											
15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: Unclassified 18. NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle.											
15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT Unclassified												
15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified Unclassified												
15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT Unclassified												
15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451												
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: Unclassified 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor) David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	15. SUBJECT TERMS											
a. REPORT b. ABSTRACT c. THIS PAGE OF ABSTRACT FAGES David B. Doman Unclassified Unclassified Unclassified SAR 22 David B. Doman 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-8451 Standard Form 298 (Rev. 8-98)	16. SECURITY CLASSIFICATIO	ON OF:	17. LIMITATION	18. NUMBER OF	19a. NAME O	F RESPONSIBLE PERSON (Monitor)						
Unclassified Unclassified Unclassified I Ibb. TELEPHONE NUMBER (Include Area Code) (937) 255-8451	a. REPORT b. ABSTRACT	c. THIS PAGE	SAR	22	David B	. Doman						
Standard Form 298 (Rev. 8-98)	Unclassified Unclassified	Unclassified			19b. TELEPH (027) ク	DNE NUMBER (Include Area Code) 55-8451						
			L		(757)2	Standard Form 298 (Rev. 8-98)						

•

.

i

Combining State Dependent Riccati Equation Approach with Dynamic Inversion: Application to Control of Flight Vehicles

Rama K. Yedavalli⁺ and Praveen Shankar^{*} The Ohio State University David B. Doman[#] Air Force Research Laboratories

Abstract

State Dependent Algebraic Riccati Equation (SDRE) techniques are rapidly emerging as a design method, which provides a systematic and effective means of designing nonlinear controllers, observers and filters. This paper describes a new method of integrating the SDRE technique with the Dynamic Inversion control law that is frequently used in the design of aircraft control systems. This paper also provides an example by applying this control design technique to a reusable launch vehicle.

Introduction

There have been a number of design methodologies developed for control of nonlinear systems. The aircraft problem is one such nonlinear system to which control design techniques such as Dynamic Inversion have been applied. Lesser-known nonlinear design procedures are those that involve the state dependent Riccati equations (SDRE). The State Dependent Riccati Equation approach to nonlinear system stabilization relies on representing a nonlinear system's dynamics similar to linear dynamics, but with state dependent coefficient matrices that can be inserted into state dependent Riccati equations to generate a feedback law. Although stability of the resulting closed loop system need not be guaranteed a priori, simulation studies have shown that the method can often lead to suitable control laws.

Over the past several years various SDRE design methodologies have been successfully applied to aerospace problems. SDRE based design procedures have been used in advanced guidance law development [1,2] and in an output feedback autopilot design [3]. Additionally, SDRE design methods have been used in nonlinear filter development [4].

In [5], Ehrler and Vadali investigated the nonlinear regulator problem and showed that solving an algebraic Riccati as it evolved over time provided one means of obtaining a sub optimal solution of the infinite horizon problem. In essence the State Dependent Riccati Equation was treated as being time dependent and its state dependency was not explicitly acknowledged, addressed or analyzed. In [6], SDRE nonlinear regulation, SDRE nonlinear H_{∞} , and SDRE nonlinear H_2 design methodologies were defined and the optimality, sub optimality and stability properties of SDRE nonlinear regulation was investigated.

dependent of state successive

- * Graduate Research Assistant, Department of Aerospace Engineering and Aviation
- [#] Technical Lead, Space Access and Hypersonic Vehicle Guidance and Control Team

⁺ Professor, Department of Aerospace Engineering and Aviation

Overview

SDRE stabilization refers to the use of State Dependent Riccati Equations to construct nonlinear feedback control laws for nonlinear systems. The main idea is to represent the nonlinear system

$$\dot{x} = f(x) + B(x)u$$

in the form

$$\dot{x} = A(x) \cdot x + \mathbf{B}(x) \cdot u$$

and to use the feedback

$$u = -R^{-1}(x)B^{T}(x)P(x)x$$

where P(x) is obtained from the SDRE

$$P(x)A(x) + A^{T}(x)P(x) + Q(x) - P(x)B(x)R^{-1}(x)B^{T}(x)P(x) = 0$$

and Q(.) and R(.) are design parameters that satisfy the point wise definiteness condition

$$Q(x) > 0 \qquad R(x) > 0$$

The resulting closed loop dynamics have a linear-like structure given by

$$\dot{x} = A_{CL}(x) \cdot x$$
 where
 $A_{CL}(x) = A(x) - R^{-1}(x)B(x)B^{T}(x)P(x)$

Simulation studies have shown that the dynamics matrix satisfies the Lyapunov Criterion for stability given by

annan dar

$$P(x)A_{CL}(x) + A_{CL}^{T}(x)P(x) < -Q_{pd} \text{ where}$$

$$Q_{pd} > 0$$

Equations of Motion of Aircraft

$$\phi = P + Q \sin \phi \tan \theta + R \cos \phi \tan \theta$$

$$\dot{\theta} = Q \cos \phi - R \sin \phi$$

$$\dot{\psi} = Q \sin \phi \sec \theta + R \cos \phi \sec \theta$$

$$\dot{P} = c_1 RQ + c_2 PQ + c_3 L + c_4 N$$

$$\dot{Q} = c_5 PR - c_6 (P^2 - R^2) + c_7 M$$

$$\dot{R} = c_8 PQ - c_2 RQ + c_4 L + c_9 N$$

$$\dot{U} = RV - QW + \frac{F_x}{m} - g \sin \theta$$

$$\dot{V} = -RU + PW + \frac{F_y}{m} + g \cos \theta \sin \phi$$

$$\dot{W} = QU - PV + \frac{F_z}{m} + g \cos \theta \cos \phi$$

where

$$c_{1} = [(J_{y}-J_{z})J_{z} - J_{xz}^{2}]/\Gamma$$

$$c_{2} = (J_{x}-J_{y} + J_{z})J_{xz}/\Gamma$$

$$c_{3} = J_{z}/\Gamma$$

$$c_{4} = J_{xz}/\Gamma$$

$$c_{5} = (J_{z} - J_{x})/J_{y}$$

$$c_{6} = J_{xz}/J_{y}$$

$$c_{7} = 1/J_{y}$$

$$c_{8} = [(J_{x}-J_{y})J_{x} + J_{xz}^{2}]/\Gamma$$

$$c_{9} = J_{x}/\Gamma$$
where
$$\Gamma = J_{x}J_{z} - J_{xz}^{2}$$

3.

State Dependent Linear State Space System

Example 1 State : $x = \begin{bmatrix} P & Q & R \end{bmatrix}$ $\dot{x} = \begin{bmatrix} c_2 x_2 & c_1 x_3 & 0 \\ -c_6 x_1 & 0 & c_5 x_1 + c_6 x_3 \\ 0 & c_8 x_1 & -c_2 x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} c_3 & 0 & c_4 \\ 0 & c_7 & 0 \\ c_4 & 0 & c_9 \end{bmatrix} \begin{bmatrix} L \\ M \\ N \end{bmatrix}$

Example 2

$$\begin{aligned} \text{State} : & x = \begin{bmatrix} P & Q & R & \phi & \theta & \psi \end{bmatrix} \\ \dot{x} = \begin{bmatrix} c_2 x_2 & c_1 x_3 & 0 & 0 & 0 & 0 \\ -c_6 x_1 & 0 & c_5 x_1 + c_6 x_3 & 0 & 0 & 0 \\ 0 & c_8 x_1 & -c_2 x_2 & 0 & 0 & 0 \\ 1 & \sin x_5 \tan x_5 & \cos x_5 \tan x_5 & 0 & 0 & 0 \\ 0 & \cos x_4 & -\sin x_4 & 0 & 0 & 0 \\ 0 & \sin x_4 \sec x_5 & \cos x_4 \sec x_5 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} + \begin{bmatrix} c_3 & 0 & c_4 \\ 0 & c_7 & 0 \\ c_4 & 0 & c_9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} L \\ M \\ N \end{bmatrix} \end{aligned}$$

Example 3

State : $x = [U \ V \ W \ P \ Q \ R \ \sin\theta \ \cos\theta \sin\phi \ \cos\theta \cos\phi]$

	- .																	
	0	<i>x</i> ₆	$-x_{5}$	0	0	. 0	-g	0	0	$\begin{bmatrix} x_1 \end{bmatrix}$	[1/m	0	0	0	· 0	0]
	$-x_{6}$	0	<i>x</i> ₄	0	0	0	0	0	0	x_2		0	1/ <i>m</i>	0	0	0	0	
	<i>x</i> ₅	$-x_4$	0	0	0	0	0	g	0	x_3		0	0	1/ <i>m</i>	0	0	0	F
	0	0	0	$c_{2}x_{5}$	$c_{1}x_{6}$	0	0	0	0	<i>x</i> ₄		0	0	0	C,	0	с.	F
<i>x</i> =	0	0	0	$-c_{6}x_{4}$	0	$c_5 x_4 + c_6 x_6$	0	0	0	<i>x</i> ,	+	0	0	0	0	C.	0	F
	0	0	0	0	$c_8 x_1$	$-c_{2}x_{5}$	· 0	0	0	x_6		0	0	0	c.	0	с.	
	0	0	0	0	0	0	••• 0	$-x_{6}$	<i>x</i> ,	x_{7}		0	0	0	0	0	0	M
	0	0	0	0	0	0	x_6	0	<i>x</i> ₄	$ x_{s} $		0	0	0	0	0	0	N
	0	0	0	0	0	0	$-x_{s}$	$-x_4$	0	x_{o}		0	0	0	0	0	0	
								•	د	- 1	L			2	2	5	٦	I

Schematic Representation of the Method

Combined SDRE and Dynamic Inversion Control Law

Stability of Nominal System for Full State Feedback

 $\dot{x} = A(x)x + Bu$

Riccati Based Control Law

 $u = -R^{-1}B^T P(x)x$

Dynamic Inversion Control Law

 $u = B^{-1}(\dot{x}_{des} - A(x)x)$ $W.K.T \quad B^{-1} = (B^{T}B)^{-1}$ Let $\dot{x}_{des} = A_{des}(x)x$ Then $u = -(B^{T}B)^{-1}B^{T}(A(x) - A_{des}(x))x$

Comparing Equations (1) & (2)

.

R = B^TB $P(x) = A(x) - A_{des}(x)$

The SDARE becomes

 $P(x)A(x) + A^{T}(x)P(x) + Q - P(x)P(x) = 0$

readbar

Solving the above equation for P(x), we can calculate

$$A_{des}(x) = A(x) - P(x)$$

Stability of Nominal System for Output Feedback

 $\dot{x} = A(x)x + Bu$ $\omega = Cx$ $\dot{\omega} = C\dot{x} = CA(x)x + CBu$ Let $\dot{\omega}_{des} = A_{des}(x)x$

Riccati Based Control Law $u = -R^{-1}B^T P(x)x$

Dynamic Inversion Control Law

$$u = (CB)^{+}(\dot{\omega}_{des} - CA(x)x)$$

$$u = -(CB)^{+}(CA(x) - A_{des}(x))x$$

$$u = -\{(CB)^{T}(CB)\}^{-1}(CB)^{T}(CA(x) - A_{des}(x))x$$

$$u = -(B^{T}C^{T}CB)^{-1}B^{T}C^{T}(CA(x) - A_{des}(x))x$$

Comparing Equations (3) & (4) $R = B^{T}C^{T}CB$ $P(x) = C^{T}(CA(x) - A_{des}(x))$

The SDARE becomes

 $P(x)A(x) + A^{T}(x)P(x) + Q - P(x)B(B^{T}C^{T}CB)^{-1}B^{T}P(x) = 0$

Solving the above equation for P(x), we can calculate A_{des} using the equation

$$P(x) = C^{T} (CA(x) - A_{des}(x))$$

Closed Loop System

 $\dot{x} = [A(x) + B(CB)^{+}(A_{des}(x) - A(x))]x = A_{c}(x)x$

Verification of Stability

Let P_L be a positive definite matrix, which is chosen as $P_L = P(x_0)$. $P(x_0)$ is the solution to the SDARE at the initial condition $\{x_0\}$.

Full State Feedback

 $P(x_0)A(x_0) + A^{T}(x_0)P(x_0) + Q - P(x_0)P(x_0) = 0$

Output Feedback

$$P(x_0)A(x_0) + A^T(x_0)P(x_0) + Q - P(x_0)B(B^T C^T C B)^{-1}B^T P(x_0) = 0$$

The Closed Loop System is locally asymptotically stable if

$$P_L A_c(x) + A_c^T(x) P_L < 0$$

Application of Combined SDRE and Dynamic Inversion Control Law to Aircraft

dioren ..

State : $x = [U \ V \ W \ P \ Q \ R \ \sin\theta \ \cos\theta \sin\phi \ \cos\theta \cos\phi]$

	0	<i>x</i> ₆	$-x_{5}$	0	0	0	- g	0	0	$\begin{bmatrix} x_1 \end{bmatrix}$		1/m	0	0	0	0	0	
	$-x_{6}$	0	<i>x</i> ₄	0	0	0	0	0	0	<i>x</i> ₂		0	1/ <i>m</i>	0	0	0	0	Γϖͳ
	<i>x</i> 5	$-x_{4}$	0	0	. 0	0	0	g	0	<i>x</i> ₃		0	0	1/ <i>m</i>	0	0	0	r _x F
	0	0	0	$c_{2}x_{5}$	$c_{1}x_{6}$	0	0	0	0	<i>x</i> ₄		0	0	0	c_3	0	<i>c</i> ₄	$\begin{bmatrix} \Gamma_y \\ E \end{bmatrix}$
$\dot{x} =$	0	0	0	$-c_{6}x_{4}$	0	$c_5 x_4 + c_6 x_6$	0	0	0	x_5	+	0	0	0	0	c_7	0	
	0	0	0	0	$c_{8}x_{1}$	$-c_{2}x_{5}$	0	0	0	<i>x</i> ₆		0	0	0	<i>C</i> ₄	0	c_9	
	0	0	0	0	0	0	0	$-x_{6}$	<i>x</i> 5	<i>x</i> ₇		0	0	0	0	0	0	
	0	0	0	0	0	0	<i>x</i> ₆	0	<i>x</i> ₄	<i>x</i> ₈		0	0	0	0	0	0	
	0	0	0	0	0	0	$-x_5$	$-x_4$	0	$\begin{bmatrix} x_9 \end{bmatrix}$		0	0	0	0	0	0	
	where		• •	· . ·		· · · · · · ·	call.	•										

	0	<i>x</i> ₆	$-x_{5}$	0	0	0	-g	0	0		[1/m	0	0	0	0	0	
	$-x_{6}$	0	<i>x</i> ₄	0	0	0	0	0	0		0	1/ <i>m</i>	0	0	0	0	
	x_{5}	$-x_{4}$. 0	0	0	0	0	g	0		0	0	1/ <i>m</i>	0	0	0	
	0	0	0	$c_{2}x_{5}$	$c_{1}x_{6}$	0	0	0	0		⁻ 0	0	0	c_3	0	<i>C</i> ₄	
A(x) =	0	0	0	$-c_{6}x_{4}$	0	$c_5 x_4 + c_6 x_6$.0	0	0	&B =	0	0	0	0	c7	0	
	0	0	0	0	$c_{8}x_{1}$	$-c_{2}x_{5}$	0	. 0	0	5 - A	0	^{al} 0	0	<i>C</i> ₄	0	<i>c</i> ,	
	0	0	0	0	0	0	0 ($-x_{6}$	<i>x</i> ₅		0	0	0	0	0	0	l
	0	0	0	0	0	0	x_6	0	<i>x</i> ₄	•	0	0	0	0	0	0	
	0	0	0	0	0	0	$-x_{5}$	$-x_{4}$	0		0	0	0	0	0	0	

The above state space system is not completely controllable. However if we separate the A(x) matrix into $A_1(x)$ and $A_2(x)$ given by

Λ.,

$$A_{1}(x) = \begin{bmatrix} 0 & x_{6} & -x_{5} & 0 & 0 & 0 \\ -x_{6} & 0 & x_{4} & 0 & 0 & 0 \\ x_{5} & -x_{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{2}x_{5} & c_{1}x_{6} & 0 \\ 0 & 0 & 0 & -c_{6}x_{4} & 0 & c_{5}x_{4} + c_{6}x_{6} \\ 0 & 0 & 0 & 0 & c_{8}x_{1} & -c_{2}x_{5} \end{bmatrix} and A_{2}(x) = \begin{bmatrix} 0 & -x_{6} & x_{5} \\ x_{6} & 0 & x_{4} \\ -x_{5} & -x_{4} & 0 \end{bmatrix}$$

then the pair $(A_1(x), B_1)$ are completely controllable.

$$A_{1}(x) = \begin{bmatrix} 0 & x_{6} & -x_{5} & 0 & 0 & 0 \\ -x_{6} & 0 & x_{4} & 0 & 0 & 0 \\ x_{5} & -x_{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{2}x_{5} & c_{1}x_{6} & 0 \\ 0 & 0 & 0 & -c_{6}x_{4} & 0 & c_{5}x_{4} + c_{6}x_{6} \\ 0 & 0 & 0 & 0 & c_{8}x_{1} & -c_{2}x_{5} \end{bmatrix} \text{ and } B_{1} = \begin{bmatrix} 1/m & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/m & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/m & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{3} & 0 & c_{4} \\ 0 & 0 & 0 & 0 & c_{7} & 0 \\ 0 & 0 & 0 & 0 & c_{4} & 0 & c_{9} \end{bmatrix}$$

1.

Therefore we can design a control law given by

$$u = B_{1}^{-1} (\dot{x}_{des} - A_{1}(x)x_{1})$$
where $x_{1} = [x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}]$
and $u = [F_{x} \quad F_{y} \quad F_{z} \quad L \quad M \quad N]$
W.K.T $B_{1}^{-1} = (B_{1}^{T}B_{1})^{-1}$
Let
 $\dot{x}_{1des} = A_{1des}(x)x_{1}$
Then
 $u = -(B_{1}^{T}B_{1})^{-1}B_{1}^{T}(A_{1}(x) - A_{1des}(x))x_{1}$

 $A_{1des}(x)$ is calculated from the equation

$$A_{1des}(x) = A_1(x) - P(x)$$

where P(x) is the solution to the Riccati Equation

$$P(x)A_{1}(x) + A_{1}^{T}(x)P(x) + Q - P(x)B_{1}(x)R^{-1}(x)B_{1}^{T}(x)P(x) = 0$$

However we know that

$$R = B_1^T B_1$$

Therefore the State Dependent Algebraic Riccati Equation reduces to

$$P(x)A_{1}(x) + A_{1}^{T}(x)P(x) + Q - P(x)P(x) = 0$$

The closed loop system is given by

$$\dot{x}_1 = A_1(x)x + B_1[B_1^{-1}(A_{1des}(x) - A_1(x))x_1]$$

Therefore, we have

$$\dot{x}_1 = A_{C1}(x)x_1$$

where $A_{C1}(x) = A_1(x) + B_1[B_1^{-1}(A_{1des}(x) - A_1(x))]$

Verification of Closed Loop System Stability

In the previous section we separated A(x) into

$$A_{1}(x) = \begin{bmatrix} 0 & x_{6} & -x_{5} & 0 & 0 & 0 \\ -x_{6} & 0 & x_{4} & 0 & 0 & 0 \\ x_{5} & -x_{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{2}x_{5} & c_{1}x_{6} & 0 \\ 0 & 0 & 0 & -c_{6}x_{4} & 0 & c_{5}x_{4} + c_{6}x_{6} \\ 0 & 0 & 0 & 0 & c_{8}x_{1} & -c_{2}x_{5} \end{bmatrix} and A_{2}(x) = \begin{bmatrix} 0 & -x_{6} & x_{5} \\ x_{6} & 0 & x_{4} \\ -x_{5} & -x_{4} & 0 \end{bmatrix}$$

The matrix $A_2(x)$ is neutrally stable if we calculate it's eigenvalues by freezing the states at each time instant. However we are more concerned about the stability of matrix $A_1(x)$ under the control 'u' that we previously discussed. The closed loop system under control 'u' is given by $A_{c1}(x)$.

Let P_L be a positive definite matrix, which is chosen as $P_L = P(x_{10})$. $P(x_{10})$ is the solution to the SDARE at the initial condition $\{x_{10}\}$.

$$P(x_{10})A(x_{10}) + A^{T}(x_{10})P(x_{10}) + Q - P(x_{10})P(x_{10}) = 0$$

The closed loop system is locally asymptotically stable if

 $P_{L}A_{c1}(x) + A_{c1}^{T}(x)P_{L} < 0$

Results

Initial Condition 1 $U_0 = 517.5$

$$Vo = 0$$
$$Wo = 27.5$$
$$Po = 0$$
$$Qo = 0$$
$$Ro = 0$$

· · ·

11

. 12 ۰.

Results
Initial Condition 2
Uo = 517.5
Vo = 0
Wo = 27.5
Po = 0.5
$Q_0 = 0.5$
Ro = 0.5

a state of a state

Conclusions

In this paper a new control law was developed that is a combination of the existing State Dependent Riccati Equation techniques and the Dynamic Inversion control law. This control system design was then applied to the aircraft dynamics and the resulting closed loop system was shown to be stable even under change in the initial conditions.

References

- [1] J.R Cloutier "Adaptive matched augmented proportional navigation." Presented at AIAA Missile Sciences Conference, November 1994.
- [2] J.R. Cloutier "Time-to-go-less guidance with cross-channel couplings." Proceedings of the AIAA Missile sciences Conference, Monterey, CA, December 1996.
- [3] C.P. Mracek and J.R. Cloutier "Missile longitudinal autopilot design using the state dependent Riccati equation method." Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace, May 1996.
- [4] C.P Mracek, J.R Cloutier, and C.N. D'Souza "A new technique for nonlinear estimation." Proceedings of the IEEE Conference on Control Applications, Dearborn, MI, September 1996.
- [5] D. Ehrler and S.R. Vadali "Examination of the optimal nonlinear regulator problem." Proceedings of the AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, August 1988.
- [6] J.R. Cloutier, C.N. D'Souza, and C.P. Mracek "Nonlinear regulation and nonlinear H_∞ control via the state dependent Riccati equation technique; part 1, theory; part 2, examples." Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace, May 1996.
- [7] J.R. Cloutier "State Dependent Riccati Equation Techniques: An Overview" Proceedings of American Control Council Conference, June 1997
- [8 Zhihua Qu and J.R. Cloutier "A New Sub-optimal Control for Cascaded Nonlinear Systems" Proceedings of American Control Council Conference, June 2000
- [9] J.R Cloutier and D.T. Stansbery "The Capabilities and Art of State-Dependent Riccati Equation-Based Design" Proceedings of American Control Council Conference, June 2002
- [10] "Dynamics of Flight Stability and Control" Bernard Etkin and Lloyd Duff Reid, John Wiley and Sons, 3rd Ed.
- [11] "Aircraft Control and Simulation" Brian L. Stevens and Frank L. Lewis, John Wiley and Sons
- [12] "Robust Control of Nonlinear Uncertain Systems" Zhihua Qu, John Wiley and Sons
- [13] D.B Doman and A.D Ngo "Dynamic Inversion Based Adaptive/Reconfigurable Control of the X-33 on Ascent" Journal of Guidance Control and Dynamics, 2002

стана Асторасти на сел