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Abstract—The identification of a dynamic, nonlinear model of human
ankle stiffness is considered in a minimum mean squared error frame-
work. The model consists of two parallel pathways, one representing the
intrinsic dynamics, the other representing the reflex contribution to the
stiffness. The model is shown to be linear in all of its parameters, except
for those used to describe a single static nonlinearity in the reflex path-
way. A separable least squares optimization algorithm is developed which
takes advantage of this structure. This new algorithm is applied to ex-
perimental stretch reflex data, and the results compared to the current
state-of-the-art algorithm, an iterative technique which fits the two path-
ways alternately. The relative merits of the two approaches are discussed.

Keywords— nonlinear system identification, mean squared optimiza-
tion, separable least squares, stretch reflex dynamics.

I. INTRODUCTION

System identification methods, which construct mathemat-
ical models of dynamic systems from measurements of their
inputs and outputs, are often used to study physiological sys-
tems. Since these systems are often highly nonlinear, physio-
logical applications often require nonlinear system identifica-
tion methods [9].

One of the major advances in the field of nonlinear system
identification has been the adoption of explicit least squares
estimation methods in place of earlier cross-correlation based
algorithms [9]. For models, like the Volterra and Wiener se-
ries, which are linear in their parameters, the minimum mean
squared error (MMSE) solution can be found in closed form,
simply by solving a linear regression. However, the number
of parameters required to represent high-order kernels limits
these methods to relatively low-order systems (second or per-
haps third order nonlinearities).

Systems that include high-order nonlinearities are often rep-
resented using block-structured models: interconnections of
zero-memory (i.e. static) nonlinearities and dynamic linear
systems. The simplest of these structures are the Wiener mod-
el, a linear dynamic element followed by a static nonlinearity,
and the Hammerstein model, a static nonlinearity followed by
a linear filter [2].

Block structured models are not very general. Thus, the
topology of the model must be appropriate for the system being
studied. Figure 1 shows a block structured model that is used
to represent the dynamic stiffness of the human ankle [5]. The
upper pathway represents the “intrinsic stiffness” of the ankle,
the dynamic relationship between its position and the result-
ing torque, in the absence of any reflexive actions. The lower
pathway represents the contribution of the stretch reflex to the
overall stiffness. The position input is differentiated, produc-

ing the angular velocity of the ankle. This velocity signal is
processed by a static nonlinearity, which may represent neural
encoding processes in the muscle spindle and in the alpha mo-
toneuron pool. The final element in this pathway is a dynamic
linear system, which is thought to represent the contractile dy-
namics of the muscle.
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Fig. 1. Parallel Cascade model of the reflex stiffness, the dynamic relationship
between the ankle angle, θ, and the ankle torque, Tq . The model includes
both intrinsic (upper pathway) and reflex (lower pathway) components.

Like the other block-structured models, this parallel cas-
cade stiffness model (PCSM) isn’t linear in its parameters.
Thus, unlike the Volterra series, there is no generally applica-
ble closed-form solution for the optimal (MMSE) parameters.
However, like the Hammerstein system [10], the PC stiffness
model is only nonlinear in the parameters describing its stat-
ic nonlinearity, and linear in the remaining parameters. Thus,
this structure is an ideal candidate for an identification tech-
nique based on separable least squares optimization.

In this paper, we will develop an identification technique
for the PCSM based on a separable least squares optimization.
This new technique will be compared to the current state of the
art, an iterative, correlation based algorithm, using experimen-
tal stretch reflex data. The physiological insights gained from
the newly identified models will then be discussed.

II. THEORY

The input and output of the PCSM, shown in Fig. 1, are the
ankle (angular) position, θ(t), and the torque, T q(t), generated
about it. The upper pathway represents the intrinsic stiffness.
Its output is the torque that would be produced in the absence
of reflexes. The transfer function representing dynamic stiff-
ness is improper, in that it has more zeros than poles [4]. In
the discrete-time domain, this means that the impulse response
of the intrinsic stiffness will be a two-sided filter [1]. Thus,
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the intrinsic stiffness is represented by the two-sided impulse
response (IRF).

TI(t) =
LI∑

τ=−LI

hIS(τ)θ(t − τ) (1)

The lower pathway represents the reflex contribution to the
total ankle stiffness. The stretch reflex EMG is often modeled
as a Hammerstein system [10] with ankle velocity as its input.
In the PCSM, the lower pathway consists of a differentiator,
which computes the ankle velocity, followed by a Hammer-
stein system, which represents the stretch reflex.

Let θ̇(t) be the angular velocity, obtained by numerically
differentiating the position, θ(t), and let the output of the static
nonlinearity, x(t), be computed using a degree Q polynomial,

x(t) =
Q∑

q=0

cqθ̇
q(t) (2)

The linear subsystem in the reflex pathway will be represented
by its impulse response.

TR(t) =
LR∑
τ=0

hRS(τ)x(t − τ) (3)

which, unlike the IRF of the intrinsic stiffness, is causal. The
PCSM output is obtained by summing TRS(t) and TIS(t),

Tq(t) =
LI∑

τ=−LI

hIS(τ)θ(t − τ) (4)

+
LR∑
τ=0

hRS(τ)

(
Q∑

q=0

cqθ̇
q(t − τ)

)

A. Iterative, Correlation-Based Identification

Currently, the elements of the PCSM are identified using
an iterative, cross-correlation based scheme. This is possible
because of the delays inherent in the system. The two-sided
impulse response representing the inherent dynamics dies out
well before 40 ms. The reflex component, on the other hand,
includes a delay of at least 40 ms, due to propagation delays.
Thus, the two contributions can be separated temporally.

The first step in fitting the reflex cascade model is to fit
a two-sided IRF, ĥIS(τ), whose causal dynamics are limited
to ±40ms, between θ(t), and Tq(t) using a cross-correlation
based technique [1]. The output of this pathway, T̂I(t), is taken
to be an estimate of the intrinsic torque.

An iterative, cross-correlation based technique [2] is then
used to fit a Hammerstein cascade between θ̇(t) and the resid-
uals, Tq(t)− T̂I(t), where T̂I(t), is the output of the estimated
intrinsic dynamics.

Finally, note that the reflex torque will act as noise in the
estimation of the intrinsic dynamics. Thus, it may be possible
to improve the estimate of the intrinsic dynamics, by fitting a
new IRF between θ(t) and the residuals Tq(t) − T̂R(t). This
iteration continues, alternating between the intrinsic and reflex
dynamics, until the model accuracy converges.

B. Separable Least Squares Identification

Parametric optimization methods can also be used to identi-
fy the elements of the PCSM. Thus, the objective would be to
find the parameter vector,

β =
[

hT
IS hT

RS cT
]T

(5)

that minimizes the cost function

VN (β) =
1

2N

N∑
t=1

(
Tq(t) − T̂q(t, β)

)2

(6)

where T̂q(t, β) is the model output computed using (4), where
the values for the IRFs and polynomial coefficients are con-
tained in the parameter vector, β, defined in (5).

In principle, one could use a gradient descent procedure,
such as the Levenberg-Marquardt (L-M) algorithm, to solve
the minimization. Thus, one would start with an initial esti-
mate, β(0), and refine it, in the case of L-M, as follows,

β(k+1) = β(k) +
(
JT J + δkI

)−1
JT ε (7)

where δk is a regularization parameter used to control the con-
vergence rate and stability. The matrix J is the Jacobian, a
matrix whose [t, m] entry contains the partial derivative of the
model output at time t with respect to the m’th parameter.
Thus,

J(t, m) =
∂T̂q(t, β)
∂β(m)

(8)

However, the PCSM has (2LI + 1) + (LR + 1) + (Q + 1)
parameters, corresponding to the weights in the intrinsic and
reflex IRFs and the polynomial coefficients that describe the
nonlinearity. Depending on the memory length of the IRFs,
and the order of the polynomial, the stiffness model could eas-
ily have more than 100 parameters! Thus, it appears that the
parametric optimization will have to search over a 100+ di-
mensional parameter space. Furthermore, each step (7) in the
optimization would require the generation and inversion of a
100 by 100 (or larger) matrix. This is clearly impractical.

Note, however, that if the nonlinearity is fixed, the output of
the stiffness model (4) is a linear function of the filter weights
of the two IRFs. Thus, for a given static nonlinearity, the op-
timal weights for both IRFs can be found simultaneously in
closed form by solving a linear regression.

Subdivide the parameter vector into linear and nonlinear pa-
rameters,

β =
[

βT
l βT

n

]T =
[

hT
IS hT

RS cT
]T

(9)

Then, for any given nonlinear parameters (polynomial coeffi-
cients), βn, the optimal linear parameters (IRF weights), β l,
can be found by solving the linear regression,

Tq = X(βn)βl + ε (10)

where Tq is a vector whose t’th element is Tq(t), ε is a vector
containing the errors, and the regression matrix, X(βn), con-
tains both advanced and lagged copies of θ (since the intrinsic
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dynamics are two-sided), and lagged copies of the nonlinearity
output. Clearly, only the latter columns depend on the choice
of polynomial coefficients.

By solving (10), βl is expressed as a function of the nonlin-
ear parameters. Thus, the model output and cost function can
be considered to be functions of the nonlinear parameters only,
and written as T̂q(t, βn) and VN (βn). As a result, the gradient
based optimization need only search for the optimal βn, reduc-
ing the dimension of the search space to Q+1. This procedure
is known as separable least squares optimization [8].

To apply L-M to the SLS problem, the separated Jacobian
must be computed. First consider the Jacobian of the unsepa-
rated problem, J , which can be computed using the chain rule.
Partition it into linear and nonlinear columns, J =

[
Jl Jn

]
corresponding to the linear and nonlinear parameters. Then, let
Pl be an orthogonal projection onto the column-space of J l. It
can be shown [8] that the Jacobian for the separated problem
is given by,

Jsls = (I − Pl)Jn (11)

Thus, to use the L-M optimization method on a SLS problem,
the nonlinear parameter vector, βn, is updated according to (7),
but using Jsls from (11) as the Jacobian.
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Fig. 2. Extract from a typical experimental trial showing 4 seconds of position,
computed velocity, torque and GS EMG.

III. EXPERIMENTAL RESULTS

To evaluate the utility of the SLS algorithm, we used it
to estimate intrinsic and reflex stiffness dynamics in a spas-
tic spinal cord injured (SCI) patient. Previously, an iterative,
cross-correlation based algorithm has been used to fit the PC-
SM to experimental data [5], [6]. Tests based on this model are
being investigated for possible clinical use [7]. Consequently,
methods for efficient, unbiased estimates of its elements are
potentially very important.

The experimental paradigm has been described elsewhere
[5]. Briefly, the subjects had an incomplete loss of motor func-
tion, and clinically evident spasticity due to a previous spinal
cord injury[7], which was associated with hyper-active stretch
reflexes. They lay supine with their left foot attached to a ro-

tary hydraulic actuator by a custom fitted fiber-glass boot. An-
kle torque and position, and the EMG over the Gastrocnemius-
Soleus muscles were recorded. The subject maintained a con-
stant background contraction, while a broad-band position per-
turbation, whose spectrum was shaped to preserve the stretch
reflex [5], was applied. Fig. 2 shows 4 seconds of the 30 sec-
ond (6000 points at 200 Hz) data records used in the analysis.
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Fig. 3. Elements of the stiffness model identified using the traditional, iterative
correlation based algorithm.

We examined the dynamic relationship between the ankle
position and torque, by fitting a PCSM, as shown in Fig. 1,
between the two signals. Models were fitted between the first
5000 points of the measured position and torque signals. The
accuracy of the identified models was then tested by using
them to predict the ankle torque measured in the remaining
1000 points, using only the measured position. In the sequel,
the initial 5000 points of data will be referred to as the identi-
fication segment, whereas the final 1000 points will be called
the validation segment.

First, we used the conventional, iterative, correlation based
algorithm [5] to fit the intrinsic and reflex pathways of the
model. Typical values were chosen for the IRF lengths and
polynomial order. Thus, we set the length of the intrinsic dy-
namics to be ±35 ms, the length of the reflex dynamics to be
320 ms, and the polynomial order to be 6. Improvement ceased
after 3 iterations, producing the model shown in Fig. 3, which
fit the identification segment with 83.4 % variance accounted
for (% VAF), and predicted the torque in the validation seg-
ment with 91.2 % VAF.

Next, we used the separable least squares approach to identi-
fy the same model structure. The nonlinearity identified by the
iterative correlation based algorithm was used to initialize the
SLS procedure. The resulting model is shown in Fig. 4. It has
exactly the same structure as the model identified by the itera-
tive correlation based scheme, but accounted for 86 % VAF in
the identification segment, and 93.7 % VAF in the validation
segment, both significant improvements over the predictions
made by the first model.

In comparing the two identified models, the IRFs identified
by the conventional scheme include high frequency oscillatory
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Fig. 4. Elements of the stiffness model identified using the separable least
squares optimization based algorithm.

components. While these are still evident in the SLS mod-
el, they are greatly reduced in amplitude. The nonlinearity
identified by the SLS scheme resembles the combination of
a small positive threshold, at about 0.8 rad/sec, followed by a
half-wave rectifier, an interpretation consistent with empirical
studies of the stretch reflex [3]. The functional significance
of the nonlinearity identified by the conventional identification
scheme is not so evident.

Figure 5 shows the prediction errors due to the two identified
models for 2 seconds of the validation segment. The solid line
shows the residuals due to the model identified using the SLS
technique, whereas the dash-dotted line shows the errors in the
output of the model identified using the traditional approach.
The improvement in prediction accuracy due to the SLS model
is clearly evident in this figure.

IV. DISCUSSION

In this paper, we presented a block structured model for the
dynamic stiffness of the human ankle, and developed a SLS
identification technique for it. This algorithm was tested on
experimental data from a SCI patient, and the resulting mod-
el compared to one identified using currently available tech-
niques. The SLS model produced better predictions of the
measured torque, both in the training sample, and on validation
data. Furthermore, the elements of the SLS model were visibly
less noisy, facilitating their physiological interpretation.

This SLS approach is well suited to the parallel cascade
stiffness model structure, because the model output is linear
in most of its parameters. Thus, using the SLS approach, it is
possible to reduce the dimension of the search space dramati-
cally. In this case, the model had 102 parameters (31 weights
for hIS(τ), 64 weights for hRS(τ), and 7 polynomial coeffi-
cients for nRS(·)). However, by using the SLS algorithm, it
was only necessary to search over a 7 dimensional parameter
space, corresponding to the 7 polynomial coefficients.

The biggest disadvantage with using a gradient descent
based algorithm, is that the iteration may converge to a sub-
optimal local minimum. When using SLS, it is essential to
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Fig. 5. Errors in the torque predictions during 2 sec. of the validation segment.

find an initial guess at the nonlinear parameters which is close
enough to the globally optimal solution that the search will
find it, instead of converging to a sub-optimal solution. In this
study, we used the results obtained by the conventional, cross-
correlation based method to provide this initial guess.

The static nonlinearity identified by the SLS method includ-
ed a small positive deflection at relatively large negative veloc-
ities. Given the underlying physiology, this is likely to be an
artifact, probably due to the use of polynomials in represent-
ing the nonlinearity. Other representations, including rational
polynomials, splines, or sigmoidal neural networks, may be
more appropriate. The incorporation of these nonlinearities in-
to the SLS algorithm is a topic of ongoing research.
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