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Abstract - This paper describes the work in progress to develop a
new ECG signal filtering technique to aid the clinical analysis of
atrial fibrillation. The method separates the wavelet transform
modulus maxima corresponding to the signal scalogram into a
number of components. These groups of maxima lines are then
used to reconstruct separate signals representing each of the
features, including atrial fibrillation.

Keywords - Atrial Fibrillation, wavelet transform modulus

maxima.

|. INTRODUCTION

Atrial fibrillation (AF) is common, with a prevalence of
0.5% in the adult population, rising to 10% or more in those
over 75 years [1]. It is associated with a 5-6 fold increase in
the incidence of stroke. Restoration of sinus rhythm with DC
cardioversion (i.e. transthoracic electrical countershock)
improves symptoms, cardiac output, exercise tolerance and
reduces the risk of stroke. Although cardioversion is initially
successful in up to 90 percent of selected patients, the
recurrence rate can be as high as 60 percent. Severa clinical
variables are associated with an increased risk of recurrence —
mitral valve disease, hypertension and left ventricular
impairment. Even accounting for these variables in the
selection of patients, the recurrence rate can remain high. At
the electrophysiological level several factors may alter the
propensity to recurrence, and these variables are not readily
identified using the surface ECG. This includes chronic
myocardial substrates (e.g. atrial infarction), atrial electrical
remodelling (eg. local resetting of the atrial refractory
period) and atria ectopy. In electrophysiological studies
differing degrees of disorganisation of atrial activity may be
seen during AF, with zones of disorganised activity
accompanying regions of relatively regular atrial activity
[2,3]. This reflects the heterogeneity of the condition, first
elucidated by detailed multi-electrode mapping of the atriain
human and anima models. These studies show that macro re-
entry circuits involve both atria, with right atria circuits
occurring at the right atrial appendage, around the superior
vena cava, and at the fossa ovalis. Left atrial circuits are more
complex and involve the pulmonary vein orifices. The degree
of disorganisation of activity within the atria may reflect the
propensity to maintain order after cardioversion, and the
presence of both unstable right and left atrial circuits may
mitigate against sinus rhythm [4]. The wavelength of each re-
entry circuit (determined by its conduction velocity and
refractory period) determines circuit size; larger circuits
occur with longer wavelengths. The minimum number of
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circuits required to maintain AF is thought to be six [5].
Thus, the presence of multiple short wavelength (high
frequency), unstable circuits within the atria lends itself to
maintenance of AF. To date, it has proven difficult to
determine the electrophysiological status of the atria with
non-invasive methods. Although non-linear dynamic
techniques (‘chaos analysis) have previoudly been used to
examine the AF waveform, the relationship between
parameters derived from non-linear dynamics and measured
electrophysiological properties of atria activity (and clinica
outcome) are not clear [6,7].

Il. METHODOLOGY

The wavelet transform is a valuable signal analysis tool that
can provide spectral and tempora information from complex
signals, including ECGs. It overcomes some of the limitations
of the more widely used Fourier transform, which only
contains globally averaged information, and has the potential
to lose specific features within the signal. Recently, wavelet
analysis has been applied to biomedical data including
electroencephalogram, electromyogram, acoustic signals and
the ECG [8-12]. Wavelet based studies of ECG signals have
either examined heart rate variability, or have classified ECG
waveforms. Our group have focussed on the anaysis of
complex waveforms during both ventricular fibrillation (VF)
[13,14] and AF (aswell as other engineering signals [15-17]).
Our pilot studies of AF signals have used modulus maxima
thresholding techniques to differentiate the underlying
fibrillation waveform from QRS complexes and T waves.

For complete analysis of a response signal the frequency
make up and temporal location of these components need to
be deduced. As a result of the infinite extent of the Fourier
integral, analysis is time averaged. This renders feature
location complex, even for stationary signals. This limitation
can be partly overcome by introducing a diding time
window, which localises the analysis in time. This local or
short time Fourier transform provides a degree of tempora
resolution by highlighting changes in spectral response with
respect to time. However, this method is aways a
compromise between temporal and frequency resolution
(higher frequency resolution means lower tempora
resolution, and vice versa). The nature of the wavelet
transform is such that it is well suited to analysis of signalsin
which a more precise time resolution is required for higher
frequencies than for lower ones; i.e. the wavelet transform is
suitable for locating discontinuities or singularities, in which
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high frequency components dominate. It effectively zoomsin
on the temporal signal when analysing higher frequencies,
providing higher resolution where necessary. The wavelet
transform of a continuous real-valued time signal, f(t), with
respect to the real valued wavelet function, g, is defined as

ﬂ'
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where y " ((t - b)/a) is the complex conjugate of the

analysing wavelet used in the convolution and, in this
application, f(t) isthe ECG signd exhibiting AF. The wavelet
transform can therefore be thought of as the cross correlation
of the analysed signal with a wavelet function that has been
trandated by avaue b and dilated by a factor a. These values
are often referred to as the location and dilation parameters
respectively. The wavelet transform can be considered a
‘mathematical microscope’ where a™ and b correspond to the
magnification and location respectively.

Contemporary literature suggests two methods of wavelet
analysis using either discrete or continuous transforms. The
discrete wavelet transform necessitates the use of
orthonormal wavelets, and dilation levels are set in the form
of ‘octaves (integer powers of two). This provides a rapid
method of signa decomposition, and guarantees energy
conservation and exact signa reconstruction. However, the
discrete transform is limited by loss of frequency resolution
due to the incremental doubling of the level associated
frequencies. Conversely, the continuous wavelet transform
does provide high resolution. Thus, proper use of wavelet
analysis demands identification of the correct wavelet and
transform type for the given application. Our group have
recently employed two types of wavelets for ECG signal
andlysis. the 2™ derivative of a Gaussian function (the
‘Mexican hat’), and the complex Morlet wavelet. The former
has temporal compactness, useful for examining location
specific features in the signal. The latter is more compact in
the frequency domain and allows both amplitude and phase
of the signal features to be probed simultaneously.

The modulus maxima technique allows salient information in
the continuous wavelet transform scalogram to be represented
in a compact form. This method reduces the topography of
the scalogram surface to a series of ridges, reducing the data
required to represent the signal. The modulus maxima
obtained from a bandlimited signal, with a wavelet of finite
compact support in the frequency domain, defines a complete
and stable signal representation applicable to a wide range of
signal types. Modulus maxima thresholding algorithms have
been used in two recent studies that applied wavelet analysis
to ECGs to determine heart rate variability. An agorithm has
been developed by Li and colleagues to detect the
characteristic points of ECG signals [18]. This agorithm can
distinguish the QRS complex from P and T waves, noise,
basdline drift and signal artifacts. Another group has
described a wavelet-based QRS complex detector that utilises
a modulus maxima algorithm to detect the exact location of
the R-wave in time [19]. The methods simply use the maxima

to locate features in the signal. The technique we propose
partitions the maxima lines into three groups. one
corresponding to the AF fluctuations in the ECG, a second to
the QRS complex and T wave, and a third to the underlying
noise. These maxima can then be used to reconstruct a set of
partitioned signals

I, ResuLts 4

Figure 1 shows a 6.82 second segment of ECG exhibiting AF
collected from a patient undergoing elective DC
cardioversion at the Roya Infirmary of Edinburgh. Figure 2
contains the wavelet transform energy density plot
(scalogram) corresponding to the signal of figure 1. The high
energy spiking corresponding to both the QRS complexes and
T waves are easily seen in the scalogram. Regions of signa
where there is a long R-R interval are particularly amenable
to the wavelet transform modulus maxima filtering method
enabling it to pick out multiple AF oscillations. One of these
regions is indicated by a black arrow in the scalogram plot. A
horizontal band a 50Hz is also evident in the plot
corresponding to mains interference of the signal (also
indicated by a black arrow on the left hand of the plot). The
plotsin figure 3 contain the partitioned signals. The middle of
these plots contains the partitioned AF signal. We can see
that the partitioned AF signal contains no trace of either the
QRS complex or T wave. However, the method at present
removes all signal in the region of these two features. This
leaves a large proportion of the filtered AF signal equa to
zero.

Fourier and wavelet frequency spectral analysis has been
performed of the AF partitioned signals (not shown). The
Fourier spectra indicates a dominant spectral peak at around
6-7Hz. However, the intermittent nature of the AF signd
causes a spectral broadening around this frequency in the
Fourier domain. On the other hand, the wavelet spectra
corresponding to the filtered AF trace are, by their nature,
much smoother and exhibit peak spectral frequencies within
the same region as the Fourier spectra (6-7Hz).
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Fig. 1. 6.28 Second Segment of ECG Exhibiting AF
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Fig. 2: Scalogram Corresponding to Signal in Figure 1.
(The highest energiesin correspond to white and the lowest energies to black

in the grey scale plot.)
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Fig. 3: Original ECG (Top) with AF filtered signal (Middle)
and QRS/ T filtered signal (Bottom)

V. DISCUSSION

AF isacommon arrhythmiathat is associated with significant
morbidity. To date it has proven difficult to study complex
atrial activity in rea time using non-invasive methods, to
identify  electrophysiological properties that determine
maintenance of AF. In the clinical setting cardioversion helps
restore atrial electrical and mechanical function in a
proportion of patients, but the long-term success of
cardioversion is often disappointing. Patient selection can be
improved by applying clinicd and echocardiographic
screening  criteria, but further discrimination could be

afforded if the electrophysiological status of the atria could
be assessed prior to treatment. It is probable that patients who
exhibit least disorder of atrial depolarisation (or localised
ordered activity) are more likely to remain in sinus rhythm.

V. CONCLUSION

Our pilot data suggest that wavelet analysis may provide a
useful non-invasive marker of atrial electrophysiological
status. Work in progress aims to determine whether this new
technique can aid selection of patients that are most likely to
benefit from cardioversion. If the scalogram derived from
wavelet analysis is shown to reflect the electrical status of the
right atrium, providing information about the regularity and
frequency of atrial re-entry circuits, then wavelet analysis
may in future provide a useful non-invasive research tool for
examining the effects of interventions (e.g. antiarrhythmic
drugs) in patients with AF.
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