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Abstract

Cyclostationary signals are found when randomness occurs together with periodicity in a
physical system. In this presentation we will show evidence of cyclostationarity in battlefield
acoustic signals using algorithms that have been developed in the past 10 years. Cyclostationary
signal processing may provide features that will aid in target classification and association.

Introd uction1

We begin with a review of the definition of cyclostationarity. Our emphasis will be discrete time
processes ( or sequences) , indexed on Z but there are corresponding ideas in continuous time. A
stochastic sequence {X(t)} for t E Z, is said to be cyclostationary with period T ifT is the smallest
positive integer for which the mean function (of time) satisfies

J.t(t) = E{X(t)} = J.t(t + T) (1)

and the covariance function satisfies

R(s, t) = E{[X(s) -Jl.(s )][X(t) -Jl.(t)]} = R(s + T, t + ~) (2)

for every s, t E z. Observe that stationary processes are cyclostationary with every period because
R(s+T,t+T) = r(t+T-s-T) = R(s,t) for every s,t. Periodic functions f(t) = f(t+T) are also
cyclostationary because .u(t) = f(t) and R(s,t) = f(s)7("i). These are the simplest two examples.
But more interesting "mixtures" of periodicity and randomness also produce cyclostationarity, as
may be seen from the following examples.

Periodically modulated stationary noise. To see the cyclostationarity, suppose Y(t) is a
stationary random process and f(t) is a periodic function, then

(3)X(t) = f(t)Y(t)

is cyclostationary because JJ.x(t) = f(t)JJ.y and

Rx(s, t) = j(s)7(t)Ry(t -s) = Rx(s + T, t + T),
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It can be shown that every cyclostationary process can be represented as a linear combination of
periodically modulated jointly stationary processes. That is, every cyclostationary sequence can be
written as

N
X(t) = L fj(t)Y;(t)

j=l
(4)

where the processes in the collection {Yj(t),j = 1,2,...,N} are jointly wide sense stationary and
the scalar functions fj(t) = fj(t + T) are all periodic with period T.

Phase modulated stationary noise.

and f(t) is a periodic function, then
As above, suppose Y(t) is a stationary random process

X(t) = Y(t + f(t))

is cyclostationary because JLx(t) = JLy (y is stationary) and

Rx(s,t) Ry(t + f(t) -s -f(s)) = Rx(s + T,t + T),

Pulses with random amplitudes on a periodic schedule. This includes the communication
signal format called pulse amplitude modulation (PAM) discussed by W.R. Bennett in his seminal
paper on cyclostationarity[?]. If P(t) is a pulse signal or function defined on the interval [0, T), and
Aj is a zero mean stationary sequence, then the pulse train

X(t) = LAjP(t -jT)

is cyclostationary. See Bennett[?] or Gardner [? , ?] for more details.

Pulses on a periodic schedule with randomly jittered timing. This is a slight elaboration
of the PAM case. Here we assume there is a zero mean stationary random (jitter) sequence Oj for
which

X(t) = L AjP(t -jT -dj).

Intuitively we see that X(t) is cyclostationary because the stationarity of Aj and dj will force the
distributions of X ( t ) to be invariant under shifts of len~h T, provided the sum is well defined.

Stationary or white process passed through a periodically time-varying filter. If H(t, T)
H ( t + T, T + T) is the response of a periodically time varying filter at time t to an impulse at time
T, then if Y(t) is stationary it may be seen from

X(t) L H(t, u)Y(t -u)
u

that X(t) is cyclostationary with period T. We will not elaborate.
These examples illustrate the main idea that cyclostationary signals are typically produced by

systems in which randomness occurs together with periodicity. In the case of battlefield acoustics,
we have the periodicities of engines, gears and tracks mixed together with the randomness caused
by specific terrain and operating conditions. For example, for a constant velocity track vehicle the
track pads will make contact or "slap" the ground at a (roughly) constant rate but the sound waves
produced will differ somewhat from one slap to the next because of randomness in the terrain. This
suggests a cyclostationary signal model of the PAM type. For another example, the firing rate of

It can be shown that every cyclostationary process can be represented as a hnear combination of 
periodically modulated jointly stationary processes. That is, every cyclostationary sequence can be 
written as 
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(Top) Simulated white noise Y(t). (Bottom) Time series of X(t)
= f(t + 32) and f(t) = O or 1 according to Eq. (5).

f(t) .Y(t)Figure I:
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engines are jittered by time varying loads and governors with finite time constants. This suggests
the jittered pulse train model.

In the remainder of this paper we will review some of the methods used in empirical analysis of
cyclostationary signals and show some results of their application to battlefield acoustical signals.

Empirical Methods2

The average power spectrum of a cyclostationary signal may be completely free of spectral lines,
and yet the signal contains periodic structure that can be extracted. For example, in the amplitude
modulation model X(t) = f(t)Y(t) , if Y(t) has no spectral lines and f(t) is not a constant, then
the sample spectrum ofX(t) will not have any lines but still there is information about the periodic
modulation in the signal. To illustrate this, suppose Y(t) is white noise with variance a} so that
E{Y(t)Y(t + m)} = a}Om. The top trace of Figure 1 presents 256 values of a simulated white
sequence' without amplitude modulation (a sample of Y(t)) and the bottom trace presents 256
values of a modulated sequence X(t) for which

1 if O :$ t :$ 15
a if 16 :$ t :$ 31 (5)f(t)

where a = 0 and j(t + 32) = j(t). A periodic structure is clearly seen in the bottom trace but
the periodograms of Figure 2 show no perceptible evidence of periodicity at a frequency index of
j = 512/32 = 16. The averaging of 50 independent periodograms, an operation that increases the
sensitivity of determining the presence of periodic components, still shows no evidence of periodicity.
Qualitatively, the periodograms of Figure 2 are identical to the periodograms of unmodulated white

noise shown in Figure 3.
We now present two methods with which it is possible to extract some information about the

cvclostationarv structure. This information can be presented in spectrogram-like displays.

Thne Saries 01 WhKe Noise 

Figiire 1:  (Top) Simulated white noise Y{t).  (Bottom) Time series of X{t)      f{t) ■ Y{t) 
with f{t) = f{t + 32) and /(t) = 0 or 1 according to Eq. (5). 

engines are jittered by time varying loads and governors with finite time constants. This suggests 
the jittered pulse train model. 

In the remainder of this paper we will review some of the methods used in empirical analysis of 
cyclostationajy signals and show some results of their application to battlefield acoustical signals. 

2    Empirical Methods 

The average power spectrum of a cyclostationary signal may be completely free of spectral lines, 
and yet the signal contains periodic structure that can be extracted. For example, in the ampUtude 
modulation model X{t) = f{t)Y{t) , if Y{t) has no spectral Unes and f{t) is not a constant, then 
the sample spectrum ofX{t) will not have any lines but still there is information about the periodic 
modulation in the signal. To illustrate this, suppose Y{t) is white noise with variance a^ so that 
E{Y{t)Y{t + m)} = aySm- The top trace of Figure 1 presents 256 values of a simulated white 
sequence without amplitude modulation (a sample of Y{t)) and the bottom trace presents 256 
values of a modulated sequence X{t) for which 

ff,. 1   if0<<<15 ,. 
/(*^ a   ifl6<t<31 ^^) 

where a = 0 and f{t + 32) = /(*)• A periodic structmre is clearly seen in the bottom trace but 
the periodograms of Figvire 2 show no perceptible evidence of periodicity at a firequency index of 
j = 512/32 = 16. The averaging of 50 independent periodograms, an operation that increases the 
sensitivity of determining the presence of periodic components, still shows no evidence of periodicity. 
Qualitatively, the periodograms of Figure 2 are identical to the periodograms of unmodulated white 
noise shown in Figure 3. 

We now present two methods with which it is possible to extract some information about the 
cyclostationary structure. This information can be presented in spectrogram-like displays. 
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Figure 2: (Top) Periodogram ofX(t) = f(t) .Y(t) with f(t) = f(t+32) and
f(t) = 0 or 1 according to Eq. (5). N = 512. The frequency correspond-
ing to the index j is >.j = 27rj/N. (Bottom) Average of 50 independent

periodograms of the same series.

Figure 3: (Top) Periodogram of white noise X(t). N = 512. The frequency
corresponding to the index j is )..j = 27rj/N. (Bottom) Average of 50 inde-
pendent periodograms of the same series.

Figure 2: (Top) Periodogram of X(t) = f{t)-Y{t) with f{t) = /(i + 32) and 
f{t) = 0 or 1 according to Eq. (5). N = 512. The frequency correspond- 
ing to the index j is Xj = 2-KJlN. (Bottom) Average of 50 independent 
periodograms of the same series. 

Figure 3: (Top) Periodogram of white noise X{t). N - 512. The frequency 
corresponding to the index j is A^ = 2TVJ/N. (Bottom) Average of 50 inde- 
pendent periodograms of the same series. 
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Figure 4: (Top) Periodogram of y2(t) where X(t) = f(t) .Y(t) with
f(t) = f(t + 32) and f(t) = 0 or 1 according to Eq. (5). N = 512. The
frequency corresponding to the index j is ).j = 27rj/N. (Bottom) Average

of 50 independent periodograms of the same series.

Spectrum of the squares.

This method is very simple and can be motivated by the amplitude modulation model discussed
above. The instantaneous variance of X(t) is

q~(t) = If(t)12q~

so the instantaneous variance is properly periodic (not a constant) with period T provided that
If(t)21 is properly periodic. This says that the time series of the squares (X2(t)) consists of a
periodic mean with additive random fluctuations about it. Since the periodogram (or spectrogram)
is a well known and understood method for detecting periodicities in noise, we are thus motivated
to form the periodogram of the squares of X(t).

Figure 4 illustrates that the periodogram of the squares of X(t) makes the periodicity very

perciptible.
Can this simple modification permit us to perceive the presence of any arbitrary PC structure?

The answer is no. For example, Figure 5 shows that the periodogram of the squares of X(t) =
f(t) .Y(t) evidently shows no sign of periodicity when we take a = -1 in (5) for Y(t) given by a
first order autoregression Y(t) = .8Y(t-1) +E(t), which is stationary with correlation Ry(k) = .8k.
Although X(t) is most certainly PC with period T = 32, E{X2(t)} = If(t)12 Ry(O) = Ry(O) is
constant with respect to t (and thus not properly periodic).

In essence, the spectrum of the squares is effective for detecting periodic amplitude modulations
but a more general method is needed to look for more general cyclostationary structure. This is
the topic of the next subsection.

Finally, a spectrogram-like display can be constructed from succcessive periodograms of the
squared series. Examples will be presented following the next subsection.

Methods based on spectral coherence.

In order to describe a more general method of analyzing cyclostationary time series we use some
spectral concepts that can be applied to some nonstationary processes. It is known that cyclosta-
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Figure 4: (Top) Periodogram of Y'^{t) where X{t) = f{t) ■ Y{t) with 
f{t) = f{t + 32) and f{t) = 0 or 1 according to Eq. (5). N = 512. The 
frequency corresponding to the index j is Xj = 2-KJ/N. (Bottom) Average 
of 50 independent periodograms of the same series. 

Spectrum of the squares. 

This method is very simple and can be motivated by the amplitude modulation model discussed 
above. The instantaneous variance of X{t) is 

so the instantaneous variance is properly periodic (not a constant) with period T provided that 
|/(t)^| is properly periodic. This says that the time series of the squares {X^{t)) consists of a 
periodic mean with additive random fluctuations about it. Since the periodogram (or spectrogram) 
is a well known auad understood method for detecting periodicities in noise, we axe thus motivated 
to form the periodogram of the squares of X{t). 

Figure 4 illustrates that the periodogram of the squares of X{t) makes the periodicity very 
perciptible. 

Can this simple modification permit us to perceive the presence of any arbitrary PC structmre? 
The answer is no. For example, Figure 5 shows that the periodogram of the squares of X{t) = 
f{t) • Y{t) evidently shows no sign of periodicity when we take a = —1 in (5) for Y{t) given by a 
first order autoregression y(t) = .8F(t — l) + e(t), which is stationary with correlation ily(fc) = .8''. 
Although X{t) is most certainly PC with period T = 32, E{X^{t)} = |/(t)pi?y(0) = RY{0) is 
constant with respect to t (and thus not properly periodic). 

In essence, the spectrmn of the squares is effective for detecting periodic amphtude modulations 
but a more general method is needed to look for more general cyciostationary structure. This is 
the topic of the next subsection. 

Finally, a spectrogram-like display can be constructed from succcessive periodograms of the 
squared series. Examples will be presented following the next subsection. 

Methods based on spectral coherence. 

In order to describe a more general method of analyzing cyciostationary time series we use some 
spectral concepts that can be applied to some nonstationary processes. It is known that cyclosta- 



Figure 5: (Top) Time series of Y(t) = f(t) .X(t) with f(t) = f(t + 32) and
f(t) = -lor 1 according to Eq. (5); X(t) = .8X(t-1) +E(t). N = 512. The
frequency corresponding to the index j is '\j = 27rj/N. (Bottom) Average

of 50 independent periodograms of the squares of the same series.

tionary sequences are harmonizable (Gladyshev [2]) so

h21T
X(t) = (6)

is a random measure that does not have orthogonal increments and is related to R(s,t)where Z(

through
{27r {27rR(s,t) = E{X(s)"X1t)} = Jo Jo e-iS>.1-it>.2rz (d).1,d).2) ,

where the cross spectral correlation measure rz(A, B) = E{Z(A)z-(B)"} is of bounded variation on
[0, 21r] x [0, 21r], jg7r jg7r I rz (d).l, d).2) 1< +00. That is, harmonizable processes still have a spectral
representation (6) but the frequency amplitude process Z().) need not have orthogonal increments.
Although we do not prove it here, cyclostationarity forces the increment dZ ().1) to be orthogonal
to dZ ().2) except when ).2 = ).1- 21rk/T. That is, the sequence X(t) is cyclostationary with period
T if and only if the support of the spectral correlation measure rz is contained in the set 8 = Uk 8k
where 8k = {().1,).2) I ).2 = ).1- 21rk/T}. This support-set is illustrated in Figure 6.

The (spectral) correlations in the increments of Z that give rise to Figure 6 is characteristic
of cyclostationary sequences, and so it follows that a test (but not the only test) for the presence
of cyclostationarity may be phrased in terms of a test for these specific correlations in the sample
spectrum. The original idea we believe is due to N .R Goodman [3]; see Hurd and Gerr [4] for a
discussion of Goodman's contribution and it's application to determining the presence of cyclosta-
tionarity in a time series. Since the sample Fourier transform may be interpreted as an estimate
of the frequency increments of a harmonizable process, we first compute the finite length sample
Fourier transform:

(7)

N-l
X(>.) = L X(t)exp(-i>.t)

t=O
(8)

where j(()..) is typically computed at the finite set of frequencies )..k = 27rk/N, k = 0,1, ..., N -1
and then the random variables Zk = j((27rk/N) are interpreted as estimates of dZ(27rk/N),k =

Figure 5: (Top) Time series of Yit) = /(*)■ X{t) with f{t) = f{t + 32) and 
f{t) = -1 or 1 according to Eq. (5); X(t) = .8X{t-l)+e{t). N = 512. The 
frequency corresponding to the index j is Xj = 2Trj/N. (Bottom) Average 
of 50 independent periodograms of the squares of the same series. 
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where Z{   is a random measmre that does not have orthogonal increments and is related to R{s,t) 
throueh 

R{s,t) = E{X{s)X{t)}= /    e-"^>-'*^Vz((iAi,dA2), (7) 
JO     JO 

where the cross spectral correlation measure rz{A,B) = E{Z{A)Z{B)} is of bounded variation on 
[0,2ir] X [0,27r], JQ"^ JQ^ | rz {dXi,dX2) \< +oo. That is, harmonizable processes still have a spectral 
representation (6) but the frequency amplitude process Z{X) need not have orthogonal increments. 
Although we do not prove it here, cyclostationarity forces the increment dZ {Xi) to be orthogonal 
to dZ (A2) except when A2 = Ai — 2Trk/T. That is, the sequence X{t) is cyclostationary with period 
T if and only if the support of the spectral correlation measure rz is contained in the set S = \Jf.Sk 
where Sk = {(Ai, A2) | A2 = Ai — 2nk/T}. This support set is illustrated in Figiu-e 6. 

The (spectral) correlations in the increments of Z that give rise to Figmre 6 is characteristic 
of cyclostationary sequences, and so it follows that a test (but not the only test) for the presence 
of cyclostationarity may be phrased in terms of a test for these specific correlations in the sample 
spectrum. The original idea we believe is due to N.R Goodman [3]; see Hurd and Gerr [4] for a 
discussion of Goodman's contribution and it's appUcation to determining the presence of cyclosta- 
tionarity in a time series. Since the sample Fourier transform may be interpreted as an estimate 
of the frequency increments of a harmonizable process, we first compute the finite length sample 
Foiu"ier transform: 

JV-l 

X{X) = 53 ^(*) exp(-zA<) (8) 
t=o 

where X{X) is typically computed at the finite set of frequencies Afc = 2'Kk/N, k = 0,1,... ,N -1 
and then the random variables Zk = X{2Trk/N) are interpreted as estimates of dZ{2Trk/N),k = 



Figure 6: Support of rz for a cyclostationary sequence.

0,1, ..., N -1. The spectral coherence computation determines the normalized correlation, or
coherence, between two bands Zp, Zp+l, ...Zp+M-l and Zq, Zq+l, ...Zq+M-l of frequency-indexed
variates where each band contains M variates indexed consecutively. Precisely, we compute

MI -2

I Z::m;;;O zp+mZq+ml

z::~;;;J IZp+m12 z::~;;;J IZq+m12

I'Y(P, q, M)12 = (9)

for (P, q) in a square array and plot the values exceeding a threshold according to a grey-scale
encoding. In the univariate case, under the assumption that the Zj are i.i.d. complex Gaussian
variates the null distribution for 'Y(P, q, M)12 is given by Pr[I'Y12 > l'YoI2] = (1-I'YoI2)M-l (see [4]).
A variant of this idea was the basis the test for cyclostationarity used in Bloomfield, Hurd and
Lund (1994) [1].

The display of Figure 7 presents a ( diagonal) spectral coherence image made from a segment
of the XC5 acoustic time series in which there was a vehicle moving toward a sensor array. The
periodogram of the signal, shown in the lower display, shows no evidence of periodicity but yet the
periodicity in the spacing of the diagonal lines in the spectral coherence image is easily seen.

The persistence along the diagonal lines suggests the averaging of the image along lines of
constant difference frequency. The result of this averaging for this image is shown in Figure 8.
The periodic spacing is again clear and it's perception is enhanced (gain in signal to noise ratio) .
Although the summing along lines of constant difference frequency is incoherent, the coherence in
the raw spectrum has already been used to form the spectral coherence image. If a sequence of
these diagonal averages are computed for successive time segments, then one may make an average-
coherence gram plot of the successive diagonal averages and hence perceive the difference frequencies
of the support lines. These difference fequencies are sometimes called the cycle frequencies of the
cyclostationary process. The average-coherence spectrogram permits the perception of even much
weaker cyclostationary signals.

Sometimes, as in Figure 7, the spectral coherence may be usefully large only in some locations
along a difference frequency line. Thus in computing the average-coherence gram, restricting the
diagonal average to certain areas can further enhance the perceptibility of weak signals.

We will now present examples of the squares spectrogram and the average-coherence gram pro-
duced from battlefield acoustic time series. The main purpose here is to demonstrate the potential

Figure 6: Support of rz for a cyclostationaxy sequence. 

0,1,... ,iV — 1. The spectral coherence computation determines the normalized correlation, or 
coherence, between two bands Zp, 2p+i,... Zp+M-i and Zq, ■^g+i) ■ • • -^g+M-i of frequency-indexed 
variates where each band contains M variates indexed consecutively. Precisely, we compute 

EM-l 7 7        |2 
m=0 ^p+m^q+m\ 

l^m=0 \Zp+m\   Y^m=0 l-^g+mr 

for (p,q) in a square array and plot the values exceeding a threshold according to a grey-scale 
encoding. In the univariate case, under the assumption that the Zj are i.i.d. complex Gaussian 
variates the null distribution for 7(p,g,M)p is given by Pr[|7p > |7op] = (1 — ITOP)^"^ (see [4]). 
A variant of this idea was the basis the test for cyclostationarity used in Bloomfield, Hurd and 
Lund (1994) [1]. 

The display of Figure 7 presents a (diagonal) spectral coherence image made from a segment 
of the XC5 acoustic time series in which there was a vehicle moving toward a sensor array. The 
periodogram of the signal, shown in the lower display, shows no evidence of periodicity but yet the 
periodicity in the spacing of the diagonal lines in the spectral coherence image is easily seen. 

The persistence along the diagonal Unes suggests the averaging of the image along Unes of 
constant difference frequency. The result of this averaging for this image is shown in Figure 8. 
The periodic spacing is again clear ajid it's perception is enhzinced (gain in signal to noise ratio). 
Although the summing along lines of constant difference frequency is incoherent, the coherence in 
the raw spectrum has already been used to form the spectral coherence image. If a sequence of 
these diagonal averages axe computed for successive time segments, then one may maJce an average- 
coherence gram plot of the successive diagonal averages and hence perceive the difference frequencies 
of the support lines. These difference fequencies axe sometimes called the cycle frequencies of the 
cyclostationary process. The average-coherence spectrogram permits the perception of even much 
weaker cyclostationary signals. 

Sometimes, as in Figure 7, the spectral coherence may be usefully large only in some locations 
along a difference frequency line. Thus in computing the average-coherence gram, restricting the 
diagonal average to certain areas can further enhance the perceptibility of weak signals. 

We wiU now present examples of the squares spectrogram and the average-coherence gram pro- 
duced from battlefield acoustic time series. The main purpose here is to demonstrate the potential 



Figure 8: Result of diagonal averaging applied to spectral coherence image
of Figure 7. The abcissa is difference frequency ( distance from the diagonal
in Figure 7).

Data GV9AlO60 The usual spectrogra11Wf Figure 9 shows a mixture of a dynamic harmonic
set along with a few straight lines. Figure 10 contains an average coherence spectrogramand a
squares spectrogram. The squares spectrogramappears much like the usual spectrogramin line SNR
and texture so we have concentrated on the average coherence spectrogram. Figure 11 shows how
the average coherence spectrogramdepends on the difference frequency search region. The search
region is a rectangle in the space of bin pairs defined by a range of X bins and a range of y
bins. That is, only the spectral coherence in the rectangle yBins x x Bins are used in forming the
averages that produces the scans for the average coherence spectrogram. The displays of Figure 11
use four different frequency search regions, each representing a quarter of the frequency band from
0 to the Nyquist frequency. Thus for a 4096 point FFT, the search region for the first quarter is
[1: 512] x [1 : 512] and for the second quarter it is [513: 1024] x [513: 1024].

The displays of Figure 11 show the harmonic set is much more clearly defined on the average
coherence spectrogramthan on the usual spectrogram. This is an important indicator for cyclosta-
tionarity. If the observed bandwidth of the line on the average coherence spectrogramwere roughly
the same as on the usual spectrogram, then the increased coherence level could be partly attributed
to signal band shape. But the narrowness of the average coherence spectrogramline means that
only a very precisely determined difference frequency gives rise to significantly higher spectral
coherences. Other observations of this phenomenon are also seen in the remaining examples.

We also observe from Figure 11 that the average coherence spectrogramSNR values (line dark-
ness) are a function the search band. In addition the gram SNR in higher frequency search regions
is more time dependent, suggesting range and aspect effects.

Data GV9ClO69 The usual spectrogramof Figure 12 shows a mixture of a strong harmonic set
along with a weaker harmonic set. Figure 13 shows how the "fuzziness" of the harmonic signals are
much more clearly defined on the average coherence spectrogram. Further, the average coherence
spectrogramfor the 2nd quarter search region appears to separate the two sources ( the fundamentals
of the two harmonic sets), suggesting an aspect dependence for these sources. The gram SNR levels
were too small in the 3rd and 4th quarter bands to warrant inclusion.

Data VGPH This data was taken from a seismic sensor. The usual spectrogramof Figure 14
shows a mixture of a dynamic harmonic set along with one strong straight line. The average
coherence spectrogramand squares spectrogramof Figure 15 show again how the fundamental of the
harmonic family become very well defined in the average coherence spectrogram. Also the harmonic
set is essentially absent from the squares spectrogram, suggesting that the harmonic set results from
a phase modulation phenomenon as opposed to an amplitude modulation. But still the squares
spectrogramshows some time intervals in which strong amplitude modulations exist.

Figure 8: Result of diagonal averaging applied to spectral coherence image 
of Figure 7. The abcissa is difference frequency (distance from the diagonal 
in Figure 7). 

Data GV9A1060 The usual spectrogramoi Figure 9 shows a mixture of a dynamic harmonic 
set along with a few straight lines. Figure 10 contains an average coherence spectrograrmmd a 
squares spectrogram. The squares spectrograma,ppeaxs much like the usual spectrogramin line SNR 
and texture so we have concentrated on the average coherence spectrogram. Figure 11 shows how 
the average coherence spectrogramdepends on the difference frequency seaxch region. The search 
region is a rectangle in the space of bin pairs defined by a range of X bins and a range of Y 
bins. That is, only the spectral coherence in the rectangle yBins x xBins are used in forming the 
averages that produces the scans for the average coherence spectrogram. The displays of Figure 11 
use four different frequency search regions, each representing a quarter of the frequency band from 
0 to the Nyquist frequency. Thus for a 4096 point FFT, the search region for the first quarter is 
[1 : 512] X [1 : 512] and for the second quarter it is [513 : 1024] x [513 : 1024]. 

The displays of Figure 11 show the harmonic set is much more clearly defined on the average 
coherence spectrogramthan on the usual spectrogram. This is an important indicator for cyclosta- 
tionaxity. If the observed bandwidth of the Une on the average coherence spectrogramweie roughly 
the same as on the usual spectrogram, then the increased coherence level could be partly attributed 
to signal band shape. But the narrowness of the average coherence spectrogramline means that 
only a very precisely determined difference frequency gives rise to significantly higher spectral 
coherences. Other observations of this phenomenon are also seen in the remaining examples. 

We also observe from Figure 11 that the average coherence spectrogramSNR values (line dark- 
ness) are a function the search band. In addition the gram SNR in higher frequency search regions 
is more time dependent, suggesting range and aspect effects. 

Data GV9C1069 The usual spectrogramoi Figure 12 shows a mixture of a strong harmonic set 
along with a weaker harmonic set. Figure 13 shows how the "fuzziness" of the harmonic signals are 
much more clearly defined on the average coherence spectrogram. Further, the average coherence 
spectrogramioT the 2nd quarter search region appears to separate the two sources (the fundamentals 
of the two haurmonic sets), suggesting an aspect dependence for these sources. The gram SNR levels 
were too small in the 3rd and 4th quarter bands to warrant inclusion. 

Data VGPH This data was taken from a seismic sensor. The usual spectrogramoi Figure 14 
shows a mixture of a dynamic harmonic set along with one strong straight line. The average 
coherence spectrogramaad squares spectrogramoi Figiure 15 show again how the fundamental of the 
harmonic family become very well defined in the average coherence spectrogram. Also the harmonic 
set is essentially absent from the squares spectrogram, suggesting that the harmonic set results from 
a phase modulation phenomenon as opposed to an amplitude modulation. But still the squares 
spectrogramshows some time intervals in which strong amplitude modulations exist. 



Figure 7: (Top) Spectral coherence image from XC5-7 time series. Starting
time: 69,520 samples. N=8192, M=32. Frequencies shown are in the range
.003125Fs, .006238F". (Bottom) Periodogram of the same data for same

frequency band with N=8192.
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of these processing techniques and displays for contributing to the classification, detection or asso-

ciation of multiple acoustic targets.

3
This section presents the results of analysis of several signals using the following three types of

spectrograms.
The usual spectrogram, meaning a spectrogram composed of successive scans of the magnitudes

of sample Fourier transforms. In some cases a noise spectrum equalization algorithm was
employed to enhance weak lines and to equalize the spectrum for display. This algorithm was
not needed for the grams based on cyclostationary processing because the algorithms tend to

yield a flat background spectrum ( see figure 4) .

The squares spectrogram, meaning the usual spectrogram of the time series of the squares (i.e.,

X1(l)).
The average coherence spectrogram, formed conceptually by averaging the spectral coher-

ence image along lines of constant difference frequency.

Figure 7: (Top) Spectral coherence image from XC5-7 time series. Starting 
time: 69,520 samples. N=8192, M=32. Frequencies shown are in the range 
.003125Fa,.006238F,. (Bottom) Periodogram of the same data for same 

frequency band with N=8192. 
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of these processing techniques and displays for contributing to the classification, detection or asso- 

ciation of multiple acoustic targets. 

This section presents the results of analysis of several signals using the following three types of 

spectrograms. 

The usual spectrogram, meaning a spectrogram composed of successive scans of the magnitudes 
of sample Fourier transforms. In some cases a noise spectrum equalization algorithm was 
employed to enhance weak Unes and to equalize the spectrum for display. This algorithm was 
not needed for the grams based on cyclostationary processing because the algorithms tend to 
yield a flat background spectrum (see figure 4). 

The squares spectrogram, meaning the usual spectrogram of the time series of the squares (i.e., 

The average coherence spectrogram, formed conceptually by averaging the spectral coher- 
ence image along Unes of constant difference frequency. 



Figure 9: Usual spectrogram of data GV9AlO60;
SLIDE=lO24; NSE : ON.

FFTLEN=2048j

GV8A10S0.s
GRAM 2048

SCAN 1

2. 600'

Data 20-7 This is acoustic data containing two targets. The usual spectrogramof Figure 16
shows a mixture of two harmonic sets along with another family of closely spaced lines suggesting
a long-period modulation. Figure 17 shows average coherence spectrograms for the 1st and 2nd
quarter search regions. The right display of Figure 17 appears to separate the two sources (the
fundamentals of the two harmonic sets) in frequency and time. The time separation of the strongest
portions is consistent with the time between CPAs of the two vehicles. Perhaps the most interesting
new feature is the long period modulation which is evident in the left display of Figure 17. The
modulation frequency is about 1 Hz.
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Figure   9:     Usual   spectrogram   of data   GV9A1060;    FFTLEN=2048' 
SLIDE=1024; NSE : ON. 
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Data 20-7 This is acoustic data containing two targets. The usual spectrogramof Figure 16 
shows a mixture of two harmonic sets along with another family of closely spaced lines suggesting 
a long-period modulation. Figure 17 shows average coherence spectrograms for the 1st and 2nd 
quarter search regions. The right display of Figure 17 appears to separate the two sources (the 
fundamentals of the two harmonic sets) in frequency and time. The time separation of the strongest 
portions is consistent with the time between CPAs of the two vehicles. Perhaps the most interesting 
new feature is the long period modulation which is evident in the left display of Figure 17. The 
modulation frequency is about 1 Hz. 
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Figure 10: (Left) Average coherence gram of data GV9A1060;

FFTLEN=2048j SLIDE=1024; xBins=[513:1024] , yBins=[513:1024].
(lughl) Squl:l.l'eH Hpeclrogrulll of dulu GV9AlO60; 1~'1~'rrLEN:;:;204M;
SLIDE= 1024.

Figure 11: Average coherence grams of data GV9A1060; FFTLEN=2048;
sLmE=lo24. (Top left) x Bins= [1 :512] .yBins=[1:512].
(Top right) xBins= [513: 1024] .yBins= [513: 1024] .
(Bottom left) x Bins= [1025: 1536] .yBins= [1025: 1536] .
(Bottom right) x Bins= [1537: 2048] .yBins= [1537: 2048] .
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Figure   10:      (Left)   Average coherence   gram   of   data   GV9A1060; 
FFTLEN=2048;   SLIDE=1024; xBins= [513:1024] , yBins= [513:1024]. 
(liight)   Squui-eH   Hpectrogram of  data   GV9A10G0;    FFTLEN=-2U48; 
SLIDE=1024. 
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Figure 11: Average coherence grams of data GV9A1060; FFTLEN=2048; 
SLroE=1024. (Top left) xBins= [1:512], yBins= [1:512]. 
(Top right) xBins=[513:1024], yBins=[513:1024]. 
(Bottom left) xBins= [1025:1536] , yBins= [1025:1536]. 
(Bottom right)xBins= [1537:2048] , yBins= [1537:2048] . 
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Figl'r~ 1 ~; {J~l'AI firft~trngrl\m nf O{\tA GV»r:l nfi~j
SLIDE= 1024j NSE : ON.

FFTT,fjN=40Ufij

Figure 13: Average coherence gramH of data GV9CIO69; FFTLEN=4096;
SLIDE= 1024. (Left) x Bins= [1 :512] , yBins=[1:512]. (Right)

xBins=[513:1024], yBins3[513:1024].

Figiirp 12;   Usiml fipprtrngram of dat-ft riVDCiflfi});  FFTLRN^^ODfi; 
SLIDE=1024; NSE : ON. 
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Figure 13: Average coherence grams of data GV9C1069; FFTLEN=4096; 
SLIDE=1024. (Left)    xBins=[l:5123 , yBins= [1:512]. (Right) 
xBins=[513:1024], yBins-[513:1024]. 
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Figure 14: Usual spectrogram of data VGPH. FFTLEN=4096; SLIDE=512;
NSE: ON; (Top) BAND: {1:512]; (Bottom) BAND: {1:512].
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Figure 15: (Left) Average coherence gram of data VGPH; FFTLEN=4096;

SLIDE=512; xBins=[513:1024]. yBins=[513:1024]. (Right) Squares
spectrogram of data VGPH; FFTLEN=4096; SLIDE=512.

Figure 14: Usual spectrogram of data VGPH. FFTLEN=4096; SLIDE=512; 
NSE : ON; (Top) BAND : [1:512]; (Bottom) BAND : [1:512]. 
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Figure 15: (Left) Average coherence gram of data VGPH; FFTLEN=4096; 
SLIDE=512; xBin8= [513:1024] , yBins= [513:1024]. (Right) Squares 
spectrogram of data VGPH; FFTLEN=4096; SLIDE=512. 
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Figure 16: Usual spectrogram of data 20-7; FFTLEN=8192; SLIDE= 1024;

NSE: ON.
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Figure 16: Usual spectrogram of data 20-7; FFTLEN=8192; SLIDE=1024; 
NSE : ON. 



Figure 17: Average coherence grams of data 20-7; FFTLEN=8192;

SLIDE=1024.
(Left) x Bins= [1: 1024] , yBins= [1: 1024] .

(EUght) xBins=[1025:2048], yBins=[1025:2048].

Figure   17:     Average  coherence  grams  of data  20-7;   FFTLEN=8192; 
SLIDE=1024. 
(Left) xBins= [1:1024] , yBins= [1:1024]. 
(Right) xBins=[1025:2048], yBins=[1025:2048]. 
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